Untersuchungen zum Bindungsmechanismus von Occludin und α-Catenin an ZO-1

Dissertation

zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von

Diplombiochemiker Sebastian Ludwig Müller geboren am 18.11.1974 in Haldensleben

Berlin, August 2005

Gutachter: 1. Prof. Dr. Hartmut Oschkinat

2. Prof. Dr. Otmar Huber

Disputation am: 18.01.06

Danksagung

Danksagung

Den Herrn Dr. G. Krause und PD Dr. I. E. Blasig möchte ich herzlich für die Überlassung des Dissertationsthemas danken. Ebenso danke ich ihnen sowie allen Mitgliedern der AGs "Biocomputing" und "Molekulare Zellphysiologie" für Unterstützung und gewinnbringende Disskussionen während der Ausführung dieser Doktorarbeit.

Für die finanzielle Unterstützung danke ich der DFG, die diese Arbeit im Rahmen eines gemeinsamen Projektes von PD Dr. I.E. Blasig und Dr. G. Krause (Thema: "Wechselwirkung von Blut-Hirnschranken-Proteinen und deren Regulation") förderte (BL308/6-1, 6-2).

Für die Einführung in die SPR-Technik und die Möglichkeit von SPR-Messungen danke ich der Abt. Peptidchemie und Biochemie unter Leitung von Prof. Dr. M. Bienert, insbesondere Frau Pisarz.

Für die Synthese einiger Peptide und der Peptidmembranen bedanke ich mich bei der Arbeitsgruppe von Prof. Dr. J. Schneider-Mergener von der Charité. Ein besonderer Dank gilt M. Portwich für Hilfe bei den experimentellen Arbeiten zum Peptidmapping und informative Diskussionen.

Ein Dankeschön gilt der Diplomandin Birgit Lassowski für die Unterstützung bei den biophysikalischen Untersuchungen, sowie allen dabei beteiligten Kooperationspartnern: Dr. M. Kolbe/MDC (Kristallographie), Dr. K. Gast/MDC (Lichtstreuung und Circulardichroismus), Dr. D. Labudde und H. Strauss (Analytische Ultrazentrifugation), Dr. M. Schümann und H. Lerch (Massenspektroskopie), Dr. D. Lorenz und Frau M. Ringling (Elektronenmikroskopie).

Schlussendlich danke ich meiner Mutter für Ansporn und kritisches Lesen.

Abkürzungsverzeichnis

AF-6 ALL-1 (akute lymphatic leukemia) Fusionspartner von Chromosom 6

AJ Adherens junction(s)

ANOVA Varianzanalyse (analysis of variance)
AMD Adhäsion-Modulationsdomäne
aPKC atvpische Proteinkinase C

AS Aminosäuren

ASIP aPKC isotyp-spezifisch interagierendes Protein

ATP Adenosintriphosphat

AUZ analytische Ultrazentrifugation

BHS Blut-Hirnschranke

bp Basenpaare

CAD Calcium-Adhäsionsdomäne (in Cadherinen)

CAR Zelladhäsionserkennung (*cell adhesion recognition*) CASK Calcium/Calmodulin-abhängige Serinproteinkinase

CC Coiled coil

CCa, b von Vorhersagen und Modellen abgeleitete CC-Helix in Occludin

CD Circulardichroismus cDNA komplementäre DNA

CK2 Caseinkinase 2

CLMP Coxsackie und Adenovirusrezeptor-ähnliches Membranprotein (coxsackie and

adenovirus receptor-like membrane protein)

CPE Clostridium perfringens Enterotoxin

Cx Connexin (mit Angabe der Molmasse in kDa)
Dlg discs large von *Drosophila melanogaster*

DLS Dynamische Lichtstreuung

DMSO Dimethylsufoxid

DNA Desoxyribonukleinsäure
Drome Drosophila melanogaster
DSS Disuccimidylsuberat

DTT Dithiothreitol

ECL Extrazellulärer Loop (extracellular loop)

E. coli Escherichia coli

EDC 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimid

EDTA Ethylendiamin-N,N,N',N'-tetraessigsäure

EGF epidermaler Wachstumsfaktor (epidermal growth factor)

ERK Extrazellular regulierte Kinase

fastA ein Programm zum Suchen von Sequenzähnlichkeiten in einer Datenbank zu

einer gegebenen Startsequenz

GCN4 generelles Kontrollprotein 4 (generell control protein 4) (ein

Transkriptionsfaktor in Hefe) grün fluoreszierendes Protein

GFP grün fluoreszierendes Protein GKAP GUK assoziiertes Protein GMP Guanosinmonophosphat GST Glutathion-S-Transferase GTP Guanosintriphosphat

GUK Guanylatkinase bzw. Guanylatkinase-ähnliche Domäne

Ha, Hb, Hc von Vorhersagen und Modellen abgeleitete Helices in Occludin

HA/P Hämagglutenin/Protease

hCASK humanes CASK

His₆ Proteinmarker aus 6 Histidinen

HRP Meerrettich-Peroxidase (horseraddish peroxidase)

HUVEC Humane Nabelschnur Endothelzellen (human umbilical vein endothelial cells)

IF Intermediärfilament(e)

IFN- γ Interferon- γ IL-1β Interleukin-1β

IPTG Isopropyl-β-D-thiogalactopyranosid JACOP Junction-assoziiertes coiled coil Protein

JAM junctionales Adhäsionsmolekül LB Lauria-Bertram-Medium

LYRIC Lysin-reiches CEACAM1 co-isoliertes Protein (lysin rich CEACAM1 co-

isolated protein)

MAGI invertiertes MAGUK-Protein (MAGUK inverted protein)
MAGUK Membranassoziiertes Guanylatkinase-homologes Protein

MALDI Matrixunterstützte-Laserdesorptions-Ionisation (matrix assisted laser

desorption ionisation)

MARVEL Domäne in Proteinen mit 4 Transmembranbereichen aus den Proteinfamilien

von Myelin und Lymphocyten, Physinen, Gyrinen und Occludin

MBP Maltose-Bindungsprotein

MCS Multiklonierungsstelle (*multi cloning site*)

MDC Max-Delbrück-Center

MDCK Madin-Darby Nierenzellen aus Hund (Madin-Darby canine kidney cells)

MS Messenspektrometrie

M.Tuberc. *Mycobacterium tuberculosis* MUPP1 Multi-PDZ Domänenprotein 1

NEB New England Biolabs
NHS N-Hydroxysiccinimid

NMM Minimal medium (new minimal medium)

NMR Kern-Spin-Resonanzspektroskopie (nuclear magnetic resonance spectroscopy)

PA Paraformaldehyd

PADJ Pals1 assoziiertes tight junction Protein (Pals1 associated tight junction

protein)

PAR defektes Aufteilungsprotein (partitioning defective protein)

PBS phosphat-gepufferte Kochsalzlösung

PCR Polymerasekettenreaktion (polymerase chain reaction)

PDB Protein-Datenbank (für dreidimensionale Strukturen jede mit einer vierstelligen

Buchstaben-Zahlen Kennnummer)

PDZ PSD-95/Dlg/ZO-1 Domäne (ev. noch Zahl dahinter, wenn eine bestimmte

PDZ-Domäne aus einem Protein mit multiplen PDZs gemeint ist)

PKC Proteinkinase C

PMSF Phenyl-methyl-sulofonyl-fluorid

PP Polyprolinregion pS Phosphorserin

PSD Postsynaptisches Dichtheitsprotein

PSI Pfund pro Quadratzoll (pound per square inch, 1PSI = 6,9 kPa)

Oc Occludin

RMSD mittlere quadratische Abweichung (root-mean-square deviation)

R_S Stokes-Radius RT Raumtemperatur

RU Resonanzeinheit (resonance unit)

SAF-B Gerüstanheftungsfaktor B (*scaffold attachment factor B*)

SAP Synapsen-assoziiertes Protein

SDS Natriumdodecylsulfat (sodium dodecylsulfate)

SDS-PAGE SDS-Polyacryl-Gelelektrophorese

SEC Größenausschlusschromatografie (size exclusion chromatography)

SEM standard error of mean

SH3 Src homologe 3 Domäne (src homology 3 domain)

SLS Statische Lichtstreuung

SNAP Synaptosome-assoziiertes Protein

SNARE SNAP Rezeptor SP Säulenpuffer

SPR Oberflächenplasmonresonanzspektroskopie (surface plasmon resonance

spectroscopy)

SS Sekundärstrukturen

STAT Signaltransducer und Activator der Transkription)
TBS Tris-gepufferte Kochsalzlösung (*Tris buffered saline*)

TEER transepithelialer elektrischer Widerstand (transepithelial electrical resistance)

TFA Trifluoressigsäure (trifluor acetic acid)
TJ Tight junction(s) (dichte Zellverbindungen)
TM4 vierter transmembranaler Bereich eines Proteins
TMR Tetramethylrhodamin (ein roter Farbstoff)

TNF-α Tumor-Nekrose-Faktor-α
UV Ultraviolettes Licht

VEGF vakulärer endothelialer Wachstumsfaktor
 VAMP Vesikel assoziiertes Membranprotein
 VAP-33 33 kDa großes VAMP-assoziiertes Protein
 VH1-3 Vinculin homologe Regionen 1-3 in α-Catenin

WT Wildtyp

WW Proteinbindungsdomäne an Polyprolinmotive mit zwei konservierten

Tryptophanen (W)

ZAK ZO-1 assoziierte Kinase ZNS Zentralnervensystem

ZO-1,2,3 Zonula occludens Protein 1 bzw. 2 oder 3

ZONAB ZO-1 assoziiertes Nukleinsäure bindendes Protein

Aminosäuren sind mit den üblichen Einbuchstabensymbolen abgekürzt:

A= Alanin, C= Cystein, D= Asparaginsäure, E= Glutaminsäure, F= Phenylalanin, G= Glycin, H= Histidin, I= Isoleucin, K= Lysin, L= Leucin, M= Methionin, N= Asparagin, P= Prolin, Q= Glutamin, R= Arginin, S= Serin, T= Threonin, V= Valin, W= Tryptophan, Y= Tyrosin.

Analog sind auch die DNA-Basen abgekürzt:

A= Adenin, C= Cytosin, G= Guanin, T= Thymin

<u>Inhaltsverzeichnis</u> V

Inhaltsverzeichnis

Danksa	gung	I
Abkürz	nungsverzeichnis	II
Inhaltsv	verzeichnis	V
Abbildı	ungsverzeichnis	X
Tabelle	nverzeichnis	XIII
1.Einl	eitung	1
1.1.	Stand der Forschung zu den <i>Tight junctions</i>	1
1.1.1.	Die Rolle und Bedeutung der Tight junctions in verschiedenen Organen	1
1.1.2.	Tight junctions sind Teil des Kontaktbereiches zwischen Zellen	3
1.1.3.	Morphologie und Funktion von Tight junctions	4
1.1.4.	Molekularer Aufbau der Tight junctions	9
1.1.4.1.	Occludin	10
1.1.4.2.	Die Claudinproteinfamilie	15
1.1.4.3.	Die zonula occludens-Proteine 1, 2 und 3	17
1.1.5.	Morphologie, molekularer Aufbau und Funktion von Adherens junctions	21
1.1.5.1.	Das Adherens junction Protein α-Catenin	21
1.2.	Das Coiled Coil-Interaktionsmotiv	22
1.3.	Homologiemodelle	25
1.3.1.	Voraussetzungen für die Generierung von homologen Strukturmodellen	25
1.3.2.	Experimentelle Strukturvorlagen	26
1.4.	Zielstellung der Arbeit	27
2.Mat	erial und Methoden	28
2.1.	Molekularbiologische Methoden	28
2.1.1.	Herstellen der Konstrukte von Occludin, ZO-1 und α-Catenin	28
2.1.1.1.	Herstellung der Occludinkonstrukte	28
	Herstellung der ZO-1-Konstrukte	29
	Herstellung der α-Cateninkonstrukte	31
	Herstellung sonstiger Konstrukte mit der QuickChange®-Methode	32
2.1.2.	Expression und Reinigung der Proteine	33
	Reinigung der MRP-Fusionsproteine	33

Inhaltsverzeichnis	V
--------------------	---

2.1.2.2.	Reinigung der GST-Fusionsproteine	34
2.1.2.3.	Herstellung und Reinigung des selenomethioninhaltigen Occludins für die	
	Kristallisation	35
2.1.3.	Abtrennung des MBP vom Occludin für biophysikalische Untersuchungen	35
2.1.4.	SDS-Polyacrylamid-Gelelektrophorese, Coomassiefärbung und	
	Proteinkonzentrationsbestimmung	38
2.2.	Messungen der Protein-Protein-Interaktionen mit Oberflächen-	
	plasmonresonanzspektroskopie	38
2.2.1.	Suche nach einer verbesserten Regenerationslösung für die SPR-Messungen	40
2.2.2.	Auswertung der SPR-Messergebnisse	44
2.3.	Identifikation von an der Occludin/ZO1- bzw.	
	α-Catenin/ZO-1-Bindung beteiligter Peptidepitope	46
2.3.1.	Synthese der Peptide auf Membranen	46
2.3.2.	Herstellung von Tetramethylrhodamin-gekoppelten Peptiden	
	und ihre Bindung an Peptidmembranen	46
2.3.3.	Bindung von GST-Fusionsproteinen an Peptidmembranen	47
	Generierung der Homologiemodelle und verwendete	
		48
2.4.	Generierung der Homologiemodelle und verwendete	48 48
2.4.2.4.1.	Generierung der Homologiemodelle und verwendete bioinformatische Methoden	
2.4.2.4.1.2.4.2.	Generierung der Homologiemodelle und verwendete bioinformatische Methoden Sequenzvergleiche und Sequenzanalysen	48
 2.4. 2.4.1. 2.4.2. 2.5. 	Generierung der Homologiemodelle und verwendete bioinformatische Methoden Sequenzvergleiche und Sequenzanalysen Das Erzeugen der Homologiemodelle	48 49
2.4.2.4.1.2.4.2.2.5.2.5.1.	Generierung der Homologiemodelle und verwendete bioinformatische Methoden Sequenzvergleiche und Sequenzanalysen Das Erzeugen der Homologiemodelle Untersuchung von Occludin mit biophysikalischen Methoden	48 49 53
2.4.1. 2.4.2. 2.5. 2.5.1. 2.5.2.	Generierung der Homologiemodelle und verwendete bioinformatische Methoden Sequenzvergleiche und Sequenzanalysen Das Erzeugen der Homologiemodelle Untersuchung von Occludin mit biophysikalischen Methoden Analytische Größenausschlusschromatographie von Occludin	48 49 53 53
2.4.1. 2.4.2. 2.5. 2.5.1. 2.5.2. 2.5.3.	Generierung der Homologiemodelle und verwendete bioinformatische Methoden Sequenzvergleiche und Sequenzanalysen Das Erzeugen der Homologiemodelle Untersuchung von Occludin mit biophysikalischen Methoden Analytische Größenausschlusschromatographie von Occludin Massenspektroskopie von Occludin	48 49 53 53
2.4.1. 2.4.2. 2.5. 2.5.1. 2.5.2. 2.5.3. 2.5.4.	Generierung der Homologiemodelle und verwendete bioinformatische Methoden Sequenzvergleiche und Sequenzanalysen Das Erzeugen der Homologiemodelle Untersuchung von Occludin mit biophysikalischen Methoden Analytische Größenausschlusschromatographie von Occludin Massenspektroskopie von Occludin Kristallisation von Occludin	48 49 53 53 53 54
2.4.1. 2.4.2. 2.5.1. 2.5.2. 2.5.3. 2.5.4. 2.5.5.	Generierung der Homologiemodelle und verwendete bioinformatische Methoden Sequenzvergleiche und Sequenzanalysen Das Erzeugen der Homologiemodelle Untersuchung von Occludin mit biophysikalischen Methoden Analytische Größenausschlusschromatographie von Occludin Massenspektroskopie von Occludin Kristallisation von Occludin Circulardichroismus-Spektroskopie	48 49 53 53 53 54
2.4.1. 2.4.2. 2.5.1. 2.5.2. 2.5.3. 2.5.4. 2.5.5.	Generierung der Homologiemodelle und verwendete bioinformatische Methoden Sequenzvergleiche und Sequenzanalysen Das Erzeugen der Homologiemodelle Untersuchung von Occludin mit biophysikalischen Methoden Analytische Größenausschlusschromatographie von Occludin Massenspektroskopie von Occludin Kristallisation von Occludin Circulardichroismus-Spektroskopie Dynamische und statische Lichtstreuung zur Bestimmung des	48 49 53 53 53 54 54
2.4.1. 2.4.2. 2.5.1. 2.5.2. 2.5.3. 2.5.4. 2.5.5. 2.5.6.	Generierung der Homologiemodelle und verwendete bioinformatische Methoden Sequenzvergleiche und Sequenzanalysen Das Erzeugen der Homologiemodelle Untersuchung von Occludin mit biophysikalischen Methoden Analytische Größenausschlusschromatographie von Occludin Massenspektroskopie von Occludin Kristallisation von Occludin Circulardichroismus-Spektroskopie Dynamische und statische Lichtstreuung zur Bestimmung des Oligomerisierungsgrades von Occludin	48 49 53 53 53 54 54
2.4.1. 2.4.2. 2.5.1. 2.5.2. 2.5.3. 2.5.4. 2.5.5. 2.5.6. 2.5.7.	Generierung der Homologiemodelle und verwendete bioinformatische Methoden Sequenzvergleiche und Sequenzanalysen Das Erzeugen der Homologiemodelle Untersuchung von Occludin mit biophysikalischen Methoden Analytische Größenausschlusschromatographie von Occludin Massenspektroskopie von Occludin Kristallisation von Occludin Circulardichroismus-Spektroskopie Dynamische und statische Lichtstreuung zur Bestimmung des Oligomerisierungsgrades von Occludin Analytische Ultrazentrifugation von Occludin	48 49 53 53 53 54 54 55
2.4.1. 2.4.2. 2.5.1. 2.5.2. 2.5.3. 2.5.4. 2.5.5. 2.5.6. 2.5.7. 2.5.8.	Generierung der Homologiemodelle und verwendete bioinformatische Methoden Sequenzvergleiche und Sequenzanalysen Das Erzeugen der Homologiemodelle Untersuchung von Occludin mit biophysikalischen Methoden Analytische Größenausschlusschromatographie von Occludin Massenspektroskopie von Occludin Kristallisation von Occludin Circulardichroismus-Spektroskopie Dynamische und statische Lichtstreuung zur Bestimmung des Oligomerisierungsgrades von Occludin Analytische Ultrazentrifugation von Occludin Elektronenmikroskopie von Occludin	48 49 53 53 53 54 54 55 55

<u>Inhaltsverzeichnis</u> VII

<u> 3. Er</u>	gebnisse	<u>58</u>
3.1.	Bioinformatische Analyse der Proteine	58
3.1.1.	Bioinformatische Analyse von Occludin	58
3.1.2.	Bioinformatische Analyse von α-Catenin	61
3.1.3.	Bioinformatische Analyse von ZO-1	62
3.1.4.	Zusammenfassung der bioinformatischen Untersuchungen von Occludin,	
	α-Catenin und ZO-1	67
3.2.	Monomere Homologiemodelle von Occludin, α-Catenin und ZO-1	69
3.2.1.	Monomermodell von Occludin	69
3.2.2.	Strukturen und Monomermodelle von α-Catenin	71
3.2.3.	ZO-1-Monomermodell	72
3.2.4.	Schlussfolgerungen aus den Monomermodellen für die Interaktion	
	von Occludin/ZO-1 und α-Catenin/ZO-1	74
3.2.5.	Zusammenfassung der Ergebnisse und Schlussfolgerungen aus den	
	monomeren Homologiemodellen von Occludin, α-Catenin und ZO-1	77
3.3.	Studieren der Proteinbindungen mit	
	Oberflächenplasmonresonanzspektroskopie	77
3.3.1.	Untersuchung der ZO-1/Occludin-Interaktion	77
3.3.2.	ZO-1-Bindung an verschiedene α-Cateninkonstrukte	82
3.3.3.	Untersuchungen zu Homoassoziation verschiedener ZO-1-Konstrukte	83
3.3.4.	Eine Mischung von Occludin/ZO-1 in Lösung verringert die	
	ZO-1-Bindung an immobilisiertes Occludin bzw. α -Catenin	86
3.3.5.	Zusammenfassung der SPR-Ergebnisse	88
3.4.	Analyse der Bindungsepitope in ZO-1, Occludin und α-Catenin	88
3.4.1.	ZO-1-Peptide binden ähnliche Epitope in Occludin und α -Catenin	88
3.4.2.	Occludin und α-Catenin erkennen gleiche Epitope in ZO-1	93
3.4.3.	Einfluss von Phosphorylierung der ZO-1-Hingeregion auf die	
	Occludinbindung untersucht mit Peptidinteraktionen	94
3.4.4.	Zusammenfassung der Peptidbindungsergebnisse	95
3.5.	Hinweis auf Dimerisierung von Occludin durch	
	biophysikalische Untersuchungen	96
3.5.1.	Analytische Größenausschlusschromatographie von Occludin	96
3.5.2.	Massenspektroskopie von Occludin	97

Inhalt	sverzeichnis	VII
3.5.3.	Kristallisation von Occludin	98
3.5.4.	Circulardichroismus-Spektroskopie	100
3.5.5.	Dynamische und statische Lichtstreuung zur Bestimmung des	
	Oligomerisierungsgrades von Occludin	101
3.5.6.	Analytische Ultrazentrifugation vom Occludin	104
3.5.7.	Elektronenmikroskopie von Occludin	105
3.5.8.	Quervernetzung von Occludin	106
3.5.9.	Temperaturstabilität von Occludin ₄₀₆₋₅₂₁	107
3.6.	Dimere Homologiemodelle von Occludin und ZO-1	108
3.6.1.	Dimermodelle von Occludin	108
3.6.2.	ZO-1-Dimermodelle	110
3.6.3.	Zusammenfassung der biophysikalischen Untersuchungen und der	
	Vergleich mit den Dimermodellen	112
4. Di	skussion	114
4.1.	Vor- und Nachteile der verwendeten Methoden sowie	
	Aussagekraft der Resultate	114
4.2.	Identifizierung der Bindungsepitope von α-Catenin, Occludin und ZO-1	117
4.3.	Die Bedeutung der Hingeregion für MAGUK-Proteine und der	
	Einfluss von Phosphorylierungen	119
4.4.	Vergleich der Bindungsexperimente Occludin/ZO-1 und α-Catenin/ZO-1	121
4.5.	Monomermodelle von α-Catenin ₅₀₉₋₆₃₀ /ZO-1 ₅₁₈₋₈₀₆ und	
	Occludin ₄₀₀₋₅₂₁ /ZO-1 ₅₁₈₋₈₀₆ zeigen keine komplementären	
	Interaktionsmuster	123
4.6.	Komplementäre Interaktion der Dimermodelle von	120
1.0.	Occludin ₄₀₀₋₅₂₁ /ZO-1 ₅₁₈₋₈₀₆ sowie der Monomermodelle von	
	α -Catenin ₆₈₅₋₈₅₅ /ZO-1 ₅₁₈₋₈₀₆	124
4.7.		127
4./.	Analyse des vorgeschlagenen Interaktionsmodells von Occludin	
	und ZO-1 und Vorstellung eines Oligomerisierungsmodells	100
	für ZO-1 mit Adaptorfunktion des Occludins	126

Inhaltsverzeichnis	IX
5. Zusammenfassung	132
6. Literaturverzeichnis	135
7. Anhang	148
7.1. Weitere Alignments	148
7.2. Schema zum Verständnis der Peptidmappingexperimente	156
7.3. Abstract	157
Lebenslauf	158
Selbständigkeitserklärung	161

Abbildungsverzeichnis

1. Einlei	<u>tung</u>	
Abb. 1.1.	Schema der Zellstrukturen des Zellkontaktbereichs	
	(junctional complex) von Epithel- und Endothelzellen	3
Abb. 1.2.	Querschnittsansicht von Tight junctions zwischen zwei Zellen	(
Abb. 1.3.	Gefrierbruchdarstellung von Tight junctions aus MDCK-Zellen	(
Abb. 1.4.	Schema der wichtigsten Proteine in Tight junctions und	
	Adherens junctions	9
Abb. 1.5.	Schema des transmembranalen TJ-Proteins Occludin	12
Abb. 1.6.	Allgemeines Schema der TJ-Proteinfamilie der Claudine	15
Abb. 1.7.	Schema der Bindungsregionen von ZO-1	18
Abb. 1.8.	Schema von α -Catenin mit identifizierten Proteinbindungsbereichen	22
Abb. 1.9.	Schema zum Prinzip der CC-Wechselwirkung	23
Abb. 1.10	Beziehung zwischen dem Anteil identischer Aminosäurereste	
	(Sequenzidentität) und der Länge der verglichenen Sequenzen	25
2. Meth	oden	
Abb. 2.1.	Acrylamid-Gel der proteinhaltigen Fraktionen 24-34 der	
	Größenausschlusschromatographie von MBP und Occludin ₄₀₆₋₅₂₁	36
Abb. 2.2.	Trennung von MBP und Occludin ₄₀₆₋₅₂₁ durch Dialyse und	
	Affinitätschromatographie	37
Abb. 2.3.	Prinzip der SPR-Spektroskopie	39
Abb. 2.4.	Schema eines SPR-Sensorgramms mit Darstellung	
	des Regenerationseffektes verschiedener Lösungen	42
3. Ergel		
Abb. 3.1.	Alignment des gesamten C-terminalen zytosolischen Bereichs	
	von Occludin von acht verschiedenen Arten	59
Abb. 3.2.	Alignment von Maus-Occludin ₄₀₀₋₅₂₁ mit den gefundenen	
	Strukturvorlagen aus der PDB	60
Abb. 3.3.	Analyse von Maus-α-Catenin mit den vinculinhomologen	
	Regionen VH1-3	61
Abb. 3.4.	Domänenstruktur von ZO-1 mit Lage der vorhergesagten	
	CC-Elemente und Liste bekannter Kristallstrukturen	64

Abb. 3.5.	Überlagerung von drei homologen GUK-Strukturen	65
Abb. 3.6.	Proteinrückradansicht der SH3-GUK-Struktur von PSD-95	66
Abb. 3.7.	Sequenzvergleich von Maus-ZO-1 ₅₁₈₋₈₁₂ mit der gefundenen	
	Strukturvorlage aus der PDB	67
Abb.3.8.	Sequenzvergleich von ZO-1 ₅₁₈₋₈₁₂ mit der Strukturvorlage 1KJW	
	und weiteren PDB-Strukturen	68
Abb. 3.9.	Schema des Occludinmonomermodells mit farblicher Kennzeichnung	
	der Herkunft der für die Modellierung wichtigen Bereiche	70
Abb. 3.10	Darstellung des Occludinmonomermodells	71
Abb. 3.11	Darstellung der Kristallstruktur α-Catenin ₅₀₉₋₆₃₀ und von	
	einem Modell der VH3-Region von α-Catenin ₆₈₅₋₈₅₅	72
Abb. 3.12	Ausschnitte aus dem Sequenzvergleich in Abb. 3.7. von ZO-1	
	mit PSD-95 zusätzlichen Fragmentstrukturvorlagen	
	für die Konstruktion der Hingeregion	73
Abb. 3.13	Darstellung des ZO-1-Monomermodells der SH3-Hinge-GUK-Einheit	74
Abb. 3.14	Maßstabsgetreue Gegenüberstellung der Monomer-Architekturmodelle	
	von Maus-Occludin ₄₀₀₋₅₂₁ und der SH3-Hinge-GUK-Einheit von	
	Maus-ZO-1 ₅₁₈₋₈₀₆	75
Abb. 3.15	Maßstabsgetreue Gegenüberstellung der Kristallstruktur	
	$\alpha\text{-}Catenin_{509\text{-}630},$ sowie von Monomer-Architekturmodellen der	
	VH3-Region von α -Catenin ₆₈₅₋₈₅₅ und der SH3-Hinge-GUK-Einheit	
	von ZO-1 ₅₁₈₋₈₀₆	76
Abb. 3.16	Schematische Darstellung der verwendeten Occludinkonstrukte	78
Abb. 3.17	Relative Occludinbindung verschiedener ZO-1-Konstrukte	80
Abb. 3.18	SPR-Bindungskurven verschiedener Konzentrationen von	
	ZO-1 ₅₈₉₋₈₁₂ an Occludin ₄₀₆₋₅₂₁	81
Abb. 3.19	Gegenüberstellung der Bindungsmessungen von ZO-1 an	
	Occludin $_{406\text{-}521}$ und drei verschiedene α -Cateninkonstrukte	82
Abb. 3.20	Homoassoziationen verschiedener ZO-1-GUK-Fragmente	
	untereinander und zum Vergleich mit Occludin ₄₃₄₋₅₂₁	84
Abb. 3.21	Kompetitionsstudie mit immobilisiertem Occludin ₄₀₆₋₅₂₁ und	
	$\alpha\text{-}Catenin_{509\text{-}906}$ mit ZO- $1_{502\text{-}803}$ als Analyt, jeweils unmittelbar	
	vor der Messung mit Occludin ₄₀₆₋₅₂₁ gemischt	87
Abb. 3.22	Schema der durchgeführten Peptidmembranexperimente	89

Abb. 3.23	Bindung der Peptide ZO-1 ₅₉₇₋₆₃₃ und ZO-1 ₇₄₅₋₇₇₂ an punktförmig	
	membrangekoppelte Peptide aus Occludin ₄₀₀₋₅₂₁	90
Abb. 3.24	Bindung der Peptide ZO-1 ₅₉₇₋₆₃₃ ZO-1 ₇₄₅₋₇₇₂ , und ZO-1 ₇₂₉₋₇₄₃ an	
	punktförmig membrangekoppelte Peptide aus α-Catenin ₅₀₉₋₉₀₆	91
Abb. 3.25	Bestimmung der Occludin- und α-Cateninbindungsregionen in ZO-1	93
Abb. 3.26	Bindung von GST-Occludin ₄₀₆₋₅₂₁ an Peptidmembranen aus	
	der Hingeregion von ZO-1 mit Mutationen, die eine	
	Serinphosphorylierung simulieren	94
Abb. 3.27	. Größenausschlusschromatographie von MBP-freiem Occludin ₄₀₆₋₅₂₁	97
Abb. 3.28	. MALDI-MS von MBP-freiem Occludin ₄₀₆₋₅₂₁	98
Abb. 3.29	. Proteinkristalle von Occludin ₄₀₆₋₅₂₁	99
Abb. 3.30	. Massenspektroskopische Analyse des Selenomethioninderivats	
	von Occludin ₄₀₆₋₅₂₁	99
Abb. 3.31	CD-Spektroskopie von Occludin ₄₀₆₋₅₂₁ und dem H2-Peptid ZO-1 ₇₄₅₋₇₇₂	100
Abb. 3.32	. Messungen zum Oligomerisierungsgrad durch DLS	101
Abb. 3.33	Analytische Ultrazentrifugation Occludin ₄₀₆₋₅₂₁	104
Abb. 3.34	Elektronenmikroskopische Aufnahme von Occludin ₄₀₆₋₅₂₁	105
Abb. 3.35	Chemische Vernetzung von Occludin ₄₀₆₋₅₂₁ , MBP-Occludin ₄₀₆₋₅₂₁	
	und MBP mit Paraformaldehyd und Disuccimidylsuberat	106
Abb. 3.36	. Untersuchungen zur Temperaturstabilität von Occludin ₄₀₆₋₅₂₁	107
Abb. 3.37	Paralleles Dimermodell von Occludin ₄₀₀₋₅₂₁	108
Abb. 3.38	Antiparalleles Dimermodell von Occludin ₄₀₀₋₅₂₁	109
Abb. 3.39	Vorstellung wie zwei ZO-1-Monomermodelle zu einem	
	Dimermodell zusammengesetzt werden	111
Abb. 3.40	Dimermodell von ZO-1 ₅₁₈₋₈₀₆	112
Abb. 3.41	. Architektonische/strukturelle Dimermodelle von Occludin-C-Terminus	
	und der ZO-1-SH3-Hinge-GUK-Einheit in gleichem Maßstab	113
4 54 5		
4. Disku		—
	Grundprinzipien des <i>Domainswappings</i> mit beobachteten Varianten	127
Abb. 4.2.	Modellvorstellung, wie Occludin mit dem SH3-GUK-Bereich von	
	ZO-1 interagieren könnte, um lange TJ-Stränge zu erzeugen	128
Abb. 4.3.	Offenes Dimermodell von ZO-1 ₅₁₈₋₈₀₆ mit Domänenaustausch	129

<u>Tabellenverzeichnis</u> XIII

Tabellenverzeichnis

CC1, H1 und H2

Tabelle 3.9. Ergebnisse der Lichtstreuungsexperimente

1. Einleitung	—
Tabelle 1.1. Zusammenfassung der wichtigsten Proteine in den Bestandteilen	
des Zellkontaktbereichs.	
2.Methoden	
Tabelle 2.1. Verwendete Primersequenzen für Occludinkonstrukte	2
Tabelle 2.2. Verwendete Primersequenzen für ZO-1-Konstrukte	3
Tabelle 2.3. Verwendete Primersequenzen für α -Cateninkonstrukte	3
Tabelle 2.4. Verwendete Primersequenzen für QuickChange®-Mutagenesen	3
Tabelle 2.5. Für die Suche nach einem besseren Regenerationsmittel	
des SPR-Chips verwendete Ausgangslösungen	4
Tabelle 2.6. Regenerationseffizienz verschiedener Regenerationslösungen	4
Tabelle 2.7. Regenerationseffizienz von Mischungen der besten	
drei Einzellösungen von Tabelle 2.6.	4
3. Ergebnisse	
Tabelle 3.1. Vergleich der verschiedenen CC-Vorhersagen in Maus-Occludin	6
Tabelle 3.2. Vergleich der verschiedenen CC-Vorhersagen in Maus- α -Catenin	6
Tabelle 3.3. Vergleich der verschiedenen CC-Vorhersagen in Maus-ZO-1	ϵ
Tabelle 3.4. Vergleich der Sequenzidentitäten und -ähnlichkeiten	
zwischen Occludin und PDB-Strukturvorlagen	6
Tabelle 3.5. Vergleich der Sequenzidentitäten und -ähnlichkeiten	
zwischen ZO-1 und PDB-Strukturvorlagen	7
Tabelle 3.6. Normierte Bindungsresultate (Occludin ₄₀₆₋₅₂₁ als 100%) von	
ZO-1-Konstrukten an verschiedene immobilisierte Occludinsequenzen	7
Tabelle 3.7. Vergleich der Bindungsresultate von ZO-1-Konstrukten (in fmol) an	
immobilisiertes Occludin $_{406\text{-}521}$, α -Catenin $_{509\text{-}906}$ und ZO- $1_{502\text{-}812}$	8
Tabelle 3.8. Analyse der Aminosäurezusammensetzung der ZO-1-Peptide	

92

102