
2 The Model Systems

We introduce four popular models for molecular dynamics: the determin-
istic Hamiltonian system, the Hamiltonian system with randomized mo-
menta, the Langevin and the Smoluchowski equation. While the determin-
istic Hamiltonian system and the Langevin equation are classical models on
the phase space Γ (positions and momenta), the Hamiltonian system with
randomized momenta and the Smoluchowski equation are reduced models
acting only on the position space Ω. For each model system we assume that
Ω belongs to one of the two fundamentally different cases:

1. Bounded system: The position space Ω is unbounded, typically
Ω = R3N , and the potential energy function V is smooth, bounded
from below, and satisfies V → ∞ for |q| → ∞. Such systems are
called bounded, since the energy surfaces {(q, p) ∈ Γ : H(q, p) = E}
are bounded subsets of Γ for every energy E.

2. Periodic systems: The position space Ω is some 3N–dimensional
torus and the potential energy function V is continuous on Ω and thus
bounded. There is an intensive discussion concerning the question of
whether V can also be assumed to be smooth as we will do herein, see
[68, Sec. 2] for details.

Both cases are typical for molecular dynamics applications. Periodic systems
in particular include the assumption of periodic boundaries, which is by far
the most popular modeling assumption for biomolecular systems.

2.1 Deterministic Hamiltonian System

The deterministic Hamiltonian system

q̇ = p, ṗ = −∇q V (q). (13)

defined on the state space X = Γ models an energetically closed system,
whose total energy is given by the HamiltonianH as defined in (1); its energy
is conserved under the dynamics. The Markov process Xt = {Xt}t∈R+

defined by the deterministic Hamiltonian system coincides with the flow Φτ

associated with (13); hence Xt = Φtx0 for the initial distribution X0 ∼ x0.
This allows us to denote the stochastic transition function as

p(t, x, C) = 1C
(
Φtx

)
= δΦtx(C) (14)

for every t ∈ R+ and C ∈ A. It is well known that canonical ensemble µcan

is invariant w.r.t. Xt. The evolution of densities v = v(x, t) w.r.t. µcan is
governed by the Liouville equation

∂t v =

−p · ∇q + ∇qV · ∇p︸ ︷︷ ︸
iL

 v, (15)
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where L denotes the Liouville operator defined on some suitable subspace
of L1(µcan). Since the solution of (15) satisfies v(x, t + s) = v(Φ−tx, s) for
every t, s ∈ R+, the semigroup of propagators Pt : L1(µcan)→ L1(µcan) with
t ∈ R+ is defined by

Ptv(x) = exp(itL)v(x) = v
(
Φ−tx

)
. (16)

This is exactly the definition of the Frobenius–Perron operator correspond-
ing to the Hamiltonian flow Φt [46]. Since L is self–adjoint w.r.t. the scalar
product in L2(µ) the operator Pt is unitary in L2(µ). The semigroup of
backward transfer operators Tt : L∞(µ)→ L∞(µ) with t ∈ R+ is given by

Ttu(x) = u
(
Φtx

)
, (17)

which is identical with the Koopman operator corresponding to Φt [46].

2.2 Hamiltonian System with Randomized Momenta

Aiming at a conformational analysis of biomolecular systems, Schütte intro-
duced in [68] some kind of stochastic Hamiltonian system. It is a reduced
dynamics defined solely on the position space and derived from the determin-
istic Hamiltonian system by “randomizing the momenta” and integrating for
some fixed observation time span τ .

Let us briefly sketch the derivation. Fix some observation time span
τ > 0 and denote by pΓ(τ, x,A) the stochastic transition function corre-
sponding to the full deterministic Hamiltonian system on Γ (for a comment
on the time τ see remark below). In view of the relation between metastable
sub–ensembles and conformations, we are interested in a simplified model
describing the dynamics between “cylindric” subsets B ×Rd and C ×Rd.
Inserting these special subsets into definition (14) yields

pΓ(τ,B ×Rd, C ×Rd)

=
1∫

B×Rd µcan(dx)

∫
B×Rd

1C×Rd(Φτ (x))µcan(dx)

=
1∫

B µQ(dq)

∫
B

∫
Rd

1C(ΠqΦτ (q, p))µP(dp)︸ ︷︷ ︸
pτΩ(1,q,C)

µQ(dq). (18)

= pτΩ(1, B,C),

where Πq : Γ → Ω denotes the projection onto the position space. Equa-
tion (18) defines a one–step stochastic transition function, whose n–step
version is determined via the Chapman–Kolmogorov equation (5). The as-
sociated discrete time Markov process Qn = {Qn}n∈Z+ , defined on the state
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space X = Ω, solves the Hamiltonian system with randomized mo-
menta [68]

Qn+1 = ΠqΦτ (Qn, Pn); n ∈ Z+ (19)

where Pn is chosen randomly from the canonical distribution of momenta
P, as defined in (3). As shown in [68] the positional canonical ensemble µQ
is invariant w.r.t. the Markov process Qn. The semigroup of propagators
Pn : L1(µQ)→ L1(µQ) for n ∈ Z+ is given by Pn = (P1)n with

P1v(q) =
∫

Rd

v(ΠqΦ−τ (q, p))P(p)dp. (20)

Exploiting that µQ is invariant and Φτ is reversible and symplectic, it is
shown in [68] that P1, and thus the semigroup, is self–adjoint in L2(µQ).

Remark. For arbitrary, but fixed τ > 0 we have defined in (19) the
one–step transition function pτ (1, q,D). Changing the observation time to
σ > 0 results in a new one–step transition function pσ(1, q,D). In general
we will have p2τ (1, q,D) 6= pτ (2, q,D) and, consequently, P1

2τ 6= P2
τ , where

the superscripts indicate the corresponding observation time spans (for an
example see [68, Sec. 3.7.1]). In terms of the Hamiltonian system with
randomized momenta, this is not surprising, since P1

2τ includes only one
choice of momenta according to P, while P2

τ does include two.

2.3 Langevin Equation

The most popular model for an open system stochastically interacting with
its environment is the Langevin equation3 [61]

q̇ = p, ṗ = −∇q V (q) − γ p + σ Ẇ (21)

corresponding to some friction constant γ > 0 and external force Fext = σẆ
given by a standard 3N -dimensional Brownian motion W . Eq. (21) defines
a continuous time Markov process Xt = {(Qt, Pt)}t∈T on the state space
X = Γ.

In the Langevin model, the effects of solvent molecules not explicitly
present in the system being simulated are approximated in terms of a fric-
tional drag on the solute as well as random collisions associated with the
thermal motion of the solvent molecules. The Hamiltonian H describes
the internal energy of the systems, which is not conserved due to energy

3In our context, the notion Ẇ is a convenient form of the more common dW . Hence,
the Langevin equation (21) should be understood as dq = pdt and dp = −∇qV (q)dt −
γpdt + σdW , which moreover is just the common abbreviation for the corresponding
integral notion, see e.g., [57]. For convenience we will henceforth use the ”dot” without
further comments.
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transfer with the surrounding, the so–called heat bath. Yet, the interplay
between stochastic excitation and damping equilibrates the internal energy
to β = 2γ/σ2. As a result, the canonical ensemble µcan corresponding to
the inverse temperature β is invariant w.r.t. the Markov process defined by
(21). The evolution of densities v = v(t, x) w.r.t. µcan is governed by the
Fokker–Planck equation

∂tv =

σ2

2
∆p − p · ∇q + ∇qV · ∇p − γp · ∇p︸ ︷︷ ︸

L

 v (22)

regarded on some suitable subspace of L1(µcan). Therefore, L is the infinites-
imal generator of the semigroup of propagators Pt : L1(µcan)→ L1(µcan) with
t ∈ R+ defined by

Ptv = exp(tL)v (23)

for v ∈ L1(µcan). In general, Pt is not self–adjoint in L2(µ).

Remark. The evolution of some physical density4 vphys = vfcan ∈ L1(dx)
with v ∈ L1(µcan) is governed by the so–called forward Kolmogorov equa-
tion ∂tvphys = Afwvphys with

Afw =
σ2

2
∆p − p · ∇q +∇qV · ∇p + γp · ∇p + γ

acting on a suitable subspace of L1(dx) [38, Chapter 5.1]. It permits to
define the semigroup of propagators P fw

t : L1(dx)→ L1(dx) by

P fw
t vphys = exp(tAfw)vphys.

As a consequence of the invariance of µ, we obtain the relation

P fw
t (vfcan) = (Ptv)fcan; v ∈ L1(µcan) (24)

between the two semigroups of propagators. To derive the evolution equa-
tion (22) for v, we insert vphys = vfcan into the forward Kolmogorov equation
and obtain after simple manipulations

∂t(vfcan) = Afw(vfcan) = (Lv)fcan,

which is the infinitesimal version of (24). Exploiting time–independence and
positivity of fcan, we finally end up with the Fokker–Planck equation (22).

4See remark about our mathematical model at the end of Section 1.3.
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In some sense dual to the forward Kolmogorov equation is the backward
Kolmogorov equation ∂tu = Abwu with

Abw =
σ2

2
∆p + p · ∇q −∇qV · ∇p − γp · ∇p

acting on a suitable subspace of L1(dx). For bounded and periodic systems,
we have 〈Afwv, u〉2 = 〈v,Abwu〉2 on the Hilbert space L2(dx) and hence
Afw and Abw are adjoint to each other. Therefore neither Afw nor Abw is
self–adjoint in L2(dx). The generator Abw permits to define the semigroup
of backward transfer operators T bw

t : L1(dx)→ L1(dx) by

T bw
t u(x) = Ex[u(Xt)] = exp(tAbw)u(x),

see, e.g., [38, Chapter 5.1]. We remark that although the formal definition
of the two semigroups of backward transfer operators Tt and T bw

t via ex-
pectation is the same, they differ in the space of functions regarded to act
on.

2.4 Smoluchowski Equation

As a second reduced model system, we introduce the Smoluchowski equa-
tion. It is derived from the Langevin equation by considering the high
friction limit γ → ∞. In contrast to the Langevin equation it defines a
reversible Markov process.

Write the Langevin equation (21) in second order form

q̈ = −∇qV (q)− γq̇ + σẆ . (25)

For the high friction limit, we introduce some smallness parameter ε > 0
and transform the friction constant to γ/ε; in order to conserve the inverse
temperature β = 2γ/σ2 of the surrounding heat bath and hence the canon-
ical ensemble, we simultaneously have to scale the white noise constant to
σ/
√
ε. This yields

q̈ = −∇qV (q)− γ

ε
q̇ +

σ√
ε
Ẇ .

After rescaling the time according to t 7→ εt we finally get

ε2q̈ = −∇qV (q)− γq̇ + σẆ .

Since the white noise process Ẇ is unbounded, we cannot simply assume
that the acceleration ε2q̈ is small for ε � 1. However, investigations by
Nelson [53] show that the solution qεLan(t; q0, p0) of the Langevin equation
(26) and the solution qSmol(t; q0) of the Smoluchowski equation

q̇ = −1
γ
∇qV (q) +

σ

γ
Ẇ (26)

are close to each other for high friction γ.
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Theorem 2.1 [53, Theorem 10.1] Assume that ∇qV (q) is global Lipschitz.
Then, for every p0, with probability one

lim
ε→0
|qSmol(t; q0)− qεLan(t; q0, p0)| = 0

uniformly for t in compact subintervals of [0,∞).

Hence, in the high friction case, the Smoluchowski dynamics is a good
approximation of the Langevin dynamics. This fact will be analyzed in the
following section.

The stochastic differential equation (26) defines a continuous time Markov
process Qt = {Qt}t∈R+ on the state space X = Ω with transition kernel
p = p(t, q, C) and invariant probability measure µQ [61]. The evolution of
densities v = v(t, q) w.r.t. µQ is governed by the Fokker–Planck equation
(see Remark below for derivation)

∂tv =

 σ2

2γ2
∆q −

1
γ
∇qV (q) · ∇q︸ ︷︷ ︸
L

 v (27)

regarded on some suitable subspace of L1(µQ). Therefore, L is the infinites-
imal generator of the semigroup of propagators Pt : L1(µQ) → L1(µQ) with
t ∈ R+ defined by

Ptv = exp(tL)v (28)

for v ∈ L1(µ).

Proposition 2.2 The semigroup of propagators Pt : L2(µQ) → L2(µQ) is
self–adjoint w.r.t. the scalar product 〈·, ·〉µQ in L2(µQ).

Proof : We prove that L is self–adjoint in L2(µQ). The statement of the
theorem then follows from [8, Thm. 4.6]. Consider v, u ∈ L2(µQ) in the
domain of L. Then Q

1
2 v,Q

1
2u ∈ L2(dq) and

〈Lv, u〉µQ = 〈(Q
1
2LQ−

1
2 )(Q

1
2 v),Q

1
2u〉2.

A simple calculation proves that Q
1
2LQ−

1
2 = Ls for the generator Ls defined

in (30) below. Since Ls is a so–called Schrödinger operator, it is self–adjoint
in L2(dq) and we obtain

〈Lv, u〉µQ = 〈Q
1
2 v, (Q

1
2LQ−

1
2 )(Q

1
2u)〉µQ = 〈v,Lu〉µQ ,

hence L is self–adjoint in L2(µQ). �
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There is a strong relation of our approach to the theory of large devia-
tions and first exit times (see, e.g., Freidlin and Wentzell [23]); a brief outline
is given in [72]; further investigations are part of a current diploma thesis
[49].

Remark.5 The evolution of some physical density vphys = vQ ∈ L1(dq)
with v ∈ L1(µQ) is governed by the so–called forward Kolmogorov equa-
tion ∂tvphys = Afwvphys with

Afw =
σ2

2γ2
∆q +

1
γ
∇qV (q) · ∇q +

1
γ

∆qV (q)

acting on a suitable subspace of L1(dq) [38, Chapter 5.1]. It permits to
define the semigroup of propagators P fw

t : L1(dq)→ L1(dq) by

P fw
t vphys = exp(tAfw)vphys.

As a consequence of the invariance of µ, we obtain the relation

P fw
t (vQ) = (Ptv)Q; v ∈ L1(µQ) (29)

between the two semigroups of propagators. To derive the evolution equa-
tion (27) for v, we insert vphys = vQ into the forward Kolmogorov equation
and obtain after simple manipulations

∂t(vQ) = Afw(vQ) = (Lv)Q,

which is the infinitesimal version of (29). Exploiting time–independence and
positivity of Q, we finally end up with the Fokker–Planck equation (27).
In some sense dual to the forward Kolmogorov equation is the backward
Kolmogorov equation ∂tu = Abwu with

Abw =
σ2

2γ2
∆q −

1
γ
∇qV (q) · ∇q

acting on a suitable subspace of L1(dq). Although L and Abw are formally
the same, they are regarded to act on different function spaces. For bounded
and periodic systems, we have 〈Afwv, u〉2 = 〈v,Abwu〉2 on the Hilbert space
L2(dq) and hence Afw and Abw are adjoint to each other. However, neither
Afw nor Abw are self–adjoint in L2(dq), while L is self–adjoint in L2(µQ).
The generator Abw permits to define the semigroup of backward transfer
operators T bw

t : L1(dq)→ L1(dq) according to

T bw
t u(q) = Eq[u(Xt)] = exp(tAbw)u(q),

5We are aware of the fact that large parts of this remark are analogous to those made
for the Langevin equation and could hence be abbreviated. Yet, for sake of clarity, we
prefer to state everything explicitly, since there are also important differences.
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see, e.g., [38, Chapter 5.1]. We remark that although the formal definition
of the two semigroups of backward transfer operators Tt and T bw

t via ex-
pectation is the same, they differ in the space of functions regarded to act
on.

Sometimes it is advantageous to consider yet another generator

Ls =
σ2

2γ2
∆q −

 1
2σ2

(∇V (q))2 − 1
2γ

∆V (q)︸ ︷︷ ︸
U(q)

 (30)

regarded to act on a suitable subspace of L2(dq). It is defined in terms of
the potential function U : Ω → R and allows to apply the powerful theory
of Schrödinger operators (see, e.g., Reed and Simon [59]); for a brief outline
see [71]. The Schrödinger operator Ls is related to the generators L by
the identity Q

1
2Lv = Ls(Q

1
2 v) for every v ∈ L1(µQ).
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