Anhang

Abbildungsverzeichnis

Abbildung 1: Mutarotation der Glucose in wässriger Lösung.	1
Abbildung 2: Struktur der α -D-(+)-Glucose in α -1,4-verknüpften Sacchariden	2
Abbildung 3: Reaktionsmechanismus für α -1,4-reagierende Enzyme unter Retention of	ler Kon-
figuration am anomeren Kohlenstoff.	6
Abbildung 4: Struktur der Cycloamylose mit 26 Glucoseresten	9
Abbildung 5: Relevante Bereiche des Plasmides pFGQ8	14
Abbildung 6: Expression der Amylomaltase mit der Zellinie MC1062 in LB-Medium	25
Abbildung 7: Vergleich zwischen Methionin und Selenomethionin.	26
Abbildung 8: Expression der Amylomaltase mit der Zellinie DSM5912 mit NM-Med	ium und
Methionin.	27
Abbildung 9: Expression der Amylomaltase mit der Zellinie B834(DE3) mit NM-Med	lium und
Methionin.	28
Abbildung 10: Anionenaustauschchromatogramm des letzten Reinigungsschrittes der	Amylo-
maltase	29
Abbildung 11: Isoelektrische Fokussierung der Amylomaltase	30
Abbildung 12: Kristalle der Amylomaltase aus Thermus aquaticus bei verschiedenen B	edingun-
gen eines Kristallscreens.	31
Abbildung 13: Kristall der Amylomaltase aus Thermus aquaticus.	32
Abbildung 14: Harkerschnitte der Schweratomderivate für die Raumgruppe P62/4	37
Abbildung 15: Molekulare Struktur von (a) 3KB-CNP-β-G5 und (b) Hoxa	43
Abbildung 16: Molekulare Struktur der Acarbose.	43
Abbildung 17: Abfolge der Sekundärstrukturelemente eines (β , α) ₈ -Fasses	46
Abbildung 18: Anordnung der acht α -Helices und acht β -Stränge zum (β , α) ₈ -Fa β	47
Abbildung 19: Topographische Darstellung der Amylomaltase aus Thermus aquaticus	48
Abbildung 20: Die Faltung der Amylomaltase.	49
Abbildung 21: Unterschiede in der Struktur der Acarbose zu Maltotetraose	50
Abbildung 22: Die Faltung der Amylomaltase im Komplex mit Acarbose	51

Abbildung 23: $ F_o - F_c $ omit Elektronendichte der im aktiven Zentrum gebundenen Acarbose 52
Abbildung 24: Schema der Wechselwirkungen der Acarbose im aktiven Zentrum
Abbildung 25: $ F_o - F_c $ omit Elektronendichte der Acarbose gebunden in der zweiten Bindungs-
stelle
Abbildung 26: Schema der Wechselwirkungen der Acarbose mit der zweiten Bindungsstelle55
Abbildung 27: $ F_o - F_c $ Restelektronendichte in der Nähe des aktiven Zentrums
Abbildung 28: Stereobild der Kristallkontakte
Abbildung 29: Temperaturverlauf der Hauptkettenatome der nativen Amylomaltase-Struktur63
Abbildung 31: Überlagerung der aktiven Zentren der nativen und Acarbose-gebundenen Amylo-
maltase64
Abbildung 32: Sequenzalignment für verschiedene Amylomaltasen und dem D-Enzym aus der
Kartoffel
Abbildung 33: Strukturelles Alignment verschiedener Enzyme der α-Amylase-Familie
Abbildung 34: Produktspezifität der α-Amylase, CGTase und Amylomaltase
Abbildung 35: Überlagerung der aktiven Zentren der Amylomaltase aus Thermus aquaticus,
einer CGTase aus <i>Bacillus circulans</i> Stamm 8 und einer α -Amylase aus Schweinemagen. 70
Abbildung 36: Topographie-Diagramm der α-Amylase aus Schweinemagen und CGTase aus
Bacillus circulans Stamm 8
Abbildung 37: Topographie-Diagramm der CGTase aus Bacillus circulans Stamm 8 und der
Amylomaltase aus <i>Thermus aquaticus</i>
Abbildung 38: Überlagerung der C_{α} -Kette einer α -Amylase aus Schweinemagen mit einer
CGTase aus <i>Bacillus circulans</i>
Abbildung 39: Überlagerung der C _{α} -Kette der Amvlomaltase mit der CGTase aus <i>Bacillus</i>
circulans 78
Abbildung 40: Molekulare Oberflächen der α -Amvlase Isoenzym II aus Schweinemagen in
Komplex mit einer Maltohexaose und einer CGTase aus <i>Bacillus circulaus</i> Stamm 8 im
Komplex mit einem ß-Cylodeytrin
Abbildung 41: Molekulara Oberfläche der Amvlomeltese aus Thermus aquatique im Kompley
mit A carbose
Abbildung 12: Varalaiah dar Omit Elabtranandiahtan dar 250ar Sahlaifa kanturiart bai 15 -
Abondung 42. vergieren der Omn-Elektronendichten der 250er-Schlene konturiert bei 4.5 $\sigma_{\rm rms}$
und ausgewahlter Seitenketten des aktiven Zentrums konturiert bei 5.5 $\sigma_{\rm rms}$

Abbildung 43: Modell der V-Amylose
Abbildung 44: Überlagerung der Acarbose in der zweiten Bindungstasche mit einem Fragment
V-Amylose
Abbildung 45: Überlagerung der Acarbose gebunden im aktiven Zentrum mit einem Fragment
der V-Amylose
Abbildung 46: Vorschlag der Bindung von Amylose und die Bildung von Cycloamylose87

Tabellenverzeichnis

Tabelle 1: Statistiken der verwendeten nativen kristallographischen Datensätze	
Tabelle 2: Schweratomlagen und berechnete Harkerpeaks der Schweratomverbindunge	en 37
Tabelle 3: Statistiken der Schweratomdatensammlung und Phasierung	
Tabelle 4: "figure of merit" als Funktion der Auflösung für alle Schweratomdaten	
Tabelle 5: Verfeinerungsstatistik für die Struktur der nativen Amylomaltase	41
Tabelle 6: Verfeinerungsstatistik für den Komplex aus Amylomaltase mit Acarbose	
Tabelle 7: Torsionswinkel der glykosidischen Bindungen und Abstände der O2-O3'-	Sauerstoff-
atome der im aktiven Zentrum gebunden Acarbose.	54
Tabelle 8: Torsionswinkel der glykosidischen Bindungen und Abstände der O2-O3'	Atome der
Acarbose gebunden in der Nähe des aktiven Zentrums	
Tabelle 9: Intermolekulare Wasserstoffbrückenbindungen	
Tabelle 10: Sequenzhomologien in Prozent für verschiedene Amylomaltasen und ein	n D-Enzym
aus der Kartoffel.	65
Taballa 11: Strukturall variandta Enzyma zur Amulamaltaga aug Tharmur gaugtigus	(7

Lebenslauf

Persönliche Daten

Name	Ingo Dirk Przylas
Geburtsort	17. September 1971 in Berlin
Familienstand	ledig

Schulausbildung

Sep. '78 – Juli '82	Südgrundschule Zehlendorf in Berlin
Sep. '82 – Juni '91	Evangelisches Gymnasium zum Grauen Kloster in Berlin;
	Allgemeine Hochschulreife

Hochschulausbildung

Okt. '91 – Okt. '94	Studium der Chemie an der Technischen Universität Berlin
Aug. '93	Vordiplom
Okt. '94 – Okt. '96	Fortführung des Studiums der Chemie an der Eidgenössischen Technischen Hochschule Zürich, Schweiz
April '95	Vordiplom der ETH Zürich, Schweiz
April '96 – Aug. '96	<i>Diplomarbeit</i> an der Harvard University, Cambridge, USA mit dem Thema "Studies toward the Synthesis of a Partially Labeled Protein" im Labor von Prof. Dr. S. Schreiber
Okt. '96	Abschluß des Chemiestudiums als <i>Diplom</i> Chemiker ETH an der Eid- genössischen Technischen Hochschule Zürich, Schweiz
Dez. '96 - April '00	Arbeit an der vorliegenden Dissertation in der Arbeitsgruppe von Herrn Prof. Dr. W. Saenger im Institut für Kristallographie (FU Berlin)

Veröffentlichungen

- Przylas, I., Tomoo, K., Terada, Y., Takaha, T., Fujii, K., Saenger, W. & Sträter, N. (2000). Crystal structure of amylomaltase from *Thermus aquaticus*, a glycosyltransferase catalysing the production of large cyclic glucans. *J. Mol. Biol.* 296, 873-886.
- Przylas, I., Terada, Y., Fujii, K., Takaha, T., Saenger, W. & Sträter, N. (2000). X-ray structure of acarbose bound to amylomaltase from *Thermus aquaticus*. Implications for the synthesis of large cyclic glucans. *Eur. J. Biochem.* 267, 6903-6913.
- Maier, T., Przylas, I., Herdewijn, P. & Saenger, W. (2000). Structural determination of a decamer of RNA in complex with HNA, a new potent antisense construct for gen-therapy. in Vorbereitung

Vorträge

- Przylas, I., Tomoo, K., Terada, Y., Takaha, T., Fujii, K., Saenger, W. and Sträter, N. (1999).
 Crystal Structure of Amylomaltase from *Thermus aquaticus*. Ezaki Glico Co., Osaka, Japan.
- Przylas, I., Tomoo, K., Terada, Y., Takaha, T., Fujii, K., Saenger, W. and Sträter, N. (1999). Crystal Structure of Amylomaltase from *Thermus aquaticus*, a Glycosyltransferase Catalysing the Production of Large Cyclic Glucans. 2nd Heart of Europe *bio*-crystallography Konferenz, Lübben.