
Transactional Support for ad-hoc

Cooperations in Mobile Environments

Dissertation zur Erlangung des akademischen Grades

einer Doktorin der Naturwissenschaften (Dr. rer. nat.)

im Fachbereich Mathematik und Informatik der Freien Universität Berlin

vorgelegt von

Dipl.-Inform. Katharina Hahn

Berlin 2010

Erstgutachter: Prof. Dr.-Ing. Heinz F. Schweppe, Freie Universität Berlin

Zweitgutachter: Prof. Dr. Christian Becker, Universität Mannheim

Datum der Disputation 12. Juli 2010

Abstract

The advent of wireless networking technologies in combination with the decreasing size

of yet more powerful computing devices have led to the emergence of new applications

to be deployed in mobile environments. Users equipped with mobile devices are able to

spontaneously collaborate with each other in an ad-hoc manner. However, when deploy-

ing cooperative applications in mobile environments, one has to provide suitable means

to cope with the characteristics of these environments. Due to the mobility of partici-

pants and the wireless networking technologies, mobile networks are more dynamic than

fixed networks. As resources of mobile networks expose a temporary nature, failures of

any kind are no longer the exceptional case. Suitable forward error-handling mecha-

nisms which still allow for successful execution of an application in case of failure, as

well as backward failure-recovery mechanisms, which avoid inconsistent system states,

have to be integrated.

In this thesis, an integrated approach of transactional support of ad-hoc collaborations

with service discovery in mobile environments is presented. The objective is to ensure

reliable support while respecting the autonomy of mobile devices. Ad-hoc collaborations

are implemented as service compositions, specified as workflows. We present a service

discovery protocol for ad-hoc scenarios which exploits the mobility of nodes: It adapts

to the current context of nodes and thereby ensures high availability of information and

decreases the number of messages if possible. On the other hand, it enables discovery and

usage of remote services which are not in the direct vicinity of nodes. This protocol builds

the foundation for ad-hoc collaboration, as composition at runtime is only possible, if

services may be discovered in the first place. On the other hand, it allows for forward

failure-handling, as it enables finding of alternatives.

The core contribution of this thesis is an adaptive workflow management system: It ex-

plores transactional properties of services and employs semi-atomicity as the correctness

criterion to allow for reliable yet autonomous coupling of services. Workflows are veri-

fied at runtime. If the verification fails, they are adapted during the execution to ensure

correct termination in any case. Furthermore, the adaptive workflow management sys-

tem enables autonomy to participating devices whenever possible, thus abandons from

tight coupling of services to transaction phases. We prove that our approach produces

optimal results regarding the autonomy of services.

We present analytical and experimental evaluation results which confirm the applica-

bility of our integrated approach: As opposed to existing pessimistic approaches which

ensure correctness by tight coupling of components, it considerably increases the au-

tonomy of services. In comparison to optimistic approaches, it allows for integration of

diverse (i.e., non-compensatable) services by still ensuring correct execution in any case.

In summary, our approach is a hybrid approach which ensures correctness in any case

yet autonomous coupling of services whenever possible.

vi

Acknowledgements

I would like to express my appreciation and gratitude for those from whom I have profited

in so many different aspects over the past years.

First and foremost, I would like to thank my advisor, Prof. Heinz Schweppe, for

giving me the opportunity to work on this thesis. Without the countless, valuable

conversations and his continuous support and commitment to refining the contents and

the presentation of this thesis, it would not look like it does today.

My special thanks go to Prof. Christian Becker, for revising the thesis and many pre-

cious words of advice. His enthusiasm for research continuously motivated me through-

out the past: Thank you for the gap in the clouds!

I would like to express my gratitude to my peers at the ag-db and the diploma students

for insightful technical discussions and their support. Furthermore, I want to thank

my colleagues and friends who have enriched my life with contentual collaboration as

well as sincere, entertaining and happy diversion: Fabian, Marc, Georg - I am grateful

for open doors and ears and for the friendship we share; Christian - thank you for

so many discussions over coffee and relevant insights: Of course, you are right after all.

Additionally, I would like to extend thanks to Olli for the most wonderful and comforting

latte. My special thanks are due to Manuel without whom my time at FU would have

been less joyful - thank you for sharing all ups and all downs. Furthermore, I would like

to thank Sinikka whose warmth constantly created a wonderful atmosphere in 165.

I owe my deepest gratitude to Kirsten: Thank you for saving my life, for making the

sun shine bright and for being the most incredible friend one could possibly ask for -

plan K rocks! Likewise, I am not able to adequately express my appreciation for Nicole:

Thank you for all your patience and support in every way and every aggregate state,

and for making life colorful. Thank you for being who you are and for taking me as I

am - all inclusive.

Last but not least, I would like to express my gratitude to Annalene, Willi, and Tobi.

Without your love, your encouragement and unconditional care for me on my way I

would not be where I am today. Thank you for any emotional, motivational - but also

technical - support and for continuously pointing out important and beautiful aspects

in life.

Contents

List of Figures xi

List of Abbreviations xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Application Scenario - MoP . 3

1.3 Objectives . 5

1.4 Outline . 6

2 System Model 7

2.1 Network Model . 7

2.2 Component Model . 8

2.3 Cooperation Model . 8

2.4 Failure Model . 9

2.5 Challenges . 10

3 Related Work 11

3.1 Existing Standards for Web Services . 11

3.1.1 Web Service Transaction Framework: WS-Tx 11

3.1.2 Composing Web Services . 12

3.2 Related Research Areas . 13

3.2.1 Transaction Models . 13

3.2.2 Composition of Services . 16

3.2.3 Verification of Composite Services 20

3.3 Summary . 22

4 Discovering Mobile Services 23

4.1 Existing Approaches . 23

4.2 Adaptive Group-based Service Discovery: aGSD 25

4.2.1 Group-based Service Discovery . 25

4.2.2 Exploitation of Mobility . 27

4.3 Evaluation . 31

Contents

4.3.1 Evaluation Setup . 31

4.3.2 Evaluating the Dynamic Configuration 32

4.3.3 Evaluation of Remote Service Requests 35

4.4 Summary . 36

5 Formalizing Transactional Cooperation of Services 37

5.1 Transactional Services . 37

5.1.1 Service Model . 37

5.1.2 Transactional Properties of Services 38

5.2 Transactional Composition of Services . 42

5.2.1 Control Flow Patterns . 42

5.2.2 Transactional Pattern . 43

5.2.3 Transactional Properties of Patterns 44

5.2.4 Workflow Elements . 45

5.2.5 Dependencies . 46

5.3 Specifying Correctness: Semi-Atomicity . 48

6 Flexible Workflows to Guarantee Correct Execution 51

6.1 Views of the Workflow . 51

6.1.1 Workflow as a Tree . 52

6.1.2 Data Dependency Graph Gω(V, E) 52

6.1.3 ATS View . 53

6.2 Verification of a Workflow . 54

6.2.1 Conflict Elements . 54

6.2.2 Verification Criterion: SAP . 59

6.2.3 Verifying a Workflow ω . 64

6.3 A-priori Adaptation of the Workflow . 65

6.3.1 Minimal Set of Coordinated Elements 65

6.3.2 ATS-Invariant Adaptations . 67

6.3.3 Adaptation Algorithm . 68

6.3.4 Correctness of the Algorithm . 77

6.4 Integrating Service Discovery in Adaptive Workflow Management 80

6.5 Adaptation at Runtime . 81

7 Implementing Adaptive Workflow Management 83

7.1 Formal Requirements . 83

7.1.1 Transactional Properties of Services 83

7.1.2 Control Flow Patterns . 85

7.1.3 Transactional Composition of Services 86

7.2 Architecture . 87

ix

Contents

7.2.1 Presentation Layer . 87

7.2.2 Logical Layer . 88

7.3 Use Cases . 89

7.3.1 Deployment . 89

7.3.2 Process Invocation . 90

8 Evaluating AWM 91

8.1 System Parameters and Evaluation Metrics 91

8.2 Empirical Evaluation of AWM . 97

8.2.1 Autonomy of Participants dAWM 98

8.2.2 Correctness Guarantees pSA . 104

8.3 Evaluation of AWM in Realistic Settings 109

8.3.1 Evaluation Example I: MoP . 109

8.3.2 Evaluation Example II: Order-to-Delivery Process 112

8.4 Summary . 118

9 Conclusion 120

Bibliography 123

A Formal Model 135

B Adaptive Workflow Management 138

C Implementation 141

D Evaluation 142

E Zusammenfassung 154

F Erklärung 156

x

List of Figures

1.1 MoP activity flows for Berlin. 4

1.2 MOP example scenario. 4

2.1 Underlying system model. 7

3.1 WS-Coordination framework. 11

4.1 Hierarchical grouping of services. 25

4.2 Service provider sp, node n, and their mobility information. 29

4.3 Searching for remote services. 30

4.4 Request hits and packet loss varying cL. 33

4.5 Sent advertisements and request hits varying vmax. 34

4.6 Packet loss and expenses varying cF . 34

4.7 Distance to provider for discovery and usage of remote service. 35

4.8 Comparison of distance between client and target area vs. client and provider. 36

5.1 State-machine of a single service. 37

5.2 Running example with transactional properties. 41

5.3 Properties of patterns of the running example. 46

5.4 Correct (unsuccessful) termination of the running example. 49

6.1 System architecture of the adaptive workflow management system. 51

6.2 Tree view Tω of the running example. 52

6.3 Data dependency graph Dω(V, E) of the running example. 53

6.4 ATS view ATSω of the running example. 53

6.5 Rearranging transactional conflict {e1, e2}C (a) in sequence (b) and (c). . . 55

6.6 Directed transactional conflict {e1, e2}C (a), enclosed in WPsubTA (b). . . . 56

6.7 Transitive conflict {e1, e3}C . 57

6.8 Enclosed conflict element forms conflicts (a,b), is not part of conflict (c). . . 58

6.9 Examples of a WPSEQ which are not (a) [are (b)] correct. 60

6.10 Examples of a WPAND which are not (a) [are (b)] correct. 62

6.11 Verification of Tω. 64

6.12 Constellation of WPXOR with uncertain properties pT (XOR) = (?, 0). . . . 69

List of Figures

6.13 Constellation of WPXOR with uncertain properties pT (XOR) = (?, 1). . . . 70

6.14 Adaptation example, specification of ω. 74

6.15 Data dependency graph Gω(V, E) of the adaptation example. 75

6.16 Dω(V, E) of the example, processing recoverable elements. 75

6.17 Dω(V, E) of the example - all recoverable elemets processed. 76

6.18 Dω(V, E) of the example - coordination of elements finished. 76

6.19 Resulting workflow ω′ of the adaptation example. 77

7.1 Integration of a retrieable service. 85

7.2 Architecture of AWM. 87

7.3 Display of a deployed process. 89

8.1 Number t and length l of data dependencies. 92

8.2 dAWM for ω′ (left) and ω′′, ω′′′ (right) varying pRD. 100

8.3 dAWM of ω′′ and ω′′′ with data dependencies, varying pRD. 100

8.4 dAWM (ω) with t = 1, 2, 4 sequences varying length l. 102

8.5 dAWM (ω) varying the number of sequences t, with fixed ratios r. 103

8.6 pSA of an WPAND and WPSEQ , varying pRC (n = 50). 106

8.7 Behavior of success (blue) and semi-atomic failure (red) of WPAND varying pS.107

8.8 pSA of an WPAND and WPSEQ , varying the success probability of services pS. 108

8.9 dAWM and dAT of the MoP example, varying pRC 111

8.10 pSA of the MoP example, varying pRC and the success probability pS. 111

8.11 The order-to-delivery process. 112

8.12 dAWM of the order-to-delivery process, varying the number of vendors i. . . . 115

8.13 dAWM of the order-to-delivery process, varying the j (delivery) and k (pay). . 115

8.14 pSA of the order-to-delivery process, varying the number of vendors i. 117

8.15 pSA of the order-to-delivery process, varying j (delivery) and k (pay). 117

C.1 Implementation of the WPXOR pattern. 141

D.1 dAWM of ω′ without data dependencies, varying n. 144

D.2 dAWM of ω′′ (left) and ω′′′ (right) varying n. 144

D.3 dAWM of ω′′ (left) and ω′′′ (right), compared to the analytical approximation. 146

D.4 dAWM of ω′′ varying pRD compared to the analytical approximations. 146

D.5 dAWM of ω′′′ varying pRD, compared the analytical approximations. 147

D.6 pSA of an WPAND and WPSEQ pattern varying the number of elements n. . 148

D.7 dAWM of the order-to-delivery process, varying pRC and pRD. 150

D.8 pSA of the order-to-delivery process, varying pRC and pS. 151

xii

List of Abbreviations

2PC Two Phase Commit

ACID Atomicity, Consistency, Isolation, Durability

aGSD adaptive Group-Based Service Discovery

ATM Advanced Transaction Model

ATS Accepted Termination States

AWM Adaptive Workflow Management

BPM Business Process Modeling

BPEL Business Process Execution Language

BTP Business Transaction Protocol

CAN Content Addressable Network

CPU Central Processing Unit

DAO Data Access Object

GPRS General Packet Radio Service

GPS Global Positioning System

GPSR Greedy Perimeter Stateless Routing

GSD Group-based Service Discovery

GSM Global System for Mobile Communication

HTTP HyperText Transfer Protocol

LBS Location Based Service

MANET Mobile Ad-hoc NETwork

MDBS MultiDatabase Systems

MoP Mobile Planet

OSGI Open Service Gateway Initiative

P2P Peer to Peer

PDA Personal Digital Assistant

RPC Remote Procedure Call

rpo Representational Partial Order

SAP Semi-Atomicity Preserving

SLP Service Location Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSDP Simple Service Discovery Protocol

THP Tentative Hold Protocol

TIP Transaction Internet Protocol

UDDI Universal Description, Discovery and Integration

UMTS Universal Mobile Telecommunications System

URL Uniform Resource Locator

W3C World Wide Web Consortium

WLAN Wireless Local Area Network

WS Web Services

WSDL Web Service Description Language

XML eXtensible Markup Language

xiv

1 Introduction

1.1 Motivation

The advent of wireless networking technologies in combination with the decreasing size

of yet more powerful computing devices enables a wide range of new application fields

to assist users in everyday situations. Application support is no longer restrained to

designated and well-equipped working areas, such as office environments. One key to

success of such applications, is the potential of spontaneously interconnecting devices

anywhere to enable ad-hoc collaboration of users. However, mobile networks hold

different characteristics than conventional fixed-wired networks: Due to the mobility of

users and the wireless networking technologies, they are more dynamic which leads to less

stability of communication links and more communication failures. On account of the

inherent network dynamics, the execution context is not known previously to runtime and

might differ from execution to execution. This also holds for the heterogeneity of nodes

which can be integrated in collaborative wireless computing. Existing portable devices

range from powerful laptops, over Personal Digital Assistants (PDA) and smartphones

to special-target, pervasive computing devices [WHC+99].

Due to these characteristics of mobile networks, increased autonomy and flexibility

of mobile computing come at the cost of decreased reliability. In this thesis, we there-

fore focus on how to support reliable collaboration. The stated network characteristics

have to be taken into account to adapt suitable mechanisms to the current situation.

Due to the temporary nature of resources of mobile networks, failures of any kind are no

longer the exceptional case. In this thesis, we integrate suitable forward failure-handling

mechanisms which still allow for successful execution in case of failure. If this is not pos-

sible, appropriate backward failure-handling to avoid inconsistent system states have to

be employed. With respect to the autonomy of mobile participants, conventional mech-

anisms which rely on blocking of resources are not suitable in mobile environments. To

enable autonomous execution of participants, we refrain from tight coupling of partici-

pants to strict execution phases (e.g., working-phase and commit-phase, as e.g., mobile

transaction models, cf. Chapter 3). It is desirable to soften strict requirements such

as assurance of availability of participating entities or blocking of resources. However,

this also infers relaxed correctness guarantees, such as for example strict atomic out-

1.1 Motivation

come (either commit or abort) of all participants as known from distributed databases.1

Thereby, we trade strict correctness for autonomy of devices. By exploring the execution

context, guarantees can be adaptively given to suit the circumstances at runtime.

A standard of implementing distributed cooperation of heterogeneous devices in fixed-

wired networks is following the architectural paradigm of service oriented architectures

(SOAs). These have proven their suitability especially in business environments. SOAs

aim at loosely coupling of components independent of their underlying soft- and hard-

ware platforms. Applications can be built by interconnecting possibly distributed and

dynamically discovered components to so-called composed services. They are specified

using workflow languages, e.g. BPEL [OAS07] or BPM2, and their execution is controlled

by workflow execution engines, such as jBPM or Apache ODE3. For discovery of existing

services, designated repositories, such as UDDI4, are employed.5

Existing standards and techniques, the leading one Web Services (WS), have proven

to be powerful for fixed networks. However, not all of them provide flexible means to

cope with the characteristics of mobile networks, especially ad-hoc cooperations i.e., the

dynamics of participants, including their availability and mobility. Targeted assistance

for different aspects, such as reliable and correct service composition in the presence of

service discovery at runtime, remains challenging.

Consider for example, a mobile travel agent system, which we call MoP (Mobile

Planet): It supports users in finding points of interest and booking activities according

to their defined preferences. During the day, their mobile device searches for available

services and, if confirmed by the user, it queries information, book single activities or

packages of activities. Interaction patterns with services range from simple information

providers to composed services in which all components demand several interaction

steps. Examples of such services include booking tickets for cultural or recreational

events (e.g., a museum or a concert), finding appropriate transport facilities (such as

public transportation facilities or taxis) and offer information according to the user’s

current location (i.e., location based services – LBS). As some of them involve monetary

costs, parts of such workflows need transactional support regarding failure atomicity:

No payment is to be performed for a service which has not completed, and vice versa.

In a fixed network scenario, an application designer is able to integrate designated

service providers (and alternatives for them) in the workflow, which are then conducted

at runtime. In mobile networks, designated service providers are hard to integrate in

such a workflow, as their availability might not be given at runtime or their existence

might not even be known at design time. Thus, suitable service providers have to

be dynamically discovered and bound at runtime. Additionally, in order to provide

1See Chapter 3 for further discussion of the mentioned concepts.
2http://www.bpm.com/
3http://www.jboss.com/products/jbpm/, http://ode.apache.org/
4http://www.uddi.org/pubs/uddi v3.htm
5For an introduction to existing standards, the reader is referred to [CLSF05, Pap07].

2

1.2 Application Scenario - MoP

transactional guarantees for certain parts of the workflow, the capabilities of the services

available at runtime (such as blocking of underlying resources or compensatability) have

to be dynamically explored.

In this thesis, transactional support regarding failure atomicity for ad-hoc cooperations

implemented as composition of services in mobile networks is studied. The objectives

are to analyze mobile workflows to be able to infer suitable guarantees for these environ-

ments. Approaches to dynamically discover services, and efficient algorithms to support

these guarantees are introduced. These focus on how to ensure reliable collaboration by

still respecting the autonomy of mobile participants. They are evaluated in a variety of

settings to confirm their suitability for ad-hoc collaboration in mobile environments.

1.2 Application Scenario - MoP

We recurrently refer to the following application scenario of tourists exploring sites,

e.g. in Berlin. As nowadays, most people carry mobile devices which offer a variety of

network interfaces, we propose to make use of its functionality, especially its networking

capabilities. Our application scenario is the mobile planet (MoP), a mobile, electronic,

and more sophisticated version of the travel guide Lonely Planet, acts as a mobile travel

guide6. As it inheres additional knowledge about the user’s preferences and its current

location, as well as the ability to gain contextual knowledge about the currently visiting

site, it is able to assist the user in novel ways.

Services which are desirable to integrate in MoP are manifold. They range from simple

information services, which provide information about e.g., weather conditions or entry

fees of museums or sites such as the Siegessäule, to LBS, e.g., employing directions or

maps and information about interesting sites nearby. On the other hand, a variety

of business cases is desirable as well: Mobile ticket vendors are able to sell tickets for

museums or theater shows, transportation (such as public transportation, i.e. BVG7 or

taxi companies). Additionally, services which interconnect tourists, and search for e.g.,

companions, are supposable within the system.

It is of interest for mobile ticket vendors to promote their partner sites and sell tickets

or packages of these. If a ticket is purchased, it is either printed or a digital entry code

(e.g., such as an identification number, string, or a 2D barcode) is issued, which the user

employs as its entry code. As monetary costs are involved, it is important to integrate

failure-tolerance in order to achieve a reliable and viable system.

According to the user’s preferences and the present service providers, several activity

flows8 of touristic living are suggested for the day (see Figure 1.1). At first, the system

provides information about Berlin and the current surrounding of the user, including a

6 c©Lonely Planet Publications edited by MAIRUMONT GmbH & Co. KG
7Berliner Verkehrsbetriebe
8This term is used interchangeably with the term workflow.

3

1.2 Application Scenario - MoP

mobile planet

Potsdam

Figure 1.1: MoP activity flows for Berlin.

map and points of interest. As it can be seen in Figure 1.1, MoP then proposes several

plans for the day. If the user decides for a proposal, the included services are invoked to

book tickets (e.g., Memorial Berlin-Hohenschönhausen, Berlin Underworld Association9,

Filmmuseum). Accordingly, transportation facilities are organized, tickets or tables at

restaurants (e.g., Käfer, Bayrisches Haus) are reserved and the user is provided with

information about the sites to visit.

Although mobile devices are likely to be equipped with GSM10 or UMTS11, ad-hoc

communication is to be favorably used in this scenario, to avoid possibly expensive

roaming costs and to remain flexible in terms of service providers. Thus, as long as the

value of the transaction does not exceed the roaming costs, ad-hoc communication is

beneficial within delay tolerant applications.

CRS

 Reservation

Philharmonics

AND ConfirmTransportation XOR

PayCC

PayCh

Figure 1.2: MOP example scenario.

Throughout this thesis, we recurrently refer to the following simple example scenario

as depicted in Figure 1.2 to outline details of our approach. In this example, a mo-

bile ticket vendor sells tickets to the Philharmonics. At the beginning, the customer’s

requests are specified (CRS). In order for his offer to be more attractive, the vendor

additionally offers to organize Transportation to the concert venue, and according to the

customer’s preferences, reserves a table at a nearby restaurant (Reservation). The offer

is then confirmed and delivered, i.e., tickets are either printed or transfered as eTickets

9Berliner Unterwelten, www.berliner-unterwelten.de
10Globals System for Mobile Communication
11Universal Mobile Telecommunications System

4

1.3 Objectives

(Confirm). Finally, the payment is performed, either by credit card PayCC or by cash

PayCh.

1.3 Objectives

In this thesis, ad-hoc collaboration of devices in mobile environments is studied. Due

to the inherent characteristics of mobile networks, it is desirable to identify and provide

suitable transactional guarantees for participating entities. We thus aim at the following

objectives:

Ad-hoc Collaboration of Mobile Devices The primary objective of this thesis is to

identify and implement failure-tolerant support mechanisms for ad-hoc collabo-

ration of mobile devices. The goal of collaboration assistance is to provide suit-

able transactional guarantees concerning failure atomicity for collaborating entities

while still respecting their autonomy.

In order to reach such a viable collaboration assistance system, the following sub-ordinate

objectives have to be considered.

Reliable Collaboration As mobile networks are more dynamic and less reliable than

fixed-wired networks, failure-tolerance is one key concern when supporting mobile

collaboration. Appropriate forward-failure handling mechanisms which still allow

for successful interaction in the presence of failures are to be identified and inte-

grated. Likewise in the presence of failures, it has to be identified which measures

have to be taken to avoid inconsistent system states. This infers the specifica-

tion of correct cooperation: I.e., when is a collaboration considered to be correctly

finished (either successfully completed or aborted)?

Respecting Autonomy This notion of correctness is related to transactional guaran-

tees, e.g. the ACID guarantees (Atomicity, Consistency, Isolation and Durability)

demanded in (distributed) databases. However, protocols currently used to provide

these guarantees are very strict concerning the requirements of participants, such

as availability and their tight coupling to transactions. It is therefore desirable to

identify means to ensure correctness by still respecting the autonomy of mobile

participants, thus allowing for loosely coupling of components.

Dynamic Discovery and Binding In fixed-wired networks, participants of collabora-

tions are most likely to be known prior to execution. In mobile environments,

not all participants can be previously determined, thus appropriate mechanisms to

discover and bind participants at runtime have to be developed. If more than one

provider for a service is discovered, it is desirable to integrate several of them as

alternatives, if they fulfill the demands of the cooperation in the current context.

5

1.4 Outline

Exploration of Participants As the execution context might differ from execution to

execution, it is desirable to adapt cooperation assistance to the current context.

To respect the autonomy of mobile devices, rather restrictive requirements, such as

the capability of blocking resources or the assurance of availability for certain time

periods are to be avoided – if possible. We therefore explore participants present

and their non-functional properties which relate to the specified correctness criteria

(e.g. compensatability) at runtime. We also aim at providing dynamic and flexible

support at runtime, as participants (respectively, their properties) might differ from

execution to execution.

1.4 Outline

The remainder of this thesis is structured as follows: In Chapter 2, we present our system

model and introduce relevant terms and concepts. In Chapter 3, related work is outlined,

including existing standards as well as related research areas. In Chapter 4, we concisely

present our approach to discover services in mobile ad-hoc environments. The focus of

this thesis lies on Chapter 5 and 6: Chapter 5 contains the formal model of transac-

tional cooperation. Our approach to flexibly guarantee reliable service composition by

respecting the autonomy of participants is presented in Chapter 6. The implementation

realizing our approach is introduced in Chapter 7. A thorough evaluation comparing our

algorithms to existing techniques is presented in Chapter 8. We conclude in Chapter 9.

6

2 System Model

The basic concepts of our system model are depicted in Figure 2.1. Ad-hoc Cooperations

consist of collaborating entities also referred to as components. Components communi-

cate with each other via wireless network channels.

Transactional Workflow Execution Engine

Network

ComponentsCooperation

Figure 2.1: Underlying system model.

2.1 Network Model

Participants of mobile networks, communicate either directly with each other or via

base stations. The former case is also referred to as mobile ad-hoc networks (MANETs).

Mobile networks differ from conventional networks mainly in their spontaneous and

temporary nature. They only exist, as long as participants linger in communication

ranges of others. In MANETs, nodes are able to directly communicate with others in

their broadcast range (single-hop). If corresponding network functionality is provided,

they may also communicate via several hops (multi-hop) [RP99, Joh94].

Mobile nodes are equipped with one or several wireless networking interfaces, e.g.

WLAN or GSM, which all feature quite different characteristics in terms of bandwidth,

communication range and costs. Eventually, some participants may be reachable via

more than one channel at a time. The obstacles of mobile networks are the mobility of

devices which leads to momentary (un-)availability of communication links and remote

resources of any kind. As mobile networks are temporary in their existence, the execution

environment (also referred to as the execution context) is unknown prior to execution.

We target applications which allow for delay tolerant networking. It is therefore

favorable to use ad-hoc communication, if the costs of communicating (which explosively

2.3 Cooperation Model

increase, if roaming costs are involved) exceed the value of the application. By value, the

monetary costs are denoted as well as personal benefits, which can only be estimated

rather than actually billed. However, if ad-hoc communication continuously fails, we

assume nodes to hark back to reliable network channels (such as GSM or UMTS) which

are costly however dependable.

Please note, we motivate our work with applications which integrate mobile partic-

ipants. Thus, we assume the execution environment to be dynamic in terms of par-

ticipants. However, mobility of nodes is not a necessary precondition for our system.

Using our formal model (see Chapter 5), especially the defined properties of services,

we abstract from the underlying network and mobility of nodes. Therefore, our algo-

rithms to support flexible yet reliable cooperation is also appropriate for applications in

fixed-wired settings which desire flexibility at runtime.

2.2 Component Model

SOAs aim at loosely coupling of components. Especially in the presence of failures,

dynamic and loosely binding of components increases flexibility and facilitates failure-

tolerance. We therefore argue that SOAs are a promising approach to implement coop-

eration in mobile environments as they respect the autonomy of components.

Each ad-hoc collaboration consists of several participants, which we refer to as com-

ponents or entities. These entities are considered to be implemented as services which

are possibly running on different devices. Their underlying soft- and hardware as well

as their operational mode is hidden behind a well-defined interface. We assume each

service to provide functionality to be invoked (e.g., by the cooperation or other services)

and returning of results. Further service features include e.g., certain failure handling

capabilities such as compensatability.

Components of the system can either be services or composition of services thus en-

capsulating cooperations themselves. The key issues of this thesis is the coordination

of components while respecting their autonomy. I.e., we refrain from tight coupling of

components to the execution of other components (or coordinators) rather than enabling

loosely coupling as originally intended by SOAs. Note, that components do not necessar-

ily employ designated resource managers as it is the case e.g., for distributed databases.

Components offer services published via their interface, however their backend systems

and the protocols they employ, are invisible to others. A detailed definition of services,

including their behavior and properties, is given in Chapter 5.

2.3 Cooperation Model

Ad-hoc cooperations between devices are implemented in applications which are (partly)

built on distributed services. Thus, the ad-hoc cooperation as such is defined as a com-

8

2.4 Failure Model

posite service. The standard for specifying composite services are workflow languages

e.g, BPEL. We assume participants of ad-hoc cooperations to be discovered at runtime.

I.e., as opposed to conventional composite services, components are not statically inte-

grated at design time rather than dynamically bound at runtime. Please note, the term

ad-hoc cooperation does not infer, that entities communicate via ad-hoc networks. As

stated above, we assume them to preferably use ad-hoc communication if the costs of

the application do not exceed the costs for communicating over costly network channels.

By defining accepted termination states (ATS), requirements for successful execution

of the cooperation are given. Thus, components which are imperative for completion, as

well as alternatives and prioritization among them are specified. The workflow addition-

ally defines control-flow dependencies and the data dependencies among its components.

Through the syntax of the composition, the semantics (e.g., inclusion of all components

as opposed to choosing alternatives) of the collaboration is implicitly given. Once, the

collaboration has been initiated, the composite service is active and the ultimate goal is

to successfully complete (also referred to as commit), i.e. reaching ATS.

As we target mobile environments, we assume components to be dynamic, i.e., they

might not be known at design time (of the cooperation) or temporary unavailable at

runtime. Cooperations have to be flexible enough to be dynamically composed at run-

time and on the other hand appropriately react to failures. Failure-handling mechanism

(recovery) are employed to avoid incorrect (or inconsistent) system states: Forward-

recovery still allows for successful completion, alternatively backward-recovery resets the

system to a previously consistent state. This is also considered to be correct termination

of the workflow as inconsistencies are avoided. Typical recovery mechanisms are retrying

the defective action, executing an alternative, cancel certain activities or compensating

for an activity. Definitions of these terms is given in Chapter 5.

As stated before, components are implemented as services and cooperations assembled

by composing services. A cooperation of participants is implemented as a workflow and

its execution is carried out by a management system. We refer to such a system, which

enables correct execution of workflows by utilizing the appropriate recovery mechanisms

in the presence of failures as a transactional workflow management system.

2.4 Failure Model

Regarding the execution of an ad-hoc cooperation, the following failures may occur:

Communication failures refer to situations, in which messages between entities are lost.

Especially in mobile ad-hoc networks this may commonly occur. We assume these kind

of failures to be identifiable. They are recovered by re-transmitting according messages.

Nodes, which dispose reliable network channels, such as UMTS, hark back on these, if

ad-hoc communication continuously fails.

Interaction with services may result in component failures, either if appropriate services

9

2.5 Challenges

cannot be discovered or the invocation of them results in failure. Service failures occur

either due to internal errors (e.g., tickets are no longer available) or externally triggered,

e.g., the execution is intermitted by another service or a human. How these failure are

dealt with depends on the service, the collaboration and the current execution context.

This is subject to the algorithms introduced in Chapter 6.

If an ad-hoc collaboration is executed, it may overall fail due to communication or

service failures (e.g., necessary services cannot be discovered). However, if a cooperation

is not successfully finished, it may still correct if its state obeys the correctness criterion

(semi-atomicity) specified in Chapter 5. A cooperation failure refers to the status of a

finished cooperation which does not fulfill the correctness criterion. We guarantee correct

execution of ad-hoc collaborations, thus avoid these failure by appropriate algorithms

as introduced in Chapter 6.

2.5 Challenges

Considering the objectives (Section 1.3) in our system model, these challenges arise.

Mobile Service Discovery In order to cooperate with nodes currently present, one has

to be able to discover available services at runtime. As mobile environments are

dynamic in their existence, it is desirable to explore (and exploit) the current

execution context in order to efficiently adapt ones strategies.

Dynamic Transactional Support Heterogeneity of mobile environments also comprises

the diversity of requirements of present components. In order to transactionally

support ad-hoc cooperations employing SOAs, it is indispensable to classify trans-

actional demands of components and cooperations to adapt to the current execution

context. Furthermore, it is indispensable to be able to cope with the dynamics of

participants, i.e., unavailability of services and discovery of alternatives at runtime.

Suitable Correctness Guarantees A formal model and the contrasting comparison of

the transactional classification of all participants are necessary to derive suitable

correctness guarantees. These have to meet the requirements of dynamically bound

services, as well as those of the workflow.

Autonomy vs. Correctness In all respects the targeted environments demand careful

appreciation of correctness on the one hand and autonomy of devices on the other.

This trade-off has to be carefully considered as neither incorrect nor too autonomy-

limiting applications are viable in mobile environments. Proper verification means

are required to validate workflows in their current execution context. Adaptation

mechanisms have to be provided in order to flexibly alter the workflow to ensure

correctness in case the verification fails.

10

3 Related Work

In this chapter, we present existing standards for Web Services, which are utilized to

ensure transactional support for composite services. Furthermore, we relate our work to

research areas and approaches which are closely related to our approach of transactional

support of ad-hoc cooperations.

3.1 Existing Standards for Web Services

3.1.1 Web Service Transaction Framework: WS-Tx

Applications may be built on several interconnected WS which are likely to be provided

by several nodes. In order to obtain consistent outcome, all involved services must

universally agree on the decision. The WS-Transaction Framework (WS-Tx) comprises

several standards in order to support different transactional demands. The relationship

between these specifications is shown in Figure 3.1.

WS-Coordination

RegistrationServiceActivationService

Coordination Protocols

WS-AtomicTransaction WS-BusinessActivity

Completion
volatile

2PC
durable

2PC
Participant
Completion

Coordinator
Completion

Figure 3.1: WS-Coordination framework.

The WS-Coordination Framework describes an extensible framework for providing

protocols that coordinate actions of distributed applications. It employs two services,

the Activation and Registration service, and an extensible set of Coordination Protocols

to reach consistent agreement on the outcome of distributed activities.

3.1 Existing Standards for Web Services

The ActivationService is used by the application to create a new coordinated activity

which contains important information about the activity. Other applications register

for the activity using the RegistrationService. The coordination protocols define two

different protocol families, which provide support for short-lived transactions (WS-AT)

and long-lived business activities (WS-BA).

3.1.1.1 WS-AtomicTransaction

WS-AtomicTransaction (WS-AT) provides atomic transaction support for short-lived

transactions. The specification defines different coordination protocols for participants:

Completion is used by the application to complete an activity. Atomic commit of par-

ticipants is ensured by using two slightly different variants of the two-phase commit

protocol (2PC), namely volatile and durable 2PC. The variants specify the order in

which participants are notified by the coordinator.

As WS-AT relies on 2PC, it implies that all participants block their resources. This

approach is not suitable for ad-hoc cooperations in mobile networks, as blocking of

resources limits the autonomy of participants.

3.1.1.2 WS-BusinessActivity

The WS-BusinessActivity (WS-BA) specification provides support for long-living dis-

tributed transactions which demand consistent outcome. This is achieved on the premise

of doing work, so that it can be undone later. Thus, participants are requested to pro-

vide compensation functionality for completed operations. The specification defines

two protocols: BusinessAgreementWithParticipantCompletion and BusinessAgreemen-

tWithCoordinatorCompletion. These protocols differ in terms of participation contracts:

Within the participant completion protocol a participant may unilaterally decide to end

its participation whereas that is not allowed when using the coordinator completion

protocol.

WS-BA is designed for long-lived activities trying to remedy the drawback of blocking

resources as done by WS-AT. However, it obliges that participants have to be able to

compensate the completed work at a later point in time. Therefore, only participants

fulfilling this assumption are able to be integrated in a coordinated business activity.

Otherwise, one risks inconsistent system states as it is shown in Chapter 8.

3.1.2 Composing Web Services

By employing Web Services, applications may be built by composing several WS into

a new value-added WS. The specification of WS distinguishes between two composition

standards, namely orchestration and choreography. Choreography defines the message

exchange between services, but it does not validate the process itself as a whole. It is

therefore not suitable for transactional support of service composition. Orchestration

12

3.2 Related Research Areas

of services on the other hand emphasizes the coordination between different involved

entities which is also used to support transactional composition of services.

Nowadays, the business process execution language (WS-BPEL) [OAS07] is the stan-

dard for orchestration of WS. It provides the ability to define compositions as processes

by integrating services in form of partnerLinks. It also enables, recursive definition of

processes, specifies lifecycle management and recoverability of processes.

BPEL is an XML-based language, which is executed by workflow engines, such as

jBPM or Apache ODE. The basic concepts of BPEL embrace activities and scopes.

Activities are either basic activities (e.g., assigning values to variables) or structured

activities, such as parallel or sequential alignment of operations. Scopes are employed

to group activities: Thereby, certain behavior may be finegranularly specified.

Additionally, BPEL supports event-based communication employing event handlers,

fault handlers and compensation handlers. Event handlers realize time-based and mes-

sage based asynchronous communication, while fault handlers are automatically invoked

if faulty behavior occurs. Compensation handlers are responsible for reversing completed

work of the current scope. Fault-handling is done hierarchically: If no fault handler is

specified within the current scope, it is passed on to its parent scope.

The concept of handlers may be used by the designer to finegranularly specify how to

cope with faulty behavior, thereby enabling custom-built exception and failure handling.

However, it does not provide means to verify existing compositions, provide transactional

guarantees or flexibly react to changes at runtime. We argue, that failure handling can be

automated by exploring services at runtime, and therefore provide suitable abstraction

for failure handling and transactional guarantees which should not be the designers

responsibility.

3.2 Related Research Areas

We relate our work to the following research areas. At first, we present transaction models

for different environments. Furthermore, we characterize approaches published in the

area of service composition. Along with these, many formalism have been introduced to

enable verification of composite services to which we additionally relate our approach.

3.2.1 Transaction Models

Traditional database transactions are typically flat in terms of participants and ensure

the ACID properties. Advanced transactions models (ATM) extend and relax the

classical database transactions in the following way. They are extended among others

in terms of participants: In many of these models, means of grouping participants or

hierarchical structures of subtransactions are provided. On the other hand, most ad-

vanced transaction models relax some of the ACID properties, ensuring e.g., relaxed

13

3.2 Related Research Areas

atomicity or isolation. Transactions in multidatabase systems additionally cope

with the heterogeneity of participants. Thus, they cover diverse requirements of sub-

transactions. Mobile transaction models target applications in mobile environment,

i.e., mobile databases or mobile participants. They additionally integrate appropriate

recovery mechanisms to be able to cope with unsteady availability and disconnection of

participants.

3.2.1.1 Advanced Transaction Models

A vast amount of research papers in the late 1980s and early 1990s addressed advanced

transaction models. We briefly characterize them and relate these to our work.1

In nested transaction [Mos], subtransactions are hierarchically arranged. Subtrans-

actions are started by their according parent transaction. In case of failure of a sub-

transaction, all of its child subtransactions are aborted, however the parent of a failing

subtransaction may decide on which recovery measures to be taken. Open nested trans-

actions as proposed by Weikum and Schek [WS92] further relax isolation by allowing the

changes of committed subtransactions to be visible to top-level transactions. Thereby,

the degree of allowed parallelism is increased.

The SAGAS transaction model, as introduced by Garcia-Molina [GMS87], splits a

longrunning transaction into a sequence of subtransactions. Each of these is related

to an according compensating subtransaction. In case of failure of a subtransaction,

semantic atomicity [GM83] is ensured by executing all compensating subtransactions of

previously committed transactions. The ConTract model [WR92] enhances SAGAS by

control structures. They consist of steps whose execution is arranged in a script. Such

a script has to be forward-recoverable, i.e., in case of failure, the script may be executed

again from the point of failure. Similar, the split-join transaction model [PKH88] enables

a transaction to split itself into two independent (or dependent) subtransactions which

may be joined at a later point in time.

Reasoning about various transaction models is enabled by the ACTA framework

[CR90]. It is a meta-model which characterizes important aspects of transactional sup-

port. Using a set of dependencies, the structure and the behavior of transactions are

specified. ACTA can be used to decide whether a particular execution history obeys

specified dependencies.

In [AAA+96], Alonso et al. discuss the use of ATMs in workflow contexts. They argue,

that ATMs are only partially suitable for transactional support of workflows: Workflow

management systems automate flow of control and data between activities. Addition-

ally, they map activities to users and programs while existing ATMs limit themselves to

well-defined failure semantics in the sense of concurrency control and recovery features.

The authors state that all ATMs may be used in the context of workflow management,

1For a general introduction to ATMs, we refer to [JK97, Elm92].

14

3.2 Related Research Areas

however do not fully solve the problem of transactional support. That is due to work-

flow management systems offering a much more comprehensive solution to application

support than advanced transaction models. Gaaloul et al. [GRGH07] identify ATMs as

too inflexible in terms that they are not able to incorporate different behavioral patterns

as well as transactional semantics into a single transaction.

Besides these reasons, we feel that the unsuitability of ATMs for transactional support

of ad-hoc cooperations mainly relies in our targeted system model: On the one hand,

ATMs are designed to be deployed in tightly-coupled environments. That is, subtrans-

actions are not autonomous entities rather than operations which are fully controlled

by the coordinator. On the other hand, ATMs are designed for static situations: They

are not capable of supporting ad-hoc cooperations, i.e. they are not flexible enough to

integrate dynamic participants and accommodate their requirements at runtime.

3.2.1.2 Transactions in Multidatabase Systems

Transactions in multidatabase systems are designed to cope with heterogeneous envi-

ronments. A multidatabase transaction consists of a global transaction controlled by a

global entity (multidatabase system, MDBS) and several local transactions, controlled

by local database systems [BGMS92]. Each local system operates autonomously without

the knowledge of other local systems. Successful execution of a multidatabase transac-

tion is represented by the commitment of a representational set of subtransactions. If

all of them commit, the transaction is said to reach an accepted termination state.2

Typically, all transaction models for multidatabase systems, e.g., [ZNBB94, ZNB01,

EJK+96, MRKS92a, DU96] distinguish transactional properties of (among others com-

pensatability) and certain relations between (e.g., preference, precedence) subtransac-

tions. The semantics of the properties and relations are mostly similar, however their

notation and names differs and the cited approaches. For a detailed survey of mul-

tidatabse transaction management, including challenges and approaches, we refer to

[BGMS92].

In flexible transactions [ZNBB94, ZNB01], subtransactions are classified to be re-

trieable, compensatable or pivot. Among subtransactions preference and precedence

relations are defined. According to these, sets of subtransaction whose execution reflects

the successful execution of the global transaction are implicitly defined. The flexible

transaction is considered to be semi-atomically completed, if either no subtransaction is

completed, or all subtransactions in one such set are committed and no other subtrans-

action is completed. In the model of flexible transactions, semi-atomicity is validated by

reviewing the order of subtransactions according to their properties: The commitment

of compensatable subtransactions precedes the commitment of pivot subtransactions.

As their commitment infers the completion of the whole transaction, it is only followed

2In the literature, it sometimes also referred to as committed acceptable termination state.

15

3.2 Related Research Areas

by retrieable subtransactions.

Flexible transactions are already close to our requirements. However, as with the other

models for multidatbase transactions, they focus on verification of firm structures and

global serialization and deadlock detection respectively. Their system model has in com-

mon with that of ATMs that it assumes statically defined structures of the transaction.

Dynamic binding of participants and thus flexibility at runtime cannot be integrated.

3.2.1.3 Mobile Transaction Models

There exist a lot of mobile commit-protocols, which concentrate on reaching atomic

outcome in environments with fluctuant availability of participants, such as e.g. [PA02,

BGO07] or how to build reliable recommendation systems in order to enable fair trans-

actions, e.g., [HKRBO07, AGG+05, AGG+04]. For a comparison of transaction commit

protocols in mobile environments we refer to [BLRSA04].

Additionally to these protocols, there exists a vast amount of transaction models

for mobile environments, such as CheeTah [PA00], MoFlex [KK00b], Team [GGGG04]

and Kangaroo Transactions [DHB97] and many others, e.g., [GB01, Muk02]. For an

introduction to these transaction models, we refer to [MS04, HTKR05]. A detailed

survey which compares some of these models may be found in [SARA04].

These have in common, that they schedule activities according to resource constraints

of devices and further relax isolation requirements in order to still guarantee operabil-

ity in case of temporarily unavailable participants. Additionally, they are able to cope

with failure due to frequent disconnections in order to still allow for successful commit.

However, they are on the one hand not capable of integrating different structural coop-

eration patterns in one transaction. Furthermore, they all (as well as ATMs and flexible

transactions) rely on statically defined structures of transactions.

In our work, we aim at loosely coupling of components. We abandon the separation

of working- and commit-phase, as we try not to limit the autonomy of participants by

tightly coupling their execution to rigorous transaction phases. Only in the worst case,

in which loosely coupling endangers atomic outcome, we hark back on commit protocols.

3.2.2 Composition of Services

In our work, we aim at transactional correctness of ad-hoc cooperations implemented as

composite services. We therefore in the following relate our work to research regarding

transactional service composition and flexible workflows.

3.2.2.1 Transactional Composition

Protocols and Composition Operators The following protocols and service composition

operators have been proposed to support transactional composition. Most of them have

been standardized for the use of Web Services.

16

3.2 Related Research Areas

The Transaction Internet Protocol3 (TIP) is a transport protocol which enables dis-

tributed coordinators to communicate via the Internet. It employs 2PC to achieve

atomic outcome. Additionally, it specifies waiting periods as recovery measures in case

the communication between participants fails.

Similar to WS-Tx, the Business Transaction Protocol (BTP) [OAS02] is designed to

provide transactional support for loosely coupled cooperative business processes and

to overcome the shortcomings of TIP (blocking of resources) [Pap03]. It is an XML

based protocol which specifies the messages to be interchanged between participants

and coordinators of a transaction. It aims at orchestrating loosely coupled web services

into a single business transaction. For a detailed comparison between BTP and WS-Tx,

we refer to [LF03].

The Tentative Hold Protocol (THP) as specified by the W3C [THP01b, THP01a]

defines a framework to exchange messages prior to the actual transaction. It allows for

tentative, non-blocking reservations (holds) of resources. If a client confirms a resource,

other holders are notified of the expiration of their reservations. A combination of THP

with compensation and negotiation methods prior to the transaction phase is proposed

by [LY04]. The main benefits from employing tentative holds as introduced by THP are

the up-to-date knowledge of availability of resources as well as reducing the number of

cancelations due to unavailability of items [Pap03].

All of the above mentioned approaches share with ATMs and the cited mobile trans-

action models that they tightly couple services to transactions. Likewise, their definition

of the compositions remains static. They all define message to be interchanged between

participants and coordinators however are not able to spontaneously integrate forward

recovery by exploring dynamically discovered services at runtime.

The approaches cited in the following were published more recently. They all propose

the use of composition operators to transactionally support composite services.

In [LHL06], Liu et al. propose a composition operator which takes dependencies

between services into account which may describe various relationships in order to as-

sure correctness. These dependencies are similar to the ones employed by Gaaloul et

al. [GRGH07] which we further investigate in Section 3.2.3. The proposed operator

evaluates the quality of service of a composite service according to response time and

execution costs of the components. This approach is extended in [LL07], by considering

temporal constraints of services to ensure termination of composite services.

Fauvet et al. [FDDB05] make use of the THP for their high level operator for com-

posing Web Services according to transactional properties. Services are required to

implement THP and are distinguished according to their additional capabilities: Sup-

port of 2PC, compensatability or neither. This approach is interesting as it explores

the capabilities of participants (i.e., the protocols they implement) present at runtime.

3TIP is defined in RFC2371 [EKL98]

17

3.2 Related Research Areas

However, as opposed to our work, it still tightly couples services to transactions. Fur-

thermore, as we integrate our approach into existing standards, we are able to map

structural requirements (i.e., the control flow) to a single transaction as well.

Transactional Workflow Management Additionally to the just presented protocols and

operators, there exist approaches which propose comprehensive concepts to transaction-

ally support the composition and execution of workflows. We subsume these in the

following referring to them as transactional workflow management approaches.4 We

briefly present the following transactional workflow management systems which are rep-

resentative for other existing approaches, such as TSME [GHKM94], FlowMark [Ley95]

and others [HvRR07, VV04, BDSN02].

A long-running activity as introduced by Dayal et al. [DHL91] recursively consists of

activities and transactions. Control and data flow is separately defined in the activity’s

script, either statically or by event-condition-action rules. The model includes means

for compensation and communication, especially querying the status of an activity.

The METEOR model [KS95, RS95] integrates many aspects of earlier ATMs and

workflow management systems. A workflow consists of a set of tasks which are arranged

in well-defined structures. Conditions trigger transitions between tasks. In [MSKW96,

SKM+96], METEOR is extended by failure recovery and error handling for distributed

heterogeneous environments. METEOR guarantees failure atomicity, that is either an

committed acceptable termination state is reached or a defined accepted aborted states

in case of failure.

The aim of the Exotica project [AMA+95, AAA+96] is to explore advanced transaction

models in workflow contexts. As already briefly stated in Section 3.2.1.1, the authors

conclude, that ATMs only partly solve the problem of providing transactional support for

workflow systems. This relies among others on the fact that workflow systems integrate

process and user oriented concepts which are beyond the scope of ATMs.

These approaches have in common (with each other as well as the ATMs) that they

on the one hand rely on static definition of transactions (as well as failure handling)

at design time. They do not enable binding of dynamic participants and respectively

adapting transactions to the current execution context at runtime. As opposed to our

approach, they focus on specification at design time and verification at runtime.

Failure handling through forward-recovery and thus dynamic service binding at run-

time has been proposed, e.g. by [SDN07]. This approach makes use of an abstract service

provider which is responsible for replacing failing services with semantically equivalent

ones. However, this concept limits itself to technically support one failure situation. As

opposed to this, we ensure transactional execution of the whole workflow at runtime.

4Please note, that the distinction between transactional workflow management systems and ATMs is not strict.
Some approaches may be differently classified in the literature.

18

3.2 Related Research Areas

More recently, frameworks to assist service composition in P2P environments are devel-

oped.5 In [HMR07], a model focusing on transactional composition in P2P environments

is proposed. It employs a decentralized serialization graph to enable global concurrency

control. However, transactional support in the sense of failure atomicity is not given.

3.2.2.2 Flexible Workflows

The research area of dynamic service composition has received much interest in the past

decade. It involves the task of synthesizing entirely new workflows by composing ser-

vices to achieve overall goals [SK03, MS02, PWSK07]. Many of these approaches rely

on AI planning techniques which, given an initial state, seek for sequence of operations

to reach a defined goal state [GNT04]. As opposed to these, we do not regard com-

pletely automated composition from scratch rather than adapting cooperations defined

as workflows with dynamic participants.

In the following, we relate our work to approaches which we classify as flexible work-

flows as they alter existing definitions of workflows at runtime. We distinguish between

work that deals with concepts of finding provisioning strategies and those, which tech-

nically enable the alteration of a BPEL process at runtime.

The Web Service Management System (WSMS) as introduced by Srivastava et al.

[SMWM06] enables querying multiple Web Services through an SQL-like interface. It

regards selectivity and response time of Web Services to minimize the overall costs of an

execution plan. More generally, Stein et al. [SPJ09, Ste07] adopt flexible provisioning

of Web Services to maximize the profit of workflows and reduce costs. They provide

several provisioning strategies regarding utility costs and failure probability to achieve

an optimized composition [Ste08].

Similar to these approaches is the work published in the research area of work-

flow scheduling. It identifies the problem of finding correct execution sequences for

workflow activities, obeying inherent constraints, e.g. temporal or causality constraints

[ASSR93, DKRR96]. This is especially interesting in mobile environments consider-

ing the limited power constraints of heterogeneous devices [GB01]. Furthermore, some

scheduling approaches focus on minimizing communication costs or ensuring prearranged

QoS obligations defined in service level agreements [DD07].

We classify our approach as an conceptual approach employing flexible workflows well

as. However, we complement the referenced work by providing transactional guarantees

for flexible compositions.

Additionally to these conceptual strategies, there exist approaches which provide

means to technically alter deployed BPEL processes at runtime. In [LLM+08] for ex-

ample, a management framework for BPEL is presented. By introducing an additional

5We omit the presentation of general frameworks which do not expose transactional support. The interested
reader is referred to [MBB+03], for a comparison of these.

19

3.2 Related Research Areas

abstraction layer, the authors propose interoperable management of BPEL processes.

This resource based management framework further enables manipulation of process

models and instances. Such a framework builds the technical foundation for our ap-

proach of flexibly altering workflows at runtime.

3.2.3 Verification of Composite Services

Along with the research area of automated service composition, the challenge of ver-

ification of composition has accordingly gained interest. We classify such approaches

according to verification criteria and (as it is closer related to our work) focus on those,

aiming at transactional correctness.

3.2.3.1 Transactional Correctness

In [GRGH07], an event calculus is proposed to verify transactional correctness in the

sense of failure atomicity. As it is based on similar prerequisites as ours, we present this

approach in depth.

The authors define a transactional service as a triple, consisting of an ID, a set of

states and transitions. Transitions between states are either internally triggered (i.e., by

the service itself) or externally, e.g., by another service or a person. The set of states

varies according to the transactional properties of a service: Services are classified to

be compensatable, retrieable or a pivot. The authors state, that a service may naturally

combine certain properties [BPG05, BGP06].

For occurring events, the predicates Happens, Initiates, Terminates and HoldsAt are

defined for certain points in time. These are used to perform transitions between states,

i.e., an event or the termination of an event trigger a certain transition. Additionally,

these are employed to define transactional consistency rules, which imply the type of

failure handling that is allowed for each workflow pattern. E.g., the abortion of an active

services as failure handling is only allowed for a co-occurring execution of both services.

A transactional composite service is then defined as a tuple, consisting of a set of

component services and then the set of predicates which specify the external transitions

of the components. This is done by means of dependencies which model the control flow

as well as failure handling of the composite service.

By means of the consistency rules, a transactional composite service as specified by the

designer is validated prior to runtime. Thereby, invalid failure handling is detected and

the designer is notified. Additionally, consistency rules are used to determine whether the

composite service terminated consistently after the execution. As a result, potentially

missing failure handling may be detected [GBH+07]. In this case, the designer is notified

and the transactional composite service accordingly evolves.

This formalism is very powerful and in our opinion well-suitable to specify transac-

tional behavior of composite services. Therefore, we base our formalism on this approach.

20

3.2 Related Research Areas

The framework, which implements the event-based calculus, is as already stated, fo-

cused on verifying user defined failure handling and detecting occurring inconsistencies

after execution respectively. As opposed to this, we argue that adding failure handling

may be automated by a system according to service properties and control flow patterns.

Despite detailed distinction of failure recovery mechanisms, this approach does not

ensure transactional guarantees for the whole workflow. For example, coordination of

several pivot services in one composite service in order to guarantee consistent outcome

is not incorporated.

Moreover, our work differs from the presented approach, as we aim at verification and

adaptation of a composite service before inconsistent system states occur. Furthermore,

we optimize existing compositions in the current execution context in terms of autonomy

of elements, i.e., we minimize the number of elements which need to be coordinated via

a blocking commit protocol.

3.2.3.2 Further Correctness Criteria

Additionally to the work which enables verification regarding transactional support in

the sense of failure atomicity, there exist numerous models which validate compositions

according to diverse correctness criteria. Many of them are based on petri nets as they

enable characterization of composite service behavior in a broad range.

Challenges of composite service verification often relate to obstacles typically occuring

in parallel processing: Response time determination and deadlock recognition are for

example addressed by [BFHS03], as well as [HB03, NM02].

Similar in the formalism, however different in terms of correctness criteria are the

approaches presented by [CFP02] and [MPP02]. Both model orchestration of services

across organizational boundaries. Thus, typical challenges include negotiation and ful-

fillment of contractual agreements as well as assigning respective process responsibilities

in process evolutions.

The work introduced in [BCGP08] addresses verification regarding security issues:

The authors model messages and message exchange during execution of workflows using

DAML-S and petri nets. They aim at checking integrity and authentication require-

ments. They provide, among others, the possibility to verify that messages sent have

not been modified by third parties.

As opposed to these approaches, we verify whether specifications composite services

fulfill the transactional demands in the sense of atomic outcome. We thereby complement

the mentioned work, in order to enable successful ad-hoc cooperation in heterogeneous

environments. We base our work on the formalism described by [GRGH07] as it is

powerful yet simple to capture transactional behavior and has thus proven to be suitable

for our challenges.

21

3.3 Summary

3.3 Summary

We identified several areas which are all related to our approach in different aspects.

In summary, the differences of the presented approaches to our work and thus their

unsuitability of transactionally supporting ad-hoc cooperations are due to the following

reasons:

Foremost, the difference of almost all cited approaches dealing with transactional

correctness (a.o., ATMs, flexible transactions and mobile transaction models) is the

incapability of flexibly reacting to the current execution context. They mostly incorporate

methods for creating transactions at design time, however limit themselves to verification

of statically designed transactions (and failure handling) at runtime. Thus, in case

verification fails, they are not able to explore and accommodate to the requirements and

capabilities of dynamically discovered participants.

Additionally, many approaches offering transactional support tightly couple their par-

ticipants to transaction phases (i.e., working- and commit-phases), e.g., WS-AT and

some mobile transaction models. Thereby, the autonomy of participants is restricted as

their execution relies on a coordinators decision. Approaches supporting autonomy of

participants (e.g., WS-BA, SAGAS, ConTract), on the other hand rely on the assump-

tion that all services are compensatable. These practices share with e.g. failure handling

enabled by BPEL or [SDN07], that they do not provide any verification means, thus no

transactional correctness guarantees can be given.

Further, we identified the inflexibility to incorporate different structural patterns into

a single transaction, different correctness criteria (e.g., global serializability in flexible

transactions, or resource constraints flexible workflows) or generally no transactional

support (e.g., utility costs in dynamic service composition) as crucial differences to our

approach.

Based on these differences of the referenced work to our approach, we believe that they

are not at all or only partially suitable to transactionally support ad-hoc cooperations

in heterogeneous environments.

22

4 Discovering Mobile Services

We identified the capability to discover services at runtime as a prerequisite for ad-hoc

collaboration, since entities are only able to cooperate if they are able to find others.

As stated in Section 2, we assume participants to be equipped with several network

interfaces. The underlying networking infrastructure therefore changes with the cho-

sen communication channels: Nodes may communicate via fix basestations (potentially

costly, reliable) or directly in an ad-hoc manner (no monetary costs, volatile).

If fix basestations exist, well-established service discovery algorithms for distributed

systems exist (e.g., UDDI or SLP [Net97]). These mostly employ designated repository

nodes, which are responsible for storing advertisements. The suitability of these ap-

proaches for ad-hoc networks is to a limited extend as they rely on the availability of

repository nodes. There exist protocols for ad-hoc scenarios, which try to reduce the

effects of mobility and the volatile communication infrastructure by still offering highly

available service information in the network. As many mobile devices are nowadays

equipped with positioning sensors (e.g., GPS), we utilize position information of nodes

and exploit their mobility. Thereby, our approach adapts to the current movement of

nodes and reduces the number of messages if possible.

In this chapter, we briefly classify existing protocols for mobile ad-hoc networks and

additionally present our approach which explicitly exploits the mobility of nodes to

provide accurate information.1

4.1 Existing Approaches

Generally, mobile service discovery protocols are distinguished according the mainte-

nance of their information: There exist proactive techniques, in which service offers are

actively distributed within the network and reactive protocols in which advertisements

are locally stored and service requests are distributed. Höpfner et al. [HTKR05] further

classify protocols to the following categories:2

Centralized Approaches In centralized approaches, one or several designated repository

nodes exist at which providers register their services. Providers proactively advertise

1As the focus of this thesis lies on transactional support of ad-hoc collaboration, we keep the presentation
short and refer to corresponding literature.

2For a detailed survey of service discovery protocols we refer to [MPHS05, MBB09].

4.1 Existing Approaches

their offers to one or several directory nodes. Clients search for suitable services at these

repositories. A well-known representative of these approaches is the Service Location

Protocol (SLP) [Net97]. A variant of SLP for MANETs is proposed in [Pen05]. The

performance of these approaches relies on the availability of single nodes which is the

main drawback of them in MANETs.

Flooding A simple yet efficient way of discovering services in volatile environments is

based on flooding. Either advertisements (proactively) or service requests (reactively)

are spread in the network. Depending on the approach, matching of requests and adver-

tisements is done on the client or the provider side. Representatives of such protocols

are e.g., the Simple Service Discovery Protocol (SSDP) [Int] and JXTA-Search [Wat01].

While information on services is highly available, the produced network load is immense.

Hash-Based Approaches Hash-based protocols employ mathematical hash functions to

transform service descriptions and service requests into numerical values. These values

correspond to physical addresses of devices present in the network. Advertisements

and requests are forwarded to the address obtained by the hash-function. This node

is responsible for matching requests to the service. The Content Addressable Network

(CAN) [RFH+01] as well as Tapestry [ZKJ01] fall into this category of protocols. As

hash functions randomly map values, semantical closeness of descriptions does not result

in physical closeness of devices. This may hinder the discovery process as requests hardly

ever exactly match the description of the provider.

Overlay-based Protocols Many service discovery protocols for MANETs rely on main-

taining overlay structures in the network. These overlays are formed according to se-

mantic design decisions, e.g., [KKRO03b, KKRO03a], or semantic-free criteria such as

topological closeness, e.g., [RFH+01, CZH+99, SBR04]. Information about available

services in the respective cluster is aggregated. According to this information, a node

decides whether to forward a requests to nodes in its cluster or in a different cluster.

The performance of these approaches is strongly influenced by the message overhead

produced by maintaining the overlay structures.

Semantic Routing As opposed to simple flooding techniques, nodes distribute informa-

tion to participants in their environment. According to this information, service requests

are selectively forwarded to nodes which are more likely to match the request in their

surrounding. Among others, representatives of this kind of protocols are Group-based

Service Discovery (GSD) [CJFY02, CJFY06], Konark [HDVL03], CNPGSDP [GWYY06]

and Allia [RCJF02].

24

4.2 Adaptive Group-based Service Discovery: aGSD

4.2 Adaptive Group-based Service Discovery: aGSD

In this section, we propose our service discovery algorithm aGSD which is designed

to exploit the mobility of participants. Our approach is a group-based approach. We

first give an introduction into the concepts of group-based service discovery (similar to

[CJFY06, GWYY06]) and then present how we apply this concept to take advantage of

users’ mobility.

4.2.1 Group-based Service Discovery

Group-based service discovery is a hybrid approach to service discovery in which both,

service offers and service requests, are distributed to a certain degree. All nodes maintain

a service cache to store received advertisements. Any peer matches received requests

with the offers stored in its local cache. The core idea of group-based service discovery

is to semantically classify services according to a previously defined hierarchy. This

classification is utilized to selectively forward requests to nodes which are more likely to

store an according offer. An example of such a hierarchy is shown in Figure 4.1.

Service

Ticketing

Hardware

… Printer Fax

Exhibition Transportation Cinema

Software

Figure 4.1: Hierarchical grouping of services.

Example: Reconsider our running example, illustrated in Figure 1.2 on page 4. The

Transportation service matches the categories Software, Ticketing and Transportation.

The Confirm service which confirms the offers and prints the according tickets on the

other hand is classified as Hardware and Printer. J

If services are classified according to the predefined hierarchy, advertising services,

caching offers locally and searching for appropriate offers is performed as follows.

Advertising Services Any provider wanting to advertise its services, initiates a service

advertisement message regularly which contains the following information:

< adID, providerAddress, serviceDescription, serviceGroups,

cachedGroups, lifetime, numberOfHops, pos_SP, mov_SP, t_SP >

25

4.2 Adaptive Group-based Service Discovery: aGSD

Such an offer is uniquely identified by its adID. The providerAddress denotes the ad-

dress of the provider of the offered service, whose actual description is encoded in the

serviceDescription. The provider also sends a list of groups that its service belongs to

according to the offered functionality (serviceGroups, see Figure 4.1). Using cached-

Groups the provider sends a synopsis of its local cache: This list contains all groups

of offers which the provider currently stores in its cache. This information is later on

used to selectively forward a request to the according nodes. The lifeTime of the ser-

vice identifies the time it should be kept within the cache. This is related to the rate

in which a service provider advertises its services (advertisement frequency fadv). The

numberOfHops denotes the number of hops the offer is supposed to be spread. Addi-

tionally, the current position and movement of the service provider is encoded: possp

identifies the nodes position, mov sp the providers direction and speed (as a vector) at

time tsp. This corresponds to the information stored when monitoring moving objects,

such as proposed in [SWCD97] and adopted by [HBS+06].

Caching Advertisements Any node receiving such an offer inspects the adID to check

whether it has already received it. Upon first retrieval of an advertisement, it stores it

in its local cache. A cache entry of a node consists of the following information, which

directly refers to the information of advertisements (as presented above):

< adID, providerAddress, serviceDescription,

serviceGroups, cachedGroups, lifeTime >

The caching node proceeds according to the number of hops the advertisement is sup-

posed to be spread. If the numberOfHops is greater than one, the node decrements it,

updates the cachedGroups of its own cache, and broadcasts the advertisement. Other-

wise, the extent to which the offer is supposed to be propagated is reached.

The caches of nodes are renewed according to the lifetime of the offers: If the lifetime

is expired, the advertisement is deleted. If the cache’s capacity is exceeded, offers are

replaced according to a least-lifetime strategy.

Searching for Services A node in search of a service tries at first to find a matching

advertisement in its local cache. If it cannot locate an appropriate advertisement, it

creates a service request with the following parameters:

< serviceDescription, requestGroups,

requestAddress, hopCount, maxHopCount >

The serviceDescription contains the description of the desired service. requestGroups

is a list of groups to which the service belongs to. The requestAddress is the address of

the requesting node. hopCount denotes the current number of hops the advertisement

26

4.2 Adaptive Group-based Service Discovery: aGSD

has already traveled, thus it is initialized with 0. maxHopCount encodes the maximum

number of hops, the requesting node wants its request to be propagated.

Each node receiving a request proceeds as follows: If it cannot be locally matched and

hopCount has not yet exceeded maxHopCount, it increments hopCount and re-transmits

the request. In order to do so, the node checks the cachedGroups of its cache entries. If

any match the requestGroups, it forwards the request to the matching nodes according

to the providerAddress of the entries. If no match can be found, the request is simply

broadcasted.

4.2.2 Exploitation of Mobility

As introduced so far, aGSD complies with conventional group-based service discovery

algorithms, such as [CJFY02, GWYY06]. We designed aGSD to make use of position-

and mobility information in two ways: On the one hand, the mobility information of

nodes is used to dynamically configure and thus adapt the protocol to the current context.

On the other hand, we use position information to enable discovery of remote services.

4.2.2.1 Dynamic Configuration

The performance of the protocol is mainly determined by the rate at which service

providers advertise their services (advertisement frequency fadv) and the lifetime of offers

l. They heavily influence the performance of the approach in terms of network load

(costs) and discoverability of services (benefits). Thus, there is a trade-off between the

number of messages to be sent and the availability of service advertisements. If, as

proposed by [CJFY06], the configuration is user controlled, it is somewhat arbitrary to

decide for settings of fadv and l: Mis-calibration leads to dissatisfactory performance

results. Moreover, advertisement frequency and lifetime of corresponding offers should

be related to each other, as otherwise, the following may happen:

• If the advertisement frequency and the lifetime of the advertisements is fairly high,

nodes being in direct transmission range of the provider receive new offers although

a corresponding entry still exists in their cache. Nodes having moved out of the

direct vicinity of the provider keep the entry even though they cannot directly

contact the provider anymore.

• If opposed, the advertisement frequency and and the lifetime of the advertisements

are low then the availability of the service advertisements decreases. Nodes in the

vicinity delete the corresponding cache entry before a new one is sent.

On account of these simple considerations, we configure the advertisement frequency

of providers and the lifetime of offers as follows:

27

4.2 Adaptive Group-based Service Discovery: aGSD

Adaptation of the advertisement frequency to the mobility of the service provider We

base the adaptation of the advertisement frequency to the movement of the service

provider on the following assumption: If it moves rapidly, its set of neighboring nodes

changes quickly. In order to keep the availability of the advertisements high, the adver-

tisement frequency has to be high. If on the other hand the providers position is stable,

messages are saved by decreasing fadv and therefore increasing the length of the interval

until the next advertisement is sent (denoted as Iadv). As stated above, the lifetime of

advertisements is chosen according to the advertisement frequency of the provider.

We calculate the advertisement rate according the movement of the node: Whenever

the distance to the last position at which it sent an advertisement is estimated to be

greater than a given threshold, a new advertisement is sent. We denote this threshold

value in terms of the broadcast range of the service provider. This leads to the following

computation of the advertisement frequency fadv (and the length of the advertisement

interval Iadv respectively):

Iadv =
1

fadv

=
cF ∗ rbc

|movsp|
(4.1)

Iadv is the length of the interval until the next advertisement is sent, rbc the broadcast

range, |movsp| the velocity of the service provider and cF an application parameter that

determines the threshold value for the distance in terms of the broadcast ranges. The

calculated length of the advertisement interval is bounded to [Imin, Imax]. Thus, we avoid

too many advertisements to be sent when moving fast and still enforcing advertisements

to be sent when the node hardly moves at all.

The lifetime of the advertisements calculated by the service provider (denoted lsp) is

chosen in relation to the advertisement frequency. We calculate the lifetime as:

lsp = cL ∗ Iadv, with cl ≥ 1 (4.2)

Parameter cL denotes the relation of lsp and fadv . By doing so, aGSD adapts to the

movement of the service provider: If it moves fast, the availability of its advertisements

increases as it sends more advertisement messages. If the provider moves slowly, it saves

messages by still keeping the availability high.

Adaptation of the lifetime of cache entries according to the mobility of nodes By calcu-

lating the lifetime of a service offer according to the advertisement frequency, the cache

renewal is already adapted to the mobility of the service provider. Advertisements of

stable (and slow) service providers have greater lifetimes as opposed to those of fast

moving providers. Upon calculation of the lifetime, the service provider is only aware of

its own movement. A node receiving the offer is additionally able to analyze his mobility

and thus consider its relative movement to the provider.

28

4.2 Adaptive Group-based Service Discovery: aGSD

rbc d(t)

movsp

movn

sp

n

Figure 4.2: Service provider sp, node n, and their mobility information.

By considering the relative movement to the service provider, a node decreases the

lifetime of an advertisement if their distance is predicted to drastically increase. We

consider the estimated distance d(t) between a node caching an advertisement and the

service provider to adjust the lifetime of service offers. The distance between these two

nodes as a function of time is calculated by the euclidean distance (see Figure 4.2):

d(t) = |(possp + movsp ∗ (t− tsp))− (posn + movn ∗ (t− tn))| (4.3)

for t > tsp and t > tn. The receiving node utilizes the mobility information of the service

provider which is provided in the advertisement (possp, mov sp and tsp) and its own

mobility, denoted by posn, movn and tn. If the distance of sp and n exceeds a computed

threshold within the lifetime of the advertisement, the lifetime is lowered. The threshold

is determined according to the numberOfHops of the offer and the broadcasting range of

the node rbc. The point in time at which the distance exceeds the threshold is denoted

as tx. The node calculates tx as the solution of the following equation:

d(t + tx) = numberOfHops ∗ rbc (4.4)

The receiving node sets the lifetime of the advertisement as the minimum of the

lifetime computed by the service provider lsp and the time tx until the distance exceeds

the threshold:3

ln = min(lsp, cL ∗ tx) (4.5)

Note that a node only lowers the lifetime of an entry within its cache but does not

increase it. If a node’s movement is similar to the one of the service provider, it receives

a new advertisement according the calculated advertisement frequency which is before

lsp (given by the service provider) has expired. Therefore increasing the lifetime of a

cache entry does not increase the performance of the algorithm.

3Just as lsp, tx is also multiplied by the scaling factor cL.

29

4.2 Adaptive Group-based Service Discovery: aGSD

All in all, aGSD explores mobility information of nodes to decrease the lifetime of

advertisements whenever nodes move away from each other. Thereby, service requests

which are initiated due to outdated cache entries are spared and the expenses, i.e.,

number of messages per successful services usage, are reduced.

4.2.2.2 Remote Service Discovery

In ad-hoc environments, nodes are usually interested in services of providers in their

direct vicinity. Corresponding requests are fairly well answered by existing approaches

(including aGSD as introduced so far). However, requests, which do not refer to the

immediate surrounding of a node, can hardly (or not at all) be handled. Such requests

are certainly useful in our application scenario MoP. For example, searching for services

which are in the proximity of a certain point of interest the user is approaching, such as

the Brandenburg Gate (see Figure 4.3). We refer to requesting such service as remote

services in the following.

Figure 4.3: Searching for remote services.

The concept of location based services (LBS) [VS04] seems at first closely related to

remote services. However, LBS usually refer to the immediate surrounding of a client

as opposed to remote services which assume the provider to be in a defined target area.

Existing conventional service discovery protocols do not support remote service requests.

They do not integrate forwarding service requests according to geographical criteria.

Forwarding a request to nodes in a certain target area is therefore impossible. Employing

the mobility information of nodes, aGSD enables such remote service requests (and thus

remote service usage). This is done by employing geographical routing of requests.

In order to do, the requests of aGSD are enhanced by the following parameters:

< requestType, pos_target, radius_target >

The requestType encodes, whether the request is a remote request (Remote) or a

conventional search (Local). If the search is local, possibly specified values of the

target region are disregarded. Otherwise, the request is forwarded to the target region

which is specified by its plane coordinates (pos target) and its radius (radius target).

If a remote request is posed, the protocol proceeds as follows: The query is geograph-

ically routed to nodes in the target area. In our implementation of the protocol, we

30

4.3 Evaluation

employ GPSR (Greedy Perimeter Stateless Routing) [KK00a, SWLF04] to geographi-

cally forward requests to the according area. If a node within the target region receives

the request, it processes it just as a local request: If it is able to match the request to an

offer stored in its local cache, it generates an according response. Otherwise, it forwards

the request to its neighbors according to the group information in its cache. If a node in

the target area matches the request, it as well employs geographical routing to re-route

the response back to the initiator. If the request cannot be routed to the target region

(e.g., if there are no nodes in the target area), it is dropped if the maximum hop count

is reached.

By utilizing the mobility information of nodes, aGSD enables the discovery and usage

of services in a specified target area.

4.3 Evaluation

Additionally, to the implementation of aGSD , we experimentally evaluated the protocol

in order to prove its suitability for ad-hoc scenarios. After introducing the setup, we

present results for the dynamic configuration and the remote service discovery. As men-

tioned above, service discovery is not the focus of this thesis, we limit the presentation

to selective results. For a detailed evaluation, we refer to [Bie08].

4.3.1 Evaluation Setup

The vital points of interest when evaluating aGSD are its suitability and efficiency in

ad-hoc situations. We therefore simulated aGSD in ad-hoc scenarios using the ns-2 4

network simulator. Our objectives are to show, that the up-to-dateness of advertise-

ments is increased (benefits) and the number of messages per successful service usage is

reduced (expenses). Additionally, we want to demonstrate, that by exploiting mobility

information, aGSD enables discovery and usage of remote services. In summary, in the

context of this thesis, we want to show, that aGSD enables mobile services to be found

and used in ad-hoc scenarios.

4.3.1.1 Configurations

We compare the following configurations of the protocol in order to evaluate the influence

of the exploitation of mobility information.

GSD is the statically configured: The advertisement frequency is fadv = 1/15s, i.e.,

each service provider sends an advertisement every 15s (Iadv = 15s).

4http://www.isi.edu/nsnam/ns/

31

4.3 Evaluation

aGSD is dynamically configured: The advertisement interval Iadv is however bound

to [Imin, Imax] = [10s, 30s]. The inherent protocol parameter cF is set to cF = 1

(according to the results of [Bie08]), while cL is varied in the shown experiments.

aGSD’ is as well dynamically configured, however in this configuration only the lifetime

of offers is adapted according to the relative movement of a caching node and the

provider. fadv is statically configured to fadv = 1/15s.

4.3.1.2 Metrics

In order to quantify and compare the efficiency of the protocol configurations, we consider

the following metrics.5

Request hits The request hits indicate the overall number of cached advertisements that

are matched to all service requests during the simulation.

Packet Loss The packet loss indicates the ratio of messages which get lost during the

simulation. For example, the invocation of a service may be lost, if it is initiated

due to an outdated advertisement and the provider is not available anymore.

Expenses The expenses of a configuration indicate the number of messages that the

protocol initiated during the simulation in relation to the number of successful

service invocations.

4.3.2 Evaluating the Dynamic Configuration

Set-Up In order to evaluate the dynamic configuration of aGSD , we simulated the

following scenario: 50 nodes move on a 200x200m2 area following the Random Waypoint

Mobility Model [JM96]. The simulation time is 600s. The velocity of nodes ranges from

vmin = 1m/s to vmax = 3m/s; their broadcasting range is 30m. The duration of the

so-called thinking-time of nodes is 5s.

Each nodes offers 10% of all services. Service requests for a randomly chosen service

are initiated regularly every 5s on a randomly chosen node. If its request is matched,

the client invokes the discovered service.

All shown evaluation results represent average values of at least 100 simulation runs.

Evaluation In Figure 4.4 on the left hand side, the number of request hits of the three

configurations GSD , aGSD and aGSD’ are shown (on the y-axis), varying cL on the

x-axis.6 GSD achieves more request hits than aGSD which and aGSD’ for all values of

cL. It is obvious that the number of hits increases with ascending values of cL, as with

cL the lifetime of offers accordingly increases.
5In our experiments, we regarded further metrics, e.g., up-to-dateness and false-positives which are not explic-

itly evaluated in this thesis. We therefore forego their presentation.
6Recall, cL defines the relation of Iadv and lsp (and ln respectively).

32

4.3 Evaluation

0

50

100

150

200

250

300

1,5 2 2,5 3 3,5 4 4,5 5

Re
qu

es
t H

it
s

Configuration Parameter c_L

GSD

aGSD

aGSD‘
0

5

10

15

20

25

30

35

40

1,5 2 2,5 3 3,5 4 4,5 5

Pa
ck

et
 L

os
s

[%
]

Configuration Parameter c_L

GSD

aGSD

aGSD’

Figure 4.4: Request hits and packet loss varying cL.

However, the number of request hits does not indicate the overall performance of

the configurations: The rate of successful service usage is roughly 60% for all three

configurations (variations between them is lower than 5%). Therefore, considering the

packet loss in this scenario, depicted on the right hand side of Figure 4.4, it easily

becomes apparent, that the packet loss of GSD is roughly 5% to 10% greater than

aGSD . The packet loss of aGSD’ is even slightly lower than for aGSD . This relies in

the number of service invocations which are initiated in consequence of service hits to

providers which are not available anymore: In this case, the cache entry of matching

nodes are outdated and thus lead to messages being lost.

Therefore, GSD produces the highest expenses of all: Although GSD achieves the

greatest number of request hits, it produces considerably higher packet loss ratios than

aGSD and aGSD’ . This relies in the fact, that many of the request hits are outdated.

In Figure 4.5, we varied the maximum velocity vmax of nodes between vmax = 3m/s

and vmax = 19m/s. In this set-up, the configuration parameter cL is set to cL = 3). The

greater the maximum velocity of nodes, the more offers are actually sent using aGSD

while fadv remains fixed for GSD and aGSD’ . In this scenario, the number of request

hits (see Figure 4.5 on the left hand side) is nearly constant for GSD and aGSD and

decreasing for aGSD’ with ascending vmax. This relies on the fact, that aGSD’ decreases

the lifetime of offers with increasing vmax, however as opposed to aGSD does not produce

more advertisements.

The ratio of successful service usage equally decreases from roughly 66% (vmax =

3m/s) to ca. 45% (vmax = 19m/s) for all configurations. (The ratio of successful service

usage is slightly greater for aGSD than for the other two protocols.) Considering the

packet loss, depicted in Figure 4.5 on the right side, it becomes apparent, that the packet

loss of all protocols increases enormously: While it is almost doubled for GSD (26% to

48%) and aGSD (17% to 38%), the increase for aGSD’ is lower (15% to 24%).

This results in the overall expenses as depicted in Figure 4.6: The expenses for GSD

33

4.3 Evaluation

0

50

100

150

200

250

300

0 5 10 15 20

N
um

be
r

of
 r

eq
ue

st
 h

it
s

Velocity v_max [m/s]

aGSD

aGSD'

GSD

0

10

20

30

40

50

60

0 5 10 15 20

Pa
ck

et
 lo

ss
 [%

]

Velocity v_max [m/s]

GSD

aGSD

aGSD'

Figure 4.5: Sent advertisements and request hits varying vmax.

40

60

80

100

120

140

160

180

200

0 5 10 15 20

Ex
pe

ns
e

[m
es

sa
ge

s]

Velocity v_max [m/s]

GSD

aGSD

aGSD'

Figure 4.6: Packet loss and expenses varying cF .

increase, as outdated information about service providers lead to increased package loss.

The expenses for aGSD evolve even worse with increasing vmax: The information, nodes

keep in their cache when using aGSD is more up-to-date; however the costs produced by

many more advertisements are not justifiable, as in this scenario the rate of successful

service usage decreases. The reasons for that rely in the scenario: Due to the density of

nodes, aGSD has no trouble discovering services, however with a maximum velocity of

19m/s, the usage of services often fails.

As opposed to these two configuration, aGSD’ is able to slightly reduce the expenses.

By reducing the lifetime of offers, fewer request hits are achieved. However, as these

achieved already consider the relative movement of nodes, they are up-to-date. Thereby,

in this case aGSD’ produces convincing results.

Conclusion The evaluation of the dynamic configuration shows, that service discovery

benefits from exploring mobility information to enable discovery and usage in ad-hoc

scenarios. In ca. 60% of all request, one or more providers (which may be invoked) are

34

4.3 Evaluation

discovered. Especially, exploiting the relative movement of nodes in the configuration

aGSD’ is convincing: In comparison to GSD and aGSD , the expenses for successful

service usage are considerably decreased, as invocations to unavailable providers are

avoided. Regarding the protocol parameters, cF = 1 and cL ∈ [2.5, 3.5] achieve the best

results regarding the expenses. The protocol in the configuration aGSD’ outperforms

the other two configurations.

We are thereby able to show that exploration of mobility information may beneficially

used for service discovery in ad-hoc scenarios.

4.3.3 Evaluation of Remote Service Requests

Test Set-Up As opposed to the previous series of test, we alter the scenario as follows:

10 designated service providers are additionally placed diagonally in a specified target

area. These nodes do not move. Periodically, a node is chosen randomly to initiate a

remote service request to one of these target areas. The radius of the target area is set

to 15m. As stated before, we use GPSR in case requests are to be geographically routed.

The results represent evaluation of roughly 28 000 remote service requests.

Evaluation This protocol feature of aGSD performs quite well. Ca. 65% of remote

service requests are replied. In 91% of these cases, the service invocation is successful;

in 94% of these, the output of the service is successfully returned. The overall success

rate is therefore roughly 55%.

0

20

40

60

80

100

120

Unsuccessful Successful

D
is

ta
nc

e
cl

ie
nt

 -
ta

rg
et

 r
eg

io
n

[m
]

Discovery

Usage

Figure 4.7: Distance to provider for discovery and usage of remote service.

Considering Figure 4.7, it becomes apparent that the average distance of clients to the

target area when discovering remote services successfully (on the right) is ∼ 75m. The

average distance of clients to the target area which successfully used services is slightly

lower with 72m. Considering unsuccessful discovery, the average distance is 102m and

99m for unsuccessful service usage. Obviously, the farther away a node from the target

area, the likelier its request or its invocation is not successful.

35

4.4 Summary

Figure 4.8: Comparison of distance between client and target area vs. client and provider.

In Figure 4.8, the correlation of the distance between the searching node and the target

area and the distance between the searching node and the service provider is depicted.

It easily becomes apparent, that these distances are closely related, i.e., the response to

the request is initiated in the specified target area. Additionally, the figure shows, that

in this set-up considerably more successful usages are initiated for distances lower than

100m. However, discovering and usage of remote services is successful up to ∼ 250m

distance between provider and client.

Conclusion In conclusion, the feature of remote service recovery which is enables by

exploring mobility information of nodes, performs well in the evaluated scenario. By

employing geographical routing, aGSD enables remote service discovery at a great dis-

tance (72m average, in single cases up to 250m).

4.4 Summary

In this chapter, we proposed our service discovery algorithm aGSD for ad-hoc scenarios.

aGSD is a group-based approach which exploits the mobility of nodes to adapt to the

current situation and enable remote service requests. Our experimental evaluations

show, that especially the analysis of relative movement of nodes positively affects the

protocol: aGSD reduces the lifetime of advertisement of nodes, if they do not linger in

their communication ranges anymore. Thereby, the overall expenses of the protocol are

noticeably reduced. Furthermore, aGSD enables the use of remote services: Mobility

information of nodes is utilized to geographically forward requests to certain destination.

Thereby, one is able to pose requests to a certain target region which is of great interest

in our target scenario MoP. Our evaluations results show, that this feature performs

quite well in the simulated scenario.

36

5 Formalizing Transactional Cooperation of
Services

In this chapter, we introduce the formal model used to specify transactional behavior

of services and composite services. Using our formal model, we abstract from the char-

acteristics (e.g., mobility) of single components. As it is very powerful and suits our

demands, we base our model on that of Bhiri et al. [BPG05, BGP06] and their event-

algebra [GBH+07, GRGH07]. We extend it by a classification of services according to

more relevant service properties and defining these properties for patterns. Additionally,

we specify transactional correctness in the presence of these transactional properties.

5.1 Transactional Services

5.1.1 Service Model

In order to model the autonomous (internal) behavior of a single service we employ the

state/transitions model of [GRGH07]. Figure 5.1 shows the state-machine for a single

service: Before invocation, its state is initial. After being activated, it is active. Failed

and canceled indicate failed execution i.e., no changes are made persistent, either due

to an internal error (failed) or externally triggered (canceled). If the service completes

successfully, it transits to the completed state.

The transitions between these states are either internally or externally triggered. In-

ternal transitions (indicated by solid lines in Figure 5.1) are completed due to events

generated by the service itself (e.g., completion). External transitions (indicated by

dashed lines) are triggered by another entity, such as the workflow engine or a human.

Initial Active Completed

CompensatedFailed

Canceled

activate

fail
cancel

complete

compensate

redo

Figure 5.1: State-machine of a single service.

To indicate the completion status of a service s, we employ a boolean representation

5.1 Transactional Services

to encode whether the service is completed: I.e., s indicates, that the service completed

(that is its changes are made persistent). If the service is failed, canceled, compensated

or has not been activated, we denote its status by ¬s.

According to a service’s transactional properties, additional states or transitions are

added. These are introduced in the next section.

5.1.2 Transactional Properties of Services

To ensure atomic outcome of composite services the characteristics of services have been

considered in transaction management in SOAs in the past, as well as the characteristics

of subtransactions especially in heterogeneous multidatabase (MDBS) environments. In

the following, we use the terms subtransaction and service interchangeably.

Generally, existing classifications either distinguish transactions according to the pro-

tocols they implement (e.g., [FDDB05, LY04]). Or the approaches abstract from pre-

cise protocols and classify subtransactions according to transactional properties without

relying on specific implementations, e.g., in MDBS [MRKS92b, MRKS92a, BGMS92,

EJK+96, ZNBB94, ZNB01, DU96].1 These were later on adopted for transaction mod-

els for composite services, among others by [VV04, MBB+03, BPG05, BGP06, GRGH07,

GBH+07].

These approaches mostly employ the same terms, however define them partially dif-

ferent. E.g., [BPG05] state that the effects of a pivot subtransaction cannot be undone.

However, it indeed can be retrieable. That contradicts the definition of [BGMS92].

In order to overcome this obstacle and after exhaustive study of existing business

transaction models, we regard the following transactional service properties as boolean

properties, which we first published in [HS08]: Compensatability, consistent closure and

retrieability. We employ the approach of using transactional properties as opposed to

implemented protocols, as this suits the abstraction level of the formal model.

Definition 1. Compensatability of a Service s

A service s is defined to be compensatable if there exists an available service c which

semantically undoes the effects of s. The compensatability of s is denoted as:

s.compensatable = 1

If a service s′ is non-compensatable, it is denoted as s′.compensatable = 0.

Example: Consider our running example on page 4, a booked ticket to the Philhar-

monics may be compensated by canceling the booking. J
Regarding the service model introduced in Section 5.1.1, compensatability is expressed

1See Chapter 3 for further discussion.

38

5.1 Transactional Services

through a compensate-transition and a compensated -state (see Figure 5.1). Compensa-

tability indicates, whether the effects of a service can be undone after completion.

In our system model, we assume the compensation service c of a service s to be

available. Thus, if a provider specifies its service to be compensatable, it ensures, that

the compensating service c can be invoked via a reliable communication channel.

Through the inclusion of a service in the workflow, a designer states, whether the

completion of the service is inevitable for the completion of the workflow. It is vice versa

assumed, that a service is only allowed to be completed if the workflow is completed.

E.g., no hotel room is allowed to be booked, if the whole trip is not booked. However,

some services may allow for inconsistent completion i.e., they complete although the

workflow may be canceled. This is usually given by the consistency requirements of the

data the service operates on or the semantics of the service.

We therefore define the following transactional service property, which – to the best

of our knowledge – has not been considered for transactional service composition before.

Definition 2. Consistent Completion of a Service s

A service s is defined to demand consistent completion (or consistent closure) with

respect to the outcome of the whole workflow, if it needs, once completed, recovery

in case of failure. Its completion infers the completion of the whole workflow. This

property of s is denoted as:

s.consistentCompletion = 1

If s does not demand consistent closure (denoted as s.consistentCompletion = 0)

does not need to be compensated in case of backward-recovery.

Example: Consider the following example of reserving a hotel room: If the hotel states

that the reservation of a room is automatically canceled unless it is explicitly confirmed

at least a week before the check-in day, this reservation service does not demand consis-

tent closure. If the whole trip is canceled, the reservation will be automatically deleted,

as it is not confirmed. Another example is the Confirm service of our running example. J

Other examples of services, which do not demand consistent closure, are read-only

participants of transactions as specified by the WS-Tx. The significance of the consistent

closure property conveys whether a service needs to be compensated in case of failure.

The third property, according to which services are classified, is retrieability which is

defined as follows.

39

5.1 Transactional Services

Definition 3. Retrieability of a Service s

A service s is defined to be retrieable (or redoable), if it will eventually complete, if

its activation is repeated in case of failure. The retrieability of a service s is denoted

as: s.retrieable = 1

If a service s′ is not retrieable, it is denoted as s′.retrieable = 0.

The property states, whether the execution of the service can fail. This is an important

feature of the above mentioned compensating service: Assuming the compensatability

of a service, it is also assumed, that the compensating action will complete (i.e., not

fail). Redoability of a service is modeled through a redo-transition (see Figure 5.1).

In our system model, a mobile service provider which specifies its service to be re-

trieable, ensures to be available via a reliable network channel. I.e., if no ad-hoc

communication can be established, it can still be invoked using reliable network channels.

We define the complete transactional properties2 of a service as follows:

Definition 4. Complete Transactional Properties of a Service s (pCT (s))

The complete transactional properties of a service s are defined as the following

triple of properties:

pCT (s) := (s.compensatable, s.consistentCompletion, s.retrieable)

A service may hold an arbitrary combination of the complete transactional properties

as defined in Definition 4. Therefore, 23 = 8 different types of services are possible.

However, not every property is important for all purposes. For example, for verification

purposes (see Section 6.2), it is important to know whether a service is redoable and

whether its completion hinders the correctness of the workflow in case of failure. Thus,

it is important to know, whether a service is compensatable or does not need consistent

closure. We denote this by the derived property recoverability as follows:

Definition 5. Recoverability of a Service s

A service s is defined to be recoverable, if it is either compensatable or it does not

demand consistent closure, thus:

s.recoverable := (s.compensatable = 1) ∨ (s.consistentCompletion = 0)

2Please note, that completeness of these properties is only given in the scope of this thesis. We do not claim
universal completeness of our defined properties.

40

5.1 Transactional Services

A service s which is recoverable is accordingly denoted as:

s.recoverable := 1

If a service s′ is not recoverable, it is denoted as s′.recoverable = 0.

Regarding the service model introduced in Section 5.1.1, such a service is modeled just

as a compensatable service: If the service is compensatable, it holds a compensated state

and a compensate transition. If the service does not demand consistent completion, it

is also modeled using a compensate transition and the compensated state.

Regarding this derived property, we define the derived transactional properties (or

transactional properties for short) as a tuple as follows:

Definition 6. Derived Transactional Properties of a Service s (pT (s))

The derived transactional properties (transactional properties for short) are defined

as the tuple of properties recoverability and retrieability. They are denoted as:

pT (s) := (s.recoverable, s.retrieable)

Example: In Figure 5.2, the running example with (complete and derived) transac-

tional properties of services is shown. As CRS is retrieable and does not need consistent

closure (i.e., it does not need to be compensated in case of failure) its complete proper-

ties are pCT (CRS) = (0, 0, 1), thus its derived properties are pT (CRS) = (1, 1). PayCC

on the other hand, which offers payment per credit card, is compensatable and needs

consistent closure. As it is not retrieable, its complete transactional properties are

pCT (PayCC) = (1, 1, 0), thus its derived properties are pT (PayCC) = (1, 0).3 J

CRS

Reservation

Philharmonics

AND ConfirmTransportation XOR

PayCC

PayCh

(1,1,1)

(1,1)

(1,1,0)

(1,1)

(1,0,0)

(0,1)

(1,1,0)

(0,0,1)

(1,0)

(0,1,1)

(1,0)

(0,0,1)
(1,0)

(1,1)

Figure 5.2: Running example with transactional properties.

3We employ the *-symbol as a wildcard, if a service exposes a certain property or not. That is, if a service s
exposes the properties pT (s) = (1, ∗) it is recoverable, however it may or may not be retrieable.

41

5.2 Transactional Composition of Services

For analyzing and flexibly adapting the composite service at runtime (as it is done in

Chapter 6), it is sufficient to regard the derived transactional properties. In order to add

the correct and entire failure handling (see Section 5.2.5.3), the complete transactional

properties are needed.

5.2 Transactional Composition of Services

5.2.1 Control Flow Patterns

Besides services, control flow patterns (or workflow patterns alternatively) are elemen-

tary components of workflows. As their name indicates, their task is to specify the flow

of control. Thereby, they define the structure of the composition.

Originally, they were defined by van der Aalst, ter Hofstede et al. [WAB00, AHKB03,

ABEW00]. The Workflow Management Coalition (WfMC) [Coa99] defined the following

simple control flow patterns: Sequence, parallel split, synchronization, exclusive choice

and simple merge (see Appendix A.1).

The separation of split and join patterns allows for the specification of sophisticated

workflows in which forked branches are not merged. For the purpose of transactional

workflow patterns, we specify each split pattern to be ended by a matching join pattern,

at the end of the workflow at the latest. As most workflow specification languages (e.g.,

BPEL) are block-oriented, this complies with the standards for implementing a workflow.

A block surrounds its elements employing distinctly labeled begin- and endpoints.

We employ WP(E) to denote a workflow patterns with a set of elements E. An element

e ∈ E is either a service or a workflow pattern. Thereby, patterns are recursively defined.

We use an index to distinguish between the types of pattern. Additionally, we specify the

ATS-status of patterns.4 Recall, by s we denote the successful completion and of service

s while ¬s indicates, that s is not completed. The ATS-status of a given pattern WP(E)

is a boolean expression which specifies the accepted termination states of WP(E), i.e.,

the state of the included elements for which the pattern is completed.

SEQUENCE WPSEQ(e1, . . . , en)5 defines for all of its elements to be sequentially exe-

cuted, thus ei is activated after the completion of ei−1. We assume the elements

e1, . . . , en to be arranged in increasing order of their index. Thus, as soon as en com-

pletes, the sequence is considered to be completed. Its ATS-status is e1∧e2∧. . .∧en.

AND WPAND(e1, . . . , en) groups the parallel split and the synchronization. It deter-

mines, that all elements ei ∈ {e1, . . . , en} are executed in parallel. At the join

point, they are synchronized: The subsequent workflow is activated as soon as all

branches completed, thus its ATS-status is denoted as e1 ∧ e2 ∧ . . . ∧ en.

4Recall, that ATS refers to the committed acceptable termination states.
5WPSEQ complies with the sequence pattern as defined by the WfMC.

42

5.2 Transactional Composition of Services

XOR WPXOR(e1, . . . , en) subsumes the exclusive choice and the simple merge. Based on

a mechanism, one ei ∈ {e1, . . . , en} is chosen. The subsequent workflow continues

as soon as one element completes, thus one and only one element ei ∈ {e1, . . . , en}
is completed. Successful execution of the pattern, i.e., its ATS-status , is expressed

by (e1 ∧ ¬e2 ∧ . . .¬en) ∨ (¬e1 ∧ e2 ∧ ¬e3 . . .¬en) ∨ . . . ∨ (¬e1 ∧ . . . ∧ ¬en−1 ∧ en).

Note, that in case of WPXOR(E), we only regard patterns, in which the choice of

branches is done according transactional properties of services. The elements of WPXOR(E)

are therefore considered to be alternatives.

Example: Consider again our running example as depicted on page 4. Abbreviating

Philharmonics, Transportation and Reservation service by the respective first character,

the workflow is composed as follows:

WPSEQ(CRS, WPAND(P, T,R),Confirm, WPXOR(PayCC ,PayCh)) J

Other advanced patterns as defined by the WfMC are disregarded in the scope of this

thesis: They can either be composed by simple patterns or do not specify deterministic

or transactional behavior (see Appendix A.2).

5.2.2 Transactional Pattern

According to the defined transactional properties of elements, there exist situations

in which aligning elements in different patterns is not sufficient to guarantee correct

execution. In these situations, we coordinate elements using blocking protocols, such as

for example 2PC (e.g., by employing WS-AT, see Section 3.1.1.1).

Therefore, we define an additional auxiliary pattern, the Subtransaction pattern as:

Definition 7. Subtransaction Pattern WPsubTA(e)

The subtransaction pattern, denoted as WPsubTA(e), contains exactly one single con-

trol flow pattern e. The type of e defines the control flow of the enclosed elements.

WPsubTA(e) defines, that all elements e′ contained by e have to be coordinated in an

atomic subtransaction.

Elements which are enclosed in a Subtransaction pattern WPsubTA, can no longer

be autonomously executed as introduced in Section 5.1.1, but their execution has to

be enrolled to a transaction.6 Elements of the subtransaction are coordinated by a

coordinator in order to guarantee atomic output of all of them. The subtransaction

pattern is thus orthogonal to the defined control flow patterns as it does not define the

control flow of the enclosed elements.
6Solitary exception are indirect conflict elements, which are introduced in Section 6.2.1.3.

43

5.2 Transactional Composition of Services

5.2.3 Transactional Properties of Patterns

In order to analyze the workflow at different levels of abstraction, we define the trans-

actional properties of workflow patterns. They are determined according to the type

of the pattern and the properties of the contained elements. In the following, we de-

fine the derived transactional properties (recoverability and retrieability) for all patterns.

Specification of the complete transactional properties can be found in the Appendix A.3.

The definition of Sequence and And both define correct execution to be that either

all of their elements have to be completed, or all of their elements, which need to be com-

pensated, have to be compensated. Therefore, for the sake of simplicity, the definition

of their transactional properties is commonly presented.

Definition 8. Transactional Properties of WPSEQ(E) and WPAND(E)

The transactional properties of a pattern WP(E) containing a set of elements E,

which is a WPSEQ(E) or an WPAND(E) pattern are defined as the following tuple:

pT (WP(E)) := (WP(E).recoverable,WP(E).retrieable)

where WP(E) is

• recoverable, if all elements are recoverable

WP(E).recoverable = 1

:⇔ ∀e ∈ E : e.recoverable = 1

• retrieable, if all elements are retrieable

WP(E).retrieable = 1

:⇔ ∀e ∈ E : e.retrieable = 1

As the enclosed elements of an WPXOR pattern are alternatives, the properties for

WPXOR(E) are defined differently. One and only one element is to be completed (and

to be compensated accordingly). If several alternatives exist, the transactional proper-

ties of WPXOR(E) cannot always be definitely determined beforehand. In these cases,

the definite properties are derived during execution. Handling these uncertainties is

described in 6.3.3.

Definition 9. Transactional Properties of WPXOR(E)

The transactional properties of Xor pattern WPXOR(E) are defined as:

pT (WPXOR(E)) := (WPXOR(E).recoverable,WP(E).retrieable)

where WPXOR(E) is

44

5.2 Transactional Composition of Services

• recoverable if all elements are recoverable. If none of the elements is recoverable,

WPXOR(E) is not recoverable.

WPXOR(E)recoverable = 1

:⇐ ∀e ∈ E : e.recoverable = 1

WPXOR(E)recoverable = 0

:⇐ ∀e ∈ E : e.recoverable = 0

• retrieable, as soon as one element is retrieable.

WPXOR(E).retrieable = 1

:⇔ ∃e ∈ E : e.retrieable = 1

As soon as one element e in the pattern is retrieable, the whole pattern is retrieable. If

the retrieable element is executed, it is guaranteed to complete. Thus, the whole pattern

is guaranteed to complete.

The WPsubTA pattern is by definition not recoverable and not retrieable:

Definition 10. Transactional Properties of WPsubTA(e)

The transactional properties of a subtransaction pattern WPsubTA(e) are defined as:

pT (WPsubTA(e)) := (WPsubTA(e).recoverable,WPsubTA(e).retrieable)

with WPsubTA(e).recoverable := 0 and WPsubTA(e).retrieable := 0.

Example: In Figure 5.3, the running example workflow is depicted. The WPXOR pat-

tern is both recoverable and retrieable (pT (WPXOR(PayCC ,PayCh)) = (1, 1)) as both

elements are recoverable and there exists a retrieable element (PayCh). The WPAND pat-

tern is neither recoverable nor retrieable (pT (WPAND(P, T,R)) = (0, 0)), as it comprises

non recoverable and non retrieable elements. The encompassing WPSEQ pattern, which

consists of four elements (CRS, WPAND(P, T, R), Confirm and WPXOR(PayCC ,PayCh)),

is for the same reason not recoverable and not retrieable (pT (WPSEQ(E)) = (0, 0)). J

5.2.4 Workflow Elements

As stated in our system model, we specify ad-hoc cooperations as composite services and

thus implement them as workflows. By defining transactional properties of patterns, we

are able to analyze a composite service at different levels of abstraction. The structure

of a composite service and thus a workflow is recursively given by its elements :

45

5.2 Transactional Composition of Services

CRS

Reservation

Philharmonics

AND ConfirmTransportation XOR

PayCC

PayCh

(1,1)

(1,1) (1,0)(1,1)(1,0)
(0,1)

(1,0)

(0,0) (1,1)
(0,0)

Figure 5.3: Properties of patterns of the running example.

Definition 11. Workflow Elements e

A service is a workflow element. Further, if e1, . . . en with n > 1 are workflow

elements,

• WPSEQ(e1, . . . en), WPAND(e1, . . . en) and WPXOR(e1, . . . en) are workflow ele-

ments;

• WPsubTA(e1) is also a workflow element.

Elements in the formal model are the equivalent of components in our system model.

For our algorithms introduced in Chapter 6, we define the notion of mandatory workflow

elements. These are elements, which need to be executed in order for the workflow ω to

complete, thus no alternatives exist.

Definition 12. Mandatory Workflow Element e of Workflow ω

An element e is defined to be a mandatory element of ω, if it is an element of ω and

not element of any WPXOR pattern in ω.

By referring to mandatory workflow elements, we abstract from single alternatives in

a workflow and regard the enclosing WPXOR pattern as an element itself.

5.2.5 Dependencies

A composite service consists of a set of elements and the definition of the relations be-

tween these elements. The relations include on the one hand data dependencies between

elements, on the other hand behavioral relation of elements in the regular case (normal

execution dependencies) and in case of failure (failure recovery dependencies).

46

5.2 Transactional Composition of Services

5.2.5.1 Data dependencies

If parts of the output data of a workflow element are required as input data for another

element, they are said to be data dependent on each other as follows:

Definition 13. Data Dependency ei → ej

If the output data of workflow element ei is required as input data of workflow

element ej, ej is directly data dependent on ei, denoted as ei → ej.

If further, element ek is data dependent on ej (thus ej → ek) however its input data

is not directly dependent on ei’s output data, ek is said to be transitively or indirectly

data dependent on ei: ei → ej → ek.

Example: Recall our running example (see Figure 5.3 on page 46). Present data

dependencies are depicted as gray dashed arrows: The confirmation of the bookings

(Philharmonics, Transportation, and Reservation) can only be pursued, if the bookings

are finished. Otherwise, the price cannot be determined and the data which the cus-

tomer is supposed to confirm cannot be identified, thus: {P, T, R} → Confirm. J

Data dependencies are given by the specification of a workflow. If ej is (in-)directly

data dependent on ei, ej cannot be invoked previously or concurrently to ei. We assume

data dependencies only to be given between elements, which are arranged in sequence.

Elements of a WPAND or WPXOR patterns cannot be data dependent on each other.

5.2.5.2 Normal Execution Dependencies

Normal execution dependencies (denoted as depNrm(e, e′)) specify the relation between

workflow elements in case no failure occurs. Thus, they define the activation of an

element e′ after the completion of the previous element e. These are implicitly given by

the designer by arranging elements in workflow patterns.

5.2.5.3 Failure Recovery Dependencies

In addition to normal execution dependencies, failure recovery dependencies have to be

defined, which specify the relation between workflow elements in case failure occurs. In

our service model, the standard failure handling mechanisms are cancelation (Cln) of

active elements, compensation (Cps) for completed elements or activation of alternatives

(Alt). Events, which trigger these dependencies to be executed are failure (Fln) and

cancelation (Cln) of an active element or compensation (Cps) of a completed element.

47

5.3 Specifying Correctness: Semi-Atomicity

Therefore, we specify the following failure recovery dependencies:7

An alternative dependency depAlt(e, e′) between elements e and e′ specifies, that e′

is activated in case e fails. The denotation of all other failure handling dependencies

encodes the above mentioned causes and effects:

Example: For example, depFlCln(e, E) specifies, that in case of failure of e, all ele-

ments e′ ∈ E are canceled. J

Cause of such a dependency to be triggered, can be the failure (depFl∗)8, cancela-

tion (depCln∗) or compensation (depCps∗) of a workflow element. The measures to

be taken are either activation of other elements, cancelation of currently active ele-

ments (dep ∗ Cln-dependencies), or compensation of previously completed (dep ∗ Cps-

dependencies) elements.9

Up to now, it is the designers responsibility to add appropriate failure handling de-

pendencies. As these are primarily dependent on the requirements of a service and the

enclosed context (i.e., the workflow element), we argue that enhancing the workflow by

failure handling dependencies can be automated to ensure correct execution. Adding ap-

propriate dependencies is tedious, however straightforward. We refer to [HS09a] for how

to append failure recovery dependencies. In the next section, we introduce our employed

notion of correctness.

5.3 Specifying Correctness: Semi-Atomicity

Intuitively, the execution of the workflow is correct, if the workflow is completed (cf.

commit). I.e., all services which need to be completed in order for the workflow to

complete, are successfully finished and all others must not be completed. Transaction-

ally correct execution also involves the situation in which the workflow is aborted (i.e.,

unsuccessfully finished) and all services which need to be compensated, are compensated.

This notion of correctness, including commit or abort, is closely related to strict atom-

icity of database transactions. However, investigating the requirements of services and

the workflow, strict atomicity does not fit this scenario, as the structural demands of

the workflow (e.g., choices through XOR-patterns) as well as transactional properties of

services (e.g., services that do not demand consistent closure) are not met.

[ZNBB94] defined semi-atomicity in the context of flexible transactions (cf. Chapter

3). They explore some transactional properties of subtransactions as well as structural

demands (employing the precedence and preference relation). We adapt this model of

semi-atomicity and extend it to comprise our defined transactional service properties.

7Note, that similarly defined dependencies as in [GRGH07] are sometimes referred to transactional execution
dependencies. However, we feel the term failure recovery dependencies is more appropriate.

8The *-symbol is used as the wildcard for all possible effects (and causes respectively) in the following.
9A definition of these dependencies is given in [HS09a].

48

5.3 Specifying Correctness: Semi-Atomicity

We want to emphasize, that our notion of correctness refers to a terminated workflow,

thus its state after is has been executed. As stated in our system model (see Chapter

2), we employ the notion of accepted termination states (ATS), to specify successful

completion of a workflow.

By defining the workflow, a designer implicitly defines ATS, thus representational

sets of services whose completion represent the successful execution of the workflow.

Note that multiple sets exists, as alternatives or multiple ATS may exist (for example

PayCC and PayCh in our running example). We define semi-atomic termination (or

semi-atomicity for short) of a workflow as follows:

Definition 14. Semi-atomic Termination of a Workflow ω

Semi-atomic termination (or semi-atomicity for short) of an executed composite ser-

vice implemented as a workflow ω with specified ATS is defined as

• either all elements e belonging to one valid execution path to an ATS are

completed and no other element e′ in ω demanding consistent completion (i.e.,

pCT (e′) = (∗, 1, ∗)) is completed (i.e., their state is initial, failed, canceled or

compensated)

• or no element e in ω demanding consistent completion (pCT (e) = (∗, 1, ∗)) is

completed.

Example: Consider our running example as depicted in Figure 5.4: Shading of ser-

vices imply their completion, while no shading implies that their state is initial, canceled,

failed or compensated. Let the properties of CRS and Philharmonics allow for incon-

sistent completion (i.e., pT (CRS) = pT (P) = (∗, 0, ∗)). The workflow is semi-atomically

terminated (aborted), as no service demanding consistent completion is completed. J

CRS

Reservation

Philharmonics

AND ConfirmTransportation XOR

PayCC

PayCh

Figure 5.4: Correct (unsuccessful) termination of the running example.

This further relaxes correctness criterion defined for flexible transactions [ZNBB94]:

It disregards backward-recovery for services which may complete inconsistently. We

49

5.3 Specifying Correctness: Semi-Atomicity

employ this criterion to inspect all possible executions of a workflow. We are thereby

able to verify, if a workflow will semi-atomically terminate in any case (see Section 6.2.2).

50

6 Flexible Workflows to Guarantee Correct
Execution

Using the specified formal model of transactional workflows (see Chapter 5) and semi-

atomicity as the correctness criterion for the terminated workflow, we introduce our

algorithm to guarantee correct execution of a workflow. We therefore perform two basic

steps (see Figure 6.1): At first the given workflow is verified in the current execution

context by considering the transactional properties of its elements. If the verification

fails, the control flow structure of the workflow is adapted prior to execution to ensure

correctness. The workflow is again adapted during execution, in order to react to dynamic

changes (i.e., failure of services and discovery of alternatives) which may occur in mo-

bile environments (Section 6.5). Integrating service discovery in our adaptive workflow

management in order to react to dynamic events is presented in Section 6.4.

Service
Discovery

VerificationAdaptation

Execution

Transactional
Workflow

Execution Engine

Deployment

Specification of ω

Figure 6.1: System architecture of the adaptive workflow management system.

6.1 Views of the Workflow

We introduce three different views of a workflow. These are not equipotent; each of them

exemplifies different aspects of the workflow. The first one emphasizes the structure of

6.1 Views of the Workflow

the composition (6.1.1), the second one exhibits the data dependencies (6.1.2) and the

last one presents the accepted terminations states of the workflow (6.1.3).

6.1.1 Workflow as a Tree

For verification purposes, we analyze the structure of a workflow ω which is recursively

given by its elements. We thus regard ω as a tree, denoted as Tω, as follows: Each element

e in ω corresponds to a node in Tω, labeled by its type (e.g., And). The children e′ of e

in Tω represent the elements e′ of e in ω. Note, that the children of nodes representing

WPSEQ patterns have to be ordered according to their position in the pattern. For all

other nodes, the order of children is irrelevant. Simply for clarity, we depict inner nodes

as round nodes and shape leaf nodes rectangular.

P
T

Confirm

PChPCC

CRS

SEQ

AND XOR

R

(1,1)

(1,0)(1,0)
(0,1)

(1,0) (1,1)

(1,1)

Figure 6.2: Tree view Tω of the running example.

Example: In Figure 6.2, the tree representation of our running example (recall Figure

5.2 on page 41) is depicted. J

We employ this view to verify the workflow (Section 6.2). This depiction of the

workflow allows for holistic examination at different layers of abstraction.

6.1.2 Data Dependency Graph Gω(V, E)

All existing data dependencies of a workflow ω are represented by its data dependency

graph Gω(V, E). It contains the mandatory elements (recall Definition 12) of the work-

flow and their data dependencies as follows:

Definition 15. Data Dependency Graph Gω(V, E)

The data dependency graph Gω(V, E) is a directed acyclic graph. The set of vertices

V contains all mandatory elements e of ω. A directed edge (vi, vj) between nodes vi

and vj exists, if there is a direct data dependency in the form vi → vj.

In practice, the specification of workflows (e.g., using BPEL) does not allow cyclic

data dependencies. Therefore, the data dependency graph is acyclic. Gω(V, D) contains

52

6.1 Views of the Workflow

all mandatory elements, as we abstract from single alternatives rather than holistically

examine the set of alternatives.

Example: The data dependency graph of the running example (see Figure 5.3 on page

46) is illustrated in Figure 6.3. J

CRS

P

T

R

C
X1

(1,1) (0,1)

(1,0)

(1,1)

(1,1)

(1,0)

Figure 6.3: Data dependency graph Dω(V,E) of the running example.

Data dependencies have to be preserved when adapting the workflow in order to

guarantee executability. We perform our adaptation algorithm (Section 6.3) on this

view.

6.1.3 ATS View

The third view, which we employ, represents the state of elements of a workflow ω in

case of successful execution. It is a boolean expression which specifies the accepted

termination states of ω.

Definition 16. ATS View of the Workflow ATSω

Let Tω be the tree view of workflow ω. The ATS view of Tω is defined to be the

ATS-status of the root node of Tω: The ATS-status of the root of Tω is derived by

replacing each inner node in Tω by the ATS-status of its subtree.

We already stated the ATS-status for single workflow patterns in Section 5.2.1. As

a workflow ω is recursively composed by its elements, its ATS view is given by the

ATS-status of its root node in Tω.

AND XOR

SEQ

))()(()(PChPCCPChPCCConfirmRTPCRSATS ∧¬∨¬∧∧∧∧∧∧=ω

Figure 6.4: ATS view ATSω of the running example.

53

6.2 Verification of a Workflow

Example: In Figure 6.4, the ATS view of our running example is depicted. J

This view on the workflow is used in order to verify, that the ATS-status of a converted

workflow still infers the ATS-status of the original workflow. We therefore employ this

representation to demonstrate the correctness of our approach (Section 6.3.2).

6.2 Verification of a Workflow

Objective of the verification is to a-priori validate whether the execution of a specified

workflow is semi-atomic in any case. This is done according to the structure of the

composition and the transactional properties of workflow elements. At first, we iden-

tify elements, which endanger semi-atomicity of an execution. They are referred to as

conflicting elements. We explore their influence on the execution of a workflow and

thereafter define the correctness criterion for a workflow: As opposed to semi-atomic

termination, which defines the correctness for a termination of a workflow, the veri-

fication algorithm validates the correctness of a workflow before the executions, thus

validate the correctness of all possible terminations.

6.2.1 Conflict Elements

In this section, we examine pairs of elements, which hinder the correct execution of the

workflow. They are referred to as transactional conflict elements. Intuitively, these are

pairs of elements, which are able to produce failure situations, which cannot be healed

by backward- or forward-recovery.

6.2.1.1 Transactional Conflict Elements

The semi-atomicity of an executed workflow is not preserved, if an element, which is not

recoverable (i.e., pT (e) = (0, ∗)) is completed while another mandatory element, which

is not retrieable (i.e., pT (e) = (∗, 0)) failed. We therefore define a pair of transactional

conflict elements as follows1:

Definition 17. Transactionally Conflicting Pair of Elements

A pair of mandatory workflow elements ei and ej is defined as a transactionally

conflicting pair of elements, denoted as {ei, ej}C , if ei is not recoverable and ej is

not redoable, i.e.:

pT (ei) = (0, ∗)
∧ pT (ej) = (∗, 0)

{ei, ej}C is also referred to as a transactional conflict.

1Note, that this concept strongly differs from transactional conflicts in the context of transaction schedulers.

54

6.2 Verification of a Workflow

The curly brackets indicate, that the order of the elements in the enclosing workflow ω

is not regarded. However, the notation always implies ei to be the non recoverable and

ej to be the non redoable element. If such a pair of elements exists within a workflow,

they cannot be executed independently of each other.

Example: Assume for example e1 to be not recoverable but redoable i.e., pT (e1) =

(0, 1), and e2 to be recoverable but not redoable i.e., pT (e2) = (1, 0), as shown in Figure

6.5. {e1, e2}C is then a conflicting pair of elements. If they are executed concurrently

(Figure 6.5.a), e1 might complete while e2 fails. Therefore, the execution is not semi-

atomic i.e., not correct. The same holds, if they are executed in the order e1 before e2

i.e., not recoverable before not redoable, as shown in Figure 6.5.b.

If both elements are not recoverable and not redoable i.e., pT (e1) = pT (e2) = (0, 0)

a subtransaction coordinating e1 and e2 (using the WPsubTA pattern as introduced in

Section 5.2.2), e.g. WPsubTA (WPAND (e1, e2)) cannot be avoided in order to guarantee

semi-atomic execution. J

(1,0)

e1

e2

AND

(0,1)a)
(1,0)

e1 e2
(0,1)

b)
(0,1)

e2 e1
(1,0)

c)

Figure 6.5: Rearranging transactional conflict {e1, e2}C (a) in sequence (b) and (c).

Otherwise, rearranging the order to executing the recoverable element before the re-

trieable element, their execution guarantees semi-atomic completion (Figure 6.5.c): e1

is only invoked if e2 previously completed. As e1 is redoable, it will eventually com-

plete. Therefore, this alteration of the workflow ensures semi-atomicity. However, this

re-arrangement is only possible, if no data dependency between these elements exists.

6.2.1.2 Directed Transactional Conflict Elements

If a data dependency between a conflicting pair of elements exists in the following way,

we refer to this as a directed transactionally conflicting pair of elements.

Definition 18. Directed Transactionally Conflicting Pair of Elements

A pair of workflow elements ei and ej is defined as a directed transactionally con-

flicting pair of elements (ei, ej)C , if transactional conflict {ei, ej}C exists and ej is

(directly or indirectly) data dependent on ei, thus

{ei, ej}C

55

6.2 Verification of a Workflow

∧ it exists ei → ej

(ei, ej)C is also referred to as a directed transactional conflict.

Note, that – as the term suggests – the order of the elements is given: If (ei, ej)C is

a directed transactionally conflicting pair of elements, (ej, ei)C is not. Otherwise, cyclic

dependencies in the form ei ↔ ej would exist. Directed transactional conflicts between

pairs of elements cannot be solved by rearranging them as their order is fixed.

Example: Consider for example the elements e1 and e2 and their transactional proper-

ties depicted in Figure 6.6. According to the definition, a directed transactional conflict

between e1 and e2 exists i.e., (e1, e2)C . In this case, semi-atomicity can only be pre-

served by utilizing a subtransaction pattern WPsubTA and altering the workflow to be

WPsubTA(WPSEQ(e1, e2)). Thereby, the autonomy of these elements is decreased. J

(1,0)
e1 e2

(0,1)
subTA

(1,0)
e1 e2

(0,1)
a) b)

Figure 6.6: Directed transactional conflict {e1, e2}C (a), enclosed in WPsubTA (b).

Considering directed transactionally conflicting elements more closely, it is straight-

forward to conclude the following proposition:

Proposition 1. Transitivity of Conflicts

Assume (ei, ej)C and (ej, ek)C to be directed transactional conflicts. It holds, that

a. pT (ej) = (0, 0) and

b. (ei, ek)C is also a directed transactional conflict.

Proof. Assume (ei, ej)C and (ej, ek)C to be directed transactional conflicts.

The proof is straightforward using Definition 18.

Claim 1: pT (ej) = (0, 0)

• Since (ei, ej)C are directed transactionally conflicting, ej is not retrieable (following

the definition), thus pT (ej) = (∗, 0). Since (ej, ek)C are directed transactionally

conflicting, ej is neither recoverable (pT (ej) = (0, ∗)). Thus, the transactional

properties of ej are pT (ej) = (0, 0).

56

6.2 Verification of a Workflow

Claim 2: (ei, ek)C is a directed transactionally conflicting pair.

• According to the definition of transactionally conflicting elements, and the existing

conflicts (ei, ej)C and (ej, ek)C , ei is not recoverable pT (ei) = (0, ∗) and ek is not

redoable pT (ek) = (∗, 0). Additionally, data dependencies ei → ej and ej → ek

exist. Therefore, an indirect data dependency ei → ej → ek exists. It follows, that

(ei, ek)C is a directed transactionally conflicting pair.

Example: Consider for example elements e1, e2 and e3 as depicted in Figure 6.7.

Since directed transactional conflicts (e1, e2)C and (e2, e3)C exist, pT (e1) = (0, ∗) and

pT (e3) = (∗, 0). Additionally, e3 is (at least transitively) data dependent on e1 thus e1

and e3 form as well a directed transactional conflict (e1, e3)C . J

(0,0)
e1 e2

(0,*)
e3

(*,0)

Figure 6.7: Transitive conflict {e1, e3}C .

The transitivity of conflict elements concludes directed transactional conflicts between

elements with direct data dependencies to be given. It is also worthwhile to examine

the characteristics of elements which are enclosed (concerning data dependencies) by a

directed transactionally conflicting pair of elements.

Proposition 2. Enclosed Conflict Elements

Assume data dependencies ei → ej and ej → ek to exist as well as the directed

transactional conflict (ei, ek)C. It then holds that:

a. (ei, ej)C ⇐⇒ pT (ej) = (∗, 0)

b. (ej, ek)C ⇐⇒ pT (ej) = (0, ∗)

c. ej neither conflicts with ei nor ej ⇐⇒ pT (ej) = (1, 1)

Proof. Assume data dependencies ei → ej and ej → ek and the directed transactional

conflict (ei, ek)C to exist. The proof is again straightforward using Definition 18.

Claim a: (ei, ej)C ⇐⇒ pT (ej) = (∗, 0)

57

6.2 Verification of a Workflow

• ’⇐=’: Assume pT (ej) = (∗, 0). Because the directed transactional conflict (ei, ek)C

exists, ei is not recoverable pT (ei) = (0, ∗). Since ej is data dependent on ei

(ei → ej), it follows that ei and ej are a directed transactionally conflicting pair

(ei, ej)C .

• ’=⇒’: Assume (ei, ej)C to directed transactionally conflict. According to Definition

18, it follows, that pT (ej) = (∗, 0)

Claim b: (ej, ek)C ⇐⇒ pT (ej) = (0, ∗), proof is analogue to proof of claim 1.

• ’⇐=’: Assume pT (ej) = (0, ∗). Because the directed transactional conflict (ei, ek)C

exists, ek is not redoable pT (ek) = (∗, 0). Since ek is data dependent on ej (ej → ek),

it follows that ej and ek are a directed transactionally conflicting pair (ej, ek)C .

• ’=⇒’: Assume (ej, ek)C to be a directed transactional conflict. According to Defi-

nition 18, it follows, that pT (ej) = (0, ∗).

Claim c: ej neither conflicts with ei nor ek ⇐⇒ pT (ej) = (1, 1)

• ’⇐=’: Assume pT (ej) = (1, 1). According to Definition 18, ej cannot be element of

directed transactionally conflicting pair.

• ’=⇒’: Assume ej to neither conflict with ei nor ek. According to Proposition 2.1 and

2.2, it then follows that pT (ej) 6= (0, ∗) and pT (ej) 6= (∗, 0). Thus pT (ej) = (1, 1).

In Figure 6.8, the cases stated in Proposition 2 are illustrated. In Figure 6.8.a, e2 is

not retrieable, thus it conflicts with e1: (e1, e2)C . On the other hand, if p(e2) = (0, ∗) as

depicted in Figure 6.8.b, e2 conflicts with e3, thus (e2, e3)C exists. In Figure 6.8.c, e2 is

recoverable and retrieable, thus it neither conflicts with e1 nor e3.

(0,*)
e1 e2

(0,*)
e3

(*,0)(*,0)
e1 e2

(0,*)
e3

(*,0) (1,1)
e1 e2

(0,*)
e3

(*,0)
a) b) c)

Figure 6.8: Enclosed conflict element forms conflicts (a,b), is not part of conflict (c).

6.2.1.3 Indirect Conflict Elements

Proposition 2 conveys, that there exist elements, which are enclosed by a directed trans-

actionally conflicting pair of elements concerning the existing data dependencies, however

do not conflict with the enclosing elements. We refer to such elements as indirect conflict

elements.

58

6.2 Verification of a Workflow

Definition 19. Indirect Conflict Elements

An workflow element ej is defined as an indirect conflict element, if it is recoverable

and retrieable, and it is enclosed by a directed transactional conflict (ei, ek)C , thus

pT (ej) = (1, 1),

∧ (ei, ek)C exists, and

∧ ei → ej and ej → ek exist.

Note, that indirect conflict element ej neither conflicts with ei nor ej (following

Proposition 2).

Example: Consider the example depicted in Figure 6.8.c: The directed transactional

conflict (e1, e3)C exists. e3 is data dependent on e2 which in turn is data dependent on e1

(illustrated by the dashed lines). Due to these data dependencies, re-arranging the order

of this sequence is not possible. Semi-atomic execution of these can only be ensured, if

e1 and e3 are coordinated in an subtransaction WPsubTA. In order to preserve the data

dependencies, e2 has to be executed in between these two elements. However, according

to its properties (pT (e2) = (1, 1)), it can be executed autonomously i.e., it does not need

to be coordinated using a blocking commit protocol (e.g., 2PC). J

This generally holds for all indirect conflict elements: As they are guaranteed to

complete and can be recovered in case of failure, they do not need to be coordinated.

As indirect conflict elements are always enclosed by conflicts and always employ the

transactional properties pT (e) = (1, 1) they can be easily identified within a workflow.

We therefore forego an explicit denotation.

6.2.2 Verification Criterion: SAP

Intuitively, a workflow is correct, if all possible executions result in semi-atomic termi-

nation. Thus, semi-atomicity of the workflow is preserved, if in case of failure of any

included service,

• the execution of the workflow can be either backward-recovered (thus all previously

completed elements are recovered)

• or there exists at least one alternate execution path to an ATS which is guaranteed

to complete i.e., it is redoable.

We define this property, which we refer to as semi-atomicity preservation SAP as the

correctness criterion for the verification of a workflow ω. The criterion SAP denotes,

whether the execution of a workflow element will in any case result in semi-atomic

commit or abort.

59

6.2 Verification of a Workflow

Definition 20. Semi-Atomicity Preserving SAP

An element e is SAP , if all possible executions of e result in semi-atomic termination.

SAP of elements e can be determined by considering every failure situation that

might occur. If all of these situations can be recovered, by canceling active services,

compensating for completed services or executing an alternative, e is SAP .

Remark 1. SAP of a Single Service e

A single service s is always SAP, as all of its termination states (completed, can-

celed, failed, compensated) are semi-atomic terminations of s.

When regarding workflow patterns, the combinations of failed and completed elements

determines whether the pattern is SAP or not.

SAP of a Sequence Patterns

Example: Consider the workflow ω = WPSEQ(e1, e2) as depicted in Figure 6.9.a. If e1

completes and e2 fails afterwards ω is in an inconsistent (i.e., not semi-atomic) state: e1

cannot be recovered and e2 is not retrieable. ω is thus not SAP . On the other hand,

the workflow ω′ = WPSEQ(e1, e2) illustrated in Figure 6.9.b, is SAP : As e1 is retrieable,

it cannot fail. However, in case of failure of e2, e1 can be recovered. J

(1,0)
e1 e2

(0,0)
a)

(0,0)
e1 e2

(1,1)
b)

Figure 6.9: Examples of a WPSEQ which are not (a) [are (b)] correct.

The following proposition states the cases, in which WPSEQ element is correct.2

Proposition 3. SAP of a Sequence WPSEQ(E)

A sequence pattern WPSEQ(E) is SAP

⇐⇒

2Recall, that in Section 5.2.1 we defined the elements of WPSEQ(E) to be ordered according to their index.

60

6.2 Verification of a Workflow

a. all of its elements e ∈ E are SAP and

b. no transactional conflict {ei, ej}C, with ei, ej ∈ E and i < j exists

Proof.

• ’=⇒’: Assume WPSEQ(E) to be SAP . Claim: All e ∈ E are SAP and no transac-

tional conflict {ei, ej}C , with ei, ej ∈ E and i < j exists. Proof by contradiction:

– Assume it exists e ∈ E which is not SAP . Thus, execution of e can result in

non semi-atomic termination of e and thus of WPSEQ(E). This contradicts

the assumption.

– Assume it exists {ek, el}C with ek, el ∈ E and k < l. If ek (pT (ek) = (0, ∗))
completes and el (pT (el) = (∗, 0)) fails, the execution is not semi-atomic, thus

WPSEQ(E) is not SAP . This contradicts the assumption.

• ’⇐=’: Assume all elements e ∈ E to be SAP and no transactional conflict {ei, ej}C ,

with ei, ej ∈ E and i < j to exist. Claim: WPSEQ(E) is SAP . Proof by contradic-

tion:

Assume WPSEQ(E) is not SAP . Then,

– it either exists an element e ∈ E which is not SAP and whose execution may

cause WPSEQ(E) not to be SAP ,

– or it exists el ∈ E which is not retrieable (pT (el) = (∗, 0)) and ek ∈ E which is

not recoverable (pT (ek) = (0, ∗)), such that in case of failure of el the previous

completion of ek prevents SAP termination. Thus, l < k. Then {ek, el}C is

transactional conflict.

Both cases contradict the assumption.

SAP of WPAND Patterns

As opposed to sequences, the order of elements within an WPAND is irrelevant.

Example: Consider for example, the workflow ω = WPAND(e1, e2) depicted in Figure

6.10.a. If e2 completes while e1 fails, the element is an inconsistent state, as e2 cannot

be recovered and e1 is not retrieable. Therefore, ω is not SAP . On the other hand, the

ω′ illustrated in Figure 6.10.b, is SAP : As e1 is retrieable, it will eventually complete

(i.e., not fail). However, in case of failure of e2, e1 can be recovered. J

The following proposition states the cases in which a WPAND element is correct.

61

6.2 Verification of a Workflow

(0,1)

e1

e2

AND

(1,0)a)

(0,0)

e1

e2

AND

(1,1)b)

Figure 6.10: Examples of a WPAND which are not (a) [are (b)] correct.

Proposition 4. SAP of an AND WPAND(E)

An And pattern WPAND(E) is SAP

⇐⇒

a. all of its elements e ∈ E are SAP and

b. no transactional conflict {ei, ej}C, with ei, ej ∈ E exists

We employ another observation according SAP execution of WPAND patterns in order

to prove Proposition 4.

Proposition 5. Transactional Properties of a Conflict Free WPAND(E)

No transactional conflicts {ei, ej}C, with ei, ej ∈ E in WPAND(E) exist

⇐⇒

a. pT (WPAND(E)) = (1, ∗) or

b. pT (WPAND(E)) = (∗, 1) or

c. It exists at most one e ∈ E, with pT (e) = (0, 0) and for all other e′ ∈ E :

pT (e′) = (1, 1)

Proof. may be found in Appendix B.1.

Using Proposition 5, we can now easily prove Proposition 4.

Proof.

• ’=⇒’: Assume WPAND(E) to be SAP . Claim: All e ∈ E are SAP and no transac-

tional conflict {ei, ej}C , with ei, ej ∈ E exists. Proof by contradiction:

62

6.2 Verification of a Workflow

– Assume it exists e ∈ E which is not SAP . Execution of e might result in non

semi-atomic completion of e and thus of WPAND(E). This contradicts the

assumption.

– Assume it exists {ek, el}C with ek, el ∈ E. If ek (pT (ek) = (0, ∗)) com-

pletes while el (pT (el) = (∗, 0)) fails, the execution is not semi-atomic, thus

WPAND(E) is not SAP . This contradicts the assumption.

• ’⇐=’: Assume all elements e ∈ E are SAP and no transactional conflict {ei, ej}C ,

with ei, ej ∈ E to exist. Claim: WPAND(E) is SAP .

With Proposition 5, we know, that WPAND(E) is then recoverable, redoable or

there exists at most one element e with pT (e) = (0, 0) and all other elements

e′ ∈ E employ pT (e) = (1, 1). Let us consider these 3 cases:

– If WPAND(E) is recoverable: I.e, all elements e ∈ E are recoverable, thus

failure of any element e is recovered by recovering all other elements e′ ∈ E.

Thus, WPAND(E) is SAP .

– If WPAND(E) is retrieable: I.e., all elements e ∈ E are retrieable. Thus, no

element can fail, i.e., WPAND(E) is SAP .

– If there exists at most one element e ∈ E with pT (e) = (0, 0) and all other ele-

ments e′ ∈ E employ pT (e) = (1, 1): Since e is the only element in WPAND(E)

which is not retrieable, its failure is the only failing situation that might occur.

In this case, WPAND(E) is recovered by recovering all e′ ∈ E (e′ 6= e). As no

other failure situation can occur, WPAND(E) is thus SAP .

In order to preserve semi-atomicity when activating a WPAND pattern, either all of

its elements have to be recoverable, all of its elements have to be retrieable, or if there

exists at most one element which is not recoverable and not retrieable, all other elements

are both: recoverable and retrieable.

SAP of an XOR

The execution of a pattern is SAP , if all possible executions of the element result in

semi-atomic termination. The definition of the WPXOR(E) pattern infers, that one and

only one element e ∈ E is executed at a time. If an element fails, another element e′ ∈ E

is activated. Therefore, the termination of WPXOR(E) implies, that either one and only

one element in e completed and all other elements failed or were not activated or all

elements failed. Both cases are semi-atomic terminations.

63

6.2 Verification of a Workflow

Remark 2. SAP of an XOR WPXOR(E)

An Xor pattern WPXOR(E) is SAP, iff all of its elements e ∈ E are SAP.

SAP of a Subtransaction

According to its definition, elements enclosed in a subtransaction pattern, are coor-

dinated using an atomic commit protocol. As semi-atomicity is a relaxed notion of

atomicity, a WPsubTA pattern is always SAP .

Remark 3. SAP of an Subtransaction WPsubTA(e)

A Subtransaction pattern WPsubTA(e) is always SAP.

6.2.3 Verifying a Workflow ω

In order to verify a workflow ω, we regard its tree view Tω. The objective is to verify

whether the root node in Tω is SAP . For checking if a node n of Tω is SAP , according

to its type, Remark 1 or 2 or Proposition 3 or 4 is employed: Thus, if n is a leaf, it is

SAP ; if n is an inner node, all of its children are recursively verified whether they are

SAP . As soon as one node is not SAP , the verification of Tω returns false.

(1,1)

(1,0)

S2

S3

S4

S5

S7S6

S1

SEQ

AND XOR

(0,1)

(1,0)

(1,1)

(1,0) (1,1)

(0,0)

(0,0)

(1,1)

Figure 6.11: Verification of Tω.

Example: Consider for example a workflow ω whose tree representation Tω is depicted

in Figure 6.11. In order to determine whether the root node is SAP , its children are

verified: s1 is SAP (Remark 1), however WPAND(s2, s3, s4) is not: Since s3 transaction-

ally conflicts with s1 and s4 (i.e., {s3, s2}C and s3, s4}C exist), the pattern is according

to Proposition 4 not SAP . Therefore, the root node is neither SAP (Proposition 3): ω

is not SAP i.e., the verification for this workflow returns false. J

64

6.3 A-priori Adaptation of the Workflow

Analyzing the Runtime of the Verification

Let us briefly review the runtime of the verification. In the worst case (regarding the

runtime), Tω is completely traversed. The runtime of the algorithm is dependent on

the number of (leaf and inner) nodes in Tω. Thus, it is dependent on the number of

services n and the patterns they are being nested in. Without loss of generality, we

assume each pattern to enclose at least two elements, i.e., each inner node in Tω has

at least two children. Tω contains the maximal number of inner nodes (worst case), if

each workflow pattern contains exactly two elements. I.e., Tω is a binary tree, with each

inner node having exactly two children. If there are n services in ω, thus n leaves in Tω

exist, the number of inner nodes is n − 1. Therefore, in the worst case, the runtime of

the verification algorithm is linear 2n− 1 in the number of services n.

6.3 A-priori Adaptation of the Workflow

If the verification of a workflow fails, it is adapted it in order to ensure correctness.

This is done according to the properties of the included elements. Thus, a composite

service might be executed as different workflows ω at different times. In Section 6.5, we

introduce how the a-priori algorithms is used during the execution of a workflow.

The adaptation is performed on mandatory workflow elements, thus abstracting from

single alternatives in WPXOR patterns. However, if a WPXOR pattern is not SAP (recall

Remark 2), the adaptation is performed for each element in WPXOR which is not SAP .

For convenience, we refer to the algorithm being executed on a workflow ω hereafter.

In this section, we at first introduce a theorem about the minimal set of elements

which needs to be coordinated, and then specify the algorithm which adapts a workflow

in order to guarantee our correctness criterion SAP . In the last part, we demonstrate

the correctness of our algorithm in terms of the adaptation and the result.

6.3.1 Minimal Set of Coordinated Elements

In Section 6.2, we proved that the specification of a workflow is correct, if it does

not contain certain mannered transactional conflicts. When regarding the nature of

transactional conflicts, this implicates that recoverable elements of a workflow have to

be aligned prior to non-recoverable elements. Non-recoverable elements can only be

followed by retrieable elements.

Following Remark 3, it is easy to conclude, that SAP of a workflow can as well be

ensured, if all of its elements are included in a subtransaction. However, as this limits

the autonomy of the included elements, we aim at avoiding coordination - if possible.

The following proposition claims which mandatory elements have to be coordinated in

order to ensure correctness.

65

6.3 A-priori Adaptation of the Workflow

Theorem 1. Minimal Set M of Coordinated Mandatory Elements of ω

Let ECP be the set of directed transactionally mandatory conflict elements of the

workflow ω i.e.,

ECP := {e | e is mandatory in ω and ∃ e′ such that (e, e′)C or (e′, e)C}.
Let further EZ be the set of mandatory elements of ω, which are not recoverable and

not redoable, i.e. EZ := {e | e is mandatory element in ω and pT (e) = (0, 0)}.

M is defined as follows:

M :=

{
∅ if ECP = ∅ and |EZ | ≤ 1

ECP ∪ EZ otherwise

Then, the following holds:

a. If M is coordinated using a WPsubTA pattern i.e., WPsubTA(WP(M)), SAP

of the workflow can be ensured.

b. If SAP of the workflow is ensured by coordinating a set of elements M ′ i.e.,

WPsubTA(WP(M ′)), then M ′ is a superset of M , i.e. M ′ ⊇ M .

Before we prove this theorem, we would like to note the following: The distinction

of cases regarding the definition of M ensures, that M is empty, if only one mandatory

element e with pT (e) = (0, 0) and no directed transactional conflicts exist. In this case,

coordination of this e is not needed, as SAP is achieved by aligning this element behind

the recoverable and before the retrieable elements.

Proof. a. Assume: M is coordinated. Claim: SAP of the workflow can be ensured.

Proof by contradiction:

Assume, there exists a mandatory element ei /∈ M , such that execution of the tuple of

elements ei, ej hinders SAP . ei, ej are either aligned in sequence or in parallel. Thus,

one of the following is true:

• {ei, ej}C ∈ WPSEQ(ei, ej), with i < j. Since ei /∈ M : No data dependency ei → ej

exists and at most one of them exposes pT (e) = (0, 0). Otherwise, ei were element

of M . Thus, they can be rearranged in WPSEQ(ej, ei) which is then SAP . This

contradicts the assumption. (Existence of conflict {ej, ei}C ∈ WPSEQ(ej, ei), with

j < i results in alignment WPSEQ(ej, ei) accordingly.)

• {ei, ej}C ∈ WPAND(ei, ej). Since ei /∈ M : No data dependency ei → ej exists

and at most one of them exposes pT (e) = (0, 0). Otherwise, ei were element of

M . Rearranging the pattern to be WPSEQ(ej, ei) (or WPSEQ(ei, ei)) ensures SAP .

This contradicts the assumption.

66

6.3 A-priori Adaptation of the Workflow

b. Assume: SAP of ω is ensured by coordinating M ′ (i.e., WPsubTA(WP(M ′))). Claim:

M ′ is a superset of M (i.e., M ′ ⊇ M). Proof by contradiction:

Assume, it ∃ e ∈ M , which is not coordinated (i.e., e /∈ M ′). Thus, it holds:

• If e ∈ ECP ⇒ ∃ e′ ∈ M with (e, e′)C (or (e′, e)C). As a data dependency

between these two exists, they have to be aligned in sequence WPSEQ(e, e′) (or

WPSEQ(e′, e)). According to Proposition 3, this sequence is not SAP . Rearranging

is not possible due to the data dependency. Thus, ω is not SAP . This contradicts

the assumption.

• Else if, e ∈ EZ , then (according to the definition of M),

– another element e′ ∈ EZ exists. e and e′ then form transactional conflicts

{e, e′}C and {e′, e}C . Therefore, neither aligning them in sequence (see Propo-

sition 3), nor in parallel (see Proposition 5) ensures SAP .

– or a directed transactional conflict (ei, ej)C ∈ ECP exists (recall pT (ei) = (0, ∗)
and pT (ej) = (∗, 0)). {ei, e}C , {e, ej}C (and {ei, ej}C) then form transactional

conflicts. No sequential alignment of e, ei and ej ensures SAP according to

Proposition 3, as any alignment regarding the data dependency ei → ej, still

contains transactional conflicts. Proposition 5 states, that no parallel align-

ment of e, ei and ej ensures SAP either.

This contradicts the assumption.

Theorem 1 illustrates, that M is the minimal set of mandatory elements which needs to

be coordinated to ensure SAP . If this set of elements is enclosed by a WPsubTA pattern,

an alignment of all other elements can be found, such that the workflow is correct. In

addition, no more elements than e ∈ M need to be enclosed in a WPsubTA pattern.3

6.3.2 ATS-Invariant Adaptations

Before we specify, how to adapt the workflow in case verification fails, we comment

on the adaptations we pursue. Generally, adaptations of the workflow are altering the

execution order, aligning elements in different patterns or eliminating alternatives in

WPXOR. However, adaptations of the workflow are only allowed, if they do not alter

the semantics of the workflow. This is, the ATS-view of the altered workflow infers the

ATS-view of the original:

3Indirect conflict elements constitute a solitary exception: Even if included in a WPsubTA pattern, they do not
have to be coordinated (see Section 6.2.1.3).

67

6.3 A-priori Adaptation of the Workflow

Definition 21. ATS-invariant adaptations

An adaptation f altering the control flow of ω to ω′, formally f(ω) = ω′ is ATS-

invariant, if the ATS-view of ω′, i.e., ATSω′ , implies the ATS-view of ω, ATSω:

ATSω′ ⇒ ATSω. Therefore, if ATSω′ is true, ATSω is true as well.

Example: Consider our running example, depicted in Figure 5.3 on page 46. Altering

the control flow of the example in the WPAND pattern to be a WPSEQ(T, R, P), i.e.

Transportation T before Reservation R before Philharmonics P, does not change the

ATS-view, as WPSEQ and WPAND expose the same ATS-status (see Section 5.2.1).

Eliminating alternative PCC, resulting in ω′, is as well an ATS-invariant adaptation, as:

ATSω′ = CRS ∧ (P ∧ T ∧R) ∧ Confirm ∧ (¬PCC ∧ PCh)

It thus holds ATSω′ ⇒ ATSω (recall ATSω, depicted in Figure 6.4 on page 53). J

Using ATS-invariance as the correctness criterion of adaptations we are able to show,

that our algorithm produces correct results (see Section 6.3.4).

6.3.3 Adaptation Algorithm

Knowing Theorem 1 and the notion of correct adaptations (i.e., ATS-invariant adapta-

tions), we now define our algorithm which adapts a given workflow ω to a workflow ω′

which ensures SAP . Our algorithm proceeds by traversing the data dependency graph

Gω(V, E). Since edges represent the existing data dependencies between elements, ele-

ments are topologically processed by passing through Gω(V, E). While traversing Gω,

we append elements to our output data structure ω′.

If an element e is appended to a pattern WP(E), it is inserted as the last element,

thus WP (E, e). By appending an element e to the workflow, we refer to aligning e in

sequence to the workflow.

Example: If e is e.g., appended to ω = WPSEQ(e1, e2), the resulting workflow is ω

= WPSEQ(e1, e2, e). On the other hand, if e is appended to ω = WPAND(e1, e2), is is

aligned in sequence. The resulting workflow is thus: ω = WPSEQ(WPAND(e1, e2), e). J

6.3.3.1 Initialization

In order to transform a given workflow ω into an ATS-invariant workflow ω′, we regard

its data dependency graph Gω(V, E) and initialize the following sets and variables:

• VCP is the set of all directed transactional conflict elements:

VCP := {e | ∃ e′, with e, e′ ∈ V such that (e, e′)C or (e′, e)C},

68

6.3 A-priori Adaptation of the Workflow

• VZ is the set of all non recoverable and non redoable elements:

VZ := {e | e ∈ V, pT (e) = (0, 0)},

• VI is the set of all indirect conflict elements,

• VM is the union of the previous sets as follows:4

VM :=

{
∅ if VCP = ∅ and |VZ | ≤ 1

VCP ∪ VZ ∪ VI otherwise
,

• C is the set of all current nodes, i.e., all v ∈ V which do not have an incoming

edge,

• ω′ is the output workflow, which is empty at the beginning.

6.3.3.2 Avoiding Conflicts – Dealing with XORs

In order to reduce the number of elements which need to be coordinated and thus

increase the autonomy of elements, we eliminate alternatives in WPXOR patterns if

thereby transactional conflicts are avoided. As stated in Section 5.2.3, the recoverability

of WPXOR patterns might not be known until runtime. In this case, the properties are

either pT (WPXOR(E)) = (?, 0)5 or pT (WPXOR(E)) = (?, 1). Ensuring SAP is possible

by assuming the pattern not to be recoverable. However, besides our objective to ensure

SAP of a workflow, we additionally aim at minimizing the set of elements which needs

to be coordinated, thus included in a WPsubTA pattern.

This is accomplished by eliminating certain elements of WPXOR patterns to eliminate

transactional conflicts. We therefore consider the following cases, in which WPXOR(E)

is part of a conflict and its properties cannot be definitely determined.

XOR

(1,0)

(1,0)
(1,0)

…

(0,0)

(0,0)
(0,0)

…

pT(WPXOR) = (?,0)

XOR

(1,0)

(1,0)
(1,0)

…

(0,0)

(0,0)
(0,0)

…

pT(WPXOR) = (1,0)

a.ii

Figure 6.12: Constellation of WPXOR with uncertain properties pT (XOR) = (?, 0).

a. If pT (WPXOR(E)) = (?, 0) (see Figure 6.12), all elements e ∈ E either expose

pT (e) = (1, 0) or pT (e) = (0, 0) and there exists at least one of each kind in E.

4In our examples, we color-code the set VM in red.
5By the ?-symbol, we denote that the property is not known yet.

69

6.3 A-priori Adaptation of the Workflow

i. If there exists e′ ∈ ω, such that (e′,WPXOR(E))C directly transactionally

conflict, deleting any alternatives of WPXOR(E) the pattern remains non-

retrieable: No element of WPXOR(E) is retrieable (recall Definition 25).

Thus, the conflict (e′,WPXOR(E))C remains. In this case, no branch is elim-

inated.

ii. If there exists an element e′ ∈ ω, such that they transactionally conflict

{WPXOR(E), e′}C or (WPXOR(E), e′)C , correct execution of them is ensured

by deleting all ei ∈ E, with pT (ei) = (0, 0). The pattern becomes recoverable,

pT (WPXOR(E \ {ei})) = (1, 0) and the conflict is thereby solved. The set

VZ , VCP and VM are updated. This case is illustrated in Figure 6.12 on the

right side.

XOR

(1,0)

(1,0)
(1,0)

…

(0,0)

(0,0)
(0,0)

…

pT(WPXOR) = (1,0)

(0,1)

(0,1)
(0,1)

…
XOR

pT(WPXOR) = (1,1)

(1,1)

(1,1)
(1,1)

…

b.i b.ii

(1,0)

(1,0)
(1,0)

…

(0,0)

(0,0)
(0,0)

…

(0,1)

(0,1)
(0,1)

…

Figure 6.13: Constellation of WPXOR with uncertain properties pT (XOR) = (?, 1).

b. If pT (WPXOR(E)) = (?, 1) (see Figure 6.13), then at least one element e ∈ E

is redoable. Additionally, at least one element is recoverable and at least one

element is non-recoverable. If WPXOR(E) is part of a directed transactional con-

flict (i.e., WPXOR(E) ∈ VCP) with an element e′ ∈ ω, then the conflict has to be

of the following form: (WPXOR(E), e′)C . According to the existing alternatives,

deleting branches of WPXOR(E) may alter its properties to be recoverable. How-

ever, this may also delete all retrieable elements, resulting in the pattern to be

non-retrieable. We therefore distinguish the following cases:

i. If no element e ∈ E is recoverable and redoable (pT (e) 6= (1, 1), see Fig-

ure 6.13 on the left side), this conflict may be solved by eliminating all

ej ∈ E which are not recoverable pT (ej) = (0, ∗). Therefore, WPXOR(E ′) =

70

6.3 A-priori Adaptation of the Workflow

WPXOR(E \ {ej}) only contains elements which are recoverable however

no element, which is redoable anymore (according to the assumption). As

WPXOR(E) was redoable and WPXOR(E ′) is not, this might produce a new

directed transactional conflict (WPXOR(E ′), e′′). If such an e′′ ∈ ω exists,

no branches of WPXOR(E) are eliminated. Otherwise, all elements ej ∈ E

which are not recoverable are eliminated.

ii. Else, there exist elements e ∈ E which are recoverable and redoable, thus

pT (e) = (1, 1), see Figure 6.13 on the right hand side. Eliminating all ele-

ments which are not recoverable, i.e. all ej ∈ E, with pT (ej) = (0, ∗) altering

the pattern to WPXOR(E ′) = WPXOR(E \ {ej}) changes the properties of

WPXOR(E) to be pT (WPXOR(E ′)) = (1, 1). The above conflict is thereby

resolved, and WPXOR(E ′) is at the most an indirect conflict element. VCP ,

potentially VI and also VM are updated.

This strategy is assembled as follows. Note, comments reference the enumeration above.

Algorithm 1. Eliminating Branches
Input: w, V CP, V Z, V M

for (all XOR patterns in V_M \ V_I) do {
// case a
if (p_T(XOR) = (?, 0)) {

// case a.ii
if (XOR not in V_CP && XOR in V_Z) {

eliminate(all e_i in XOR with p_T(e_i) = (0, 0));
update V_Z, V_M;

}
// case b
} else if (p_T(XOR) = (?, 1)) {

// case b.ii
if (XOR contains e with p_T(e) = (1,1)) {

eliminate(all e_j in XOR with p_T(e_j) = (0, *));
update V_CP, V_I, V_M;

// case b.i
} else {

if (no conflict is produced by elimination) {
eliminate(all e_j in XOR with p_T(e_j) = (0, *));
update V_CP, V_M;

}
}

}
}

Output: V CP, V Z, V M (potentially updated)

71

6.3 A-priori Adaptation of the Workflow

Please note, that by eliminating branches, transactional conflicts may be avoided,

thereby decreasing the number of elements which need to be coordinated. However,

eliminating available alternatives for the sake of autonomy is optional - correctness in

the notion of SAP is guaranteed anyhow.

6.3.3.3 Recoverable Start

After resolving avoidable conflicts, we start traversing Gω(V, D) by processing non-

conflicting recoverable elements. Propositions 3 and 4 both state, that a pattern is

correct, if no transactional conflicts exist. Therefore, recoverable nodes may be aligned

in sequence or parallel without causing transactional conflicts. If more than one current,

recoverable node exists, they are aligned in parallel as no data dependency exists among

them. Otherwise, they are aligned in sequence.

Algorithm 2. Adaptation of ω – Processing Recoverable Elements
Input: Data dependency Graph Gω(V, E)

while (C contains elements {r} with p_T(r) = (1,*)) {
if (|{r}| > 1) {

append WP_AND({r}) to w’;
} else {

append r to w’;
}
update G_w, update C;

}

This loop is executed until the set of current nodes does not contain any recoverable

nodes. Thus, if the set of conflict nodes VM is not empty, the set of current nodes C now

at least contains one element m, which is in the set of nodes that need to be coordinated

i.e., m ∈ VM .6 As only recoverable elements were appended to ω′ and by definition a

transactional conflict cannot occur between any two recoverable elements, ω′ is SAP .

6.3.3.4 Coordinated Elements

In the next step of the algorithm, elements which need to be coordinated, are processed.

As stated above, if VM is non-empty, there exists at least one element m ∈ VM which is

also a current node, that is m ∈ C. In Theorem 1, we proved that all elements in VM

need to be coordinated in order to ensure SAP of the workflow.

Therefore, the algorithm continues as follows:

6This holds, as otherwise there would exist at least one non-recoverable, non-conflicting node n in C, from
which a path (that is a data dependency) to a non-redoable element m ∈ VM existed. As n is non-recoverable
it would then transactionally conflict with m ∈ VM i.e., (n, m)C .

72

6.3 A-priori Adaptation of the Workflow

Algorithm. Adaptation of ω (ctd.) – Coordination of Elements

if (V_M != {}){
M := {}
while (C contains elements {m}, with {m} in V_M) {

if (|{m}| > 1) {
append WP_AND({m}) to M;

} else {
append m to M;

}
update G_w, update C;

}
append WP_subTA(M) to w’;

} else if (|V_Z| == 1) {
append v in V_Z to w’;
update G_w, update C;

}

Due to the transitivity of conflicts (Proposition 1) and the properties of enclosed

conflict elements (Proposition 2), all elements which lie on a path in Gω from one conflict

node mi to any another mj are in VM . Either, they are conflicting elements themselves,

or indirect conflict elements. Therefore, as soon as the set of current nodes does not

contain any m ∈ VM , VM is completely processed. Thus, the subtransaction is closed.

In this step, we appended a WPsubTA pattern (or only one element v ∈ VZ) to a

recoverable workflow. As WPsubTA is SAP , the resulting workflow ω′ is still SAP .

6.3.3.5 Ending Retrieable

By now – if existent – all conflict elements have been processed and appended to ω′.

Therefore, only retrieable elements are left to process. If there were a non-retrieable

element v ∈ C, v would transactionally conflict with the WPsubTA pattern, thus v were

a conflicting element and would have been included in VM .

Retrieable elements are appended just as recoverable elements at the beginning.

Algorithm. Adaptation of ω (ctd.) – Appending Retrieable Elements

while (C contains elements {r}) {
if (|{r}| > 1) {

append WP_AND({r}) to w’;
} else {

append r to w’;
}

73

6.3 A-priori Adaptation of the Workflow

update G_w, update C;
}
return w’;

Output: Workflow ω′, which is SAP, with ATSω′ ⇒ ATSω.

As only retrieable nodes are left, all remaining elements are appended to ω′ in this step.

Just as with recoverable elements, they are arranged in parallel, if no data dependencies

exist. Otherwise, they are topologically sorted regarding their dependencies. As no

transactional conflicts exist among retrieable elements (see Definition 17), ω′ is SAP .

The algorithm terminates, if the set of current nodes is empty: All nodes of Gω(V, E)

have been processed and added to ω′.

6.3.3.6 Example: Adapting a Workflow

In the following, we demonstrate an example. The initial specification of ω is depicted

in Figure 6.14. The verification for ω fails, as among others transactional conflicts

{s3, s2}C and {s4, s2}C exist. Additionally (among others) directed transactional con-

flicts (s3, s5)C , (s4, s5)C and (s5, s6)C exist. Furthermore, {sx5, sx4}C transactionally

conflict, thus X2 = WPXOR(WPAND(sx4, sx5), sx6) cannot be verified.

ω

(1,1)
S1

S2

S3

S4

S5 S7S6

(1,0)

(1,0)

(0,0)

(0,0)

(1,0)

(1,0)
XOR S8(0,0)

Sx1

Sx2

Sx3

XOR

Sx4

Sx6

Sx5
AND

AND

(0,1)

(0,0)

(1,1)

(1,0)

(0,1)
(0,1)

Figure 6.14: Adaptation example, specification of ω.

Therefore, in the first run, WPAND(sx4, sx5) ∈ X2 is adapted as follows: As no data

dependency exists among sx4, sx5, GX2(V, E) consists of two vertices (sx4 and sx5) and

no edge. Therefore, the recoverable element sx4 is aligned before the non-recoverable,

non-redoable element sx5. Thus, the resulting WPXOR pattern is:

X2′ = WPXOR(WPSEQ(sx4, sx5), sx6)

In the next run, the whole workflow ω is adapted. Its data dependency graph Gω(V, D)

is depicted in Figure 6.15.

74

6.3 A-priori Adaptation of the Workflow

Initialization The set of conflicting elements VM is initialized as VM = {s3, s4, s5, X1, s6}.
These are color-coded in red in Figure 6.15. The set of current nodes C consists of one

single node C = {s1}. The output workflow ω′ is initialized as well.

S1

S2

S3

S4

S7

S5

X1

S6

S8

X2‘

Figure 6.15: Data dependency graph Gω(V,E) of the adaptation example.

Eliminating Branches In this step, elements of WPXOR patterns which need to be co-

ordinated are eliminated, if this reduces the number of conflicts. In our example, X1 is

the only WPXOR pattern which is ∈ VM . It is retrieable, however its recoverability is

not known, i.e., pT (X1) = (?, 1). It therefore potentially conflicts with e.g., s5 as well

as s6. As sx3 with pT (sx3) = (1, 1) is part of the pattern, by eliminating all elements

in X1 which are not recoverable (cf., case b.ii in Section 6.3.3.2) are eliminated. This

results in X1′ = WPXOR(sx2, sx3). X1′ is now both recoverable and retrieable, thus does

not conflict with other nodes anymore. However, it is now an indirect conflict element.

Therefore, it is color-coded in light red in the following.

S1

S2

S3

S4

S7

S5

X1‘

S6

S8

X2‘

Figure 6.16: Dω(V,E) of the example, processing recoverable elements.

Processing Recoverable Elements We start traversing the data dependency graph by

appending recoverable elements to ω′. As s1 is the only current node, it is aligned at the

beginning. The according nodes and edges are deleted from the graph (Figure 6.16). The

set of current nodes now contains C = {s2, s3, s4, s7}. s2 and s7 are both recoverable.

Thus, WPAND(s2, s7) is appended to ω′ (Figure 6.19). After refreshing Gω(V, D) and

75

6.3 A-priori Adaptation of the Workflow

C = (s3, s4) once more, the set of current nodes does not contains recoverable elements

anymore (see Figure 6.17). Therefore, the algorithm proceeds with the next step.

S1

S2

S3

S4

S7

S5

X1‘

S6

S8

X2‘

Figure 6.17: Dω(V,E) of the example - all recoverable elemets processed.

Coordination of Elements All conflicting elements are appended within a subtransaction

in this step. Therefore at first, s3 and s4 are appended in parallel. They are succeeded

by s5 and by the indirect conflict element X1′ . The last element, which needs to be

coordinated is s6. Thus, in this step,

WPsubTA(WPSEQ(WPAND(s3, s4), s5,WPXOR(sx2, sx3), s6)

is appended to ω′, as it can be seen in Figure 6.19. As stated before X1′ is an indirect

conflict element, i.e., it is included in the WPsubTA pattern. However, it does not need

to be coordinated. If s5 completes, sx2 is invoked. In case it fails, sx3 is activated as an

(retrieable) alternative. If after the execution of X1′ , s6 votes, that it cannot successfully

commit, X1′ can be recovered (as both of its elements are recoverable).

S1

S2

S3

S4

S7

S5

X1‘

S6

S8

X2‘

Figure 6.18: Dω(V,E) of the example - coordination of elements finished.

Appending Retrieable Elements By now, the set of current elements C only contains

retrieable elements (C = {X2′ , s8}). Therefore, these are appended to ω in parallel,

WPAND(WPXOR(WPSEQ(sx4, sx5), Sx6), s8). Thereby all nodes in Gω(V, E) have been

processed and the algorithm terminates. The output is depicted in Figure 6.19.

76

6.3 A-priori Adaptation of the Workflow

S1
S2

S7
AND

subTA AND

S3

S4
S5 XOR

Sx2

Sx3
S6

Sx5

S8

AND

XOR

Sx4

Sx6

Figure 6.19: Resulting workflow ω′ of the adaptation example.

Analyzing the Runtime of the Adaptation Algorithm

Let ω be the input to the algorithm, and Gω(V, D) the according data dependency graph.

Let nv denote the number of nodes in Gω(V, D) (nv = |V |) and nx the number of WPXOR

patterns in Gω(V, D). During the initialization, all conflicting elements are identified.

In a brute-force approach to identify all these elements, all v ∈ V are traversed and for

each of them it is determined whether v ∈ VZ or e ∈ VCP . This may be done in ≤ v2
n

steps.7 For the elimination of branches, each WPXOR node with undetermined properties

vx ∈ V which is ∈ VZ ∪ VCP is regarded. For each such WPXOR node, its transactional

conflicts are reviewed. Again, performing a brute-force approach, nx ∗ |VZ ∪ VCP | steps

are needed. As nx ≤ nv
8 and |VZ ∪ VCP | ≤ n: nx ∗ |VZ ∪ VCP | ≤ v2

n. In the remaining

steps of the algorithm, Gω(V, D) is traversed exactly once. Thus, the remainder of the

algorithm requires nv steps. Overall, the runtime of the (brute force approach of the)

algorithm is thus ≤ 2 ∗ n2
v + nv, thus quadratic in the number of nodes nv in Gω(V, D).

6.3.4 Correctness of the Algorithm

In order to demonstrate the correctness of the adaptation algorithm, we show that for

every workflow ω, the algorithm produces an output workflow ω′, which is ATS-invariant

to ω and which is also correct i.e., SAP . Additionally, we show that the algorithm is

optimal in terms of the number of coordinated elements.

7In practice, less steps are needed as for each non-recoverable node v, only nodes v′ to which a path from v to
v′ in Gω(V, D) exists, are regarded. Additionally, the transitivity of conflicts can be beneficially exploited
to further reduce the number of steps.

8presumably vx << nv

77

6.3 A-priori Adaptation of the Workflow

6.3.4.1 ATS-Invariance of Resulting ω′

Correctness of the Algorithms 1 and 2 includes correctness of the adaptations: I.e., the

ATS of the adapted workflow ω′ are invariant those of the input workflow ω. By compar-

ing the ATS-view of the original workflow ω with the ATS-view of the resulting workflow

ω, we are able to demonstrate the ATS-invariance of our adaptations. The proposed al-

gorithms may eliminate alternatives in WPXOR patterns and re-arrange elements of ω.

It is therefore straightforward however tedious to show that for the output workflow it

holds: ATSω′ ⇒ ATSω. The interested reader is referred to the Appendix B.2.

6.3.4.2 SAP of ω′

In this section, we show, that the output of the Algorithm 2 is correct in the notion of

SAP : That is, if it produces correct outputs ω′ for allowed inputs. We demonstrate,

that the resulting workflow ω′ is SAP . We proceed as follows: We define the invariant

ω′ is SAP and demonstrate that it holds in every step of the algorithm.

Initialization During this step, ω′ is initialized void. As an empty workflow cannot be

executed, it is SAP by definition.9 It therefore holds, that ω′ is SAP .

Eliminating Branches During this step of the algorithm, ω′ is not altered. Therefore,

ω′ is still correct i.e., it is SAP .

Processing Recoverable Elements In this step, the algorithm processes recoverable el-

ements, which are not part of directed transactional conflicts. These are appended to

ω′. This is repeated until the set of current nodes does not contain any recoverable

non-conflicting nodes {r}. If no recoverable element exists, the invariant holds, ω′ is

SAP after this step (as it is still void).

Otherwise, let ω′
i denote ω′ after the ith iteration. ω′

0 is thus the state of ω′ before

any recoverable elements are appended i.e., ω′
0 is void. Depending on the number of

recoverable elements in the set of current nodes ω′
1 is determined by:

ω′
1 =

{
WPAND({r}) , if |{r}| > 1

r , if |{r}| = 1

In any case, ω′
1 is SAP , as it either consists of one recoverable service, or a WPAND

pattern, which is recoverable and thus SAP according to Proposition 5. For any further

iteration (i > 1) in this step of the algorithm it holds:

9Its execution cannot result in non semi-atomic termination.

78

6.3 A-priori Adaptation of the Workflow

ω′
i =

{
WPSEQ(ω′

i−1, WPAND({r})) , if |{r}| > 1

WPSEQ(ω′
i−1, r) , if |{r}| = 1

As ω′
i−1 is recoverable (and certainly r and WPAND({r}) are recoverable), it holds

(according to Proposition 3):

(1) pT (ω′
i) = (1, ?)

(2) ω′
i is SAP

Therefore the invariant holds for every iteration and thus also holds after the the last

iteration i.e., this algorithm step.

Coordination of Elements Elements, which need to be coordinated are appended in this

step of the algorithm. As just demonstrated, the output ω′ of the previous step is SAP .

Let ω′
j0 denote the input of this step of the algorithm. ω′

j is then determined in the

following way:

ω′
j =


WPSEQ(ω′

j0, WPsubTA(WP (VM))) , if VM 6= ∅
WPSEQ(ω′

j0, vz) , else if VM = ∅ and |VZ | = 1

ω′
j0 , otherwise

Regarding the definition of the WPsubTA pattern, the pattern is always SAP . Just as vz

it holds the properties pT (vz) = pT (WPsubTA) = (0, 0). If ω′
j0, which is the output of the

previous algorithm step, is empty, ω′
j is obviously SAP . Otherwise, ω′

j0 is recoverable.

As to Proposition 3, aligning a recoverable element prior to a non-recoverable element

is SAP . Therefore, the invariant is true. If elements are appended in this step (i.e.,

VM ∪ VZ 6= ∅), the properties of ω′
j are pT (ω′

j) = (0, 0).

Appending Recoverable Elements In the last step, the algorithm solely processes re-

trieable elements, which we denote by {r}. These are appended to ω′. If no retrieable

elements exist, that is {r} = ∅, ω′ is not modified and thus remains SAP .

Otherwise, let ω′
k denote ω′ after the kth iteration of this step. ω′

k0 is thus the state of

ω′ before any retrieable elements is appended. ω′
k0 is SAP . Depending on the number

of retrieable elements in the set of current nodes, for k > k0, ω′
k is determined by:

ω′
k =

{
WPSEQ(ω′

k−1, WPAND({r})) , if |{r}| > 1

WPSEQ(ω′
k−1, r) , if |{r}| = 1

Certainly, WPAND({r}) and r are retrieable. Following Proposition 5, WPAND({r})
is SAP . Aligning a retrieable element (which is SAP) behind any element (which is also

SAP) results as per Proposition 3 in a correct sequence. Therefore, the invariant holds

for every iteration of this step and especially is inherent after the algorithm terminates.

Thus, the algorithm produces correct outputs in the notion of SAP .

79

6.4 Integrating Service Discovery in Adaptive Workflow Management

6.3.4.3 Minimality of Coordinated Elements

We previously demonstrated that the adaptation algorithm produces correct output

workflows ω′, which are ATS-invariant to the according input. We now argue, that the

adaptation algorithm is optimal in terms of the number of coordinated elements.

Theorem 1 states the minimal set of elements which has to be coordinated in order

to guarantee SAP of the workflow. Thus, by showing that the adaptation algorithm

coordinates exactly these elements, we are able to state, that our algorithm produces

the optimal result regarding the number of coordinated elements.

The definition of M matches the definition of VM in the algorithm, besides the in-

direct conflict elements VI . Thus, M = VM \ VI . Following the definition of indirect

conflict elements (Definition 19), as these expose full flexibility, they do not have to be

coordinated in any case.

As stated before, we forego an explicit notation for indirect conflict elements. They

are identified as the elements e within a WPsubTA(e) pattern with the transactional

properties pT (e) = (1, 1). However, we also previously stated, that – although included

in a WPsubTA pattern – they are not coordinated.

Thus, the set of elements, which is coordinated in ω′ (that is VM \ VI) corresponds

to the minimal set of coordinated elements M . Therefore, our algorithm produces the

optimal result regarding the number of coordinated elements.

6.4 Integrating Service Discovery in Adaptive Workflow
Management

In Chapter 4 we introduced a protocol to discover mobile services. We previously argued,

that service discovery is essential to be able to find cooperating entities, especially in

dynamic environments, e.g. mobile networks. However, service discovery is also signifi-

cant for the proposed flexible workflow management in the following way: By employing

service discovery, alternatives of services may be found and integrated as elements of

WPXOR patterns in the workflow. The advantages of this approach are the following.

By integrating alternatives, the transactional properties of an WPXOR pattern are

altered and additionally flexibility might be obtained. I.e., as introduced in Section

5.2.3, an WPXOR pattern becomes retrieable if one retrieable alternative is integrated.

Thus, by integrating alternatives, transactional conflicts are likely to be avoided.

On the other hand, as introduced in second step of the algorithm (see Section 6.3.3.2),

alternatives may be eliminated in order to solve transactional conflicts. Thereby, less

coordination is needed which yields to increased autonomy of the involved services. This

also ensures, that no additional conflicts arise due to the integration of alternatives:

Conflicting alternatives are expunged from the workflow.

Last but not least, integration of service discovery in flexible workflow ensures forward-

80

6.5 Adaptation at Runtime

recovery during execution. If the invocation of services continuously fails (e.g., they are

not available anymore), new services are integrated to still enable successful completion.

All in all, the combination of service discovery and adaptive workflow management,

as proposed in this thesis, is essential for ad-hoc cooperation: In the first place, as

dynamically services can only be bound if discovered. On the other hand, if several

providers are discovered, forward-recovery through the integration of alternatives in

WPXOR patterns is enabled. This increases the overall chance of such workflows to be

successfully completed as well as the autonomy of participants (see Section 8.3.2).

6.5 Adaptation at Runtime

So far, using our formal model (i.e., the properties of elements) we abstracted from

the mobility of single components. As stated in the previous section, services may be

dynamically bound during execution: E.g., if a service is not available anymore and needs

to be replaced. So far, we introduced our a-priori adaptation algorithm which adapts a

workflow ω prior to execution. However, it is also be applied during the execution of ω,

if failures of elements repeatedly occur.

Recall our formal model: We assume the compensation of a compensatable service to

be available (e.g., via reliable communication channels). Further, we assume retrieable

services to as well ensure availability via reliable communication channels. Due to these

assumptions, a processed workflow is at any time during the execution guaranteed

to be SAP , i.e., either recoverable ensuring semi-atomicity or retrieable thus guaran-

teeing successful completion. This is given, as either the verification of ω outputs that

ω (i.e., the root note of Tω) is SAP or the adaptation algorithm converts ω to be SAP .

If an element e continuously fails at runtime and needs to be replaced, it cannot be

retrieable (i.e., pT (e) = (∗, 0)). The execution of ω up to e is recoverable. The execution

of ω is then interrupted and employing service discovery, alternatives are searched for.

If no alternatives are found, ω is backward-recovered, preserving semi-atomicity. On

the other hand, if appropriate alternatives e′ for e are discovered, we distinguish the

following cases:

1. If pT (e) = pT (e′), e is simply replaced by e′ and the execution of ω is continued

ensuring SAP .

2. Else, if e was element of a WPsubTA pattern and

a. e is non-recoverable (pT (e) = (0, 0)) and e′ is recoverable (pT (e) = (1, ∗)) or

b. e′ retrieable (i.e., pT (e′) = (∗, 1))

coordination of e′ might become obsolete.

81

6.5 Adaptation at Runtime

3. On the other hand, if e was not element of a WPsubTA pattern and e′ is not re-

coverable (i.e., pT (e′) = (0, ∗)), re-arranging ω or coordination of e′ and following

elements might become necessary to preserve SAP .

In cases 2 and 3, re-execution of the adaptation algorithm, as described in Section 6.3,

is necessary to ensure SAP or respectively to avoid coordination if possible. In these

cases, the adaptation is executed on the remaining nodes of Gω(V, D) which have not

been executed yet.

Thereby, integrating service discovery to our approach of flexibly altering workflows

during execution enables forward-recovery in case of failure of services. It is thereby

very well suitable to cope with mobile services, whose availability might vary.

82

7 Implementing Adaptive Workflow
Management

In this chapter, we present the implementation of the adaptive workflow management

system (AWM for short). It assembles the formal model as introduced in Chapter 5

and the algorithms to verify and adapt workflows to ensure semi-atomicity (Chapter

6). As stated in the introduction, we base our implementation on Web Services. We

are thereby able to make recourse to a broad range of existing specifications, especially

WS-Tx (Section 3.1.1) and BPEL (Section 3.1.2). The implemented system is based on

the BPEL engine Apache ODE. The illustrations of AWM thus rely on ODE specific

BPEL elements.

The presentation of the implementation is divided into the following parts: At first,

we illustrate the realization of the formal model. We present the architecture of the

adaptive workflow management system and conclude by introducing its use cases.

7.1 Formal Requirements

In order to be able to implement the algorithms to ensure semi-atomicity as introduced

in Chapter 6, the formal model as specified in Chapter 5 has to be realized. Therefore, we

present the implementation of the transactional properties, the workflow patterns and the

integration of the transactional composition employing the failure handling mechanisms

offered by Apache ODE.

7.1.1 Transactional Properties of Services

AWM explores transactional service properties to ensure correct service composition.

Thus, on the one hand, Web Services have to be labeled according to their transactional

properties. This is done using the WS-Policy specification1. On the other hand, these

properties have to be properly integrated as well. That is, if for example, a service is

compensatable, the according failure handling is automatically added. Additionally, if

a service is redoable, AWM ensures its repeated invocation in case of failure.

1http://www.w3.org/Submission/WS-Policy/

7.1 Formal Requirements

7.1.1.1 Modeling as WS-Policies

The annotation of WS according to their complete transactional properties is done using

WS-Policy. WS-Policy is a WS-* specification that enables service providers to define

machine-readable directives for their usage. Thereby, a provider is able to specify, e.g.,

guidelines regarding required security mechanisms or quality of service tags. These

directives are integrated in a service’s WSDL description.

AWM provides an XML-schema which specifies the annotation of transactional proper-

ties of services. In Listing 7.1, the annotation for a service s with transactional properties

pCT (s) = (0, 1, 0) is depicted.

<wsp:Po l i cy t r a n s : i d=” tp010”>
<wsp:ExactlyOnce>

<wsp:All>
<t r a n s : t r a n s a c t i o n a l >

<t rans :compensatab le>f a l s e</trans :compensatab le>
<t rans : cons i s t en tComple t i on >t rue</t rans : cons i s t en tComple t i on >
<t r a n s : r e t r i e a b l e >f a l s e</ t r a n s : r e t r i e a b l e >

</t r a n s : t r a n s a c t i o n a l >
</wsp:All>

</wsp:ExactlyOnce>
</wsp:Pol icy>

Listing 7.1: WS-Policy tp010

AWM allows for these policies to be bound to the <port> element of a service in order

for each WS to define its respective properties. An example binding for policy tp010 to

the TransportationService is shown in Listing 7.2.

<s e r v i c e name=” Transpor ta t i onSe rv i c e ”>
<port name=” Transpor ta t ionServ i cePor t ”

binding=” tns :Transpor ta t i onSe rv i c ePor tB ind ing ”>
<wsp :Po l i cyRe fe rence URI=”#tp010” />
<s oap :addre s s l o c a t i o n=” ht tp : // l o c a l h o s t : 8 8 8 8 / Transportat ion ” />
. . .

</port>
. . .

</s e r v i c e >

Listing 7.2: Binding of WS-Policy tp010 to TransportationService

If a WS does not specify a transactional policy, its default properties are assumed to be

as specified in Listing 7.1. Thus, it is neither assumed to be recoverable, nor retrieable.

Thereby, the correctness of the algorithm is nevertheless ensured.

7.1.1.2 Integration in Workflows

According to the specified transactional properties, AWM automatically realizes the ap-

propriate handling for a service. That is, if a service is compensatable, the invocation

of the compensation service is integrated in the workflow using Apache ODE’s compen-

sation handlers (cf. Section 7.1.3).

84

7.1 Formal Requirements

Additionally, if a service is retrieable, it assures that it will eventually completes, if its

activation is repeated in case of failure. Therefore, AWM integrates the service in the

BPEL process as depicted in Figure 7.1. The invocation is repeated if the services fails

(as specified in Section 5.1.1).

Figure 7.1: Integration of a retrieable service.

7.1.2 Control Flow Patterns

In Chapter 5, we identified four patterns to be significant for transactional support of

workflows (WPSEQ , WPAND , WPXOR and WPsubTA). These patterns are implemented

in BPEL as follows:

The WPSEQ pattern directly corresponds to the BPEL element <sequence>. The

WPAND pattern likewise complies with the BPEL element <flow>.

The WPXOR pattern is implemented using case statements <if>. The elements of

an WPXOR pattern are sequentially arranged in the way, that in case of failure of an

element, the next one is invoked as an alternative. That is done by defining empty

failure handlers and setting appropriate internal variables (see Appendix C). Thereby,

AWM realizes the specified alternative dependencies (cf. Section 5.2.5). In order to

distinguish these alternative constructs from conventional if-then-else constructs, the

WPXOR patterns are enclosed in a separate BPEL scope. Per naming convention, these

are identified by the prefix “xor ”.

85

7.1 Formal Requirements

The WPsubTA pattern is also encapsulated in a distinct scope, which is likewise labeled

using the prefix “Subta ”. Apache ODE supports WS-AT using atomic scopes2, i.e.,

<scope aomitc="yes">. These employ the use of distributed commit protocols as in-

troduced in Section 3.1.1.1 to coordinate the enclosed services. Thus, the requirements

for the WPsubTA pattern as specified in Section 5.2.2 are met.

7.1.3 Transactional Composition of Services

The failure handling specified in Section 5.2.5.3 to ensure semi-atomicity of a workflow,

is realized using the compensation and failure handlers provided by BPEL.

If a Web Service is specified to be compensatable using the WS-Policy as outlined in

the previous section, AWM automatically adds the appropriate compensation handler

to the invocation of that service. The handler itself invokes the compensation service

associated to this Web Service. In Listing 7.3, a compensation handler is added to the

invocation of the TransportationService. It invokes the callCompensation method in case

of failure of the call method. The compensation handlers of BPEL are used by AWM

to implement the appropriate dep*Cps-dependencies (see Section 5.2.5).

<bpe l : i nvoke name=” Transpor ta t i onSe rv i c e ”
partnerLink=” Transpor tat ionServ i ceL ink ”
operat i on=” c a l l ”
portType=” tsp :Transpor tat ionServ i cePortType ”
inputVar iab l e=” Transpor ta t i onServ i ce Input ”
outputVar iab le=” Transportat ionServ iceOutput ”>

<bpel :compensat ionHandler>
<bpe l : i nvoke name=”Compensate Transportat ionServ ice ”

partnerLink=” Transpor tat ionServ i ceL ink ”
operat i on=” cal lCompensat ion ”
portType=” tsp:Transportat ionServiceCompensat ionPortType ”
inputVar iab l e=” Transpor ta t i onServ i c e Input ”
outputVar iab le=” Transportat ionServ iceOutput ”>

</bpe l : invoke >
</bpel :compensat ionHandler>

</bpe l : invoke >

Listing 7.3: Specification of the according compensation handler.

In case of failure during the execution of a BPEL process, either explicitly thrown

(i.e., using a <throw> element), failure of an invoked service, or internal errors (e.g.,

variable type mismatch), the failure handling of BPEL is launched. Using explicit

<faultHandlers>, AWM invokes the defined compensation handlers of previously com-

pleted services by employing <compensation> elements.

Additionally, by calling BPEL’s default-failure handling, all active elements are en-

sured to be canceled if necessary. Thereby, AWM realizes the dep*Cln-dependencies as

specified in the formal model.

2http://ode.apache.org/atomic-scopes-extension-for-bpel.html

86

7.2 Architecture

Using the encapsulation of elements in WPXOR patterns as well as the described com-

pensation and failure handling, AWM realizes all specified failure recovery dependencies.

7.2 Architecture

In this section, we present the components of AWM in detail and illustrate their interac-

tion. The architecture of AWM is depicted in Figure 7.2. AWM is implemented as a web

application which runs within an web server, i.e., in our case Apache Tomcat3. As it can

be seen in Figure 7.2, AWM’s architecture complies with the classical layers of a web

application: The presentation layer is - as its name indicates - responsible for the presen-

tation of contents and interaction with the user. The logical layer encapsulates AWM’s

business logic. In the data layer, internal data is persisted in a relational database, in

our case MySQL4. As already mentioned, AWM employs Apache ODE to execute the

deployed BPEL processes. We introduce the components of AWM’s presentation and

logical layer more closely in the following.5

Data LayerLogical Layer

Presentation Layer
(Stripes)

BPEL Engine
(Apache ODE)

D
A
O

(H
ib

ern
ate)

AWMServices Store

Reception
Packaging
(JAX-B,
JAX-WS)

(MySQL)

Discovery
Integration
Verification
Adaptation

Figure 7.2: Architecture of AWM.

7.2.1 Presentation Layer

The presentation layer implements the user interface. Thereby, the user is able to access

the implemented business logic. The presentation layer is notified of the application’s

state by the logical layer and displays the according views. It implements the use cases,

which are illustrated in the next section (Section 7.3).

The presentation layer is implemented using Stripes6. Stripes is a web framework

which employs Java technologies to enable rapid presentation layer development. As it
3http://tomcat.apache.org/
4http://www.mysql.com/
5As the functionality of the data layer is straightforward, we forego further explanation.
6http://www.stripesframework.org

87

7.2 Architecture

is a lightweight framework and aims at keeping the configuration overhead low, we chose

Stripes as the presentation framework for AWM.

7.2.2 Logical Layer

The logical layer of AWM is divided into three main components: The AWMServices

which implement the business logic, the Store and the DAO (Data Access Object).

AWMServices The AWMServices are not to be confused with the Web Services which

are element of BPEL processes. The AWMServices component supplies the algorithms

present to the business logic of AWM. On the one hand, it provides service discovery and

service integration to integrate dynamic services into uploaded processes. Depending on

the underlying networking infrastructure, it is desirable to integrate diverse discovery

mechanisms. If more than one suitable service is discovered, AWM enables forward

recovery through integrating these as alternatives in WPXOR patterns. On the other

hand, AWMServices incorporate functionality to verify and adapt uploaded processes.

Store The Store is the central component of the logical layer. It operates the control

flow and communicates with other components. It receives user requests, e.g., uploaded

BPEL processes or requests to execute previously deployed processes (reception).

If the Store receives an uploaded archive, it extracts all necessary information and

passes it to the database. As the AWMServices utilize an object model of the BPEL

process, the Store transforms the BPEL description of the process into the internal ob-

ject representation (un-marshalling). Accordingly, the Store takes verified and adapted

object representations of processes and in turn generates valid BPEL descriptions (mar-

shalling). For handling purposes, including marshalling and un-marshalling, AWM uti-

lizes JAX-B7 and JAX-WS8.

The BPEL representation of the verified process along with all necessary information

(e.g., deployment descriptor) is packaged by the Store and deployed to the BPEL Engine.

The information of the process (e.g., its URL) are inserted into the database. If a

process is invoked by the user, the Store is responsible for mapping the given URL to

the according internal address.

DAO The DAO represents the interface to the data stored in the database. The DAO

is implemented using the Hibernate persistence framework9 to maintain internal data.

Thereby, processes may be stored to and loaded from the database.

7https://jaxb.dev.java.net/
8https://jax-ws.dev.java.net/
9https://www.hibernate.org/

88

7.3 Use Cases

7.3 Use Cases

As already mentioned, there are two main use cases of AWM: On the one hand, users

are able to deploy processes, on the other hand deployed processes can be invoked.10

7.3.1 Deployment

Deployment of a process to a BPEL engine implies the compilation of the process and

returning a URL under which the it may be invoked. Apache ODE expects a WAR-

archive, which aside from the BPEL description of the process consists of the WSDL

description of the process and the included Web Services, the XML-schema of the utilized

data structures and the deployment descriptor of the BPEL process.

If a user uploads such an archive, the Store receives the archive, unpacks it, stores

all necessary information, generates the object representation (un-marshalling), and for-

wards this representation to AWMServices. If all needed services are discovered and

integrated, the process is verified and adapted (if the verification fails). The Store

transforms the verified (and respectively adapted) process to a valid BPEL representa-

tion (marshalling). It packs it along with all necessary information (WSDL files, XML

schema, deployment descriptor) and deploys the process to the BPEL engine.

The address of the process returned by Apache ODE is managed by AWM and is along

with all necessary information stored in the database. If the deployment is successful,

the confirmation is returned to the user, as it can be seen in Figure 7.3.

Figure 7.3: Display of a deployed process.

10For a more detailed presentation of the use cases, we refer to [H0̈9].

89

7.3 Use Cases

7.3.2 Process Invocation

The invocation of a process is encoded in a SOAP message and bound to the URL under

which the process is deployed (see address information in Figure 7.3). The Store receives

the request from the frontend. According to the information in the database, it is able

to identify the corresponding process. AWM checks the availability of the dynamically

bound services and integrates potentially discovered alternatives.

If new services are integrated into the process, it is again validated, if necessary

adapted and re-deployed. This is done just as in the according steps of the deploy-

ment. The Store forwards the request to the URL, under which the validated process

is deployed. Thereby, the validated process is executed in the BPEL engine. Finally,

AWM forwards the result of the invocation returned by Apache ODE to the user. As

Apache ODE does not support alterations of BPEL processes during execution, AWM

by now implements verification and adaptation prior to execution.

90

8 Evaluating AWM

In this chapter, we evaluate the adaptive workflow management which implements the

model and algorithms introduced in Chapter 5 and 6.1 We present relevant system

parameters and employed evaluation metrics in Section 8.1. In Section 8.2, we provide

an empirical evaluation of our approach, the adaptive workflow management system

(AWM), in a variety of settings. Results are classified according to the used metrics.

At first, the degree of autonomy is evaluated. We thereby compare our approach to a

pessimistic approach of transactional workflow management, i.e. WS-AT (cf. Section

3.1.1.1). After that, we focus on results regarding the semi-atomicity probability of a

specified workflow. Using these, we demonstrate the benefits of AWM as opposed to an

optimistic approach to transactional workflow management WS-BA (cf. Section 3.1.1.2).

In the last part of this chapter (8.3), we study the performance for AWM in realistic

exemplary settings. We thereby present the results for the integration of service discov-

ery into adaptive workflow management system (Section 8.3.2.2): We demonstrate the

influence of discovery of alternatives as described in Section 6.4.

8.1 System Parameters and Evaluation Metrics

Prior to presenting the metrics used to quantify the benefits of AWM, an introduction

the relevant system parameters that are varied in our experiments is given.

Influential System Parameters

Since the following parameters influence the behavior (and thus the results) of the con-

sidered approaches, we vary these in our series of tests.

Number of Included Elements The size of the workflow is denoted by the number of

included elements n.

Ratios of Elements with Transactional Properties The transactional properties pT (s)

of a service s determine whether s transactionally conflicts with other elements.

Therefore, we vary the ratio of services in a workflow ω which expose certain trans-

actional properties.

1Results have partly been published in [HS09b, Hah10].

8.1 System Parameters and Evaluation Metrics

• pRC(ω) denotes the ratio of recoverable services in ω, i.e. pRC(ω) ∗ n elements

in ω are recoverable.2

• pRD(ω) denotes the ratio of redoable services in ω. That is, pRD(ω)∗n elements

are redoable.3

Data Dependencies On the one hand, we vary the number t of data dependencies,

which exist within a given workflow. On the other hand, we vary the length l of

data dependencies (si1 → . . . → sil), that is the number of elements in a given

data dependency sequence (see Figure 8.1). The overall ratio of elements, which

are involved in data dependencies is denoted by r (e.g., r = l∗t
n

).

11 12 1l

AND

t1

…

…
tl

t

l

Figure 8.1: Number t and length l of data dependencies.

Success probability The success probability pS(si) of a single service si denotes the

probability that this service successfully completes. Thus, the chance that si fails

is 1 − pS(si) = pS(si). Unless stated otherwise, we assume homogeneous environ-

ments, thus success probabilities of all services in a workflow are normally dis-

tributed around a stated mean (denoted as pS) and a variance of 5%.

Workflow Patterns The initial alignment of elements in workflow patterns does not

influence the output of our algorithm (Section 6.3.3). However, it influences the

probability that a given workflow ω semi-atomically terminates employing WS-

BA. Thus, we consider the parallel and sequential alignments of elements in the

according series of tests.

In the following, we introduce the metrics that are employed to quantify the perfor-

mance of AWM. Furthermore, we present an analytical approach to approximate the

results of our experiments.

2As an element is defined to be recoverable if it is compensatable or does not need consistent closure, pRC(ω) is
determined by inspecting the ratios of the elements which are compensatable respectively demand consistent
closure. As no additional insights are obtained by considering the ratios of compensatable services and those
which demand consistent closure separately, we solely present results in which pRC(ω) is varied.

3For reasons of clarity, we interchangeably use the notation pRC instead of pRC(ω) (pRD, respectively, for
pRD(ω)).

92

8.1 System Parameters and Evaluation Metrics

Degree of Autonomy

As intended by SOAs, services are supposed to be loosely coupled, thus executed au-

tonomously. Enlisting participants to an atomic transaction, demanding their execution

to rely on a coordinator’s decisions, limits the autonomy. The greater the autonomy,

the more elements are actually loosely coupled. We define the degree of autonomy of a

workflow ω as follows:

Definition 22. Degree of Autonomy d(ω) of a Workflow ω

The degree of autonomy d(ω) of a workflow ω denotes the ratio of autonomous

elements (i.e., non-coordinated elements) in ω. Let n denote the total number of

elements in ω, let m = |M | be the number of coordinated elements. The degree of

autonomy of ω is defined as:

d(ω) :=
n−m

n

Example: For example, if ω consists of 10 elements, two of which are coordinated in

a subtransaction, the degree of autonomy is d(ω) = 10−2
10

= 0, 8. J

As the degree of autonomy depends on the approach chosen to execute a workflow we

use a subscript to distinguish between the different approaches in the following.

The degree of autonomy evaluates an adapted workflow. In the according experiments,

workflows are randomly generated according to the input parameters and adapted us-

ing AWM. By analyzing the altered workflow, the degree of autonomy is determined.

However, as the autonomy is independent of the workflow’s execution we disregard the

execution in the according experiments.

Analytical Approach In the following, we a concise analytical approach to estimate the

degree of autonomy for AWM and WS-AT denoted as dAWM and dAT respectively. We

apply this to verify our simulation results.

WS-AT does not explore properties of services. A workflow ω which is coordinated

using WS-AT therefore requires all of its participants to be executed according to 2PC.

Thus, all underlying resources of all participants have to be blocked until the coordinator

propagates its decision. The resulting degree of autonomy applying WS-AT is hence:

dAT (ω) = 0 (8.1)

For our approach AWM, the degree of autonomy dAWM is determinable employing

Theorem 1 (cf. Chapter 6): If there exist at least two conflicting elements, the set M

which needs to be coordinated is M := ECP ∪EZ . In the following, let s(ωn) denote the

expected size of M , where ω is a workflow of size n. Let further r(ωn) be the expected

93

8.1 System Parameters and Evaluation Metrics

relative size of M , and d(ωn) the thereby expected degree of autonomy. Due to the

definition of dAWM the following then holds: d(ωn) = 1− r(ωn) = 1− 1
n
∗ s(ωn).

Considering workflows without data dependencies, no directed transactional con-

flicts exist. Thus, ECP = ∅ and M = EZ , if |EZ | > 1. The expected size s(ωn) of M in

the case n > 1 complies with the number of non-recoverable, non-redoable elements:

s(ωn) = (1− pRC(ωn)) ∗ (1− pRD(ωn)) ∗ n, for n > 1 (8.2)

Therefore, the expected degree of autonomy is:

d(ωn) = 1− r(ωn) = 1− (1− pRC(ωn)) ∗ (1− pRD(ωn)) (8.3)

Example: Consider for example a workflow ω = WPAND(s1, . . . , s12) consisting of

12 parallel aligned services. Assume that three s ∈ {s1, . . . s12} are recoverable (i.e.,

pT (s) = (1, 0)), three are redoable (i.e., pT (s) = (0, 1)), three of them are both (pT (s) =

(1, 1)), and the remaining three expose pT (s) = (0, 0). Thus, pRC(ω) = pRD(ω) = 0.5.

According to equation 8.3, the expected degree of autonomy for ω is then:

d(ω12) = 1− r(ω12) = 1− ((1− 0.5) ∗ (1− 0.5)) = 0.75

Since exactly three elements expose pT (s) = (0, 0), these three need to be coordi-

nated in a subtransaction WPsubTA. The other elements (75%) are executed before the

WPsubTA pattern if they are recoverable; the redoable services are executed afterwards. J

Considering workflows with data dependencies, the number of coordinated ele-

ments grows by the directed transactional conflict elements e ∈ ECP . The chance that

an element e is part of a directed transactional conflict is dependent on its transactional

properties and the existing data dependencies.

We recursively determine the size of M , s(ωn), for workflows which consist of a se-

quence of n (n ≥ 1) elements which are successively data dependent on their predecessor

(i.e., ei → ei+1 → ei+2 . . .). For the sake of simplicity, we do not explicitly consider indi-

rect conflict elements in the analytical approach. In the following, M ′ = M ∪EI denotes

the set of coordinated elements M , unified with the set of indirect conflict elements EI .
4

For the recursion base, we consider workflows of the form ω = WPSEQ(s1, s2) in which

s2 is data dependent on s1 (i.e., s1 → s2). s1 and s2 directly transactionally conflict in

case s1 is not recoverable and s2 is not redoable, i.e., the chance is: (1− pRC(ω)) ∗ (1−
pRD(ω)). The expected size of M ′ is then:

s′(ω2) = 2 ∗ (1− pRC(ω2)) ∗ (1− pRD(ω2))

4Accordingly, s′(ωn) denotes the size of M ′, r′(ωn) the relative size of M ′ and d′(ωn) the according degree of
autonomy. As M ⊆ M ′, d′(ωn) is a lower bound for d(ωn), i.e., d(ωn) ≥ d′(ωn).

94

8.1 System Parameters and Evaluation Metrics

Appending a third element s3 to ω, if M ′ is non-empty, it either consists of the same

conflicting elements as determined for ω2 (M ′ = {s1, s2}, |M ′| = 2), thus s3 does not

transactionally conflict. Or else, the newly appended element s3 conflicts with s1 (thus

M ′ = {s1, s2, s3}, |M ′| = 3) or with s2, however not with s1 (thus M = {s2, s3},
|M ′| = 2). Therefore s′(ω3) is determined as:

s′(ω3) = s′(ω2) ∗ pRD(ω3)

+ 3 ∗ (1− pRC(ω3)) ∗ (1− pRD(ω3))

+ 2 ∗ pRC(ω3) ∗ (1− pRC(ω3)) ∗ (1− pRD(ω3))

Generalizing this to a sequence of n − 1 services and appending the nth service, M ′

either consists of conflicts which may occur in the subsequence s1 to sn−1 (without

sn conflicting with any element) or all conflicts that may occur with the nth element.

Therefore, s′(ωn) is recursively determined as:

s′(ωn) = s′(ωn−1) ∗ pRD(ωn)

+ n ∗ (1− pRC(ωn)) ∗ (1− pRD(ωn))

+ (n− 1) ∗ pRC(ωn) ∗ (1− pRC(ωn)) ∗ (1− pRD(ωn))

+ (n− 2) ∗ pRC(ωn)2 ∗ (1− pRC(ωn)) ∗ (1− pRD(ωn))

+ . . .

+ 2 ∗ pRC(ωn)n−2 ∗ (1− pRC(ωn)) ∗ (1− pRD(ωn))

This is simplified as follows:

s′(ωn) = s′(ωn−1) ∗ pRD(ωn) +
n∑

i=2

i ∗ pRC(ωn)n−i ∗ (1− pRC(ωn)) ∗ (1− pRD(ωn)) (8.4)

The relative size of M ′ and the according degree of autonomy is again determined by:

d′(ωn) = 1− r′(ωn) = 1− 1

n
∗ s′(ωn) (8.5)

In our experiments, we use Equations 8.3 and 8.4 to approximate the size of M ′ (and

thereby the degree of autonomy) for workflows which consist of a combination of

elements: Those, which are data dependent on others, and those which are not.

Semi-Atomicity Probability

As previously stated, the autonomy of services is increased by omitting the coordination

of elements. However, this may jeopardize the correctness of the execution of ω. The

95

8.1 System Parameters and Evaluation Metrics

semi-atomicity probability of a workflow ω denotes the chance that execution of ω results

in a correct, i.e. semi-atomic, termination. The greater the semi-atomicity probability,

the more likely the workflow results in correct termination.

Definition 23. Semi-Atomicity Probability pSA of a Workflow ω

The semi-atomicity probability pSA of a workflow ω is defined as the probability that

ω semi-atomically terminates.

Example: Consider ω to be the sequence of two services s1 and s2, i.e., ω = WPSEQ(s1, s2).

Let s1 and s2 both be not recoverable and not retrieable: pT (s1) = pT (s2) = (0, 0). As-

sume the probability for s1 and for s2 to successfully complete to be pS(s1) = pS(s2) =

0.5. ω semi-atomically terminates in case of failure of s1 or both services complete suc-

cessfully, thus: pSA(ω) = (1 − 0.5) + 0.5 ∗ 0.5 = 0.75. Hence, in 75% of all cases, ω

terminates correctly. J

Note that pSA refers to the execution of a workflow.5 In the according experiments,

generated workflows are executed in order to experimentally determine pSA employing

WS-BA (denoted as pSA(ω)BA). After that, the workflow is adapted and executed em-

ploying AWM to experimentally determine pSA (denoted as pSA(ω)AWM).

Analytical Approach We provide an analytical approach to determine pSA in order to

verify our simulation results. Note that AWM guarantees semi-atomic termination, as

proven in Section 6.3.4.2, thus pSA(ω)AWM is 1 for all workflows ω:

pSA(ω)AWM = 1 (8.6)

For the sake of completion, we provide an analytical approach to determine pSA(ω)BA

(for WS-BA). To simplify the analysis, we assume the success probability to be equal

for all services in a workflow, i.e., pS(si) = pS(sj) =: pS for any indices i and j.6

Let us first consider workflows which solely consist of n parallel arranged services,

ω = WPAND(s1, . . . , sn). Let c services (i.e., s ∈ {sj1, . . . sjc}, with 0 ≤ c ≤ n) be non-

recoverable and all other services be recoverable, i.e., c = (1−pRC(ω))∗n. ω terminates

semi-atomically, if either all services complete or, in case of failure, all c non-recoverable

services. We refer to these failures as semi-atomic failures, since they allow for backward-

recovery to preserve semi-atomicity. Let pS denote the success probability of all involved

services (i.e., pS = pS(si)). Therefore:

5As opposed to d(ω), which refers to an adapted workflow disregarding its execution.
6This is sufficient, due to the assumption of homogeneous success probabilities in our experiments.

96

8.2 Empirical Evaluation of AWM

pSA(WPAND(s1, . . . , sn), c)BA =

{
1 , if c = 0

pS
n + (1− pS)c , if c ≥ 1

(8.7)

Example: Let, the number of elements be n = 10 and c = 2 of these services be non-

recoverable. Let further the success probability of involved services be pS = pS(si) = 0.8.

The semi-atomicity probability pSA of this workflow is: pSA(WPAND(s1, . . . , s10), 2)BA =

0.810 ∗ (1− 0.8)2 ≈ 0.15. Thus the chance, that ω semi-atomically terminates is 15%. J

Regarding workflows with sequentially aligned services, i.e., workflows of the form

ω = WPSEQ(s1, . . . , sn), the semi-atomicity probability pSA is determined as follows:

Let again c services be non-recoverable (i.e., s ∈ {sj1, . . . sjc}, 0 ≤ c ≤ n) and sc0 for

c0 = min{j1, . . . jc} be the first non-compensatable service in the sequence (if c > 0).

Then, ω semi-atomically terminates, if either all services complete or semi-atomic failure

occurs: That is, in case of failure of sc0 or any other service aligned prior sc0. In these

cases, ω can be backward-recovered by recovering all completed services. Thus

pSA(WPSEQ(s1, . . . , sn), {j1, . . . jc})BA = pS
n

+ (1− pS)

+ pS ∗ (1− pS)

+ pS
2 ∗ (1− pS)

+ . . .

+ pS
c0−1 ∗ (1− pS)

This is simplified as:

pSA(WPSEQ(s1, . . . , sn), {j1, . . . jc})BA = pS
n +

c0−1∑
i=0

pS
i ∗ (1− pS) (8.8)

For sequential alignments, the absolute number of non-recoverable elements c is not

decisive rather than the index c0 of the first non-recoverable element. For an analytical

approach to approximate c0 for given c and n, see Appendix D.1.

8.2 Empirical Evaluation of AWM

The aim of this section is to present the results of our experimental evaluation of AWM in

a variety of system settings. Therefore, we vary all influencing parameters and illustrate

the results classified according to the discussed metric (d(ω) and pSA(ω)).

97

8.2 Empirical Evaluation of AWM

8.2.1 Autonomy of Participants dAWM

In this section, we present the guaranteed degree of autonomy dAWM of AWM and

evaluate the influence of different parameter settings on d(ω). Concurrently, we compare

the results obtained for AWM with those for WS-AT. As WS-BA may produce incorrect

system states, we do not consider its degree of autonomy.

A workflow ω which is coordinated using WS-AT requires all of its participants to be

executed according to 2PC. Thus, all underlying resources of all participants have to be

blocked until the coordinated propagates its decision. The resulting degree of autonomy

applying WS-AT is dAT (ω) = 0 for all test cases ω.

Our claim is that the degree of autonomy of AWM, dAWM(ω) is higher than that of

WS-AT in almost all cases. Only in the worst case, it is as low as that of WS-AT:

dAWM (ω) ≥ dAT (ω)

In each test case, we generate at least 100 workflows and transform them using AWM.

We quantify dAWM (ω) by inspecting the resulting workflow, i.e., the elements within the

WPsubTA pattern with and without indirect conflict elements. The latter one is denoted

as d′AWM . We use the analytical approach to verify the experimental results.

The results are grouped according to various series of tests in which the influential

parameters number of included elements, ratios of transactional properties, and present

data dependencies are varied.

8.2.1.1 Number of Included Services n

Our analytical approach as well as the performed experiments show, that dAWM (ω), as

well as dAT (ω), do not depend on the size of the workflow n: dAWM (ω) is by a constant

greater than dAT (ω). We therefore forego the presentation of this series of tests7 and

further omit the presentation of results for dAWM (ω) varying n in the following.

8.2.1.2 Ratios of Transactional Properties of Included Services

In this series of tests, we investigate the influence of the ratios of services which are

recoverable pRC(ω) and redoable pRD(ω) on the degree of autonomy. In the performed

experiments, the ratios are either both normally distributed around the same mean (i.e.,

pRC(ω) = pRD(ω)) or one of them remains fixed, while the other one is varied (e.g.,

pRC(ω) = 0.5 and pRD(ω) = (0.0, 0.1, . . . , 1.0)).

Test Set-Up We perform the experiments on a workflow without data dependencies, and

on two workflows with different mannered data dependencies. As n does not influence

dAWM (or dAT), we choose n = 12 for all test workflows. We present results for the

following types of workflows:
7The interested reader is referred to Appendix D.2.

98

8.2 Empirical Evaluation of AWM

• ω′ is a workflow without data dependencies, consisting of 12 services, thus:

ω′ = WPAND(s1, . . . s12)

• ω′′ consists of 12 services; for each set-up, we randomly choose six of them to

be sequentially data dependent on the predecessor. The other six elements are

randomly aligned in parallel or sequence. Thus, if the following data dependencies

are randomly created s1 → . . . → s6, an alignment of ω′′ is:

ω′′ = WPAND(WPSEQ(s1, . . . , s6), s7, . . . , s12).

• ω′′′ consists of 12 services; 4 of these are aligned in two sequences (e.g., WPSEQ(s1, s2)

and WPSEQ(s3, s4)) due to data dependencies (i.e., in this case s1 → s2 and

s3 → s4). All other elements are randomly aligned in parallel or sequence. Thus,

one characteristic alignment of ω′′′ is:

ω′′′ = WPAND(WPSEQ(s1, s2), WPSEQ(s3, s4), s5, . . . , s12).

The results of the experiments with fixed values for pRD(ω) and varied pRC(ω) expose

identical results (vice versa); therefore we omit their presentation.

Assumption According to our analytical model, we assume that pRC(ω) and pRD(ω)

do not influence dAT (ω). However, they strongly influence dAWM (ω) for all three types

of workflows: Obviously, the greater pRC(ω), the greater the autonomy of included

services. However, according to our analytical model, we assume pRD(ω) to similarly

influence dAWM (ω). For a workflow without data dependencies, ω′, dAWM (ω′) presumably

converges as stated in Equation 8.3 to

dAWM (ω′) = 1− (1− pRC(ω′)) ∗ (1− pRD(ω′))

Regarding workflows with inherent data dependencies ω′′ and ω′′′, the number of el-

ements which are coordinated are increased by the directed transactional conflict ele-

ments. Thus, we assume dAWM (ω′) to be greater than dAWM (ω′′) and dAWM (ω′′′).

Evaluation In Figure 8.2 on the left side, dAWM (ω′) and dAT (ω′) are depicted on the

y-axis. The results for experiments with fixed ratios of pRC (i.e., pRC equals 0.2, 0.5,

and, pRD) and varied pRD values on the x-axis are illustrated.

It becomes apparently that dAWM (ω′) greatly depends on pRC and pRD. If pRC =

pRD = 0, the autonomy is dAWM(ω′) = 0 as well, thus the same as for WS-AT. For

greater values of pRC and pRD, AWM performs significantly better than WS-AT. As

soon as pRC = 1 (or pRD = 1), dAWM (ω′) = 1, hence no coordination is needed. In

these cases (in which no directed transactional conflicts occur), the size of M tends to

(1− pRC) ∗ (1− pRD) ∗ n. Our assumptions are thereby confirmed.

In Figure 8.2 on the right side, we depicted the results for ω′′ (solid lines) and ω′′′

(dashed line) for the experimental set-up p = pRC = pRD. As ω′′ contains a sequence of

99

8.2 Empirical Evaluation of AWM

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

Ratio of Redoable Elements pRD

d(
w

)

pRC=0.5

pRC=0.2

pRC=pRD

WS-AT

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

Ratio of Redoable Elements pRD

d(
w

) w'''(3)

w'' (2)

w'' (2) (AWM')

WS-AT

Figure 8.2: dAWM for ω′ (left) and ω′′, ω′′′ (right) varying pRD.

data dependencies of size greater than 2, indirect conflict elements occur. We illustrated

the obtained degree of autonomy by AWM (dAWM (ω)) as well as the gained auton-

omy, when disregarding indirect conflict elements from the subtransaction (denoted as

d′AWM (ω)). d′AWM (ω′′) is slightly lower than or equal to dAWM (ω′′) in this setting. Their

deviation is in all cases less than 2%.

As can be seen, dAWM (ω′′′) = dAWM (ω′′) for p = 0 and p = 1. In all other cases,

dAWM (ω′′′) > dAWM (ω′′). This is due to fewer data dependencies (i.e., si → sj) being

present in ω′′′. Furthermore, the ratio of elements restricted by data dependencies is

lower in ω′′′ (r = 1/3 in ω′′′ vs. r = 1/2 in ω′′). Therefore, the inherent conflict potential

for directed transactional conflicts is lower for ω′′′ than for ω′′.

In Figure 8.3, the results for constant values of pRD = 0.2, 0.5 are depicted for ω′′ (solid

lines) and ω′′′ (dashed lines). If only half of the elements are recoverable (i.e., pRC = 0.5),

the resulting dAWM (ω′′) increases from roughly 0.35 (pRC = 0) to 1, thus decreasing the

number of coordinated elements up to 65% as opposed to WS-AT. For pRC = 0.2 the

resulting dAWM (ω′′) increases from roughly 0.12 for pRD = 0 to 1. Again, for all values

of pRC and pRD, d′AWM (ω′′′) is greater than d′AWM (ω′′). Applying the analytical approach

to approximate d′AWM , our results are verified (see Appendix D.3).

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

Ratio of Redoable Elements pRD

d(
w

)

w'''(3) - pRC=0.5
w'''(3) - pRC=0.2
w'' (2) - pRC=0.5
w'' (2) - pRC=0.5 (AWM’)
w'' (2) - pRC=0.2
w'' (2) - pRC=0.2 (AWM’)
WS-AT

Figure 8.3: dAWM of ω′′ and ω′′′ with data dependencies, varying pRD.

100

8.2 Empirical Evaluation of AWM

Conclusion As assumed, the ratios pRC and pRD significantly influence the resulting

size of the subtransaction and thus the degree of autonomy dAWM . Obviously, the more

elements are recoverable, the greater dAWM (if all elements are recoverable, no coordina-

tion is needed just as with WS-BA). Furthermore, pRD similarly influences dAWM : The

more elements are redoable, the more elements guarantee that they eventually complete,

thus fewer elements have to be coordinated. Generally, if at least one element which is

recoverable or redoable exists, the resulting dAWM is greater than dAT . In the presented

experiments, AWM increases the autonomy of elements up to 100% (e.g., if pRC = 1 or

pRD = 1) as opposed to WS-AT.

Decisive for the size of M is the product of the complements of pRD and pRD: (1 −
pRC) ∗ (1 − pRD). It denotes the chance that two elements which are data dependent

on each other, transactionally conflict (i.e., the chance for ei, ej ∈ ECP), as well as the

probability, that an element is neither retrieable nor redoable in a given setting, thus

e ∈ EZ . In this series of test, the simulation results match the expected values derived

from the analytical approximation.

8.2.1.3 Data Dependencies

Test Set-Up In this series of tests, we investigate the influence of data dependencies

on the resulting degree of autonomy of a workflow. First of all, we vary the ratio r of

elements which are data dependent on others. We additionally vary the average length

l of data dependencies (cf., si1 → si2 → . . . → sil). Furthermore, we vary the average

number t of these data dependency sequences .

We present results of experiments with workflows of size n = 20 and homogeneous

ratios of transactional properties (pRC = pRD), normally distributed around p = 0.5.

Assumption With an ascending ratio r, the number of elements involved in data de-

pendencies and thus the prevailing conflict potential increases. We therefore assume the

degree of autonomy dAWM to decrease with increasing r.

Furthermore, when increasing number of dependency sequences t we assume dAWM to

ascend, for fixed values of r . We base this on the following consideration:

The less data dependencies (of greater length l, since r remains fixed) exist, the more

dependencies of the form si → sj exist in the workflow. In the extreme case (for r = 1),

if t = n/2 sequences occur, each of them of length l = 2, n/2 data dependencies exist.

On the other hand, if ω consists of only one data dependency sequence (t = 1, with

r = 1), that is s1 → s2 → . . . → sn, more data dependencies, namely n− 1 are present

in the workflow. Thus, in the latter case (t = 1), the conflict potential inherent to ω is

lower than for more sequences t (of shorter length l).

101

8.2 Empirical Evaluation of AWM

Evaluation In Figure 8.4, dAWM (ω), d′AWM (ω), and dAT are depicted, varying the length

of the data dependency sequences l. We illustrate the results for series of tests with one,

two and four data dependency sequences (t = 1, 2, 4). For each sequence, we vary its

length l from 2 to the maximal possible value (l = 1, . . . , n/s). The remaining n− l ∗ t

elements are appended randomly in sequence or parallel.

2 4 6 8 10 12 14 16 18 20

0

0,2

0,4

0,6

0,8

1

Length of Sequence l

d(
w

)

t=1

t=1 (AWM')

t=2

t=2 (AWM')

t=4

t=4 (AWM')

WS-AT

Figure 8.4: dAWM (ω) with t = 1, 2, 4 sequences varying length l.

For all three series of tests it can be seen, the greater l (thus the longer the data

dependency sequences) the lower the resulting dAWM (ω) (and d′AWM (ω)). This is due

to the fact, that the greater l, the greater the ratio of elements r which are involved

in data dependencies. If l = 0, all obtained degrees of autonomy are 0.75 (dAWM (ω) =

dAWM ′(ω) = 0.75), which corresponds to the proportion of non recoverable and non

redoable elements (1− pRC) ∗ (1− pRD). For l > 2, dAWM (ω) > dAWM ′(ω) for all t: With

ascending l, more indirect conflict elements exist, which are excluded from coordination

using AWM (as opposed to AWM’). Thus, the greater is the benefit from exploitation

of indirect conflict elements (up to 20% for t = 1 and l = 20).

Again, for all series of test, the resulting dAT (ω) is zero, thus lower than dAWM (ω). In

regard to the autonomy, one benefits from employing AWM as opposed to WS-AT by

∼ 30% (for t = 1 and l = 10) to approximately 75% (l = 2).

Comparing these tests, it can be seen, that the more data dependency sequences

exist within the workflow (thus, the greater s), the lower the resulting dAWM (ω) (and

d′AWM (ω)). However, this misleading insight is a result the set-up:

If only one sequence of length 4 (thus t = 1 and l = 4) exists, the ratio of data

dependent elements in ω is r = 1/5. On the other hand, if four sequences of length

four exist (thus t = l = 4), the resulting ratio is higher r = 4/5. Therefore, no direct

comparison can be drawn between the series of test. In order to further investigate the

influence of t and l, we examine the results depicted in Figure 8.5.

This time, we varied the number t of sequences (on the x-axis) while keeping the

ratio of data dependent elements r constant. In Figure 8.5, the resulting dAWM (ω) and

d′AWM (ω) are shown for r = 0.4, 0.7 and 1.0. When varying the number of sequences

102

8.2 Empirical Evaluation of AWM

t for a fixed ratio r, it holds that at most t = r ∗ n/2 data dependency sequences are

present, as they always consist of at least two elements.

0 2 4 6 8 10
0

0,2

0,4

0,6

0,8

1

Numer of Sequences t

d(
w

)

r=0.4
r=0.4 (AWM')
r=0.7
r=0.7 (AWM')
r=1.0
r=1.0 (AWM')
WS-AT

Figure 8.5: dAWM (ω) varying the number of sequences t, with fixed ratios r.

Obviously, the greater the ratio of data dependent elements r, the lower the resulting

dAWM (ω). This is due to the ascending conflict potential with increasing r. Additionally,

it can be seen that all values of dAWM (ω) (and d′AWM (ω)) increase with ascending t to

the maximum value 0.75. In this case, the set of elements which needs to be coordinated

consists of all non-recoverable and non-redoable elements ((1 − pRC) ∗ (1 − pRD)) and

all conflicting pairs ((1− pRC) ∗ (1− pRD)). Due to the chosen ratios of recoverable and

redoable elements pRC = pRD = 0.5, dAWM (ω) (and d′AWM (ω)) converge to 0.75.8

The interesting perception of this test is that if the r ∗ n data dependent elements

are arranged in few sequences t (with greater length l), the resulting dAWM (ω) (and

d′AWM (ω)) is lower than for more (but shorter) sequences. This affirms our assumption:

For longer sequences (greater l) the number of data dependencies of the form si → sj

increases, thus more conflicts occur, i.e., the autonomy decreases.

Finally, we want to point out that with greater length of data dependency sequences

l (in this case synonymous with lower values t), the difference between dAWM (ω) and

d′AWM (ω) increases: The benefit by disregarding indirect conflict elements from coordi-

nation ascends. For r = 1.0, the difference accounts roughly 20% (t = 1), for r = 0.4,

dAWM is approximately 5% greater than d′AWM .

Conclusion Obviously, by increasing the ratio of data dependent elements r, the con-

flict potential is increased, thus resulting in lower degrees of autonomy dAWM (ω) (as

assumed). On the other hand, we are able to verify, that for fixed values of r, the degree

of autonomy dAWM (ω) is increased, if more sequences t of shorter length l are inherent

to the workflow. Thereby, the absolute number of data dependencies decreases, thus

lowering the ω inherent conflict potential. Further, we want to emphasize, that espe-

cially in the case of long data dependency sequences, the benefit from excluding indirect

8We verified this, using different ratios pRC and pRD.

103

8.2 Empirical Evaluation of AWM

conflict elements from coordination is substantial. In this series of test, the benefit from

employing AWM as opposed to WS-AT ranges from ca. 10% (t = 1 and r = 1) up to

75% (for all values of r and t = l ∗ n/2).

Overall, in Subsection 8.2.1.1 through 8.2.1.3, we are able to verify our claim, that

the resulting degree of autonomy dAWM (ω) (and d′AWM (ω)) are greater than or equal to

dAT (ω) in all proposed settings. Thus, regarding the autonomy granted to participants,

AWM outperforms the pessimistic approach WS-AT.

8.2.2 Correctness Guarantees pSA

In this section, we evaluate the resulting correctness guarantees of AWM and compare

them to the results of an optimistic approach to support transactional execution, i.e.,

WS-BA. We investigate the influence of different parameter settings on pSA. As the

pessimistic approach WS-AT guarantees correctness in all cases, just as AWM, we omit

the presentation of results for WS-AT.

In order to draw a fair distinction between AWM and WS-BA, we employ the notion

of semi-atomicity (see Section 5.3) to define correct execution for WS-BA. That is, the

execution of a workflow ω is correct employing WS-BA, if it either successfully completes,

or all elements which demand consistent closure (i.e., all e with pCT (e) = (∗, 1, ∗)) are

compensated in case of failure.9

Our claim for this section is, that the semi-atomicity probability using AWM is greater

than or equal to that using WS-BA in any case. Especially, as AWM ensures correctness

in any case, we assume pSA(ω)AWM to be 1 for all series of tests:

1 = pSA(ω)AWM ≥ pSA(ω)BA

Workflows are generated according to the input parameters and executed at least 100

times to determine the ratio of executions that terminated semi-atomically using AWM

and WS-BA. We use the analytical approach to verify our experimental results.

The results are grouped according to the series of tests in which the influential param-

eters number of included elements n, ratio of recoverable elements pRC(ω) and success

probability of services pS are varied. Regarding the success probability, we assume ho-

mogeneous environments. Thus, in our experiments, we randomly choose the success

probability of all included services normally distributed around a stated mean pS with

a standard deviation of 5%.

As the initial alignment of services in different patterns influences pSA, we present

results for two different types of workflows: On the one hand, we consider workflows

in which services are aligned in parallel, i.e., ω = WPAND(s1, . . . sn). We additionally

regard workflows, in which services are sequentially aligned: ω = WPSEQ(s1, . . . , sn).10

9Thus, we regard the recoverability of services as opposed to compensatability.
10Evaluation of realistic examples incorporating combinations of these are presented in Section 8.3.

104

8.2 Empirical Evaluation of AWM

8.2.2.1 Number of Included Services n

Considering our analytical approach to determine pSA(ω)BA, we assume that pSA(ω)BA

is not mainly determined by n: For parallel alignments, Formula 8.7 on page 97 conveys

that pSA(ω)BA decreases with increasing n. However, Formula 8.8 hints, that in sequen-

tial alignments, n is not substantially decisive for pSA(ω)BA: It is mainly determined by

the ratio of recoverable elements pRC(ω) and success probability pS. We therefore forego

the presentation of this series of tests11 and further abandon from presenting results for

pSA(ω)BA varying n.

8.2.2.2 Ratio of Recoverable Elements pRC

Test Set-Up In this series of test, we vary the ratio of recoverable elements within a

workflow from pRC(ω) = 0 to 1. We present results for parallel WPAND and sequential

WPSEQ alignments of services for different values of pS and a fixed size of elements in

the workflow of n = 50.

Assumption Employing the analytical approach to determine pSA(ω)BA, we assume

pSA(ω)BA to increase with an increasing ratio of recoverable elements pRC(ω). That

is, the more elements are actually recoverable, the more failure cases are recoverable

and thus semi-atomic failures. However, the actual increase depends on the alignment

of services as well as their success probability pS.

Evaluation On the left hand side of Figure 8.6, the results for the parallel alignment

WPAND for pS = 0.1 and pS = 0.5 are depicted. For small ratios of recoverable elements

pRC(ω), pSA(ω)BA is roughly 0. That is, correct termination in terms of semi-atomicity

is the exceptional case employing WS-BA (as opposed to AWM, as pSA(ω)AWM = 1).

With increasing values of pRC(ω), starting from roughly pRC = 0.5, pSA(ω)BA quickly

increases for both depicted values of pS. For pRC = 1, the resulting semi-atomicity

probabilities for both depicted series of tests approach pSA(ω)BA = 1. Note that even

if only 10% of services are not recoverable (and pS = 0.5), correctness guarantees given

by WS-BA are lower than 10%.

Note also that for depicted experiments, pSA(ω)BA is lower for a higher success prob-

ability. This is due to the fact that with lower success probabilities of elements pS, the

chance of failures absolutely seen increases, and as well the probability that recoverable

failures occur. However, this does not generally hold for all values of pS. The influence

of success probabilities is further discussed in Section 8.2.2.3.

On the right hand side of Figure 8.6, the results for sequential alignment WPSEQ are

depicted for the same parameter settings (pS = 0.1, pS = 0.5). Again, pSA(ω)BA is

11The interested reader is referred to Appendix D.4.

105

8.2 Empirical Evaluation of AWM

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

Ratio of Recoverable Elements pRC

Se
m

i-A
to

m
ic

ity
 P

ro
ba

ili
ty

 p
sa

AWM

ps = 0.1

ps = 0.5

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

Ratio of Recoverable Elements pRC

Se
m

i-A
to

m
ic

ity
 P

ro
ba

bi
lit

y
ps

a

AWM

ps = 0.1

ps = 0.5

Figure 8.6: pSA of an WPAND and WPSEQ , varying pRC (n = 50).

considerably lower than pSA(ω)AWM for small values of pRC(ω). However, as opposed

to the parallel alignment on the left hand side, it is clearly greater than 0, owing to

the nature of the execution of WPSEQ patterns: As services are executed successively,

failure before the c0th element is backward recoverable, thus preserving semi-atomicity.

The index of the first non-recoverable element c0 is decisive for pSA(ω)BA.

With an ascending ratio of recoverable elements, pSA(ω)BA increases for all values of pS.

In the presented experiments, pSA(ω)BA increases from approximately pSA(ω)BA ≈ 0.5

for pS = 0.5 and pRC(ω) = 0 to pSA(ω)BA = 1. The resulting pSA(ω)BA for workflows with

the lower success probability ranges from pSA(ω)BA ≈ 0.9 for pS = 0.1 and pRC(ω) = 0

to pSA(ω)BA = 1. Using the experimental results for c0, these values are verified by the

analytical approach: For n = 50 and pRC(ω) = 0.8, the expected value for c0 ≈ 3. Using

Formula 8.8 on page 97, if pS = 0.5 the analytically determined correctness guarantee is

pSA(ω)BA ≈ 0.93.

With an ascending ratio pRC(ω), the expectation value for c0 increases as well. The

greater c0, the more failure cases can be backward recovered to semi-atomically termi-

nate. In the extreme case, if all included elements are recoverable, the execution of ω

employing WS-BA guarantees semi-atomicity. Therefore, pSA(ω)BA increases with an

ascending ratio of recoverable elements pRC .

Conclusion This series of tests confirms our assumption that pSA(ω)BA is dependent on

pRC(ω) in the following way: The fewer elements are recoverable, the lower the resulting

correctness probability pSA(ω)BA. In parallel alignments, the influence of lower pRC(ω)

is stronger than for sequential workflows WPSEQ . In parallel alignments a fairly low

ratio of non-recoverable elements suffices to tremendously raise the risk of inconsistent

termination: In the depicted experiments, if only 20% of the included elements are non-

recoverable (i.e., pRC(ω) = 0.8), WS-BA guarantees correct execution in less than 30%

106

8.2 Empirical Evaluation of AWM

of cases (for both pS = 0.1 and pS = 0.5).

All results are verified applying the analytical approach, cf. Formulas 8.7 and 8.8.

In the presented scenarios, the risk for inconsistent system states is higher for greater

success probabilities of the elements. This is not generally true, and thus further inves-

tigated in the next section.

8.2.2.3 Success Probability of Services pS

Test Set-Up In this series of tests, we investigate the influence of the success probability

of single services on the resulting semi-atomicity probability pSA(ω)BA. We therefore

choose workflows with n = 50 elements and different ratios of recoverable elements

pRC = 0.5 and pRC = 0.9.

Assumption According to the analytical approach, we assume the success probabilities

of the elements to crucially influence the resulting pSA(ω)BA. Regarding both Formulas

8.7 and 8.8 more closely, one sees that both consist of two terms: The first one denotes the

success probability of the whole workflow, that is ω successfully completes. The second

one refers to semi-atomic failures, which can be backward-recovered. We depicted these

terms for a parallel alignment WPAND with n = 10 and c = 5 in Figure 8.7.

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1
Success Probability of Services ps

ps^n

(1-ps)^c

Figure 8.7: Behavior of success (blue) and semi-atomic failure (red) of WPAND varying pS .

Consider these terms separately: For any alignment, the chance of semi-atomic failures

(red curve in Figure 8.7) is high for low success probabilities pS (cf., it equals 1 for pS = 0)

and decreases with ascending values of pS. This is due to the factor (1− pS) present in

both formulas. The chance for success of the whole workflow is in both alignments pS
n

(blue line in Figure 8.7) thus increasing from 0 for pS = 0 to 1 for pS = 1. The sum of

both yields to pSA(ω)BA. We therefore assume, pSA(ω)BA to decrease from 1 (for pS = 0)

with ascending success probabilities to a global minimum. In these cases, pSA(ω)BA

is mainly determined by the chance for semi-atomic failure (while the probability for

successful completion is nearly 0). After that, we assume pSA(ω)BA to increase again

to 1 (for pS = 1), as the chance for successful completion increases and the chance for

semi-atomic failure approaches 0.

107

8.2 Empirical Evaluation of AWM

Evaluation Considering the results of the WPAND alignment in Figure 8.8 on the left

hand side, the resulting semi-atomicity probability (depicted on the y-axis) is 1 for

pS = 0 for both illustrated test series (pRC = 0.5 and pRC = 0.9). In this case, all

services fail, which is a semi-atomic system state. For increasing pS, pSA(ω)BA decreases

to 0: In the case pRC = 0.5, it quickly approaches 0 (at roughly pS = 0.2), for pRC = 0.5

it converges to 0 for pS = 0.5. This behavior verifies our assumption that for low success

probabilities, the chance of semi-atomic failures (quantified by (1− pS)k) decreases. For

higher ratios of recoverable elements pRC , k is lower, thus the decrease is more gentle. For

higher success probabilities the resulting semi-atomicity probabilities of both depicted

cases quickly increase to 1. That is due to the chance of successful completion of the

whole workflow (determined by pS
n) thus independent of pRC . For the depicted value

of n, this value does not noticeably increase until pS = 0.9.12 In conclusion, in the

depicted scenarios, AWM outperforms WS-BA, as it guarantees correctness in all cases

thus partially increasing pSA by 100%.

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

Success Probability ps

Se
m

i-A
to

m
ic

ity
 P

ro
ba

bi
lit

y
ps

a

prc=0.5

prc=0.9
AWM

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

Success Probability ps

Se
m

i-A
to

m
ic

ity
 P

ro
ba

bi
lit

y
ps

a

prc=0.5

prc=0.9

AWM

Figure 8.8: pSA of an WPAND and WPSEQ , varying the success probability of services pS .

For the sequential set-up WPSEQ depicted on the right hand side of Figure 8.8, the

resulting values of pSA(ω)BA exhibit a similar behavior as for WPAND . However, applying

the same parameters, pSA(ω)BA does not decline to 0 rather than to a global minimum

greater than 0. In this scenario (n = 50) the global minimum of pSA(ω)BA is reached at

pS ≈ 0.9. This again relies on the fact, that for n = 50, pS
n does not noticeably increase

until pS ≈ 0.9. For shorter sequences, the minimum of pSA(ω)BA is reached for lower

success probabilities pS.

The chance, that occurring failures are backward recoverable thus preserving semi-

atomicity is considerably higher in the sequential set-up WPSEQ as opposed to WPAND .

In the depicted series of tests, the experimental evaluation of the average index of the first

non-recoverable element is c0 ≈ 2.38 for pRC = 0.5 and c0 ≈ 8, 07 for pRC = 0.5. Using

these to determine pSA(ω)BA analytically applying Formula 8.8, the achieved results are

verified.

12For workflows with fewer elements, pSA(ω)BA noticeably increases for lower values of pS .

108

8.3 Evaluation of AWM in Realistic Settings

Conclusion These series of tests verify our assumption that pS decisively influences

pSA(ω)BA. In all investigated scenarios, for small success probabilities, pSA(ω)BA de-

creases from 1 (for pS = 0) to a scenario specific minimum with increasing pS. This

minimum is determinable using the analytical approach (Formulas 8.7 and 8.8); it is

dependent on the probability that semi-atomic failure occurs. Further increasing the

success probability pS results in an increased semi-atomicity probability pSA(ω)BA which

approaches 1 for pS = 1. This relies on the probability that all elements and thus the

whole workflow successfully complete.

Overall, in all of the previous series of tests, we were able to verify our claim, that

the resulting semi-atomicity probability pSA(ω)AWM employing AWM is greater than or

equal to pSA(ω)BA in all investigated settings. The evaluation revealed, as soon as only a

few non-recoverable elements are included in the workflow, pSA(ω)BA may tremendously

decrease. Thus, AWM is indispensable to guarantee correct execution.

8.3 Evaluation of AWM in Realistic Settings

In this section, we present evaluation results for AWM in two realistic example scenarios.

At first, we provide the results for the running example MoP. Additionally, we evaluate

AWM for another realistic, however more sophisticated, scenario. We employ the metrics

degree of autonomy and semi-atomicity probability to quantify obtained results.

8.3.1 Evaluation Example I: MoP

Test Set-Up In this series of test, we investigate our running example scenario of MoP,

which is depicted in Figure 1.2 on page 4. In this scenario, we assume the customers

request specification CRS and the ticket delivery Confirm services to run on the vendors

local machine. Due to their semantics, we assume both to be recoverable and redoable

(i.e., pT (CRS) = pT (Confirm) = (1, 1)).

In the following, we vary the ratios of recoverable pRC(ω) and redoable pRD(ω) elements

bound at runtime and then adapt the workflow using AWM to determine the resulting

degree of autonomy dAWM (ω). We additionally vary the success probability of services

pS and execute the workflow a minimum number of 100 times to determine the resulting

semi-atomicity probability pSA.

Please note that depicted ratios pRC(ω) and pRD(ω) refer to the dynamically bound

services, thus specifically exclude the local services CRS and Confirm. The same holds

for the depicted success probabilities of services pS: The depicted values of pS refer solely

to the dynamically bound services, i.e., pS(CRS) = pS(Confirm) = 1 in any case.

Assumption We base our assumptions on the analytical approaches to determine the

degree of autonomy and the semi-atomicity probability (see Section 8.1) as well as the

109

8.3 Evaluation of AWM in Realistic Settings

results and conclusions of Section 8.2.

Regarding the degree of autonomy of AWM we assume the following: If all of the

bound services are neither recoverable nor redoable, all 5 dynamically bound services13

have to be included in the set of coordinated elements M . In this case, the resulting

degree of autonomy is: dAWM (ω) = 1 − 5/7 ≈ 0.29. According to Section 8.2.1.2, with

increasing pRC(ω) and pRD(ω), we assume dAWM (ω) to steadily increase to dAWM (ω) = 1

(recall the results of Figure 8.2 in particular).

Considering the correctness of the workflow executing it employing WS-BA, we assume

the following according to the analytical approach: If again none of the dynamically

bound elements is recoverable, the workflow semi-atomically terminates, in case none

of these elements or the whole workflow is completed. In the latter case (successful

termination of ω), all elements of the WPAND pattern have to complete as well as the

WPXOR pattern:14 pS
3 ∗ (pS +(1−pS)∗pS). In case of failure of ω, all activated dynamic

services have to fail as none of them is recoverable: (1 − pS)3. In conclusion, if the

success probability of the dynamically bound services is e.g., pS = 0.9, the probability

that ω semi-atomically terminates using WS-BA is the sum of the aforementioned cases:

pSA(ω)BA = 0.93 ∗ (0.9 + (1− 0.9) ∗ 0.9) + (1− 0.9)3 ≈ 0.72

Just as in Section 8.2.2.2, we assume pSA(ω)BA to rise to 1 with increasing ratio

pRC (recall Figure 8.6 in particular). Increasing pS, we assume (similar to Figure 8.8)

pSA(ω)BA to be 1 (for pS = 0), a decrease to a global minimum and after that an increase

again to 1 (for pS(si) = 1).

Evaluation In Figure 8.9, we depict the resulting degree of autonomy (on the y-axis)

using AWM and WS-AT. On the x-axis, the ratio pRC(ω) is varied from pRC = 0 to 1.15

We present the results for pRD = 0.5, 0.8 and pRD = pRC . As assumed, the progress of

the curve is similar to Figure 8.2.16

Considering the case pRD = pRC , as analyzed in the assumption, dAWM raises from

dAWM (ω) ≈ 0.29 (for pRC = 0) steadily to dAWM (ω) = 1 (for pRC = 1). In this example

scenario, AWM enormously increases the autonomy of included services: If solely half

of the dynamically bound elements are recoverable and half of them are redoable, AWM

enhances the autonomy by over 80%.

In Figure 8.10, the probabilities of semi-atomic termination of ω employing AWM and

WS-BA are depicted. On the left hand side, we varied the ratio of recoverable elements

pRC and show results for pS = 0.5 and 0.9. AWM guarantees correct execution in any

13These are Philharmonics, Transportation, Reservation, PayCC and PayCh.
14As we assume pS(CRS) = pS(Confirm) = 1, we omit them in the consideration.
15As the results for varying pRD(ω) are similar, we omit their presentation.
16As opposed to the referenced Figure 8.2, dAWM (ω) > 0 in all depicted cases, as we varied the ratio of

dynamically bound services. As mentioned, the properties of the local services CRS and Confirm are not
varied. Thus, as opposed to Figure 8.2, the depicted ratio of all elements ranges from 2/7 to 1.

110

8.3 Evaluation of AWM in Realistic Settings

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,2

0,4

0,6

0,8

1

Ratio of Recoverable Elements prc
d(

w
)

PRD=0.8

PRD=0.5

pRD=pRC

WS-AT

Figure 8.9: dAWM and dAT of the MoP example, varying pRC .

setting: pSA(ω)AWM = 1. Using WS-BA, inconsistent system states may occur: If the

success probability is pS = 0.5, pSA(ω)BA is lowered to ∼ 0.5 for pRC ≤ 0.4. Considering

the two depicted cases for WS-BA, the greater success probability (pS = 0.9) results in

the greater pSA(ω)BA. However, this does not generally hold, as pSA(ω)BA is dependent

on pS as shown on the right side.

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

Ratio of Recoverable Elements pRC

Se
m

i-A
to

m
ic

it
y

Pr
ob

ab
ili

ty
 p

sa

AWM

ps=0.9

ps=0.5

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

Success Probability ps

Se
m

i-A
to

m
ic

it
y

Pr
ob

ab
ili

ty
 p

sa

AWM

pRC=0.9

pRC=0.5

Figure 8.10: pSA of the MoP example, varying pRC and the success probability pS .

The right part of Figure 8.10 depicts a variation of pS and the resulting pSA for

pRC = 0.5, 0.9. The curves exhibit similar trends as the general evaluation results (see

Figure 8.6 on the right side and Figure 8.8). pSA(ω)BA decreases from 1 with increasing

pS to the global minimum of pSA(ω) ≈ 0.6 for pS = 0.4. Further increasing pS, pSA(ω)BA

is raised to 1 (for pS = 1). Our assumptions are thereby confirmed.

Conclusion The evaluation of the MoP scenario confirms our assumptions which we

based on the analytical model as well as the evaluation results discussed in Section

8.2. It thereby nicely reflects the results obtained from the generic evaluation and

hence validates its utility. Furthermore, this simple scenario exposes the considerable

enhancement of AWM as opposed to the existing approaches WS-AT and WS-BA. In the

displayed scenario, AWM outperforms WS-AT up to 70% regarding dAWM . It ensures

correct execution in any case, thus increasing pSA(ω)BA by up to 40% as well.

111

8.3 Evaluation of AWM in Realistic Settings

8.3.2 Evaluation Example II: Order-to-Delivery Process

In this section we evaluate a more sophisticated realistic scenario, namely the order-to-

delivery process. As depicted in Figure 8.11, the provider operates an online marketplace,

which works as follows.

Spec.

Login

Search

Confirm

Notify

File

Notify

Pay P1 Pay PkDelivery SjDelivery S1

Vendor V1 Vendor Vi

Rate

Archive

File

Notify

Rate

(1,1)

(1,0)

(1,1)

(1,0)

(1,0)

(1,1)(1,1)

(1,1)(1,1)

(1,1)(1,1)

(1,1)

XorDelivery XorPay

XorVendor

XOR

AND

AND

XORXOR

Figure 8.11: The order-to-delivery process.

After a customer specifies the desired products, offers are searched for at present

providers. Next, if the customer is logged-in, she may confirm certain providers of the

list. In parallel, the provider files the search results for analytical processing reasons.

According to a customer’s specification, she is notified either via email or text message

that the process’ state is confirmed. The marketplace contacts the vendors (Vendor

112

8.3 Evaluation of AWM in Realistic Settings

V1, . . . ,Vendor Vi) and purchases the specified products. If the purchase successfully

completes, the according information is again filed. In the next step, several delivery

services are approached which deliver the product to the client (Delivery S1, . . . , Delivery

Sj). In parallel trusted payment providers (such as PayPal17) are conducted to perform

the payment (Pay P1,. . . ,Pay Pk). The customer is again notified if the current status

of her purchase changes. The chosen delivery and payment providers are then rated. If

all services complete successfully, the process information is archived.

In this scenario, all services within the WPXOR patterns (XorVendor, XorDelivery

and XorPay) are dynamically bound at runtime. Their inclusion is dependent on the

product search as well as on the offers of single vendors. We assume all other services

to be locally deployed: The properties of local services remain fixed and are given as

depicted in Figure 8.11. Data dependencies are displayed as gray dashed lines.

We group the presented results as follows: In the general evaluation, autonomy and

correctness guarantees are investigated while varying the established parameters pRC(ω),

pRD(ω) and pS(si). Afterwards, we presents results for the combination of AWM and

service discovery (recall Chapter 6.4): Here, we evaluate the effects of multiple service

providers on the autonomy of services and the correctness guarantees for the workflow.

8.3.2.1 General Evaluation

Evaluating the order-to-delivery process confirms the results achieved by the general

evaluation (Section 8.2) as well as those of the MoP process (Section 8.3.1). We thus

forego their presentation and refer to Appendix D.5. The results reveal, if only half of

the included elements are redoable, AWM is able to increase the autonomy dAWM (ω)

by approximately 90% as opposed to WS-AT. Considering the correctness guarantee,

WS-BA ensures correct execution in only 65% of all cases, if the success probability of

the bound elements is pS = 0.5 and only half of the dynamically bound elements are

recoverable. Therefore, the use of AWM is essential to guarantee correctness.

8.3.2.2 Combination of AWM and Service Discovery

In this section, we evaluate the combination of AWM and successful service discovery

at runtime. In the depicted order-to-delivery process the vendors (XorVendor), delivery

services (XorDelivery) and payment providers (XorPay) are bound at runtime. We

investigate the influence of the number of discovered providers on our defined metrics.

Thus, we vary the number of vendors i, delivery services j and payment providers k.

Obviously, if alternatives for services are integrated in the workflow in WPXOR pat-

terns, the success probability of the workflow increases. Numerous papers, e.g.,[SPJ09,

Ste07, Ste08] have evaluated the success probability in relation to produced costs. How-

ever, the effects of the integration of alternatives on workflow inherent conflicts has not

17http://www.paypal.de/de

113

8.3 Evaluation of AWM in Realistic Settings

been addressed yet: The non-functional properties of bound services at runtime influ-

ence the properties of the WPXOR pattern they are element of. Thereby, conflicts may

be avoided. Furthermore, if such an WPXOR pattern conflicts with another element,

conflicts may be solved by eliminating alternatives, thus increasing the autonomy of

services.

Our results are classified according to the defined metrics. We present results re-

garding the autonomy of elements and illustrate the influence of service discovery on

semi-atomicity probability.

Evaluating the Degree of Autonomy

Test Set-Up In this experiment we vary the number of discovered services i, j and k

from 1, . . . 20. We depict results for constant ratios of recoverable and redoable elements

pRC = pRD = 0.2, 0.5, 0.9. The default for a fixed number of providers is 3.

Assumption When raising i (while j and k remain constant), the number of recoverable

elements in XorVendor increases. Decisive for the conflict potential of XorVendor and

XorDelivery (and XorPay respectively) is the recoverability of XorVendor. If at least one

recoverable element in XorVendor exists, occurring conflicts are resolved by eliminating

non-recoverable vendors. Thus, with increasing number of vendors i, we expect the

autonomy to increase.

Additionally, if the number of delivery services XorDelivery j (or payment providers k

respectively) is raised, the chance that XorDelivery becomes redoable increases. Thus,

the conflict potential between XorVendor and XorDelivery is slightly decreased. How-

ever, the conflict potential between XorVendor and XorPay remains. Thus, in this case,

we assume the degree of autonomy to moderately increase with increasing j.18

If the number of delivery services j and the number of payment providers k are

increased, the chance that the elements XorDelivery and XorPay are redoable, increases.

Thereby, the conflict potential is reduced and dAWM (ω) presumably ascends more quickly

as opposed to the previous case.

Evaluation In Figure 8.12 on the left hand side, the results of the experiment increasing i

(and constant j = k = 3) are depicted. For great ratios pRC and pRD (pRC = pRD = 0.9),

the autonomy is approximately 1 for all values i. Regarding pRC = pRD = 0.2, the

resulting dAWM (ω) is dAWM (ω) ≈ 0.83 (for i = 1) and approaches dAWM (ω) = 1 (for

i ≥ 14). In all depicted cases, dAWM increases to 1. This meets our assumption: As more

elements are discovered in the XorVendor pattern, the number of recoverable vendors

18We expect analog results for increasing k while keeping i and j constant.

114

8.3 Evaluation of AWM in Realistic Settings

increases. If conflicts between XorVendor and XorDelivery or XorPay exist, the non-

recoverable vendors are eliminated to solve these conflicts.

0 5 10 15 20
0

0,2

0,4

0,6

0,8

1

Number of Elements in XorVendor i

d(
w

)

pRC=0.9 pRD=0.9

pRC=0.5 pRD=0.5

pRC=0.2 pRD=0.2

WS-AT

0 5 10 15 20
0

0,2

0,4

0,6

0,8

1

Number of Elements in XorDelivery j

d(
w

)

pRC=0.9 pRD=0.9

pRC=0.5 pRD=0.5

pRC=0.2 pRD=0.2

WS - AT

Figure 8.12: dAWM of the order-to-delivery process, varying the number of vendors i.

On the right side of Figure 8.12, the results for increasing the number of delivery

providers j (and constant i = k = 3) are provided.19 The process of the depicted

results is similar to those depicted on the left hand side. However, as it can be seen for

pRC = pRD = 0.2, the increase of dAWM is lower than on the left hand side. That is due

to the fact, that the increase of delivery services does not the influence the remaining

conflicts between XorVendor and XorPay. These conflicts remain and the autonomy

does not increase as quickly as on the left hand side. In comparison to WS-AT, the

degree of autonomy is raised by more than 80% in this scenario.

0 5 10 15 20
0

0,2

0,4

0,6

0,8

1

Number of Elements inXorDelivery j (j=k)

d(
w

)

pRC=0.9 pRD=0.9

pRC=0.5 pRD=0.5

pRC=0.2 pRD=0.2

WS-AT

Figure 8.13: dAWM of the order-to-delivery process, varying the j (delivery) and k (pay).

In Figure 8.13, the degree of autonomy (dAWM (ω) and dAT (ω)) for the order-to-delivery

process is displayed, varying the number of delivery services j and payment providers k

(with j = k). The trends of the depicted results are similar to those for varying i (Figure

8.12, left hand side): For pRC = pRD = 0.2, dAWM increases from dAWM (ω) ≈ 0.82 for

j = k = 1 to dAWM (ω) ≈ 1 for i ≥ 15. Once again, our assumption is met, as in these

19The results for increasing k and keeping i and j fixed correspond to the illustrated results.

115

8.3 Evaluation of AWM in Realistic Settings

cases, the chance that XorDelivery and XorPay are redoable increases, thereby avoiding

conflicts in the first place.

Conclusion These experiments confirm our assumption that the combination of AWM

and successful service discovery positively influences the degree of autonomy achieved

by AWM. Especially, if more vendors i are discovered or the number of delivery services

j and payment providers k equally increases, dAWM (ω) quickly ascends. In the first

case (raising i), conflicts are solved by eliminating non-recoverable alternatives. In the

other case (increasing j = k), the chance of XorDelivery and XorPay being redoable is

increased as one redoable alternative suffices to avoid conflicts in the first place. Overall,

successful service discovery in terms of high hit ratios further increases the autonomy of

services in adaptive workflow management.

Evaluating the Semi-Atomicity Probability

Test Set-Up Just as in the previous experiments, in this series of tests, we vary the

number of bound vendors i, delivery services j and payment providers k from 1, . . . 20.

Again, the default value for fixed number of providers is 3.

Assumption As AWM guarantees semi-atomicity, we assume pSA(ω)AWM to be 1 for all

cases. Regarding the correctness guarantee for WS-BA, the decisive factor is the success

probability of the WPXOR patterns which increases with the number of alternatives.

When raising the number of vendors i while keeping j and k fixed, the success proba-

bility of XorVendor increases, while the chance that it is recoverable remains fixed.20

However, the success probability of XorDelivery and XorPay remains constant. The

chance for success of XorVendor in the presence of failure of XorDelivery or XorPay

thereby increases. We thus assume pSA(ω)BA to noticeably decrease.

If the number of delivery services j is raised, while keeping the number of vendors

i and payment providers k constant, the success probability of XorDelivery increases.

Thereby, the chance of XorVendor to complete while XorDelivery fails, decreases. We

therefore assume pSA(ω)BA to increase in this scenario.

If the number of delivery services j and payment providers k is raised while i remains

fixed, the success of the latter WPXOR patterns increases. We therefore assume the

semi-atomicity probability pSA(ω)BA to noticeably increase and reach 1.

Evaluation In Figure 8.14, pSA(ω)AWM and pSA(ω)BA are shown on the y-axis, while

varying the number of vendors i on the x-axis. For WS-BA, the success probability

of elements (pS = 0.5) as well as the ratio of recoverable elements (pRC = 0.5, 0.9)

20In this case AWM eliminates inadequate branches, increasing the chance that XorVendor is recoverable.

116

8.3 Evaluation of AWM in Realistic Settings

remain fixed. Obviously, pSA(ω)AWM = 1 for all values of i. For WS-BA, it can be

easily seen that with increasing i the chance of correct completion clearly decreases from

approximately pSA(ω)BA ≈ 0.9 (for i = 1) to pSA(ω)BA ≈ 0.4 for i = 20. This is due

to the fact that with ascending i the chance that XorVendor completes increases while

the chance for failures of XorDelivery or XorPay remains constant. As the probability

that XorVendor is recoverable remains fixed, this increases the number of failures which

cannot be recovered. Using AWM is therefore necessary to ensure correctness when

employing service discovery to dynamically bind services.

0 5 10 15 20
0

0,2

0,4

0,6

0,8

1

Number of Elements in XorVendor i

Se
m

i-A
to

m
ic

ity
 P

ro
ba

bi
lit

y
ps

a

AWM

pRC=0.9, ps=0.5

pRC=0.5, ps=0.5

Figure 8.14: pSA of the order-to-delivery process, varying the number of vendors i.

On the left hand side of Figure 8.15, pSA(ω)BA (and pSA(ω)AWM) are presented on the

y-axis while varying the number of bound delivery services j.21 Besides AWM, we depict

results for half of the elements being recoverable, i.e., pRC = 0.5 and different success

probabilities pS = 0.6, 0.7. It can be seen in this experiment that the resulting pSA(ω)BA

slightly increases, however with perceptible deviation.

0 5 10 15 20
0

0,2

0,4

0,6

0,8

1

Number of Elements in XorDelivery j=k

Se
m

i-
At

om
ic

ity
 P

ro
ba

bi
lit

y
ps

a

AWM

pRC=0.9, ps=0.5

pRC=0.5, ps=0.5

0 5 10 15 20
0

0,2

0,4

0,6

0,8

1

Number of Elements in XorDelivery j

Se
m

i-
At

om
ic

ity
 P

ro
ba

bi
lit

y
ps

a

AWM

pRC=0.5, ps=0.7

pRC=0.5, ps=0.6

Figure 8.15: pSA of the order-to-delivery process, varying j (delivery) and k (pay).

On the right hand side of Figure 8.15, the results for increasing the number of delivery

services and payment providers j = k are depicted. While AWM guarantees correct

21As the results for increasing k expose the same conclusions, their presentation is spared.

117

8.4 Summary

execution in all cases (i.e., pSA(ω)AWM = 1), the resulting pSA(ω)BA using WS-BA

increases considerably for both depicted scenarios (pS = 0.5 and pRC = 0.5, 0.9). Thus,

the chance for inconsistent system states decreases. As assumed, the chance of successful

completion of XorDelivery and XorPay increases with ascending j = k. Thereby, if half

of the dynamically bound elements are recoverable (i.e., pRC = 0.5), the overall number

of failures is decreased and pSA(ω)BA increases from roughly pSA(ω)BA ≈ 0.42 for i = 1

to pSA(ω)BA = 1 for i ≥ 11.

Conclusion Evaluating the correctness guarantees produced by AWM in combination

with service discovery, AWM ensures correct execution in all cases. Thereby, the forward-

recovery potential is increased, thus increasing the overall chance of the workflow to

successfully complete. The results of these tests reveal that depending on the position

of the according WPXOR in the workflow, the semi-atomicity probability employing WS-

BA may be positively or negatively influenced. When integrating more vendors i while

remaining the number of elements in XorDelivery and XorPay fixed, pSA(ω)BA drasti-

cally decreases. However, if the number of alternatives of delivery services j as well as

payment providers k is increased, the chance that the workflow semi-atomically com-

pletes using WS-BA increases. The alignment of the WPXOR patterns in the workflow is

decisive: XorVendor may only conflict with subsequent workflow elements, XorDelivery

and XorPay only conflict with elements which are aligned prior to them.

8.4 Summary

In this chapter, we evaluated AWM according to the resulting autonomy of elements

and ensured correctness guarantees and compared it to a pessimistic (WS-AT) and an

optimistic (WS-BA) reference approach. WS-AT ensures correctness however does not

grant autonomy to participants while WS-BA enables autonomous coupling however at

the cost of correctness. Our approach AWM is a hybrid approach which ensures correct

execution in any case and grants autonomy to participants whenever possible.

The evaluations reveal that the overall number of included elements is not decisive for

the autonomy dAWM . However, it is strongly influenced by the transactional properties

of services: Obviously, the more services are recoverable, the greater the resulting auton-

omy. In the extreme case, if all services are recoverable, AWM ensures autonomy of all

services. In addition, the evaluation shows that the same holds for redoable elements:

Independent of the ratio of recoverable elements, the more services are redoable, the

greater the resulting dAWM .

Furthermore, data dependencies effect the autonomy as they increase the chance that

services directly transactionally conflict. Apparently, the more elements are involved in

data dependencies, the greater is the conflict potential and thus the lower the autonomy.

However, the nature of data dependencies prominently influences the performance as

118

8.4 Summary

well: For constant ratios of data dependent elements, the resulting autonomy is greater

for short data dependency sequences than for longer ones. This is attributed to the

fact that for short data dependency sequences the overall number of dependencies is

lower than for long sequences. In addition, in case of longer data dependency sequences,

AWM benefits from sparing the coordination of indirect conflict elements. These are

not considered by WS-AT or WS-BA.

As shown in Section 6.3.4, AWM ensures correct execution in all cases, just as the pes-

simistic approach WS-AT. Employing the optimistic approach WS-BA, the correctness

of the execution is jeopardized as soon as one non-recoverable element is included. Gen-

erally, the less services are recoverable, the more likely it is that the process will not semi-

atomically terminate. However, in sequential alignments, the guarantees strongly differ

according to the position of non-recoverable elements: The earlier a non-recoverable

element is invoked in the process, the more likely it will not semi-atomically terminate.

Further factors which influence the correctness of WS-BA, pSA(ω)BA, are the size of the

workflow as well as the success probability of included services: pSA(ω)BA is determined

by the chance for successful execution of a workflow ω as well as the probability of

recoverable failures. Thus, for low success probabilities of services pS, the chance for

recoverable failures is high (cf. if the first invoked element fails). When increasing pS,

pSA(ω)BA decreases. If pS is further increased, the chance for successful termination of

ω increases, thus pSA(ω)BA again increases.

Especially, when integrating service discovery to enable forward-recovery in case of

failure, the evaluation conveys that the use of AWM is essential: Depending on the

position of the alternatives in ω, pSA(ω)BA might even decrease with increasing number

of alternatives. AWM however ensures correct execution while further increasing the

degree of autonomy in all cases.

Overall, the autonomy given by AWM is greater than the autonomy of WS-AT in

almost all cases. Only in the ‘worst case’, if none of the elements is recoverable nor

redoable, they are equal, i.e., dAWM = dAT . Additionally, correctness guarantees given

by AWM are always 100%, thus greater than or equal to that of WS-BA. If only 1%

of the services are non-recoverable, pSA(ω)BA is decreased to only 50% in certain set-

ups. As furthermore, WS-BA does not offer any possibility to validate a given process,

the deployment of AWM is essential to ensure correct execution in the sense of semi-

atomicity. We are able to validate our experimental results by our analytical approaches

for dAWM (ω) and pSA(ω)BA.

119

9 Conclusion

This thesis has been dedicated to develop transactional support for ad-hoc cooperations

in dynamic environments. These are specified as composite services and implemented

as workflows. Service discovery enables dynamic binding of components at runtime.

We introduced a formal model of ad-hoc collaborations and based on this, presented

our approach of adaptive workflow management. It employs verification and adaptation

algorithms to ensure correct execution of workflows: A workflow is adapted prior to

runtime if its verification fails, and additionally dynamically during execution in case of

failure of elements or discovery of alternatives.

Introducing this, we contributed a novel transactional abstraction layer to existing

workflow management systems: A designer is no longer compelled to statically defining

workflows along with their complete failure handling at design time. Instead, she is pro-

vided with means of specification of abstract workflows at design time; failure handling

for these is automated at runtime according to dynamically discovered components.

Correctness of specific executions of these workflows at runtime is guaranteed. Thereby,

a new degree of flexibility for workflows is achieved. The main contributions of this

thesis are summarized as follows:

Transactional Support of Ad-hoc Collaboration Especially when implementing ad-hoc

collaborations in mobile environments, the ability to flexibly discover and compose ser-

vices at runtime is indispensable: In such dynamic environments, the execution context,

i.e., available services at runtime, might not even be known at design time and might

differ from execution to execution. Our approach integrates service discovery, verifica-

tion, and dynamic composition of workflows at runtime to ensure reliable cooperations:

A composition is altered and automatically enhanced by appropriate failure handling

mechanisms to ensure correct execution of these composite services in the presence of

failures. Failure recovery mechanisms are dynamically identified according to the re-

quirements of the ad-hoc cooperations and its participants.

Autonomy vs. Reliability Our approach to guarantee transactionally correct execution

of workflows in the sense of failure atomicity, abandons from tight coupling of services

to transactions if possible, thus granting autonomy to participants. However, enabling

autonomous execution of components comes at the cost of relaxing strict correctness

9 Conclusion

criteria, such as strict atomicity, e.g., as ensured by 2PC. We introduced semi-atomicity

as the correctness criterion for composite services in the presence of transactional prop-

erties. It allows for completion of services at different times and exploits capabilities to

ensure consistent system states by employing convenient forward- or backward-recovery.

Conventional approaches so far either strictly bind the execution of participating ser-

vices to transaction phases (thus ensure correctness however do not grant autonomy) or

they loosely couple services to activities while assuming compensatability of all involved

entities. As our evaluation showed, correctness of such workflows is already jeopardized

as soon as one element is not compensatable. As opposed to these, we presented a hybrid

approach that ensures reliable, i.e., correct ad-hoc cooperation in any case, and grants

autonomy to participants whenever possible.

Minimal Set of Coordinated Elements Employing our formal model, we are able to

identify the minimal set of elements which need to be coordinated. We are thereby able

to identify the minimal set of nodes, whose autonomy needs to be limited in order to

guarantee correctness in any case. On the other hand, we proved the minimality property

of this set: I.e., no more than these elements need to be coordinated in order to ensure

semi-atomicity. Therefore, we were able to show that our algorithm to adapt workflows

at runtime, outputs optimal results regarding the number of coordinated elements and

thus the autonomy of participants.

Forward-Recovery by Service Discovery We presented a service discovery protocol for

mobile ad-hoc networks which exploits the mobility of participants to dynamically find

and make use of services. We identified service discovery as a prerequisite to enable

ad-hoc collaborations, as services may only be dynamically composed if they are discov-

ered. Additionally, by integrating service discovery and adaptive workflow management,

we are able to incorporate alternatives for services at runtime thereby increase the over-

all chance for successful termination. Furthermore, we demonstrated that by doing so,

diversity of transactional properties resolves conflicts and enables exclusion of trans-

actionally conflicting elements. All in all, we showed that service discovery enables

forward-recovery of ad-hoc cooperations at runtime thus increasing the overall chance

for successful termination as well as the autonomy of participants.

We introduced our adaptive workflow management system and gave a formal demon-

stration of its correctness. Furthermore, we presented a prototypical implementation

which realizes our approach. The results of our experimental evaluation show that our

hybrid approach is very well suitable in a variety of system settings. We verified all

experimental results employing our analytical approach.

Our presented work builds the theoretical foundation for ensuring transactional cor-

121

9 Conclusion

rectness of flexible workflow systems. Existing approaches focus on optimization of

quality of service aspects, such as utility costs, response time, or information quality.

Complementing these with our approach is worthwhile investigating in future work, as

it allows for the examination of trade-offs between autonomy of components and indi-

vidually determined optimization of costs and benefits despite transactional correctness.

Furthermore, an approach which probabilistically determines the transactional proper-

ties of patters according to the number and properties of its alternatives is conceivable:

Thereby, further flexibility, optimization potential, and autonomy of services may be

obtained - whereas the correctness guarantees will be given probabilistically as well.

122

Bibliography

[AAA+96] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Günthör, and C. Mo-

han. Advanced Transaction Models in Workflow Contexts. In Proceedings

of the 12th International Conference on Data Engineering (ICDE), pages

574–581, New Orleans, USA, 1996.

[ABEW00] W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Workflow

Modeling Using Proclets. In Proceedings of the 5th International Confer-

ence on Cooperative Information Systems (CoopIS), pages 198–209, Eilat,

Israel, 2000.

[AGG+04] G. Avoine, F. Gärtner, R. Guerraoui, K. Kursawe, S. Vaudenay, and

M. Vukolic. Reducing Fair Exchange to Atomic Commit. Technical re-

port, Swiss Federal Institute of Technology (EPFL), 2004.

[AGG+05] G. Avoine, F. C. Gaertner, R. Guerraoui, K. Kursawe, S. Vaudenay, and

M. Vukolic. Gracefully Degrading Fair Exchange with Security Mod-

ules. In Proceedings of the European Conference on Dependable Computing

(EDCC), pages 55–71, Budapest, Hungary, 2005.

[AHKB03] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. P.

Barros. Workflow Patterns. Distribibuted Parallel Databases, 14(1):5–51,

2003.

[AMA+95] G. Alonso, C. Mohan, D. Agrawal, A. El Abbadi, R. Günthör, and M. Ka-

math. Exotica/FMQM: A Persistent Message-Based Architecture for Dis-

tributed Workflow Management. In Proceedings of IFIP WG8.1 Working

Conference on Information Systems Development for Decentralized Orga-

nizations, pages 1–18, Trondheim, Norway, 1995.

[ASSR93] P. C. Attie, M. P. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and

Enforcing Intertask Dependencies. In Proceedings of the 19th Conference

on Very Large Data Bases (VLDB), pages 134–145, Dublin, Ireland, 1993.

[BCGP08] C. Blundo, E. Cristofaro, C. Galdi, and G. Persiano. Validating Orchestra-

tion of Web Services with BPEL and Aggregate Signatures. In Proceedings

Bibliography

of the 6th European Conference on Web Services (ECOWS), pages 205–214,

Dublin, Ireland, 2008. IEEE Computer Society.

[BDSN02] B. Benatallah, M. Dumas, Q. Z. Sheng, and A. H.H. Ngu. Declarative Com-

position and Peer-to-Peer Provisioning of Dynamic Web Services. In Pro-

ceedings of the 18th International Conference on Data Engineering (ICDE),

pages 297–308, San Jose, USA, 2002. IEEE Computer Society.

[BFHS03] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification: A New

Approach to Design and Analysis of e-Service Composition. In Proceedings

of the 12th International Conference on World Wide Web (WWW), pages

403–410, Budapest, Hungary, 2003. ACM.

[BGMS92] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of Mul-

tidatabase Transaction Management. The VLDB Journal, 1(2):181–240,

1992.

[BGO07] S. Böttcher, L. Gruenwald, and S. Obermeier. A Failure Tolerating Atomic

Commit Protocol for Mobile Environments. In Proceedings of the 8th Inter-

national Conference on Mobile Data Management (MDM), pages 158–165,

Mannheim, Germany, 2007.

[BGP06] S. Bhiri, C. Godart, and O. Perrin. Transactional Patterns for Reliable Web

Services Compositions. In Proceedings of the 6th International Conference

on Web Engineering (ICWE), pages 137–144, Palo Alto, USA, 2006.

[Bie08] M. Bier. Untersuchung des Einflusses von Positionsinformationen auf Ser-

vice Discovery in Mobilen Ad-hoc Netzwerken. Master’s thesis, Freie Uni-

versität Berlin, Fachbereich Mathematik und für Informatik, 2008.

[BLRSA04] C. Bobineau, C. Labbe, C. Roncancio, and P. Serrano-Alvarado. Compar-

ing Transaction Commit Protocols for Mobile Environments. In Proceedings

of Workshop on Database and Expert Systems Applications (DEXA), pages

673–677, Zaragoza, Spain, 2004.

[BPG05] S. Bhiri, O. Perrin, and C. Godart. Ensuring Required Failure Atomic-

ity of Composite Web services. In Proceedings of the 14th International

Conference on World Wide Web (WWW), pages 138–147, Chiba, Japan,

2005.

[CFP02] E. Colombo, C. Francalanci, and B. Pernici. Modeling Coordination and

Control in Cross-Organizational Workflows. In Proceedings of International

Conference on Cooperative Information Systems (CoopIS), pages 91–106,

Irvine, USA, 2002.

124

Bibliography

[CJFY02] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha. GSD: A Novel Group-

based Service Discovery Protocol for MANETs. In Proceedings of 4th IEEE

Conference on Mobile and Wireless Communications Networks (MWCN),

pages 140–144, Stockholm, Sweden, 2002.

[CJFY06] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha. Toward Distributed Ser-

vice Discovery in Pervasive Computing Environments. IEEE Transactions

on Mobile Computing, 5(2):97–112, February 2006.

[CLSF05] S. Weerawarana F. Curbera, F. Leymann, T. Storey, and D. F. Fergu-

son. Web Services Platform Architecture : SOAP, WSDL, WS-Policy,

WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice

Hall PTR, March 2005.

[Coa99] Workflow Management Coalition. Terminology and Glossary. Technical

Report WFMC-TC-1011, Workflow Management Coalition, 1999.

[CR90] P. K. Chrysanthis and K. Ramamritham. ACTA: A Framework for Spec-

ifying and Reasoning about Transaction Structure and Behavior. In Pro-

ceedings of the ACM International Conference on Management of Data

(SIGMOD), pages 194–203, Atlantic City, USA, 1990.

[CZH+99] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz.

An Architecture for a Secure Service Discovery Service. In Proceedings of

the 5th annual ACM/IEEE International Conference on Mobile Computing

and Networking (MobiCom), pages 24–35, Seattle, United States, 1999.

ACM.

[DD07] D. Dyachuk and R. Deters. Service Level Agreement Aware Workflow

Scheduling. In Proceedings of International Conference on Services Com-

puting (SCC), pages 715–716, Salt Lake City, USA, 2007.

[DHB97] M. H. Dunham, A. Helal, and S. Balakrishnan. A Mobile Transaction

Model that Captures Both the Data and Movement Behavior. Mobile Net-

works and Applications, 2(2):149–162, 1997.

[DHL91] U. Dayal, M. Hsu, and R. Ladin. A Transactional Model for Long-Running

Activities. In Proceedings of the 17th International Conference on Very

Large Data Bases (VLDB), pages 113–122, Barcelona, Spain, 1991.

[DKRR96] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan. Logic

Based Modeling and Analysis of Workflows (Extended Abstract). In In

Proceedings of the 17 ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pages 1–3. ACM Press, 1996.

125

Bibliography

[DU96] T. Devirmis and Ö. Ulusoy. A Transaction Model for Multidatabase Sys-

tems. In Proceedings of the 2nd European Conference on Parallel Processing

(Euro-Par), pages 862–865, Lyon, France, 1996.

[EJK+96] A. K. Elmagarmid, J. Jing, W. Kim, O. Bukhres, and A. Zhang. Global

Committability in Multidatabase Systems. IEEE Transactions on Knowl-

edge and Data Engineering, 8(5):816–824, 1996.

[EKL98] K. Evans, J. Klein, and J. Lyon. Transaction Internet Protocol - Require-

ments and Supplemental Information - RFC2372, 1998.

[Elm92] A. K. Elmagarmid, editor. Database Transaction Models for Advanced

Applications. Morgan Kaufmann, 1992.

[FDDB05] M.-C. Fauvet, H. Duarte, M. Dumas, and B. Benatallah. Handling Trans-

actional Properties in Web Service Composition. In Proceedings of 6th In-

ternational Conference on Web Information Systems Engineering (WISE,

pages 273–289, New York, USA, 2005.

[GB01] L. Gruenwald and S. Banik. A Power-Aware Technique to Manage Real-

Time Database Transactions in Mobile Ad-Hoc Networks. In Proceedings of

the 4th International Workshop on Mobility in Databases and Distributed

Systems (MDDS), Munich, Germany, 2001.

[GBH+07] W. Gaaloul, S. Bhiri, M. Hauswirth, M. Rouached, and C. Godart. For-

mal verification of composite service recovery mechanisms consistency. In

Proceedings of 3rd International Conference on Collaborative Computing:

Networking, Applications and Worksharing (CollaborateCom), pages 278–

287, New York, USA, 2007.

[GGGG04] A. Gupta, N. Gupta, R. K. Ghosh, and M. M. Gore. Team Transaction: A

New Transaction Model for Mobile Ad Hoc Networks. In Proceedings of In-

ternational Conference on Distributed Computing and Internet Technology

(ICDCIT), pages 127–134, Bhubaneswar, India, 2004.

[GHKM94] D. Georgakopoulos, M. F. Hornick, P. Krychniak, and F. Manola. Spec-

ification and Management of Extended Transactions in a Programmable

Transaction Environment. In Proceedings of the 10th International Con-

ference on Data Engineering (ICDE), pages 462–473, Houston, USA, 1994.

IEEE Computer Society.

[GM83] H. Garcia-Molina. Using Semantic Knowledge for Transaction Processing

in a Distributed Database. ACM Transactions Database Systems, 8(2):186–

213, 1983.

126

Bibliography

[GMS87] H. Garcia-Molina and K. Salem. Sagas. ACM SIGMOD Records, 16(3):249–

259, 1987.

[GNT04] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and

Practice. Morgan Kaufmann, Amsterdam, Netherlands, 2004.

[GRGH07] W. Gaaloul, M. Rouached, C. Godart, and M. Hauswirth. Verifying Com-

posite Service Transactional Behavior Using Event Calculus. In Proceedings

of OTM Confederated International Conferences (CoopIS), pages 353–370,

Vilamoura, Portugal, 2007.

[GWYY06] Z. Gao, L. Wang, M. Yang, and X. Yang. CNPGSDP: An Efficient

Group-based Service Discovery Protocol for MANETs. Computer Net-

works, 50(16):3165–3182, 2006.

[H0̈9] M. Höflich. Zusicherung der Zuverlässigkeit von Geschäftsprozessen mit

dynamisch gebundenen Web-Services. Master’s thesis, Freie Universität

Berlin, Fachbereich Mathematik und für Informatik, 2009.

[Hah10] K. Hahn. Adaptive Workflow Management to Ensure Transactional Service

Composition. In Proceedings of 5th International Conference on Digital In-

formation Management (ICDIM 2010), to appear, Thunder Bay, Canada,

2010.

[HB03] R. Hamadi and B. Benatallah. A Petri Net-based Model for Web Service

Composition. In Proceedings of the 14th Australasian Database Conference

(ADC), volume 17 of CRPIT, Adelaide, Australia, 2003.

[HBS+06] K. Hahn, J.-H. Böse, H. Schweppe, M. Scholz, and A. Voisard. Using Mov-

ing Object Databases to Provide Context Information in Mobile Ad-hoc

Networks. In Proceedings of Workshop on Managing Context Information

and Semantics in Mobile Environments (MCISME) in Conjunction with

MDM, pages 75 – 83, Nara, Japan, 2006.

[HDVL03] S. Helal, N. Desai, V. Verma, and C. Lee. Konark - A Service Discovery

and Delivery Protocol for Ad-Hoc Networks. Wireless Communication and

Networking, 3:2107–2113, 2003.

[HKRBO07] K. Hahn, B. König-Ries, J.-H. Böse, and P. Obreiter. Robust and Fair

Trading in Volatile Environments - Overcoming Technical Problems and

Uncooperativeness. In Proceedings of Sixth International ACM Workshop

on Data Engineering for Wireless and Mobile Access (MobiDE) in Con-

junction with ACM SIGMOD, Beijing, China, 2007.

127

Bibliography

[HMR07] J. El Haddad, M. Manouvrier, and M. Rukoz. A Hierarchical Model for

Transactional Web Service Composition in P2P Networks. In Proceedings

of International Conference on Web Services (ICWS), pages 346–353, Salt

Lake City, USA, 2007.

[HS08] K. Hahn and H. Schweppe. Analysis of Non-Functional Service Properties

for Transactional Workflow Management. In Non Functional Properties

and Service Level Agreements in Service Oriented Computing Workshop

(NFPSLA-SOC’08) in Conjunction with ECOWS, Dublin, Ireland, 2008.

[HS09a] K. Hahn and H. Schweppe. Exploring Transactional Service Proper-

ties for Mobile Service Composition. In Proceedings der Vierten Kon-

ferenz Mobilität und Mobile Informationssysteme (MMS 2009), pages 39–

52, Münster, Germany, 2009.

[HS09b] K. Hahn and H. Schweppe. Flexible Workflows to Support Transactional

Service Composition in Mobile Environments. Technical Report B-09-

17, Freie Universität Berlin, Fachbereich für Mathematik und Informatik,

Fakultät für Informatik, 2009.

[HTKR05] H. Höpfner, C. Türker, and B. König-Ries. Mobile Datenbanken und In-

formationssysteme. dpunkt.verlag, first edition, 2005.

[HvRR07] M. Husemann, M. v. Riegen, and N. Ritter. Transaktionale Kontrolle

dynamischer Prozesse in serviceorientierten Umgebungen. Datenbank-

Spektrum, pages 6–14, 2 2007.

[Int] Internet Engineering Task Force: Simple Service Discovery Protocol - In-

ternet Draft. http://www.upnp.org/download/draft_cai_ssdp_v1_03.

txt.

[JK97] S. Jajodia and L. Kerschberg, editors. Advanced Transaction Models and

Architectures. Kluwer, 1997.

[JM96] D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad Hoc

Wireless Networks. Mobile Computing, pages 153–181, 1996.

[Joh94] D. B. Johnson. Routing in Ad Hoc Networks of Mobile Hosts. In Proceed-

ings of the IEEE Workshop on Mobile Computing Systems and Applications

(WMCSA), pages 158–163, Santa Cruz, USA, 1994.

[KK00a] B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for

wireless networks. In Proceedings of the 6th International Conference on

Mobile Computing and Networking (MobiCom), pages 243–254, Boston,

Massachusetts, United States, 2000. ACM.

128

http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt
http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt

Bibliography

[KK00b] K. Ku and Y. Kim. Moflex Transaction Model for Mobile Heterogeneous

Multidatabase Systems. In Proceedings of International Workshop on Re-

search Issues in Data Engineering (RIDE), pages 39–46, Los Alamitos,

USA, 2000. IEEE.

[KKRO03a] M. Klein, B. König-Ries, and P. Obreiter. LANES - A Lightweight Overlay

for Service Discovery in Mobile Ad Hoc Networks. In Proceedings of 3rd

Workshop on Applications and Services in Wireless Networks (ASWN),

Bern, Switzerland, 2003.

[KKRO03b] M. Klein, B. König-Ries, and P. Obreiter. Service Rings - A Semantic Over-

lay for Service Discovery in Mobile Ad Hoc Networks. In Proceedings of 6th

International Workshop on Network-Based Information Systems (NBIS),

Prague, Czech Republic, 2003.

[KS95] N. Krishnakumar and A. Sheth. Managing Heterogeneous Multi-System

Tasks to Support Enterprise-wide Operations. Distributed Parallel

Databases, 3(2):155–186, 1995.

[Ley95] Frank Leymann. Supporting Business Transactions Via Partial Back-

ward Recovery In Workflow Management Systems. In Proceedings of GI-

Fachtagung Datenbanksysteme Business, Technologie und Web (BTW),

pages 51–70, Dresden, Germany, 1995.

[LF03] M. Little and T. Freund. A Comparison of Web Services Transaction Pro-

tocols. Technical report, Arjuna Technologies Ltd and IBM, 2003.

[LHL06] A. Liu, L. Huang, and Q. Li. QoS-Aware Web Services Composition Using

Transactional Composition Operator. In Proceedings of 7th International

Conference on Advances in Web-Age Information Management (WAIM),

pages 217–228, Hangzhou, China, 2006.

[LL07] A. Liu and Q. Li. Ensuring Consistent Termination of Composite Web Ser-

vices. In Proceedings of SIGMOD Ph.D. Workshop on Innovative Database

Research, Beijing, China, 2007.

[LLM+08] T. Lessen, F. Leymann, R. Mietzner, J. Nitzsche, and D. Schleicher. A

management framework for ws-bpel. In Proceedings of the 6th European

Conference on Web Services (ECOWS), Dublin, Ireland, 2008.

[LY04] B. Limthanmaphon and Y.Zhang. Web service composition transaction

management. In Proceedings of the 15th Australasian Database Conference

(ADC), pages 171–179, Dunedin, New Zealand, 2004.

129

Bibliography

[MBB+03] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K.

Elmagarmid. Business-to-Business Interactions: Issues and Enabling Tech-

nologies. The VLDB Journal, 12(1):59–85, 2003.

[MBB09] A. N. Mian, R. Baldoni, and R. Beraldi. A Survey of Service Discovery Pro-

tocols in Multihop Mobile Ad Hoc Networks. IEEE Pervasive Computing,

8:66–74, 2009.

[Mos] J. E. B. Moss. [Nested Transactions: An Approach to Reliable Distributed

Computing. PhD thesis.

[MPHS05] R. S. Marin-Perianu, P. H. Hartel, and J. Scholten. A Classification of

Service Discovery Protocols. Technical Report TR-CTIT-05-25, University

of Twente, Enschede, June 2005.

[MPP02] M. Mecella, F. P. Presicce, and B. Pernici. Modeling E-service Orchestra-

tion through Petri Nets. In Proceedings of the 3rd VLDB Workshop on

Technologies for e-Services (TES), pages 38–47, Hong Kong, Hong Kong

SAR, 2002. Springer-Verlag.

[MRKS92a] S. Mehrotra, R. Rastogi, H. Korth, and A. Silberschatz. A Transac-

tion Model for Multidatabase Systems. In Proceedings of 12th Interna-

tional Conference on Distributed Computing Systems (ICDCS), Yokohama,

Japan, 1992.

[MRKS92b] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. A Transac-

tion Model for Multidatabase Systems. Technical Report CS-TR-92-14,

University of Texas at Austin, 1992.

[MS02] S. McIlraith and T. C. Son. Adapting Golog for Composition of Semantic

Web Services. In Proceedings of 8th International Conference on Prin-

ciples of Knowledge Representation and Reasoning (KR), pages 482–493,

Toulouse, France, 2002.

[MS04] B. Mutschler and G. Specht. Mobile Datenbanksysteme. Springer, 2004.

[MSKW96] J.A. Miller, A. P. Sheth, K. J. Kochut, and X. Wang. CORBA-Based

Run-Time Architectures for Workflow Management Systems. Journal of

Database Management, 7:16–27, 1996.

[Muk02] S. Mukherjee. A Modified Kangaroo Model for Long Lived Transactions

over Mobile Networks. In Proceedings of International Conference on E-

Activities (WSEAS), Singapore, 2002.

130

Bibliography

[Net97] Network Working Group: Service location protocol - RFC 2165, 1997.

http://www.ietf.org/rfc/rfc2165.txt.

[NM02] S. Narayanan and S. A. McIlraith. Simulation, Verification and Automated

Composition of Web Services. In Proceedings of the 11th International

Conference on World Wide Web (WWW), pages 77–88, Honolulu, USA,

2002. ACM.

[OAS02] OASIS: Sepcification of BTP, 2002. http://www.oasis-open.org/

committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.

pdf.

[OAS07] OASIS Standard: Web Services Business Process Execution Language

(WSBPEL) Version 2.0, 2007. http://docs.oasis-open.org/wsbpel/

2.0/OS/wsbpel-v2.0-OS.html.

[PA00] G. Pardon and G. Alonso. CheeTah: a Lightweight Transaction Server

for Plug-and-Play Internet Data Management. In Proceedings of the 26th

International Conference on Very Large Data Bases (VLDB), pages 210–

219, Cairo, Egypt, 2000. Morgan Kaufmann Publishers Inc.

[PA02] A. Popovici and G. Alonso. Ad-Hoc Transactions for Mobile Sevices. In

Proceedings of the 3rd VLDB International Workshop on Transactions and

Electronic Services (TES), pages 570–574, Hong Kong, China, 2002.

[Pap03] M. P. Papazoglou. Web Services and Business Transactions. World Wide

Web, 6(1):49–91, 2003.

[Pap07] M. P. Papazoglou. Web Services: Principles and Technology. Prentice Hall,

first edition, 2007.

[Pen05] S. Penz. SLP-based Service Management for Dynamic ad-hoc Networks. In

Proceedings of the 3rd International Workshop on Middleware for Pervasive

and ad-hoc Computing (MPAC), pages 1–8, Grenoble, France, 2005. ACM.

[PKH88] C. Pu, G. E. Kaiser, and N. Hutchinson. Split-Transactions for Open-

Ended Activities. In Proceedings of the 14th Conference on Very Large

Data Bases (VLDB), pages 26 – 37, Los Angeles, 1988.

[PWSK07] G. Prochart, R. Weiss, R. Schmid, and G. Kaefer. Fuzzy-based Support

for Service Composition in Mobile Ad Hoc Networks. In International

Conference on Pervasive Services (ICPS), pages 379–384, Istanbul, Turkey,

2007. IEEE Computer Society.

131

http://www.ietf.org/rfc/rfc2165.txt
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Bibliography

[RCJF02] O. Ratsimor, D. Chakraborty, A. Joshi, and T. Finin. Allia: Alliance-

based Service Discovery for ad-hoc Environments. In Proceedings of the 2nd

International Workshop on Mobile Commerce (WMC), pages 1–9, Atlanta,

USA, 2002. ACM.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scal-

able Content Addressable Network. In Proccedings of ACM International

Conference on Data Communication (SIGCOMM), San Diego, USA, 2001.

[RP99] E. M. Royer and C. E. Perkins. Multicast Operation of the ad-hoc on-

demand Distance Vector Routing Protocol. In Proceedings of the 5th

ACM/IEEE International Conference on Mobile Computing and Network-

ing (MobiCom), pages 207–218, Seattle, Washington, United States, 1999.

[RS95] M. Rusinkiewicz and A. Sheth. Specification and Execution of Transac-

tional Workflows. In Modern Database Systems: The Object Model, Inter-

operability, and Beyond, pages 592–620. ACM Press, 1995.

[SARA04] P. Serrano-Alvarado, C. Roncancio, and M. Adiba. A Survey of Mobile

Transactions. Distributed Parallel Databases, 16(2):193–230, 2004.

[SBR04] G. Schiele, C. Becker, and K. Rothermel. Energy-efficient Cluster-based

Service Discovery for Ubiquitous Computing. In Proceedings of the 11th

ACM SIGOPS European Workshop (EW), page 14, Leuven, Belgium, 2004.

[SDN07] M. Schäfer, P. Dolog, and W. Nejdl. Engineering Compensations in Web

Service Environment. In Proceedings of International Conference on Web

Engineering (ICWE), pages 32–46, Como, Italy, 2007.

[SK03] B. Srivastava and J. Koehler. Web Service Composition - Current Solutions

and Open Problems. In Workshop on Planning for Web Services (ICAPS),

pages 28–35, Trento, Italy, 2003.

[SKM+96] A. Sheth, K. Kochut, J. Miller, D. Palaniswami, J. Lynch, D. Worah,

S. Das, C. Lin, and I. Shevchenko. Supporting State-wide Immunization

Tracking using Multi-Paradigm Workflow Technology. In Proceedings of the

22th International Conference on Very Large Data Bases (VLDB), pages

263–273, Bombay, India, 1996.

[SMWM06] U. Srivastava, K. Munagala, J. Widom, and R. Motwani. Query Optimiza-

tion Over Web Services. In Proceedings of the 32nd International Con-

ference on Very Large Data Bases (VLDB), pages 355–366, Seoul, Korea,

2006.

132

Bibliography

[SPJ09] S. Stein, T. R. Payne, and N. R. Jennings. Flexible Provisioning of Web

Service Workflows. ACM Transactions on Internet Technologies, 9(1):1–45,

2009.

[Ste07] S. Stein. Flexible Provisioning of Service Workflows. In Proceedings of

the 22nd Conference on Artificial Intelligence (AAAI), pages 1949–1950,

Vancouver, Canada, 2007.

[Ste08] S. Stein. Flexible Provisioning of Services in Multi-Agent Systems. PhD

thesis, University of Southampton, 2008.

[SWCD97] A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying

Moving Objects. In Proceedings of 13th International Conference on Data

Engineering (ICDE), Birmingham, UK, 1997.

[SWLF04] Wen-Zhan Song, Yu Wang, Xiang-Yang Li, and Ophir Frieder. Localized

Algorithms for Energy Efficient Topology in Wireless ad hoc networks. In

Proceedings of the 5th ACM International Symposium on Mobile ad hoc

Networking and Computing (MobiHoc), pages 98–108, Tokyo, Japan, 2004.

ACM.

[THP01a] W3C Note, Technical Specification: Tentative Hold Protocol Part 2, 2001.

http://www.w3.org/TR/tenthold-2/.

[THP01b] W3C Note, White Paper: Tentative Hold Protocol Part 1, 2001. http:

//www.w3.org/TR/tenthold-1/.

[VS04] A. Voisard and J. Schiller, editors. Location Based Services. Morgan Kauf-

mann, San Fransisco, April 2004.

[VV04] K. Vidyasankar and G. Vossen. A Multi-Level Model for Web Service Com-

position. In Proceedings of the IEEE International Conference on Web Ser-

vices (ICWS), page 462, San Diego, USA, 2004. IEEE Computer Society.

[WAB00] B. Kiepuszewski W.M.P. van der Aalst, A.H.M. ter Hofstede and A.P.

Barros. Advanced Workflow Patterns. In 7th International Conference on

Cooperative Information Systems (CoopIS), Eilat, Israel, 2000.

[Wat01] S. Waterhouse. JXTA search: Distributed Search for Distributed Net-

works, 2001. Sun Microsystems Whitepaper - http://search.jxta.org/

JXTAsearch.pdf.

[WHC+99] D. Woelk, B. Haskell, J. L. Carter, R. Brice, Rusin, and A. Helal. Any

Time, Anywhere Computing: Mobile Computing Concepts and Technology.

Kluwer Academic Publishers, Norwell, MA, USA, 1999.

133

http://www.w3.org/TR/tenthold-2/
http://www.w3.org/TR/tenthold-1/
http://www.w3.org/TR/tenthold-1/
http://search.jxta.org/JXTAsearch.pdf
http://search.jxta.org/JXTAsearch.pdf

Bibliography

[WR92] H. Wächter and A. Reuter. The ConTract Model. In Database Transac-

tion Models for Advanced Applications, pages 219–263. Morgan Kaufmann,

1992.

[WS92] G. Weikum and H.-J. Schek. Concepts and Applications of Multilevel

Transactions and Open Nested Transactions. In Database Transaction

Models for Advanced Applications, pages 515–553. 1992.

[ZKJ01] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An Infrastruc-

ture for Fault-tolerant Wide-area Location and Routing. Technical Report

UCB/CSD-01-1141, UC Berkeley, April 2001.

[ZNB01] A. Zhang, M. Nodine, and B. Bhargava. Global Scheduling for Flexi-

ble Transactions in Heterogeneous Distributed Database Systems. IEEE

Transactions on Knowledge and Data Engineering, 13(3):439–450, 2001.

[ZNBB94] A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres. Ensuring Relaxed

Atomicity for Flexible Transactions in Multidatabase Systems. SIGMOD

Records, 23(2):67–78, 1994.

134

A Formal Model

A.1 Basic Workflow Patterns

The following workflow patterns are defined by the WfMC as the basic workflow patterns.

• A sequence of services denotes, that one service is enabled after the completion of

the preceding task. This is also known as sequential or serial routing.

• The parallel split of a branch leads to a decomposition of one branch into several

which are all executed in parallel. Different denotations of this pattern are AND-

split, parallel routing or fork.

• At the synchronization point, several branches are converged into one single subse-

quent branch. The subsequent branch is enabled as soon as all incoming branches

completed. This pattern is referred to as AND-join, rendevouz or synchronizer.

• The exclusive choice in a workflow denotes the divergence of a single branch into

several branches out of which one and only one branch is enabled. Synonyms for

the exclusive choice are XOR- or exclusive OR-split, conditional routing, switch,

decision or case statement.

• The simple merge converges several incoming branches to a single outgoing branch.

The subsequent workflow is enabled every time an incoming branch completes. This

pattern is also known as XOR-join, exclusive OR-join, asynchronous join or merge.

A.2 Advanced Workflow Patterns

The following advanced workflow patterns (as specified by the WfMC) can be reduced

to the introduced patterns. Therefore, we disregard them in the scope of this thesis:

• Multi choice (OR-split) and multi synchronization respectively (OR-join) denote a

pattern, in which one or several of the branches are executed. The subsequent work-

flow is activated as soon as all activated branches within the pattern are completed.

This pattern can be reconstructed using WPXOR. For example, the multi-choice

pattern consisting of two service s1 and s2 (i.e., OR(s1, s2)) is equivalent to the

following representation using the WPXOR pattern:

WPXOR(s1, s2, WPAND(s1, s2)).

A.3 Complete Transactional Properties of Patterns

• The n-out-of-m pattern as originally defined states that n or more branches out

of m possible branches have to to complete in order to successfully complete the

pattern. Although more complex, this again can be constructed by WPXOR pattern.

Consider for example an n-out-of-m pattern with n = 2 out of the m = 3 branches

(s1, s2, s3). This is equivalent to the following pattern:

WPXOR(WPAND(s1, s2), WPAND(s1, s3), WPAND(s2, s3), WPAND(s1, s2, s3)).

Other advanced patterns (multi-merge, structured discriminator, etc.) comprise as-

pects of workflows which are different from transactional execution. Especially, there

behavior is not deterministic. According to their definition, it cannot be reconstructed

in case of completion, whether one or several services completed and whether they have

been executed one or several times respectively. We therefore disregard these in our

work.

A.3 Complete Transactional Properties of Patterns

The complete transactional properties of WPSEQ(E) and WPAND(E) pattern are defined

as follows:

Definition 24. Complete Transactional Properties of WPSEQ(E) and

WPAND(E)

A pattern WP(E), containing of the set of elements E, which is a Sequence

WPSEQ(E) or an And WPAND(E) pattern,

• is compensatable, if and only if all included elements are compensatable

WP(E).compensatable = 1

:⇔ ∀e ∈ E : e.compensatable = 1

• needs consistent completion, as soon as one element needs consistent completion

WP(E).consistentCompletion = 1

:⇔ ∃e ∈ E : e.consistentCompletion = 1

• is retrieable, if all elements are retrieable

WP(E).retrieable = 1

:⇔ ∀e ∈ E : e.retrieable = 1

The complete transactional properties of WPXOR(E) patterns are defined as follows.

136

A.3 Complete Transactional Properties of Patterns

Definition 25. Transactional Properties of WPXOR(E)

An Xor pattern WPXOR(E) containing the set of elements E

• is compensatable, if all enclosed elements are compensatable. It is not compen-

satable, if none of the enclosed elements is compensatable. Otherwise, it is not

known:

WPXOR(E).compensatable = 1

:⇐ ∀e ∈ E : e.compensatable = 1

WPXOR(E).compensatable = 0

:⇐ ∀e ∈ E : e.compensatable = 0

• needs consistent completion, if all included elements demand consistent

completion. If none of the included elements demands consistent completion,

the pattern allows for inconsistent completion. Otherwise, it is not known:

WPXOR(E).consistentCompletion = 1

:⇐ ∀e ∈ E : e.consistentCompletion = 1

WPXOR(E).consistentCompletion = 0

:⇐ ∀e ∈ E : e.consistentCompletion = 0

• is retrieable, as soon as one element is retrieable. Otherwise, it is not retrieable.

WPXOR(E).retrieable = 1

:⇔ ∃e ∈ E : e.retrieable = 1

137

B Adaptive Workflow Management

B.1 Proof of Proposition 5

Proof. • ’=⇒’: Assume, no transactional conflicts {ei, ej}C with ei, ej ∈ E exist.

Consider e ∈ E with pT (e) 6= (1, 1). Distinction of cases:

– If pT (e) = (0, 0): Assume it exists e′ ∈ E, with e 6= e′ and pT (e′) 6= (1, 1),

then {e, e′}C transactionally conflict. Contradiction to assumption, thus for

all e′ ∈ E, with e 6= e′ it holds: pT (e′) = (1, 1). This fulfills condition c.

– Else if pT (e) = (1, 0): Assume it exists e′ ∈ E, with e 6= e′ and pT (e′) 6= (1, ∗),
then {e, e′}C transactionally conflict. Contradiction to assumption, thus ∀e′ ∈
E, with e 6= e′ it holds: pT (e′) = (1, ∗). According to Definition 24, WPAND(E)

is then recoverable pT (WPAND(E)) = (1, ∗). This fulfills condition a.

– Else if pT (e) = (0, 1) (analogue): Assume it exists e′ ∈ E, with e 6= e′ and

pT (e′) 6= (∗, 1), then {e, e′}C transactionally conflict. Contradiction to as-

sumption, thus ∀e′ ∈ E, with e 6= e′ it holds: pT (e′) = (∗, 1). According to

Definition 24, WPAND(E) is then retrieable pT (WPAND(E)) = (∗, 1). This

fulfills condition b.

Else if ∀e ∈ E it holds pT (e) = (1, 1) , according to Definition 24, pT (WPAND(E)) =

(1, 1), thus condition a, b and c are fulfilled.

• ’⇐=’: Assume, that WPAND(E) is recoverable, retrieable or condition c is fulfilled.

Consider the following distinction of cases:

– pT (WPAND(E)) = (1, ∗): Thus, all e ∈ E are recoverable (pT (e) = (1, ∗)) and

therefore no conflict exists.

– pT (WPAND(E)) = (1, ∗) accordingly: Thus, all e ∈ E are retrieable (pT (e) =

(∗, 1)) and therefore no conflict exists.

– Condition c is fulfilled: Let e ∈ E be the element with pT (e) = (0, 0). As all

other elements e′ ∈ E employ pT (e) = (1, 1), no conflicts exist.

B.2 ATS-Invariance of Resulting ω′

B.2 ATS-Invariance of Resulting ω′

As defined in Section 6.3.2, the adaptations are correct, if ATSω′ ⇒ ATSω.

The adaptation algorithm operates on the data dependency graph Gω(V, E). The set

of nodes V contains all mandatory elements of ω. The completion of ω is ensured, if all

vi ∈ V complete. Thus, the ATS-representation of ω is:1

ATSω =
∧

∀vi∈V

ATSvi

Elements of V are either services or WPXOR patterns. Let Vx ⊆ V be the set of

WPXOR patterns in ω. Let additionally {xi,j}j (j = 1, . . . , n) be the set of alternatives

in vi ∈ VX . The ATS-representation of an element vi ∈ V is then:

ATSvi =


∨

j=1,...n

(xi,j ∧ (
∧

k=1,...n,
k 6=j

¬xi,k)) if vi is a WPXOR

vi else

Note, that ATSv for WPXOR patterns consists of a mutually exclusive disjunction of

conjunctions. That implies, at most one of the conjunctions xi,j ∧ (
∧

k=1,...n,k 6=j

¬xi,k) is

true. Using this, the ATS-representation of ω is:

ATSω = (
∧

∀v∈V \Vx

v) ∧ (
∧

∀vi∈Vx

ATSvi)

The adaptation algorithm (Algorithm 2) traverses Gω(V, E) and processes every node

v ∈ V . The data dependency graph of Gω is thus equivalent to Gω′ . However, the

WPXOR nodes might be altered in the second step by eliminating branches.

Let vi = WPXOR({xi,j}j) be altered to v′i = WPXOR({xi,j}j \ {xi,l}l) by eliminating

all branches {xi,l}l. For convenience, let L be the set of indices of the above eliminated

branches. The ATS-representation of the WPXOR is thereby altered to:

ATSvi′ =
∨

j=1,...n,
j /∈L

(xi,j ∧ (
∧

k=1,...n
k 6=j

¬xi,k))

Obviously, as at most one of the conjunction terms xi,j ∧ (
∧

k=1,...n,k 6=j

¬xi,k) is true, it

holds: ATSvi′ ⇒ ATSvi.

The ATS-representation of ω′ is therefore:

ATSω′ = (
∧

∀v∈V \Vx

v) ∧ (
∧

∀v′i∈Vx

ATSvi′)

1For the sake of readability, we abandon duplicate subscripts. Thus, we utilize ATSvi instead of ATSvi .

139

B.2 ATS-Invariance of Resulting ω′

As accepted termination of the altered WPXOR patterns ATSvi′ implicate accepted

termination of the original patterns ATSvi, it also holds that:

ATSω′ ⇒ ATSω

We thereby demonstrated, that the output ω′ is ATS-invariant to the input workflow ω.

140

C Implementation

The implementation of a WPXOR(S1, S2) by AWM is shown in Figure C.1.

Figure C.1: Implementation of the WPXOR pattern.

D Evaluation

D.1 Expected Index c0 of the First Non-Recoverable Element

When given the number n of elements within a sequence, i.e., WPSEQ(s1, . . . , sn), and

the number of non-recoverable elements c, the index of the first non-recoverable element

c0 is approximated as follows. Let {sc0, . . . scc} denote the sequence of non-recoverable

elements.

As c and n are given, it obviously holds: c0 ∈ {1, . . . n− (c− 1)}.
If c0 = n− (c− 1), there exists exactly one possible alignment for the non-recoverable

elements. All recoverable elements are aligned prior to c0, all non-recoverable elements

behind c0.

If c0 = n − (c − 1) − 1 = n − c, one recoverable and c − 1 non-recoverable elements

follow c0 (i.e., overall c elements succeed sc0). Thus, there are
(

c
c−1

)
possible alignments

for the recoverable element behind c0.

If c0 = n − c − 1, 2 recoverable and c − 1 non-recoverable elements follow c0 (i.e.,

overall c + 1 elements succeed sc0). Thus, there are
(

c+1
c−1

)
possible alignments for the

non-recoverable elements behind c0.

Regarding all possible values of c0 ∈ {1, . . . n − c + 1}, the expected value for c0 is

therefore determined as follows:

E(c0 = i) =

n−c+1∑
i=1

i ∗
(

n−i
c−1

)
n−c+1∑

i1

(
n−i
c−1

)
D.2 Evaluating dAWM Varying the Number of Included Services n

Test Set-Up In this series of tests, we vary the number of elements n within the work-

flow from n = 1, . . . , 100 and present the results for different settings with normally

distributed ratios of transactional properties around a stated mean (variance 5%). This

mean is chosen to be equal i.e., pRC = pRD for all tests. We perform the analysis for

test scenarios without and with given data dependencies. We present the results for the

following types of workflows:

D.2 Evaluating dAWM Varying the Number of Included Services n

• ω′ is a workflow without data dependencies, consisting of n services, thus:

ω′ = WPAND(s1, . . . sn)

• ω′′ contains data dependencies of the following form: Half of the included elements,

that is n/2 elements, are randomly chosen to be sequentially data dependent, e.g.,

s1 → . . . → sn/2. All other n/2 elements are randomly aligned in parallel or

sequence. Thus, one possible alignment of ω′′ is then:

ω′′ = WPAND(WPSEQ(s1, . . . , sn/2), sn/2+1, . . . , sn).

• ω′′′ contains t data dependencies (with t < n), each consisting of exactly 2 elements,

e.g. si → si+1. All other n− 2 ∗ t elements are randomly appended in sequence or

parallel. Thus, one characteristic alignment of ω′′′ is:

ω′′′ = WPAND(WPSEQ(s1, s2), . . .WPSEQ(s2∗t−1, s2∗t), s2∗t+1, . . . , sn).

According to the varied parameters, the input workflows are generated, transformed

and analyzed. The given results reflect average values of at least 100 test runs.

Assumption Recall the analytical approach for determining the degree of autonomy of a

workflow with and without data dependencies. Without data dependencies, i.e., ω′, it is

straightforward to see, that dAWM is independent of n. Therefore, we assume dAWM (ω′)

to converge to a constant value.

When varying the data dependencies with respect to the size of the workflow n, dAWM

is presumably equal to or greater than dAT by a constant ca. Therefore, our assumption

for this series of tests is formulated as follows:

• dAWM is (nearly) constant when varying n, thus dAWM(ω) → dAT (ω) + ca.

Evaluation In Figure D.1 the degree of autonomy for AWM dAWM (ω′) and for WS-AT

dAT (ω′) is illustrated for the example workflow ω′ (i.e., without data dependencies). The

size n of the workflow ω′ is varied from n = 1, . . . 100 (on the x-axis). Besides dAT (ω′),

dAWM (ω′) is depicted for different ratios of transactional properties p = 0.2 and p = 0.5

(with p = pRC(ω) = pRD(ω)).

For n = 1 all degrees are 1, as transactional coordination of a single service is not nec-

essary. For n ≥ 2, dAWM (ω′) (for all values of p) is constantly greater than dAT (ω′), thus

fewer elements have to be coordinated. The degree of autonomy for WS-AT dAT (ω′)

is 0, as all elements are coordinated. Consider dAWM (ω′) for p = 0.2: The result-

ing dAWM (ω′) converges to dAWM(ω′) = 0.36. This is verified, applying Formula 8.2:

dAWM(ω′) = 1 − (1 − 0.2) ∗ (1 − 0.2) = 1 − 0.64 = 0.36, thus 0.64 ∗ n elements are

coordinated in ω′. This is analogue for p = 0.5 (resulting in dAWM(ω′) = 0.25).

In Figure D.2, we depicted the results for ω′′ (on the left hand side) and ω′′′ (on the

right hand side), thus for workflows with data dependencies. In both depicted results,

half of the elements are recoverable and half of them redoable, thus pRC = pRD = 0.5.

143

D.2 Evaluating dAWM Varying the Number of Included Services n

0 10 20 30 40 50 60 70 80 90 100
0

0,2

0,4

0,6

0,8

1

Number of included services n

d(
w

) p = 0,5

p = 0,2

WS-AT

Figure D.1: dAWM of ω′ without data dependencies, varying n.

0 20 40 60 80 100

0

0,2

0,4

0,6

0,8

1

Number of Included elements n

d(
w

)

AWM

AWM'

WS-AT

0 20 40 60 80 100

0

0,2

0,4

0,6

0,8

1

Number of Included Elements n

d(
w

)

AWM

WS-AT

Figure D.2: dAWM of ω′′ (left) and ω′′′ (right) varying n.

In ω′′ a data dependency sequence of half of the size of the workflow n/2 is included.

Thus, indirect conflict elements may occur. In Figure D.2 on the left hand side, we

depicted the degree of autonomy of AWM and additionally the degree of autonomy, if

indirect conflict elements are not excluded from coordination (AWM’). For small values

of n, dAWM (ω′′) (and d′AWM (ω′′)) range around 0.75 (which is the limit for p = 0.5

without data dependencies in Figure D.1). Both curves decrease and converge to a

stable value (approximately dAWM(ω′′) = 0.5 and d′AWM(ω′′) = 0.4). This is confirmed

by our analytical approximations, using Formulas 8.3 and D.1 (see Appendix D.3).

In Figure D.2 on the right hand side, the evaluation results for workflows of type ω′′′

in which t = 0.2 ∗n (i.e., r = 0.2) elements are data dependent on one other element are

presented. I.e., if 10 elements are included in the workflow, 2 data dependencies exist.1

At the beginning (n ≤ 5), dAWM (ω′′′) varies between roughly dAWM(ω′′′) = 0.8 and

dAWM(ω′′′) = 0.75. For greater values of n it converges to dAWM(ω′′′) = 0.75. This again

is confirmed by our analytical results, using Formulas 8.3 and 8.4 (see Appendix D.3).

The results verify our assumption, that the autonomy of ω is not directly dependent

on the size of the workflow. The variations in this experiment (i.e., neither dAWM (ω) nor

1In this scenario, no indirect conflict elements may occur, thus AWM’ is not depicted.

144

D.3 Analytical Approximation of dAWM

d′AWM (ω) are constant) are due to the varying size of the sequence of data dependent

elements in relation to n, which are further investigated in Section 8.2.1.3.

Conclusion In this series of tests, we inspected the influence of the size of the workflow

n on the degree of autonomy of AWM and the reference approach WS-AT. We were able

to validate our assumption, that dAWM is constantly greater than dAT . In the presented

scenarios, the autonomy enabled by AWM dAWM is up to 75% greater than for WS-AT

dAT . The experimental results meet our results achieved by the analytical approach.

The size n of the workflow ω does not effect the resulting degree of autonomy dAWM (ω).

We therefore forego to present results for different values of n when examining the degree

of autonomy.

D.3 Analytical Approximation of dAWM

Analytical Approximation of dAWM Varying n

In order to approximate the expected size of M for ω′′, s′AWM (ω′′), we regard two parts of

the workflow separately: The first one contains all elements, which are not involved in

any data dependency (thus randomly aligned). The number of conflict elements among

them is approximated employing Formula 8.2 on page 94.

The second part of the workflow consists of the elements which are data dependent on

their predecessor. The number of conflict elements in this sequence is estimated using

Formula 8.4 on page 95.

The union of the mentioned two sets of conflict elements yields to the approximation

of the size of M for ω′′. If ω′′ consists of n elements, the expected size of M is the sum

of the conflict elements of the just mentioned parts of the workflow:

s′AWM (ω′′) = (1− pRC(ωn/2)) ∗ (1− pRD(ωn/2)) ∗ n/2

+ s′(ωn/2−1) ∗ pRD(ωn/2)

∗
n/2∑
i=2

i ∗ pRC(ωn/2)
n/2−i ∗ (1− pRC(ωn/2)) ∗ (1− pRD(ωn/2))

(D.1)

We employ this to approximate the expected degree of autonomy d′AWM (ω′′), for fixed

ratios of recoverable and redoable elements (pRC(ω′′) = pRD(ω′′) = 0.5) and varied the

number of elements from n = 1, . . . , 100. The results are depicted in Figure D.3. As it

can bee seen, the results achieved employing the analytical approach matches the degree

of autonomy d′AWM (ω′′) achieved by the experiments. We validated this for different

ratios of pRC(ω′′) and pRD(ω′′).

145

D.4 Evaluating pSA Varying the Number of Included Services n

0 20 40 60 80 100
0

0,2

0,4

0,6

0,8

1

Number of included services n

d(
w

)

w''(2) - AWM
w''(2) - AWM'
AWM analytically

0 20 40 60 80 100
0

0,2

0,4

0,6

0,8

1

Number of included services n

d(
w

)

AWM

AWM analytically

Figure D.3: dAWM of ω′′ (left) and ω′′′ (right), compared to the analytical approximation.

Analytical Approximation of dAWM Varying pRD

In Figure D.4, the resulting degree of autonomy disregarding indirect conflict elements

d′AWM (ω′′) of workflow ω′′ are depicted. In addition to the experimental results, the

analytical approximation of d′AWM (ω′′) (depicted as dashed lines) are illustrated. The

analytical results are achieved by Formula D.1 in Appendix D.3. As it can be seen, the

experimental results match are verified by the analytical determination of d′AWM (ω′′).

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0,8

1

Ratio of Redoable Elements pRD

pRC=0.5 (AWM')
pRC=0.5 – analytically
pRC=0.2 (AWM')
pRC=0.2 – analytically

d(
w

)

Figure D.4: dAWM of ω′′ varying pRD compared to the analytical approximations.

In Figure D.4, the resulting degree of autonomy disregarding indirect conflict elements

d′AWM (ω′′′) of workflow ω′′′ are depicted. In addition to the experimental results, the

analytical approximation of d′AWM (ω′′′) (dashed lines) are illustrated. The analytical

results are again achieved by Formula D.1. As it can be seen, the experimental results

match the analytical determination of d′AWM (ω′′′).

D.4 Evaluating pSA Varying the Number of Included Services n

Test Set-Up In this series of test, we vary the number of elements n from n = 2, . . . , 100.

We present the results for parallel (WPAND) and sequentially (WPSEQ) aligned services

146

D.4 Evaluating pSA Varying the Number of Included Services n

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0,8

1

Ratio of Redoable Elements pRD

d(
w

)

pRC=0.5
pRC=0.5 – analytically
pRC=0.2
pRC=0.2 – analytically

Figure D.5: dAWM of ω′′′ varying pRD, compared the analytical approximations.

for vicarious values for the ratio of recoverable services pRC(ω) and the success proba-

bility pS.

Assumption Recall, that through the adaptation, AWM guarantees semi-atomicity in

all cases, thus pSA(ω)AWM = 1 for all workflows ω. For the optimistic approach WS-BA,

the following holds: With ascending size of workflows n (with a fixed ratio of recoverable

elements pRC(ω)), the absolute number of non-recoverable elements increases. Thus,

if the elements are arranged in parallel, the chance that one of the non-recoverable

elements successfully completes while any other element fails, increases. We therefore

assume pSA(ω)BA to decrease with increasing n, thus the optimization potential which

AWM exploits to increase.

On the other hand, if elements are aligned in sequence, the influence of n according

to the analytical model is more sophisticated: Obviously, for n = 1, pSA(ω)BA = 1. With

ascending size n, the expectation value for the index of the first non-recoverable element

c0 increases as well. The exact value is dependent on n and the ratio of recoverable

elements pRC .2 In case of failure, the semi-atomicity is ensured, if the failure occurs

before the c0th element. For small values of c0, the chance for such a failure is small

and further decreases with ascending n. For greater values of c0, the chance for failures

before the c0th element increases. Thus, we assume, that for greater values of pRC(ω),

pSA converges to 1 when increasing the size of the workflow n. In conclusion that is,

regarding sequential alignments for elements, pSA is not mainly determined by n, rather

than pS and pRC .

Evaluation In Figure D.6, the pSA(ω)AWM and pSA(ω)BA are depicted (on the y-axis) for

pS = 0.9, pRC = 0.1 and pS = 0.5, pRC = 0.99. The results of the parallel alignments

WPAND are shown on the left side, the results of sequential alignments WPSEQ , are

2See Appendix D.1.

147

D.4 Evaluating pSA Varying the Number of Included Services n

illustrated on the right side. The size of the workflow is varied on the x-axis. As

assumed, pSA(ω)AWM is 1 for all values of n in both scenarios.

0 20 40 60 80 100

0

0,2

0,4

0,6

0,8

1

Number of included elements n

Se
m

i-A
to

m
ic

ity
 p

ro
ba

bi
lit

y
ps

a

AWM

Ps=0.5, pRC=0.99

Ps=0.9, pRC=0.1

0 20 40 60 80 100

0

0,2

0,4

0,6

0,8

1

Number of included elements n

AWM

Ps=0.5,pRC=0.99

Ps=0.9, pRC=0.1

Se
m

i-A
to

m
ic

ity
 p

ro
ba

bi
lit

y
ps

a

Figure D.6: pSA of an WPAND and WPSEQ pattern varying the number of elements n.

Regarding the WPAND pattern, it easily becomes apparent, that the resulting pSA(ω)BA

values for both depicted set-ups decrease with increasing n. In the case of the relatively

low ratio of recoverable elements pRC = 0.1, pSA(ω)BA quickly approaches zero. For the

fairly great ratio of recoverable elements pRC = 0.99, pSA(ω)BA continuously decreases to

values slightly lower than 0.6 for n = 100. In this case, due to the extremely high ratio

of recoverable elements, the chance for recoverable failures (i.e., concurrent failures of all

of the (1− pRC) ∗ n non-recoverable elements) is still considerably high for great values

of n. However, vice versa speaking: Already a ratio of 1% non-recoverable elements

(thus one non-recoverable element for n = 100), clearly decreases the probability for ω

to correctly finish to lower than 0.6.

Using pRC and n to determine the number of non-recoverable elements, the experi-

mental results are verified applying Formula 8.7 on page 97: If the success probability

of services is rather high pS = 0.9, and the ratio of recoverable elements is pRC = 0.1

the chance that n = 20 concurrently executed services semi-atomically terminate is:

0.920 + 0.12 ≈ 0.13.

On the right hand side of Figure D.6, the resulting pSA for the same series input

parameters (i.e., pS = 0.9, pRC = 0.1 and pS = 0.5, pRC = 0.99) in sequential alignment

WPSEQ are depicted. As assumed, pSA(ω)AWM equals 100% in any case.

Considering the resulting pSA(ω)BA, our assumption, that pSA(ω)BA in this alignment

is not solely dependent on n (rather than pRC and pS) is confirmed. For low ratios

of recoverable elements pRC = 0.1, pSA(ω)BA continuously decreases with ascending n.

Using n and pRC to approximate the expectation value for the index of the first non-

recoverable element c0, we are able to verify this result applying Formula 8.8. E.g., for

n = 100, pRC = 0.1, the expectation value for c0 equals c0 = 1.1, thus resulting in

pSA(ω)BA ≈ 0.1.

148

D.5 General Evaluation of the Order-to-Delivery Process

Regarding the second depicted series of test with many recoverable elements (i.e.,

pRC = 0.99), the pSA(ω)BA decreases to its minimum of roughly pSA(ω)BA ≈ 0.5 at

n ≈ 15. After that, pSA(ω)BA increases and quickly approaches 1. This behavior of

pSA(ω)BA is explained as follows: For low values of n, the success of the whole workflow

(quantified by the first term in Formula 8.8: pS
n) is decisive. However with increasing n,

this term approaches 0. On the other hand, the probability for semi-atomic termination

in case of failure (quantified by the second term in Formula 8.8: 1 − pS
k) is roughly 0

for small values of n and noticeably increases with ascending n, starting from n ≈ 15.3

This is due to the fact, that for greater values of n (and thus c0, e.g. for n = 100, pRC =

0.99, c0 ≈ 27) the probability, that failure occurs before the c0th element approaches 1.

Employing the analytical approach in Formula 8.8, we are able to verify the experimental

results.

Conclusion In all performed experiments, our claim that pSA(ω)AWM ≥ pSA(ω)BA holds.

Generally, in parallel alignments WPAND , with increasing n, pSA(ω)BA decreases. How-

ever, the nature of the decrease (gradually or asymptotically) greatly differs depending

on pRC and pS. Our experiments prove, that even if the ratio of non-recoverable elements

is very low (i.e., in our set-up 1%), the probability that a workflow results correctly using

WS-BA is decreased to roughly 60%, thus 40% lower than for AWM.

In sequential alignments WPSEQ , the behavior of pSA(ω)BA with increasing numbers

of elements greatly differs. In some experiments, pSA(ω)BA decreases with increasing

number of elements. In other experiments the opposite is true: pSA(ω)BA decreases with

ascending size of the workflow n. Thus, in sequential alignments, n is not substantially

decisive for pSA(ω)BA. For all experiments, we are able to confirm the results using

the analytical approach applying Formulas 8.7 and 8.8 to determine pSA(ω)BA. The

influential parameters for pSA(ω)BA is investigated in Sections 8.2.2.2 and 8.2.2.3.

D.5 General Evaluation of the Order-to-Delivery Process

Test Set-Up In this series of tests, we vary the transactional properties of the dynami-

cally bound elements, thus the elements of the WPXOR patterns XorVendor, XorDelivery

and XorPay, pRC and pRD. Additionally, we vary the success probability pS of these ser-

vices. We assume three elements per WPXOR pattern to be present, thus i = j = k = 3.

According to these settings, the workflow is filled with dynamically bound elements and

the resulting degree of autonomy dAWM (ω) and dAT (ω) as well as the semi-atomicity

probability pSA(ω)AWM and pSA(ω)BA are evaluated. For each depicted experiment, the

results represent average values of at least 100 runs.

3This behavior is further discussed in the series of tests varying the success probability pS , see Section 8.2.2.3

149

D.5 General Evaluation of the Order-to-Delivery Process

Assumption Regarding the degree of autonomy, we assume the following: Based on our

analytical model as well as the previous evaluation results, we expect similar trends of the

degree of autonomy dAWM (ω) as those of Section 8.3.1 (MoP). That is, we assume dAT (ω)

to be zero for all tests when using WS-AT. Employing AWM, if none of the dynamically

bound services is recoverable and none is redoable (i.e., pRC = pRD = 0), all of them

have to be coordinated, thus: dAWM (ω) = 1− 9/21 ≈ 0.57. With increasing ratios pRC

and pRD, dAWM (ω) increases just as in Figure 8.9. As soon as either all dynamically

bound elements are recoverable (pRC = 1) or all of them are redoable (pRD = 1), the

resulting degree of autonomy dAWM (ω) equals 1.

Considering the semi-atomicity probability, we expect similar trends for the resulting

correctness guarantees pSA(ω)AWM and pSA(ω)BA as for MoP (see Figure 8.10). That is,

pSA(ω)AWM is 1 for all settings. pSA(ω)BA increases with increased ratio of recoverable

elements pRC to approach 1. Additionally, pSA(ω)BA exposes the characteristic behavior

(decrease to a global minimum and then increase to 1) with increasing pS.

Evaluation In Figure D.7, we depict the resulting dAWM (ω) (and dAT (ω)) on the y-axis

for fixed values of pRD = 0.5, 0.8 and pRD = pRC and varied pRC on the x-axis. As

assumed, the trends of the resulting degrees are similar to those for MoP (in Figure 8.9).

If pRD = pRC , dAWM (ω) increases from dAWM (ω) ∼ 0.57 (for pRC = 0) to 1 which meets

our assumption.4

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0,2

0,4

0,6

0,8

1

Ratio of Recoverable Elements pRC

d(
w

)

PRD=0.8

PRD=0.5

prc=prd

WS-AT

Figure D.7: dAWM of the order-to-delivery process, varying pRC and pRD.

On the left hand side of Figure D.8, the ratio of recoverable elements among the

dynamically bound services pRC is varied on the x-axis. On the y-axis the resulting

semi-atomicity probability for different success probabilities of services (pS = 0.5, 0.9)

are depicted. The course of pSA(ω)BA is similar to the one in the MoP process (cf.

Figure 8.10). If the success probability of the dynamically bound services is pS = 0.9,

the resulting pSA(ω)BA is roughly 1 for all values of pRC . That relies on the fact, that with

three branches in each WPXOR pattern, the chance that an WPXOR pattern completes

4As the results for varied pRD and fixed pRC expose the same characteristics, we omit their presentation.

150

D.5 General Evaluation of the Order-to-Delivery Process

is: 0.9 + (1 − 0.9) ∗ 0.9 + (1 − 0.9)2 ∗ 0.9 = 0.999. Thus, the chance that the whole

workflow completes is extremely high.

If the success probability is pS = 0.5 and no dynamically bound element is recoverable

or redoable, the chance that the order-to-delivery process semi-atomically completes is

approximately 60%. If the ratio of recoverable elements pRC increases, the resulting

semi-atomicity probability is raised (to 1 for pRC > 0.9). AWM ensures correctness

independent of the success probabilities of the involved elements, thus pSA(ω)AWM = 1.

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0,8

1

Success Probability ps

AWM

pRC=0.9

pRC=0.5

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0,8

1

Ratio of Recoverable Elements pRC

Se
m

i-
At

om
ic

ity
 P

ro
ba

bi
lit

y
ps

a

AWM

ps=0.9

ps=0.5

Se
m

i-
At

om
ic

ity
 P

ro
ba

bi
lit

y
ps

a

Figure D.8: pSA of the order-to-delivery process, varying pRC and pS .

On the right hand side, we depicted pSA on the y-axis for pRC = 0.5, 0.9. pSA(ω)BA

proceeds characteristically, as detailedly evaluated in the empirical evaluation 8.2.2.3.

For the order-to-delivery process, the global minimum of pSA(ω)BA is reached for roughly

pRC = 0.3. If half of the dynamically bound elements are recoverable, WS-BA ensures

correct execution in only ∼ 1/3 of the all cases.

Conclusion The results of these tests affirm the results achieved by the general evalu-

ation (Section 8.2.1) and the evaluation of the MoP process (Section 8.3.1). Both pRC

and pRD influence the number of conflicts and thus resulting dAWM (ω). For the order-

to-delivery process, if only half of the included elements are redoable, AWM is able to

increase the degree of autonomy dAWM by approximately 90% as opposed to WS-AT.

Regarding the resulting correctness guarantees, the order-to-delivery example is as

well illustrative for our previously achieved results. Using WS-BA, the correctness of

the executed workflow is strongly dependent on the ratio of recoverable pRC elements:

The lower pRC , the lower pSA(ω)BA. If the success probability of the bound elements is

pS = 0.5 and only half of the dynamically bound elements are recoverable (pRC = 0.5),

WS-BA ensures correct execution in only 65% of all cases.

When varying the success probability of services, the distinctive process of pSA(ω)BA

is observed: At first, the chance for semi-atomic failures mainly influences the resulting

pSA(ω)BA. Thus, pSA(ω)BA decreases to a global minimum of pSA(ω)AWM ∼ 0.3 (pS =

0.3). With further increase of pS, the chance for successful completion of the workflow

is decisive for pSA(ω)BA: The semi-atomicity probability using WS-BA increases until it

151

D.5 General Evaluation of the Order-to-Delivery Process

approaches 1. AWM guarantees correct execution in all simulated settings.

152

D.5 General Evaluation of the Order-to-Delivery Process

153

E Zusammenfassung

Das Aufkommen drahtloser Netzwerke in Kombination mit kleiner und gleichzeitig lei-

stungsstärker werdenden Geräten ermöglicht neuartige Anwendungen für mobile Umge-

bungen. Benutzer, die über ein mobiles Gerät verfügen, können spontan mit anderen

verfügbaren Teilnehmern kooperieren. In dieser Arbeit wird ein integrierter Ansatz zur

transaktionalen Unterstützung von ad-hoc Kollaborationen und Dienstfindung vorgestellt.

Zielsetzung dabei ist, die Unterstüzung verlässlich zu gestalten und trotzdem Autonomie

der Teilnehmer zu gewährleisten. Spontane Kooperationen werden als komponierte

Dienste implementiert, die als Workflows spezifiziert sind. Wir präsentieren ein Dienst-

findungsprotokoll für mobile ad-hoc Szenarien, das die Mobilität der Knoten wie folgt

ausnutzt: Es passt sich an die momentanen Gegebenheiten an, um Nachrichten einzu-

sparen, und ermöglicht gleichzeitig Finden und Nutzen so genannter entfernter Dienste.

Durch ein solches Protokoll wird die spontane Kollaboration erst ermöglicht: Teilnehmer

können nur miteinander kooperieren, wenn sie sich auch finden; zum anderen ermöglicht

es Fehlerbehandlung durch dynamisches Auffinden von Alternativen zur Laufzeit.

Der entscheidende Beitrag dieser Arbeit ist ein adaptives Workflow Management Sys-

tem. Dieses nutzt transaktionale Eigenschaften von Diensten und verwendet Semi-

Atomarität als Korrektheitskriterium, um zuverlässige und dennoch lose Kopplung von

Diensten zu ermöglichen. Workflows werden zur Laufzeit verifiziert und ggf. adaptiert.

Zusätzlich werden sie im Fehlerfall während der Ausführung angepasst, um in jedem

Fall Korrektheit zu gewährleisten. Dienste werden so weit wie möglich autonom aus-

geführt, d.h., man verzichtet auf strikte Kopplung von Ausführung von Diensten an

Transaktionsphasen. In der Arbeit wird gezeigt, dass der vorgestellte Ansatz stets opti-

male Ergebnisse bezüglich der autonomen Ausführung der Dienste gewährleistet.

Analytische und experimentelle Ergebnisse bestätigen die Vorteile unseres Ansatzes:

Im Gegensatz zu pessimistischen Verfahren, die zwar korrekte Ausführung garantieren,

allerdings auf Kosten der Unabhängigkeit der Teilnehmer, erhöht unser Ansatz die Au-

tonomie der Teilnehmer beträchtlich. Im Vergleich zu optimistischen Ansätzen, ermög-

licht unser Ansatz, verschiedene (auch nicht kompensierbare) Dienste zu integrieren,

ohne dabei die Korrektheit der Ausführung zu beeinträchtigen. Zusammenfassend lässt

sich sagen, dass unser Ansatz ist ein hybrider Ansatz ist, der Korrektheit in jedem Fall

und Autonomie so weit wie möglich garantiert.

E Zusammenfassung

155

F Erklärung

Ich versichere hiermit, dass ich die vorliegende Dissertation selbständig verfasst habe

und alle Hilfsmittel und Hilfen als solche gekennzeichnet sind. Die Arbeit wurde bei

keiner anderen Prüfungsbehörde eingereicht.

Berlin, den 28. April 2010

Katharina Hahn

	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Application Scenario - MoP
	Objectives
	Outline

	System Model
	Network Model
	Component Model
	Cooperation Model
	Failure Model
	Challenges

	Related Work
	Existing Standards for Web Services
	Web Service Transaction Framework: WS-Tx
	Composing Web Services

	Related Research Areas
	Transaction Models
	Composition of Services
	Verification of Composite Services

	Summary

	Discovering Mobile Services
	Existing Approaches
	Adaptive Group-based Service Discovery: aGSD
	Group-based Service Discovery
	Exploitation of Mobility

	Evaluation
	Evaluation Setup
	Evaluating the Dynamic Configuration
	Evaluation of Remote Service Requests

	Summary

	Formalizing Transactional Cooperation of Services
	Transactional Services
	Service Model
	Transactional Properties of Services

	Transactional Composition of Services
	Control Flow Patterns
	Transactional Pattern
	Transactional Properties of Patterns
	Workflow Elements
	Dependencies

	Specifying Correctness: Semi-Atomicity

	Flexible Workflows to Guarantee Correct Execution
	Views of the Workflow
	Workflow as a Tree
	Data Dependency Graph G_(V,E)
	ATS View

	Verification of a Workflow
	Conflict Elements
	Verification Criterion: SAP
	Verifying a Workflow

	A-priori Adaptation of the Workflow
	Minimal Set of Coordinated Elements
	ATS-Invariant Adaptations
	Adaptation Algorithm
	Correctness of the Algorithm

	Integrating Service Discovery in Adaptive Workflow Management
	Adaptation at Runtime

	Implementing Adaptive Workflow Management
	Formal Requirements
	Transactional Properties of Services
	Control Flow Patterns
	Transactional Composition of Services

	Architecture
	Presentation Layer
	Logical Layer

	Use Cases
	Deployment
	Process Invocation

	Evaluating AWM
	System Parameters and Evaluation Metrics
	Empirical Evaluation of AWM
	Autonomy of Participants dAWM
	Correctness Guarantees pSA

	Evaluation of AWM in Realistic Settings
	Evaluation Example I: MoP
	Evaluation Example II: Order-to-Delivery Process

	Summary

	Conclusion
	Bibliography
	Formal Model
	Basic Workflow Patterns
	Advanced Workflow Patterns
	Complete Transactional Properties of Patterns

	Adaptive Workflow Management
	Proof of Proposition 5
	ATS-Invariance of Resulting '

	Implementation
	Evaluation
	Expected Index c_0 of the First Non-Recoverable Element
	Evaluating dAWM Varying the Number of Included Services n
	Analytical Approximation of dAWM
	Evaluating pSA Varying the Number of Included Services n
	General Evaluation of the Order-to-Delivery Process

	Zusammenfassung
	Erklärung

