
3 Metastability

We present a mathematical characterization of metastability, its connection
to eigenvalues of the transfer operator close to its dominant eigenvalue 1,
and a theoretical as well as numerical identification strategy.

3.1 Characterizing Metastability

There is no unique but several definitions of metastability in literature (see,
e.g., [4, 9, 72, 73]), each adapted to suit the context. Our definition fits
the biomolecular application context and measures metastability w.r.t. the
canonical ensemble. Combining the physical characterization of metastable
sub–ensembles in Section 1.1 and the mathematical specification in Sec-
tion 1.3, we aim at defining a transition probability from a subset B into
C within the time span τ , denoted by p(τ,B,C), such that an invariant
sub–ensemble C is characterized by p(τ, C,C) = 1, while a metastable sub–
ensemble can be characterized by p(τ, C,C) ≈ 1. Being ”close to 1” is
obviously a vague statement—however, in most applications we are inter-
ested in a decomposition into the most metastable subsets, which eliminates
the problem of interpreting ”close to 1”. Instead we have to determine the
number of subsets, we are looking for. In our approach, this is done by exam-
ining the spectrum of the propagator Pτ . Alternatively, we could determine
a cascade of decompositions with an increasing number of metastable sub-
sets.

Define the transition probability p(t, B,C) from B ∈ A to C ∈ A
within the time span t as the conditional probability

p(t, B,C) = Pµ[Xt ∈ C |X0 ∈ B] =
Pµ[Xt ∈ C and X0 ∈ B]

Pµ[X0 ∈ B]
, (31)

where Pµ indicates that the initial distribution of the Markov process Xt

is due to µ, hence X0 ∼ µ. The similar symbols for both the transition
probability between subsets p(t, B,C) as well as for the stochastic transition
function corresponding to the Markov process emphasize the strong relation
to the definition of p(t, x, C) in (4), which allows to rewrite (31) as

p(t, B,C) =
1

µ(B)

∫
B
p(t, x, C)µ(dx). (32)

The transition probability quantifies the dynamical fluctuations within the
stationary ensemble µ. For later reference, we state the following two prop-
erties:

(i) using the duality bracket 〈·, ·〉µ between L1(µ) and L∞(µ), we get

p(t, B,C) =
〈Pt1B,1C〉µ
〈1B,1B〉µ

. (33)
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(ii) metastability of C may equivalently be characterized by the condition
that p(t, C,X \ C) ≈ 0, which yields [73]:

p(t, C,X \ C) =
1

2µ(C)
‖Pt1C − 1C‖1 . (34)

In Section 1.1 we have seen that metastability of sub–ensembles can
experimentally be measured w.r.t. some observation time τ . Therefore, we
will fix some τ > 0 and concentrate in the sequel on the single propagator
Pτ rather than on the entire semigroup of propagators {Pt}t∈T.

3.2 Identifying Metastable Subsets

We now present the fundamental algorithmic strategy used to identify meta-
stable subsets. The basic idea is to interpret metastability as almost in-
variance. Since invariant subsets are associated with the eigenvalue λ =
1 and can be identified exploiting the corresponding eigenfunctions [17],
metastable subsets are thought to be associated with almost λ = 1 eigen-
values and can be identified by exploiting the corresponding eigenfunctions.

Consider the propagator Pτ : Lr(µ) → Lr(µ) with r = 1, 2; its spectrum
is contained in the unit disc {λ ∈ C : |λ| ≤ 1}. Whenever a proper subset
C ⊂ X is invariant under the Markov process, i.e., p(t, x,X \ C) = 0 for
all x ∈ C, the probability density 1̂C = 1C/µ(C) is an eigenfunction corre-
sponding to λ = 1. In particular, since µ is assumed to be invariant, 1̂X is an
eigenfunction corresponding to λ = 1. Loosely speaking, a characterization
of metastability according to (34) suggests that C is metastable if 1̂C is an
approximate eigenfunction corresponding to an eigenvalue close to λ = 1.
This motivates the following algorithmic strategy:

Metastable subsets (on the time scale τ > 0) can be identified via
eigenfunctions of the propagator Pτ corresponding to eigenvalues
|λ| < 1 close to the Perron root λ = 1. In doing so, the number
of metastable subsets is equal to the number of eigenvalues close
to 1, including λ = 1 and counting multiplicity.

The strategy mentioned above has first been proposed by Dellnitz and
Junge [13] for discrete dynamical systems with weak random perturbations
and has been successfully applied to molecular dynamics in different contexts
[69, 71, 68]; a justification is given by Theorem 3.1. The algorithmic strategy
necessitates the following two conditions on the propagator Pτ :

(C1) The essential spectral radius of Pτ is less than one, i.e., ress(Pτ ) < 1.

(C2) The eigenvalue λ = 1 of Pτ is simple and dominant, i.e., η ∈ σ(Pτ )
with |η| = 1 implies η = 1.
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It is important to remember that we defined transition probabilities between
subsets, and therefore metastability, w.r.t. the invariant measure µ. Assume
that the Markov process Xt admits another invariant measure ν, which, for
sake of simplicity, is absolutely continuous w.r.t. µ with density f ∈ L1(µ).
Then, f is an eigenfunction of Pτ corresponding to λ = 1. As a conse-
quence, we will not be able to decide in general whether an eigenfunction
corresponding to some eigenvalue λ ≈ 1 is related to metastable behavior
of the ensemble represented by µ or by ν. Thus, the algorithmic strategy
requires uniqueness of the invariant measure. Additionally, the physical in-
terpretation of the ensemble excludes other eigenvalues than λ = 1 on the
unit circle. Hence, λ = 1 has to be simple and dominant. For the numer-
ical realization and discretization of the eigenvalue problem, we moreover
need that the relevant eigenvalues are isolated and of finite multiplicity. For
those eigenvalues convergence results of the numerical discretization algo-
rithm can be established. This implies that the essential spectral radius has
to be less than 1, hence permitting the existence of isolated eigenvalues of
finite multiplicity close to λ = 1.

3.3 Metastable Subsets and Eigenvalues Close to 1

We now give a mathematical justification of the algorithmic strategy in-
troduced above. The main result is stated in Theorem 3.1. It illuminates
the strong relation between the existence of a cluster of eigenvalues close to
1 and a possible decomposition of the state space into metastable subsets.
We state the theorem under the additional assumption of reversibility of
the Markov process Xt and comment on how the results can be applied to
non–reversible Markov processes.

Consider the propagator Pτ : L2(µ)→ L2(µ) satisfying the two conditions
(C1) and (C2), and assume that the Markov process is reversible. Due to
Proposition 1.1, Pt is self–adjoint and its spectrum has the form

σ(Pτ ) ⊂ [l, r] ∪ {λ2} ∪ {1},

with −1 < l ≤ r ≤ λ2 < λ1 = 1. We restrict our considerations to the
case that the Perron root is “nearly two–fold degenerate”: We assume that
λ2 is a simple isolated eigenvalue, hence r = λ3 < λ2, and further that the
corresponding eigenfunction v2 is normalized by 〈v2, v2〉µ = 1 and satisfies
v2 ∈ L∞(µ). Note that 〈v2,1X〉µ = 0, since Pτ is self–adjoint.

A decomposition D = {D1, . . . , Dn} of the state space X is a collection
of subsets Dk ⊂ X with the properties:

(i) positivity: µ(Dk) > 0 for every k,

(ii) disjointness: Dk ∩Dl = ∅ for k 6= l, and
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(iii) covering property: ∪nk=1Dk = X.

For a decomposition D = {B,C} of X into two subsets, we define the
following function

vBC =

√
µ(C)
µ(B)

1B −

√
µ(B)
µ(C)

1C , (35)

which is constant on either of the two sets B and C, and is normalized to
‖vBC‖2 = 1. Under the assumptions on the propagator Pτ stated above we
obtain the following relation between the existence of metastable subsets
and eigenvalues close to 1.

Theorem 3.1 Let D = {B,C} be an arbitrary decomposition of X into two
subsets. Then

1 + κλ2 ≤ [ p(τ,B,B) + p(τ, C,C) ] ≤ 1 + λ2, (36)

with κ = 〈v2, vBC〉2µ ≤ 1. In addition, choosing

B = {x ∈ X : v2(x) ≥ 0} and C = {x ∈ X : v2(x) < 0},

we have 1− 8c2ε ≤ κ with constants ε = (1− λ2)/(1− λ3) and c = ‖v2‖∞.

Proof : The proof is based on results by Davies [9, 10] and a subsequent
paper of Singleton [73]. In order to be applicable to our situation, we have
to extend their results, since in general, we cannot assume the existence of
an infinitesimal generator as in [9, 10, 73]. In [73] we have to replace the
strongly continuous semigroup exp(−Ht) by Pτ . Furthermore, to match the
assumptions on the spectrum in [73] with ours, we have to rescale the time
of the semigroup. Interpreting p(τ,B,C) as µ(C)〈Pτ1B/µ(B),1C/µ(C)〉µ,
as stated by property (i) in Section 3.1, Lemma 4 of [73] and its subsequent
remark state that

p(τ,B,C) =
1

2µ(B)
‖1B − Pτ1B‖1 = µ(C) 〈vBC − PτvBC , vBC〉µ.

We then exploit Theorem 5 of [73] to bound the scalar product by

1− λ2 ≤ 〈vBC − PτvBC , vBC〉µ ≤ 1− κλ2

with κ = 〈v2, vBC〉2µ ≤ 1. Putting everything together, we end up with

µ(B)(1− λ2) ≤ p(τ,B,C) ≤ µ(B)(1− κλ2). (37)

Repeating the calculation with vCB = −vBC and exchanged roles of B and
C, we see that inequality (37) holds in an analogous way for p(τ, C,B).
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Hence, summing up both inequalities and exploiting µ(B) + µ(C) = 1, this
finally gives

1− λ2 ≤ [ p(τ,B,C) + p(τ, C,B) ] ≤ 1− κλ2

⇔ 1 + κλ2 ≤ [ p(τ,B,B) + p(τ, C,C) ] ≤ 1 + λ2,

which is the first statement of Theorem 3.1. For the second statement on
the lower bound on κ, we conclude from Theorem 3 of [73] that

κ = 1− 1
2
‖v2 − vBC‖22. (38)

In the following we determine, analogous to Theorem 3 in [9], an upper
bound on ‖v2 − vBC‖2, which implies a lower bound on κ. Once again,
exp(−Ht) has to be replaced by Pτ and furthermore, the infinitesimal gen-
erator −H has to be substituted by Id− Pτ . Define the function

ψ =

√
‖v−2 ‖2
‖v+

2 ‖2
v+

2 +

√
‖v+

2 ‖2
‖v−2 ‖2

v−2 ,

where v+
2 and v−2 denote the positive and negative part of v2, respectively.

Note that 〈Pτψ,ψ〉µ ≥ λ1 implies

〈(Id− Pτ )ψ,ψ〉µ ≥ 1− λ2. (39)

Now, define ξ = ψ − 〈ψ,1X〉1X. Since ξ is orthogonal to 1X and v2, we
obtain by means of Cauchy–Schwarz 〈Pτξ, ξ〉 ≤ λ3‖ξ‖22 and therefore

(1− λ3)‖ξ‖22 ≤ 1− λ3‖ξ‖22 ≤ 1− 〈Pτξ, ξ〉 ≤ 〈(Id− Pτ )ξ, ξ〉. (40)

Assembling (39) and (40) results in

(1− λ3)‖ξ‖22 ≤ 〈(Id− Pτ )ξ, ξ〉
= 〈(Id− Pτ )ψ,ψ〉 − 〈ψ, 1〉〈(Id− Pτ )ψ,1X〉
−〈ψ, 1〉〈(Id− Pτ )1X, ψ〉+ 〈ψ, 1〉2〈(Id− Pτ )1X,1X〉

= 〈(Id− Pτ )ψ,ψ〉 ≤ 1− λ2,

which implies ‖ξ‖22 ≤ ε with ε = (1 − λ2)/(1 − λ3). With this modification
in the proof of Theorem 3 in [9], we finally get

‖v2 − vBC‖22 ≤ 16‖v2‖2∞ε,

which together with (38) gives the lower bound on κ. �

Theorem 3.1 highlights the strong relation between a decomposition of
the state space into two metastable subsets and a second eigenvalue close
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Figure 2: Data based on Smoluchowski equation. Left: metastability of a decomposition
D = {B,C} with B = (−∞, q] and C = (q,∞] in dependence on q. The problem of
finding the maximal value corresponding to the optimal decomposition is ill–conditioned.
The vertical line corresponds to the decomposition B = {x ∈ X : h2(x) ≥ 0} and C =
X \ B defined by the second eigenfunction h2 (right). We obtain κ = 0.984 according to
Theorem 3.1.

to the dominant eigenvalue 1. For an arbitrary decomposition D = {B,C}
let us call p(τ,B,B) + p(τ, C,C) the metastability of the decomposition
D. Then Theorem 3.1 states that the metastability of a decomposition
D = {B,C} cannot be larger than 1 + λ2, while it is at least 1 + κλ2. The
upper bound is “large” whenever the eigenfunction v2 corresponding to λ2

is almost constant on the two metastable subsets B and C. As stated by
the second part of Theorem 3.1, we can guarantee metastability for the par-
ticular decomposition into B = {x : v2(x) ≥ 0} and C = {x : v2(x) < 0}
whenever (i) the gap between the second and third eigenvalue is large, hence
ε = (1 − λ2)/(1 − λ3) is small, and (ii) the essential maximum c = ‖v2‖∞
of the second eigenfunction v2 is small. In [10] Davies proved, that in the
case of a strongly continuous positive semigroup of self–adjoint propagators,
e.g., in the case of the Smoluchowski dynamics, the lower bound on κ is in
fact independent of c = ‖v2‖∞, whenever c < ∞. Nevertheless, the lower
bound on p(τ,B,B) + p(τ, C,C) via ε � 1 implies the quite restrictive as-
sumption: λ3 � λ2 on the spectrum Pτ . In numerical experiments we have
observed intriguing results of the identification strategy even for situations
corresponding to large ε-values [17].

In view of Theorem 3.1, it is natural to ask, whether there is an optimal
decomposition with highest possible metastability. The answer is illustrated
by Figure 2: Even if there exists an optimal decomposition, the problem of
finding it might be ill–conditioned. The graph shows the metastability of a
family of decompositions. It is based on the propagator Pτ corresponding
to the Smoluchowski equation for the double–well potential on X = R. The
conditions (C1) and (C2) on Pτ are justified by Proposition 6.5, while the
assumption on the spectrum can be fulfilled by choosing an appropriate in-
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verse temperature β. We identify a whole domain of decompositions that
are nearly optimal. In this case the problem of finding the maximum is
ill–conditioned. We also observe that the decomposition suggested by our
identification algorithm is nearly optimal. The phenomenon illustrated by
Figure 2 is believed to by typical in our application context, which is due to
the fact that the canonical ensemble has large regions of almost vanishing
probability.

Having an application to more complicated dynamical behavior in mind,
we claim the following generalization of Theorem 3.1 for a decomposition
into more than two subsets: Assume that the propagator Pτ , acting on
L2(µ), is associated with a reversible Markov process and satisfies the con-
ditions (C1) and (C2). Moreover, assume that its spectrum is of the form
σ(Pτ ) ⊂ [l, r] ∪ {λn} ∪ · · · ∪ {λ2} ∪ {1} with simple, isolated eigenvalues
λn < . . . < λ2 < λ1 = 1 and corresponding eigenfunctions in L∞(µ). Given
a decomposition D = {D1, . . . , Dn} of X, denote by {vD1 , . . . , vDn} some
µ–orthonormal basis of span{1D1 , . . . ,1Dn}.
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Figure 3: Illustration of the Conjecture for a decomposition of the state space into three
subsets. The graph is based on the propagator Pτ corresponding to the Smoluchowski
equation. The test system is the three–well potential defined in (63) for β = 2 and different
values of γ. For details on the discretization see Section 6. The top solid line represents
the upper bound 1 + λ2 + λ3 in the Conjecture, while the dashed line corresponds to the
metastability p(τ,D1, D1) + p(τ,D2, D2) + p(τ,D3, D3) of the decomposition obtained by
applying the identification algorithm. The bottom solid line represents the lower bound
κ11 + κ2λ2 + κ3λ3.

Conjecture. Let D = {D1, . . . , Dn} be an arbitrary decomposition of
X into n subsets. Then

κ11 + . . .+ κnλn ≤ [ p(τ,D1, D1) + . . .+ p(τ,Dn, Dn) ] ≤ 1 + . . .+ λn

with κj = 〈vj , vDj 〉2µ ≤ 1.

For a numerical verification of the Conjecture for a decomposition of the
state space into n = 3 subsets see Figure 3. The conjecture is in agreement
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with all numerical experiments performed in Section 6.

In the following, we want to comment on an extension to non–reversible
Markov processes. In his PhD thesis [74], Singleton proved results about
metastable states for non–self–adjoint strongly continuous Markov semi-
groups, which might be used to extend Theorem 3.1. The main problem
in the absence of self–adjointness is to control both, the propagator and its
adjoint at the same time. This necessitates increasing technical effort, since
we have to pose conditions on spectral projections and resolvents rather
than on the distribution of eigenvalues to handle non–self–adjointness. As
Singleton stated in [74], the results obtained for suitable non–self–adjoint
operators are of the same order of magnitude.

We will proceed in a different way based on an idea due to Froyland
and Dellnitz [25]. They made the fascinating observation that we can asso-
ciate to every non–reversible Markov chain a reversible Markov chain that
possesses the same invariant measure and the same metastable subsets. We
will extend this approach for our purpose from the finite state space to
the general state space. Consider a Markov process Xt = {Xt}t∈T and
assume that its stochastic transition function p is absolutely continuous,
hence p(t, x, dy) = p(t, x, y)µ(dy) with density jointly measurable in x and
y. For some fixed observation time span τ > 0, consider the discrete–time
Markov process Xn = {Xτn}n∈Z+ ; its stochastic transition function is given
by pτ (n, x,dy) = p(τn, x, dy). We define the time–reversed Markov pro-
cess Yn = {Yn}n∈Z+ via its stochastic transition function qτ given by

qτ (n, x, dy) = qτ (n, x, y)µ(dy) = pτ (n, y, x)µ(dy),

which by definition is again absolutely continuous and discrete in time.
The map qτ satisfies the requirements for a stochastic transition function,
since qτ (n, x,X) = 1 due to invariance of µ, and

∫
X qτ (n, x,dz)qτ (1, z, A) =

qτ (n + 1, x, A), which implies the Chapman–Kolmogorov equation. If pτ is
reversible then qτ = pτ , as we would expect. The time–reversed Markov
process Yn has two important properties (analogous to [25]):

(i) The probability measure µ is invariant w.r.t. Yn, since∫
X
qτ (n, x,A)µ(dx) =

∫
X

∫
A
p(τn, y, x)µ(dy)µ(dx)

=
∫
A

∫
X
p(τn, y, x)µ(dx)µ(dy) = µ(A).

(ii) The time–reversed Markov process Yn has the same metastable subsets
as the original process Xn, i.e.,

pτ (n,C,C) = qτ (n,C,C)
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for arbitrary C ∈ A and every n ∈ Z+. This is a special case of the
general identity µ(C) pτ (n,C,D) = µ(D) qτ (n,D,C), which is due to

µ(C) pτ (n,C,D) =
∫
C

∫
D
pτ (n, x, y)µ(dy)µ(dx)

=
∫
C

∫
D
qτ (n, y, x)µ(dy)µ(dx)

= µ(D) qτ (n,D,C).

Although neither Xn nor Yn need to be reversible, we can use them to
construct a reversible Markov process (analogous to [25]):

Theorem 3.2 Define the time–symmetrized Markov process Zn =
{Zn}n∈Z+ via its one–step stochastic transition function

rτ (1, x,dy) =
1
2

[ pτ (1, x, y) + qτ (1, x, y) ]µ(dy).

Its n–step version given by the Chapman–Kolmogorov equation. Then, Zn is
invariant w.r.t. to µ, reversible and possesses the same one step metastability
as Xn, i.e.,

pτ (1, C, C) = rτ (1, C, C)

for arbitrary C ∈ A.

Proof: The statements about the invariance of µ and the metastability are
obvious. Now, let us prove that Zn is reversible w.r.t. µ, hence we have to
prove condition (7). For A,B ∈ A we have∫

A
rτ (1, x,B)µ(dx) =

∫
A

∫
B

1
2

[pτ (1, x, y) + qτ (1, x, y)]µ(dx)µ(dy)

=
∫
A

∫
B

1
2

[qτ (1, y, x) + pτ (1, y, x)]µ(dx)µ(dy)

=
∫
B
rτ (1, x, A)µ(dx);

hence Zn is reversible. �

If the original Markov process Xt is reversible, then rτ = pτ and the
time-symmetrized Markov process coincides with the original one sampled
at rate τ . For the interesting case of an originally non–reversible Markov
process this is quite different. In general, we have:

(i) The n–step transition probability rτ (n, ·, ·) is not defined via the sum
of the n–step transition probabilities pτ (n, ·, ·) and qτ (n, ·, ·), since al-
ready

rτ (2, x, A) 6=
∫

X

1
2

[ pτ (2, x, A) + qτ (2, x, A) ].
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This is not surprising, because the left hand side, defined via the
Chapman–Kolmogorov equation, involves the product of pτ (1, ·, ·) and
qτ (1, ·, ·), while the right hand side does not.

(ii) Due to (i) we have pτ (n,C,C) 6= rτ (n,C,C) for n > 1.

(iii) There exists no continuous–time Markov process Ẑt = {Ẑt}t∈R such
that Zn is obtained by sampling Ẑt at rate τ , i.e., such that Zn = Ẑnτ
for n ∈ Z+. Hence, even if the original Markov process is defined via
a stochastic differential equation, this is not the case for the time–
symmetrized Markov process.

Sums of transition probabilities are frequently encountered in the Markov
chain Monte Carlo theory, where it is well known that a realization of the
time–symmetrized Markov process can be performed in two steps: (i) choose
randomly one of the two transition functions pτ or qτ with equal probability
1/2. (ii) proceed according to the chosen transition function. Repeat this
procedure for every discrete time step. However, in order to discretize the
propagator corresponding to the time–symmetrized Markov process, we will
proceed in a different way, as outlined in Section 5.3.

In view of Theorem 3.2, we conclude that the original, possibly non–
reversible Markov process Xt possesses a decomposition into metastable
subsets (on the timescale τ), if the time–symmetrized Markov process Zn
does. This allows us to apply Theorem 3.1. In particular, the eigenfunctions
related to the time–symmetrized Markov process can be used to identify the
metastable subsets of the original, non–reversible Markov process. We will
exemplify the time–symmetrization approach for the Langevin equation in
Section 6.3.
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