Introduction

While computer power is becoming ever more increasing, there are many
problems in physics, chemistry, biology—Ilike climate modeling, protein fold-
ing etc.—where the length and time scales of interest remain entirely beyond
the capacity currently available, and will remain out of reach in the fore-
seeable future. As a consequence, there is an increasing need for simplified,
reduced—order descriptions. Reduced—order models may provide insight and
numerical simulations for larger length scales and longer time scales, but of
course at the cost of discarding some level of detail. Instead of simply ne-
glecting some degrees of freedom, one is rather interested in reduced models
that incorporate into their dynamical behavior the effective influence of the
neglected coordinates. There a two basic approaches for the reduction of
complexity, one is based on elimination like, e.g., elimination of fast degrees
of freedom [3], or stochastic approches like Brownian and Langevin models
[87], and the other one is based on remodeling like, e.g., base pair and rod
models [58] in the biomolecular context. The design of new reduced model
systems is a growing field of research. In order to verify the approximation
quality of reduced models or even to automatically construct reduced model
systems the numerical approximation of essential features of dynamical sys-
tems becomes an important task.

Recently, efficient techniques for the numerical approximation of the es-
sential statistical behavior of deterministic and stochastic dynamical systems
have been developed [13, 14, 69]. They are based on the fact that, when
modeling the overall dynamics in terms of some transfer operator, certain
features of the dynamics are related to its eigenvalues on and close to the unit
circle, and can be identified by exploiting the corresponding eigenfunctions.
A thereon based strategy has first been proposed by Dellnitz and Junge [13]
to analyze almost invariant subsets, attractors and (almost) cyclic behavior
of discrete deterministic dynamical systems subject to small additive noise.
It has been successfully applied to examine metastable behavior of determin-
istic Hamiltonian systems by Deuflhard et al. [14]. Although the numerical
results of the latter approach were intriguing and seemed to catch the essen-
tial features of the molecular system, the deterministic Hamiltonian model
appeared to be unsatisfactory for both theoretical discrepancies and com-
putational complexity [72]. Guided by concepts of statistical physics and
Monte Carlo techniques, Schiitte et al. introduced in [68, 69] a substantially
remodeled stochastic Hamiltonian model. It is based on a special discrete—
time Markov process that can be understood as a Hamiltonian systems with
randomized momenta. Its reliable application to biomolecular systems is
demonstrated in [35, 69].

Modeling, theory and numerics presented herein are motivated by the



successful study of biomolecular systems within the stochastic Hamiltonian
model and the desire to extend the concepts to a broader class of systems. It
is based on a series of preceding studies, where we investigated in detail the
Hamiltonian system with randomized momenta [35, 72] and subsequently
extended the approach to other molecular systems [34, 71, 72]. This the-
sis presents a unified and extended transfer operator based approach to
metastability of general Markovian systems. It addresses the question of
how modeling, theory and algorithmic aspects should be generalized from
the weakly perturbed deterministic and from the Hamiltonian setting to the
class of Markovian systems. We contribute a profound analysis of metasta-
bility and a theoretical justification of the algorithmic strategy for the iden-
tification of metastable subsets. This is achieved by combining results on
Markov processes by Meyn & Tweedie [52], Markov operators by Lasota &
Mackey [46], Markov semigroups by Davies [9, 10] and Singleton [73, 74], and
(weakly) compact operators by Weis [79, 80, 81, 82, 83]. As a consequence,
we are able to establish new links between spectral properties of transfer op-
erators and well-established Doeblin and ergodicity conditions on Markov
processes and operators. This turns out to be particularly advantageous
when aiming at a theoretical justification of the algorithmic approach for new
model systems, as we consider herein. This thesis investigates for the first
time the essential statistical behavior of the Langevin and the Smoluchowski
equation in comparison with the Hamiltonian systems with randomized mo-
menta. All in all, the transfer operator based approach to metastability has
proven to be very powerful. Its application to the small biomolecule r(ACC),
in comparison with other techniques to study biomolecular conformations,
is documented in [35].

Most applications of molecular dynamics are in the context of thermody-
namics, not only because most experiments measure thermodynamic quan-
tities, but also since most biomolecular processes can only be understood
within a thermodynamical context. In the macroscopic theory of equilib-
rium thermodynamics, the so—called canonical ensemble describes the distri-
bution of microscopic systems under the condition of constant temperature,
volume and number of particles [30]. The canonical ensemble is stationary
and hence does not change in time. But at the same time each microscopic
single systemevolves in time, causing internal fluctuations within the ensem-
ble. The characterization and identification of the most relevant fluctuations
is of main interest. From a biochemical point of view, these fluctuations are
related to the conformational dynamics of a biomolecule. In this setting, a
conformation describes a metastable global state of the molecule, in which
the large scale geometric structure is understood to be conserved, whereas
on smaller scales the molecule may well vibrate, oscillate or deform (see
Figure 1). As a consequence, we model conformations as metastable subsets



Figure 1: Visualization of two different conformations of a small biomolecule. The so—
called ball and stick representations (configurations) correspond to two different confor-
mations of the molecule. The surrounding densities indicate the flexibility within each
conformation. Visualization by amira [42].

of the state space and hence include geometric as well as dynamical prop-
erties of the system. Both, conformations and their dynamics are expected
to gain further insight into the nature of biomolecules and their influence in
biochemical reactions.

From a theoretical point of view, the analysis of metastability permits a
statistical description of the essential behavior of dynamical systems. The
identification of metastable subsets is based on the following idea: Describe
internal fluctuations within the invariant distribution by means of a transfer
operator defined in terms of the dynamical system. Then the state space
can be decomposed into metastable subsets and the essential statistical be-
havior can be identified by exploiting eigenfunctions of the transfer operator
corresponding to eigenvalues close to 1 [13, 17, 69]. Following [72], we give
a new theoretical justification of the algorithmic approach in terms of a
simple and intriguing relation between the existence of metastable subsets
and eigenvalues close to 1 (see Theorem 3.1). We want to emphasize that
metastability, as considered herein, is defined w.r.t. some fixed invariant
distribution, which in the biomolecular application context is given by the
canonical ensemble. This might differ from other approaches to metastabil-
ity, e.g., the approach via exit times.

The identification strategy requires two particular conditions on the



transfer operator in order to be theoretically justifiable and numerically
applicable. Stated in terms of the spectrum of the transfer operator these
are (i) the essential spectral radius is less than 1 and (ii) the eigenvalue 1 is
simple and dominant (see Sec. 3.2 for a discussion). Within the stochastic
Hamiltonian context, Schiitte proved in [68] that these two conditions can be
reduced to a property of the Hamiltonian flow, which he called momentum-—
invertibility, and some mixing condition on the dynamics. Having in mind a
generalization to Markovian systems, we have to look for alternative condi-
tions independent of particular properties of special model systems. Here the
so—called stochastic transition function—a family of probability measures—
will play a key role. On the one hand it uniquely characterizes the Markov
process representing the microscopic dynamics of single systems. On the
other hand it defines the transfer operator modeling the macroscopic evo-
lution of ensembles. In a first step, we are going to relate the two spectral
conditions—which are purely functional analytically—to properties of the
stochastic transition function. Then, in the second step, these properties
will be transformed into more probabilistic conditions on the transfer oper-
ator or the Markov process. This enables us to exploit the rich and powerful
literature on Markov operators (e.g., Lasota & Mackey [46]) and Markov
processes (e.g, Meyn & Tweedie [52]). As a result, we combine results from
either of the mathematical theories like, e.g., the fundamental Theorem 4.13,
which relates a bound on the essential spectral radius, uniform constrictive-
ness and the Doeblin—condition.

When dealing with transfer operators, we have to specify the space of
functions, the operator is regarded to act on. In the stochastic Hamiltonian
approach [68] Schiitte considered a weighted Hilbert space of square inte-
grable functions L2. For the general Markovian setting, however, the natural
space is a weighted Banach space of integrable functions L' that includes
all probability densities on the state space. Thus, a particular emphasis lies
on a detailed analysis of transfer operators acting on L!. Nevertheless, we
do study transfer operators on L? for the special class of reversible Markov
processes. Reversibility describes the property that the Markov process and
its time-reversed counterpart are statistically the same. It has the advan-
tageous consequence that then the transfer operator is self-adjoint in L2.

Within this extended transfer operator based approach to metastabil-
ity, we analyze theoretically as well as numerically four Markovian systems
for molecular dynamics: the deterministic Hamiltonian system, the Hamilto-
nian system with randomized momenta, the Langevin and the Smoluchowski
equation. For the first time we investigate the essential statistical behav-
ior of the Langevin and the Smoluchowski equation in comparison with the
Hamiltonian system with randomized momenta. The numerical results give
detailed insight into the model systems and prove the transfer operator based



approach to metastability as very powerful.
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