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Thesis Contributions

Lymphoma is the fifth most frequent cancer in North America and Western Europe.
This thesis is concerned with transcriptional profiling of diffuse large B-cell lym-
phoma (DLBCL) and Burkitt lymphoma (BL) using supervised and semi-supervised
machine learning methodology. It investigates two aspects of lymphoma classification
in detail.

Diagnosis of Burkitt lymphoma. The distinction of BL. and DLBCL based
on traditional diagnostic criteria is often imprecise. Expert pathologist disagree fre-
quently. Nevertheless, an accurate diagnostic distinction is mandatory for treatment
decision.

Functional Stratification. Traditional molecular biological inference is based on
hypothesis-driven intervention (e.g. via mutagenesis or over-expression of genes) in
cellular systems to gain insight into molecular mechanisms. However, human cancer
cells in their natural environment are not accessible to interventional assays. Thus,
clinical microarray studies predominantly provide purely observational data.

The contributions of the present work are:

e The introduction of the semi-supervised learning problem of core group extension.
Starting from a small set of unambiguously diagnosed tumors, the problem is to
find additional cases similar to the core group from an unlabeled pool of tumors
without diagnosis.

e The development of an Expectation-Maximization (EM) based Algorithm to core
group extension.

e The generation of a linear signature allowing a quantitative and reproducible di-
agnostic distinction of BL and DLBCL implementing the core group extension
strategy.

e The development of a semi-supervised learning method allowing stratification of
tumors from clinical microarray studies based on data from hypothesis-driven in-
terventional cell line assays.

e The generation of a novel functional stratification of DLBCL.
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Chapter 1

Introduction

1.1 Gene expression and differentiation

Transcription and translation. Life is organized in small units called cells. The
average size of cells is in the dimension of several micrometers. The number of cells
constituting a living organism ranges from one like in yeast up to several billion
like in human. Biological processes in living organism are controlled at the level of
individual cells, each containing a full copy of the organism’s overall blueprint, the
genome. A cell is organized on three levels;

1. an archive storing the genome,
2. a machinery that makes temporary copies of sections of the genome, and
3. the production units finally implementing the genome.

The archive and the production units are spatially separated. The temporary copies
enable and control the flow of information from the archive to the production units.
The genome is consists of deoxyribonucleic acid (DNA). The information flow from
the DNA to the production sites operates via messenger ribonucleic acid (mRNA)
molecules, which are copies of small stretches of the information encoded in the DNA.
The final production units are the ribosomes. They synthesize proteins based on
DN A-instructions delivered via mRNA molecules. Proteins are the realization of the
information encoded in the DNA. In human more than 18.000 different proteind!]exist
and thus the DNA holds different sections, each encoding the instructions to produce
another protein. We call a section of an organism’s DNA encoding the instructions
to synthesize a single protein a gene. The process implementing the information flow
from DNA to protein is called gene expression, where the step from DNA to mRNA
is called transcription, and the step from mRNA to protein is called translation. The
information flow has also been described as the central dogma of molecular biology

9.

DNA. DNA is a polymeric molecule consisting of a sequence of the 4 nucleosides
adenosine, guanosine, cytosine and thymidine connected via phosphate ester bounds.

Thttp://www.ensembl.org/Homo_sapiens/Info/Index
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Figure 1.1: Chromosome. DNA is located in the nucleus of cells. It is packed in
chromosomes. We denote the end of a chromosome as telomere and the central
region as centromere. The centromere splits chromosomes asymmetrically in
long arms (g) and short arms (p)

Each nucleoside consists of a ribose sugar and one of the 4 bases adenine (A), guanine
(G) cytosine (C) and thymine (T). Given two independent DNA strands, base T of
the first strand can form hydrogen bonds with base A of the second strand, while
base G forms hydrogen bonds with base C. If two strands can pair with each other
with respect to the A/T and G/C base-pairing rules they are complementary to
each other. For example ACGT is complementary to TGCA. A genome consists of
two complementary DNA strands that pair with each other via hydrogen bonds and
arrange as the DNA double helix. The blueprint of life is encoded in the sequence of
the four letters A,C,G and T. The human genome comprises approximately 4 billion
base pairs splitting into 23 DNA-molecules organizing in 23 chromosomes (ﬁgure.
Each cell except the germ cells contains two copies of the double strand.

Chromosome. A chromosome is a structure of proteins (histones) and a single
or a pair of two homologous coiled DNA-molecules the chromatids. In its most
condensed form during the so-called metaphase of the cell cycle a chromosome looks
like illustrated in figure[I.1 Two chromatids pair with each other at the centromere.
The centromere splits the chromatids into a longer and a shorter arm. We denote
the long arm with ¢ and the short arm with p. Stained microscopic preparations of
metaphase chromosomes show characteristics lighter and darker banding patterns,
which are numbered along the chromosome. The notation 18q21 denotes band 21 on
the long arm of chromosome 18.



1.1 Gene expression and differentiation

Differential gene expression and gene regulation. A human consists of billions
of cells each containing the same genome. Thus each individual cell has the potential
to run each biological process encoded in the genome. The cells are organized in
organs and organ systems — accumulations of cells of specialized function. For
example, a liver cell is committed to metabolism and detoxification, while a muscle
cell contributes to the motility of an organism. Both, the liver and the muscle cell
contain the same genetic information. Nevertheless, each of them only expresses
those genes, which are necessary to perform the cell type-specific biological processes
(either metabolism and detoxification or motion). We refer to this phenomenon as
differential gene expression. Differential gene expression comprise not only qualitative
aspect wether a gene is expressed or not. Gene expression can furthermore differ
quantitatively, either in the amount of mRNA that is transcribed from DNA, or in
the amount of protein that is translated from the mRNA. The process controlling
when, where, and how much of a gene is expressed is called gene regulation.

Proliferation and differentiation. A human develops over a long period of time.
Starting from a fertilized egg all of us have been an embryo, have been a baby, a child,
and so on. We increase in size, and we develop more and more the abilities, which
make us adult humans. From the perspective of cells this development requires two
important biological processes: proliferation and differentiation. While proliferation
increases the number of cells via duplication, differentiation specializes cells to certain
biological tasks. Stem cells are cells that bear the ability to differentiate into many
different kinds of more specialized cells. If a stem cell can develop into any kind of
cell, it is called pluripotent. If the developmental potential of a stem cell is restricted
to a certain branch, it is called multipotent. For example, the bone-marrow contains
stem cells, which have the potential to differentiate into any kind of blood cell. They
are called multipotent hematopoietic stem cells.

Cancer. During development cells arrange in organs, where they become spe-
cialized to certain biological functions. The high level of organization of the human
body requires that each individual cell is exactly instructed when to proliferate, in
which kind of cell to differentiate and when to stop proliferation. Cancer arises, if
genetic damages decouple a cell from the regulatory circuits of cell proliferation and
differentiation and instead give rise to uncontrolled proliferation. A genetic damage
(hit) can render (transform) all kinds of cells into cancer cells. Tt is a common concept
in the taxonomy of cancers to classify tumors with respect to the non-cancerous cell
of origin of the cancer cell. Thus, we denote cancers arising from developing blood
cells as hematopoietic cancers.

Hematopoietic cancer. Hematopoiesis is the process of blood cell formation. All
human blood cells develop from the same type of cell, the multipotent hematopoietic
stem cell (HSC). HSCs are located in the bone-marrow and give rise to distinct lin-
eages of blood cell development. This development ends in differentiated blood cells
like B-lymphocytes, plasma cells, T-lymphocyte or macrophages (figure . We can
roughly classify three types of hematopoietic cancers: leukemias, lymphomas and
myelomas. Leukemias arise from early myeloid or lymphoid precursors of the blood
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Figure 1.2: Hematopoiesis. Many different kinds of blood cells exist. Their
differentiation process however starts from a common progenitor cell in the bone
marrow, the multipotent hematopoietic stem cell (HSC).

cells. Myelomas arise from plasma cells representing a very late developmental stage
of B-lymphocytes. In this thesis I will discuss the classification of lymphomas. Lym-
phomas comprise a heterogeneous pool of cancers arising from B- or T-lymphocytes
(figure [1.2)). The developmental stage of the cell of origin of lymphomas is between
that of leukemias and myelomas. [64]

Lymphoma. Lymphoma is the fifth most frequent cancer in both men and women
with about 19 per 100, 000 new cases in the United States per year [30], which is rep-
resentative for " Westernized” countries in North America and Europe [30]. The cell of
origin is either a B- or T-lymphocyte harboring one or more characteristic rearrange-
ments of the genome of the kind shown in figure [50]. Lymphomas are classified
into distinct disease entities. We classify them with respect to the cell of origin into T-
and B-cell lymphomas. B-cell lymphomas comprise about 95% of all lymphomas. We
further delineate Hodgkin lymphomas (HL) from all other lymphomas summarized
under non-Hodgkin lymphomas (NHL). HL represents about 12% of all lymphomas.
Thus, the majority of lymphomas are NHLs splitting up into various subtypes of dif-
ferent clinical and biological presentation. The diagnostic distinctions are based on a
comprehensive set of genetic and histopathologic criteria collected within the ”World
Health Organization (WHO) Classification of Tumors of Haematopoietic and Lym-
phoid Tissues” (current version: [87]). We distinguish indolent (slow-growing) from
aggressive forms of lymphoma. This thesis focuses on two aggressive forms of non-
Hodgkin lymphoma; diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma
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(BL).

The majority of all lymphomas are of B-cell origin. The physiological role of native
B-cells is to provide a receptor (B-cell receptor) specifically detecting pathogens like
bacteria, viruses or parasites. Different B-cells provide different B-cell receptors,
each specific to a different pathogen. Due to the great diversity of pathogenes, there
is also a great diversity of B-cell receptors, which is generated during early B-cell
development in the bone marrow (see figure . If a B-cell expresses the final version
of its B-cell receptor and meets a pathogen that specifically binds to this receptor, the
B-cell becomes activated and enters into the germinal center reaction. The germinal
center is a formation of different kinds of hematopoietic cells establishing in lymphoid
tissues upon the infection with a pathogen. We all know the process as swollen lymph
nodes while suffering a common cold. During the germinal center reaction the B-cell
receptor is further optimized, such that it detects the pathogen better. A series
of physiological changes of the B-cells accompanies the process of B-cell activation
and the germinal center reaction. It is widely accepted that many lymphomas arise
from the B-cells at the different developmental stages of the germinal center reaction

36].

1.2 Diffuse large B-cell and Burkitt lymphoma

Diffuse large B-cell lymphoma. DLBCL is the most frequent lymphoma, ac-
counting for 30-40% of all lymphoid neoplasms [89]. The diversity of DLBCL with
respect to clinical presentation and outcome, and its pathological and biological het-
erogeneity suggest that DLBCL comprise several disease entities that may require
different therapeutic approaches [32, [17, [8§].

Burkitt lymphoma. BL comprises three different subtypes of aggressive B-cell
lymphoma, the endemic BL, the sporadic BL, and the immunodeficiency BL [13].
Denis Burkitt first described the disease in 1958 as tumor involving the jaws in
African children [I5]. This variant is called endemic BL. Endemic BL is commonly
observed in equatorial Africa, in children aged between 4 to 7 [I3]. Furthermore it
shows a strong association to an infection with the Epstein-Bar-Virus (EBV) [100].
The histopathological characteristics (microscopic appearance of tumor sections) of
endemic BL are not limited to Africa. We also find tumors expressing the same
characteristics but no EBV infection in many parts of the world. Tumors outside
Africa showing the histopathological characteristics of endemic BL are called sporadic
BL. Sporadic BL accounts for 1-2% of all adult lymphomas in western Europe and the
United States [103]. In addition to sporadic BL one delineates a third variant of BL,
which is associated to infections with the human immunodeficiency virus (HIV). We
refer to it as immunodeficiency BL. Sporadic and immunodeficiency BL comprise only
a very small fraction of adult NHL in non-endemic areas, however in childhood NHL
sporadic BL comprises more than 30% of all cases. Thus BL is the most prominent
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Figure 1.3: Histomorphologic appearance of DLBCL and BL. Shown are
microscopic tissue sections stained with hematoxylin and eosin. Panel A shows
the classic morphologic appearance of Burkitt lymphoma, which is called the
”starry sky” picture. It is caused by the white areas representing macrophages
interspersing with the tumor cells stained in deep blue. Panel B shows in con-
trast the morphologic appearance of diffuse large-B-cell lymphoma. (Figure
reproduced from [42])

childhood NHL in regions where BL is not endemic including western Europe and
the United States [76].

Treatment of DLBCL and BL. DLBCL and BL are treated differently [35].
With the use of chemotherapy regimens that involve methotrexate and cytarabine,
cure rates for sporadic Burkitt lymphoma approach 90 percent in children and 70
percent in adults [24]. Diffuse large-B-cell lymphoma, by contrast, is not only bi-
ologically but also clinically heterogeneous [32]. Treatment with a combination of
chemotherapy based on cyclophosphamide, doxorubicin, vincristine, and prednisone
(CHOP) and the monoclonal antibody rituximab can induce lengthy remissions in
many patients [17]. Approximately 30 percent of patients with diffuse large-B-cell
lymphoma, however, have disease that is resistant to this treatment or relapse soon

after receiving it [24] [68].

Diagnostic distinction of DLBCL and BL.  The accurate differential diagnosis of
BL and DLBCL is mandatory for treatment decision. The diagnostic distinction of
the two entities is based on the combination of histopathology, immunohistochemistry
and fluorescent in situ hybridization (FISH):

Histopathology. Histopathology is the microscopic inspection of tissue sections
obtained by surgery or biopsy. For lymphoma diagnostics the microscope samples are
prepared from the tumor material. The sections are stained according to standard
protocols (e.g. with hematoxylin and eosin). The different lymphoma subtypes show
specific microscopic characteristics. Diagnosis must be confirmed by experienced
expert pathologists especially trained on this task. Figure shows tissue sections
representing the typical histomorphologic representation of BL (figure A) and
DLBCL (figure|1.3] B).
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Figure 1.4: Translocation of the 4th and the 20th chromosome. The
human genome is organized in 23 pairs of homologous chromosomes. We often
observe chromosomal translocations in cancer cells. In the present example chro-
mosome 4 and chromosome 20 have exchanged small fragments with each other.
This mechanism can alter the expression of genes located on the rearranged
chromosomal regions. Furthermore it can cause the fusion of genes located di-
rectly on the breakpoint region. The latter generates fusion genes with a novel
functional spectrum.

Immunohistochemistry. Immunohistochemistry is a method detecting the ex-
pression of individual proteins in histological tissue sections. If we aim on detecting
the expression of protein A in a tissue section, we need an antibody (anti-A), which
is a small protein that specifically binds to protein A. The antibody anti-A is labeled
with a dye, and added to the tissue section. Anti-A binds to protein A, and the dye
accumulates in the regions of the tissue section were protein A is expressed. The
accumulation of dye and thus the expression of protein A is assessed by microscopic
inspection. As for the morphologic diagnosis, also the interpretation of immunohis-
tochemical stainings requires expert pathologists.

Fluorescent in situ hybridization (FISH).  Often the presence of a particular chro-
mosomal rearrangement (ﬁgure is characteristic for a diagnostic entity. Molecular
probes (short stretches of DNA) can be designed, which are complementary to the
chromosomal DNA sequences next to the breakpoint regions of the rearranged chro-
mosomes. Fluorescent in-situ hybridization (FISH) is a diagnostic technique where
the presence of specific chromosomal rearrangements is detected via fluorescent molec-
ular probes and fluorescent microscopy.

According to the WHO [87] we can delineate BL from DLBCL by joining histopathol-
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ogy, immunohistochemistry and FISH analysis. We consider a tumor sample as
Burkitt lymphoma, if

e it shows a characteristic BL histomorphology,

e the expression of the proteins CD20, BCL6 and CD10 can be detected by im-
munohistochemistry,

e the absence of the expression of the proteins BCL2 and CD5 can be confirmed
by immunohistochemistry,

e the fraction of proliferating cells is > 95%, as assessed by immunohistochemistry
of the proliferation marker protein Ki-67,

e and the oncogene MYC on chromosome 8 is translocated to the chromosomal
locus of the immunoglobulin heavy chain (IGH) on chromosome 14 or to either
of the loci of the immunoglobulin light chains (IGK or IGL) on chromosomes 2
or 22.

Lymphomas carrying the MYC to IGH, IGK or IGL translocation we refer to as
"IG-MYC”. We detect them by fluorescence in situ hybridization. The most frequent
translocation in IG-MYC lymphomas is that between chromosome 8 and chromosome
14. Tt is denoted translocation t(8;14). The oncogene MYC can furthermore be
translocated to regions not involving any immunoglobulin locus. We refer to that
kind of lymphoma as "non-IG-MYC”. [42]

Even with the use of current diagnostic criteria, the distinction of BL. and DLBCL is
not precise; agreement among expert pathologists on the histopathological diagnosis
of classic Burkitt lymphoma, an intermediate variant (atypical Burkitt lymphoma),
and diffuse large B-cell lymphoma is only 53% [89, 56]. High throughput transcrip-
tional profiling has become a valuable technology for molecular phenotyping of cancer
that might help to improve on the diagnostic definition of Burkitt lymphoma.

1.3 Lymphoma transcriptional and genomic profiling

Transcriptional profiling. Cells are specialized to different biological functions
depending on the tissue or organ they constitute. They express different genes accord-
ing to their specialization. Today, we can record the information on expression levels
of thousands of genes in a single assay. The success of genome sequencing projects
has led to the development of the DNA microarray. This measurement platform has
been developed in the mid 1990 (see e.g. [77]) and measures gene expression at the
level of mRNA. We thus refer to its application as transcriptional profiling. Microar-
rays yield global gene expression finger prints of different organs, tissues, cells, and
tumors. The diagnostic potential of transcriptional profiling has been first shown
in 1999 [34] by using transcriptional profiles to discriminate between acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL). The technology entered

10
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lymphoma classification in 2000, when Alizadeh et al. [3] have proposed a novel con-
cept to subdivide diffuse large B-cell lymphomas into an activated B-cell like (ABC)
and germinal center B-cell like (GCB) transcriptional phenotype.

GCB-like and ABC-like DLBCL.  Alizadeh et al. [3] stratify DLBCL into ABC-
like (activated B-cell like) and GCB-like (germinal center B-cell like) lymphomas.
The taxonomy was chosen, because the ABC-like lymphoma transcriptional profiles
are similar to those of non-cancerous activated B-cells, and the GCB-like lymphoma
transcriptional profiles are similar to non-cancerous germinal center B-cells. GCB-
lymphomas represent B-cells during the germinal center reaction, while ABC may
represent a post germinal center B-cell developmental stage [53]. The proposal is
based on two assumptions:

1. The transcriptional profile of each lymphoma resembles the transcriptional pro-
file of the non-cancerous cell it arose from, the cell of origin.

2. Native B-cells change their transcriptional profile while they pass though the
developmental stages of B-cell activation and germinal center reaction. Different
developmental stages express different transcriptional profiles.

Notably, patients with a lymphoma expressing the GCB-like transcriptional profile
have a favorable prognosis as compared to the ABC-like lymphomas. The findings
of Alizadeh et al. could be verified in subsequent lymphoma transcriptional profiling
studies [62] [74].

Genomic profiling. A transcriptional profile is a snap shot of the physiological
state of a tissue or cell. It can change over time for example in response to changing
environmental conditions. In contrast, the construction plan encoded in the genomic
DNA sequence remains constant and is the same for each kind of body cell. The
situation changes, if mutations take place, which alter the genomic DNA sequence
in individual cells. Mutations can occur at the level of individual base-pairs via in-
sertions, deletions or substitutions of single nucleotides. Furthermore, parts of the
chromosomes containing whole stretches of DNA can be lost, gained or translocated
between different chromosomes. The latter we refer to as chromosomal mutations or
aberrations. They are frequent in lymphoma. Translocations are balanced mutations
as illustrated in figure [I.4] No change in the net amount of genomic DNA is associ-
ated with translocations. In contrast, gains and losses of parts of chromosomes are
unbalanced mutations, since they represent a net gain or loss of genomic DNA.

Unbalanced mutations are accessible to genome-wide analysis technology. In com-
parative genomic hybridization (CGH) tumor DNA and normal DNA each labeled
with a different fluorescent dye are added to normal chromosomes. The labeled tu-
mor and normal DNA bind to (hybridize with) the chromosomal DNA with respect
to the complementary base-pairing rules. Imbalances of the DNA amount between
the normal and the tumor DNA are assessed by microscopic image processing of the
label intensities of tumor and normal DNA hybrids with the chromosomes. Array
CGH is a microarray-based version of CGH with an increased resolution to assess
copy-number variations of chromosomes or parts thereof.

11
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The presence of balanced translocations is not visible to genome-wide CGH method-
ology. Instead, translocation is tested separately by fluorescent in situ hybridization
(FISH).

The GCB- and ABC-like subtypes of DLBCL tend to show distinct patterns of chro-
mosomal aberrations. A genomic translocation involving the immunoglobulin heavy
chain gene on chromosome 14 and the BCL2 gene on chromosome 18 — t(14;18)) — is
unique to GCB lymphomas [45]. ABC lymphomas frequently show gains of regions
on chromosome 3q and 18q with ”q” denoting the long arms of chromosomes 3 and
18, and losses on 6q. GCB lymphomas have frequently gained regions located on
chromosome 12q [9]. Nevertheless, these are statistical associations. A definition of
ABC and GCB via specific chromosomal abberations is not possible.

1.4 The MMML lymphoma data set

A comprehensive clinical study of a series of lymphoma samples involving state-of-
the-art diagnostics (histopathology, immunohistochemistry and FISH) in conjunc-
tion with genome-wide transcriptional and genomic profiling requires joint efforts of
experts from different disciplines. The research project ”Molecular Mechanisms in
Malignant Lymphoma” (MMML) is a joint initiative of more than 15 contributing
German groups supported by the ”Deutsche Krebshilfe”. The goal is a comprehen-
sive characterization of aggressive B-cell lymphoma using genome-wide diagnostic
approaches. Furthermore, the underlying molecular mechanisms in malignant lym-
phoma are investigated. This thesis focuses on the analysis of the transcriptional
profiles from 220 mature aggressive B-cell lymphomas collected within the MMML
project in its initial phase, and 36 additional cases included in a subsequent study of
pediatric and childhood mature aggressive B-cell lymphoma. The study includes DL-
BCL, BL and cases that cannot be further subclassified to either of those categories.
The following data has been collected:

Clinical and patient characteristics. For the majority of the cases information
on sex, age and survival times is available. Furthermore, Ann Arbor stage at time
of diagnosis is available, which is an established staging parameter in Hodgkin and
Non-Hodgkin lymphoma discriminating between four levels of tumor spread (stage
I-IV).

Consensus histopathological diagnosis. Each case has been evaluated by a
panel of at least 6 expert hematopathologists to assign a consensus histopathological

diagnosis of BL. or DLBCL. Cases were labeled B-NHL high-grade, if the experts did
not agree on a consensus diagnosis.

Immunohistochemistry of important diagnostic marker proteins. The presence
of protein expression of the following diagnostic lymphoma markers has been assessed
by immunohistochemistry: CD20, BCL6, CD10, BCL2 and CD5. Furthermore, the

12



1.5 Thesis organization

proliferation rate of the tumors has been assessed by scoring the fraction of cells
expressing the proliferation marker Ki-67.

FISH analysis screening for the most relevant genomic translocations. The
presence of chromosomal breakpoints and translocations has been assessed by fluo-
rescent in situ hybridization. Cases were screened for the presence of IG-MYC, non-
IG-MYC and IGH-BCL2 translocations. Furthermore, the presence of breakpoints
at the locus of the BCL6-gene on chromosome 3 has been analyzed.[59, 4], [60]

Array CGH data. Array-based comparative genomic hybridization has been
performed for 185 out of the 220 cases, applying an array platform that tiles the
genome with 2799 DNA fragments (clones) [78, 29]. The data has been used to
compute a genomic complexity score defining the number of chromosomal aberrations
per case.

Transcriptional profiling. The mRNA of each tumor was extracted and sub-
jected to transcriptional profiling with the U133A GeneChip platform provided by
Affymetrix. A single U133A GeneChip provides quantitative measurements from
22283 individual features denoted as probe-sets. In the majority of cases, the tran-
scriptional level of a human gene is measured by a single U133A probe-set. However,
more complex human genes are measured by multiple alternative probe-sets.

1.5 Thesis organization

This theses is concerned with the statistical analysis of transcriptional profiles of
lymphomas. It is organized as follows:

Introduction to molecular signatures. A DNA microarray is a powerful diag-
nostic device. Given a transcriptional profile as input, a molecular signature is a
mathematical function with a diagnosis as output. This diagnosis can be a disease
category, the presence of a genetic aberration or the activity of a particular onco-
gene. Chapter [2 will give an introduction to the statistical learning methodology and
terminology behind molecular signatures.

Defining Burkitt lymphoma by a novel core-group extension approach. Even
with the use of current diagnostic criteria, the distinction of Burkitt lymphoma and
diffuse large B-cell lymphoma is not precise. Part |[| proposes a novel semi-supervised
statistical learning strategy to derive a robust, quantitative and reproducible molec-
ular signature of Burkitt lymphoma. In chapters [3|and 4] we will discuss two different
implementations of this strategy.

GCB, ABC and their relation to gains of chromosome 18q. The classification
of GCB and ABC is purely based on transcriptional profiling. In chapter [5| we test
for the presence of these DLBCL subtypes in the MMML data set. Furthermore,
we will analyze the relationship of the ABC transcriptional phenotype and a gain of
chromosome 18, which we frequently observe in ABC-like DLBCL.

13



Chapter 1 Introduction

Pathway activation patterns in mature aggressive B-cell lymphoma. Mature
aggressive B-cell lymphomas are heterogenous with respect to their clinical presen-
tation, their genetic make-up and their histopathological appearance. They possibly
comprise several distinct disease entities arising from different mechanisms of disease.
A controlled assay in a cell line allows us to design experiments in line with a certain
hypothesis of disease mechanism. In chapter [6] we will use gene expression signatures
generated from oncogene over-expression experiments in cell lines to predict oncogene
activity on transcriptional profiles of mature aggressive B-cell lymphomas, yielding a
novel pathway-based stratification of that disease.
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Chapter 2

Molecular signatures and supervised
learning

2.1 Molecular signatures as diagnostic devices

Establishing transcriptional profiles as diagnostic devices is a well established re-
search direction [93, 102, 7). The common situation is that we are given a set of
gene expression profiles from tumors of n patients. For each individual patient we
have a class label that assigns a (sub-)type to his/her tumor. The objective is to
predict these labels from the observed transcriptional profiles. We are in the well
defined framework of supervised machine/statistical learning [55]. Let us consider
two different scenarios:

1. We are given a partition of a cancer into several distinct entities based on some
gold standard diagnostic criteria. However, the diagnostic tests that define the
gold-standard classification are expensive and elaborate.

2. A particular cancer can follow two completely different clinical courses. While
one fraction of the patients responds well to the treatment, another fraction does
not. So far, no test exists that predicts the therapy response prior to treatment.

In the first example, a single microarray can replace a whole panel of elaborate and
expensive tests. In the second example, if biology - detectable by microarrays -
causes the different response to treatment, patients would benefit from a microarray-
driven stratification prior to treatment into aggressive and less aggressive therapy
regimens. Both scenarios can be formalized as supervised classification problems. The
purpose of the first one is diagnosis, and the purpose of the second one is prediction
of treatment response.

Notation. We store n gene expression profiles each containing transcriptional
levels of 7 = 1,2,...p genes in a matrix X € R™?. Each row of X contains the
expression profile of a single patient’s tumor. The j-th patient’s diagnosis is y; €
K = {k}£_ | were K is the number of distinct disease entities. The set of diagnoses of
all patients constitute the label vector y € R™. A clinical microarray study produces
a data set D consisting of the label profile pairs (X,y) = (x1, 1), (X2,%2), -, (Xj,Y;)-
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X(2)

0 x(1)

Figure 2.1: Linear separation of two dimensional data. Each red square and
green triangle represents a sample in the two dimensional feature space. They
can be separated by a hyperplane, which is a line in two dimensions. We can
sufficiently describe it by the normal vector a and the offset b.

The goal is to learn from the example data set D a rule that correctly predicts a novel
patient’s tumor sub-type y from its expression profile x.

Linear Signatures. Consider the p-dimensional space spanned by the expression
values of p genes. We can classify a sample x represented as vector x = (x1, 22, ...7})
of p gene expression values by the linear function

p
fx) = am; +b. (2.1)
i=1
If we are given a set of j = 1,2, ...,n samples from two different classes, where each
sample is represented as vector x; of gene expression values, equation defines a
classification rule based on the normal vector a and an offset b. The vector a =
(a1, as, ...,a,) is perpendicular to a hyperplane separating the two classes. Varying
b moves the hyperplane along a (figure 2.1). The sum in equation projects p-
dimensional data onto the line spanned by a. If f(x) < 0, a sample x is assigned
to the first class and if not, it is assigned to the second class. The linear function
with its parameters a and b defines a linear signature. Supervised learning is the
procedure to derive a parameter constellation for a and b from an example data set D.
Several distinct supervised learning algorithms have been proposed to derive linear
signatures from microarray data, e.g. support vector machines, logistic regression
and linear discriminant analysis (reviewed in [55]). We will now have a closer look at
diagonal linear discriminant analysis (DLDA), which is a special case of discriminant
analysis. Furthermore, we will restrict to the two-class case as shown in figure 2.1
throughout this thesis.
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2.2 Diagonal linear discriminant analysis

2.2 Diagonal linear discriminant analysis

The parameters a and b in equation define a linear decision boundary between
two classes. Considering figure 2.1, many boundaries exist and there is no unique
constellation of the parameters a and b. Thus, we need an additional objective
criterion to find a unique parameter constellation that finally defines a molecular
signature. In linear discriminant analysis (LDA) [25] we therefore impose an explicit
model on the shape of the data, i.e. we consider the data as mixture of multivariate
Gaussian distributions with one component for each class k and a common covariance
matrix. The parameters can be estimated directly from the data and have a unique
solution, and in case of K = 2 yielding a single separating hyperplane between the
two classes. The classification function C(x) of an LDA model assigns a novel sample
x to the most likely class k

C(x) = argming(x — ) S (x — i), (2.2)

where iy denotes the centroids of the k mixture components and 3-1 denotes the
inverse of the joint covariance matrix of the gene expression values. In transcriptional
profiling we have more genes than samples and the inversion of the covariance matrix
is thus not possible. In diagonal linear discriminant analysis (DLDA) we cope with
that problem by imposing a common diagonal covariance matrix to all classes, which
has zero entries outside the main diagonal and the variances of the individual genes
on the diagonal. This matrix is always invertible, if the diagonal contains no zero
entries. We define the DLDA classifier as

C(x) = argminy, Z 'ul K (2.3)

where x; represent the expression of the i’th gene in a sample x, p; , represents the
mean expression of the i’th gene in the k’th class, and o? represents the within-class
variance of gene ¢, which is the same for all classes. We estimate the p individual
gene expression means y; and variances o2 as sample means and pooled variances on

an example data set D:

ﬂi,k = Ty, (2.4)
67 Z Z Tij— Tik)s (2.5)
k‘ 1 5€Ck

where C; denotes the set of positive non-zero integers indexing the samples of the
k’th class.

2.3 Performance

Misclassification error. A molecular signature predicts labels as output from
transcriptional profiles as input. The misclassification error rate quantifies the per-
formance of a molecular signature with respect to its ability to predict the labels
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correctly. We distinguish the misclassification error rate on training data from the
misclassification error rate on test data. The training data set represents the samples
that we use as example data to fit and select a model.

The intended use of a molecular signature is to predict labels of novel samples, i.e. to
provide a diagnosis of new patients. The samples in the test data set serve as example
for these new patients. It comprises samples that have been excluded from the model
fitting step. The misclassification error rate on the test data is a realistic guess of
the performance of the signature with respect to its diagnostic use. In contrast the
training error rate is too optimistic.

Cross validation. We are given an example data set D. In order to learn a
signature from the example data, and to estimate its performance, we need to split
D into a training set Dy,..in and a test set Dy.;. The training set serves as data for
parameter estimation, and the test data allows performance evaluation. Each sample
included in Dy, decreases the number of samples in Dy, thus decreasing the
number of samples available for parameter estimation, making this step less precise.
On the other hand, if we choose the number of samples in D;.,; small, the estimate
of the misclassification error becomes less precise. An alternative procedure is cross
validation, using each sample in D twice, once as training example and once as test
example: In n-fold cross validation we randomly split D in n equally sized disjoint
subsets: D = {Dy, Dy, ...D,,}. Then we loop over 1,2, ...,n, each time defining D\D,,
as training set and D,, as test set. In each loop we learn a molecular signature on
D\D,, and predict the samples in D,, yielding an unbiased prediction of each sample
in D.

2.4 Gene selection

The regulation of transcription is complex. Each tissue runs biological processes spe-
cific to its function. The expression of genes that are not required in a tissue is shut
down, while the same genes are activated in another tissue. The concerted action
of pathway and tissue specific gene activity is known as differential gene expression.
A molecular signature should discriminate between different disease-entities. Due to
the complex mechanisms of gene regulation, we need to take into account that only a
subset of genes is involved in the biological differences between the disease-entities we
want to distinguish. Thus we expect only a subset of genes to be informative for clas-
sification. Indeed, the performance of a signature to correctly predict labels of novel
samples can be improved by training the signature only on subsets of informative
genes [25].

A common approach of gene selection is univariate thresholding, where we rank genes
based on a univariate classification score. The Wilcoxon rank sum statistic and the
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t-statistic are prominent choices in this context. The latter is defined as

T —x

f= —— 2 (2.6)

~o1 1

o 2<n—1 + n—2)
where Z; and T, denote the means of the two classes we wish to compare and & denote
the pooled within standard deviation (see equation [2.5)). Only genes with a univariate
classification score above a certain threshold are included into the signature. Thus the
threshold represents an additional model parameter controlling the number of genes
of a molecular signature. The method of choice to select this threshold parameter is
cross validation, where we select the threshold yielding a molecular signature with a
minimal cross validated misclassification error.

2.5 Nearest shrunken centroids (NSC)

The nearest shrunken centroids method (NSC) [90] extends the framework of DLDA
with a shrinkage approach to gene selection. In the context of transcriptional pro-
filing the performance of NSC is in the same range as those of more sophisticated
classification methods like logistic regression and support vector machines [52] [96].
The core of the NSC method is DLDA, which classifies a new sample x according to
the closest of k class centroids, where the distances are standardized by the within
class standard deviation. NSC modifies these distances to:

(2 — 2y)°
i=1 "
and classifies by
C(x) = argmingoy(z). (2.8)

The distance in equation is very similar to the DLDA classification function in
equation 2.3} x; denotes the expression of the i’th gene in a sample x and 6; denotes
the square root of the pooled variance of gene ¢ (see equation . Nevertheless,
there are three important differences:

e NSC calculates distances to shrunken centroids denoted by Z; , instead of original
centroids. Shrinkage is the topic of the next paragraph.

e NSC takes class prior probabilities 7 into account. When estimating it by the
relative size of the classes in the training data it gives higher classification weight
to classes more frequent in the overall population.

e In NSC variances are regularized by a fudge factor sg, which is a positive constant
guarding against extremely small denominators as described in [92].
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Shrinkage. Gene selection is implemented in a shrinkage approach: The class
centroids are shrinked towards the overall centroid. This causes genes whose within
class mean is close to the overall mean to be discarded from the analysis. Let
Tip — Z;

dij = ——"F—,
ok my - (6; + So)

where my = \/1/n; + 1/n makes the denominator in equation equal to the esti-

mated standard error of the numerator. Thus d;  is a t-statistic for gene ¢ comparing
class k to the average class. The class centroids are shrinked toward the overall
centroids, and the shrinkage is tuned by a parameter A:

(2.9)

dg}k = sign(d;;)(|dix] — A) 4. (2.10)

The expression (|d; x| — A); denotes the positive part of |d; x| — A, which is zero if
|dix] — A < 0 and |d; x| — A otherwise. We discard genes where d;, becomes zero.
The resulting shrinked class centroid is

Tig = T+ mu - (63 + s0) iy, (2.11)

Class posterior probabilities. If we plug in Zj, in equation , we can compute
class posterior probabilities in line with the suggestion of the authors of NSC [90]:

6_%6k(x)

Adaptive model selection. The previous paragraphs describe nearest shrunken
centroids classifiers. While fitting an NSC classifier, the means, variances and class
proportions can be directly computed from the training data. Let 3= diag(63, 62, ...,
57]2)) denote the diagonal covariance matrix, where the element 67 is the squared,
pooled within class standard deviation of gene i (see equation in the training
data, and fix = (Z1k, Tok, ..., Tpx) denote the k class centroids, where the element Z;
is the training set mean of gene 7 in class k. The parameter 7, denotes the relative

class sizes in the training data.

The shrinkage parameter A is selected from a set of multiple candidate values. The
objective is to obtain a model of optimal performance on test data. Thus, A is
selected via cross-validation as described on page[1§ Given the random partition of
D into the equally sized subsets Dy, Dy, ..., D,,, each D\D,, defines a training set to
estimate Op\p, = {f], ik, T . We select A according to:

Aopt = argminacp+ Z Z l(x;, CA(Xj’@D\DTL>7 Yi): (2.13)
n j€Dy,

where x; denotes a gene expression profile from the test set D, Ca(X;|Op\p,) is its
classification based on the training set classifier, and y; is the true class label of x;.
The function I(-) defines the 0/1 loss function, which is 1, if Ca(x;|©p\p,) does not
correctly predict y; and to 0 otherwise.
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Validation The number of misclassifications is a common performance measure
of a molecular classifier. However, we must not use the same data that has been
used to derive the signature also for assessing its performance. This would yield and
over-optimistic estimate as described in [81, 4]. To derive a molecular signature using
NSC and assess its performance we can proceed in four steps:

e Randomly split data set into a training set and a test set.

e Put training set into a cross validation loop to select the optimal shrinkage
parameter A.

e Use whole training set to derive a single NSC classifier using A as selected above.

e Apply this signature to the independent test data to assess its predictive per-
formance.

If we split the data into a training set and a test set, the test set must not be
used during the training phase. Thus we have fewer samples available to estimate
the model parameters. This compromises the estimated model. Cross validation
allows using each sample twice, once as test sample and once as training sample.
Furthermore in each loop of a 10-fold cross validation we use 90% of the data to
estimate the model parameter and only 10% to validate them. In contrast, if we split
the data set half-half into a training and a test set, we can only use 50% of the data to
estimate the model parameters. We expect a weaker model as compared the model
estimated on 90% of the data. Thus cross-validation seems to be superior to the
training set/test set approach of model validation. However, in each cross validation
loop we train the signature anew. Thus the cross-validated misclassification error does
not provide a performance measure of a single, fixed signature. It rather provides the
performance of the learning algorithm. We still need an independent validation set
to obtain a misclassification error of a given signature.

2.6 The compound covariate predictor

The compound covariate is a proposal of John Tukey [01]. He criticizes using a
full regression model involving the estimation of covariances in a setting where we
wish to relate several dozens of covariates to survival in a few hundred patients. A
compound covariate is a linear combination of the basic covariates being studied, with
each covariate having its own coefficient or weight in a linear combination [73],[82]. In
transcriptional profiling the situation is more extreme than in the setting Tukey had
in mind. Nonetheless, Tukey’s proposal performs well in framework of transcriptional
profiling [39], TOT].

In line with [73] the proposal consists of a parameter estimation step and a gene
selection step. It applies to two-class classification tasks. The value of the compound
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covariate for a sample x is:
=t (2.14)
i€g
where t; denotes the t-score of gene ¢ comparing the two classes we wish to dis-
criminate. GG denotes a set of positive integers indexing the genes selected prior to
classification. Radmacher et al. [73] suggest that G should contain the genes with
the largest absolute t-scores comparing the transcriptional levels in the two classes.
They suggest to either predefine the number of genes prior to classification, or to
predefine a certain significance level @ the genes must meet with respect to a t-test
for differential expression between the classes.

A novel gene expression profile x is assigned to class k = 1 if
1V — e(x)| < [ — ¢(x)) (2.15)

and to class k = 2 otherwise; ¢! and ) denote the mean values of ¢(x) within the
two classes. The decision rule defined by equation classifies samples with respect
to the nearest center ¢,

Relationship between the compound covariate and DLDA. Equation [2.3|defines
a diagonal linear discriminant classifier as:

xz
C(x) = argminy Z k)
In the two-class classification problem one assigns a sample x to class k =1, if
p — 2 p = 2
(Ii - 901‘,1) (371 - $i,2)
> — %7 < > Y (2.16)
i=1 i i=1 i
and thus if
P T — T Ti1+ Tio
Tl e x; — Zh C TREY S ). 217
> - (217)
The quotient (Z;1—; ) /67 defines a normal vector (gene weights), which is multiplied
with gene expression values z; shifted by an offset (Z;1 + Z;2)/2.

The weights of the compound covariate predictor are defined by t; = \/n(Z;1—%;2)/0;.
Thus we can write equation [2.14] as

P _ _
_ \/ﬁz %x (2.18)
i=1 ¢

Both DLDA and compound covariate predictors are based on the computation of a
linear combination of gene expression values s = a1z + ax2 + ... + a,x,. However,
DLDA uses variances, while the compound covariate uses the standard deviation
in the denominator. Note, DLDA and compound covariate predictors estimate the
weights a; separately gene by gene and not jointly involving the estimation of co-
variances. Thus both methods are in line the compound idea of John Tukey [91].
Throughout this thesis we will follow these ideas. We will start with a molecular
signature for Burkitt lymphoma based on a nearest shrunken centroids classifier.
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Chapter 3

A molecular definition of Burkitt
lymphoma

The distinction between Burkitt lymphoma (BL) and diffuse large-B-cell lymphoma
is not reliably reproducible with the use of the current criteria of morphology, im-
munophenotype, and genetic abnormalities [56] [89]. The Burkitt translocation or
its variants, which juxtapose the locus of the MYC oncogene and one of the three
immunoglobulin (IG) loci, are present in almost all Burkitt lymphomas [38 [14]. Nev-
ertheless, MYC translocations are not specific for Burkitt’s lymphoma since they also
occur in other lymphomas, including diffuse large-B-cell lymphoma (DLBCL). In the
latter, chromosomal breakpoints at the MYC locus are recurrently associated with
non-IG partner loci and complex chromosomal alterations [0, 47, 48] 6], 26], 54, 33,
65].

The imprecise distinction between BL and DLBCL on diagnosis may lead to the
inadequate treatment of some patients with a mature aggressive B-cell lymphoma.
Studies involving gene-expression profiling indicate that DLBCL comprise two or
more biologic subgroups with different clinical behaviors [3, [74], [62, @]. Prior to our
publication [42], and the one of Dave et al. [20], no signature of gene expression that
distinguishes BL from DLBCL has been established.

In this chapter we derive a molecular signature for the differential diagnosis of Burkitt
lymphoma and diffuse large B cell lymphoma. The analysis is based on 220 speci-
mens of mature aggressive B-cell lymphomas including DLBCL, BL and unclassifi-
able cases. They have been collected and subjected to transcriptional profiling within
the research project ”Molecular Mechanisms in Malignant Lymphoma” (MMML, see
section . The cases have been comprehensively characterized with respect to the
WHO diagnostic criteria for Burkitt lymphoma [87]. These are

e the presence of a characteristic histomorphology,

e the presence of protein expression of CD20, BCL6 and CD10, and the absence
of BCL2 and CD5 respectively,

e a fraction of proliferating (Ki-67 protein expressing) cells > 95%,

e and the presence of an IG-MYC genetic translocation.
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Table 3.1: Diagnostic criteria for Burkitt lymphoma. The differential diag-
nosis between Burkitt lymphoma and diffuse large B-cell lymphoma is based on
a panel of histomorphological, immunohistochemical and genetic criteria. This
table shows the frequencies of the diagnostic criteria in the MMML data set.

Criterion Present | Absent | no classification
Burkitt or Burkitt-like histomorphol- 36 165 19
ogy

IG-MYC chromosomal translocation 59 155 6
CD10 protein expression 94 115 11
BCL6 protein expression 165 33 22
BCL2 protein expression 153 61 6
CD20 protein expression 212 5) 3
CDb5 protein expression 22 184 16
Fraction of Ki-67 protein expressing 51 162 7
cells>95%

Table 3.1 shows the frequencies of the individual WHO-BL criteria in the 220 MMML
lymphoma samples. Only 8 of the 220 lymphomas satisfy all criteria at the same time.
Thus, a stringent application of the WHO classification scheme labels only 8 of the
tumor samples as BL. Nevertheless, expert pathologists expect more BL cases hidden
in the pool of 212 remaining cases that have not been classified as BL by the WHO
criteria. The problem is, which of the remaining cases are Burkitt lymphomas. Note,
even among expert pathologists the agreement on the histopathological diagnosis
of classic Burkitt lymphoma, atypical Burkitt lymphoma, and diffuse large B-cell
lymphoma is only 53% [89] 56]. In order to achieve a quantitative and more reliable
diagnostic distinction between Burkitt lymphoma and diffuse large B-cell lymphoma,
we now derive a molecular signature.

3.1 Core group extension

3.1.1 Problem

In supervised learning as described in chapter [2 there is no doubt on the class labels,
and they serve as certain indication for training, model selection and evaluation of
a molecular signature. The present scenario is different. We have a data set D
containing 220 lymphomas. 8 of them are labeled as BL according to the WHO, and
212 remain unlabeled, due to inconclusive diagnostic criteria. However the unlabeled
cases might contain further BLs. Let us denote the set of 8 certain BL cases with C
for core group, the 212 remaining cases with R, and the Burkitt cases hidden in R
with F for extension. The set (C'U E) denotes the extended core group and the set
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Table 3.2: Subsets in data set D.

Name Description Number
D = CUR | Overall data set 220
C Core group of Burkitt lymphomas satisfying 8
all WHO criteria
R Remaining cases that do not meet the WHO 212
criteria for Burkitt lymphoma (CNR = {@})
ECR Hidden Burkitt lymphomas in R that do not unkown
meet the WHO criteria
(CUE) | Set of all Burkitt lymphomas unknown (8 + #£E)
(R\E) Set of non-Burkitt lymphomas unknown (212 — #FE)

(R\E) denotes the remaining cases without £. We know the cases in C' and in R,
but not the cases in E. Our goal is to identify E. Furthermore we want to learn a
molecular signature that classifies novel cases as members of the sets (CUE) or (R\E).
In terms of the Burkitt classification problem (C'U E) denotes ”true”, molecular
Burkitt lymphomas and (R\E) denotes non-molecular Burkitt lymphomas. Table
summarizes the notation. Our problem is related (but not identical) to the well
studied problem of supervised classification. We consider it as core group extension
(COGE) problem.

3.1.2 Naive approach

In order to implement an algorithm for core group extension we use the supervised
Nearest Shrunken Centroids (NSC) approach for the training step without any mod-
ification. However, we will deviate from supervised analysis to select and evaluate
the final molecular signature.

Training.  NSC starts with defining a number (default 30) of possible threshold
parameters A yielding signatures with different numbers of genes. The candidate
values for A are chosen to be equally spaced between 0 (no shrinkage, all genes remain
in the signature) and an upper limit, which removes all genes from the classifier. The
upper limit of A is chosen such that the shrinked distance to the overall centroid is
exactly zero for the top ranking gene ¢ in absolute value of equation

In core group extension we train a two class NSC classifier for each candidate value
of A. We consider the set C' as class one and the set R as class two. In line with

equation [2.7]
p

(z; — T 0)?
(5@()() = Z W - 211’17'('0, (31)
i=1 !
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and
p 2

51%()() _ Z (xl - fi,R)

—21 3.2

The parameters mc and mr denote the expected proportions of the classes in the
population. We don’t know the proportions in the population, and the present data
set does not represent the proportions in the populations. Thus we set 7o = g = %
The pooled within-class standard deviation of gene ¢ in C' and R is

o7 = " i ) D (@i = Zie)® + > (@i — Tr)?). (3.3)

jeC jJER
In line with equation we compute a core group posterior probability

)
R e 2%
pe(x) =

(3.4)

o TR

We refer to p5(x) as core group index or molecular Burkitt index. In the present
problem C'is a small but homogeneous group of "true” Burkitt lymphomas, and R is
a large and heterogenous pool of all other lymphomas in D. We expect R to contain
additional Burkitt lymphomas denoted as hidden set E, but with #F < #R. We
expect C' to be representative for all Burkitt lymphomas CUFE, and that R has almost
the population characteristics of R\FE. In conclusion, we naively consider the NSC

signature trained on the classification task C' versus R as signature discriminating
between C'U E and R\ E. Thus

Peus(x) = Pa(x). (3.5)
Classification. Standard NSC uses the classification function
COR) (x) = argmingdy(x), (3.6)

with & € {C,R} and di(x) as defined in equations and [3.2] Our goal is to
derive a molecular signature discriminating between C'U E and R\E. We naively
compute C©®)(x) instead. However, in order to express our belief that there is
uncertainty in the naive classification, we make use of the molecular Burkitt index
ﬁé(x) and introduce an intermediate gray zone of unclassified samples. We classify
the lymphomas in D as molecular Burkitt lymphomas (mBL) and non-molecular
Burkitt lymphomas (non-mBL) by

mBL if p5(x) > 0.95
Courmire(X) = non-mBL if pa(x) < 0.05 (3.7)
intermediate if 0.05 > p5(x) > 0.95.

Model selection. We run the standard NSC approach with m (default: m =
30) different values for the threshold parameter A yielding m different classification
models. We subject each of them to cross validation as described in section 2.5 In
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standard NSC we choose A, out of {A,,}3°_; by minimizing the cross validated
misclassification error rate. In the core group extension scenario we do not have the
misclassification as performance measure, because most class labels are unknown.
At this point we deviate from standard NSC and select A, from {A,,}2_, while
maximizing sparseness and core group sensitivity of the resulting model, i.e. we
choose the signature, which

e contains a minimal number of genes,

e while classifying all samples in C' as molecular Burkitt lymphoma with p5(x) >
0.95.

Solution.  We plug in A, in C5,,,.:(X) (equation and assign the lymphomas
to the sets E and R\E:

e F: We assign all samples in R classified as mBL to the set E denoting the core
extension.

e R\E: We assign all samples in R classified as non-mBL to the set R\ E denoting
a heterogenous pool of other lymphomas purified from the molecular Burkitt
lymphomas.

e Intermediate: We do not assign the intermediate cases to any of the sets men-
tioned above.

Trivial solution. It is important to note that there is always at least one solution
meeting the model selection criteria, which we denote as trivial solution. If we shrink
such that no gene remains in the signature, 6,?"1’ ‘(x) in equations and purely
depend on m¢ and wg. If we additionally define 7o = 1 and g = 0, all samples
become a molecular Burkitt lymphoma with p5(x) > 0.95. We do not consider this
solution as useful, however we keep in mind that it exists, and that it meets our
model selection criteria.

Evaluation The parameter A,, defines an NSC classification model. A common
approach in supervised learning is to evaluate such model by its ability to predict gold-
standard labels correctly (performance). Here we don’t know the class labels except
those of the core group, and we cannot evaluate our signature by performance. Instead
we evaluate the selected model based on different considerations: The final solution
of the core group extension algorithm depends on the initial choice of the cases that
enter the core group. Due to possible disagreement between expert pathologists
[89, [56], this choice can vary. Thus, we expect a valid core group extension solution
at least to be robust against uncertainty in the composition of the core group. In
order to assess this robustness, we select A,,, then we choose with replacement a
certain number B (here B = 1000) of bootstrap samples of the core group Ch,e; and
combine them with the remaining cases R. This results in B bootstrapped (training)
data sets Dyoot = Cpoot U R. We recompute the signature defined by A, from each

pt

bootstrapped data set resulting in B posteriors {ﬁé;’oot (%)} for each sample j € D.
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The variation of the {ﬁé;’f;’l(xj)}f for a sample j indicates the variability of the

signature with respect to uncertainty of the core group.

3.2 Results

Data preparation

In order to derive a molecular signature for Burkitt lymphoma we study gene expres-
sion profiles of the 220 lymphomas in D. One case has been measured twice so that
we have 221 gene expression profiles. The Affymetrix HGU133A platform used to
generate the transcriptional profiles holds 22283 probe-sets. Eight lymphomas sat-
isfy the WHO Burkitt criteria. We assign them to C', and split the remaining cases
randomly into training (n = 105 cases) and test set (n = 107 cases) balanced for the
histological diagnosis (see table . We assign the cases in the training set to R,
run core group extension on C'U R, and use the test set to evaluate the signature on
independent data.

Core group extension

Training  We train the signature using the default parameters of the NSC as im-
plemented in the statistical programming language R [72] (pamr, Prediction Analysis
for Microarrays [37]). The label vector contains two class labels (C' = core BL and
R = non-core BL). We define a uniform prior over the two classes m¢ = 7 = % and
compute a set of 30 different threshold values for the parameter A as described in
section [3.1.2 We compute a model for each A. Table [3.3] shows the number of genes
included in each of the 30 models.

Model selection In order to select A,,; we cross validation. We randomly split
the training set into 8 equally sized buckets each containing one of the 8 core BL
cases in C', and loop over the 8 buckets. In each loop, we set aside one of the
buckets and train an NSC model for each level of A on the remaining 7 buckets. We
use these models to predict the core group posteriors of the cases in the ”left-out-
bucket”. This yields prediction for each training case. Based on this prediction we
select the optimal core group extension model. Figure shows the cross validated
Burkitt index for different values of A. The dashed horizontal lines define borderlines
between molecular Burkitt lymphomas (mBL, index > 0.95), non-molecular Burkitt
lymphomas (non-mBL, index < 0.05), and intermediate cases (0.05 < index < 0.95).
We select the 74 probe-set model, since it is the most sparse model with respect to
the number of genes that classifies all cases in C' as molecular Burkitt lymphoma.

Evaluation  Shrinkage with A, ~ 3 yields 74 probe sets remaining in the signa-
ture. Figure |3.2| visualizes the distribution of 1000 mBL-indices {ﬁé;fjt,l (x;)}1°% for
each sample 7 resulting form B=1000 bootstrap classifiers obtained from Cj,,; versus
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Table 3.3: Varying A. The table lists the number of genes selected for 30
candidate Burkitt classifiers that differ with respect to the level of the threshold
parameter A.

A n genes A n genes A n genes
0.0000000 | 22283 || 1.6687858 1620 || 3.3375717 30
0.1668786 | 18445 || 1.8356644 1162 || 3.5044502 18
0.3337572 | 14931 || 2.0025430 803 || 3.6713288 10
0.5006357 | 11926 || 2.1694216 547 || 3.8382074 6
0.6675143 9297 || 2.3363002 367 || 4.0050860 5
0.8343929 7226 || 2.5031787 237 || 4.1719646 4
1.0012715 5498 || 2.6700573 163 || 4.3388431 3
1.1681501 4141 || 2.8369359 103 || 4.5057217 2
1.3350287 3022 || 3.0038145 74 || 4.6726003 1
1.5019072 2251 | 3.1706931 47 || 4.8394789 0

Burkitt index from various values for A

1.0

9297 genes
1162 genes

0.8
|

367 genes
74 genes
30 genes
10 genes

0.6

Burkitt index

0.4

0.2

Patients

Figure 3.1: Varying A. The lines show the cross validated Burkitt index for
different values of A. The dashed horizontal lines define cut off values deciding
a case is a molecular Burkitt lymphoma (mBL, index > 0.95), a non-molecular
Burkitt lymphoma (non-mBL, index < 0.05) or a case assigned an intermediate,
unclassified state (0.05 < index < 0.95). We select the 74 gene (probe-set) model
as the molecular Burkitt classifier (red line). This model keeps the number genes
small, while classifying core Burkitt lymphomas correctly.
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R classification models. Box 1 contains a detailed explanation of the bootstrap re-
sults. Furthermore we assess robustness by counting how often an mBL patient (set
E) changes into an non-mBL patient (set R\ E) during the bootstrap, and vice versa.
The rate of such label changes is less than 3°/y. This indicates that, even though
robustness not explicitly entered in the model, the resulting model turns out to be
remarkably robust. Relearning a classifier with A,, on the complete training data
yields the final mBL signature.

Figure furthermore visualizes the results obtained from the application of the
bootstrap and the final signature to the test set of 105 lymphomas. Even though the
test set is not part of the learning and model selection step, the observations on the
training data are in line with the test data. The proportions of mBL, intermediate
and non-mBL cases are comparable, and the composition of the groups with respect
to morphology and genetics are consistent (figure [3.2)). Thus, the signature applies
to independent test data. For the following discussion of the biological and clinical
findings we merge the training and the test set, yielding 8 core Burkitt lymphomas C,
36 additional molecular Burkitt lymphomas F, 128 non-molecular Burkitt lymphomas
R\E, and 48 intermediate cases.

Box 1: Details on figure [3.2] Each bar of the plot at the top of the figure
describes the average number of chromosomal abberations of the tumors measured
by array comparative genomic hybridization. We refer to that quantity as genomic
complexity. The dotted horizontal line represents the mean complexity of each group.
The second plot shows the stability of the core group extension with respect to
random perturbations of the core group data (bootstrap analysis). The frequency
of the perturbed mBL-signature index scores (from 0 to 1, bottom of plot to top)
obtained from 1000 runs of the algorithm is indicated by color (very low frequency,
orange; low, yellow; medium, green; high, blue; very high, red). The vertical lines
delineate the three groups of lymphomas (mBL, intermediate, and non-mBL) - as
well as the core group of cases - and the dashed horizontal lines indicate the index-
score cutoffs defining the mBL group (0.95) and the non-mBL group (0.05). Among
the mBL cases, the index score is close to 1 for all bootstrap perturbations, whereas
in the non-mBL group it is near 0, demonstrating the stability of the signature.
The mBL-signature index scores resulting from the non-bootstrapped signatures are
represented as a dashed curve. Below, the heat map shows the gene-expression levels
of the 74 mBL-signature probe-sets, with 1 probe-set shown per row. Bright blue
indicates a low level of expression (3 SD below the average of all cases), bright yellow
indicates a high level of expression (3 SD above the average), and black the average
level of expression across all samples. The cases are ordered from left to right on
the basis of decreasing mBL-signature index score, given below the heat map. Green
represents a high index score (mBL), and red a low index score (non-mBL). The color
gradient in the intermediate group highlights the continuous transition of the index
score between the mBL and non-mBL cases. The MYC translocation partners are
shown according to type: IG-MYC fusion (bright green), non-IG-MYC fusion (dark
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Figure 3.2: Identification by core group extension of cases with an mBL
signature. The figure compiles the result of the core group extension algorithm
and the most important biological findings on the training and test set. Box 1
describes the figure in detail. (Figure reproduced from [42])
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green), MYC-breakpoint absent (red), and no data available (gray). Finally, the
histologic diagnosis is shown at the bottom. Bright green indicates Burkitt lymphoma
in the core group; dark green, atypical Burkitt lymphoma; red, diffuse large-B-cell
lymphoma; and gray, unclassifiable mature aggressive B-cell lymphoma.

Biological and clinical findings

Lymphomas expressing the mBL Signature  The 74-gene model identifies 36 lym-
phomas with an mBL-signature index score of greater than 0.95 (set E) in addition
to the 8 core Burkitt lymphomas (C'), for a total of 44 mBL cases (C'U E). The 8
core cases are similar to the additional 36 cases with regard to age of the patients and
genetic features, as well as clinical course. Of the additional 36 mBL cases, 21 are
categorized as atypical Burkitt lymphomas by expert pathologists because of their
Burkitt-like morphology or their immunophenotype. It is important to note that 11
of the 36 cases in E have the distinctive morphologic appearance of diffuse large-B-
cell lymphoma. The remaining four mBL cases have the morphologic appearance of
mature aggressive B-cell lymphoma but can not be further classified histologically.
With regard to the immunophenotype, the BL. markers CD10 and BCL6 are consis-
tently expressed in 42 and 39 mBL cases. BCL2 typically absent in BL is detectable
at a low level in seven of the mBL cases and at a high level in two if them.

B-Cell Lymphomas not expressing the mBL Signature  Of all 220 lymphomas,
176 have an mBL-signature index score of less than 0.95. Of these 176 cases, 128
have an mBL-signature index score of less than 0.05 and are assigned to the non-mBL
group (R\E). The remaining 48 cases have an mBL-signature index score between
0.05 and 0.95 and we do not assign them to the mBL or non-mBL group. We assign
them to the intermediate group, representing the transition zone between the mBL
and non-mBL groups.

With few exceptions (12 cases), the histologic diagnosis in the non-mBL cases is
diffuse large-B-cell lymphoma. The histologic diagnosis of 39 (81 percent) of the
intermediate cases is also diffuse large-B-cell lymphoma. Non-mBL and intermediate
cases show strong concordance regarding age distribution, immunophenotype, growth
fraction (Ki-67 score), and chromosomal complexity.

Genetic Aberrations and Gene Expression 43 mBL cases were tested for the
presence of MYC translocations by using fluorescence in situ hybridization. All but
five cases (88 percent) carry an IG-MYC fusion and one of these five have both non-
IG-MYC and IGH-BCL2 fusions. In the 38 mBL cases with IG-MYC fusion, IGH-
BCL2 fusion and BCL6 breakpoints are absent. The average number of chromosomal
aberrations as revealed by array comparative genetic hybridization (chromosomal
complexity score) is low in the 38 mBL cases with IG-MYC fusion but is high in the
5 mBL cases without IG-MYC fusion.
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Table 3.4: Morphologic, immunohistochemical and Genetic characteris-

tics of lymphomas.

Characteristic Lymphoma

All mBL Non-mBL Intermediate

number (percent!)

Total 220 44 128 48
Age at diagnosis
< 60 years 100 (46) | 40 (91) | 39 (31) |21 (45)
> 60 years 118  (54) | 4 (9) | 88 (69) | 26 (55)
Sex
Female 91 (43) | 13 (30) | 56 (45) | 22 (47)
Male 123 (57) | 30 (70) | 68 (55) | 25 (53)
Morphologic diagnosis
Burkitt lymphoma (core group) 8 (4)] 8 (18) 0 O o (0)
Atypical Burkitt lymphomas? 28 (13) | 21 (48) 3 2| 4 (8)
Diffuse large B-cell lymphoma 165  (75) | 11 (25) | 115 (90) | 39 (81)
Mature aggressive B-cell lymphoma, | 18 (8) | 4 (9) 9 (7)| 5 (10)
unclassifiable
Burkitt leukemia-lymphoma? 1 (<1)| O (0) 0 0)| 0 (0)
CD10 expression*
Absence 115 (B5) | 0 (0) | 95 (79) | 20 (43)
Presence 94  (45) | 42 (100) | 26 (21) | 26 57)
BCL6 expression®*
Absence 33 (17)| 0 0)| 26 (23)| 7 (15)
Presence 165  (83) | 39 (100) | 87 (77) | 39 (85)
BCL2 expression®*
Absence 61 (29) 133 (19) | 20 (16) | 8 (17)
Presence 153 (71) | 9 (21) | 104 (84) | 40 (83)
Ki-67-score*
< 95% 162 (76) | 15 (34) | 107 (88) | 40 (85)
> 95% 51 (24) | 29 (66) | 15 (12) | 7 (15)
MYC translocation®
IG-MYC 59  (28) | 38 (88) 5 (4) |16 (33)
Non-IG-MYC 5 M| 1 @ 4 @10 (21)
MY C-negative 140  (65) | 4 (9) | 114 (93) | 22 (46)
IGH-BCL2 fusion®
Absent 192 (88) | 43  (98) | 111 (89) | 38 (79)
Present 25 (12) | 1 (2)| 14 (11) ] 10 (21)
BCL6 breakpoint®
Absent 177 (83) | 43 (100) | 94 (76) | 40 (85)
Present 36 (17| o0 0)| 29 (24)| 7 (15)
Chromosomal complexity score®
Low < 6% 74 (40) | 31 (79) | 30 (29) | 13 (31)
High > 6% 111 (60) | 8 (21)| T4 (71) ] 29 (69)
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Genetic group

MYC-simple 35  (17) | 29 (76) 0 O 6 (13)
MY C-complex 33 (16) | 5 (13) 9 (7)| 19 (40)
MY C-negative 140  (67) | 4  (11) | 114 (93) | 22 (47)

!Percentages refer to the number of cases that can be evaluated; data are not available
for all cases. Percentages may not total 100 because of rounding. mBL denotes molecular
Burkitt lymphoma.

2These lymphomas show a Burkitt-like morphology or a Burkitt morphology with an
atypical immunohistochemical marker expression.

3A Burkitt leukemia is a leukemia, where the tumor cells show the characteristics of
Burkitt lymphoma cells.

4The expression of CD10, BCL6, BCL2, and Ki-67 has been determined by immunohis-
tochemical analysis.

5The MYC and BCL6 breakpoints and the IGH-BCL2 and MYC fusions have been ana-
lyzed by fluorescent in situ hybridization (FISH).

6Chromosomal complexity was determined with array-based comparative genomic hy-
bridization.

The frequency of MYC breakpoints (regardless of translocation partner) is lower in
the intermediate and non-mBL groups than in the mBL group. MYC breakpoints are
common in the intermediate group, whereas they are less frequent in the non-mBL
group. Non-IG partners are frequently involved in MYC translocation in both the
intermediate group and the non-mBL group. Among the 35 MY C-positive interme-
diate and non-mBL cases, 16 have a concurrent IGH-BCL2 fusion, BCL6 breakpoint,
or both. The chromosomal complexity score is significantly higher in the intermedi-
ate and non-mBL groups than in the mBL group regardless of the presence of MYC
breakpoints or absence of MYC breakpoints.

On the basis of these data, we can distinguish three main cytogenetic groups within
the mature aggressive B-cell lymphomas. The first we call "MYC-simple”: lym-
phomas with IG-MYC fusions and a low chromosomal complexity score (<6) that do
not have IGH-BCL2 fusions and BCL6 breakpoints. The second we call "MYC-
complex”: all lymphomas with non-IG-MYC fusions or all lymphomas with IG-
MYC fusions that have a high chromosomal complexity score (>5), an IGH-BCL2
fusion, or BCL6 breakpoint, or any combination of these. The third we call "MYC-
negative”, comprising MY C-negative lymphomas. The mBL group predominantly
consists of MY C-simple lymphomas; the non-mBL group predominantly consisted of
MY C-negative lymphomas. In contrast, the intermediate group contained most of
the MY C-complex cases but also occasional MY C-simple and several MY C-negative
cases.

Molecular and Clinical Characteristics Clinical information on the patients is
only available for a subset of the cases. However, no significant differences can
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Figure 3.3: Kaplan-Meier estimates of survival according to the mBL
signature. Overall survival among patients with positive for an mBL-signature
is significantly greater than that among the patients with non-mBL or interme-
diate lymphoma (P=0.003 by the log-rank test [58, [67]). Tick marks denote
patients alive at the time of last follow-up.

be observed regarding the morphologic characteristics, immunophenotype, or gene-
expression pattern between the 146 patients with survival data available and the 74
patients without or with incomplete clinical information. Thus, patients with clin-
ical information available do not differ from patients without clinical information
available, and the analysis of the survival data from a subset of the patients is rep-
resentative for the whole data set. We find, patients with lymphomas classified as
mBL have better five-year survival rate than patients with non-mBL or intermediate
lymphomas (75 percent vs. 39 percent, P=0.003 by log-rank test for different sur-
vival [58 [67], see figure . However, we know, patients with mBL are younger on
average, which possibly explains the favorable diagnosis of mBL. Thus we model the
survival of the patients in the different molecular subtypes by multivariate linear Cox
regression [I8]. This analysis takes further confounding factors into account. Here
the confounding factors whose negative influence on survival is known are the age of
patients (dichotomized in patients < 60 years and those > 60 years) and the stage of
the tumor (Ann Arbor stage dichotomized in I and II versus IIT and IV). The results
of multivariate Cox-regression analysis show that the favorable outcome among pa-
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Figure 3.4: Kaplan-Meier estimates of survival according to the MYC
break. Overall survival among non-mBL/intermediate patients with MYC
breaks (IG-MYC and non-IG-MYC) is significantly worse than that among non-
mBL/intermediate patients without a MYC break (P=0.005 by the log-rank test
[58] [67]). Tick marks denote patients alive at the time of last follow-up.

tients with mBL can largely be explained by the onset of the disease at a young age
and the limited stage of the disease (hazard ratio for death of non-mBL/intermediate
lymphomas, 1.47; 95% CI: 0.57-3.81; P=0.43). However, we can show adverse effects
of the MYC-breakpoint independent of age and stage among the 82 patients with
non-mBL or intermediate lymphomas for whom clinical information is available. The
presence of a MYC breakpoint, as compared to its absence, is associated with a poor
five-year survival rate (15 percent vs. 44 percent, P=0.005 by log-rank test for dif-
ferent survival [58, [67], see figure [3.4). In Cox-regression restricted to the non-mBL
and intermediate group, the presence of a MYC breakpoint - which occurs mainly
in MY C-complex lymphomas - is associated with a significantly worse survival, inde-
pendently of Ann Arbor stage, age, and the GCB/ABC signature, which we discuss
in chapter 5| (hazard ratio for death of MYC-break positive lymphomas, 2.85; 95%
CI: 1.43-5.68; P=0.003).
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3.3 Validation on, and application to independent
data sets

3.3.1 Pediatric mature aggressive B-cell lymphoma

Lymphomas are the third most common group of cancers in children and adolescent.
Non-Hodgkin lymphoma (NHL), which account for approximately 60% of all lym-
phomas, represent 6% of all malignancies in children up to 14 years of age (German
Childhood Cancer Registry, GCCRED. The spectrum of NHL occurring in children and
adolescent differs strikingly from adults. Whereas indolent lymphomas are frequent
in adults, the vast majority of lymphomas in children and adolescent are aggres-
sive lymphomas, mainly mature aggressive B-cell lymphomas including particularly
Burkitt lymphoma and diffuse large B-cell lymphoma.

With currently available combination chemotherapy for both BL and DLBCL an
overall survival rate of 90% and more can be reached in children [99] [66]. In most pe-
diatric study groups BL and DLBCL, although recognized by the WHO classification
as distinct lymphoma entities, are currently treated according to the same treatment
protocols in children [99, 66, 16]. The stratification of treatment intensity is based
on clinical risk factors like stage, but not the histopathological diagnosis. In adults,
only BL is treated with protocols initially used in children [24, 83]. For DLBCL
CHOP-like regiments are the standard for adult patients [99, 66, 69, [42]. To gain fur-
ther insights into the molecular characteristics of pediatric mature aggressive B-cell
lymphoma, the MMML performed comprehensive molecular profiling, including gene
expression, array-CGH, fluorescent in situ hybridization and immunohistochemistry
on 54 patients < 14 years. Of them, 49 were treated within prospective clinical trials
of the German NHL-BFM (non-Hodgkin Berlin-Frankfurt-Miinster) study group [46].
Furthermore, 18 of the cases discussed here are already part of the initial MMML
data set of 220 lymphomas, yielding a total 36 newly analyzed cases.

Figure shows the results of the pediatric lymphoma profiling study in a similar
way as figure Among the 54 patients of age 14 years or younger at presentation,
the morphologic diagnoses is BL (n = 16, 30%), atypical BL (BL-like, n = 10, 19%),
DLBCL (n = 16, 30%), follicular lymphoma (FL grade 3, n = 2, 4%) and high-grade
B-NHL not further classified (n = 10, 19%). Gene expression profiling reveals 34
mBL (63%), 11 intermediates (20%) and 9 (17%) non-mBL lymphomas in the group
of pediatric patients. Morphologic BL/atypical BL as well as mBL defined by gene
expression are more frequent in children than adults (49% vs 11% and 63% vs 11%,
respectively). Vice versa, DLBCL and non-mBL are less frequent in children than in
adults (30% vs 82% and 17% vs 67%, respectively). The percentages of intermediates
are similar in the 2 age groups (20% in children vs 22% in adults).

thttp://info.imsd.uni-mainz.de/K_Krebsregister /english /
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Figure 3.5: Core group extension applied to 54 pediatric lymphomas [46].
The panel compiles the same information on the 54 pediatric lymphomas as figure
[3:2] except that bootstrap predictions are not available. The gray box hiding the
mBL index above the leftmost cases indicates the 8 core Burkitt lymphomas of
the initial MMML data set we added to the plot. The bar plot on top of the panel
encodes the frequency of genomic gains and losses as revealed by array-CGH,
followed by a plot of the mBL-index and a heatmap encoding the expression
of the mBL signature genes. The first bar below shows again the mBL-index,
where green encodes a high mBL-index and red encodes a low mBL-index. The
next bar encodes in green the presence of a MYC translocation, and in red its
absence. The histologic diagnosis is encoded in the bar below, with bright green
indicating core-Burkitt lymphomas; dark green Burkitt lymphomas not fulfilling
all WHO-criteria; red, diffuse large B-cell lymphomas; blue, follicular lymphoma;
and gray, unclassifiable mature aggressive B-cell lymphoma. The level of the
proliferation index indicating the number of proliferating tumor cells as revealed
by Ki-67 protein expression is encoded below with green for Ki-67>95%, and
red for Ki-67<95%. Finally BCL2 protein expression is indicated in green for
negativity and red for positivity. White bars indicate "not assessable”. (Figure
reproduced from [46])
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Remarkably, of the 16 morphologically defined DLBCL in children, 5 (31%) become
reclassified as mBL by the gene expression signature, with 3 of them being IG-MYC
positive suggesting that they are indeed biologic BL. In contrast to pediatric lym-
phomas, only 11 of 165 morphologically defined DLBCL in the initial series of 220
lymphomas become reclassified as mBL (table . Thus, gene expression profil-
ing leads to a reclassification of morphologically diagnosed DLBCL more frequent in
children (31%) than in the overall population (6.7%). On the other hand, the mor-
phologic diagnosis of BL/atypical BL correlates well with the molecular diagnosis
mBL in children. Only 2/26 morphologically defined BL (1 BL and 1 atypical BL,
together 7.7%) do not become classified as mBL by gene expression profiling. They
were classified as intermediate lymphomas.

In conclusion, the mBL-signature applies to pediatric lymphomas and provides evi-
dence, that the frequency of Burkitt lymphomas in children is higher than expected.
It is already known that morphologic DLBCL are less frequent in children than in
adults [63]. Nevertheless, our data indicate that non-mBL (the molecular counterpart
of morphologic/histopathologic DLBCL) exists in pediatric patients. However, gene
expression profiling reveals that non-mBL is even rarer in the pediatric age group than
anticipated by morphology and immunohistochemistry alone. Within the group of pe-
diatric patients one third of the morphologically diagnosed DLBCL become classified
as non-mBL by gene expression profiling and the others as unclassifiable (intermedi-
ates) or mBL. These data might explain the high frequency of MYC breaks reported
for pediatric patients [70], because the group of morphologically defined DLBCL in
children seems to contain a higher rate of ”contamination” with lymphomas with a
mBL expression profile (set E, see table than their adult counterpart. Although
adequate studies are lacking, initial reports suggest that morphologically defined DL-
BCL with an mBL gene expression signature might benefit from BL therapy protocols
[20, 42l [40]. Because the therapeutic strategies in BL and DLBCL are the same in
children, the problem of assigning a patient with mature aggressive B-cell lymphoma
to an insufficient therapy based on the morphologic/histopathologic diagnosis is clin-
ically less relevant in children than in adults at the current stage. However, future
targeted therapeutic strategies might differ between mBL and non-mBL and thus
might need a precise distinction of mBL and non-mBL.

3.3.2 The LLMPP consortium data set

The Leukemia/Lymphoma molecular profiling project (LLMPP) is a consortium of
research groups predominantly but not exclusively from North America. From the
LLMPP Dave et al. [20] published a molecular profiling study on Burkitt lymphoma
and diffuse large B-cell lymphoma similar to the MMML study. The data we will refer
to as LLMPP data comprises 303 lymphoma gene expression profiles from tumors
that have been initially classified as Burkitt lymphoma (n=71), diffuse large B-cell
lymphoma (n=223), and cases that could be not further sub-classified (n=9). Even
though the statistical method of Dave et al. differs from ours (they use a compound
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covariate predictor, see chapter , the authors arrive at very similar conclusions:
Cases exist with a BL-signature together with an expert diagnosis of DLBCL and
vice-versa. Furthermore, the authors show, that cases with a Burkitt signature that
have been treated with the DLBCL protocol have a significantly worse survival than
BL-signature positive patients treated with the more aggressive BL protocol. These
findings demonstrates the clinical importance of an accurate diagnosis of Burkitt
lymphoma. Unfortunately, we cannot apply the signature of Dave et al. to our data
set directly, since it was produced on another, custom Affymetrix oligonucleotide
microarray (LymphDx 2.7k), yielding data on another scale than those generated
with Affymetrix HGU133A microarrays. However, Dave et al. subjected a subset
of 99 samples in parallel to Affymetrix HGU133plus2 microarrays. We can combine
those with the MMML data set generated on Affymetrix HGU133A microarraysﬂ
allowing us to apply our core group extension based signature to 99 cases of Dave et
al. The comparison of the MMML mBL-signature and the LLMPP BL-signature on
the 99 cases yields:

BL (Dave et al.) non-BL (Dave et al.)

non-molecular Burkitt lymphomas (MMML) 0 34
intermediate (MMML) 2 30
molecular Burkitt lymphomas (MMML) 31 2

Figure demonstrates the application of the MMML mBL-signature to the 99
LLMPP lymphomas. While we are able to predict most of the LLMPP Burkitt lym-
phomas correctly, we assign almost half of the non-BL lymphomas to the intermediate
group. However, a closer look at figure reveals that most of the non-BL. LLMPP
cases classified as intermediate by our signature have an mBL-index close to the
lower cut-off at 0.05. A slight adjustment of the mBL-signature to the LLMPP data
is enough to consistently classify most of the intermediate cases as non-mBL. Note,
that the LLMPP samples have been collected within a different consortium, they have
been processed in a different lab, and the lab-equipment to process HGU133plus2 mi-
croarrays differs from that used for HUG133A microarrays. Despite these systematic
differences, the mBL-signature directly applies to the LLMPP data set.

Conclusion. Although the mBL-classifier was trained to discriminate between C'
and R it performs well in discriminating between C'U E and R\ E (see table [3.2] and
section [3.1.2). Furthermore, we could validate the mBL-signature on an independent
data set from the LLMPP. Nevertheless, the mBL-signature was trained in a naive
way. In the next chapter we will follow an iterative procedure together with a normal
mixture model to learn a classifier directly on CUFE and R\ F instead of C' and R.

2The Affymetrix HGU133plus2 GeneChip represents an enhanced microarray design containing all
probe-sets at once, originally distributed on two separate GeneChips (HGU133A and HGU133B).
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mBL index

Gene expression

Figure 3.6: Core group extension applied 99 LLMPP lymphomas [20].
The panel compiles the same information on 99 LLMPP lymphomas as figure
3.2] except that bootstrap predictions are not available. The gray box hiding
the mBL index above the leftmost cases indicates the 8 core Burkitt lymphomas
of the initial MMML data set that we added to the plot. The bar on at the
bottom of the panel shows encodes the prediction of the LLMPP BL-signature,
with green encoding BL and red encoding non-BL (DLBCL, respectively).
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Chapter 4

A model based clustering approach to
core group extension

In section [3]we have approached the core group extension problem from the supervised
learning perspective using a variant of linear discriminant analysis. We consider the
resulting model as naive, since it has been derived from incomplete class labels. In this
chapter we will approach the core group extension problem from the unsupervised
perspective. We will apply a Gaussian mixture model based clustering method to
partition D into k disjoint sets. However, we will deviate from the fully unsupervised
framework in two points:

e We will restrict the search space of possible cluster solutions to those yielding
two clusters, where one cluster contains all cases in C' as defined in table (3.2
and the second cluster contains none of the cases in C.

e We will use the labels of C' to perform gene selection prior to clustering.

The first part of this chapter describes the core group extension method based on
a univariate Gaussian mixture. The second part proposes a novel gene selection
strategy, and in the third part we combine the novel core group extension algorithm
and the gene selection strategy to the Burkitt lymphoma problem.

4.1 Core group extension revisited

The Burkitt lymphoma classification is a core group extension problem as described
in chapter [3 We have a data set D of 220 lymphomas. 8 of them are labeled as
BL according to the WHO, and 212 remain unlabeled, due to inconclusive diagnostic
criteria. However the unlabeled cases might contain further BLs. We denote the
set of 8 confirmed BL cases with C for core group, the 212 remaining cases with R,
and the Burkitt cases hidden in R with E for extension. The set (C'U E) denotes
the extended core group and the set (R\E) denotes the remaining cases without E.
We know the cases in C' and in R, but not the cases in F. Our goal is to identify
E. Furthermore we want to learn a molecular signature that classifies novel cases
as members of the sets (C'U E) or (R\E). In terms of the Burkitt classification

45



Chapter 4 A model based clustering approach to core group extension

problem (C'U E) denotes "true”, molecular Burkitt lymphomas and (R\E) denotes
non-molecular Burkitt lymphomas. In this chapter we adapt univariate Gaussian
mixture modeling to the core group extension problem.

4.2 Expectation-maximization for Gaussian mixture
models

The underlying model of Gaussian mixture model based clustering is a data generat-
ing distribution with density f(x) = H;'L=1 Z?:l TkOk(Xj| ik, 2k ), where ¢ (x| pre, L)
are K normal densities for K components in D. The membership of the samples in
the K components is unknown. The goal is to find a constellation of the parameters
i, 2k, and 7, that maximizes the likelihood L£(X|m, px, k) of the observed data
X.

n K
LX i, e, k) = T 7non (1w, ), (4.1)

7=1 k=1
where p;, and X denote the location and covariance of the K normal components,
and 7, denotes the proportions of the components. An efficient way to estimate the
parameters is the expectation-maximization (EM) algorithm [22] [61] an iterative pro-
cedure of alternating E-steps (E=expection) and M-steps (M=maximization). During
the E-step we estimate the conditional class probabilities p; given a certain param-
eter constellation for py,>, and 7y:

. ek (X | e, L)
pr(x;) = =g :
Yo T (X, )

(4.2)

During the M-step we estimate the parameters p,, X, and 7 given py(x;) from the
preceding E-step. The estimates of py and 7 have closed-form expressions [31]:

)y =— ﬁ X)X,
20" nk; k( J) J

A Ny

=— 4.
M = (4.3)
ne =Y pr(x;).

j=1

The estimation of 3, is less straight forward (see [31] for details). One possible choice
1s

. 1 . R X
Be= > be(xy) (x5 — ) (5 — )" (4.4)
j=1

However, in analysis we have more genes than samples and the covariance matrix
given in equation is not invertible. Nevertheless, we need to invert ¥, to compute
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Dr(x;). Alternatively, like in supervised discriminant analysis described in chapter
we can assume independence of genes and choose the covariance matrix to be
diagonal. In the next section, we will follow yet another approach, where we do not
have to estimate covariances. We will project the data first on a univariate line, and
fit the mixture model to the univariate projection.

EM converges to a local maximum of the likelihood after several iterations of alter-
nating E- and M- steps [22]. However, the final solution depends on the starting point
of the iterations. Prominent methods to choose the starting point are hierarchical
clustering in the multivariate case and quantile-based partitioning in the univariate
case. Both are part of a comprehensive model based EM-clustering strategy proposed
in [31]. In the next section we adapt univariate Gaussian mixtures [31] to core group
extension of Burkitt lymphomas.

4.3 Core group extension expectation maximization
(COREEM)

4.3.1 Implementation

Assume we are given a normal vector a € RP, then the projection s; = a’x; with
j =1,2,...,nindexing n samples defines a univariate partially labeled data set s € R™.
We refer to s; as gene expression index aggregating the expression level of p genes in
a univariate score. It represents the core group if j € C. We now model the data in
s as univariate mixture of two normal distributions we refer to as components. The
first component should represent Burkitt lymphomas comprising the set CUFE (index
k = 1) and the second component non-Burkitt lymphomas comprising the set R\E
(index k = 2). We use the partial label information and modify the E-step of the
standard EM-algorithm defined in equation [4.2] This yields the extension step of our
novel core group extension model. We refer to it as core group extension expectation
maximization (COREEM):

E-step
To(s;lfn, 67) :
_ — _ — if j¢&C
A oG i e - (-7l lia el | I F
pCuE(Sj):
1, it jec, (495

Pr\E(Sj) = 1 = Peur(s;)-

where ¢(s;|fix, 57) denotes the density of the univariate normal distribution:

N 1 1 s: — [
(s, 671) = exp — (A _FEy2 (4.6)

V2o, 2 Ok
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Chapter 4 A model based clustering approach to core group extension

The M-step is like in the standard EM algorithm for univariate two-component Gaus-
sian mixtures:

M-step

ny = ZﬁCUE(Sj)> ng = ZﬁR\E(Sj),
j=1 j=1
in =Y boup(s))si/n, iz =Y Pre(s;)si/na
j=1 7=1 (4.7)
T =ni/n,
2 >y bour(s;)(s; — in)? 2 > i1 Pr\E(85)(85 — fi2)?
1 ) 2
m T2

Initialization. The solution of EM depends on the starting point [31]. A prominent
choice is to split the data at the quantiles into k equally sized initial classes, where k
depends on the number of presumed components (see [31] for details). We set pj, = 1,
if a sample belongs to the initial class £ and p, = 0 otherwise. Given this initial
choice of p, we start the algorithm with an M-step. Here, we are in the core group
extension scenario. Thus we initialize the EM algorithm with two initial classes and
set poup(s;) =1if j € C and peugp(s;) = 0 otherwise.

Classification. We run core group extension expectation maximization until
convergence and obtain estimates for fiy, jis, 6%, 65, 71 = 7, and 7 = 1 — 7 from the
final M-step. We set up a classification rule and assign a sample 7 with expression
index s; to the core group if

T10(s5]fi1, 67) > 20p(s;|fir, 67). (4.8)
This can be written as
ERNRY
wﬂn —21nﬁ12M+ln&§—2lnﬁ2. (4.9)
01 )

The critical value s..;; defining the classification boundary is the solution of

2
Serit — ~ ~ cri ~
ﬁ—i—lnaf—ﬂnm:%—l—l —21n7r2
o o
! ? rge (4.10)
Serit(05 = 01) + 2serit( 1207 — [n63) + (163 — f1367 — (In =5 =5)6763 = 0.
173

We solve a quadratic equation of the form

ar® +br+c=0 (4.11)
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with
(65 = 67)
£2.2 222 G371 2.9 '
¢ =365 — [i307 — (In 5 —5)67063
01 T

Note that equation yields two solutions for s..;. Figure demonstrates the
reason why there are two decision boundaries: The likelihood of the red class is larger
than that of the green class on both sides (tails) of the green mixture component. The
region where we classify a samples as red is not connected. Here, we consider only the
value between the two component means s.,.;, and ignore the second ”outer” solution
of equation .11} We will discuss this later in section The expression index s;
is a linear combination s; = a’x; of the gene expression vector x; and weights a.
Hence we have

p
f(x) = Z ;i + Serit (4.13)
i=1

where x is in the extended core group if f(x) > 0.

So far, we have described the final step of core group extension expectation maxi-
mization using a predefined set of p signature genes and predefined weights a. In the
following section we proceed with describing, how we select a set of signature genes
and the weights a.

4.4 Gene selection and expression index

4.4.1 Filtering and weighting genes

In supervised classification we have completely labeled data. A common approach of
gene selection is univariate thresholding, where we rank genes based on a univariate
classification score. The t-statistic is a prominent choice in this context. It is defined
as L

f= 2 (4.14)

(- + 7o)

where T; and 7 denote the means of the two classes we wish to compare and &
denote the pooled within standard deviation (see equation [2.5). Only genes with a
univariate classification score above a certain threshold are included into a molecular
signature. We assume: We want to discriminate two classes. All cases in the same
class are drawn from the same distribution while the distributions for the two classes
are different. The t¢-score selects genes based on the gene-per-gene differences of
univariate distributions. In core group extension the core group cases (C) are assumed
to be drawn from the same distribution, while the remaining cases in R are drawn
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Figure 4.1: A univariate mixture of two Gaussian distributions has two
decision boundaries. Shown are the densities of two mixing univariate Gaus-
sian distributions (dashed green and red lines). The green density has a low
variance as compared to the red. The tails of the red density are wider than
those of the green density. This causes that the decision region (bar below the
density plot) for the red class is not connected, but stretches along both sides
of the very narrow green class. In case of equal variances we have only a single
decision boundary.

from a mixture. Part of them are drawn from F following the core group distribution
while the others are drawn from R\ E following a different distribution. The mean of
the a priori group R is not representing a population mean but is contaminated by
hidden cases from E. Consequently the variances estimated across the R cases are to
large due to the contamination of this group. We take this into account and deviate
from the standard t-score for gene selection. We ignore the mean and the standard
deviation of the cases in R. We select a gene i, if the distance of its core group mean
differs from the overall mean

Tic — T
tos = w7 415
i G s (4.15)

where 6¢; denotes the standard deviation of gene 7 in the core group C'. We ignore

or. The constant sp = median({d¢;}?) is a fudge factor, which prevents high scoring
genes due to extremely low d¢; as described in [92]. We rank genes according to
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4.5 Results

absolute values of t¢;, yielding
X(p*) = T(1)s L(2)5 -+ L(p*), (416)

which contains the gene expression values of the p* top scoring genes with respect to
tc.i|. Furthermore, we follow ideas of the compound covariate predictor (see section
on page and use a; = tc; as weights to compute s; = a’x;. Hence

p*
S§p ) = th(i) “ L) (4.17)
=1

denotes the gene expression index of the p* top scoring genes in sample j. Next we
choose the optimal number of genes p*.

4.4.2 Choosing the number of genes in the compound score

The score t¢; in equation ranks genes, and we use it as weights a in s; = a’x;.
What remains to be decided is the choice of p*, the number of genes included in the
model. In supervised classification, cross validation can be used to determine the
optimal number of signature genes p* minimizing the number of misclassifications.
The labels decide whether a classification is correct or not. In core group extension
part of the cases are unlabeled. For these cases we can not reliable distinguish between
a correct and an incorrect classification.Instead define another objective for model
selection:

Let s®) = sgp*), sép*), e s?) be the index aggregating the expression values of the
p* top ranking genes in n samples. A subset of the samples is labeled as core group
C. Running core group extension expectation maximization as described in section
yields a parameter constellation from the last M-step (equation after the
likelihood has converged to a local maximum. The M-step vields a7, a%”, 5"
and 65", We define
p 1~@*) | ~(0¥)
501 "+ )
to score the discrimination between the two normal mixture components resulting
from core group extension expectation maximization. We run the algorithm for dif-
ferent p* and choose p* maximizing d(p*).

(4.18)

4.5 Results

We will now apply core group extension expectation maximization to the same data
set D as described in section [3.2] It contains 221 gene expression profiles from 220
aggressive B-cell lymphomas, and we start by splitting D into a core group C of 8
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Figure 4.2: Discriminant scores of two-component Gaussian data models.
Both plots show different discriminant scores on the y-axis. They have been
computed in line with equation for different values of p* (x-axis). Each
p* yields different gene expression indices and subsequently another core group
extension expectation maximization solution. The plot on the left shows the
discriminant scores across the whole data set. The plot on the right zooms into
the left plot (indicated by the vertical black line) and shows only the result for
the top 2000 scoring genes with respect to |tc;|. The discriminant score has its
maximum at p* = 86 genes (vertical green line).

Burkitt lymphomas, a training set R of 105 mature aggressive B-cell lymphomas, and
a test set Dyes of 107 mature aggressive B-cell lymphomas. Furthermore, we apply an
additional processing step to the data: Affymetrix microarrays measure transcription
with probe-sets. In most cases, a single probe-set measures a single gene. However,
in case of complex genes, Affymetrix designed multiple probe-sets for the same gene.
In order to remove redundant information in our final core group extension model, we
average expression values obtained from different probe-sets that measure the same
gene. From the 22283 different probe-set expression values, we obtain p = 12938
different gene expression values.

In line with equation we compute t¢; for each gene i = 1,2, 3, ..., 12938 comparing
the expression of each gene in the core group C' with its expression in all samples
C'UR. We rank genes according to decreasing absolute values of ¢¢; and include the

top p* genes into the computation of the gene expression indices s) in line with
equation . This yields a univariate data set DY) with n = #C + #R = 113

uni

samples. We derive a data set Dﬁ,’f} for each p* =1,2,3,...,12938, and subject them

one after the other to core group extension expectation maximization. Figure [4.2
shows the discriminant scores of the resulting models as defined in equation [4.18§]

The gene expression index s yields a core group extension expectation maximiza-
tion solution with maximal discriminant score d(p*), if p* = 86. Figure |4.3|shows the
density of the resulting model. The model has two decision boundaries s..;, = 3.09
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Figure 4.3: Density of the optimal core group extension expectation

maximization model. The plot shows a histogram of the optimal core group
extension model of a 86-gene expression index in 113 lymphomas. The red line
is the 2-component Gaussian mixture density estimated by core group extension
expectation maximization. The level of the expression index of the core Burkitt
lymphomas C' is highlighted by red ticks below the histogram. The green ticks
highlight the expression index of the remaining lymphomas R. The bar along
the x-axis below the histogram indicates the classification of the samples with
respect of the class probabilities obtained from equation If an individual
sample has an expression index in the range indicated by the red region the pos-
terior probability of the core group component is higher. If it has an expression
index in the green region, the posterior probability of the non core group com-
ponent is higher. The classification depends on the parameter 7, taking into
account different proportions of the two classes. The dashed vertical red lines
highlight the decision boundaries obtained from the core group extension expec-
tation maximization. The dashed vertical black lines highlight the range of the
decision boundaries, if we vary the class proportions between m; » = (0.01,0.99)
and 712 = (0.99,0.01).
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Figure 4.4: Core group extension expectation maximization model of 220
lymphomas. The panels from top to down show: 1.) The Burkitt expression
index sg-p D= aTxgp ") of the individual samples j sorted along the x-axis in
increasing order, 2.) the posterior class probability for Burkitt lymphoma sorted
with respect to the Burkitt expression index and 3.) the expression of the p* = 86
genes constituting the Burkitt index in the 220 lymphomas. The bar below
highlights in red molecular Burkitt lymphomas as defined in chapter 3, in green
non-molecular Burkitt lymphomas and in gray intermediate cases.

and sq, = 6.07. The latter is far outside the range of the data, and we do not
consider it for classification. We define

86
fx) = ch,(i)w(i) + 3.09, (4.19)
=1

where (i) indexes the genes ordered with respect to decreasing absolute values of
tci. Cases are considered as Burkitt lymphoma, if f(x) > 0 and as non-Burkitt
lymphoma otherwise. If we classify the 113 training cases accordingly, we obtain
24 Burkitt lymphomas and 89 non-Burkitt lymphomas. The 24 Burkitt lymphomas
include the 8 core cases. Modeling the 86-gene expression index yields the model
parameters given in table

The estimates for the class proportions 7, and 79 are 0.7882 and 0.2118. Thus, the
estimated proportion of Burkitt lymphomas is about 20% of the population. This
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Table 4.1: Core group extension expectation maximization model pa-
rameters estimated on 113 lymphoma gene expression profiles.

Component 1 Component 2
Assigned subtype | non-Burkitt lymphoma | Burkitt lymphoma
Size (training set) 89 24
i (equation {4.7] 2.352 3.549
62 (equation |4.7] 0.0519 0.02401
7 (equation 4.7 0.7882 0.2118

information is included in the classification function defined in equation [4.19] The
model depends on the composition of the data set. This is important, because the
composition of the present training data does not represent the natural proportions of
the subtypes among the population of mature aggressive B-cell lymphoma. Instead
the proportion of Burkitt lymphomas is artificially high. There was a priority on
including Burkitt lymphomas when the data was collected. In order to figure out
how much the model prediction depends on 7, we plug in the following extreme
prior parameter constellations into the final Gaussian mixture model:

o 1 =0.0land my =1 — 7 = 0.99 = 51, , = (2.9242,6.2376),
o m =099 and m =1 — 7y = 0.01 = 500, , = (3.1941,5.9677).

Even if we vary the m; in an extreme range from 1 to 99%, only one sample changes
its label based on the resulting classification. The decision boundaries vary along
two regions of very low density of the data, if we vary m; (figure . Since the true
proportions of Burkitt lymphomas and non-Burkitt lymphomas are unknown and
the classification of the samples is very stable with respect to varying 7y, we modify
the classifier by exchanging the estimated class proportions with m = w5 = 0.5.
The classification of the training data remains unaffected. The critical value s..;
separating the two mixture components changes to s..;; = 3.0531. Thus, we classify
a sample x as Burkitt lymphoma, if

86

Fx) =" temae +3.05 > 0. (4.20)

i=1

In order to test the classifier on an independent data set we applied it to our test
data set of 107 lymphomas. We obtain a stratification of the test data into 18 Burkitt
lymphomas and 89 non-Burkitt lymphomas. If we merge training and test set and
compare the classification of equation with the stratification described in chapter
[8l we obtain:

non-mBL intermediate mBL
non-Burkitt lymphomas (EM-based approach) 128 48 2
Burkitt lymphomas (EM-based approach) 0 0 42
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Chapter 4 A model based clustering approach to core group extension

The classification differs only in 2 cases, which have been classified as molecular
Burkitt lymphoma by the nearest shrunken centroids procedure described in chapter
B, but not by core group extension expectation maximization. The two discrepant
cases do not have a genomic translocation of the oncogene MYC, which is a gold-
standard diagnostic criterion for Burkitt lymphoma. Figure shows the final result
of core group extension expectation maximization on the joint training and test set.
The Burkitt posterior class probabilities shown in this figure have been computed
by plugging in the estimated model parameters (table [.1 but m; = m = 0.5) into
equation (page [46). The Burkitt class probability obtained is more extreme
than that of the naive nearest shrunken centroids approach in chapter [3] While
the naive approach yields 48 intermediate cases with a Burkitt probability larger
than 0.05 and smaller than 0.95, the core group extension expectation maximization
based class probability is between 0.05 and 0.95 only in 4 cases. In conclusion, core
group extension expectation maximization yields a model providing a clearer cut
between Burkitt lymphomas and the remaining mature aggressive B-cell lymphomas.
It leaves less cases unclassified, which improves its potential diagnostic use. At the
same time, the major conclusions from the naive approach described in chapter
remain unchanged considering the novel classification. Notably, 42 of the 44 molecular
Burkitt lymphomas defined in chapter [3]remain Burkitt lymphomas according to core
group extension expectation maximization.

4.6 Validation on further data sets.

In order to further evaluate the core group extension expectation maximization de-
rived Burkitt-signature we apply it to the LLMPP and the pediatric lymphoma data
set introduced in chapter [3] The upper panel of figure shows the gene expression
index in 54 lymphomas from patients younger than 14 years analyzed within the pe-
diatric molecular profiling project. The lower panel shows the same for 99 LLMPP
lymphoma profiles. The signature applies to both data sets.

Pediatric lymphomas. If we compare the initial molecular Burkitt lymphoma
classification of the pediatric data set as defined in chapter [3] and the novel gene
expression index based classification we obtain:

non-mBL intermediate mBL
non-Burkitt lymphomas (EM-based approach) 9 12 2
Burkitt lymphomas (EM-based approach) 0 0 31

As before the core group extension expectation maximization based signature clas-
sifies intermediate cases as non-Burkitt lymphomas. Furthermore, two of the cases,
which have been classified earlier as molecular Burkitt lymphomas become reclassified
as non-Burkitt lymphomas. The majority of the cases are classified as Burkitt lym-
phomas by both, the core group extension expectation maximization based and the
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4.6 Validation on further data sets.

nearest shrunken centroids based signature. Only 4 of the 54 pediatric cases have an
intermediate Burkitt probability between 0.05 and 0.95 according to the novel model.
Also in this data set, the cut between Burkitt and non-Burkitt cases is clearer.

LLMPP.  The 99 LLMPP lymphomas shown in the lower panel of figure have
been initially classified by the Burkitt signature published by Dave et al. [20]. If we
reclassify the same cases using our core group extension expectation maximization
based signature we obtain

BL (Dave et al.) non-BL (Dave et al.)
non-Burkitt lymphomas (EM-based) 0 65
Burkitt lymphomas (EM-based) 33 1

We have only a single discrepant case. Notably, the samples profiled in Dave et al.
[20] have been collected within a different consortium (the LLMPP), have been pro-
cessed in a different lab, and have been subjected to a different Affymetrix microarray
platform (HUG133plus2). Nevertheless, the signature trained on the MMML data
set directly applies to the LLMPP data set.

In conclusion, the Burkitt lymphoma signature is robust and reproducible in differ-
ent data sets. Furthermore, different statistical methodology applied to different data
sets yield the same groups. Transcriptional profiling thus provides strong evidence
that Burkitt lymphoma is biologically different from diffuse large B-cell lymphoma,
and that a molecular signature provides a quantitative basis for the diagnostic dis-
tinction of Burkitt lymphoma from diffuse large B-cell lymphoma. We know finish
the discussion of Burkitt lymphoma at this point and continue with strategies to the
molecular stratification of diffuse large B-cell lymphoma.
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Figure 4.5: Core group extension expectation maximization model ap-
plied to 54 pediatric lymphomas (top, [46]) and 99 LLMPP lym-
phomas (bottom, [20]). See legend of figure for details. The only de-
viation from the legend of figure [£.4] is the bar below the lower panel showing
the LLMPP data. This bar does not encode the mBL-signature as described
in chapter [3| but indicates in red the BL-classification as defined in the original
publication of the data [20].
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Chapter 5

GCB, ABC and their relation to gains
of chromosome 18q

In this chapter we explore germinal center B-cell-like (GCB-like) and activated B-
cell-like (ABC-like) lymphomas in the MMML data set. Furthermore, we will have
a closer look at the MALT1 gene, which is a close neighbor to BCL2 an important
oncogene in lymphomagenesis on chromosomal band 18q21 and has an important
impact on NF-sB activation [75]. Genomic gains of regions on chromosome 18q are
frequent events in ABC-like lymphomas [9], and in most cases jointly increase the
chromosomal copy number of BCL2 and MALT1 together. We are interested in the
question, if there is an ABC independent relationship between transcription and the
presence of a genomic gain of 18q/MALT1.

Gain of MALT1 on chromosome 18q21 has been evaluated by a combination of array
comparative hybridization (array CGH) and fluorescence in situ hybridization (FISH)
as described in Dierlamm et al. [23]. The GCB and ABC labels will be predicted from
transcriptional profiles by using a compound covariate predictor following Wright et
al. [101].

5.1 Molecular features of GCB and ABC

The germinal center B-cell-like/ activated B-cell-like (GCB/ABC) signature stratifies
diffuse large B-cell lymphoma (DLBCL) based on transcriptional profiling [3, [74].
Patients with a GCB-lymphoma on average have a better overall survival as compared
to ABC-lymphoma patients [3, [74]. Additional to the prognostic potential of the
GCB/ABC stratification, several genetic aberrations have been identified that occur
at different frequencies in GCB and ABC lymphomas [41, [0, 44]. However, their
presence does not allow a classification to GCB or ABC. Some of them involve the
genomic locus of BCL2 on chromosome band 1821, and thus altering the expression
of this important oncogene in lymphoma pathogenesis. GCB-like DLBCL frequently
show a t(14;18) genomic translocation [41]. BCL2 is target of this translocation and
thus becomes overexpressed in GCB lymphomas. In contrast, in ABC lymphomas
we observe BCL2 protein overexpression in the absence of the genomic translocation
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t(14;18) [44]. The molecular mechanisms underlying BCL2 overexpression in absence
of t(14;18) are unknown. However, ABC-like DLBCL has constitutively activated
the transcription factor nuclear factor (NF)-xB [21, 28, 51], and BCL2 is a target
gene for transcriptional regulation through NF-xB. Thus BCL2 upregulation in ABC
may be due to NF-xB activity. Another possible mechanism increasing BCL2 protein
expression is a chromosomal gain of the BCL2 locus, as demonstrated by Igbal et al.
[44]. BCL2 is located on chromosome 18q and chromosome 18q is frequently gained
in ABC-like lymphomas [9].

5.2 The compound covariate predictor for GCB and
ABC

Wright et al. [I0I] propose a molecular signature comprising the transcriptional
levels of 27 genes to distinguish GCB from ABC lymphomas. They have derived this
signature from a custom microarray platform called Lymphochip [2], and suggest a
compound covariate predictor (see section to obtain GCB and ABC labels from
Lymphochip transcriptional profiles. In line with equation they compute

o(x) = Z tixs, (5.1)

where t; denotes t-scores for differential expression between GCB and ABC of the
i =1,2,...,27 signature genes observed on Lymphochip data. They compute c¢(x;)
for each sample j and model it as a mixture of two univariate normals. Given the
densities of two univariate normal distributions with means p; and ps and standard
deviations o; and oy

1 Lox—
rlk=1)= exp ——
plalk=1) = ——exp -5 (“_ ) -
1 1, x—pss '
plalk=2) = exp— (122
o2 02

they obtain a maximum likelihood classification of a new sample = as member of class
k=1if
plalk = 1) > plalk = 2) (5.3)

Replacing 2 with the linear predictor score ¢(x), p1 with ¢, py with &2 and the
two standard deviations with empirical estimates 6, and &5 yields

— ()2 — ()2
M—Hn&f < M—Hn&%. (5.4)

o1 o3
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The two variances 6% and 63 of ¢(x) within the two classes C; and C, are estimated
as:

(5.5)

Finally, Wright et al. [I01] compute class posterior probabilities that a sample with
an expression profile x is member of class one by

plec(x)|k =1)
(cx)|k =1) + ple(x)|k = 2)°

(k= 1) = - (5.6)

Given that class one represents GCB and class two represents ABC, Wright et al.
[TOT] classify lymphomas

GCB if p(k=1lx)>0.9
CGCB/ABC(X) = ABC if ﬁ(k’ = 1|X) < 0.1 (57)
unclassified if 0.1 > p(k = 1|x) > 0.9.

A cross platform signature approach  The original GCB/ABC signature is based
on data generated with the Lymphochip [2], which is a substantially different microar-
ray platform than that provided by Affymetrix. A direct application of signatures
derived from the Lymphochip to data generated with Affymetrix microarrays is not
possible, since the measurements are on different scales and the genes present on
both platforms differ. Wright et al. [101] propose a cross platform translation of
their Lymphochip signature to Affymetrix microarrays. They describe a special case,
where the goal is to apply the Lymphochip signature to a lymphoma data set gen-
erated with Affymetrix HU6800 microarrays [80]. Of the 27 Lymphochip signature
genes 14 are present on HU6800 microarrays. Some of these 14 genes are measured by
more than one probe-set of the Affymetrix microarray. In this case, Wright et al.[101]
suggest to average multiple measures of the same gene within each sample. Due to
the technological differences between the Lymphochip and the Affymetrix platform,
Wright et al.[I01] shift and scale the Affymetrix gene intensities to the same mean
and variance across the samples than in the corresponding Lymphochip data.

We follow the strategy proposed by Wright et al. [101] to add the GCB/ABC labels
to our series of 220 lymphoma expression profiles, which is based on Affymetrix
HGU133A microarrays. We are able to identify HGU133A probe-sets for 15 out of
the 27 Lymphochip signature genes listed in table .1} Like in Wright et al. [I01],
we derive a "truncated” signature using only the subset of genes present of both the
Lymphochip and the Affymetrix platform and start with testing, if this ”truncated”
model still predicts at least the original Lymphochip data correctly. The Lymphochip
data set and the gene weights accompany the publication of Wright et al. online
[TOT]. Table compares the GCB/ABC-predictions of the original Lymphochip
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Table 5.1: Genes selected for GCB/ABC compound covariate predictor.
The table lists the Lymphochip features of the GCB/ABC predictor that have
counterparts on Affymetrix HGU133A GeneChips. Note, several lymphochip
features match multiple Affymetrix probe-sets.

Lymphochip | Affymetrix Symbol ‘ Description ‘
19346 201810-s-at, 201811 x_at SH3BP5 | SH3-domain binding pro-
tein 5 (BTK-associated)
16049 209374 _s_at, 211632_at, IGHM immunoglobulin heavy con-
211634 x_at, 211635_x_at, stant mu
211637 x_at, 211638_at,
211650_x_at, 211908 _x_at,
212827 _at, 214916 x_at,
215621 _s_at, 216363 _at,
216371 _at, 216372_at,
216491 x_at, 216510_x_at,
217035 _at, 217198 x_at,
217217 _at
24729 204562_at IRF4 interferon regulatory factor
4
24899 209193 _at PIM1 pim-1 oncogene
27565 207691 _x_at, 209473 _at ENTPD1 | ectonucleoside triphosphate
diphosphohydrolase 1
17227 209827 _s_at 1L16 interleukin 16 (lymphocyte
chemoattractant factor)
29385 207655_s_at BLNK B-cell linker
16858 200951 _s_at, 200953_s_at CCND2 cyclin D2
26385 203434 _s_at, 203435_s_at MME membrane metallo-
endopeptidase (neutral
endopeptidase, enkephali-
nase, CALLA, CD10)
24904 212975_at KIAA0870
24429 203140_at BCL6 B-cell CLL/lymphoma 6
(zinc finger protein 51)
27673 204674 _at, 35974 _at LRMP lymphoid-restricted mem-
brane protein
17496 213906_at MYBL1 v-myb myeloblastosis viral
oncogene homolog (avian)-
like 1
17218 204249 _s_at LMO2 LIM domain only 2
(rhombotin-like 1)
28338 203723_at ITPKB inositol 1,4,5-trisphosphate

3-kinase B
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5.2 The compound covariate predictor for GCB and ABC

Table 5.2: The GCB/ABC model is originally based on a Lymphochip data set.
The table shows the classification of the original Lymphochip samples classified
based on the full 27 gene model (rows) and the ”truncated” 15-gene model
(columns).

ABC GCB unclassified

ABC 67 0 4
GCB 0 105 6
unclassified 7 7 44

data using the 27-gene signature to the predictions obtained from the ”truncated”
15-gene signature. We do not observe any label swapped between GCB and ABC.
In conclusion, the 15-gene signature performs well in recovering the original 27-gene
prediction.

In order to add the GCB/ABC labels to Affymetrix data, Wright et al. [L01] shift
and scale Affymetrix gene intensities to the same mean and variance across the sam-
ples than in the corresponding Lymphochip data. It is important to note that this
procedure explicitly assumes that the composition of the two study populations is the
same, the population underlying the Lymphochip data, and the population underly-
ing the Affymetrix data. Our data set comprises Burkitt lymphomas and diffuse large
B-cell lymphomas, while the Lymphochip data set underlying the GCB/ABC signa-
ture only comprises diffuse large B-cell lymphomas. In order to make the two data
sets comparable we remove the molecular Burkitt lymphomas from our series and
restrict the GCB/ABC analysis to non-mBL and intermediate cases mainly compris-
ing cases of histomorphological diagnosis diffuse large B-cell lymphoma. We obtain
79 of our non-mBL /intermediate lymphomas classified as GCB, and 58 as ABC. 39
remain unclassified with respect to equation [5.7] Figure [5.1] shows the expression
of the signature genes and the class probabilities of GCB and ABC in 176 non-
mBL and intermediate MMML lymphomas. Since GCB/ABC represents a purely
transcriptional profiling based classification of lymphomas, we cannot compare the
results from the compound covariate prediction to some external classification that
allows validation. However, we can confirm the plausibility of our results by a several
important observations:

e In line with previous reports [3], (74, [101] patients with GCB lymphomas have a
significantly better overall survival rate.

e It has been reported that t(14;18) genomic translocations exclusively occur in
GCB lymphomas [4I]. Our data set contains 25 cases with t(14;18) translo-
cations; 1 of them occurs in an mBL tumor, 1 in an ABC lymphoma, and 23
in GCB lymphomas. Thus, we can confirm the over-representation of t(14;18)
translocations in GCB lymphomas.

65



Chapter 5 GCB, ABC and their relation to gains of chromosome 18q

1.0

Class probability

00 02 04 06 08

SH3BPS
ITPKB
LMO2
MYBL1
LRMP
BCL6
KIAA0870
MME
CCND2
BLNK
IL16
ENTPD1
PIM1
IRF4
IGHM
SH3BPS

Figure 5.1: Expression of GCB/ABC signature genes in MMML data.
The top panel shows GCB (green) and ABC (red) class probabilities of 176 non-
mBL and intermediate MMML data set lymphomas (x-axis). Probabilities have
been computed according to equation and samples have been classified ac-
cording to equation The lower panel shows the expression of the 15 signature
genes (table , where bright yellow encodes expression 3 SD above the mean
over all cases and light blue encodes expression 3 SD below the mean.

e We know that gains of chromosome 18q are more frequent in ABC lymphomas
than in GCB lymphomas [9], and we can confirm this observation on the MMML
data set [23].

The last item regarding the association of ABC lymphomas and gains of regions on
chromosome 18q will be the topic of the next section.

5.3 Dissecting the dependency between ABC and
18q/MALT1 gains

Array CGH and FISH analysis has been carried out on 116 DLBCL out of the 220
MMML lymphoma samples (see [23]). This joint genetic analysis provides a binary
label indicating, if an 18q/MALT1 gain is present (44 cases) or absent (72 cases) in
each individual lymphoma. The compound covariate predictor provides the cell of
origin labels GCB (49 cases), ABC (41 cases) and unclassified (26 cases) for the same
116 samples. We exclude the unclassified cases expressing an ambiguous cell of origin
signature and explore the dependency of GCB, ABC and the 18q/MALT1 gain in
90 lymphoma samples. The starting point is a 2 X 2 contingency table representing
absolute frequencies of an 18q/MALT1 gain in GCB and ABC lymphomas:
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Figure 5.2: Kaplan-Meier estimates of survival according to the
GCB/ABC signature. Overall survival among non-mBL/intermediate pa-
tients with an ABC-like transcriptional phenotype is significantly worse than that
among non-mBL /intermediate patients with a GCB-like transcriptional pheno-
type (P=0.003 by the log-rank test).

ABC | GCB
18q/MALT1 gain 29 10
no 18q/MALT1 gain | 12 39

In order to test, if our data represents a significant deviation from the null hypothesis
of an equal number of 18q/MALT1 gains in both, ABC and GCB lymphomas, we
perform a Fisher’s exact test (p-value: 1.9x107°). Thus, we reject the null hypothesis
of equal proportions and conclude: 18q/MALT1 gains are more frequent in ABC
lymphomas. Nevertheless, the presence of the genomic imbalance is not restricted
to ABC lymphomas. We frequently observe GCB cases harboring an 18q/MALT1
gain. Thus, it is not possible to designate the presence of an 18q/MALT1 gain as
potential pathogenicity mechanism specific for ABC lymphoma. Instead, we assume
that the 18q/MALT1 gain is independent of the cell of origin GCB/ABC signature.
The two factors 18q/MALT1 and GCB/ABC rather overlap with each other without
any causative relationship. In order to identify the effect of 18q/MALT1 on gene
expression taking into account GCB/ABC as confounder, we choose a linear modeling
approach.
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Chapter 5 GCB, ABC and their relation to gains of chromosome 18q

5.3.1 Methods

We use a regression approach to assess the problem (see e.g. Simon et al. [82]).
Given two factors describing two different phenotypic characteristics and using the
original notation of Simon et al. [82], we can model gene expression as a dependent
variable y depending on the two predictor variables z and w:

y=a+ piz+ fow +e¢ (5.8)

In the present situation we can think of z as a binary indicator variable with 1 indicat-
ing the presence of an 18q/MALT1 gain and 0 indicating the absence. Furthermore,
w denotes a binary indictor with 1 encoding the ABC and 0 the GCB transcriptional
phenotype. The coefficient o denotes an offset and each coefficient ( represents the
association between the level of the corresponding factor and the variance of the gene
expression levels across the samples. We are interested in wether or not there is a
significant association between gene expression and the factor z while taking into ac-
count the confounder w. Thus, we perform a test on the null hypothesis Hy : 31 =0
and infer a p-value accordingly. In the MMML data set we measure transcriptional
levels with 22283 different probe-sets in parallel. We use two different approaches
to test the resulting data for an association of gene expression and the presence of
an 18q/MALT1 gain, while taking into account GCB/ABC as confounder. We use a
probe-set by probe-set approach and a global testing approach.

An individual probe-set test for differential gene expression

In this approach we fit the linear model from equation separately to each of the
22283 probe-sets. We model the observed measurements of each individual probe-
set as response variable depending on the two predictor variables 18q/MALT1 and
GCB/ABC. We aim on identifying individual probe-sets, where we can reject the
null hypothesis of no association between the 18q/MALT1 gain and gene expression.
Thus, we perform 22283 independent tests in parallel. The ”linear models for mi-
croarrays” (limma) of Gordon Smyth [84] provides the framework to implement the
analysis. In line with the Benjamini and Hochberg [10] we control the false discovery
rate (FDR) to deal with the problem of multiple hypothesis testing.

A global test for differential gene expression

Global testing is an alternative to testing each individual probe-set separately. In the
global approach we test a single joint null hypothesis, instead of multiple individual
null hypotheses. The joint null hypothesis is: The observed measures of multiple
probe-sets together are random fluctuations only. Such a test allows for asking the
question of wether or not a certain factor causes transcriptional changes at all. The
Global ANCOVA (global analysis of covariance) approach by Mansmann and Meis-
ter [57] and Hummel et al. [43] provides methodology to fit joint linear models to
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observed data from multiple probe-sets. It allows to infer a p-value on the global
joint null hypothesis that a certain factor of a linear model does not change the joint
transcription of a given set of probe-sets. At the same time we take into account fur-
ther covariates as confounding factors. We use Global ANCOVA to test for the global
impact of 18q/MALT1 gains on lymphoma transcriptional profiles. Furthermore, we
perform global tests on sets of probe-sets defined by chromosomal location.

5.3.2 Results

In order to determine differential gene expression between lymphoma cases with
and without a gain of 18q/MALT1, we precede in several steps. First, we apply a
global test for differential expression between 18q/MALT1-positive and 18q/MALT1-
negative cases. We ignore GCB/ABC as possible confounding factor and model the
global gene expression y using Global ANCOVA with a single covariate:

y=a+ pBz+e, (5.9)

where z denotes a binary predictor variable indicating the presence (44 cases) or
absence (72 cases) of an 18q/MALT1 gain. Global ANCOVA returns an empirical
permutation p-value of 0.004, if we test for the null hypothesis Hy : § = 0. We
implement an individual probe-set analysis using limma with the same linear model.
We control the FDR at a level of 0.05 and obtain a list of 135 probe-sets showing
differential expression between 18q/MALT1-positive and 18q/MALT 1-negative cases.
Notably, the list includes the probe-sets specific for MALT1 and BCL2. We conclude:
There is differential gene expression between 18q/MALT1-positive and 18q/MALT1-
negative cases. In the next step, we take into account that the ABC transcriptional
phenotype strongly overlaps with the presence of an 18q/MALT1 gain and include
this information in the linear model:

y:&+ﬁlz+ﬁgw+ﬁgzw+ej, (510)

were z denotes a binary variable encoding the presence and absence of an 18q/MALT1
gain and w denotes a binary variable encoding the ABC and GCB phenotype. The
third coefficient G3zw is an interaction term, i.e. we take into account that the effect
of z depends on the state of w and vice versa. An example for an interaction, would
be the observation of differences of the effect of an 18q/MALT1 gain depending on
wether it occurs in the ABC or GCB phenotype. We do not test for the presence of
an interaction, but we take it into account in our model.

Note, the analysis yielding the results from the linear model with 18q/MALT1 posi-
tivity as single binary predictor (equation is based on the whole series of 116 lym-
phomas, where the information on an 18/ MALT1 gain is available (44 18q/MALT1-
positive, 72 18q/MALT1-negative). In order to analyze the data in line with the
more complex model (equation with GCB/ABC as additional predictor vari-
able we exclude 26 samples unclassified with respect to the GCB/ABC signature.
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Global ANCOVA returns a permutation p-value of 0.41, if we test for the influence
of an 18q/MALT1 gain on gene expression, while taking GCB/ABC into account.
Thus, there is no statistical evidence for global ABC/GCB independent effects of an
18q/MALT1 gain.

Next we include prior knowledge on the chromosomal location of genes. We apply
Global ANCOVA to test for the influence of 18q/MALT1 to each chromosome (exclud-
ing X and Y chromosomes, 22 tests) separately. We adjust the resulting n.s; = 22 p-
values for multiple testing using the Bonferroni correction (pagjust = min(p X ngest; 1)).
This test identifies chromosomes with global changes in gene expression between
18q/MALT1-positive and 18q/MALT1-negative lymphomas. Only chromosome 18
displays global changes in gene expression, which are independent of the ABC/GCB
status (Pagjust < 0.03, figure . To further elucidate this finding, we analyze the
probe-sets located on chromosome 18 in a probe-set by probe-set test using limma
with the model specified in equation Of the 332 probe-sets located on chromo-
some 18 we are able to generate a list of 47 affected probe-sets, if we control the false
discovery rate at a level of 0.05.

In summary, 18q/MALT1 gains occur at a significantly higher frequency in ABC
than in GCB lymphomas. Differential gene expression can be detected between
18q/MALT1-positive and -negative cases, at a global and an individual probe-set
level. However, the significance of this observation is lost, if we add GCB/ABC as
additional explanatory variable to the model. Nevertheless, probe-sets located in
the amplified region of chromosome 18 show a consistent level of differential expres-
sion despite the confounding GCB/ABC stratification. This observation allows us to
speculate that there is a gene-dosage effect of the genes located within the amplified
region of chromosome 18, i.e. the transcriptional level of 18q genes correlates with
the copy number of that chromosomal region. Furthermore, we can show this effect
to be independent of GCB and ABC, and thus gains of 18q are possibly not the
pathological event leading to ABC-like lymphomas.

Introduced in 2000 [3] the GCB/ABC stratification of diffuse large B-cell lymphoma
has become an integral part of the classification scheme of lymphoma. In addition
several genetic aberrations have been identified that show associations to GCB and
ABC [41], 9], [44] allowing for speculation on possible disease mechanisms. However, it
is important to note that GCB, ABC and their associations to certain genetic abber-
ations are observations on data from human tumor samples. Since, traditional modes
of biological inquiry often require the manipulation of a biological system [85], it is
difficult or impossible to achieve insight into the actual disease mechanisms just by
observing tumor samples. In the next chapter we will discuss an analysis strategy
combining interventional experiments conducted in line with the traditions of molec-
ular biology with observational clinical microarray data revealing highly recurrent
patterns of pathway activation in mature aggressive B-cell lymphoma.

70



5.3 Dissecting the dependency between ABC and 18q/MALT1 gains

Chromosome per chromosome global test
0.001

0.002

O Raw p-values
B EBonferroni corrected p-values

0.007

0.018

P-values

0.135

0.368

— o Mm s n m e~ @M MmO — ST @ M~ M m o —
S o C R — R A S N - SRS
5§ 565656856886 EE EEEE EE E E E EE

o o o o o o O 0 0 o 0 o Q0

Figure 5.3: Global tests on influence of 18q/MALT1 gains on the ex-
pression of genes located on different chromosomes. The length of the
bars encode the level of p-values. The scale of the y-axes is inverted and the
ticks are on a logarithmic scale. Thus, long bars represent low p-values. Each
pair of bars represent the result of another chromosome-specific global test for
differential expression induced by an 18q/MALT1 gain. The gray bars denote
the original Global ANCOVA p-values and the red bars denote the Bonferroni
corrected p-values. Only chromosome 18 shows a significant level of differential
gene expression.

71



72



Chapter 6

Pathway activation patterns in
malignant B-cell lymphoma

6.1 Introduction

Deregulation of cell signaling pathways controlling cell growth and cell survival is a
common feature of all cancers. Modern molecularly targeted cancer drugs intervene
in cell signaling compensating for pathway deregulation. Hence characterizing tumors
with respect to pathway activation will become crucial for treatment decisions.

Bild et al. [I2] have shown for carcinomas that oncogenic pathway signatures ar-
tificially induced in non-malignant breast epithelial cells can predict outcome and
treatment efficiency. The authors transfected quiescent primary human mammary
epithelial cells (HMECs) singly with each of the five human oncogenes: MYC, acti-
vated RAS, SRC, E2F3, and activated 3 catenin. They trained five discriminatory
classifiers of oncogenic pathway activation on expression profiles from transfected
HMECs and controls using a supervised Batesian classification model [97], and ap-
plied them to expression profiles of epithelial neoplasms including ovarian, breast,
and lung cancer to predict the activity of each of the pathways in tumors. In this
chapter we will extend the same approach to diffuse large B-cell lymphoma (DL-
BCL) and Burkitt lymphoma (BL) using the original HMEC cell line data from Bild
et al.[12].

A naive approach to pathway signatures. We aim at using the original data
from the oncogene over-expression experiments of Bild et al. [12] to predict oncogene
expression in DLBCL and BL. The experimental design of Bild et al. [12] is the
following: In a series of replicated biological experiments they grew primary mam-
mary epithelial cell cultures (HMEC). They transfected them singly with each of the
five human oncogenes MYC, activated RAS, SRC, E2F3, and activated 3 catenin,
or with a control transgene (GFP=green fluorescent protein), subjected the samples
to microarrays, and trained binary classifiers of pathway activity, each based on the
comparison of the respective oncogene and the control microarray samples. As de-
scribed earlier, molecular classifiers are based on a set of genes that show differential
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Figure 6.1: Expression of genes induced upon MY C-transfection of ep-
ithelial cell lines. The heat maps display expression levels of 50 genes most
differentially expressed genes between control and MY C-transfected HMECs.
Yellow encodes expression above the overall mean of a gene, blue expression be-
low that mean and black average expression levels. The heat map on the left
shows the expression in the HMEC samples. The heat map in the middle shows
the expression of the same genes in lymphomas, where only little structure be-
comes apparent. The plot on the right displays all samples in the space spanned
by the first two principal components generated by this gene set. Dominant is
the difference between HMEC:s (filled symbols) and lymphomas (empty symbols).
Green squares indicate MY C-transfected HMECs as well as corresponding lym-
phomas with gene expression more in the direction of the MYC transfected cell
lines, red triangles indicate the control transfected status, respectively. (Figure
reproduced from [I1])

expression between conditions/classes. Bild et al. [12] followed these ideas and se-
lected genes "most highly correlated” with the oncogene vs. control comparison. We
re-analyzed the original data of Bild et al. [12], selected the 50 genes with largest
absolute t-scores (see equation in the MYC transfection vs. control comparison,
and explored the expression of them in our series of 220 mature aggressive B-cell lym-
phomas. The stratification of the lymphomas obtained from the genes selected on the
HMEC data is not convincing (figure . Only very little structure becomes appar-
ent in the lymphomas. Most likely, this failure is due to global expression differences
between epithelial cell lines and lymphoid tumors caused by the different biology of
the two tissues. We will now introduce a heuristic semi-supervised gene selection
algorithm that selects genes based on two criteria: The genes must show differential
expression in the HMEC oncogene vs. control comparison and the genes must yield
a consistent — pathway based — stratification of the lymphomas. The method is a
modification of the class-finding algorithm ISIS ("ISIS” for identifying splits of clear

separation) [95].
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6.2 Identification of splits of clear separation (ISIS)

Semi-, un-, or supervised? The objective of supervised classification is: Given
a training set of label/data pairs (y,x);, find a function that correctly predicts the
labels y; given the data x;. In un-supervised classification one is interested in finding
an optimal partition of the samples, given the data and an objective function (e.g.
the likelihood of a Gaussian mixture model defined by equation . We can refer to
un-supervised classification as clustering. In semi-supervised classification we com-
bine ideas from clustering and supervised classification and device the objective: Find
a partition of the samples that is optimally supported by the data (e.g. by maximiz-
ing the data likelihood) and assigns samples with known distinct labels to disjoint
clusters and samples with known identical class labels to the same cluster. Core-
group extension is a semi-supervised classification problem (see chapters |3/ and . In
chapter 4| we have approached it by modeling a gene expression index as univariate
Gaussian mixture. The gene expression index has been computed from genes that we
have selected prior to modeling by their correlation with the incomplete core group
class labels. In contrast to semi-supervised classification, we don’t have class labels
in the un-supervised case, and we thus cannot perform gene selection. Nevertheless,
we measure the expression of several thousand genes in transcriptional profiling. Dif-
ferent genes are associated with different biological pathways, and different pathways
are associated with different diseases. Thus, different sets of genes support different
stratifications of samples. In contrast clustering, which finds an optimal partition
of samples given a set of genes, we device the objective of class discovery: Given a
large set of possible genes, find subsets of them each supporting a tight clustering
of the samples. The class-finding algorithm ISIS is a heuristic method implementing
this objective: It searches bi-partitions of the samples supported by small subsets of
genes.

The ingredients of the ISIS algorithm. A full description of ISIS can be found
in [95]. The algorithm comprises two components: 1.) A scoring function based on
diagonal linear discriminant analysis (DLD score) of two classes. 2.) A heuristic
search for local maxima of the DLD score in the search space of 2"~! possible bi-
partitions of samples. The heuristic maximization part consists of a global candidate
search and a local maximization of these candidate splits.

DLD score. The DLD score quantifies the discrimination of a given bi-partition
of samples into n; members of class one and n, members of class two. It is defined
on p genes with highest absolute two-sample t-score (see equation . In line
with diagonal linear discriminant analysis each sample x; is projected from the p-
dimensional space onto the univariate line defined by

P _ _
$A71 _x‘72
szz—l 52 = (i), (6.1)
i=1 i

were &; denotes the gene-per-gene pooled within class standard deviations (see equa-
tion [2.5)). The projection s; is a univariate expression index aggregating the expres-
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sion of the p top t-scoring genes into a single number. The DLD score S, is the two
sample t-score resulting from the comparison of the values of s; in the two candidate
classes: L
Gy = L% (6.2)
P2+ L)
were 62 denotes the pooled standard deviation of s in the to candidate classes (see
equation [2.5)).

Search for candidate bi-partitions. The ISIS heuristic starts from a large set of
candidate partitions generated from ¢ cluster average gene expression profiles x; =
xl,Th,...,x},. The average profiles are the product of hierarchical clustering of genes.
For every profile ¢ and every sample j.,; = 1,...,n the value z7; , defines a bi-partition
given by the subsets M~ = {j[z}; < xj; ,} and M™ = {j|aj; > xj; }. A bi-partition
is considered a candidate, if the absolute value of the t-score t;;.,, = t;({M~,M*})
comparing x; in the two sets M~ and M™ is larger than a certain quantile 1 — «
of the null distribution of ¢;;,,,. Since the null distribution of ¢;;_,, in unknown, von
Heydebreck et al. [95] simulated the expected quantiles of ¢ by a Monte Carlo

approach.

ijcut

Local optimization of candidate bi-partitions. The procedure described in the
previous paragraph yields a set of candidate bi-partitions. Starting from each of
them separately, von Heydebreck et al. [95] choose a greedy local optimization of the
DLD score in the neighborhood of the candidate bi-partitions. Two bi-partition are
considered neighbors if they differ in a single sample.

6.3 Biological assay instructed ISIS (BASIS)

ISIS is an un-supervised class-finding algorithm. In order to search for bi-partitions
of tumor gene expression profiles, which are supported by the results of controlled
cell line assays, we modified ISIS into a semi-supervised gene-selection procedure:
Given the joint data set of tumors (in our special case lymphomas) and control
or oncogene transfected cell lines, the goal of the modified algorithm is to identify
genes that 1.) classify the cell lines into control and oncogene transfected samples
and 2.) yield a well separated stratification of the tumors into two groups. One of
these groups should show expression levels similar to the control cell line experiment
and the second group should show expression levels similar to the cell line oncogene
transfection experiment. We need to modify ISIS only with respect to candidate
selection.

Modification of the candidate bi-partition search. In standard ISIS x} =
Ti, Ty, -, T;, defines a cluster average gene expression profile, and zj; = defines a
bi-partition given by the subsets M~ = {jlaj; < xj;  } and M* = {jlz}; > z}; }.
It is considered as candidate bi-partition, if the t-statistic ¢;;,,, = t;({M~,M*})
is large. In semi-supervised ISIS we merge the cell line and tumor data set. The
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Figure 6.2: Lymphoma stratifications obtained from 26 stable BASIS

solutions. Each column of the heatmap corresponds to an individual lymphoma
and each row to one of 26 stable BASIS solutions. Red and beige encodes the
expression levels of the genes, which constitute a bi-partition obtained as BASIS
solution. Red indicates an expression level, which is similar to the oncogene
transfected cell lines. Beige indicates that the same genes are expressed at a level
similar to the control cell line. The color bar to the left highlights in yellow 13
bi-partitions obtained from BASIS on the combined data-set of lymphomas and
SRC-transfected cell lines and in blue 10 bi-partitions resulting from combining
lymphomas and RAS-transfected cell lines. Yellow indicates the unique solution
for the MYC oncogene and red the two bi-partitions obtained from BASIS on
lymphomas and E2F3-transfected cell lines. We do not obtain a stable BASIS
solution if combining lymphomas and the S-catenin transfected cell lines. The bi-
partitions are highly redundant. By visual inspection we choose MYC.1, E2F.1,
E2F.2, SRC.2, SRC.10, RAS.1, RAS.4, and RAS.6 for further exploration.
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Chapter 6 Pathway activation patterns in malignant B-cell lymphoma

samples are now partially labeled. They split into the tumors 7' (unlabeled), the
control cell lines C' (labeled as class one) and the oncogene transfected cell lines O
(labeled as class two). A bi-partition defined by z7; . splits D = C U O UT into
M~ = {jlzj; < zj;,,,} and MT = {j[z}; > xj; ,}. In semi-supervised ISIS a bi-
partition must fulfill the condition below given by equations in addition to large
values of ¢;;.,, = t;({M~,M™"}) to become a candidate bi-partition.

(CCcMIHINOCMHV(OCM )A(CcCcM) (6.3)

Local optimization of semi-supervised candidate bi-partitions. The proce-
dure described in the last paragraph yields candidate bi-partitions of the tumors 7.
We proceed with the greedy local optimization as described in the standard ISIS
algorithm [95].

Stability selection. In parts, the BASIS procedure can be considered supervised.
Labeled cell line data enter the algorithm and we aim on finding a model that predicts
the labels correctly. However, at the same time we search for a-priori unknown bi-
partitions of the tumor samples. In that point we are in an un-supervised scenario
and the validation becomes difficult, due to the lack of performance criteria like the
error rate. Instead, we check the robustness of labels with respect to bootstrapping
the training data:

1. Split data set into a training set Dy,.q;,, and a stability selection set Dyejer-
2. Run BASIS to obtain bi-partitions of Dy,q;p.

3. Choose bootstrap samples Dy qin poor 0f the profiles in Dyyq4p,.

4

. Train on Dyygin poot & supervised DLDA mode]E] of each bi-partition obtained in
step [2

5. Use each bootstrapped DLDA-model to predict labels on Dgjeet.
6. Repeat B-times from step [3]

For each bi-partition identified in step [2| we obtain B label predictions of each sample
in Dyeeer. We select those bi-partitions from step [2| that yield the most consistent
predictions on the samples in Dy during the bootstrap.

Consistency: We are given B = 1000 bootstrap predictions of the samples in Dggjees.
If an individual sample is predicted class 1 for 900 bootstrap samples and class 2
for 100, then the individual sample consistency c; of the bootstrap predictions is
c; = 90% (see equation (6.4 below). The overall consistency is the average of the indi-
vidual consistencies of all samples in the stability selection set. We define individual
consistencies as

¢; = max(#{nly; rea = LYy #{nlysprea = 2}2-,)/B, (6.4)

!The training phase of each DLDA model includes gene selection. The models are based on the p
genes with highest absolute t-score
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where y; ,req denotes a prediction of a sample j in the selection set by a DLDA model
derived from bootstrapped training data. We obtain B such predictions for each
sample in Dypees.

Like ISIS the proposed procedure identifies bi-partitions of clinical tumor gene ex-
pression profiles. However, their identification is not purely un-supervised but in-line
with the results of controlled interventional cell line experiments. We thus refer to
the procedure as biological assay instructed identification of splits of clear separation

(BASIS).

Conserved oncogene inducible module. The core of the ISIS and BASIS algo-
rithm is the identification of small sets of genes that induce bi-partitions of samples
with respect to an optimal DLD score. BASIS searches for bi-partitions of samples
instructed by labeled biological assay data. Here, we aim on combining epithelial
cell lines as labeled biological assay data and lymphomas as unlabeled data that we
intend to stratify. The biology of the underlying tissues (epithelial and lymphoid) is
different. We can thus not expect to find the same expression patterns on epithe-
lial cell cultures and on lymphoma tumor samples. The BASIS algorithm however
explicitly searches for common features of the labeled biological assay data and the
unlabeled data. It identifies patterns of gene expression, which are conserved in the
different tissues. A set of genes that constitutes a BASIS bi-partition is a conserved
gene expression module and since we consider oncogene activity we refer to it as
conserved oncogene inducible module.

6.4 Results

BASIS run. Our goal of the present project was to use the original data from
the oncogene over-expression experiments of Bild et al. [I2] to predict oncogene
expression in our series of 220 DLBCL or BL samples. In contrast to the naive
approach described in section for the MY C-transfection, we will now present the
results from the BASIS approach. In order to derive conserved oncogene inducible
modules, we split the lymphoma samples randomly into a training and a test set,
balanced with respect to the genetic classification of the samples based on the MY C-
break and the gene expression based classification described in chapter[3] The training
set contains 25 IG-MYC-fusion positive mBL-samples, 10 IG-MYC-fusion positive
intermediate samples, 10 MY C-negative intermediate samples and 55 MY C-negative
non-mBL samples. The samples within each group have been chosen randomly from
the data-set. In order to choose Dy qin and Diepeer, We further split the training set in
three equally sized batches (nq; = 33, ny = 33, n3 = 34) balanced for appearance of an
IG-MYC-fusion and the mBL diagnosis. Two batches have been combined to Dy;.qin
and the remaining batch has been used as stability selection set Dgerect: Dirain has
been combined with the original data from [12] containing control HMEC samples
and HMEC samples transfected with one of five human oncogenes. Each HMEC-
microarray sample has been added twice to the merged data set, thus increasing

79



Chapter 6 Pathway activation patterns in malignant B-cell lymphoma

PC2

— !
Control non-active active PC1

Figure 6.3: Expression of genes constituting the MYC.1-conserved onco-
gene expression module. The heat maps display expression levels of the 50
genes, which are members of the MYC.1 conserved oncogene expression mod-
ule identified by BASIS. The heat map on the left shows their expression in the
HMEC cell lines. The heat map in the middle column shows the expression of the
same genes in lymphomas. The plot on the right displays all samples in the space
spanned by the first two principal components generated by this gene set. The
difference between HMECs (filled symbols) and lymphomas (empty symbols) is
no longer dominant as in figure Green squares indicate MY C-transfected
HMECs as well as lymphomas with gene expression similar the MYC transfected
cell lines, red triangles indicate the control transfected status, respectively. (Fig-
ure reproduced from [I1])

the weight of the cell line assays in the BASIS-runs. In summary, we subjected five
data-sets to semi-supervised BASIS analysis, each containing 66 lymphoma samples
in Dyyrgin, 2 X 10 = 20 control HMEC samples and 2 x n, HMEC samples transfected
with either of the oncogenes (with n. = 10,10,7,9 or 9 for MYC, activated RAS,
SRC, E2F3, or activated (3 catenin). For each of the five data-sets, we shifted the
gene expression in HMEC samples by a gene-specific offset so that the gene-wise
mean across samples becomes the same in lymphomas and HMECs. Each BASIS
run returned a set of possible bi-partitions of the lymphoma samples, which classifies
them into a group with gene expression similar to the control HMECs and another
group with gene expression similar to the respective oncogene transfected cells. From
stability filtering we obtained 26 stable bi-partitions (average consistency> 95%).
Figure|6.2|shows the respective 26 different stratifications of the lymphomas obtained.
Some of them are highly redundant. Thus, we decided by visual inspection of figure
to further investigate only a subset of 8 of the 26 bi-partitions (MYC.1, E2F.1,
E2F.2, SRC.2, SRC.10, RAS.1, RAS.4, and RAS.6). Note, we did not obtain any
stable BASIS solution if combining lymphomas and the [-catenin transfected cell
lines.

Conserved oncogene expression modules. Section |6.1] presents the results
from a naive approach combining the MY C-transfection experiments of epithelial
cell cultures with our series of 220 lymphomas. Figure shows the set of genes
(conserved oncogene expression module) of the MYC.1-BASIS solution. This gene
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set induces an apparent stratification of the lymphomas into two groups. One of the
two groups show expression levels similar to the MY C-transfected cells and the other
shows expression levels similar to the control cells. The BASIS algorithm identified a
clear bi-partitions of unlabeled samples in-line with labeled biological assay data.

Pathway activation patterns. MYC, RAS, SRC and E2F3 oncogenes, but
not (-catenin yield eight conserved oncogene inducible modules in a training set
of n = 100 mature aggressive B-cell lymphomas (MYC.1, E2F3.1, E2F3.2, SRC.2,
SRC.10, RAS.1, RAS.4, and RAS.6). Each of these oncogene inducible modules is
either active or non-active in a lymphoma (activation state). Active means that a
lymphoma expresses an oncogene inducible module at the level, which is similar to
the expression level in the oncogene transfected cell lines. We combined the eight
activation states to binary patterns, which we call a PAP for Pathway Activation
Pattern. PAPs define non-overlapping groups of lymphomas from the perspective
of pathway activation. Figure shows the patterns together with the underlying
expression data. Expression characteristics from the training set reemerge well in
the test samples (n = 120). Importantly, 158 of the 220 (72%) mature aggressive
B-cell lymphomas show only five of the possible 28 = 256 PAPs. The remaining 62
samples display distinct, rarely or non recurrent patterns (recurrence in < 5% of the
lymphomas). We subsume them in a heterogeneous pool we refer to as mind-L for
molecularly individual lymphomas.

Burkitt lymphoma is characterized by a distinct pathway activity pattern. Ac-
cording to chapter [3| and references [42] 20] molecular Burkitt lymphoma (mBL) is
a homogeneous lymphoma entity with respect to molecular, genetic and clinical fea-
tures. Also here, we found only one recurrent pathway activation pattern (BL-PAP)
among the mBL cases. This pattern is expressed in 39 of the 44 (89%) mBL cases.
Vice versa, 39 of the 41 (95%) lymphomas displaying the pattern show the mBL
signature. Consistent with activity of the MYC.1 module in the BL-PAP, in 38 of
40 of these lymphomas, where FISH data are available, a MY C-breakpoint has been
detected.

Conserved module activity patterns and lymphoma stratification. In addition
to the BL-PAP, we find four recurrent patterns in DLBCL, which we term PAP-1 to
PAP-4 (figure . A total of 42 DLBCLs show the most frequent pattern PAP-1,
which is exactly the inverse of the BL-PAP. Modules, which are active in PAP-1 are
non-active in BL-PAP and vice-versa The second pattern, PAP-2, is present in 32
DLBCLs. PAP-1 and -2 lymphomas frequently expressed the BCL6 protein (28/37,
or 76% and 25/31, or 81%, respectively) but rarely CD10 (7/33, or 18% and 4/27,
or 13%, respectively). PAP-3 is the only pattern, except for BL-PAP, that display
activation of the MYC.1 module, although this does not commonly arise through
MYC translocation, as a break is present in only 3 of 27 cases suggesting alternative
means of pathway activation. PAP-4, which we find in 16 lymphomas, is the only
activation pattern more prevalent in females (11/16). Unlike BL, neither activated B-
cell like DLBCLs (ABC-DLBCL, PAP-1: 8 cases, PAP-2: 20 cases, PAP-3: 14 cases,
PAP-4: 5 cases; mind-L: 11 cases) nor germinal center like DLBCLs (GCB-DLBCL,
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Figure 6.4: Stratification of lymphomas based on pathway activation pat-
terns. The eight rows correspond to the conserved oncogene inducible modules.
In each row the left heat map shows expression of the module genes in HMECs,
the middle heat map shows the expression of the same genes in the training
samples of the lymphoma data, while the right one refers to the test samples
of the lymphoma data. The samples are sorted by module activation patterns
starting with BL-PAP on the left and ending with mind-L on the right (see the
color coding in the bar below the heat maps). Above each row of heat maps is
a bar indicating module activation in red. The pattern of module activation is
constant in each of the groups BL-PAP, PAP-1, PAP-2, PAP3 and PAP-4 but
heterogeneous in the pool mind-L. The horizontal bar on top of all plots encodes
the type of samples (lightgreen: HMECs, cyan: non-mBL, magenta: mBL, gray:
intermediate). (Figure reproduced from [11])
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Figure 6.5: Specificity of chromosomal imbalances detected by Array-
CGH for PAP 1-4.. The x-axis shows the genomic position of a clone. Chro-
mosomes are separated by solid and chromosome arms by dashed vertical lines.
The y-axis shows the chi-square score measuring over-representation of gains and
losses in the respective PAP-groups. Scores corresponding to losses are shown
with a negative sign for clarity. Over-representation tests are computed for the
contrasts PAP-1 (top left), PAP-2 (top right), PAP-3 (bottom left) and PAP-4
(bottom right) vs. the respective remaining cases without the BL-PAP group.
(Figure reproduced from [I1])

PAP-1: 19 cases, PAP-2: 5 cases, PAP-3: 7 cases, PAP-4: 9 cases; mind-L: 37 cases)
display a unique pathway activation pattern. Finally, mind-L includes 69% (33/48)
of intermediate cases defined in chapter [3| with an mBL-index between mBL and
non-mBL. In line with this, a high number of lymphomas with MY C-breakpoints
are included in this pool (28/61, or 46% of mind-L cases), which turns out to be
particularly enriched for lymphomas with non-IG-MYC fusion and MYC complex
status (11/15, or 73% and 22/33, or 66% of all non-IG-MYC and MYC complex
cases, respectively).
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The PAP-groups show distinct patterns of chromosomal changes and FOXP1
expression.E] EI Data on genomic imbalances from 183 cases of our data
set determined by array-based comparative genomic hybridization (CGH) have been
described previously [42]. Every clone on an array-CGH was either classified as
showing genomic gain, loss, normal copy number, or it was called missing if it could
not be classified [49]. We computed a x*-test for each clone in order to test for
over-representation of gains and losses in PAP groups. Missing values were removed
before the computation of each statistic. Multiple testing adjustment was performed
with the step-down minP method implemented in the R package multtest [71].

Despite PAP-2 differing transcriptionally from PAP-1 only with respect to the first
E2F3 inducible module E2F3.1, it shows a profile of chromosomal changes markedly
distinct, not only from PAP-1, but also from PAPs -3 and -4 (figure . The most
frequent chromosomal changes in PAP-2 detected by array-CGH are gains at 18¢21
and 3927 (n=14/29 PAP-2 cases, or 48%). Gains at 18q21 containing the BCL2
and MALT1 oncogenes and 3q27 containing the BCL6 oncogene have been shown to
be associated with ABC-DLBCL [9]. Notably, in PAP-2 also GCB-DLBCLs show
MALT1/18¢21 gains (2/5) and lack IGH-BCL2 fusions (n=5) like ABC-DLBCLs,
indicating genetic similarity of GCB- and ABC-like lymphomas in PAP-2. The most
specific chromosomal change in PAP-2 is a gain at 3p13. Indeed, of nine lymphomas
displaying a 3p13 gain, eight belonged to PAP-2 and only one to PAP-3. The specif-
ically gained region in PAP-2 at 3p13 contains FOXP1, which has been proposed as
oncogene involved in lymphomagenesis as well as a prognostic marker in diffuse large
B-cell lymphoma [27, [86], 98], [7, 8]. Immunohistochemical staining of the FOXP1 pro-
tein in 54 cases (PAP-1: ny = 27, PAP-2: ny = 27) reveals a significantly increased
expression of the transcription factor in PAP-2 as compared to PAP-1 (P = 0.006
by a one-sided Wilcoxon’s test for a shift of PAP-2 intensities toward higher ex-
pression). Furthermore, the 3p13-gain positive cases express the FOXP1 protein at
high levels indicating an association between FOXP1 expression, 3p13-gains and the
PAP-stratification.

The PAP groups are also present in an independent data-set. We derived
the oncogenic pathway modules on a series of expression profiles generated with
Affymetrix HGU133 gene chips. The LLMPP transcriptional profiling study already
described in section and published by Dave et al.[20] contains a similar data set
with 303 lymphoma profiles. However the profiles have been generated with a custom
Affymetrix oligonucleotide microarray (LymphDx 2.7k) with 2524 unique genes that
are expressed differentially among the various forms of non-Hodgkins lymphoma. This
array holds only a small fraction of the genes of the HGU133-arrays. Dave et al.[20]
furthermore hybridized 99 tumors in parallel to both, the HGU133 platform and

2 The analysis of array-CGH data in the context of pathway activation patterns has been gratefully
carried out by Maciej Rosolowski from the Institute for Medical Informatics, Statistics and
Epidemiology at the University of Leipzig.

3Protein expression of the FOXP1 protein has been gratefully evaluated by expert pathologists
Wolfram Klapper (University of Kiel), Andreas Rosenwald (University of Wuerzburg), and Ger-
man Ott (Robert-Bosch-Krankenhaus, Stuttgart)
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LymphDx platform. To identify the pathway activation states on the 303 LymphDx
profiles we need to translate the quantitative DLDA-based pathway signatures from
the HGU133 gene chip scale to the scale of the LymphDx platform. We used the
99 tumors hybridized in parallel to both platforms the HGU133 and the LymphDx
chip. We started by adding the pathway activation labels to the HGU133 profiles
of the 99 tumors. Then, we used these added labels and the LymphDx profiles of
the same 99 tumors to learn LymphDx-chip-based pathway classifiers. Each of the
cross platform classifiers includes 25 genes, which are present on both platforms.
We where thus able to confirm our pathway activation patterns on an independent
data set of 303 mature aggressive B-cell lymphomas. The four recurring DLBCL-
PAPs and the BL-PAP identified in our data-set are also the most recurrent PAPs
in the 303 mature aggressive B-cell lymphomas of Dave et al.[20]. This indicates
that the five PAPs widely cover the spectrum of mature aggressive B-cell lymphomas
from the perspective of pathway activation constellations. Furthermore, 49 of the 55
lymphomas exhibiting the BL-PAP in the dataset of Dave et al.[20] also show the BL-
signature defined in this paper confirming that the BL-PAP pattern is characteristic
for BL.

Survival analysis. Clinical data including information on therapy and the two
parameters age and Ann Arbor stage both used in the international prognostic index
(IPT [79]) have been available for 134 cases of our own study and for 220 cases of
Dave et al. [20]. We analyzed the association of survival with eight oncogenic mod-
ules and their combination to four recurrent PAPs (PAPs 14) by fitting multivariate
Cox proportional hazard models [I§]. The analysis was carried out for each study
separately and for the pooled data taking both studies together. For the pooled data
we used stratified Cox models assuming separate baseline hazard functions for both
studies. The ABC signature is an established prognostic indicator and age and Ann
Arbor stage are part of the IPI. In our analysis we have included the presence of
an ABC signature, age (age>5h9 years) and stage (stage=III or IV) as covariates in
the multivariate models, such that the estimated hazards are independent of them.
Furthermore, the analysis was restricted to patients having received a treatment
with a combination of chemotherapy based on cyclophosphamide, doxorubicin, vin-
cristine, and prednisone (CHOP) or similar and not belonging to the BL-PAP, which
is strongly associated with mBL. Altogether, the survival analysis includes 81 of our
own cases and 186 cases from Dave et al. [20].

Figure summarizes the results of survival analysis of BL-PAP negative cases from
both data sets, our own one and the one published by Dave et al.[20]. Shown are
Cox proportional hazard ratios [I8] estimated from multivariate analysis adjusting
for ABC status, age, and Ann Arbor stage together with their 95% confidence inter-
vals. In our own collection of lymphomas the PAP-1 group has a significantly better
prognosis then non-PAP-1 DLBCLs (hazard ratio for death, 0.25; 95% CI: 0.1-0.65;
P=0.004), while PAP-2 is a group with a significantly worse prognosis (hazard ratio
for death, 2.45; 95% CI: 1.16-5.17; P=0.019). The same trends can be observed in the
study of Dave et al.[20], although statistical significance is not reached. Addressing
the question, as to which molecular features are responsible for the prognostic differ-
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ences, we extended the survival analysis to the level of individual oncogene inducible
modules. In the pooled analysis of both data-sets, patients with lymphomas showing
activity of the first E2F3 inducible module, E2F3.1, have a significantly better prog-
nosis (hazard ratio for death, 0.47; 95% CI: 0.33-0.67; P=0.00003). This prognostic
effect, which is independent of the cell of origin signature and the established clinical
risk factors age and Ann Arbor stage, is also visible in both individual studies. In
contrast, patients with RAS.4 active lymphomas, which are restricted to and com-
prise almost one third of the mind-L lymphomas, display consistently worse outcome
across both studies.

6.5 Discussion

By introducing conserved oncogenic transcriptional modules to the molecular pathol-
ogy of lymphomas we have structured this disease from the perspective of oncogenic
pathway activation. The PAPs identified four novel biologically homogenous sub-
groups among the DLBCLs. In contrast, our approach describes mBL as a lym-
phoma with a uniform oncogenic pathway pattern, in line with our recent molecular
definition of this lymphoma type. Thus, mBL truly represents a single lymphoma
entity.

More importantly, the PAPs identified four novel biological subgroups among the
DLBCLs with homogenous pathway activation constellations. Most remarkable are
the differences between the two largest groups PAP-1 and PAP-2. First, we observed
strong prognostic effects. Second, PAP-2 is characterized by accumulated genetic
aberrations on several chromosomes, which are found only on baseline frequencies in
PAP-1 lymphomas. Moreover, protein expression of FOXP1 is significantly higher in
PAP-2, in line with frequently observed gains on chromosome 3p13 around the locus
of this gene. Notably, FOXP1 constitutes a target for IGH-translocations in DLBCL
and MALT-type lymphomas [27, 86, O8] and expression of the FOXP1 protein, a
member of the forkhead box (FOX) transcription factor family, has also been reported
to be associated with poor prognosis in DLBCL [7), §]. These differences are even
more striking given that PAP-1 and PAP-2 only differ with respect to the activity of
the E2F3.1 module.

We have introduced two concepts: oncogene-inducible modules and PAPs. Both have
merits of their own. The first E2F3-inducible module, E2F3.1, and the RAS-inducible
module, RAS.4, appear to be the strongest prognostic markers. However, modules do
not group patients, as they overlap. A patient is not either E2F3.1-positive or RAS.4-
positive, but can also have both features or none at all. Moreover, no single module
on its own characterizes BLs. In contrast, PAPs define nonoverlapping lymphoma
groups; a feature that is important in view of treatment decisions or molecularly
stratified clinical studies.
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All oncogene-inducible pathways are active in some DLBCL and inactive in others,
supporting the hypothesis that DLBCL as a whole is a biologically heterogeneous lym-
phoma entity. However, the accumulation of 72% of BL and DLBCL cases in only 5
of the 256 possible PAPs shows that the biological processes underlying the conserved
modules are not independently regulated in lymphomas. In contrast, their regula-

tory interaction characterizes mBL and the four biologically homogenous groups of
DLBCL.

Among DLBCLs (PAPs 1-4), our survival analysis suggests that oncogene module
activation patterns have clinical significance and are associated with overall survival.
Similar effects were observed in an independent data set. Although statistical signif-
icance and reproducibility in a second data set were achieved, it is important to note
that sample sizes are small, studies are retrospective and patients were not treated
with today’s state of the art treatment combining rituximab with CHOP (R-CHOP).
Thus definitive conclusions concerning the prognostic value of both modules and
PAPs require further studies, although certain trends are visible.

The oncogenes analyzed here have been chosen in the original study by Bild et al.[12]
due to their prominent role in breast, ovarian and lung cancer. Although they do
not give a complete picture of oncogenic pathway activity in lymphomas (for exam-
ple BCL6, BCL2, MUM1 and BLIMP1, which have not been analyzed), the strong
conservation of downstream transcriptional modules is remarkable and underlines the
general importance of these pathways in tumor genesis.

The PAPs identified four novel biologically homogenous subgroups among the DLB-
CLs, which could guide the design of stratified prospective randomized studies on the
efficiency of treatment modalities. In the future, PAPs could direct the development
of inhibitors specific for oncogene-driven pathways characteristically activated in our
pathway-defined lymphoma subgroups. Based on the conservation of the oncogenic
modules across various solid and hematological cancers, targeted molecular-based
therapies might well be effective in different kinds of tumors irrespective of localiza-
tion or tissue derivation. Finally, conservation of oncogenic modules across cancers
may also help to explain why some widely used anticancer drugs are potent in different
cancers.
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Figure 6.6: Survival analysis of BL-PAP negative lymphomas adjusted

for ABC status, age and Ann Arbor stage. Shown are estimated haz-
ard ratios (x-axes) and their 95% confidence intervals associated with PAPs 1-4
(top row) and the underlying eight conserved oncogenic modules (bottom rows).
Within each plot rows refer to the two individual studies — our own one pub-
lished by Hummel et al.[42] and the one published by Dave et al.[20]. The last
row shows the result from the pooled analysis. Hazard ratios result from multi-
variate Cox models including ABC status, age and Ann Arbor stage and, thus,
give estimations of risks independent of these known risk factors. For the pooled
data we use stratified Cox models assuming separate baseline hazard functions
for each study. Significantly favorable hazard ratios are highlighted in blue, sig-
nificantly poor in red. We consider a hazard as significant, if the 95% confidence
interval does not include the 1. The group sizes as well as the total number of
samples are given on the left of each plot (n-group/n-total). (Figure reproduced

from [I1])
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Summary and Conclusions

Today, we can record the information on expression levels of thousands of genes in
a single assay. The success of genome sequencing projects has led to the develop-
ment of the DNA microarray, yielding global gene expression finger prints of different
organs, tissues, cells, and tumors. This thesis is concerned with the diagnostic use
of microarrays, and their potential contribution to the systematics and taxonomy of
lymphomas.

The diagnostic application of microarray data is often discussed in the framework
of supervised learning, which is a well defined problem. We are given a set of data
points and labels assigning the data points to discrete classes. The goal of supervised
learning is to derive a mathematical function, which takes the data points as input
and predicts the labels as output. In terms of a molecular diagnosis, a data point is a
gene expression profile, and a label is a diagnosis. The theory of supervised learning is
based on the assumption that the classification of the data points given by the labels
is fixed. In contrast, the classification and taxonomy of lymphoma is not fixed. It is
rather the product of ongoing empirical efforts of pathologists to stratify patients into
meaningful subtypes with respect to treatment options. These efforts are based on
available diagnostic and clinical parameters. The stratification is updated regularly
due to the development of novel diagnostic techniques, and increasing knowledge
from clinical trials. The diagnostic techniques are mainly based on genetics and
molecular biology. In this thesis, we do not consider the microarray as diagnostic
device predicting existing disease categories (supervised classification). We consider
it as molecular readout that helps us to refine the existing taxonomy of lymphomas.
The problem is rather semi-supervised than supervised, which reflects in the different
research questions addressed in this thesis.

Defining Burkitt lymphoma. The differential diagnosis between Burkitt lym-
phoma (BL) and diffuse large-B-cell lymphoma (DLBCL) is not reliably reproducible
with the use of the criteria defined by the World Health Organization (WHO). The
imprecise distinction between BL and DLBCL on diagnosis may lead to inadequate
treatment of lymphoma patients. Stringently applied, the WHO criteria yield a pos-
itive diagnosis of Burkitt lymphoma for 8 out of 220 lymphomas investigated in this
thesis. Nevertheless, expert pathologists expect more Burkitt lymphomas among the
220 tumor samples, and the goal was to identify them. We denoted the problem as
core group extension problem: Given microarray data and starting from a small core
group of cases, the objective of core group extension is to find a set of signature genes,
which distinguishes the core group from the majority of other cases. At the same
time, additional cases should be identified that have expression levels coherent with

91



Summary and Conclusions

the core group (across the a priori unknown set of signature genes). In chapters|3[and
we implement core group extension in two different semi-supervised approaches re-
fining the definition of Burkitt lymphoma based on microarray data. In chapter [3| we
approach core group extension from the supervised perspective, modifying the super-
vised nearest shrunken centroids method into a semi-supervised version. In chapter
we approach core group extension from the unsupervised perspective and modify a
model based clustering approach into a semi-supervised version. Both methods yield
very similar results on the same data. They identified 36 (chapter [3)) or 34 (chapter
4) cases of BL in addition to the core group.

The germinal center and activated B-cell like signature. In chapter |5 we
explore the presence of the germinal center-like (GCB-like) and the activated B-cell-
like (ABC-like) transcriptional phenotypes of lymphoma in the 220 tumor samples
investigated in this thesis. The GCB/ABC stratification is the result of one of the
first published diagnostic applications of microarrays [3] and has been obtained by
hierarchical clustering. We could confirm the presence of the subtypes in our data
set, as well as the better overall survival of patients with GCB-like lymphomas as
compared to ABC-like lymphomas.

Pathway based stratification of diffuse large B-cell lymphoma. Traditional
molecular biological inference is based on experimental perturbations of biological sys-
tems. The problem of studying human cancer is that we cannot perturb this system
in its natural environment. A clinical microarray study provides purely observational
data and does not provide insight into disease mechanisms. However, since modern
targeted drugs directly intervene in molecular processes causing disease, we need to
study and predict disease mechanisms in individual tumors. In chapter [0 we discuss
a joint analysis of traditional perturbation experiments and observational clinical mi-
croarray data, to stratify patients with respect to potential disease mechanisms. Also
in this chapter we follow ideas of semi-supervised learning. Combining microarray
data from over-expression of five human oncogenes in cell lines with our lymphoma
data, yields a novel stratification of lymphomas into groups with distinct biological
characteristics, genetic aberrations and prognosis.
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Zusammenfassung

Lymphome sind die fiinfthaufigste Krebserkrankung in westlichen Staaten (Europa
und Nordamerika). In dieser Arbeit geht es um die molekulare Charakterisierung des
diffus grofizelligen B-Zell Lymphoms (DLBCL) und des Burkitt Lymphoms (BL) mit
Hilfe von Transkriptionsprofilen und tiberwachten und halbiiberwachten maschinellen
Lernverfahren. Zwei wesentliche Probleme der Lymphomklassifikation werden mit
Hilfe von Transkriptionsprofilen untersucht.

Diagnostik des Burkitt Lymphoms. Die diagnostische Unterscheidung von BL
und DLBCL ist oft nicht prazise. Das heifit, verschiedene Pathologen kommen hier
oft zu verschiedenen Ergebnissen. Eine zuverlassige Unterscheidung der beiden Lym-
phomtypen ist unerlasslich fiir die Auswahl der Therapie.

Funktionale Stratifikation. Traditionelle molekularbiologische Untersuchungen
beruhen darauf, dass man experimentell gezielt in biologische Prozesse eingreift (z.B.
durch Mutagenese oder Uberexperession), um diese besser verstehen zu konnen. Das
Problem bei der Untersuchung von Krebs im Menschen ist, dass man den individuellen
Tumor in seiner natiirlichen Umgebung nicht experimentell untersuchen kann. Eine
klinische Microarraystudie liefert lediglich Beobachtungsdaten.

Beitrage dieser Arbeit sind:

e Die Einfithrung des halbiiberwachten Lernproblems der Kerngruppenerweiterung.
Dabei werden ausgehend von einer sicher diagnostizierten Kerngruppe von Tu-
moren weitere Falle gesucht, die die gleichen Eigenschaften haben, von denen man
aber die Diagnose nicht kennt.

e Die Entwicklung eines Ezpectation-Mazimization (EM) basierten Algorithmus zur
zur Kerngruppenerweiterung.

e Die Generierung einer linearen Signatur zur quantitativen und reproduzierbaren
diagnostischen Unterscheidung von BL und DLBCL mit Hilfe der Kerngruppener-
weiterung.

e Die Entwicklung einer halbiiberwachten Lernmethode, die es erlaubt Tumore in
klinischen Genexpressionsstudien aufgrund der Daten aus hypothesengetriebenen
Interventionsexperimenten in Zelllinien zu stratifizieren.

e Die Generierung einer neuen funktionalen Stratifikation von DLBCL.
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