H. APPENDIX

Fig (a).	Mouse retina stained by golgi staining	12
Fig (b).	Mouse retina stained by golgi staining	17
Fig 1	Chick CALEB detected in chick retina cultures	47
Fig 2	Chick CALEB immuno-histostaining	48
Fig 3	CALEB expression in the chick retina culture	49
Fig 4	Total CALEB down regulation with KCI	49
Fig 5	Time period for cell surface down regulation	50
Fig 6	Down regulation of CALEB in the presence of glutamate receptor agonists	52
Fig 7	CALEB down regulation is an action potential independent process	53
Fig 8	Calcium influx necessary for CALEB down regulation	55
Fig 9	Calmodulin plays a role in the CALEB down regulation	57
Fig 10	Activation of calcineurin important for CALEB down regulation	58
Fig 11	Internalization is not the cause of down regulation of cell surface CALEB	60
Fig 12	Released ectodomain fragment of CALEB	61
Fig 13	Membrane attached part of CALEB after shedding	63
Fig 14	CALEB expression in the chick retina tissue	65
Fig 15	Membrane attached protease responsible for releasing CALEB	67
Fig 16	Metalloprotease inhibitors block KCl induced shedding	69
Fig 17	Pharmacological blockers of ADAM-10 and ADAM-17 inhibit CALEB ectodomain	
	shedding	71
Fig 18	Chick CALEB in the presence of ADAM 10 undergoes down regulation in COS-7 cells	72
Fig 19	Erk kinase involved in CALEB down regulation	74
Fig 20	Protein synthesis is not necessary for CALEB shedding	75
Fig 21	Upregulation of total CALEB with KCI incubation	76
Fig 22	Upregulation of total CALEB with KCI incubation	78
Fig 23	Tissue specific expression of CALEB	79
Fig 24	CALEB enrichment in the synaptic junctions	80
Fig 25	CALEB expression in mouse superior colliculus	82
Fig 26	CALEB expression in the deglycosylated mouse superior colliculus	83
Fig 27	CALEB expression in the developmental stages of mouse retina	84
Fig 28	Mouse CALEB regulation in the presence of blockers of GABA and NMDA receptors	85
Scheme 1	Pre-biotinylation protocol	34
Scheme 2	Post-biotinylation protocol	34
Scheme 3	Biotin internalization protocol	35
Scheme 4	Post-synaptic density preparation	43
Scheme 5	Cell surface biotinylation	50
Scheme 6	Molecular mechanism of CALEB ectodomain shedding	100
Table 1	Antibodies list	27