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Summary 

Sulfotransferases (SULTs) are among the predominant enzyme families of phase II metabolism. 

They transform endogenous molecules and environmental substances, such as drugs, into more 

hydrophilic entities serving detoxification. This transformation has also been associated with the 

formation of chemically reactive metabolites interacting with DNA. SULT subtype 1E1 

(SULT1E1) shows high affinity towards estrogenic compounds and is involved in the regulation 

of endogenous estrogens such as estradiol. On the other hand, this enzyme can be strongly 

inhibited by environmental estrogens and endocrine disrupting compounds which deregulates 

metabolism reactions in the human body. The aim of the present study was to develop an in silico 

model for the prediction of SULT1E1 ligands, which allows identification of substrates and 

inhibitors to facilitate drug design and support risk assessment. 

 

All available crystal structures of SULT1E1 were analysed and compared to other major SULT 

subtypes to elucidate structural descriptors that influence ligand binding and substrate 

specificity. Findings from this structural investigation provided essential clues for subsequent 

prediction model development. In order to create a computer-based model for SULT1E1 ligand 

prediction, a specific workflow was designed using a combination of different in silico techniques. 

MD simulations were performed to investigate enzyme flexibility contributing to the broad 

substrate spectra of metabolic enzymes and to sample the conformational space. Diversity 

clustering of the trajectories produced an ensemble of protein conformations whose ligand 

binding sites differed from the original SULT1E1 crystal structure. In an ensemble docking 

approach, these protein conformations were combined with a ligand database of active SULT1E1 

ligands, consisting of substrates, inhibitors, and concentration-dependent ligands (CDLs), to 

generate ligand-target complexes and to investigate their interaction patterns. The ensemble 

docking results were statistically and visually analysed based on 3D pharmacophore feature 

formation. Guided by statistical analysis of docking experiments, a selection of ligand-target 

complexes was chosen as a basis for 3D pharmacophore development. Eight specific 3D 

pharmacophores were developed that allow identification of diverse ligand classes (different 

activities and scaffolds) and types (substrates, inhibitors) of SULT1E1. The validated 3D 

pharmacophore ensemble showed a sensitivity of 60 % and a specificity of 98 %. For further 

refinement of the pharmacophore-based prediction of hit molecules, a substrate-filter and two 

classification models based on support vector machines (SVM) were created. The validated SVM 

models for inhibitor and substrate classification showed accuracies of 85 % and 91 %, respectively. 



II 
 

 

In order to estimate the impact of SULT1E1 metabolism on current drugs, the final prediction 

model was applied to the DrugBank (a database comprising about 6,500 experimental and 

approved drugs) for virtual screening. From the 68 hit molecules, 28 % were identified as active 

SULT1E1 ligands through literature search. A selection of nine compounds was chosen for 

experimental validation including enzyme assays for inhibition and sulfonation. The 

experimental results confirmed the computer-based hypotheses and revealed previously 

unknown involvement of compounds listed in the DrugBank in biotransformation or inhibition 

of SULT1E1. 

 

The resulting prediction model of SULT1E1 could serve as an efficient in silico tool in early drug 

development for improved virtual screening of large databases and to provide structural alerts 

correlated with phase II metabolism during lead optimization. Furthermore, it potentially 

supports risk assessment of developed compounds in the pharmaceutical, nutritional, and 

cosmetic industry that bear the risk of being transformed into chemically reactive compounds 

damaging cellular DNA. 
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Zusammenfassung 

Sulfotransferasen (SULTs) gehören zu den wichtigsten Enzymfamilien des Phase II 

Metabolismus. Mit ihrer Hilfe werden Xenobiotika in wasserlöslichere Zwischenprodukte 

umgewandelt, um schneller ausgeschieden werden zu können. SULT-katalysierte Reaktionen 

können jedoch auch zur Entstehung cancerogener Metaboliten führen. SULT Subtyp 1E1 

(SULT1E1) weist Substratspezifität gegenüber Estrogenen auf und spielt daher eine wichtige 

Rolle in der Hormonregulation. Zudem kann das Enzym durch Estrogene und Endokrine 

Disruptoren stark inhibiert werden. Das Ziel dieser Studie war daher die Entwicklung eines 

computergestützten Modells zur Vorhersage von SULT1E1-Liganden welches die Identifizierung 

von Substraten und Inhibitoren erlaubt. 

 

Verfügbare Kristallstrukturen der SULT1E1 wurden analysiert und mit anderen SULT-Subtypen 

verglichen. Dies diente der Identifizierung von Merkmalen, welche die Substratspezifität 

beeinflussen und welche zur Entwicklung eines Vorhersagemodells eingesetzt werden können. 

Zur Erstellung des Modells wurde eine Sequenz von Methoden entwickelt und implementiert, 

die das breite Substratspektrum metabolischer Enzyme berücksichtigt. Im ersten Schritt wurden 

Moleküldynamiken des Enzyms in An- und Abwesenheit des Kofaktors simuliert. Auf Basis der 

Molekültrajektorien wurden Proteinkonformationen extrahiert, welche eine besonders diverse 

Ligandenbindestelle aufwiesen. Im nächsten Schritt wurden aktive Liganden der SULT1E1 

(Inhibitoren, Substrate und Konzentrations-abhängige Liganden (CDLs)) in das Ensemble von 

Proteinen gedockt. Die daraus resultierenden Protein-Ligand Komplexe wurde statistisch und 

visuell unter Berücksichtigung von 3D Pharmakophordeskriptoren ausgewertet. Auf Grundlage 

dieser Analyse wurden acht spezifische 3D Pharmakophore erstellt, welche in der Lage sind 

SULT1E1-Liganden zu identifizieren. Die validierten 3D Pharmakophore weisen eine Sensitivität 

von 60 % und eine Spezifität von 98 % auf. Zur Optimierung der Pharmakophor-basierten 

Vorhersage wurden ein Substratfilter und zwei Klassifizierungsmodelle basierend auf Support 

Vector Machines (SVM) entwickelt. Die validierten SVM Modelle zur Inhibitor- und Substrat-

Identifizierung weisen eine Genauigkeit von 85 % und 91 % auf.  

 

Das finale Vorhersagemodell für SULT1E1-Liganden wurde durch virtuelles Screening der 

DrugBank-Datenbank getestet, um das Ausmaß an SULT-Metabolismus an derzeitig erhältlichen 

oder in der Entwicklung stehenden Medikamenten zu untersuchen. Von etwa 6.500 gelisteten 

Molekülen in der Datenbank wurde 68 als aktive SULT1E1-Liganden identifiziert. Davon waren 
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28 % bereits in der Literatur bekannt. Neun der restlichen Substanzen wurden zur 

experimentellen Testung ausgewählt in der sowohl die Bestimmung von Inhibitoren als auch 

Substraten berücksichtigt wurde. Die experimentellen Ergebnisse standen im Einklang mit der 

computer-basierten Vorhersage und führten zur Identifizierung von Substanzen welche zuvor 

nicht mit SULT1E1-Aktivität in Verbindung gebracht wurden.  

 

Das hier entwickelte computerbasierte Vorhersagemodell des Enzyms SULT1E1 kann in frühen 

Phasen der Arzneistoffentwicklung eingesetzt werden, um potenziell metabolisch toxische 

Substanzen zu identifizieren. Desweiteren unterstützt das Modell die Risikobewertung bereits 

vermarkteter Substanzen der Pharma-, Ernährungs- und Kosmetikindustrie.   
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1. INTRODUCTION 

1.1. Human metabolism 
 

Metabolism (from Greek: μεταβολή metabolē, “change”) is defined as “the entire physical and 

chemical processes involved in the maintenance and reproduction of life in which nutrients are broken down 

to generate energy (...). In medicinal chemistry the term metabolism refers to the biotransformation of 

xenobiotics and particularly drugs.”, according to the International Union of Pure and Applied 

Chemistry (IUPAC) 1. Historically, along with the birth of organic chemistry marked by the work 

of German chemist Friedrich Wöhler (1800 - 1882), the occurrence of biotransformation in the 

human body has already been discovered during the early 19th century2. Almost two hundred 

years ago, discoveries on metabolic transformations were mostly made through rudimentary in 

vivo experimentation. Often, chemicals were administered to volunteers (frequently the 

experimentalists themselves) or animals such as cats and dogs, and the excreted fluids were 

assessed regarding potential chemical alterations of the administered substances. Fuelled by 

advances in charcoal and oil industries, progress in analytical methods and organic chemistry 

slowly improved the studies on human metabolism3. 

At the dawn of metabolism studies, the work of Alexander Ure (1810 - 1866) laid the foundation 

for researchers such as physician Otto Schultzen (1837 - 1875) and pathologist Bernhard Naunyn 

(1839 - 1925) who discovered oxidation4. In their studies on stomach fermentation, the researchers 

found benzene to be oxidized to phenol after administering the substance to patients5. Working 

in the same clinical laboratories in Berlin, Wilhelm Marceli Nencki (1847 – 1901) following the 

work of O. Schultzen and B. Naunyn wrote his dissertation on oxidation reactions in animals and 

laid the basis for metabolism research, stating “By studying the metabolic fate of chemical substances, 

one will on the one hand be able to establish laws allowing predictions on the fate of new compounds, and 

on the other hand gain increasing insight into the organism as a “chemical agent.”5. Quickly after the 

discovery of oxidation, the metabolic reaction of sulfate conjugation was discovered by Eugen 

Baumann (1846 – 1896) who was able to show that many administered substances, such as phenol, 

aniline or indole, are transformed into sulfated metabolites, which can be detected in the urine6. 

The period of 1840 to 1900 brought forth a great number of individual studies on metabolic 

reactions occurring in humans and animals7, leading to the discovery of glucuronidation, 

methylation, acetylation, and reduction of endo- or exogenous compounds by European 

scientists. Advancements in organic syntheses and research on chemical substances, specifically 

drugs, and their physiological interactions with the human body further stimulated research on 
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drug metabolism. A famous example for early discoveries in drug metabolism is the story of 

Prontosil – a drug for treatment of bacterial infections – which was discovered by researchers 

from Bayer Laboratories of IG Farben in Germany in 1932. Three years later, scientists at the 

Pasteur Institute in France showed that Prontosil itself was inactive, but identified 

sulphanilamide to be the active metabolite of Prontosil (through azo reduction by bacterial 

enzymes in intestines)8. German scientist Gerhard Domagk (1895 - 1964), who was among these 

researchers, was awarded the Nobel Prize in Medicine in 1939 for “the discovery of the antibacterial 

effects of prontosil”9. This new awareness of the importance of metabolic reactions for substances 

such as drugs inspired researchers to further investigate metabolic reactions. During the late 

1930s, Welsh biochemist Richard T. Williams (1909 - 1979) wrote a book on the “detoxication” of 

foreign substances (published in 1947 due to the occurrence of World War II), which laid the basis 

for his major publication in 1959 titled “Detoxication Mechanisms”10. In this work, Williams 

proposed the idea of dividing metabolism into two distinct phases, phase I, including oxidations, 

reductions, and hydrolyses, and phase II, including subsequent conjugation reactions. 

Originating from this work, the denotations of phase I and phase II metabolism found their way 

into our current terminology. 

Although many metabolic reactions were already identified during the 19th century, the origin of 

these metabolic reactions was still unclear. While during that time, blood was considered the 

main place of metabolism, new techniques for tissue preparation developed in the early 20th 

century suggested the liver as a key player in metabolism. It was not until French chemist Louis 

Pasteur (1822 - 1895) discovered the process of fermentation being caused by the action of living 

organisms, that German physiologist Wilhelm F. Kühne (1837 – 1900) (also known for the 

discovery of the protein trypsin) used the term „enzyme“ to describe the process of fermentation 

in 187711. In 1897, German chemist Eduard Buechner (1860 - 1917) identified the enzyme 

“zymase” extracted from yeast solutions as initiator of metabolic reactions12. Nowadays, many 

enzymes are named following his example of using the suffix “-ase”. The discovery that purified 

proteins can be enzymes themselves (in contrast to the at the time existing hypothesis of proteins 

being carriers of enzymes) was later awarded with the Novel Prize in Chemistry in 194613,14. Due 

to World Wars I and II, the centre of metabolism research spread out throughout Europe and 

North America7. A great overview on the history of drug metabolism research in the US is given 

in by Patrick J. Murphy in his centennial trilogy covering the range of 1909 to 200815-17, while a 

general, comprehensive history of drug metabolism for the 19th and the first half of the 20th 

century is reviewed by Marcel H. Bickel5,18. Since the 1950s, novel bioanalytical and chemical 

methods, such as chromatography, isotope-tracer methods or spectrophotometry allowed 
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metabolite detection and fuelled enzymatic studies. In the late 1950s, the cytochrome P450 (CYP) 

enzyme family was characterized as a major player in phase I metabolism7,19. From the 1980s on, 

new techniques allowed enzyme cloning, purification, and protein crystallisation via x-ray 

crystallography, and metabolite detection was further facilitated by mass spectrometry and 

nuclear magnetic resonance (NMR) methodologies7. Today, metabolism is studied using modern 

biotechnology and advanced analytical instrumentation in high-throughput modes often coupled 

with in silico studies that allow guidance of experimentation on multiple levels ranging from 

whole organisms, over organs and tissues, down to the enzymatic or even molecular level. 

 

In general, metabolism itself is considered to be part of pharmacokinetics, i.e. the study of time- 

dependent changes of drug concentrations in different regions of the body during and after drug 

administration, and is a crucial factor during drug development. Pharmacokinetics is commonly 

divided into the phases of administration, distribution, metabolism, and excretion (ADME). The 

administration (the passage of a drug into the plasma) most commonly takes place orally due to 

convenience and (patient) compliance. Orally ingested drugs are taken up through the 

gastrointestinal epithelium/mucosa. This uptake depends on drug ionization and lipophilicity 

(physicochemical properties), gastrointestinal motility, splanchnic blood flow, as well as particle 

size and formulation. The bioavailability of a drug indicates the intact drug fraction of the 

administered dosage that reaches the plasma after absorption and local metabolic degradation by 

enzymes. Another factor that influences the pharmacokinetics of a drug is its binding to plasma 

proteins, such as albumin, which reduces concentrations of free drug. Often, orally absorbed 

drugs or other xenobiotics taken up through food or the environment are already extensively 

metabolised in the liver and/or gut wall while leaving the amount of drug reaching the systemic 

circulation relatively small. This is known as the first-pass effect or pre-systemic metabolism. 

Although the liver is the main organ serving biotransformation or detoxification, metabolism also 

takes place in other tissues of the human body, though often to a lesser extent. In general, 

biotransformation or metabolism of endo- or exogenous molecules is catalysed by metabolic 

enzymes and is commonly divided into phase I and phase II metabolism. The former process 

involves functionalization reactions of molecules in order to introduce a hydrophilic group, such 

as oxidations catalysed by CYPs and other enzyme reactions. Phase II reactions are conjugation 

reactions in which functional groups such as sulfates, acetyl, glutathione or glucuronic acid are 

transferred to a substrate molecule. These reactions often, but not exclusively, occur after 

functionalization reactions during phase I metabolism. Being introduced in 1959 by R.T. 

Williams10, the terms “phase I” and “phase II” (implying an ordered mechanism for drug 
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metabolism) are commonly used today, although this strict categorization of metabolism 

reactions has its limitations since phase II reactions might also occur without prior 

functionalization by phase I-enzymes20. Furthermore, conjugation reactions are often not the end 

of a molecule’s fate, but conjugated metabolites are required to be exported from cells (termed 

“phase III metabolism”) and could even be subject to further metabolism reactions21. Frederick P. 

Guengerich - a pioneer in the field of toxicology and CYP metabolism - and his co-workers 

describe the phase I and II classification as “clearly outmoded. Not only is it inaccurate and misleading, 

but it is chemically incoherent, grouping mechanistically unrelated reactions together and dividing related 

ones, and ignores our understanding of drug metabolizing enzymes.”21. Proposing an alternative 

approach to classify biotransformation reactions, F. P. Guengerich suggests the four categories of 

oxidations, reductions, conjugations, and nucleophilic trapping processes21. 

Historically, CYP-catalysed reactions (phase I) have gained the most attention due to their strong 

impact on many drugs (about 80 % of drugs are assumed to be substrates of CYPs22) and their 

involvement in drug-drug interactions caused by enzymatic inhibition or induction22. However, 

over the last years, the importance of phase II reactions has been stressed. Bernard Testa 

(Emeritus Professor of Medicinal Chemistry and Pharmacochemistry in Switzerland) points out 

that the relative significance of metabolism pathways should ideally be based on all metabolic 

reactions types, since about 75 % of marketed drugs are also substrates of enzymes that are not 

part of the CYP enzyme family22. In a meta-analysis, Testa et al. affirm the importance of CYP 

reactions in drug metabolism but also annotate that other reactions, such as conjugations, 

significantly contribute to drug metabolism23. Another misleading assumption is that conjugation 

reactions always serve detoxification by transforming molecules into readily excretable 

metabolites. In fact, conjugation reactions have been shown to potentially transform molecules 

into chemically reactive metabolites – a process called toxification or bioactivation24,25. In general, 

toxic metabolites are reactive intermediates (radicals, electrophiles) which may cause inhibition 

of a specific molecular target (enzyme, transporter, etc.), an alkylating attack or oxidative stress24. 

Thus, all chemical transformations that occur during metabolism serving detoxification are also 

capable of bioactivation and causing the formation of reactive intermediates. 

Given the fact that the majority of drugs is metabolised by metabolic enzymes causing reduced 

drug efficacy and that these biotransformation reactions can generate toxic metabolites provoking 

adverse events, metabolism prediction has gained increasing importance in the process of drug 

development.  

 



INTRODUCTION 

 

5 
 

1.2. Metabolism prediction in drug discovery 
 

The human body is permanently exposed to a myriad of exogenous compounds through 

pharmaceutical, nutritional, or environmental sources. Once taken up, metabolism reactions are 

catalysed by specific enzymes, which transform these molecules into metabolites with altered 

physicochemical properties. This transformation can result in molecule activation, inactivation, 

toxification, or detoxification. The subsequent biological effects range from loss or reduction in 

drug efficacy (failure of therapy), to the occurrence of drug-drug interactions via enzyme 

inhibition or induction, to toxicity and adverse drug reactions caused by reactive metabolites. 

Due to this broad spectrum of physiological effects, metabolism is an important aspect and 

should be considered during drug development to warrant appropriate pharmacokinetic profiles 

and drug safety.  

Although a multitude of different experimental assays has been developed until now, in silico 

models that allow metabolism prediction gained increasing popularity over the last decades. 

Computer-based models bear the advantage of being high-throughput processes at low costs and 

minimum time expenditure. In silico models can be useful at the early stage of drug development 

programs to retrieve, assess, and prioritize screening hits and guide lead optimization based on 

predicted structural alerts26. Further, the early indication of inappropriate metabolic profiles of 

drug candidates might generate a reduced need for in vivo (or animal) testing. Bearing the 

potential to reduce unnecessary animal testing by reducing the number of compounds that would 

fail in later stages of drug discovery campaigns, the development and application of computer-

based models is in accordance with the guiding principles of the Three Rs (3Rs) to replace, reduce, 

and refine animal testing aiming at a more ethical compound testing as proposed by Russell and 

Birch (1959)27. In 2007, the EU introduced a regulation (Registration, Evaluation, Authorisation 

and Restriction of Chemicals (REACH)), which manages production, use, and safety of chemicals 

and which explicitly encourages industry to apply in silico methods for toxicity or safety 

prediction of chemicals28. To achieve validation of a computer-based tool and approval by 

regulatory agencies, the Organisation for Economic Cooperation and Development (OECD) set 

up principles that should be followed. The general principles are “(i) the existence of a defined 

endpoint, (ii) an unambiguous algorithm, (iii) a defined domain of applicability, (iv) appropriate measures 

of goodness-of-fit, robustness and predictivity, and (v), if possible, a mechanistic interpretation”29.  

Historically, the first computational approaches of ADME prediction were reported in the 1960s 

to 1970s, starting with the work of Prof. Hansch who investigated the quantitative relationship 

between biological activity and physicochemical properties of molecules, thus laying the ground 
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for the concept of quantitative structure-activity relationship (QSAR) models30. In the 1980s and 

1990s, the parallel advancements in computational sciences and biotechnology led to an increase 

in experimental data and consequently, more sophisticated and interpretable in silico models 

were developed for ADME prediction31. The improvements in computational hard- and software 

allowing faster computation and the progress in enzyme crystallisation which supported 

structure-based molecular modelling collectively lead to increased general acceptance of 

computer-based ADME models32. During that time, Christopher A. Lipinski and co-workers 

observed a correlation between certain molecular properties and the pharmacokinetic profiles of 

chemical compounds. In 1997, they introduced Lipinski’s rule of five33, which later was 

commonly used as a guideline for estimating oral bioavailability of a chemical compound. 

According to these rules, an orally active molecule should meet the following criteria: Hydrogen 

bond donors (HBD) ≤ 5, hydrogen bond acceptors (HBA) ≤ 10, molecular weight (MW) < 500 Da, 

and an octanol-water partition coefficient (LogP) ≤ 5. Although being a rather simplistic rule, 

Lipinski’s rule of five triggered interest in fast filters for the evaluation of ADME profiles of drug 

candidates. During that period, combined efforts from high-throughput screenings, 

combinatorial chemistry, and in silico approaches accelerated the development in ADME 

prediction and stimulated interest in efficient computational models.  

Among all ADME parameters, metabolism has gained much attention during the 1990s when 

many drug candidates failed due to poor pharmacokinetic profiles, which was associated with 

CYP interaction/activity34. To date, numerous drugs have been withdrawn from the market due 

to CYP-related drug-drug interactions and metabolism-dependent formation of reactive 

metabolites34,35. Aiming at reducing the drop-out rate of drug candidates in the late stages of drug 

development, the pharmaceutical industry largely invested in ADME prediction and drug safety 

during the late 1990s. These endeavours payed off: while in 1991 about 40 % of clinical failures 

were associated with inappropriate pharmacokinetics and toxicity, ten years later, this percentage 

dropped to about 11 %36. It should be noted that toxicology, which can also be caused by 

metabolic reactions37, increased from 11 % in 1991 to about 22 % in 2000 as reason for clinical drug 

failure36. 

Up to now, numerous approaches on in silico metabolism prediction have been reported of which 

some are provided as online platforms or (free or commercial) software38,39. These tools focus on 

one or more specific prediction endpoints such as the determination of metabolic stability, the 

identification of (reactive/toxic) metabolites, sites of metabolism (SOM), regioselectivity, target 

(e.g. enzyme) interaction, and type of target interaction (inhibition, induction, antagonism) 

(Figure 1).  
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Figure 1. Overview on different prediction endpoints and the three pillars of science supporting metabolism 

studies. Abbreviations: LC-MS = liquid chromatography-mass spectrometry, MD = molecular dynamics, MIFs = 

molecular interaction fields, NMR = nuclear magnetic resonance, QM/MM = quantum mechanics/ molecular 

mechanics, QSAR = quantitative structure-activity relationship, SOM = site of metabolism. 

 

Although metabolism is often investigated separately either from the experimental or the 

computational stand-point, combining these efforts may be beneficial to gain comprehensive 

understanding of metabolism38. Ideally, the development of a prediction model is a combined 

approach of theory (information from literature or curated databases), experimental data, and 

computation (Figure 1). Apart from being cost-effective, high-throughput tools that can be 

applied early in the process of drug development, computational studies bear the advantage of 

providing mechanistic understanding of ligand-target interactions and might deliver 

explanations for compound activity or inactivity. In silico investigations can also support drug 

design by pointing out structural alerts (e.g. functional groups that are associated with toxicity) 

and guide chemical synthesis. 

Computational approaches heavily rely on experimental data as a basis for investigation. Data 

are derived from in vitro assays (e.g. mutation assays, cell or microsomal assays, recombinant 

enzyme assays) or from in vivo studies that provide data on carcinogenicity, metabolism, or 

toxicity. It is important to note that the quality of a computational model highly depends on the 

quality of the experimental data it was built on. Thus, careful assessment of information sources 

and evaluation of experimental data (e.g. assay conditions and experimental setup) is pivotal to 

enable reliable in silico modelling. Efforts have been undertaken to collect and combine 

experimental data on metabolites and a number of publicly available databases have been 

released, such as the DrugBank40 or the Human Metabolome Database (HMDB)41.  
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In general, computational approaches to investigate and predict metabolism can be divided into 

ligand- and structure-based models, although combining different computational methods can 

be beneficial for the development of prediction models. Ligand-based approaches use active and 

inactive molecules and associated biological activities to derive structure-activity relationships 

for prediction. These models rely on the presumption that chemical structures and their 

properties correlate with metabolic activity of a molecule. Computational methods allowing 

ligand-based modelling include quantum-mechanical (QM) methods, descriptor-based methods 

such as QSAR or machine learning techniques, and ligand-based 3D pharmacophores. Structure-

based approaches focus on the drug target and the reaction mechanism itself in order to derive 

essential information that is subsequently abstracted into a predictive model. Information on the 

target is usually derived from experimental data (x-ray crystallography, NMR) or homology 

models of a protein. Methods that enable structure-based modelling include molecular docking 

simulations, molecular dynamics (MD) simulations, quantum mechanics/ molecular mechanics 

(QM/MM) methods, and structure-based 3D pharmacophores. Sophisticated prediction tools 

often use a combination of computational methods in order to comprehensively describe the 

metabolic reaction that is under investigation.  

In the following, individual or combined computational approaches for metabolism prediction 

will be shortly discussed to provide a quick overview on the current state of research in the field 

of computer-based metabolism prediction. For the prediction of metabolites, SOMs, 

regioselectivity, or enzyme interactions, numerous desktop or web-based applications have been 

published using reactivity- or rule-based approaches, fingerprint-based data mining approaches, 

shape-focused approaches, molecular interaction fields (MIFs), docking, or combined 

methods38,39. Two excellent, comprehensive reviews on computational approaches towards 

metabolism prediction were published by Kirchmair et al. in 2012 and 201538,39. 

Data mining approaches based on molecular fingerprints can be used to identify SOMs and 

software has been developed, such as Metaprint2D42,43, which searches for fingerprint features in 

a given dataset of molecules that are related to metabolic reactions.  

Shape-focused methods rely on the assumption that compounds that share a similar shape might 

trigger the same biological response. These methods calculate the probability of metabolism by 

comparing a given molecule to an active ligand (e.g. inhibitor) while taking into consideration 

their molecular properties38. This approach has been successfully used to predict the SOM of CYP 

ligands by utilizing the Rapid Overlay of Chemical Structures (ROCS)44-46.  

Molecular interaction fields (MIFs)47 are three-dimensional representations of electrostatic fields 

on the surface of a target structure that describe variations in interaction energies between the 
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target and a chemical probe48 and can be derived by programs such as GRIN/GRID47 or CoMFA49. 

MIFs can be applied in ligand- and structure-based approaches to identify ligands that are similar 

to the template molecule or to predict ligand-target interactions. The software MetaSite50 

originated from advanced MIF-based algorithms and evolved into a program utilizing MIFs, 

quantum-chemical and expert (knowledge-based) modules. It allows prediction of SOMs in 

regard to CYP metabolism, guides rational drug design by indicating critical structural regions, 

gives warnings on CYP inhibition, and provides phase I and II metabolite structures.  

Molecular docking approaches in which generated ligand conformations are placed into the 

active site of a target (docking) and results subsequently ranked based on binding affinities 

(scoring) allow prediction of SOMs based on ligand conformations and distances to the catalytic 

centre51,52. Molecular docking is considered fast and efficient, but is relying on many 

approximations concerning solvation effects and entropy. 

3D pharmacophores which are abstractions of molecular interaction patterns between a molecule 

and its target (e.g. protein) can be used as efficient virtual screening tools for metabolism 

prediction53,54 to identify molecules that match the three-dimensional interaction pattern and 

conform spatial configuration towards the target55. 3D pharmacophores have been developed to 

predict CYP substrates56 or inhibitors of CYPs57.  

Metabolic enzymes such as CYPs are highly flexible and modulation of the active site might 

influence substrate selectivity. A method to explore conformational flexibility is molecular 

dynamics (MD) simulation in which molecular movement of the target structure is simulated 

under a given molecular force field. MD simulations can be used to generate conformations for 

subsequent modelling studies (e.g. docking into conformations derived from MD simulations58) 

or can be utilized to refine docking conformations59. Furthermore, MD simulations were 

performed to calculate binding affinities of ligands (binding free energy ΔG) which allows 

assessment of substrate or inhibitor binding38.  

Although MD simulations and flexible docking take into account the flexibility of the protein, 

these methods are insufficient for assessing formation or breaking of chemical bonds. QM/MM 

approaches are computationally more demanding although allowing more accurate calculations 

of electronic effects in molecular systems. For the prediction of SOMs, reactivity-based methods 

utilize quantum chemical methods to derive parameters from the electronic structure of a given 

molecule that allow estimation of metabolic reactivity60. On various levels of theory, QM methods 

can be used to calculate descriptors based on the electronic structure of ligands to assess their 

metabolic susceptibility38. Software approaches consider for example hydrogen abstraction 

energies or calculations of spin densities on all hydrogen atoms of a molecule60. Structure-based 
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QM/MM studies were reported aiming at investigating the reaction mechanism and dynamics of 

CYPs55. In these approaches, the active site of CYPs where the reaction occurs is characterized 

quantum mechanically to ensure high accuracy while treating the molecular environment under 

molecular mechanic principles61. 

Although manifold computational methods exist, the prediction of metabolites is an application 

that is mainly represented by knowledge-based (or expert) systems and only few alternative 

approaches have been published (e.g. fingerprint-based data mining)38. Expert systems are based 

on the input of knowledge by human experts. This formalized knowledge provides guidance in 

regard to metabolite prediction by examining a query structure for fragments that are associated 

with metabolic liability and calculating the associated metabolite structure. Numerous software 

applications for metabolite prediction based on expert systems have been released38,39.  

The scope of identifying enzyme interaction, e.g. CYP inhibition or induction which is related to 

drug-drug interactions, has been commonly approached via QSAR or machine learning 

methods62. In QSAR, a relationship between molecular descriptors of a given set of active ligands 

and their biological activity is derived and its function can be used for prediction. As mentioned 

before, the OECD has recognized these in silico approaches and has published a guide for QSAR 

model validation which cover the definition of an end point, an algorithm, the applicability 

domain, the calculation of certain statistics, and (if possible) an interpretation of the model29,63. 

Due to its long history and successful application, a multitude of studies has been published, and 

QSAR and machine learning models for metabolism prediction have been derived that are based 

on classification, quantification, or regression38. An overview on QSAR and learning algorithms 

that can be used for activity prediction is also given by Nantasenamat et al.64.  

In 2015, Kirchmair et al. presented a collection of seven “components” that are essential for the 

successful development of an in silico prediction model39. The first component is the quantity and 

quality of experimental data on which the computational model relies. It was stated that – even 

though experimental investments in metabolism screenings have increased over the last decades 

– publicly available data on metabolic endpoints are still insufficient39. Furthermore, different 

assay protocols and experimental setups often hamper the creation of a coherent data set that 

allows creation of a valid in silico model. The second component is expert knowledge which 

implies the virtual storage of sets of rules for metabolic endpoints (e.g. metabolite prediction) that 

were formalized and supplied by human experts. Rule-based approaches that allow toxicity 

prediction have even been recognised by regulatory agencies, such as the United States Food and 

Drug Administration (FDA)65. The third component comprises physicochemical descriptors of 

molecules which can be used to screen and rank molecules in regard to metabolism. The fourth 
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and fifth components consider structural information on the metabolic proteins and their 

structural flexibility, which provide details on protein-ligand interactions, substrate specificities, 

and protein function. The sixth component deals with the reactivity of a small-molecule ligand 

which ultimately determines metabolism reactions. Although being computationally expensive, 

investigations on protein flexibility and molecular reactivity using QM or QM/MM methods can 

be beneficial for drug design. They provide information on the electronic nature of the structural 

environment during ligand binding and also enable determination of reaction intermediates 

which provides a rationale for drug design. The seventh and last component is the idea of 

metabolic systems or networks which implies that metabolism is a highly complex network of 

physiological conditions, fluctuations in molecular concentrations of cellular components, the 

existence of enzymatic cascades, molecular interactions, and signalling dependencies. These 

highly-interdependent factors influence metabolic reactions and rates, and are still challenging to 

combine into a comprehensive virtual model39. 

Over the last years, numerous in silico prediction tools have been developed focusing on CYPs 

(phase I metabolism) due to their impact on drug metabolism and association with drug-drug 

interactions in vivo. However, enzyme families of phase II metabolism such as sulfotransferases 

(SULTs) also play an important role in drug inactivation and the transformation of xenobiotics 

into chemically reactive metabolites22,66.  

1.3. Sulfotransferases 

1.3.1. Sulfotransferase enzyme family 
 

Sulfotransferases (EC 2.8.2., SULT) are among the most prominent enzyme families of phase II 

metabolism67 and are classified into soluble enzymes located in the cytosol and membrane-

associated enzymes at the Golgi apparatus. The latter group of enzymes transforms 

macromolecules such as carbohydrates, lipids, proteins, and peptides and regulates their 

physiological function, while the soluble SULTs sulfonate small molecules such as drugs, 

steroids, bile acids, and neurotransmitters. Since the reformation of the nomenclature system for 

SULT in 200468, the members of the cytosolic SULT superfamily are classified into families, 

indicated by Arabic numerals (e.g. SULT1, SULT2), and subfamilies, indicated by alphabetical 

characters (e.g. SULT1E, SULT2A). Members of one family or subfamily share 45 % or 60 % 

sequence identity, respectively. Isoforms are indicated by an Arabic numerical after the 

alphabetical character (e.g. SULT1E1, SULT2A1). The SULT1 and SULT2 families are comprised 

of 4 and 2 subfamilies with multiple isoforms, respectively. Although SULT4A1 has been found 
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in the human brain and SULT6B1 was found in the testis of primates, no activity has been 

detected for any of these enzymes and thus, the majority of studies to date focuses on SULT1 

and/or SULT2 family members69,70. An overview on SULTs is given in Table 1 including crystal 

structures available in the Protein Data Bank (PDB)71, tissue localization of SULTs and their 

substrate profiles.  

 

Table 1. Overview on human SULT isoforms, available crystal structures in the PDB, their tissue 

localization, and their natural substrate profiles. SULT nomenclature according to Blanchard et al.68. 

Abbreviations: GI tract = gastrointestinal tract. 

SULT 

family 

SULT 

isoform 
PDB entries Tissue localization Substrate profile 

SULT1 SULT1A1 2D06, 1LS6, 1Z28, 3U3J, 

3U3K, 3U3M, 3U3O, 3U3R 

(D249G), 4GRA 

Liver72, GI tract73, brain74 (Poly-) Phenols 

 SULT1A2 1Z29 Kidney75, lung75 Phenols 

 SULT1A3 2A3R, 1CJM GI tract73, brain76 Catecholamines 

 SULT1B1 3CKL, 2Z5F Liver72, GI tract73 Phenols 

 SULT1C2 3BFX  Phenols 

 SULT1C3 2REO, 2H8K  Benzylic alcohols 

 SULT1C4 2GWH, 2AD1  Estrogens, phenols 

 SULT1E1 1HY3, 1G3M, 4JVL, 4JVM, 

4JVN 

Liver73, jejunum ileum72, 

endometrium77 

Estrogens 

SULT2 SULT2A1 3F3Y, 2QP4, 2QP3, 1EFH, 

1J99, 1OV4, 4IFB 

Liver73, adrenal gland78, GI 

tract72 

Hydroxysteroids 

 SULT2B1a 1Q1Q Placenta79 Hydroxysteroids 

 SULT2B1b 1Q1Z, 1Q20, 1Q22 Prostate79, placenta79, 

skin80, lung81 

Hydroxysteroids 

SULT4 SULT4A1 1ZD1 Brain82 - 

SULT6 SULT6B1 - - - 

 

SULTs exhibit distinct but overlapping substrate specificities. While members of the SULT1 

family generally metabolise phenols, catechols, iodothyronines, estrogens, and benzylic alcohols, 

SULT2 members display substrate specificities for hydroxysteroids, alcohols, bile acids, and 

aliphatic amines83,84. The five SULT subtypes SULT1A1, SULT1A3/4, SULT1B1, SULT1E1, and 

SULT2A1 are commonly regarded as key players in drug metabolism72. Among these, SULT1A1 

has a very broad substrate profile acting as a more generalist detoxifying enzyme prominent in 

human liver. SULT2A1 and SULT1E1 both share substrate preferences for hydroxylated steroid 

hormones with 1E1 displaying specificity for estrogens.  

SULT expression in human tissues varies depending on the isoform and SULT localization is 

linked to their individual metabolic profile of endo- and exogenous substrates. The majority of 

SULTs are expressed in the liver and the gastrointestinal (GI) tract. SULT1A1 was found to be the 

major isoform in liver (> 50 % of total SULT protein) followed by SULT1B1, -1E1, and -2A172. In 
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the GI tract, SULT1B1 was the predominant subfamily (> 36 %), followed by SULT1A3, SULT1A1, 

SULT1E1, and SULT2A172. Although highest SULT concentrations have been found in liver and 

GI tract72, SULT isoforms are also present in other tissues, such as lung, brain, kidney, and skin, 

and their individual localization pattern is correlated with their specific metabolic role74,75,80. 

Comparing the global sequence identities of all SULT isoforms (Figure 2), the phylogenetic 

clustering of enzymes is reflected by their nomenclature (numbering/labelling of enzymes)85. 

Interestingly, the comparison of the sequence identities of the substrate binding site of all SULT 

isoforms via phylogenetic clustering indicates an order that is different from their nomenclature. 

The global sequence similarity of SULT isoforms is uncorrelated to the local sequence similarities 

in the active site of the SULT isoforms, which supports the finding that subfamily members do 

not necessarily show the same substrate specificity85. For example, SULT1E1 and SULT1B1 share 

high global sequence similarity but low binding site similarity, which is reflected by their 

substrate specificity profiles: SULT1E1 displays affinity towards estrogens, which do not bind to 

SULT1B186,87.  

 

 

Figure 2. Clustering of SULT subtypes based on sequence similarities of the complete amino acid sequences 

(left) and the local sequences of the substrate binding sites (right). (Picture adapted from Allali-Hassani et al.85, 

originally published in PLoS Biology) 

 

The sulfonation reaction involves the conjugation of a sulfonate group (SO3¯) from the cofactor 

3’-phosphoadenosine-5’-phosphosulfate (PAPS) to a hydroxyl- or amino-group of a substrate. 

Histidine 107 (His107, numbering corresponding to SULT1E1) serves as a catalytic base by 

deprotonating the hydroxyl group of the substrate and thus enabling the nucleophilic oxygen to 

attack the sulphur atom of PAPS (Figure 3). Lysine (Lys105) acts as a supporting element by 

stabilising the transition state of the sulfonation reaction88,89. The charged sulfonate group that is 

introduced into the substrate molecule increases its hydrophilicity which facilitates its excretion 

from the human body. 

With more than 35 crystal structures of SULTs (see also Table 1), the 3D structures of the different 

SULT subtypes are now well-documented. SULT subtypes share a spherical structure which 

consists of a central four-stranded parallel β-sheet that is surrounded by 12 to 13 α-helices, and 

conserved domains for cofactor binding. Human SULTs are homodimers with a highly conserved 
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dimerization motif (KxxxTVxxxE). The substrate binding site (Figure 3) is surrounded by three 

flexible loops numbered from 1 to 3 according to the ascending amino acid sequence numeration 

(amino acids 85 to 89, 144 to 149, and 234 to 262, forming loop 1, 2, and 3, respectively). Loop 1 is 

only found in SULT1, but not in SULT2 enzymes. Dissimilarities in these loop regions are 

assumed to be among the main factors causing the specific substrate specificities of SULT 

subtypes90. Apart from differences in sequence identity, the three loops are also very flexible and 

are capable of modulating the substrate binding site and therefore influence ligand binding91,92. 

Interestingly, loop 3 simultaneously spans the cofactor- and substrate binding site and features a 

“hinge” that separates the nucleotide and acceptor halves 92. 

 

 

 

Figure 3. Structure of the SULT1E1 monomer of PDB entry 1HY393 (chain B). The three loops that surround the 

substrate binding site of SULTs are highlighted as red protein backbones while the part of loop 3 that spans the cofactor-

binding site is highlighted in cyan. The cofactor PAPS (3’-phosphoadenosine-5’-phosphosulfate) and catalytically-

important amino acids Lys105 and His107 are depicted as ball-and-stick-models. Abbreviations: L = ligand, PAP = 3’-

phosphoadenosine-5’-phosphate. 

 

Since the first report on sulfonate conjugation of endogenous molecules by Baumann et al. in 

18766, sulfonation has been recognized as an important pathway of biotransformation. After the 

first identification of SULT cDNA in rats in 198794 and the first cloned enzyme of bovine estrogen 

SULT in 198895, experimental investigations on human SULT took off. In the following years, 

numerous studies were published reporting on cloning and identification of SULT subtypes and 

detection of metabolites via SULT transformation. An interesting phenomenon that has been 

repeatedly experimentally shown (in vitro) is the so-called substrate inhibition, which implies the 
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ability of a substrate molecule to inhibit the enzyme at different molecule concentrations. Many 

metabolic enzymes, such as SULTs, have been reported to be subject to this phenomenon96,97. To 

date, the reasons for substrate inhibition of SULTs are still under investigation. Several causes 

have been proposed, including, (i) the occupancy of the substrate binding site by two ligands, 

causing steric blockage of the active site entry, (ii) the binding of a ligand in a catalytically-

incompetent orientation, (iii) the existence of an alternative substrate binding site, and (iv) the 

formation of so-called dead-end complexes (Figure 4)90. It should be noted that direct evidence 

that this phenomenon occurs in vivo is still missing97.  

 

 

Figure 4. Catalytic cycle of sulfotransferases. Potentially occurring dead-end complexes include E·PAPS·L-S and 

E·PAP·L. Abbreviations: E = enzyme, L = ligand, L-S = sulfonated ligand, PAP = 3’-phosphoadenosine-5’-phosphate, 

PAPS = 3’-phosphoadenosine-5’-phosphosulfate. The figure was adapted from Tibbs et al. originally published in the 

Journal Drug Metabolism and Pharmacokinetics90.  

  

Interestingly, the binding of two ligands in the substrate binding site, as well as the formation of 

dead-end complexes with PAP bound to the enzyme, were captured via x-ray crystallography84. 

Only two crystal structures of SULTs have been published to date that feature bound PAPS 

instead of un-sulfonated cofactor PAP complexed with the enzyme but in absence of a co-

crystallised ligand (SULT1E1: PDB entry 1HY393 and SULT2A1: PDB entry 4IFB (reference to be 

published)). Studies have shown that PAP release is the rate-limiting step of the sulfonation 

reaction98,99, which would promote the emergence of substrate inhibition states of the enzyme. 

The concentration of PAPS in the cytosol is another criterion determining sulfonation rates in 

vivo. These changes in molecular concentrations and the regulation of PAPS are still not 

exhaustively investigated. The formation of PAPS takes place via two reactions: first, sulfate 

(SO42) is transferred to adenosine monophosphate to form adenosine-5’-phosphosulfate (APS) 

catalysed by the enzyme ATP-sulfurylase, and second, APS is phosphorylated by APS kinase 

resulting in PAPS100,101. Thus, PAPS synthesis is depending on cytosolic sulfate concentrations 

and further, circulating sulfate86,100. 
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In general, sulfonation serves detoxification by increasing the hydrophilicity of a substrate 

molecule which in turn is more easily excreted. Sulfonated metabolites of various exogenous 

sources have been reported102, such as feruloylquinic acids from coffee103, ethanol104, plant 

constituents105-112, food additives113, and drugs such as opioids114, antibiotics115,116, anaesthetics117, 

and others118,119. In the case of Minoxidil, a (pro-) drug for the treatment of androgenic alopecia, 

sulfonation transforms the drug into its physiologically active form120. Nevertheless, sulfonation 

of drugs has also been shown to lead to the formation of toxic or mutagenic metabolites25,121-123, 

which has been repeatedly shown for various xenobiotic and natural compounds25,66,124-129. 

Binding of a molecule to the active site of SULTs usually leads to its sulfonation and subsequent 

bioactivation or inactivation. On the other hand, molecules that are capable of binding the 

enzyme potentially inhibit SULTs and decrease their activity, which in turn suppresses 

metabolism. The inhibition of SULTs has been extensively studied along with investigations on 

sulfonation reactions. Numerous reports have been published reporting on SULT inhibition by 

drugs130-136, dietary components133,137-144, such as herbal extracts145, red wine146, and green tea147, or 

other exogenous sources148-150. Among the compound classes that have received the most 

attention are endocrine disrupting chemicals (EDCs) as they have been shown to act as high-

potential inhibitors of SULTs151,152. Molecules with endocrine disrupting effects can be industrial 

chemicals, pesticides, phthalates, metals, or phytoestrogens, and exposure to environmental 

EDCs is considered as risk factor for oncogenesis153. EDCs act through mimicking or inhibiting 

natural hormones, and/or deregulation of hormones or hormone receptors25. This class of 

molecules has been shown to strongly inhibit SULTs148,151,152,154,155 and is on the other hand also 

bioactivated by SULT activity causing the formation of potentially toxic metabolites25. 

Among the different SULT subtypes, SULT1E1 shows selectivity for estrogens and estrogen-

related compounds. As a consequence, it is involved in the regulation of physiological estrogen 

levels and its inactivity has been associated in the progression of hormone-dependent cancer156. 

Furthermore, SULT1E1 has been shown to be strongly inhibited by environmentally-omnipresent 

EDCs and to be involved in the formation of chemically reactive metabolites causing adverse 

events25,151,152. For these reasons, the here presented study focuses on SULT1E1 which will be 

further discussed in the next chapter.   

1.3.2. Sulfotransferase subtype 1E1 
 

Among different SULT isoforms, SULT1E1 shows high affinity towards estrogens and plays a 

crucial role in regulating estrogenic hormone levels in humans. It is not only involved in the 

regulation of endogenous estrogens, but also in mediating the inactivation of exogenous 
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molecules (e.g. drugs, phytoestrogens, xenoestrogens) and thus serves detoxification. Though in 

many cases, SULT1E1-mediated transformation of exogenous molecules such as endocrine 

disrupting compounds (EDCs) leads to the formation of chemically reactive metabolites which 

bear the potential to cause DNA damage25. Apart from sulfonating molecules, SULT1E1 can also 

be inhibited by exogenous compounds which decreases metabolism and increases estrogen 

levels. An overview on these mechanisms is given in Figure 5 and will be explained in more detail 

in the following section. 

 

 

Figure 5. Metabolic reactions catalysed by SULT1E1 and examples of molecules that are transformed by the 

enzyme. Abbreviations: EDCs = endocrine disrupting compounds, SULT = sulfotransferases.  

 

The three estrogens estrone (E1), estradiol (E2), and estriol (E3) represent primary female sex 

hormones that are involved in the development of secondary sexual characteristics and the 

regulation of the menstrual cycle in women. Estrogens also exhibit tissue-dependent effects in 

neuro- or cardiovascular protection, fat metabolism, inflammation, and osteoarthritis157-160, and 

their deregulation has been associated with the promotion of hormone-dependent cancer156. The 

broad spectrum of estrogenic effects in humans emphasize the importance of a well-balanced 

hormone homeostasis. SULT1E1 exhibits high affinity towards natural/ endogenous estrogens 
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(Km = 5 nM for its natural substrate E2161). Sulfonation of estrogens via SULT1E1 is an important 

regulatory mechanism, since sulfonated estrogens are prevented from exerting their biological 

function and can be “stored” as estrogen-sulfates. Estrogen-sulfates show a prolonged half-life 

compared to free estrogens and can be reactivated by the enzyme estrogen sulfatase162. 

Apart from the naturally occurring, steroidal estrogens E1, E2, and E3, some nonsteroidal 

estrogens or environmental estrogens (such as synthetic xeno- or phytoestrogens) also exhibit 

estrogenic activity and have been related to SULT1E1 activity143,148. While phytoestrogens are 

naturally occurring plant-derived molecules, synthetic xenoestrogens are mostly of industrial 

origin and many have become environmental contaminants163. Both types of environmental 

estrogens exert estrogenic effects in humans and are able to interfere with the physiological 

endocrine system. Another class of molecules with estrogenic activity are the selective estrogen-

receptor modulators, or SERMs, which are drugs that are able to bind to estrogen receptors and 

that are often prescribed for treatment of estrogen-related diseases, such as breast cancer, 

postmenopausal osteoporosis or ovulatory dysfunction. SERMs exhibit tissue-specific activity 

acting as pure or mixed agonists and/or antagonists. 

In many cases, members of the above-mentioned estrogenic compound classes (synthetic 

xenoestrogens, natural phytoestrogens, and SERMs) are able to bind the enzyme as a result of its 

estrogenic substrate preference. As shown in Figure 5, synthetic steroidal drugs (such as 

diethylstilbestrol and tibolone), SERMs (e.g. raloxifene, 4-OH-tamoxifen), and phytoestrogens 

(e.g. genistein, resveratrol), are readily sulfonated and inactivated by SULT1E1107,164-167. 

Primarily, sulfonation serves detoxification as sulfonated molecules are more hydrophilic and 

more easily excreted from the human body. Nevertheless, some xenoestrogens and EDCs have 

been shown to be bioactivated by SULT1E1, resulting in chemically reactive metabolites126,168. For 

certain chemicals, such as polycyclic aromatic hydrocarbons or aromatic amines, the conjugated 

sulfonate group is electron-withdrawing and therefore a good leaving group. Cleavage of the 

sulfonate group gives rise to chemically reactive electrophiles that are able to cause DNA 

damage25. In case the resulting electrophile is resonance-stabilised, the process is even further 

facilitated. 

Certain phytoestrogens and EDCs have been shown to be good substrates of SULT1E1 but on the 

other hand also bear the potential to inhibit the enzyme. Especially the EDCs of poly-halogenated 

aromatic hydrocarbons, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated 

dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) have been shown to inhibit 

SULT1E1 in the low nanomolar concentration range151,152. Inhibition of SULT1E1 not only 

decreases human metabolism reactions in general, but also leads to locally increased levels of 



INTRODUCTION 

 

19 
 

endogenous estrogens. In hormone-sensitive tissue, such as endometrium and breast, E2 has been 

shown to promote cell proliferation and increased E2 levels are linked to increased risk of 

endometrial carcinoma169. Studies also show that SULT1E1 expression is decreased in 

endometrial carcinoma tissue compared to normal tissue169-172 which might be one of the factors 

for elevated E2 concentrations and consequent cancer promotion173. It is assumed that SULT1E1 

activity in normal breast cells decreases estrogen levels and therefore contributes to the 

prevention of abnormal cell proliferation162. Due to the wide, environmental distribution of EDCs 

and their potential to evoke health risks in animals and humans, risk-assessment of compounds 

that might have endocrine disrupting effects is an ongoing aim. 

In summary, SULT1E1 plays a crucial role in regulating endogenous estrogen levels in humans 

and its inhibition might promote cell proliferation due to increased estrogen levels. Synthetic 

chemicals and phytoestrogens have been shown to strongly inhibit SULT1E1 and influence 

hormone homeostasis. On the other hand, SULT1E1 is able to inactivate drugs such as SERMs 

which reduces their efficacy. Furthermore, sulfonation of certain classes of EDCs has been related 

to the formation of chemically reactive metabolites that are able to cause DNA damage. 

In contrast to the large number of experimental studies on SULTs, computational approaches 

have remained scarce174. In the next section, molecular modelling studies on SULTs will be shortly 

reviewed.  

1.3.3. Molecular modelling studies on sulfotransferases 
 

With the steadily increasing number of experimental data on SULTs and advancements in in silico 

drug discovery, reports on computer-based approaches to investigate SULT increased 

congruently. In general, molecular modelling studies on SULTs that were reported over the past 

decades can be divided into studies exploring structure-activity relationships or prediction of 

SULT activity often using ligand-based approaches, and studies investigating structure, function, 

and/or substrate specificity of SULTs (structural investigations). These two areas will be 

addressed in the following section and references are summarised in Table 2 and Table 3. 

Historically, the first QSAR studies on rat and human phenol SULT (reported as liver TS PST 

which equals SULT1A168) were reported in 1987175, followed by a study on human SULT1A3 in 

1999176 (Table 2). Both studies aimed at identifying structural descriptors correlated with high Km 

values and influencing substrate specificity. Addressing the same goal, Taskinen et al. studied the 

ability of six different SULT subtypes to conjugate a diverse set of catecholic compounds and 

developed QSAR models to predict the metabolic fate of catechols177. A similar study was 

published the same year in which 3D-QSAR (Comparative Molecular Field Analysis (CoMFA)) 
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was utilized to determine Km values of phenolic compounds metabolised by SULT1A3178. QSAR 

was also used to determine the probability of SULT inhibition and the subsequent influence on 

metabolism. The experimental data on SULT1E1 inhibition by EDCs, e.g. polychlorinated 

biphenyls (PCBs) and brominated flame retardants (BFRs), laid the foundation for numerous 

QSAR studies179-185. Taking a different approach in predicting potential toxicity of small 

molecules, Chen et al. developed a ligand-protein inverse docking approach (INVDOCK) to 

identify potential off-targets that might cause side effects, including SULT1E1186.  

 

Table 2. Summary of articles published using computer-based methods for SULT activity prediction. 

Abbreviations: Exp. = experiments, FE/QM = free energy or quantum mechanics, Km = Michaelis constant, MD = 

molecular dynamics simulations, QSAR = quantitative structure-activity relationship. 

 

 

In another study, researchers used molecular docking simulations for virtual screening of ligands 

of seven selected protein targets, including SULT1A3 and -1E1189. Two studies aiming at 

developing comprehensive prediction models, both reported in 2013, used a combination of 

molecular modelling tools to create prediction models for different SULT subtypes187,188. The first 
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. Objectives 

Phenol SULT 1987 175      Prediction model for phenolic substrates (Km) of Phenol 

SULT. 

SULT1A1, 1A3, 

1E1 

2013 187      Prediction protocol to identify enzyme ligands based on 

protein flexibility. 

SULT1A1, 2A1 2013 188      Prediction of SULT substrates and inhibitors from the 

DrugBank40. 

SULT1A3 1999 176      QSAR study on SULT1A3 specificity for phenolic and 

catecholic molecules. 

SULT1A3 2003 177      QSAR model for structure-conjugation relationship of 

catecholic compounds.  

SULT1A3 2003 178      3D QSAR models for predicting phenolic substrates (Km) of 

SULT1A3. 

SULT1A3, 1E1 2009 189      Virtual screening of pharmacologically relevant molecules 

to identify biological targets. 

SULT1E1 2001 186      Inverse docking was used to predict potential protein 

targets associated with toxicity. 

SULT1E1 2002 179      Development of QSAR models based on poly-halogenated 

phenolic compounds (inhibitors). 

SULT1E1 2006 180      In silico screening for EDCs and their potential to inhibit 

SULT1E1. 

SULT1E1 2007 181      Development of QSAR models based on poly-halogenated 

phenolic compounds (inhibitors). 

SULT1E1 2010 182      Development of QSAR models to identify toxicological 

profiles of emerging pollutants. 

SULT1E1 2011 183      Investigation on toxicity profiles of in vitro screening hits.  

SULT2A1 2011 184      Predictive QSAR models for SULT2A1 inhibition. 

SULT2A1 2015 185      QSAR study on poly-halogenated biphenyls. 
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study utilized MD simulations in order to investigate protein flexibility and sample the 

conformational space for a subsequent docking approach187. QSAR models were developed for 

SULT1A1, -1A3, and -1E1, that enabled identification of SULT-ligands and showed accuracies of 

67 %, 78 %, and 76 %, respectively. The authors did not report any experimental confirmation of 

their results. The second study by Cook et al. also used MD simulations of SULT1A1 and -2A1 to 

extract enzyme conformations that were used as templates for subsequent docking of molecules 

of the DrugBank40,188. Based on certain binding cut-offs, molecules were identified as substrates 

or inhibitors of the SULT subtypes that were under investigation. The authors report prediction 

accuracies of 100 %. 

 

Table 3. Summary of articles published using computer-based methods focussing on structural and kinetic 

investigations on SULTs. Abbreviations: Exp. = experiments, FE/QM = free energy or quantum mechanics, Km = 

Michaelis constant, MD = molecular dynamics simulations, QSAR = quantitative structure-activity relationship. 

SULT Year Ref. 
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. Objectives 

SULT 2007 190      Analysis of binding site similarity and substrate specificity 

profiles. 

SULT 2012 191      Investigation of stereoselective sulfonation. 

SULT 2013 192      Analysis of selective bioactivation of methylcholanthrene 

derivatives into promutagens. 

SULT 2015 193      Investigation on the binding mode of melatonin to SULT.  

SULT1A1 2012 135      Investigation of ligand binding mode to SULT. 

SULT1A1, 

2A1 

2012 194      Structural investigation on protein flexibility and substrate 

specificity. 

SULT1A1 2013 155      Analysis of enzyme inhibition by halogenated phenols. 

SULT1A3 2012 195      Structural investigation of regioselective sulfonation of 

flavonoids. 

SULT1A3 2013 196      Study on drug-target interaction. 

SULT1A3 2013 197      Investigation of non-enantioselective sulfonation of 

normetanephrine enantiomers. 

SULT1B1 2015 198      Structural investigation on enzyme dimerization. 

SULT1E1 2003 199      Modelling of binding and inhibition modes of nucleotides 

towards SULT1E1. 

SULT1E1 2006 200      Investigation on the enzymatic transition state of the 

sulfonation reaction. 

SULT1E1, 

2A1, 2B1 

2009 201      Structural investigation on ligand binding. 

SULT2A1 2008 202      Analysis of allosteric modulation of SULT2A1 activity by 

celecoxib and nimesulfide. 

SULT2A1 2010 203      Investigation on structural rearrangements and altered 

sulfonation kinetics caused by cofactor PAPS. 

SULT2A1 2012 204      Analysis of the relationship between cofactor binding and 

ligand access to the active site. 

SULT2A1 2013 92      Structural investigation on active site flexibility and its impact 

on substrate selectivity. 

SULT2A1 2015 205      Study on the influence of celecoxib on ligand sulfonation. 

SULT2A1 2015 206      Exploration of protein flexibility and thermostability upon 

cofactor/ligand binding. 
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With the rising number of available x-ray crystal structures of SULT enzymes, structure-based 

modelling studies became more and more important for investigating structural and mechanistic 

characteristics and identifying potential correlations to substrate specificities (Table 3).  

One group in particular that originated from the environment of Charles Falany in Birmingham, 

USA, have been at the frontline of combing experiments and in silico approaches to investigate 

enzyme kinetics and underlying structural mechanisms. They particularly studied the influence 

of the cofactor PAPS on substrate specificity of SULT2A1 and rearrangements of the substrate 

binding site and its effect on ligand binding using MD simulations, docking, and in vitro 

assays92,194,203,204. Furthermore, under the influence of C. Falany, studies have been published in 

which docking and experiments have been combined in order to investigate ligand-binding 

mechanisms and also to elucidate the importance of enzyme dimerization135,192,198,201. Over more 

than a decade, numerous studies have been published that address ligand binding mechanisms 

or explore profiles in different SULT subtypes155,190,193,199, investigate the influence of chemicals on 

ligand binding to SULTs202,205, or assess the impact of ligands on the thermostability of SULTs 

using MD simulations206. Also, studies on stereo- or regioselectivity of SULTs have been 

reported191,195,197 and investigations on ligand-enzyme interactions have been published using 

interaction energy calculations196. In 2006, Lin et al. were able to elucidate the enzymatic reaction 

of sulfonation and determine the transition state of the reaction catalysed by SULT1E1 using a 

quantum mechanical/ molecular mechanical (QM/MM) approach200. 

Due to its significant role in regulating physiological estrogen levels and its association with EDC-

dependent inhibition, the here presented study focuses on SULT1E1. To date, only one structure-

based prediction model for SULT1E1 has been reported in which molecular dynamics 

simulations were employed to address protein flexibility187. Further, only five ligand-based 

studies have been published that report on the development of prediction models for EDCs 

whose primary purpose was to provide risk assessment tools for substances affecting the 

endocrine system as oppose to serving as prediction tools for SULT1E1 inhibition179-183. Only one 

of these five studies further explored the structure-activity relationship through molecular 

docking experiments using a homology model of SULT1E1 based on the crystal structure of 

mouse estrogen sulfotransferase179. Thus, ligand-based approaches mainly focused on the 

prediction of EDCs and the assessment of endocrine effects. Although these prediction tools 

could potentially be used to evaluate SULT1E1 inhibition, their applicability domain is restricted 

to compounds similar to EDCs and the aspect of substrate prediction has not been addressed in 

these approaches.  
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2. AIM AND OBJECTIVES 

In drug discovery, appropriate pharmacokinetic drug profiles are crucial for successful 

development of novel drug candidates. To date, the majority of metabolism studies focussed on 

CYP-related metabolism prediction, even though it was estimated that about 75 % of all drugs 

are also substrates of non-CYP-related metabolic enzymes22. SULTs have been shown to be one 

of the most predominant enzyme families in phase II metabolism67,102. SULT1E1 shows high 

affinity towards estrogenic compounds and its activity has been associated with the regulation of 

estrogen levels. Its strong inhibition by environmental substances influences metabolism rates 

and could promote hormone-dependent abnormal cell proliferation (cancer).  

Given the broad influence of metabolic enzymes ranging from drug activation and inactivation, 

over enzyme inhibition to the formation of bioactive, chemically reactive metabolites, the 

development of phase II metabolism prediction tools remains an important goal to optimize drug 

development and facilitate risk-assessment.  

In the present study, the aim was to develop, validate, and apply a novel and accurate in silico 

prediction model for SULT1E1 activity to enable efficient classification of molecules into SULT-

active and -inactive compounds and further differentiation into substrates and inhibitors.  

 

The individual steps towards a SULT1E1 prediction model include  

(i) structural investigation of SULT1E1 and exploration of substrate specificity,  

(ii) development of a computer-based prediction model,  

(iii) application of the prediction model in a virtual screening approach, and  

(iv) experimental validation of the predicted screening hits. 

 

In part (i) of this study (chapter 4.1), structural investigations on the available crystal structures 

of SULT1E1 are carried out to explore the structure of SULT1E1 and to identify characteristics 

that influence substrate specificity of the enzyme. Additionally, SULT1E1 is structurally 

compared to two other SULT subtypes – SULT1A1, which is a more generalist enzyme showing 

a broad substrate spectrum and SULT2A1, which shares a substrate profile for steroids with 

SULT1E1 - to determine structural features that allow differentiation between enzyme subtypes. 

The findings of this first part will lay the foundation for the subsequent molecular modelling 

steps.  

In part (ii) (chapter 4.2), a specific computer-based workflow is developed combining different 

molecular modelling techniques in order to create an in silico prediction model for SULT1E1. 
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Integral techniques that are used for mechanistic and qualitative investigations include molecular 

dynamics simulations, protein-ligand docking, and 3D pharmacophore modelling. For further 

statistic and qualitative enrichment of the model, machine learning is applied. Based on this 

workflow, an accurate model is to be developed that allows prediction of active SULT1E1 ligands 

and further differentiation between substrates and inhibitors.  

In the third part (iii) (chapter 4.3), the elaborated prediction model is applied to publicly available 

compound databases in a virtual screening approach and the predicted hits are analysed based 

on literature search.  

In the last part (iv) of the study (chapter 4.4), a selection of predicted molecules is experimentally 

tested in order to validate the prediction hypotheses. The experimental validation is carried out 

in collaboration with the German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 

Germany, and the University of Potsdam, Germany. During experimental validation, the two 

aspects of enzyme kinetics, inhibition of SULT1E1 and sulfonation catalysed by SULT1E1, will 

both be addressed.  

 

The aim of this study is to advance the understanding of the structural basis of SULT1E1 activity 

and to mechanistically determine the basis for its substrate specificity. The development of an in 

silico model to predict substrates and inhibitors of SULT1E1 will help to facilitate drug design 

and guide novel drug synthesis. Furthermore, this model potentially is of high value for time- 

and cost-efficient pre-experimental virtual screenings as well as a risk assessment tool for already 

developed compounds.  
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3. METHODS 

3.1. Computational methods 

3.1.1. Molecular dynamics simulations 
 

The computational method of molecular dynamics (MD) simulations has come a long way since 

its first developmental steps in the 1950s by the theoretical physics community. First applied to a 

protein in 1976207,208, MD simulations nowadays are commonly used to investigate the dynamics 

of molecular systems and have been proven valuable in the field of drug discovery and computer-

aided drug design209,210.  

A molecular dynamics simulation is defined as a computational simulation of the time-dependent 

behaviour of a system by calculating the forces acting on each particle of the system based on 

molecular mechanics force fields and defining their trajectories by integrating Newton’s law of 

motion211. In order to simulate the motion of a molecule, the coordinates of the initial system need 

to be obtained from nuclear magnetic resonance (NMR), crystallography, or homology-modelling 

data. The time-dependent changes of the quantum state of a system are described by the 

Schrödinger equation. However, a direct solution of this equation for a system containing more 

than two particles is computationally expensive. In conventional MD simulations, simpler 

molecular mechanics approaches are used instead and the atoms of a molecular system are 

treated as spheres connected via springs (representing covalent bonds) that move according to 

the laws of classical mechanics. The simplification of the quantum mechanical description of 

atoms is justified by the Born-Oppenheimer approximation212 which treats electrons and nuclei 

of the atoms separately. During MD simulations, electrons are not treated explicitly but as single 

potential energy surface. The forces that act on the particles of the system are calculated based on 

a force field (equation 1), which is defined as a set of energy functions for inter- and 

intramolecular interactions including their associated parameters that were obtained from 

quantum mechanical and/or experimental studies213. This parametrization of energy terms is 

needed in order to reproduce the actual behaviour of a molecular system in motion. 
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The functional form of a force field given in equation 1 denotes the potential energy (V, which is 

a function of the coordinates (r) of N particles), and consists of bonded and non-bonded terms214. 

The former ones address (i) bond stretches, (ii) bond angles, and (iii) dihedral angles214. Non-

bonded terms which arise from van der Waals interactions and electrostatic (charged) 

interactions are derived via the Lennard-Jones potential and Coulomb’s law, respectively. Once 

the forces are calculated, the acceleration of the atoms of the system can be determined according 

to Newton’s laws of motion, 

 𝐹𝑖 = 𝑚𝑖𝑎𝑖 = −
𝑑𝑉

𝑑𝑟𝑖

 (2) 

 

where ai is the acceleration and mi the mass of particle i213. The net force, Fi, is given as the negative 

gradient of a potential energy function (or force field) V which is depending on the particle 

coordinates ri213. To date, numerous algorithms (integrators) have been developed for integrating 

the equations of motion and to follow the time-dependent changes of a molecular system. Many 

integrators have been developed with the Verlet algorithm215 being among the most commonly 

known which determines the new positions of the particles at t + Δt using the current and 

previous positions of the particles and their accelerations. These steps of determining the 

potentials of the particles and integrating Newtonian equations are repeated for a predefined 

time period. As a result, an MD trajectory is yielded that gives the positions, velocities and 

accelerations of all particles of a molecular system at any given time216.  

Before running the actual MD simulation, the system has to be minimized so that the system’s 

conformation lies in an energy minimum. Thus, minimization algorithms aim at maximum 

reduction of the potential energy of a system217. It should be noted that the found energy optimum 

after minimization is a local optimum which might not represent the global energy minimum of 

the system213. After minimization, the system is usually equilibrated which includes the relaxation 

of the solvent (e.g. explicit water molecules) around the solute and the incremental application of 

temperature and pressure via a thermo- and barostat. The size of a time step of an MD simulation 

is governed by the fastest motion of the system which is intramolecular bond vibration and is 

usually in the order of femtoseconds (10-15 s)213. Due to the femtosecond resolution of a trajectory, 

the total timescale – depending on the size of the molecular system and the computational power 

– usually ranges between ns (10-9 s) and ms (10-3 s)216. Another limitation of MD simulations has 

been the accuracy of the force field and its parametrization. Force fields are not suitable to model 

chemical reactions, e.g. the formation or breaking of chemical bonds, or charge transfer reactions 

(although including partial charges on the atoms)218.  
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MD simulations are often performed under periodic boundary conditions avoiding the problem 

of system barriers by surrounding the system with replicas of itself to simulate an infinite 

simulation space213. In MD simulations, temperature and pressure can be kept relatively constant 

by using thermo- and barostats. Using a thermostat, the total kinetic energy of a system can be 

controlled and system temperature oscillates around a pre-set value during simulation. 

Generally, MD simulations can be executed using different ensembles depending on which 

variable stays fixed. The most common ensembles are NVE (microcanonical ensemble), NVT 

(canonical ensemble) and NPT (isothermal-isobaric ensemble) with E = energy, N = number of 

particles, T = temperature, and V = volume213. Prominent algorithms used as thermostats or 

barostats are the Nosé-Hoover thermostat219,220, the Berendsen thermostat and barostat221, the 

Andersen thermostat222, the Parrinello-Rahmnan barostat223 and Langevin dynamics224.  

Nowadays, numerous free and commercial MD simulation programs have been published. 

Among the most established simulation packages are GROMACS225,226, CHARMM227,228 and 

Amber229 and prominent force fields include AMBER230-232, CHARMM233,234, GROMOS235-237 and 

OPLS-AA238,239.  

 

MD trajectories comprise the information of atom positions, velocities and accelerations at any 

given step of the total simulation time. As a consequence, the topology of the system can be 

monitored over time using molecular visualization tools and statistical descriptions can be 

obtained240. To gain a first impression on the changes within a system, the root mean square 

deviation (RMSD) can be measured, which calculates the average distances δ between N pairs of 

atoms of the molecular system (equation 3)241:  

 𝑅𝑀𝑆𝐷 = √
1

𝑁
∑ 𝛿𝑖

2

𝑁

𝑖=1

 (3) 

 

Thus, the RMSD value indicates the extent of conformational changes of a molecular system 

compared to a reference frame and is usually expressed in angstrom (1 Å = 10-10 m). Calculating 

the deviation between coordinates of particle i and a reference point (𝑥̃𝑖) over the simulation time, 

T, gives the RMSD, or root mean square fluctuation (equation 4).  

 𝑅𝑀𝑆𝐹 = √
1

𝑇
∑(𝑥𝑖(𝑡𝑗) − 𝑥̃𝑖)

2
𝑇

𝑡𝑗=1

 (4) 

 

Another way to analyse MD trajectories is to measure the distances between structures, such as 

amino acid residues, via RMSD calculation and based on these distances, structures can be 
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clustered to group similar conformations. The cluster centre can be extracted from the resulting 

clustering data and the ensemble of centre conformations represent the most diverse structures 

based on their RMS deviations.  

3.1.2. Molecular docking 
 

In drug discovery, one of the main questions is how a ligand binds to its target. An efficient way 

to predict ligand conformations at a binding site of a known target is the computer-based 

technique of molecular docking and numerous docking programs have been developed, such as 

AutoDock242, GOLD243, DOCK244, FlexX245, or Glide246,247. In molecular docking, usually a template 

structure (e.g. from x-ray crystallography, NMR, or homology modelling) and one or several 

ligands serve as input to the program. Docking can be utilized to screen large databases of 

compounds for hit identification or support refinement of previously identified hit molecules 

during the process of lead optimization. Generally, molecular docking consists of a searching 

algorithm and a scoring function, which enable identification of favourable ligand binding 

conformations and ranking based on the scoring function248. The searching algorithm generally 

enables exploration of the conformational space of protein and ligand(s) while being limited by 

computational power. Ligand conformations are sampled by changing the degrees of freedom 

while energetically favourable conformations are cached. In some docking approaches, the 

protein flexibility is considered additionally. Conformational search strategies are diverse but can 

be divided into the three categories of random/stochastic, systematic, and simulation methods249. 

Stochastic search algorithms randomly change the ligand(s) while evaluating the resulting 

conformation based on a probability function249. Common approaches include genetic algorithms 

and Monte Carlo implementations (e.g. GOLD, AutoDock)242,243. Systemic approaches are based 

on the concept of stepwise or incrementally growing a ligand into protein binding sites and are 

used in DOCK244, Glide246 and FlexX245.  After a defined number of docking iterations or runs, the 

conformational search stops and retrieved poses are ranked according to a score. Scoring 

functions can be divided into three types. Firstly, force field-based functions, which are used in 

GOLD250, DOCK244 and AutoDock242, employ classical force fields to calculate non-covalent 

interactions between ligand and target. Secondly, empirical function functions251,252 calculate the 

sum of individual energetic terms like hydrogen bonds or hydrophobic contacts to estimate the 

overall binding free energy. These functions are parameterized by coefficients obtained from 

linear regression analysis of experimental data from known structures and their binding 

affinities. The third type of scoring functions are knowledge-based scoring functions253,254 which 
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rely on statistical observations of ligand-target interactions (frequencies and/or distances) in 

crystal structure databases such as the Protein Data Bank (PDB).  

All three types of scoring functions exhibit a different balance between speed and accuracy, and 

their performances have been frequently investigated in comparative studies255-257. It was 

concluded that current scoring functions enable identification of correct ligand-target 

conformations, though the calculation of binding affinities should be interpreted with 

caution258,259. Due to unreliability of scoring functions260, it was suggested that the evaluation of 

individual docking conformations should be complemented by visual inspection or statistical 

analysis, and not rely on rankings only259.  

3.1.3. 3D Pharmacophores  
 

Three-dimensional (3D) pharmacophores have become an established method in the field of drug 

discovery representing a computationally efficient tool for high-throughput screening. In the 

IUPAC recommendations from 1998, a pharmacophore is defined as “the ensemble of steric and 

electronic features that is necessary to ensure the optimal supramolecular interactions with a specific 

biological target structure and to trigger (or to block) its biological response”261. Depending on the nature 

of ligand-target interaction, a pharmacophore allows abstraction of biological states, such as 

inhibition, activation, or neutral antagonism. Common pharmacophore features represent 

hydrogen bond acceptor and donor atoms, hydrophobic areas, aromatic and ionic interactions, 

and exclusion volumes which set constraints on the geometric fit of a molecule towards the 

binding site during pharmacophore-based virtual screening. The creation of a pharmacophore is 

accomplished either via ligand- or structure-based approaches262. Ligand-based approaches, 

which are often chosen due to lack of structural information about the target, use ligands that are 

known to be active towards the target and extract common features to derive a ligand-based 3D 

pharmacophore. Depending on the availability of structural information of the target and its 

interaction with a ligand, structure-based 3D pharmacophores take into account the protein 

environment and are direct abstractions of ligand-target interactions. A typical structure-based 

approach starts with the retrieval of the ligand-target complex, usually from experimental data, 

molecular docking, or crystallographic databases, such as the Protein Data Bank (PDB)263 or the 

Cambridge Structural Database (CSD)264. After careful structural inspection and/or preparation 

of the complex, a 3D pharmacophore can be created automatically by abstraction of ligand-

protein interactions into 3-dimensionally arranged chemical features. Usually, this 3D 

pharmacophore functions as a prototype for further refinement of the model aiming at creating a 

pharmacophore model that efficiently discriminates between active and inactive molecules while 
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yielding a sufficiently high hit rate. The performance of a pharmacophore is evaluated during 

virtual screening (VS) by screening large databases or compound libraries.  

The dataset that is used to train the model (training set) commonly consists of a number of known 

active compounds (e.g. inhibitors) and a larger number of inactive molecules. Due to the frequent 

lack of publicly available data on inactive compounds, a common approach is to generate 

‘decoys’, i.e. putatively inactive molecules, that show similar physicochemical properties to active 

compounds265. One established public database for decoy generation is the Directory of Useful 

Decoys, Enhanced (DUD-E)266 providing an online platform to automatically generate a decoy 

database based on input molecules with a predefined ratio of active to decoy molecules of 1:50266.  

To date, an array of programs for pharmacophore modelling has been reported including 

packages such as LigandScout267-269, Phase270,271, Catalyst272, or the pharmacophore module 

implemented in MOE273. 

3.1.4. Virtual screening and assessment of model performance 
 

In drug discovery, (experimental) high-throughput screening (HTS) of chemical libraries is an 

essential step in identifying new drug candidates. Virtual screening (VS) utilizes computer-based 

methods to search for compounds that potentially bind to known biological targets (e.g. 

enzymes). It is thus an efficient way to obtain a preselection of putative ligands, and is nowadays 

widely used to complement HTS274,275.  

In theory, the chemical space of molecules is vast and thus inaccessible for screening276. A 

common approach is therefore the retrieval of focussed libraries, which are either self-created or 

obtained from public or commercial sources. Depending on the scope of the study, library design 

might be focussed on target-specific molecules with certain scaffolds or recognition elements, or 

focussed on structural diversity or certain physicochemical properties. As an example, drug-like 

molecules can be filtered by applying Lipinski’s ‘Rule of Five’33, or fragment-based libraries can 

be designed based on the ‘Astex Rule of Three’277. Recently, special filters have been developed 

to remove compounds from screening libraries that have been shown to be active in many 

different assays, called Pan Assay Interference Compounds (PAINS)278.  

Depending on the available information beforehand, VS can be divided into two basic approaches 

of ligand-based and structure-based VS. Ligand-based approaches focus on the identification of 

compounds by utilizing structure-activity data from known active molecules (e.g. ligand-based 

pharmacophore, descriptor-based methods), while structure-based approaches (e.g. molecular 

docking, structure-based pharmacophores) employ molecular recognition information between 

high-affinity ligands and the known target.  
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Screening performance is often assessed in terms of a so-called confusion matrix that indicates 

prediction instances of true positive (TP), true negative (TN), false positive (FP), and false 

negative hits (FN). Based on these indications, the sensitivity and specificity of a prediction model 

can be calculated. The sensitivity of the model (equation 5) is defined as the ratio of the number 

of active molecules (TP) identified by the model to the number of all active molecules (P) in the 

data set, and indicates the ‘true positive rate’265. In turn, the specificity (equation 6) is defined as 

the number of inactive molecules (TN) identified by the model divided by the number of all 

inactive molecules (N) in the data set, and represents the ‘false positive rate’.  

 𝑆𝑒 =
𝑇𝑃

𝑃
=

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (5) 

 

 𝑆𝑝 =
𝑇𝑁

𝑁
=

𝑇𝑁

(𝑇𝑃 + 𝐹𝑁)
 (6) 

 

Furthermore, for binary classification models, the accuracy (ACC), which reflects the degree of 

prediction correctness in regard to the optimum prediction, and Matthew’s correlation coefficient 

(MCC), which is an indicator of binary classification quality, can be calculated (equations 7 and 

8). The MCC ranges between -1 and 1, with 0 and 1 equalling random and perfect prediction, 

respectively.  

 𝐴𝐶𝐶 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁)
 (7) 

 

 𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (8) 

 

The performance of a virtual screening protocol that allows binary classification (active or 

inactive) is also often assessed by the use of a receiver operating characteristic (ROC) curve, which 

is a graphical indicator of the discriminative power of a model. The ROC curve is obtained by 

plotting the rate of true positives, or the sensitivity, against the rate of false positives, calculated 

as (1 – specificity), and allows instant visual interpretation of the performance of a model.  

3.1.5. Machine learning 
 

Structure-activity relationships can be derived by relating descriptors of a given set of chemical 

structures to their biological activity in order to make qualitative or quantitative predictions on 

unknown compounds. In the field of drug discovery, numerous predictive quantitative structure-

activity relationship (QSAR) models have been developed over the years to predict biological 

activity, chemical properties, and pharmacokinetic profiles of potential drug candidates.  
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First described by C. Hansch in 196930, a QSAR model is based on the simplified form, Activity = 

f(molecular descriptors), and requires three prerequisites: (i) a data set of molecules and their 

experimentally determined activity, (ii) linearly independent (structure-related) descriptors for 

all molecules, and (iii) a function that establishes a relation between the former two. The 

descriptors used to feed the model are based on 2D or 3D molecular properties including 

fragment, topological, or physicochemical descriptors279. Generally, statistical methods can be 

divided into linear methods, such as linear regression or partial least squares (PLS) regression280, 

or nonlinear methods, such as machine learning techniques like support vector machines (SVM) 

or artificial neural networks (ANN). Depending on the nature of prediction, these statistical 

methods can also be divided into regression functions (in case of predicting continuous values, 

such as Ki) and classification methods (binary decision predictions)281.   

Data mining and machine learning approaches have been shown valuable for predicting ADME 

properties via models that are based on nonlinear and multidimensional data282-285. Machine 

learning techniques such as SVMs have been repeatedly applied to biological data in the field of 

drug discovery and represent solid tools for classification problems286. The supervised learning 

method SVM is based on the transformation of variables into a high-dimensional space and 

subsequent separation of the two classes by a hyperplane. The aim is to identify a hyperplane 

through the descriptor space that allows optimum discrimination between the two classes, while 

maximizing the margin between the closest vectors. The transformation of variables into support 

vectors of a new space is commonly performed by using mathematical kernels (kernel trick), 

which enable efficient computational analysis of nonlinear relationships287. A critical point in 

SVM modelling is the tuning of parameters to achieve high predictive power. Advantages are the 

low probability of overfitting and the ability to deal with small numbers of variables281.  

Another nonlinear classification method are artificial neural networks (ANN) which have been 

developed inspired by the nature of the human central nervous system: the model is comprised 

of connected layers (input, hidden, and output layer) of nodes, i.e. neurons, while weights are 

assigned to each node connection which are trained during model building. A specific ANN is 

the multilayer perceptron (MLP) that uses so-called perceptron algorithms for classification 

model training. Perceptrons representing the nodes of the ANN are able to make binary 

predictions that are based on linear predictor functions using independent descriptors and 

adaptive weights. During model training, the weight of each node is optimised to reduce the error 

via backpropagation288,289.  

Naïve Bayes classification models are based on the Bayes’ theorem which describes conditional 

probabilities of an outcome. This approach is based on two assumptions: firstly, the equal 
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importance of input variables and secondly, their independence290. The probability of an outcome 

is estimated by taking into consideration the prior probability of an event and its likelihood.    

Decision trees (DT) can be constructed to predict an outcome based on a tree-like mapping of 

linked nodes with each node representing an attribute test. A prediction is made by taking an 

unknown instance and, starting at the root of the tree, attributes are examined at each node. Based 

on these decisions, the instance is forwarded along the tree branches to the next node until a leaf 

(a node without successor nodes) is reached. DTs are usually built using recursive partitioning, 

which splits the training data into subsets in response to a statistical analysis of variables. Based 

on an ensemble of decision trees, random forests (RT) can also be built and used for classification 

predictions. Random forests are based on bagging algorithms which take bootstrap samples 

(randomly chosen and replaced) and also randomly-drawn feature subsets from the training set 

to train the prediction model291.  

The quality of a QSAR model is highly dependent on the quality of input data and the choice of 

descriptors and statistical methods. One should note that a good fit of a model to its training set 

does not guarantee solid predictability for external molecules and that increasing the number of 

used parameters for the model only increases fit to the training data292. Thus, during model 

development, it is important to avoid under- or over-fitting of the model. One approach to assess 

if a model is solidly parameterized is external validation in which the data set is split into a 

training set that is used for model development and a test set which is used for validation and 

that should be representative of the complete data set. An alternative approach is internal cross-

validation, which bears the advantage that no molecules have to be excluded from model 

development.  

In order to assess the performance of a QSAR model, several statistical terms can be consulted. 

For regression models, statistics that give an assessment on model performance are correlation 

charts or plots that show the experimental vs. the predicted properties, the root mean squared 

error (RMSE), the coefficient of determination (r2), and the leave-one-out cross-validated r2 

(q2)292,293. The assessment of binary classification models is usually accomplished via confusion 

matrices which indicate the concurrence of measured and predicted class. Further statistical 

metrics that are commonly used to evaluate classification model performance are the accuracy 

(ACC) or Matthew’s correlation coefficient (MCC). Definitions of these metrics are given in 

chapter 3.1.4 and equations 5 to 8.  
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3.2. Experimental methods 

3.2.1. In vitro activity assay of SULT1E1 
 

To date, a variety of in vitro assays have been developed in order to efficiently determine enzyme 

activity of SULTs. Enzyme activity can be defined in enzyme units (U) which is the amount of 

converted substrate per unit time (1 U = 1 µmol min-1), or as specific activity which takes into 

account the quantity of enzyme and is usually expressed in µmol min-1 mg-1. The development of 

an assay often depends on specific needs, such as assay sensitivity, throughput, and availability 

of resources.  

Most in vitro assays for SULT activity use established protocols based on radio-labelled substrate 

E2 (E2[3H]) or radio-labelled cofactor (PAP[35S])294. After a specific incubation time of enzyme, 

substrate, and cofactor, the formed product (e.g. E2[3H]-sulfate or [35S]sulfated-substrate) is 

separated via chromatography methods, immobilization techniques, or membranes, and its 

quantity determined using a scintillation counter295. Although showing high sensitivity and 

universality (because any substrate can be used), radiometric assays can be laborious and 

expensive.  

As an alternative to radiometric assays, several SULT assays have been reported using 

photometric or fluorometric methods, or utilizing mass spectrometry295. In photometric SULT 

assays, kinetic data can be determined by using reactants with chromophores or reactants that 

undergo a detectable shift in absorption. Also, coupled assays for SULT have been developed 

using a specific enzyme that re-sulfonates PAP originating from the SULT reaction via p-

nitrophenyl sulfate296. The product, p-nitrophenol can then be detected photometrically.  

Assays based on fluorometric methods are more sensitive, but require a fluorogenic substrate. In 

2006, a fluorescence-based HPLC assay was reported for investigating SULT1E1 inhibition which 

uses 1-hydroxypyrene as a substrate294.  

An alternative approach using fluorescence detection was reported by the groups of C.N. Falany 

and T.S. Leyh, which took advantage of the observation that SULT enzymes exhibit a shift in 

intrinsic fluorescence after ligand binding204,297. Similar to this method, Allali-Hassani et al. 

performed ligand binding assays based on changes in thermostability of the enzyme in presence 

or absence of ligands. In heating cycles up to 80 °C, protein aggregation is monitored by taking 

images of scattered light every 30 seconds and pixel intensities are then correlated to changes in 

temperature to measure changes in enzyme thermostability85.  

In cases of unavailable fluorogenic or chromophoric molecules, or inaccessible radiometric 

assays, mass spectrometry (MS) can be a useful alternative since it is highly sensitive and 
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accurate. Current ionisation techniques allow detection of sulfonated products without 

separating the sulfonate group from the product, thus enabling differentiation between substrate 

and product. Furthermore, multi-sulfonated products can be detected. Quantification of products 

via MS requires suitable internal standards, e.g. stable isotopes or structural analogues of the 

analytes.  

In this study, two different approaches were used to assess enzyme inhibition of SULT1E1 and 

determine sulfonated metabolites transformed by the enzyme. To evaluate the inhibitory 

potential of compounds towards SULT1E1, the enzyme, which was expressed in bacteria, was 

incubated with a given compound and HPLC-based separation allowed determination of 

sulfonated substrate via fluorescence detection. For sulfonation assays, the enzyme was 

incubated with selected compounds in absence of the natural substrate and incubation mixtures 

were analysed for presence of sulfonated metabolites using liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). More details on the experimental and computational procedures are 

given in the experimental section (chapter 7).  
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4. RESULTS 

The aim of this study was to develop an in silico tool that allows prediction of SULT1E1 substrates 

and inhibitors. To reach this goal, four consecutive steps were conducted including firstly, the 

structural investigation of SULT1E1 (chapter 4.1), secondly, the development of a prediction 

model for SULT1E1 ligands (chapter 4.2), thirdly, the application of the model to databases 

during virtual screening (chapter 4.3), and lastly, the experimental validation of predicted hits 

which was performed in collaboration with the University of Potsdam, Germany, and the 

German Institute of Human Nutrition (DIfE), Germany (chapter 4.4).  

4.1. Structural investigation on SULT1E1 
 

The aim of this part of the study was to investigate the structure of SULT1E1 based on publicly 

available crystal structures and determine structural features that are important for catalytic 

competency of the enzyme and that influence substrate specificities. The structure of SULT1E1 

was also compared to two other major SULT subtypes, SULT1A1 and SULT2A1, in order to find 

descriptors for subtype discrimination.  

 

In the beginning of this study, two crystal structures of SULT1E1 were available, PDB entries 

1G3M298 and 1HY393 (Table 4). The former structure, 1G3M, includes the un-sulfonated cofactor 

(PAP) in the cofactor-binding site and the co-crystallised ligand, 3,5,3’,5’-tetrachlorobiphenyl-

4,4’-diol (TCB), in the active site. TCB was reported as pico-molar inhibitor of SULT1E1 (IC50 ≈ 

0.15 nM151). Interestingly, it was reported that this inhibitor mimics the position of 17-β-estradiol 

(E2), which is a strong-binding substrate of SULT1E1 (Km = 5 nM161). This was discovered by 

comparing the ligand conformation of TCB in crystal structure 1G3M to co-crystallised E2 in an 

unpublished crystal structure of SULT1E193,298. As in the case of E2, the hydroxyl group of TCB 

was located in close proximity to the nitrogen atom of the catalytically important amino acid 

residue His107. The second crystal structure, 1HY3, solely features the co-crystallised cofactor 

PAPS in the sulfonated state, which is very rarely observed among SULT crystal structures as 

soaking conditions during the crystallisation process are mostly carried out using PAP in milli-

molar concentration ranges. The presence of PAPS bound to the enzyme leaves it catalytically 

competent, which is a prerequisite for the sulfonation reaction and thus represents an important 

criterion for a model that predicts enzyme activity. For that reason, the crystal structure of PDB 

entry 1HY3 was chosen as template for subsequent modelling studies.   
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Table 4. Summary of crystal structures of SULT1E1. Abbreviations: PAP = 3’-phosphoadenosine-5’-phosphate, 

PAPS = 3’-phosphoadenosine-5’-phosphosulfate, PDB ID = Protein Data Bank entry number. 

 

During the year 2013 (after the start of this study) three more crystal structures were published 

(PDB entries 4JVL, 4JVM, and 4JVM299) (Table 4). All three structures were crystallised in complex 

with highly affine ligands (two inhibitors and a substrate). The two inhibitors are poly-

halogenated aromatic hydrocarbons that are associated with endocrine disruption (endocrine 

disrupting compounds, EDCs)151,152,300. The conformations of the co-crystallised ligands in the 

active site of SULT1E1 were compared by superimposition of the five crystal structures (Figure 

6).  

 

 

Figure 6. Depiction of the four co-crystallised ligands in the active site of SULT1E1 after superimposition 

of the five crystal structures of SULT1E1. The preserved water molecule, which was found in all four structures 

complexed with PAP, is highlighted as a red sphere. The PAPS molecule from PDB entry 1HY3 is depicted as black 

lines and PAP from the other four PDB structures as grey ball-and-stick model. The co-crystallised ligands are 

3,5,3’,5’-tetrachlorobiphenyl-4,4’-diol (TCB) (yellow), estradiol (blue), 3,3’,5,5’-tetrabromo bisphenol A (red), and 3-

OH-2,2’,4,4’-tetrabromo-diphenyl ether (turquoise).  

 

All four structures that have a co-crystallised ligand in the active site were crystallised with PAP. 

Interestingly, the hydroxyl groups of all ligands are oriented towards the cofactor bridged by a 

crystal water, and simultaneously towards His107. Distances between the oxygen atom of the 

ligand’s hydroxyl group and His107 range from 2.4 to 2.8 Å. Based on these superimpositions of 

PDB ID Year 
Resolu-

tion [Å] 

Co-crystallised 

cofactor 
Co-crystallised ligand Type of ligand 

1HY393 2002 1.7 PAPS - - 

1G3M298 2003 1.8 PAP 
3,5,3’,5’-Tetrachlorobiphenyl-

4,4’-diol (TCB) 
Inhibitor151 

4JVL299 2013 1.94 PAP Estradiol (E2) 
Substrate + 

Inhibitor161 

4JVM299 2013 1.99 PAP 
3,3’,5,5’-Tetrabromo- 

bisphenol A 
Inhibitor300 

4JVN299 2013 2.05 PAP 
3-OH-2,2’,4,4’-Tetrabromo-

diphenyl ether 
Inhibitor152 
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experimentally determined ligand conformations, it can be assumed that ligands occupy the same 

space and ligand orientation upon binding regardless their nature (inhibitor or substrate). 

The structure of SULT1E1 was further inspected based on PDB entry 1HY393 (Figure 7). 

Visualization of the enzyme structure revealed a highly hydrophobic active site, which favours 

unpolar ligands such as E2 or above-mentioned inhibitor TCB. The active site, which possesses a 

barrel-like shape is lined with hydrophobic and/or aromatic amino acid residues (Tyr20, Phe23, 

Phe75, Phe80, Phe138, Phe141, Val145, Tyr168, Tyr239, Leu242, Ile246, Met247, and Phe254). As a 

prerequisite for sulfonation reactions, a potential ligand that finds its way into the active site of 

SULT1E1 would have to slide into the cavity in a way that its hydroxyl group (if present in the 

molecule) positions itself in close distance to the sulfonate group of the cofactor and His107 for 

nucleophilic attack. The Michaelis complex of SULTs was reported for the first time by Teramoto 

et al. who crystallised murine SULT1D1 in complex with sulfonated cofactor (PAPS) and substrate 

p-nitrophenol89. The authors report a distance between the sulphur of PAPS and the acceptor-

oxygen of the substrate to be 3.1 Å89.  

 

 

Figure 7. Structural features of SULT1E1. View on the active site of SULT1E1 with bound cofactor PAPS and 

amino acid residues Lys105 and His107 which play a key role in the sulfonation reaction (ball-and-stick 

representations). The three loops that surround the active site are highlighted in dark red and the colour scale from blue 

to yellow indicates areas of polarity and hydrophobicity, respectively.  

 

The hydrophobic cavity of the active site is surrounded by three loops formed by amino acids 85 

to 89 (loop 1), 144 to 149 (loop 2), and 234 to 262 (loop 3). These three loops were reported to 

majorly contribute to substrate selectivity, firstly, due to differences in amino acid sequences 

compared to the relatively conserved sequence of the rest of the enzyme detected via sequence 

alignments, and secondly, due to their structural flexibility90 which was supported by the 

observation that these areas are often disordered across SULT crystal structures85. It was stated 

that the “degree of disorder” in these loops is correlated with the presence or absence of the 
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cofactor that stabilises the enzyme85. In order to investigate the structural flexibility of the three 

loops based on crystallised structures of SULT1E1, the five available crystal structures were 

aligned (Figure 8). Comparing the protein backbones, the five conformations are nearly identical 

except for a small area in loop 1 at the entry of the active site. This finding is also reflected by the 

averaged RMSDs which indicate differences in loop 1 by slightly increased values for residues 85 

to 89 (see RMSD plot in Figure 8). The maximum distance between the loops of the five 

conformations was determined to be 4 Å for loop 1, 0.7 Å for loop 2, and 1.2 Å for loop 3.  

 

 

Figure 8. Aligned SULT1E1 crystal structures (1G3M298, 1HY393, 4JVL299, 4JVM299, 4JVN299). All available crystal 

structures of SULT1E1 were aligned. Differences in the protein backbones are given as RMSD plot with amino acid 

numbering on the abscissa (averaged values for Cα-atoms over all five structures, values in Å). The distances between 

the three loops were determined (given in Å). Points of measurement are indicated as balls in the image detail on the 

right. Protein backbones of 1HY3 chain A and B are highlighted in dark grey and yellow, respectively.  

 

The differences in the three loops of SULT1E1 were also compared to SULT subtypes 1A1 and 

2A1. First, a sequence alignment was performed on all three subtypes (provided in the appendix) 

and 3D structures were superimposed (Figure 9). The assessment of the composition of amino 

acids in the three loops of SULTs 1A1, 1E1 and 2A1 indicates high variation in amino acid 

sequences of loop 1 and loop 2 while the residues of loop 3 are relatively more conserved among 

the subtypes (details on sequence alignments are given in the appendix). The 3D structures show 

high variance in loop arrangements. It should be noted that loop 1 is evolutionarily absent in 

SULT2A1. The sequence similarities for the different SULT subtypes were calculated based on a 

BLOSUM matrix (commonly used to score the evolutionary relationship between proteins), and 

the results indicate similarities of about 70 % and 55 % between SULT1E1 and 2A1, and 1E1 and 

1A1, respectively (coloured matrix in Figure 9). The sequential differences between the SULT 

subtypes are also reflected in their RMSD values of Cα-atoms which suggest differences of up to 
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1.5 Å between the conformations (grey matrix in Figure 9). Allali-Hassani et al. investigated the 

relationship between sequence similarity and substrate specificities of all SULT subtypes85. As 

mentioned in the introduction (chapter 1.3.1), their findings show that global sequence 

similarities reflect SULT nomenclature and their phylogenetic relationship, but local sequence 

and structure similarities of the active sites differ from the traditional SULT numeration. As an 

example, SULT1A1 and 1A3, two isoforms that have 95 % sequence identity but different 

substrate specificities, have been shown to differ in eight amino acids located on loop 1 and 285. 

These small amino acid changes alter the molecular environment of the active site entry, which 

results in a change in substrate specificities. In another study, Najmanovich et al. also found that 

similarities in the active sites correlate with small-molecule binding profiles of SULT subtypes, 

although pointing out that binding site similarity is not sufficient to predict substrate 

specificities190. These findings suggest that differences in amino acid sequences and 

conformational differences in the loop regions of SULTs are important for substrate specificities.  

 

 

Figure 9. Superimposition of the structures of SULT subtypes 1A1, 1E1, and 2A1 and their 3- and 2-

dimensional similarities as RMSD (grey matrix) and sequence similarity matrices (coloured matrix). The 

structures of SULT1A1 (PDBID 2D06301, yellow backbone), SULT1E1 (PDBID 1HY393, grey backbone), and 

SULT2A1 (PDBID 3F3Y [to be published], blue backbone) were aligned to illustrate the differences of loop structures 

between the three different SULT subtypes. Grey matrix: RMSD plot for Cα-atoms of the three SULT subtypes. Values 

given in Å. Coloured matrix: Pairwise sequence similarity matrix for all three subtypes. Values were calculated by 

taking the number of positive matches between sequences i and j, divided by the length of sequence j. (Positive residue 

substitutions are defined by the condition BLOSUM62 substitution score > 0273) 
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4.2. Development of a prediction model for SULT1E1 
 

4.2.1. Workflow 
 

In order to develop an in silico model to predict ligands of SULT1E1, a specific workflow was 

designed (Figure 10), which will be briefly outlined here and discussed in more detail in the 

following chapters.  

Metabolic enzymes, such as SULTs, show broad substrate spectra due to their biological function. 

The ability to metabolise chemically diverse molecules partly arises from their high degree of 

structural flexibility301-303. It has been reported that the three loops that surround the active site of 

SULTs are able to modulate the shape of the binding site and thus influence substrate 

specificities91,204. Therefore, MD simulations were performed with the apo and cofactor-bound 

conformations to sample the conformational space of SULT1E1 and incorporate protein flexibility 

into the prediction model. 

 

 

Figure 10. In silico workflow for the development of a prediction model for SULT1E1.  

 

Based on MD simulations, protein conformations with structurally diverse active sites were 

extracted from the trajectories via clustering. In parallel, a ligand database of active SULT1E1 

ligands was created including substrates, inhibitors, and ligands that showed concentration-

dependent behaviour, called CDLs (concentration-dependent ligands). In order to elucidate 

ligand-protein interactions for these active molecules and SULT1E1, ensemble docking was 

performed. The docking results were investigated regarding protein preferences, differences in 

apo and co-factor bound structure-docking, and the extent of ligand-target interactions based on 

3D pharmacophore feature formation. In order to create a prediction tool for SULT1E1 ligands, 

3D pharmacophores were created based on these ensemble docking results. Different ligand-

protein complexes were chosen as templates for the 3D pharmacophore development in order to 

address different ligand types (inhibitor, substrate) and ligand affinities (strong and weak 
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ligands). The 3D pharmacophores were iteratively refined using a training set of ligands, and 

subsequently validated with a validation test set. Enabling effective screening of large databases, 

these 3D pharmacophores serve as a key element of the final prediction model. Additional 

refinement of the prediction was achieved by utilizing machine learning methods and developing 

post-screening filters in order to improve the overall predictive power of the model. The 

development of the prediction model will be explained in more detail in the following sections.  

4.2.2. Exploration of structural flexibility of SULT1E1 
 

After investigating the structure of SULT1E1 and determination of catalytically important 

descriptors (chapter 4.1), the crystal structure 1HY393 was chosen as a template for subsequent 

development of a prediction model. This structure was crystallised as a homodimer with two 

monomeric chains A and B. Studies suggest that the dimerization mainly supports enzyme 

stability and in comparison to the dimeric form, no change in activity or inhibition was observed 

in mutation assays using the monomeric form of SULT1A1304. Therefore, the monomeric form of 

SULT1E1 (PDBID 1HY393, chain B) was prepared for MD simulations to improve computational 

efficiency. Simulations were performed in triplicates for 100 ns in explicit water using the apo 

and cofactor-bound conformations. The resulting trajectories were analysed in terms of enzyme 

stability and structural fluctuations (Table 5, RMSD and RMSF plots are supplied in the 

appendix). The protein was stable over the time frame of 100 ns, both in the apo and the cofactor-

bound conformations. Also, the cofactor PAPS remained unfluctuating during the simulation 

runs with RMSD values of about 0.79 Å to 0.83 Å. 

 

Table 5. RMSD values for MD simulations of the apo and cofactor-bound SULT1E1. RMSD values for Cα-

atoms are given as average with standard deviations in parentheses (in Å). Loop fluctuations were calculated by 

subtracting the minimum RMSD value from the maximum RMSD value (given as Δ Å).  

 

The average RMSD values were also calculated for the three loops that surround the substrate 

binding site of SULT1E1, loop 1 (amino acids 85 to 89), loop 2 (amino acids 144 to 149) and loop 

 
Cofactor-bound MD simulations Apo MD simulations 

#1 #2 #3 #1 #2 #3 

Protein RMSD 2.29 (0.29) 1.70 (0.21) 1.63 (0.18) 1.66 (0.18) 1.54 (0.14) 1.56 (0.14) 

Cofactor RMSD 0.83 (0.16) 0.81 (0.11) 0.79 (0.11) - - - 

Loop 1 
RMSD 3.78  (1.28) 4.04 (1.32) 4.45 (1.48) 2.02 (1.02) 2.33 (1.10) 1.45 (0.53) 

Fluctuation 6.20 6.81 6.13 5.32 5.90 3.90 

Loop 2 
RMSD 1.48  (0.60) 1.26 (0.61) 1.19 (0.37) 1.56 (0.44) 1.45 (0.35) 1.24 (0.38) 

Fluctuation 3.59 3.62 2.76 3.05 3.20 2.83 

Loop 3 
RMSD 1.61  (0.36) 1.80 (0.43) 1.70 (0.46) 2.56 (0.46) 2.29 (0.59) 2.25 (0.52) 

Fluctuation 2.61 3.28 2.97 3.11 3.70 3.53 
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3 (amino acids 239 to 254). During the three cofactor-bound MD simulations, loop 1 showed 

significantly higher RMSD values for the Cα-atoms, ranging between 3.78 Å and 4.45 Å, 

compared to loop 2 and loop 3 (RMSDs of 1.19 – 1.48 Å and 1.61 – 1.80 Å, respectively). In contrast, 

during the apo simulations, loops 1, 2, and 3 showed comparable RMSDs of 1.45 – 2.33 Å, 1.24 – 

1.56 Å, and 2.25 – 2.56 Å, respectively. In addition to RMSD values of the three loops, the 

fluctuation of a loop, which was defined as the maximum span of movement given by the 

difference of maximum and minimum RMSD, were determined. Loop 2 and 3 showed medium 

fluctuations between 2.6 Å and 3.7 Å, while loop 1 showed significantly larger movement with 

fluctuations of about 6.1 Å to 6.8 Å for the cofactor-bound and 3.9 Å to 5.9 Å for the apo 

simulations. The observed flexibility of the three loops is also depicted in Figure 11, upper part. 

Loop 1 appeared to have significantly higher ranges of fluctuation compared to loop 2 and 3 

which applies for both, apo and cofactor-bound, conformations. In a series of studies, the groups 

of C.N. Falany and T.S. Leyh thoroughly investigated the relationship between cofactor binding 

and loop 3 flexibility of SULT2A1. Their findings suggest that the active site flexibility and the 

alternations between an open and a closed state are mainly caused by rearrangement of loop 3203. 

Here, the MD simulations using SULT1E1 indicated major contributions to active site flexibility 

by loop 1. Interestingly, loop 3 which spans over both the active and cofactor-binding sites 

showed decoupled motion regarding the two parts of loop 3 (a segment spanning the cofactor-

binding site and a segment spanning the active site (see also Figure 3 for clarification)): During 

apo simulations, the part of loop 3 that covers the cofactor-binding site detached from the protein 

base and oscillated between an open and closed state (Figure 11, bottom left). Compared to apo 

simulations, this part of loop 3 was highly stable and stayed in its closed conformation when 

PAPS was bound (Figure 11, bottom right). The division of loop 3 into two segments, which was 

also reported in studies by Cook et al.91,92, and its regulating character regarding cofactor binding 

might influence the emergence of dead-end complexes, i.e. the enzyme bound to PAP, which 

turns the enzyme into a catalytically incompetent state.   
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Figure 11. Snapshots from MD simulations of the apo (left) and cofactor-bound (right) structure of SULT1E1 

(PDB ID 1HY393). Upper part: View inside the active site of the enzyme. Loops 1 to 3 are highlighted in blue-green 

colour scale that indicates the progress of time (total simulation time: 100 ns). The range of loop flexibility is given in 

Å and was measured based on Cα-atom distances on loop residues 85 to 89 (loop 1), 144 to 149 (loop 2), and 239 to 254 

(loop 3). Lower part: Focus on the cofactor-binding sites and their loop fluctuations in absence and presence of cofactor 

PAPS. The cofactor is given as ball-and-stick representation. Abbreviations: fluct. = fluctuations. 
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The MD simulations were further explored in terms of structural flexibility in comparison to 

SULT1E1 crystal structures and regarding significant movements of amino acid residues, 

specifically in the ligand binding site. As stated in chapter 4.1, the available crystal structures of 

SULT1E1 comprise five PDB entries (1G3M298, 1HY393, 4JVL299, 4JVM299, and 4JVM299) and 

superimposition of these structures indicated no major deviations in protein backbone 

conformations of loops 2 and 3 which showed deviations of 0.7 Å and 1.2 Å, respectively (see also 

Figure 8). More significant variations were observed in loop 1 with a deviation of 4.0 Å. These 

tendencies became apparent during MD simulations in which loop 2 and 3 fluctuated in ranges 

of about 3 Å, while loop 1 was about twice as flexible (5.0 Å for apo structures and 6.4 Å for 

cofactor-bound structures (values given as averages over triplicate simulations)). Significant 

movements were also observed for amino acid Lys85 located on loop 1 (Figure 12). In comparison 

to its PDB template and all other crystal structures, the observed fluctuation between lysine and 

the sulphur atom of PAPS adds up to 13.5 Δ Å, which was significant compared to fluctuations 

observed between relatively stable amino acid residues, such as His107 (fluctuation of 3.1 Δ Å). 

This inward flip of Lys85, which was observed during all simulations, caused blockage of the 

binding site entry of SULT1E1 and imposed steric constraints on potential ligands. On the other 

hand it could be surmised that this residue might also function as a lid once a molecule bound to 

the active site and might hold this molecule captive.  

 

 

Figure 12. Depiction of amino acid residue movement of Lys85 observed during MD simulations of SULT1E1 

in comparison to its PDB template (1HY393). The movement of amino acid Lys85 is described in reference to the 

sulphur atom of PAPS and residue His107, and given as RMSD plot and distance range in Δ Å. Cofactor PAPS is 

represented as ball-and-stick model. The PDB template is highlighted in cyan.  

 

MD simulations were performed for (i) investigating the structural flexibility of SULT1E1 and 

analyse its movement, and (ii) to create an ensemble of clustered protein conformations that 
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reflect the flexibility of the substrate binding pocket to a certain extent as a basis for subsequent 

prediction model development.  

Summarizing part (i) of the MD simulation study, it was found that the three loops surrounding 

the active site of SULT1E1 were significantly more flexible than the rest of the protein, which was 

demonstrated by the differences in RMSD and loop fluctuation values. Secondly, observations 

during MD simulations indicated decoupled flexibility of loop 3, which can be divided into two 

segments – one spanning the cofactor-binding site and one spanning the ligand binding site. It 

was shown that the presence of the cofactor PAPS stabilised the segment of loop 3 that spans the 

cofactor-binding site while absence of PAPS lead to a highly disordered loop segment. The strong 

interaction between the cofactor and loop 3 could contribute to the emergence of dead-end 

complexes in which PAP stays enzyme-bound while keeping the protein catalytically 

incompetent or inactive. Thirdly, amino acid Lys85 was identified as a structural element that 

might contribute to steric hindrance in the active site of SULT1E1 or could function as a lid once 

a ligand entered the active site of the enzyme due to its high degree of flexibility.  

As a next step (ii), the MD simulations were used to create an ensemble of clustered protein 

conformations that reflect the flexibility of the substrate binding pocket to a certain extent as a 

basis for subsequent prediction model development. The trajectories were clustered based on 

active site diversity and five apo and five cofactor-bound conformations were extracted (Figure 

13). To illustrate the differences between the conformations, structures were aligned and RMSD 

plots were created. The protein ensemble showed high diversity in loop arrangements around 

the active site. Compared to the PDB template, all three loops showed both inward and outward 

movement which either constringes the active site or widens it. Thus, the opening and closing of 

the active site might contribute to substrate selectivity due to steric hindrance. This relationship 

between active site flexibility (oscillation between an open and closed state) and substrate 

selectivity was also investigated for SULT2A1 by Cook et al. and their findings suggested that 

mainly loop 3 contributes to this oscillation and the selectivity of substrates203. In a subsequent 

study the cofactor was found to trigger rearrangement of loop 3 after binding which in turn 

influences the active site shape and substrate selectivity92,204. The here presented results from MD 

simulations of SULT1E1 indicated that mainly loop 1 influences the shape of the active site and 

therefore might function as a regulating gate for the binding of different ligands. The results from 

trajectory clustering suggested high diversity in the active site of SULT1E1 and all ten 

conformations that were extracted from the MD simulations were used in the subsequent 

ensemble docking approach.  
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Figure 13. Superimposition of enzyme conformations that were extracted from MD simulations in 

comparison to the PDB template. The three loops that encircle the active site of SULT1E1 are highlighted in red 

(apo structures on the left) and cyan (cofactor-bound structures on the right). The backbone of PDB template 1HY393 

is shown in yellow and cofactor PAPS is represented as ball-and-stick model. Conformational differences between the 

five apo or cofactor-bound structures and the PDB are given as RMSD plots.  

 

4.2.3. Compilation of a ligand database of SULT1E1  
 

The database comprising active ligands of SULT1E1 was constructed by searching through 

available literature on SULTs and exploring the BRENDA database (BRaunschweig ENzyme 

Database), which is an online information source for biochemical data on enzymes305. A total 

number of 118 molecules was extracted including 36 substrates, 72 inhibitors, and 10 compounds 

which were categorised as CDLs (concentration-dependent ligands). The latter group of 

molecules, the CDLs, were reported substrates able to inhibit the enzyme depending on their 

concentrations. These substances show so-called substrate inhibition towards SULT1E1, which is 

a commonly known phenomenon for metabolic enzymes96,97. For SULTs, the reasons for substrate 

inhibition which were discussed in chapter 1.3.1 are still under investigation.  

The complete list of active ligands (provided in the appendix) consists of 72 inhibitors, 36 

substrates, and 10 CDLs. These molecules were subjected to principal component analysis (PCA), 

which can be used to reduce the dimensionality of a given set by transforming potentially 

correlated descriptors into an ensemble of uncorrelated variables, called principal components. 

Here, PCA was used to visualize the data sets of inhibitors and substrates, to evaluate the 

occupation differences of the diversity space, and to inspect potential clusters (Figure 14 and 

Figure 15). The PCAs were performed on basic physicochemical properties, such as the number 

of hydrogen bond acceptor/donor atoms, heavy atoms, hydrophobic areas, rotatable bonds, and 
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rings, the topological polar surface area (TPSA), and lipophilicity (cLogP). The first two 

components of the PCA of 72 active inhibitors explain 78.27 % and the first three explain 88.66 % 

of the variance in the data set. The scatter plot for the first two PCAs for the 72 inhibitors is shown 

in Figure 14. The plot shows distinct clusters of compounds with certain molecular scaffolds. 

EDCs are well represented among these clusters by compounds featuring dibenzo-furan-, 

biphenyl- or dibenzo-p-dioxin-scaffolds. Kester et al. investigated the inhibition of SULT1E1 by 

various series of these poly-halogenated aromatic hydrocarbons in 2001 and 2002 which showed 

strong inhibition of SULT1E1 up to a pico-molar range151,152. 

 

 

Figure 14. PCA plots for the dataset of active inhibitors of SULT1E1. Specific molecule clusters are indicated as 

green, cyan, blue, and red dots for flavonoids (#17), dibenzofurans (#8), biphenyls (#33), and dibenzo-p-dioxins (#3), 

respectively. Black dots indicate molecules which are structurally different from the four mentioned molecule clusters. 

The asterisk (*) indicates molecules from a publication by Kehoe et al.306. 

 

The data set of active substrates of SULT1E1 was explored via PCA: The first two principal 

components explain 75.23 %, and the first three 86.68 % of the variance in the data set. By plotting 

the data, clusters of compounds are formed by molecules sharing the same scaffold, such as 

phenolic compounds, steroid derivatives, or arylbenzothiazoles (Figure 15).  
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Figure 15. PCA plots for the dataset of active substrates of SULT1E1. Molecule clusters are indicated by green, 

cyan, and blue dots representing molecules with chemical scaffolds of arylbenzothiazoles (#14), phenols (#8), and 

steroids (#12), respectively. Black dots indicate molecules that are structurally different from the three mentioned 

molecule clusters. 

 

4.2.4. Generation of ligand-target complexes and interaction analysis 
 

Using the ten extracted enzyme conformations from MD simulations and the generated database 

of active SULT1E1 ligands, ensemble docking was performed in order to investigate ligand-target 

interactions and create a basis for 3D pharmacophore development. The ensemble docking 

approach was performed with apo and cofactor-bound structures to firstly, investigate the 

differences in ligand-target interactions in terms of cofactor presence or absence, secondly, to 

assess ligand binding capacities of the ten protein templates, and lastly, to evaluate the binding 

patterns of the different ligand types (substrates, inhibitors, and CDLs). Using ten conformations 

and 64 ligands (selected compounds from the training set), 64,000 individual ligand-protein 

complexes were generated during ensemble docking (100 docking runs per ligand).  

The ensemble docking results were statistically analysed to gain an overview on the resulting 

complexes (Figure 16). First, the number of docking events between each ligand and protein were 

calculated (ranging between zero and one hundred docking events). The resulting data matrices 

were used to answer the question if some protein conformations were preferentially used over 

others during docking, i.e. if some protein conformations were more suited for ligand binding 

than others. Based on these data matrices, heat maps were created that display differences in 

protein preferences based on colour scales (Figure 16, upper part).  
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Figure 16. Visualization of the ensemble docking setup and results. Upper part: Visualization of the number of 

docking events for each protein-ligand combination. The colour scale from dark-blue to white indicates the number of 

docking events (max. number = 100) that was observed for every protein (five apo and five cofactor-conformations) and 

ligand (inhibitor, substrate, or CDL) combination. Lower part: Heat maps indicating the occurrence frequency of 3D 

pharmacophore features for each ligand-protein combination. The maximum number of 3D pharmacophore features 

(including hydrogen bonds, hydrophobic contacts, aromatic areas, or ionic interactions) that was observed equalled ten. 

The colour scale from dark-blue to white indicates the number of docking events in which the number of features was 

observed (max. number of events = 100).  
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The heat maps indicated that most ligands were significantly more often docked into apo 

conformations number 3 and 5, and into cofactor-bound conformation number 3. The ligand 

classes of substrates, CDLs and inhibitors were docked 42 %, 48 %, and 47 % into apo 

conformation number 3, 42 %, 48 %, and 35 % into apo conformation number 5, and 42 %, 73 %, 

and 65 % into cofactor-bound conformation number 3, respectively. Generally during ensemble 

docking, protein preferences are established based on the genetic algorithm of the docking 

software243 which fosters the generation of energetically favourable ligand-protein combinations. 

In order to find a structure-based explanation for the protein preferences during docking, all ten 

proteins were visually inspected and submitted to volume calculations and druggability 

assessment via Fpocket307.  

 

Figure 17. Depiction of the active sites of cofactor-bound conformations P1 to P5. The colour scale is based on 

atom types with red, blue, yellow, and grey indicating oxygen, nitrogen, sulphur, and carbon atoms, respectively. Black 

arrows indicate spatial restrictions found in the active site conformations. Cofactor PAPS is depicted as stick-model. 

On the right side, an example of ligand-complexes is shown for the ligand kaempferol. From a total of one hundred 

docking runs, the ligand was docked 24 % into P1, 1 % into P2, 74 % into P3, 0 % into P4 and 1 % into P5. PAPS 

and the two catalytically important amino acids Lys105 and His107 are represented as ball-and-stick models. The 

arrows indicate steric restrictions on ligand binding.    
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The visual inspection of the five apo conformations – specifically their active sites – indicated 

relatively homogenous, voluminous active sites and absence of amino acid residues that would 

sterically hinder ligand binding. It should be mentioned that the volume calculations that were 

performed on the five apo conformations was challenging due to the absence of the cofactor 

which resulted in unrepresentative volumetric data. Visual analysis and active site cavity analysis 

were therefore performed on cofactor-bound conformations P1 to P5 (Figure 17 and Table 6).  

 

Table 6. Calculation of pocket volumes and descriptors of the active sites of the five cofactor-bound 

conformations in comparison to the PDB template via the software Fpocket307. Abbreviations: SASA = 

solvent-accessible surface area, PDB = Protein Data Bank.  

 

Inspection of the active site of cofactor-bound conformation P1 indicated that the entry is blocked 

by amino acid residue Lys85 which might prevent ligands from entering the binding site (Figure 

17, upper part). Amino acid blockage also occurred in cofactor-bound conformation P4 where the 

midsection cavity of the active site is divided which might hinder molecules in reaching the 

catalytic centre. The binding site of cofactor-bound conformation P2 was a relatively homogenous 

tunnel that had a confined space (or bottleneck) halfway through the binding site tunnel. In the 

case of P2, ligand binding was limited to small molecules due to steric hindrance in the centre of 

the active site. Conformations P3 and P5 were both relatively voluminous (Table 6) and bear the 

potential to accommodate small but also larger ligands which might explain the increased 

number of docking runs in conformation P3. Additionally, the active sites were evaluated based 

on descriptors such as druggability, polarity, and hydrophobicity (Table 6). The druggability 

score indicates the likelihood of small molecule binding according to Le Guilloux et al.307 (values 

ranging from 0 to 1). The core is based on hydrophobicity and polarity in the protein cavity and 

is calculated on the theoretical basis of the druggability prediction model reported in Schmidtke 

et al. (glm regression model)308. Conformations P3 and P5 had the highest druggability scores of 

0.84 and 0.85, respectively. Nevertheless, all six druggability scores covered a very narrow range 

(from 0.76 to 0.85) indicating high similarity of active site druggabilities. The polar and apolar 

solvent-accessible surface areas (SASA), and the hydrophobicity scores were also calculated for 

all six proteins and give an impression on lipophilicity and polarity of the protein cavities (which 

in turn influence the druggability score). Generally, the values for hydrophobicity and polarity 

Structure Volume [Å3] 
Druggability 

score 
Polar SASA Apolar SASA Hydrophobicity score 

PDB 1113 0.76 136.4 436.9 26.81 

P1 701 0.80 106.4 257.6 31.17 

P2 1137 0.77 164.6 302.5 28.23 

P3 1266 0.84 176.1 335.5 34.82 

P4 1332 0.80 255.5 421.8 30.68 

P5 1400 0.85 188.5 365.2 35.67 
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were relatively similar for all protein conformations which might be due to the fact that the 

conformations only differed in cavity shape and amino acid residue torsions, and not amino acid 

sequences.  

The active site entries of cofactor-bound conformations P1 to P5 were further visually inspected 

for differences in amino acid residue conformations (Figure 18). Amino acid residue Lys85 of 

cofactor-bound conformation P1 was able to block the active site of SULT1E1 which might 

prevent ligand binding (see also Figure 17, uppermost row). The residue Lys85 in P3 (which was 

the favoured docking template during ensemble docking) had a similar conformation as in 

conformations P4 and P2 which were significantly less used as templates during docking.  

 

 

Figure 18. Comparison of amino acid residue Lys85 in cofactor-bound conformations P1 to P5 in 

comparison to the PDB template. The cofactor PAPS is depicted as stick-model.  
 

After investigating protein preferences that occurred during docking, ligand-protein complexes 

were analysed regarding the nature and magnitude of interactions based on 3D pharmacophore 

features (see also Figure 16, lower part). For the analysis, the number of 3D pharmacophore 

features was calculated for each ligand-protein complex. These features include hydrogen bond 

acceptors/donors (HBD/HBA), hydrophobic areas (H), aromatic contacts (AR), and ionic 

interactions (PI/NI). Data matrices were created representing the number of found interaction 

features per ligand and how often they occurred in the five apo or the five cofactor-bound 

conformations (maximum occurrence = 100 times). Heat maps were created based on these 

matrices (Figure 16, lower part). These heat maps were used as a guide indicating the number of 

interaction features and their range for each single ligand. This visual guide was useful to filter 

molecules having less than three pharmacophore features. Generally, 3D pharmacophores must 

at least have three features in order to define the orientation of hit molecules in virtual screening. 

In addition to resembling a guide for more detailed ligand-protein interaction analysis, these data 

of pharmacophore feature formation were further used to create heat maps indicating the 

maximum number of pharmacophore features that were found in each ligand-protein complex 

(Figure 19). These heat maps were utilized as guideline for the selection of ligand-protein 
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complexes that show solid interaction that could be used for 3D pharmacophore development. 

Interestingly, although most ligands were preferentially docked into apo conformations P3 and 

P5, and cofactor-bound conformation P3, other protein-ligand combinations showed similar or 

even higher number of interaction features. This visual and statistical analysis of the protein-

ligand complexes in terms of heat maps guided the choice for subsequent qualitative analysis of 

individual complexes. During extensive and careful visual inspection of complexes of the apo 

form, ligands were often found to be residing inside or sliding into the PAPS binding site. 

Therefore, many of the apo conformations were not appropriate for 3D pharmacophore 

development. The selection of protein-ligand complexes was further narrowed down to solely 

cofactor-bound complexes because only catalytically competent enzyme states represent 

reasonable templates for a prediction model of enzyme activity. A detailed description of the 3D 

pharmacophore development as prediction tools for SULT1E1 ligands is given in the next section, 

chapter 4.2.5. 

 

 

Figure 19. Statistical visualization indicating the maximum number of observed 3D pharmacophore 

features per ligand-protein complex. The colour scale from dark-blue to green shows the maximum number of 

pharmacophore features (including hydrogen bonds, hydrophobic contacts, aromatic areas, or ionic interactions) that 

was observed in a ligand-protein complex (maximum occurrence = 100 times).  

 

In summary, the quantitative and qualitative analysis of the ensemble docking results showed 

that some proteins that were extracted from MD simulations displayed higher compatibility 

towards ligand binding than others, especially apo conformations P3 and P5 and cofactor-bound 

conformation P3. The increased ligand-binding suitability of these conformations was found to 

be influenced by the shape of the active site cavity (size of volume and presence/absence of 

constrictions) and the conformation of certain amino acid residues, such as Lys85. There were no 
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major differences in ensemble docking results regarding the presence or absence of the cofactor, 

except that in some instances, ligands were docked (partially) into the cofactor-binding site. In 

general, the results did not indicate general differences in protein preferences regarding the 

nature of the ligand (substrate, inhibitor, or CDL) since most molecules had similar protein 

preferences. Further, the number of interaction features formed between docked ligands and the 

protein templates did not vary significantly comparing apo and cofactor-bound templates. All in 

all, the statistical visualization of the ensemble docking results (heat maps) provided useful 

guidance for subsequent 3D pharmacophore development. 

4.2.5. Development and validation of 3D pharmacophores of SULT1E1 
 

The statistical analysis (heat maps) of the ligand-protein complexes created during ensemble 

docking guided the choice of appropriate docking complexes for 3D pharmacophore 

development serving as prediction tools for SULT1E1 ligands. Because docking scoring functions 

have commonly known issues of unreliability260, the pharmacophore fit of a ligand 

complemented careful visual inspection of the protein-ligand complexes and provided guidance 

in choosing plausible ligand conformations for 3D pharmacophore development. As mentioned 

before, only cofactor-bound conformations were considered for 3D pharmacophore development 

since catalytic competency of the enzyme was considered as prerequisite for a predictive model. 

An important criterion for plausible ligand conformations in the active site of SULT1E1 was the 

physical distance between the hydroxyl group of the ligands and the catalytically active amino 

acid His107 and the sulphur atom of cofactor PAPS. During sulfonation, the deprotonation of the 

substrate hydroxyl group by His107 triggers the nucleophilic attack of the substrate oxygen 

towards the sulphur atom of PAPS. This reaction is facilitated by residues Lys105 and Lys47. The 

selection criterion of having a close distance between the hydroxyl group of the ligand and the 

catalytic centre was applied not only to substrates of SULT1E1 but to all ligands (substrates, 

CDLs, and inhibitors). This stands in contrast with the study of Cook et al. who developed a 

prediction model for SULT1A1 and 2A1 that was based on a distance cut-off of < 4 Å for substrates 

and > 4 Å for inhibitors of the enzymes188. The here stated hypothesis that substrates and 

inhibitors do not differ in binding conformation is supported by inspection of available crystal 

structures of SULT1E1 (Figure 20). The three crystal structures 1G3M298, 4JVM299, and 4JVN299 

were crystallised in complex with strong inhibitors of SULT1E1, and crystal structure 4JVL299 in 

complex with high-affinity substrate E2 (see also Table 4). The 3D pharmacophore analysis of all 

four crystallised conformations revealed similar binding patterns and distances of the substrates 

and inhibitors regardless of their molecular nature (inducing enzyme inhibition or sulfonation). 
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All co-crystallised ligands of structures 1G3M298, 4JVL299, and 4JVN299 formed hydrogen bonds to 

the amino acid residues of Lys105 and His107 and were in close distance to a crystal water that 

occupies the position of the sulphur atom of PAPS (all four structures were crystallised with un-

sulfonated cofactor PAP). The experimental evidence of similar binding patterns and the 

importance of distances between the ligand and His107 for both ligand classes, substrates and 

inhibitors, was used as a selection criterion for the 3D pharmacophore development.  

 

 

Figure 20. Depiction of the crystal structures of SULT1E1 with their co-crystallised ligands and associated 

3D pharmacophores. A: PDB entry 1G3M298 with ligand 3,5,3’,5’-tetrachlorobiphenyl-4,4’-diol; B: PDB entry 

4JVL299 with ligand 17-β-estradiol; C: PDB entry 4JVM299 with ligand 4,4’-propane-2,2-diylbis(2,6-bibromophenol); 

D: PDB entry 4JVN299 with ligand 2,6-dibromo-3-(2,4-dibromophenoxy)phenol. For reasons of clarity, not all amino 

acid residues that are involved in 3D pharmacophore feature formation are depicted.  

 

Table 7. Overview on 3D pharmacophores generated on the basis of SULT1E1 crystal structures. Ligands: * 

TCB = 3,5,3’,5’-tetrachlorobiphenyl-4,4’-diol, ** TBBPA =  3,3´,5,5´-tetrabromobisphenol A, *** BDE = 3-OH-2,2´,4,4´-

tetrabromodiphenyl ether (3-OH-BDE-47). Abbreviations: AR = aromatic interaction, CDL = concentration-

dependent ligand, H = hydrophobic contact, HBD/A = hydrogen bond donor/acceptor. 

PDB ID Ligand 
Nr. of 

features 

Pharmacophore interaction features 

HBD HBA H 

1G3M TCB* 6 His107 Lys105 Tyr20, Phe23, Phe80, Phe141, Val145, Ala146, 

Tyr168,  Tyr239, Ile246, Met247, Phe254 

4JVL E2 4 His107 Lys105 Phe23, Phe80, Phe141, Met247 

4JVM TBBPA** 5 - - Tyr20, Phe75, Phe80,  Lys85, Leu88, Met89, 

Phe141, Val145, Tyr168, Tyr239, Leu242, 

Ile246, Met247, Phe254 

4JVN 3-OH-BDE-47*** 8 His107 Lys105 Tyr20, Phe23, Phe80, Lys85, Lys105, His107, 

Phe138, Phe141, Val145, Ala146, Tyr168, 

Tyr239, Ile246, Met247, Phe254 
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The heat maps from ensemble docking allowed quick estimations on interaction patterns of 

different ligand-protein complexes. For 3D pharmacophore development, eight different ligand 

types were chosen to cover a broad range of chemically different molecules. In contrast to 

“classical” pharmacophore approaches that aim at identifying specific high-affinity ligands of a 

certain target, the application of a single 3D pharmacophore to metabolic enzymes was 

considered insufficient due to their broad substrate spectra. The development and application of 

an ensemble of 3D pharmacophores for enzyme profiling has been proven beneficial54,309,310. 

Therefore, the aim was to create an ensemble of 3D pharmacophores to address the broad range 

of ligands metabolised by SULT1E1.  

After deeper visual inspection of ligand-protein complexes, the substrate 2-(4-

dimethylaminophenyl)-1,3-benzothiazol-6-ol (Cole-2b311) was chosen as template for a 3D 

pharmacophore for substrate identification, the CDLs kaempferol and E2 served as templates for 

CDL pharmacophores, and the five inhibitors 2-OH-7,8-dichlorodibenzo-p-dioxin (2-OH-

DCDD), 2-OH-1,3,7,8-tetrachlorodibenzo-p-dioxin (2-OH-TCDD), 4-OH-2,3,5,2’,4’,5’-

hexachlorobiphenyl (4-OH-HCB), 4-OH-2,2’,4’,6’-tetrachlorobiphenyl (4-OH-TCB), and 

daidzein-4-sulfate (D-4-S) were used for 3D pharmacophores that identify inhibitors of SULT1E1 

(Table 8 and Figure 21).  

 

Table 8. Overview on the eight 3D pharmacophores for SULT1E1 ligands. Ligands: 2-OH-DCDD = 2-OH-7,8-

dichlorodibenzo-p-dioxin, 2-OH-TCDD = 2-OH-1,3,7,8-tetrachlorodibenzo-p-dioxin, 4-OH-HCB = 4-OH-

2,3,5,2’,4’,5’-hexachlorobiphenyl, 4-OH-TCB = 4-OH-2,2’,4’,6’-tetrachlorobiphenyl, Cole-2b311 = 2-(4-

dimethylaminophenyl)-1,3-benzothiazol-6-ol, D-4-S = daidzein-4-sulfate. Abbreviations: AR = aromatic interaction, 

CDL = concentration-dependent ligand, H = hydrophobic contact, HBD/A = hydrogen bond donor/acceptor, INH = 

inhibitor, SUB = substrate. Abbreviations: # = number of features; P = 3D pharmacophore model. 

 

All eight 3D pharmacophores contain hydrophobic features that address the hydrophobicity of 

the barrel-like active site of SULT1E1, which is occupied by a series of hydrophobic and/or 

aromatic amino acid residues. Further, all created pharmacophores include a hydrogen bond 

 P Ligand # 
Pharmacophore interaction features 

HBD HBA H AR 

1 SUB1 Cole-2b 5 His107, Asp22 - Phe141, Tyr168, Tyr20, Phe23 Tyr20 

2 CDL1 Estradiol 5 His107, His148 Lys105 Met88, Phe80, Tyr20, Val145 - 

3 CDL2 Kaempferol 5 His107 - Phe141 Tyr20, Lys85 

4 INH1 2-OH-TCDD 6 His107 Lys105 Phe254, Phe141, Phe80, Tyr239, 

Met247, Phe23, Tyr168, Tyr20, 

Val145, Ile246 

- 

5 INH2 4-OH-HCB 5 His107 - Met89, Phe23, Tyr20, Val145, 

Met247, Phe138, Phe141 

Tyr20 

6 INH3 4-OH-TCB 6 His107 Lys105 Met89, Phe141, Phe23, Tyr20, 

Val145, Met247, Phe80 

Tyr20 

7 INH4 2-OH-DCDD 6 His107 Lys105 Val145, Phe23, Tyr20, Tyr168 Tyr20 

8 INH5 D-4-S 5 His107 Lys85, 

Lys105 

Ile246, Val145, Phe141, Tyr20 - 
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towards His107 which is right in the catalytic centre and has been shown to be important for 

ligand binding and triggering sulfonation reactions298,299.  

 

 

Figure 21. Depiction of the final eight 3D pharmacophores and their associated docking conformations. The 

illustrated docking complexes comprise a substrate (1), two CDLs (2, 3), and five inhibitors (4 – 8). The image details 

show the eight pharmacophores without exclusion volumes for reasons of clarity. The 3D pharmacophore features 

include hydrogen bond donors/ acceptors (arrows or spheres in green/ red), hydrophobic contacts (yellow spheres), and 

aromatic areas (blue disks). Ligands: 1 = 2-(4-dimethylaminophenyl)-1,3-benzothiazol-6-ol; 2 = 17-β-estradiol; 3 = 

kaempferol; 4 = 2-OH-1,3,7,8-tetrachlorodibenzo-p-dioxin; 5 = 4-OH-2,3,5,2’,4’,5’-hexachlorobiphenyl; 6 = 4-OH-

2,2’,4’,6’-tetrachlorobiphenyl; 7 = 2-OH-7,8-dichlorodibenzo-p-dioxin; 8 = daidzein-4-sulfate. 
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Based on chosen docking conformations, each individual 3D pharmacophore was iteratively 

refined using a training dataset of active and inactive ligands (decoys). The ensemble of 

pharmacophores was subsequently validated using a test set of active molecules and 2657 decoys. 

The substrate pharmacophore, the two CDL pharmacophores, and the five inhibitor 

pharmacophores showed a sensitivity of 33 %, 80 %, and 56 %, respectively. ROC are provided 

in the appendix. The overall sensitivity of the models reached 60 % and the total amount of 

identified inactive molecules (decoys) was 2% which indicates high specificity (97.7 %).  

4.2.6. Comparison of static and dynamic 3D pharmacophores 
 

The eight developed pharmacophores that were incorporated into the final prediction model 

were based on static ligand-protein complexes. In order to evaluate the importance of each 

interaction feature of these eight 3D pharmacophores as a function of time, MD simulations were 

performed with the eight ligand-protein complexes that laid the basis for pharmacophore 

development. The resulting MD simulations were analysed in terms of 3D pharmacophore 

features occurring over time (100 ns total simulation time for each single run), resulting in 

dynamic pharmacophores or so-called dynophores. The resulting dynophores consist of so-called 

superfeatures which resemble the individual pharmacophore features detected over time. Each 

of the eight ligand-protein complexes was simulated in triplicates and all MD simulations were 

stable (RMSD values are given in the appendix). Dynophores were created and kindly provided 

by Dominique Sydow for all 24 MD simulations using the in-house analysis tool 

DynophoreApp312. The dynophore for the ligand-protein complex that was used to create the 

static pharmacophore CDL1 is exemplarily shown in Figure 22 (the other seven dynophores are 

provided in the appendix).   

For the static 3D pharmacophore CDL1 (Figure 22, upper right), the generated dynophores from 

all three MD simulations indicated similar occurrences of interaction features. The HBD to amino 

acid His107 occurred between 97 % and 100 % over a run time of 100 ns. The hydrogen bond 

acceptor towards Lys105 showed a wider range of occurrences between 61 % and 95 %. The 

hydrophobic contacts stayed stable over the three simulations with occurrences between 91 % 

and 100 %. The hydrogen bond donor to His147 was relatively unstable as it occurred between 

16 % and 19 % of the simulation time. Apart from depicted superfeatures in Figure 22, the full list 

of all occurring superfeatures in all 24 simulation runs is provided in the appendix. During the 

MD simulations of the CDL1 complex, seven other hydrophobic contacts with other amino acid 

residues occurred in all three simulations with occurrences between 0.1 % and 3.7 % indicating 

minor importance for ligand-target interaction (not depicted here). Furthermore, a second 
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hydrogen bond acceptor was found in all simulations showing occurrences between 3 % and 61 

%. Summarizing the findings for CDL1, the features of the static 3D pharmacophore were also 

represented in all three dynophores. The two static hydrophobic features and the HBD and HBA 

towards the catalytic centre of SULT1E1 were predominantly formed during MD simulations 

with occurrences of up to 100 %.  

 

 

Figure 22. Depiction of the dynophore generated from a MD simulation of E2 bound to SULT1E1 in 

comparison to the static 3D pharmacophore CDL1. For reasons of clarity, the dynophore, which is illustrated on 

the left side from two different angles, shows only the interaction features relevant for the static 3D pharmacophore 

CDL1. Percentages indicate the time-dependent occurrences of superfeatures found in the three MD simulations #1, 

#2, and #3. The static 3D pharmacophore CDL1 (upper right) was created on the basis of docked E2 in the active site 

of the enzyme. The 3D pharmacophore features include hydrogen bond donors/acceptors (green/red arrows or clouds) 

and hydrophobic contacts (yellow spheres or clouds). Abbreviations: H = hydrophobic contact, HBA/D = hydrogen 

bond acceptor/donor.  

 

Generally, comparing the generated dynophores with their related static pharmacophores, the 

aromatic interactions between the ligand and SULT1E1 were found to be underrepresented 

during MD simulations. The aromatic interactions of the static pharmacophores of SUB1, CDL2, 

INH2, INH3, and INH4 showed occurrences between 0.8 % and 1.9 %, 0.7 % and 30.6 %, 2 % and 

3 %, 0.4 % and 3.5 %, and 0.8 % and 5.1 %, respectively. On the other hand, hydrophobic contacts 

were found to be the feature occurring most dominantly among all features. Five types of 

pharmacophore interactions were identified during dynophore generation (AR, H, HBA, HBD, 

and NI) and the hydrophobic feature H was found to represent 41.8 % of all features. It was also 

found to be the feature that was formed most consistently over the whole simulation time: 93 % 

of all the identified hydrophobic contacts occurred more than 91 % of the simulation time (with 

four outliers showing occurrences of 67 %, 68 %, and twofold 83 %). The hydrogen bond towards 
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His107 was considered essential in all eight static pharmacophores. This feature was formed 

during all 24 MD simulations, though the occurrence percentages widely fluctuated with values 

ranging between 32 % and 70 % for SUB1, 97 % and 100 % for CDL1, 56 % and 90 % for CDL2, 40 

% and 75 % for INH1, 0.1 % and 95 % for INH2, 93 % and 100 % for INH3, 52 % and 67 % for 

INH4, and 8 % and 95 % for INH5.  

In general, the features occurring in the 24 dynophores, which were generated on the basis of MD 

simulations of the ligand-protein complexes that were used as templates for the creation of the 

eight, static 3D pharmacophores, were comparable with the features of the static 

pharmacophores. Hydrophobic contacts occurred most dominantly among all features and were 

also formed more consistently over the whole simulation time. The catalytically important 

hydrogen bond donor towards His107 was represented in all dynophores, although showing 

large fluctuations in occurrence percentages.  

It should be noted that MD simulations were executed in triplicates and not all trajectories 

showed stability of the ligand in the binding site of SULT1E1. In some cases, the ligand changed 

its position or even slipped out of the active site, resulting in blurry dynophores. Due to the fact 

that MD simulations of the same system may have different outcomes and a single simulation 

might not be representative of the natural dynamics of a ligand-protein complex, MD simulations 

should be performed in – at least – triplicates to allow statistical assessment of the results.  

4.2.7. Prediction refinement via machine learning and post-screening filters 
 

In a prediction trial using the eight 3D pharmacophores (chapter 4.2.5) for virtual screening, the 

resulting hits were analysed and it became apparent that for some instances the hit identification 

was ambiguous, i.e. some hits were identified simultaneously by different pharmacophores 

leaving open the question if the hit molecule was a substrate, CDL, or inhibitor. For further 

refinement of the pharmacophore-based prediction, firstly, a post-filtering step was included in 

the prediction process. This post-filtering step was needed due to the fact that some of the hit 

molecules that were identified as substrates of SULT1E1 did not feature a hydroxyl group, which 

is a prerequisite for the sulfonation reaction. In this post-filtering step, all molecules that were 

identified as substrates via pharmacophore screening underwent filtering based on absence or 

presence of a hydroxyl group to ensure catalytic compatibility with the sulfonation reaction of 

the enzyme. 

Secondly, predictive classification models were created in order to refine the pharmacophore-

based hit identification using machine learning techniques. Due to numerous reports of 

successful application of SVM classification models282,313, also in the field of metabolism 
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prediction314-316, SVM was chosen for classification model development. The idea was to develop 

one classification model for inhibitors and another one for substrates to refine ambiguous 

pharmacophore predictions due to the usage of eight pharmacophores (overlapping hit 

identification). Because the SVM classification models had the purpose of refining ambiguous 

pharmacophore predictions, the aim was to keep them simple and interpretable. Basic molecular 

properties such as the relative topological polar surface area (Rel.TPSA), the molecular weight 

(MW), lipophilicity (cLogP), the number of rotatable bonds (#Rot.Bonds), hydrogen bond 

acceptors and donors (#Acc, #Don), rings (#Rings), and heavy atoms (#Heav.Atoms) were chosen 

as descriptors for model development. Furthermore, the pharmacophore fit scores (PFS) based 

on the eight developed 3D pharmacophores were taken into consideration during model 

development (see the experimental section (chapter 7) for further information). The PFS is an 

expression for the molecular fit of a molecule towards the pharmacophore features and thus 

reflects the quality of hit prediction. Descriptor selection for maximum model performance was 

executed manually in iterative cycles and legitimized in comparison to models based on the 

WEKA attribute selector317,318, which automatically selects descriptors for optimized model 

building. The best performing models were derived based on the lipophilicity, the topological 

polar surface area, the number of hydrogen bond donors, and a selection of PFS. Being among 

the selected descriptors for the final classification models, the lipophilicity (cLogP) has been 

identified as an important factor for druglikeness and binding by C. Hansch in the 1960s and is a 

predominant descriptor in many SAR studies.  

 

Table 9. Overview on SVM models for substrate (SVM-S) and inhibitor (SVM-I) classification of 

pharmacophore screening hits validated with test sets. Additionally, the models were evaluated via leave-one-

out cross validation of the training set (values in parentheses). Abbreviations: TP = true positives, TN = true negatives, 

FP = false positives, FN = false negatives, Se = sensitivity, Sp = specificity, ACC = accuracy, MCC = Matthew’s 

correlation coefficient, PFS = pharmacophore fit score, cLogP = partition coefficient/lipophilicity, Rel.TPSA = relative 

topological polar surface area, #Don = number of hydrogen bond donors. 

 Model TP TN FP FN ACC MCC Se Sp 

S
V

M
-S

 Final model* 20 890 89 3 0.91 (0.90) 0.38 (0.80) 0.87 (0.87) 0.91 (0.93) 

2D descriptors 21 858 121 2 0.88 (0.90) 0.34 (0.81) 0.91 (0.91) 0.88 (0.90) 

PFS descriptors 21 824 155 2 0.84 (0.96) 0.30 (0.92) 0.91 (0.96) 0.84 (0.97) 

S
V

M
-I

 Final model** 27 1063 199 0 0.85 (0.81) 0.32 (0.51) 1 (0.88) 0.84 (0.63) 

2D descriptors 26 901 361 1 0.72 (0.86) 0.21 (0.64) 0.96 (0.95) 0.71 (0.63) 

PFS descriptors 26 537 725 1 0.44 (0.67) 0.11 (0.13) 0.96 (0.80) 0.43 (0.31) 

*  Selected descriptors: PFS-SUB1, -CDL1, -CDL2, -INH2, -INH4, -INH5, cLogP, Rel. TPSA, #Don; 

**  Selected descriptors: PFS-SUB1, -CDL1, -CDL2, -INH5, cLogP, Rel. TPSA, #Don 

 

Another descriptor taken into consideration, the relative TPSA (the sum of surfaces of polar atoms 

in a molecule), was identified as a factor that reflects the ability for hydrogen bonding of a 
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substance and indicates quality of molecule absorption319. Further, the number of hydrogen bond 

donors was considered important for inhibitor and substrate classification. The inhibitor 

classification model additionally includes six, and the substrate classification model four PFS 

descriptors. An overview on the developed SVM classification models for substrates (SVM-S) and 

inhibitors (SVM-I) is given in Table 9. The quality of the models was assessed in terms of 

sensitivity (Se), specificity (Sp), accuracy (ACC), and Matthew’s correlation coefficient (MCC) 

(equations 5 to 8 in chapter 3.1.4). The final SVM-S model showed a sensitivity of 0.87 and a 

specificity of 0.91 which indicates solid identification of true active and inactive substrates of 

SULT1E1. Overall, the model allowed correct prediction of 91 % of the test set molecules. The 

MCC is a measure for the quality of binary classifications ranging from -1 to 1 with 0 indicating 

random and 1 indicating perfect classification. The SVM-S model showed an MCC of 0.38 which 

reflects a fairly robust classification performance. For comparison, two classification models were 

created that were based solely on 2D or PFS descriptors. Although these two models had higher 

sensitivity, the accuracy and the MCC indicated inferior performance in comparison to the final 

SVM-S. The classification model for inhibitors (SVM-I) showed perfect sensitivity correctly 

identifying all true inhibitors of SULT1E1, and showed sound specificity with a value of 0.84. 

Overall, the SVM-I correctly predicted 85 % of the whole test set of molecules and showed an 

MCC value of 0.32 indicating above-average quality of classification performance. The final SVM-

I outperformed the two models that were solely based on 2D or PFS descriptors regarding 

performance statistics. Furthermore, the applicability domain of the model was assessed on the 

data sets for substrate and inhibitor classification based on Euclidian distances. The results 

suggest suitability of descriptor selection for the used data sets.  

  

The final SVM classification models listed in Table 9 were included into the final prediction 

model for SULT1E1. Retrospectively, other machine learning techniques were tested to compare 

their performance with the SVM models. An overview on the machine learning models and 

techniques is given in Table 10 for substrates and Table 11 for inhibitors. The validation of the 

models was based on the internal test sets and the performance of the predictive models were 

additionally assessed using leave-one-out (LOO) cross validation of the training set as reported 

by Klepsch et al.320. The machine learning methods included Naïve Bayes (NB) classification, 

artificial neural networks (ANN) (multi-layer perceptron), decision trees (DT), and random forest 

classification (RT).  

The classification models for substrates based on different machine learning techniques using 

WEKA descriptor selections showed similar accuracies compared to the final SVM-S model 
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(Upper section of Table 10). The high accuracy of 0.98 of the ANN model can be relativised by 

the low sensitivity which originated from the identification of zero TP hits. The DT and RF models 

had higher accuracies for the test set (0.93 and 0.96, respectively) in comparison to the SVM-S 

model, but lower accuracies in the training set. The detailed DT for substrate classification is also 

provided in the appendix. The ANN models for WEKA-selected and 2D descriptors (upper and 

middle section of Table 10) were both unable to identify TP hits, though the ANN model solely 

based on PFS descriptors performed fairly well with an accuracy of 0.90 and a sensitivity of 0.87. 

Generally, the models based on 2D descriptors did not reach the performance of the SVM models, 

except for the ANN model. On the other hand, the models based on PFS descriptors showed 

relatively high accuracies performing similar or better than the SVM models. The DT and the RF 

models based on PFS descriptors outperformed the SVM models with accuracies of 0.95 and 0.96 

and MCC values of 0.50 and 0.54, respectively.  

 

Table 10. Retrospective evaluation of models from different machine learning techniques based on selected 

descriptors for SULT1E1 substrate identification. The descriptor selection included the descriptors CDL1, CDL2, 

INH4, INH5, cLogP, the number of rotatable bonds, and the number of hydrogen bond donors based on the WEKA 

descriptor selection for best fit. The performance was assessed based on the test set. Additionally, the models were 

evaluated via leave-one-out cross validation of the training set (values in parentheses).  Abbreviations: ACC = accuracy, 

ANN = artificial neural networks, DT = decision trees, FN = false negatives, FP = false positives, LOO = leave-one-out 

cross validation, MCC = Matthew’s correlation coefficient, NB = Naïve Bayes classifier, RF = random forest, Se = 

sensitivity, Sp = specificity, TN = true negatives, TP = true positives. 

 

The inhibitor classification models based on the WEKA descriptor selection (upper section, Table 

11) from NB, ANN, DT, and RF showed diverging accuracies of 0.82, 0.90, 0.45, and 0.35 in 

comparison to the final SVM-I model (Table 9), respectively. The model created using ANN 

showing an increased accuracy of 0.90 was unable to identify true positive hits (Se = 0) and the 

MCC was -0.04. This was also the case for the ANN model based on 2D descriptors. The DT and 

  TP TN FP FN ACC MCC Se Sp 

S
el

ec
te

d
 

d
es

cr
ip

to
rs

 NB 18 865 114 5 0.88 (0.90) 0.29 (0.81) 0.78 (0.91) 0.88 (0.90) 

ANN 0 979 0 23 0.98 (0.90) - (0.80) 0.00 (0.87) 1.00 (0.93) 

DT 21 908 71 2 0.93 (0.87) 0.44 (0.73) 0.91 (0.87) 0.93 (0.86) 

RF 20 938 41 3 0.96 (0.88) 0.52 (0.77) 0.87 (0.83) 0.96 (0.93) 

2D
 

d
es

cr
ip

to
rs

 NB 15 808 171 8 0.82 (0.81) 0.18 (0.62) 0.65 (0.83) 0.83 (0.79) 

ANN 0 979 0 23 0.98 (0.90) 0.00 (0.81) 0.00 (0.91) 1.00 (0.90) 

DT 14 730 249 9 0.74 (0.77) 0.12 (0.54) 0.61 (0.78) 0.75 (0.76) 

RF 18 678 301 5 0.69 (0.79) 0.15 (0.57) 0.78 (0.78) 0.69 (0.79) 

P
F

S
 

d
es

cr
ip

to
rs

 NB 20 837 142 3 0.86 (0.94) 0.29 (0.88) 0.87 (0.96) 0.85 (0.93) 

ANN 20 881 98 3 0.90 (0.94) 0.36 (0.88) 0.87 (0.96) 0.90 (0.93) 

DT 21 929 50 2 0.95 (0.88) 0.50 (0.77) 0.91 (0.87) 0.95 (0.90) 

RF 20 942 37 3 0.96 (0.88) 0.54 (0.77) 0.87 (0.87) 0.96 (0.90) 
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RF models based on WEKA descriptors showed solid accuracies on the training set (0.91 and 0.89, 

respectively), but lacked performance on test set molecules (accuracies of 0.45 and 0.35, 

respectively) indicating overfitting of the models on the training data. This effect was also 

observed for the DT and RF models based on 2D descriptors (accuracies of 0.39 (0.91) and 0.23 

(0.89), respectively). These four models were relatively unspecific and showed high FP rates 

predicting the majority of inactive compounds as active. The detailed DT for inhibitor 

classification is also given in the appendix. The overall performance of all models based on PFS 

descriptors was relatively weak in comparison to the performance of SVM models, except for the 

NB and DT models based on PFS descriptors which showed accuracies of 0.83 and 0.88, 

respectively. The other PFS models (ANN and RF) lacked specificity (0.39 and 0.41, respectively). 

In summary, the SVM model for inhibitor classification outperformed the models based on NB, 

ANN, DT, and RF.  

 

Table 11. Retrospective evaluation of models from different machine learning techniques based on selected 

descriptors for SULT1E1 inhibitor identification. The descriptor selection included the descriptors INH1, INH3, 

cLogP, the number of hydrogen bond donor atoms, and the number of heavy atoms based on the WEKA descriptor 

selection for best fit. The performance was assessed based on the test set. Additionally, the models were evaluated via 

leave-one-out cross validation of the training set (values in parentheses). Abbreviations: ACC = accuracy, ANN = 

artificial neural networks, DT = decision trees, FN = false negatives, FP = false positives, MCC = Matthew’s correlation 

coefficient, NB = Naïve Bayes classifier, RF = random forest, Se = sensitivity, Sp = specificity, TN = true negatives, TP 

= true positives. 

 

It should be noted that the models built on ANN showed variations in model performance during 

training. To illustrate this finding, neural networks for substrate and inhibitor classification were 

built tenfold and performance statistics were averaged over the ten models. Average accuracies 

and standard deviations for substrate models based on WEKA, 2D, and PFS descriptors based on 

the training set were 0.97 (± 0.01), 0.98 (± 0), and 0.85 (± 0.01) and accuracy values for inhibitor 

  TP TN FP FN ACC MCC Se Sp 

S
el

ec
te

d
 

d
es

cr
ip

to
rs

 NB 22 1036 226 5 0.82 (0.77) 0.23 (0.58) 0.81 (0.71) 0.82 (0.94) 

ANN 0 1154 108 27 0.90 (0.88) -0.04 (0.69) 0.00 (0.93) 0.91 (0.75) 

DT 26 549 713 1 0.45 (0.91) 0.12 (0.78) 0.96 (0.98) 0.44 (0.75) 

RF 26 427 835 1 0.35 (0.89) 0.09 (0.73) 0.96 (0.98) 0.34 (0.69) 

2D
 

d
es

cr
ip

to
rs

 NB 21 973 289 6 0.77 (0.74) 0.18 (0.54) 0.78 (0.66) 0.77 (0.94) 

ANN 0 1182 80 27 0.92 (0.89) -0.04 (0.74) 0.00 (0.93) 0.94 (0.81) 

DT 26 472 790 1 0.39 (0.91) 0.10 (0.78) 0.96 (0.98) 0.37 (0.75) 

RF 27 265 997 0 0.23 (0.89) 0.07 (0.73) 1.00 (0.98) 0.21 (0.69) 

P
F

S
 

d
es

cr
ip

to
rs

 NB 25 1041 221 2 0.83 (0.65) 0.27 (0.16) 0.93 (0.73) 0.82 (0.44) 

ANN 25 478 784 2 0.39 (0.70) 0.09 (0.22) 0.93 (0.83) 0.38 (0.38) 

DT 23 1105 157 4 0.88 (0.79) 0.30 (0.44) 0.85 (0.90) 0.88 (0.50) 

RF 26 500 762 1 0.41 (0.72) 0.11 (0.25) 0.96 (0.85) 0.40 (0.38) 
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models equalled 0.91 (± 0.05), 0.91 (± 0.02), and 0.38 (± 0.1), respectively. These slight variations 

can be attributed to the distribution of random weights at the beginning of model building. 

Subsequent backpropagation during model training served error minimization, though bearing 

the potential of small model performance variations.  

4.2.8. Final prediction model for SULT1E1 ligands 
 

The final prediction model for SULT1E1 ligands was set up based on the eight specific 3D 

pharmacophores that were developed to identify a broad range of chemically different inhibitors, 

substrates, and CDLs of SULT1E1 (Figure 23). Secondly, the model comprises a post-screening 

filter (OH-Filter) for substrates and SVM classification models for substrates (SVM-S) and 

inhibitors (SVM-I) to classify the predicted molecules from 3D pharmacophore screenings.  

 

 

Figure 23. Illustration of the final model for in silico prediction of SULT1E1 ligands. The process of prediction 

starts with screening a given database with the eight 3D pharmacophores. According to their classification into 

substrates, inhibitors, or CDLs, the hits are subsequently submitted to a specific molecule filter (OH- or hydroxyl-

group filter) and the SVM classification models (SVM-S and –I).  

 

The process of prediction starts with screening a given dataset with the eight 3D pharmacophores. 

This ensemble of eight 3D pharmacophores was developed to cover a broad range of SULT1E1 

ligands and they include one substrate-, two CDL-, and five inhibitor-pharmacophores which 

collectively showed a sensitivity of 60 % and a specificity of 97.7 %. Depending on the nature of 

the pharmacophore, the hits are binned into substrates, inhibitors, or CDLs. It should be noted 

that overlaps of prediction can occur in cases multiple pharmacophores of different nature 

identify the same molecule. Provided that some compounds were identified ambiguously, they 

are temporarily included in the CDL group (blue section in Figure 23). Pharmacophore hits that 

were identified as substrates are first submitted to an OH-Filter, which separates molecules that 

feature a hydroxyl group and are therefore potentially competent to undergo sulfonation by 
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SULT1E1 from the rest. Only if a molecule was identified as “active” during pharmacophore 

screening, OH-filtering, and SVM classification, this molecule was considered as substrate of 

SULT1E1. Likewise for inhibitor identification, only molecules identified as “active” during 

pharmacophore screening and SVM-I classification were considered as inhibitors of SULT1E1. In 

the case of molecules identified as CDLs and molecules with ambiguous pharmacophore-

prediction, compounds are considered as valid CDLs only if both SVM models classify them as 

“active” and they pass the OH-filter. On the other hand, if only one of the classification models, 

SVM-S or SVM-I, classifies a molecule as “active” it is considered a substrate or inhibitor, 

respectively.  

4.3. Virtual screening and prediction of SULT1E1 ligands 
 

The final prediction model as depicted in Figure 23 was used in a virtual screening of the 

DrugBank40 consisting of experimental and FDA-approved drugs in order to assess model 

performance and the extent of (previously unknown) SULT biotransformation of, or inhibition 

by, drugs. Furthermore, the vendor databases from OTAVA Ltd. and AnalytiCon Discovery 

GmbH were screened using the prediction model to evaluate the applicability of the model on 

databases with drug-like chemicals (OTAVA green collection) and natural products (AnalytiCon 

MEGx database).  

4.3.1. Screening of the DrugBank 
 

The prediction model was applied to the DrugBank40 consisting of 6,494 molecules including a 

majority of experimental, but also FDA-approved, nutraceutical, illicit, and withdrawn drugs. 

The 3D pharmacophore screening using the eight developed pharmacophores reported in 

chapter 4.2.5 resulted in 131 total hits (Table 12).  

 

Table 12. Summary of the DrugBank screening based on 3D pharmacophores and SVM classification models 

for SULT1E1 ligands. Abbreviations: P. = 3D pharmacophore, SVM = support vector machine.  

 

P. model P. hits Collective P. hits Filtering / SVM hits Percentage of DrugBank 

CDL1 20 
45 33 0.51 % 

CDL2 26 

INH1 0 

25 12 0.19 % 

INH2 14 

INH3 7 

INH4 5 

INH5 20 

SUB1 39 24 23 0.35 % 
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Comparing the numbers of hits identified by 3D pharmacophores individually and collectively, 

overlaps and ambiguity of hit identification were found: Although the individually predicted 

CDLs, inhibitors, and substrates resulted in 46, 46, and 39 hits, respectively, the collective 

pharmacophore hits without compounds occurring multiple times were 45 CDLs, 25 inhibitors, 

and 24 substrates, respectively. The application of OH-filtering and SVM classification narrowed 

down the final hit collection to a total of 68 compounds including 33 CDLs, 12 inhibitors, and 23 

substrates. The chemical structures of the 26 hits that were predicted via pharmacophore-

screening but excluded from the collection of final compounds after filtering and SVM 

classification can be found in the appendix, along with the full list of the 68 final DrugBank hits. 

Among the 68 predicted hits from the DrugBank screening were 8 FDA-approved drugs (retinol 

(DB00162), balsalazide (DB01014), olsalazine (DB01250), diethylstilbestrol (manufacturing stop 

in 1997) (DB00255), raloxifene (DB00481), estradiol (DB00783), dienestrol (DB00890), ethinyl 

estradiol, EE2 (DB00977)), and one approved drug, estriol (DB04573), which is available in the US 

by prescription and approved in Europe and Asia, but not approved by the FDA. The other 59 

compounds were found to be classified as drugs in experimental stages according to the 

DrugBank. Interestingly, among the nine approved drugs six compounds reportedly show strong 

estrogenic effects and some are therapeutically used as contraceptives (E2 and EE2), selective 

estrogen receptor modulators (SERM) (raloxifene), or as drugs for treatment of certain 

physiological disorders such as multiple sclerosis (estriol) or vulvar atrophy (dienestrol). Due to 

the fact that estrogens, such as E2, show high affinity towards SULT1E1, the identification of other 

estrogenic compounds during virtual screening indicates reliability of the prediction model.  

Further investigation on the 68 hit molecules revealed commercial unavailability of 43 % of the 

substrate-hits (10 out of 23), 75 % of the inhibitor-hits (9 out of 12) and 30 % of the CDL-hits (10 

out of 33). The total amount of unavailable compounds was 42.7 % (29 out of 68). Based on 

literature, 24 molecules were found to be ligands of SULTs (33 %) from which 19 were identified 

to interact with SULT1E1 (28 %). These 19 ligands covered 22 % (5 out of 23) of the substrate hits 

and 42 % (14 out of 33) of the CDL hits. Omitting the hits that were commercially unavailable 

and/or reported ligands of SULTs, the predicted hits were narrowed down to fifteen molecules. 

Two of these molecules were FDA-approved drugs (balsalazide (DB01014), olsalazide (DB01250)) 

used to treat inflammatory bowel disease that are reported to be degraded in human colon. Two 

other molecules (retinol (DB00162), 4-oxo-retinol (DB02699)) were found to be unstable under 

standard conditions. The resulting eleven compounds were assessed and nine of them were 

purchased from chemical vendors for further experimental validation. The nine compounds 

include four CDLs (1 to 4), two inhibitors (5, 6), and three substrates (7 to 9) (Figure 24).  
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All nine compounds are filed as drugs in experimental stages in the DrugBank. Compound 1 

belongs to the group of chalcones which are aromatic ketones with two phenyl moieties that have 

a broad range of biological activity such as activity against inflammation, hypertension, or cardiac 

arrhythmia, but also against parasites, bacteria, or fungi321,322. Compound 2 is a phenylindazole 

derivative and compound 3 a phenylbenzoxazole derivative. These nonsteroidal molecules have 

been shown to bind to estrogen receptors, ERα and ERβ with high affinity323,324. The chemical 

structure of compound 4 includes a phenethylamine moiety, an adenine derivative, and a furan 

moiety. The molecule was reported to bind antagonistically to adenosine A2A receptor, a G 

protein-coupled receptor, with high affinity325. Compounds 5 and 6 both feature a 

benzohydrazide moiety and a poly-halogenated and -hydroxylated phenyl group. Both are 

reported to show anti-bacterial properties against Helicobacter pylori, which promotes 

inflammation, chronic gastritis, and gastric ulcers326. 

 

 

Figure 24. Compounds from virtual screening of the DrugBank selected for experimental evaluation. The 

compounds 1 to 4 are predicted CDLs, compounds 5 and 6 predicted inhibitors and compounds 7 to 9 predicted 

substrates of SULT1E1. The ligands are 1 isoliquiritigenin (DB03285), 2 indazole-Cl (DB07708), 3 prinaberel 

(DB06832), 4 ZM241385 (DB08770), 5 Amb1890033 (DB06950), 6 Amb1899186 (DB06978), 7 2-(4-

hydroxyphenylazo)-benzoic acid (DB07880), 8 Amb4444666 (DB08252), and 9 17-Epiestriol (DB07702).  

 

The predicted substrates 7 and 8 belong to the group of azobenzene derivatives including a 

benzoic acid moiety and a phenol (7) or naphthol (8). Compound 7 is commonly used for matrix-

assisted laser desorption/ionization (MALDI) mass spectrometry as matrix. The third predicted 

substrate, compound 9, is an estrogen derivative that is hydroxylated in positions 3, 16, and 17 

and was reported to bind to estrogen receptor beta selectively327. 
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4.3.2. Screening of chemical and natural product databases 
 

In addition to the DrugBank screening, the databases of OTAVA Ltd. (OTAVA green collection) 

and AnalytiCon Discovery GmbH (AnalytiCon MEGx database) were screened with the final 

prediction model of SULT1E1 in order to assess the applicability of the model and the impact of 

SULT1E1 biotransformation or inhibition on chemicals (OTAVA green collection) and natural 

compounds (AnalytiCon MEGx). 

The vendor library AnalytiCon MEGx containing 4,558 ready-to-screen natural products from 

plants or microorganisms was submitted to 3D pharmacophore screening and subsequent 

filtering and SVM classification (Table 13).   

 

Table 13. Summary of the AnalytiCon MEGx screening based on 3D pharmacophores and SVM 

classification models of SULT1E1 ligands. Abbreviations: P. = 3D pharmacophore, SVM = support vector machine.  

 

The eight individual 3D pharmacophores identified 185 hits in total. The total number of 

predicted hits without overlaps or multiple appearances of molecules added up to a total number 

of 138 molecules. It should be noted that the collective CDL hits of 109 include hits that were 

identified by CDL-pharmacophores, or combinations of pharmacophores. For example, if a 

compound was identified by an inhibitor-pharmacophore and simultaneously by a CDL-

pharmacophore, it was grouped into the CDL collection of predicted hits. After filtering and SVM 

classification, the CDLs comprised 63, the inhibitors 7 and the substrates 34 molecules (total 

number of hits equalled 104).  

Further investigation of the predicted molecules revealed that 86 % (6 out of 7) of the inhibitors, 

71.4 % (45 out of 63) of the CDLs, and 67.6 % (23 out of 34) of the substrates were unreported in 

the literature (total percentage of unreported molecules = 71.2 %). The one remaining molecule 

predicted to inhibit SULT1E1 was reported as inhibitor of the enzyme in the literature. 

Sulfonation of predicted CDLs and substrates was reported in the literature for 28.6 % (18 out of 

63) of the CDLs and for 23.5 % (8 out of 34) for the substrates. Interestingly, 2 out of 34 of the 

substrates were reported inhibitors of SULT1E1 and 1 out of 34 was reported in the literature to 

P. model P. hits Collective P. hits Filtering / SVM hits Percentage of database 

CDL1 18 
109 63 1.38 % 

CDL2 102 

INH1 2 

18 7 0.15 % 

INH2 4 

INH3 1 

INH4 0 

INH5 33 

SUB1 25 11 34 0.75 % 
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be incapable of forming sulfonate metabolites, which results in an error of 8.8 % regarding 

SULT1E1 substrates.  

In summary, although most compounds were unreported in literature, about 14 % of the 

inhibitors, 29 % of the CDLs, and 24 % of the substrates could be validated based on reports found 

in the literature. About 9 % of the substrates was identified incorrectly due to reported inhibition 

or observed lack of metabolites in analytical studies.  

Additionally, the compound library OTAVA green collection which comprised 137,912 molecule 

entries was screened with the final prediction model of SULT1E1 (Table 14). This collection 

comprises chemicals that match the filters of Lipinski’s Rule of Five (logP < 5, HBD < 5, HBA < 10, 

MW < 500 Da) to ensure druglikeness33. The eight individual 3D pharmacophores identified 26 

CDLs, 307 inhibitors, and 332 substrates. After grouping the molecules into collections of CDLs, 

inhibitors, and substrates to remove overlaps in prediction, the pharmacophore-based prediction 

comprised 51 CDLs, 268 inhibitors, and 298 substrates which were reduced to 32, 85, and 162, 

respectively, after filtering and SVM classification. The resulting, final 279 hits were investigated 

for reported SULT metabolism based on literature. Only one compound of each of the three 

ligand classes (CDLs, inhibitors, substrates) was reported in the literature to be active on 

SULT1E1. These molecules were daidzein, 16-α-estriol, and formononetin reported as CDL, 

substrate, and inhibitor, respectively. The remaining 276 molecules were not identified in the 

literature which could be attributed to the chemical novelty of the OTAVA green entries.  

 

Table 14. Summary of the OTAVA green collection screening based on 3D pharmacophores and SVM 

classification models of SULT1E1 ligands. Abbreviations: P. = 3D pharmacophore, SVM = support vector machine.  

 

To sum up, the final prediction model shows suitable applicability towards drugs, natural 

products, and chemicals. The percentage of identified hits based on the total number of database 

entries showed relatively similar coverage for the DrugBank and AnalytiCon (which have similar 

database sizes of about 6,500 and 4,500, respectively) and slightly lower percentages of hit 

identification for the OTAVA green collection (about 140,000 molecule entries) which are 

relativised by the size of the databases.  

P. model P. hits Collective P. hits Filtering / SVM hits Percentage of database 

CDL1 19 
51 32 0.02 % 

CDL2 7 

INH1 16 

268 85 0.06 % 

INH2 81 

INH3 51 

INH4 30 

INH5 129 

SUB1 332 298 162 0.12 % 
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4.4. Experimental validation of predicted hits 
 

Based on the results of the virtual screening of the DrugBank, nine compounds were chosen for 

further experimental validation and purchased from chemical vendors. The experiments were 

performed in collaboration with Prof. Hansruedi Glatt and Dr. Walter Meinl from the German 

Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Germany, and Prof. Burkhard Kleuser 

and Dr. Fabian Schumacher from the Institute of Nutritional Science, University of Potsdam, 

Germany. For experimental evaluation, two different types of assays were developed and 

conducted to investigate SULT1E1 inhibition and the sulfonation of the compounds by SULT1E1. 

The results from the inhibition assay will be described in chapter 4.4.1 and the sulfonation assay, 

which included LC-MS/MS-based detection of metabolites performed by Dr. Fabian Schumacher 

(University of Potsdam, Germany), will be discussed in chapter 4.4.2. Additionally, an in silico 

evaluation of the nine compounds regarding ligand binding and interaction patterns towards 

SULT1E1 was performed using molecular docking simulations (chapter 4.4.3).  

4.4.1. Inhibition assay of SULT1E1 
 

All nine compounds (Figure 24) were investigated for their ability to bind and inhibit SULT1E1. 

A more detailed description of these molecules can be found in chapter 4.3.1. It was assumed that 

all compounds bind to the active site of SULT1E1 due to the nature of the pharmacophores which 

were abstracted from ligand-protein interactions in close distance to the catalytic centre of 

SULT1E1. Thus, inhibition of SULT1E1 by these compounds was surmised to occur in 

competitive manner.  

The inhibition assay was based on HPLC-based measurements of product (α-naphthylsulfate) 

formation after incubation of SULT1E1 with α-naphthol and PAPS. Incubation of the reaction 

mixture with different concentrations of compounds led to changes in product concentration. 

Based on these measurements, enzyme activity was calculated in relation to concentration-

dependent inhibition by used compounds and dose-response curves were calculated to 

determine IC50 values (Figure 25).  
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Figure 25. Dose-response curves indicating IC50 values for all experimentally tested compounds. Data were 

derived in triplicate experiments (with the exception of the data points retrieved for zero activity of compounds 1 to 6). 

Coloured curves indicate the ligand types of substrates (green), inhibitors (orange), and CDLs (blue).  

 

Results from the inhibition assay show inhibitory potential from all nine, tested compounds 

(Table 15). The two predicted CDLs, 1 and 2, showed IC50 values in the one-digit µM-range (5.3 

and 3.2 µM, respectively). Structurally, predicted CDLs number 2 and 3 are very similar, though 

3 shows an IC50 value of about 520 nM. This increase in inhibitory potential might be attributed 

to an increased lipophilicity induced by the two hydrophobic moieties, a vinyl group and 

fluoride. The fourth predicted CDL, compound 4, showed inhibition of about 90 µM. 

 

Table 15. Summary of inhibition assays on nine predicted compounds. The nine selected molecules from the 

virtual screening of the DrugBank were experimentally assessed for SULT1E1 inhibition. The IC50 values were 

calculated using the four parametric logistic standard curve analysis function in GraphPad Prism. Abbreviations: CDL 

= concentration-dependent ligand. 

 

Thus, all four predicted CDLs were able to inhibit SULT1E1 in mid-nM to low-µM range. The 

two predicted inhibitors, 5 and 6, showed IC50 values of 310 nM and 230 nM, respectively. 

Interestingly, all three predicted substrates, 7 to 9, were able to inhibit SULT1E1, showing IC50 

values of 1,298 µM, 21.3 µM, and about 90 nM, respectively. Compound 7 and 8 structurally only 

Compound nr. DrugBank entry In silico prediction IC50 [µM] 

1 DB03285 

CDL 

5.33 ± 0.45 

2 DB07708 3.15 ± 0.51 

3 DB06832 0.52 ± 0.04 

4 DB08770 89.3 ± 3.2 

5 DB06950 
Inhibitor 

0.31 ± 0.05 

6 DB06978 0.23 ± 0.05 

7 DB07880 

Substrate 

1,298 ± 140 

8 DB08252 21.3 ± 1.2 

9 DB07702 0.09 ± 0.01 



RESULTS 

 

74 
 

differ in one molecular moiety (larger aromatic group in 8), though compound 8 is a 65-fold 

stronger inhibitor of SULT1E1. This could be attributed to an increased lipophilicity of 8 (logP = 

4.72) in comparison to 7 (logP = 3.73), which is favourable for binding the active site of SULT1E1 

lined with aromatic and lipophilic amino acid residues. The structure of compound 9 features a 

hydroxysteroid scaffold similar to E2 – a high affinity substrate of SULT1E1 that shows substrate 

inhibition in the low nM-range.  

In summary, the in silico prediction of CDLs and inhibitors was consistent with the experimental 

results since all compounds showed inhibitory potential towards the sulfonation of α–naphthol 

by SULT1E1.  

4.4.2. Sulfonation assay of SULT1E1 
 

Sulfonation of the predicted CDLs and substrates by SULT1E1 was investigated via LC-MS/MS 

methodology. The first step included incubation of the enzyme with each of the compounds in 

presence of cofactor PAPS at 37 °C for several hours under gentle shaking. Afterwards, samples 

were centrifuged and the supernatants were submitted to mass spectrometry-based detection of 

sulfonated products. The detection of products was conducted by Dr. Fabian Schumacher 

(University of Potsdam, Nuthetal, Germany). Due to lack of standards, the detection of sulfonates 

was performed qualitatively (Table 16).  

 

Table 16. Summary of sulfonation assays on predicted compounds. The predicted CDLs and substrates from the 

virtual screening of the DrugBank were experimentally assessed for SULT1E1 sulfonation via qualitative LC-MS/MS 

detection of sulfonated metabolites. The asterisk indicates mono- and bisulfonation. Abbreviations: CDL = 

concentration-dependent ligand. 

 

Using full MS scan for all compounds under investigation, a corresponding precursor ion could 

be detected indicating mono-sulfonated metabolites of SULT1E1 (precursor ions [M-H]- (m/z): 

335.0, 338.8, 349.9, 416.2, 320.8, 371.0, and 367.2 for compounds 1 to 4, and 7 to 9, respectively). 

Negative controls, i.e. samples that were incubated in absence of PAPS, did not show signals of 

sulfonated molecules. For compounds 1 and 2, multiple LC peaks were found for the mono-

sulfonated metabolites indicating sulfonation at different positions of the molecules.  

Compound nr. DrugBank entry In silico prediction IC50 [µM] Sulfonation 

1 DB03285 

CDL 

5.33 ± 0.45 Yes* 

2 DB07708 3.15 ± 0.51 Yes* 

3 DB06832 0.52 ± 0.04 Yes* 

4 DB08770 89.3 ± 3.2 Yes 

7 DB07880 

Substrate 

1,298 ± 140 Yes 

8 DB08252 21.3 ± 1.2 Yes 

9 DB07702 0.09 ± 0.01 Yes 
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Figure 26. Product ion mass spectra of sulfonated metabolites of isoliquiritigenin (1), indazole-Cl (2), 

prinaberel (3), ZM241385 (4), 2-(4-hydroxyphenylazo)-benzoid acid (7), Amb444666 (8), and 17-epiestriol 

(9). Deprotonated precursor ions ([M-H]-) are indicated by black rhombi. For each sulfonated metabolite, the predicted 

structure is given as inset in the corresponding spectrum. Two further metabolites were predicted for compounds 1 and 

2, which are indicated with an asterisk.  
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The retrospective visual analysis of the in silico prediction of those compounds confirmed this 

experimental finding which suggests that the prediction model not only identifies potential 

ligands of SULT1E1 but is also able to predict the site of metabolism. Furthermore, for compounds 

1, 2, and 3 but not compound 9 signals of precursor ions were found which designate bi-

sulfonation of molecules (precursor ions [M-2H]2- (m/z): 207.0, 209.0, and 214.5 for compounds 1, 

2, and 3,respectively).  

For further analysis of the mono-sulfonated metabolites, product ion scans were performed 

(Figure 26). All mass spectra of product ions of the sulfonated metabolites showed characteristic 

fragment ions that indicate cleavage of the sulfonate group (product ions [M-H-SO3]- (m/z): 255.0, 

258.0, 269.9, 336.2, 240.9, 291.3, and 287.3 for compounds 1 to 4 and 7 to 9, respectively). The 

spectra of compounds 2, 4, and 9 showed signals for the SO3- moiety (m/z 80) that was cleaved 

during fragmentation in the collision cell of the mass spectrometer.  

In summary, for predicted CDLs and substrates (compounds 1 to 4 and 7 to 9) the mass 

spectrometry-based detection of sulfonated molecules proved the occurrence of SULT1E1-

mediated sulfonation and subsequently the computer-based prediction.  

4.4.3. In silico evaluation of binding modes 
 

The experimental evaluation of the nine selected molecules that were predicted via the computer-

based prediction model for SULT1E1 activity showed inhibitory potential for the predicted CDLs 

and inhibitors, and sulfonation of the predicted CDLs and substrates. The experimental 

validation led to the question how the molecular mechanism of binding between the ligands and 

the protein would take place.  

To address this question, in silico docking simulations were performed using the nine molecules 

and the protein structure of SULT1E1. Being interested in the question which protein template 

(the PDB template 1HY393 or one of the five protein conformations that were extracted from the 

MD simulations and that differed from the template, specifically in active site shapes) would be 

most suitable for ligand binding, docking was performed following two different approaches, (i), 

ensemble docking of the nine molecules with the five protein structures extracted from MD 

simulations (P1 to P5) plus the PDB template 1HY393, and (ii), ensemble docking of the nine 

molecules with only the five MD protein structures P1 to P5. During docking, one hundred ligand 

conformations were generated for each compound, though the protein templates for these 

conformations may vary, i.e. some protein templates might be used more often as template than 

others. The docking results were statistically analysed regarding protein preferences that 
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occurred during docking. The number of docking events per ligand-protein complex was 

calculated and data matrices were turned into heat maps (Figure 27). 

The results of the first docking approach (i), including the five MD structures P1 to P5, and the 

PDB template, are depicted in Figure 27, left side. In total, five of the nine compounds were 

preferentially docked into the PDB structure with molecules 2, 3, 5, 6, and 9 being docked 96 %, 

97 %, 64 %, 58 %, and 97 % into the PDB template, respectively. Compound 1 was docked 66 % 

into P2 while compounds 7 and 8 were preferentially docked into P3. Molecule 4 was found to 

have equal preferences for P3 and the PDB with each covering 46 % of the docking events. The 

docking results did not indicate significant differences in docking preferences between the ligand 

classes of CDLs, inhibitors, and substrates.  

 

 

Figure 27. Ensemble docking results of the nine experimentally tested compounds. The nine compounds of 

CDLs (blue numbering), inhibitors (orange numbering), and substrates (green numbering) were each docked 100 times 

each into the protein conformations extracted from MD simulations (P1 to P5) and/or the PDB template 1HY393.  

 

The second docking approach (ii) using only the five MD proteins P1 to P5 depicted in Figure 27, 

right side, showed a docking preference for P3, with all compounds 2 to 9 being docked 100 %, 

79 %, 76 %, 59 %, 59 %, 88 %, 84 %, and 94 % into this conformation, respectively. Compound 1 

showed a preference for P2 with 82 % of the docking events found in this template. Overall, the 

ensemble docking results suggest superior suitability for ligand binding for the PDB template, 

closely followed by protein conformation P3 allowing ligands to bind the active site centre. 

Closer inspection and analysis of the individual ligand-protein complexes was performed in 

order to elucidate quality and quantity of ligand-protein interactions. Putative binding modes of 

the nine molecules towards SULT1E1 and their associated 3D pharmacophores are depicted in 

Figure 28 for CDLs, Figure 29 for inhibitors, and Figure 30 for substrates.  
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Figure 28. Putative binding modes of the four selected and experimentally evaluated molecules that were 

predicted CDLs of SULT1E1. The ligands depicted are isoliquiritigenin (1), indazole-Cl (2), prinaberel (3), and 

ZM241385 (4). The 3D pharmacophore features include hydrogen bond donors/acceptors (green/red arrows), 

hydrophobic contacts (yellow spheres), aromatic interaction (blue disks), and positive ionisable areas (blue-rayed star).  

 

 

 

Figure 29. Putative binding modes of the two selected and experimentally evaluated molecules that were 

predicted inhibitors of SULT1E1. The ligands depicted are Amb1890033 (5) and Amb1899186 (6). The 3D 

pharmacophore features include hydrogen bond donors/acceptors (green/red arrows), hydrophobic contacts (yellow 

spheres), and aromatic interaction (blue disks).  

 

All compounds regardless their nature (substrate, CDL, or inhibitor) have a hydroxyl group that 

was directed towards the active site centre building a hydrogen bond with the catalytically 

important amino acids His107. This important feature was also found in all four crystal structures 

of SULT1E1 (see also Table 7). Three of the four crystal structures also formed hydrogen bonds 

towards amino acid residue Lys105 – a feature found also in three of the nine investigated 

compounds (compounds 1, 4, and 8). All nine molecules built extensive hydrophobic contacts 

with the active site of SULT1E1 which was also found in the four crystal structures. Important 

aromatic and/or lipophilic amino acids such as Tyr20, Leu88, Phe138, Phe141, Val145, Ala146, 

Tyr168, Tyr239, and Phe254 line the active site in a barrel-like manner and interacted with 
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lipophilic moieties of the compounds. A summary of all 3D pharmacophore interactions is given 

in Table 17 for all nine substances.  

 

 

Figure 30. Putative binding modes of the selected and experimentally evaluated molecules that were 

predicted substrates of SULT1E1. The ligands are 2-(4-hydroxyphenylazo)benzoic acid (7), Amb4444666 (8), and 

epiestriol (9). The 3D pharmacophore features include hydrogen bond donors/acceptors (green/red arrows), 

hydrophobic contacts (yellow spheres), aromatic interaction (blue disks), and negative ionisable areas (red-rayed star). 
 

Table 17. Overview on 3D pharmacophores generated from ensemble docking of SULT1E1 ligands. 

Abbreviations: AR = aromatic interaction, CDL = concentration-dependent ligand, DB = DrugBank, H = hydrophobic 

contact, HBA = hydrogen bond acceptor, HBD = hydrogen bond donor, INH = inhibitor, N/PI = negative/ positive 

ionisable feature, SUB = substrate. The pound (#) indicates the number of interaction features.  

 

# Type DB entry # 
Pharmacophore interaction features 

HBD HBA H AR N/PI 

1 CDL DB03285 8 
Asp22, His107, 

Tyr168 

Tyr20, Lys105, 

Tyr168 

Tyr20, Phe141 - - 

2 CDL DB07708 6 
His107 - Tyr20, Phe141, Val145, 

Tyr168, Met247 

Tyr20 - 

3 CDL DB06832 5 
His107 - Tyr20, Phe138, Phe141, 

Val145, Tyr168, Met247 

Tyr20 - 

4 CDL DB08770 7 Asp22, His107 Lys105 Phe141, Ile246 Lys10 Phe142 

5 INH DB06950 8 

His107, Ala146 Lys85, Met89 Tyr20, Met89, Phe141, 

Val145, Ala146, Gly147, 

Tyr168, Tyr239, Met247, 

Phe254 

Gly147 - 

6 INH DB06978 8 

His107, Ala146 Lys85 Tyr20, Met89, Phe141, 

Val145, Ala146, Gly147, 

Tyr168, Tyr239, Met247, 

Phe254 

Gly147 - 

7 SUB DB07880 5 His107 Tyr20, Lys85 Tyr20, Phe141, Tyr168 Tyr20 Tyr20 

8 SUB DB08252 6 
His107 Tyr20, Lys85, 

Lys105 

Tyr20, Phe138, Phe141 Tyr20 Tyr20 

9 SUB DB07702 3 
His107 - Tyr20, Leu88, Phe141, 

Val145, Met247 

- - 
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5. DISCUSSION 

The aim of this study was to develop and validate an in silico prediction model for ligands of 

SULT subtype 1E1 which plays a role during phase II metabolism and shows high affinity 

towards estrogenic molecules. To this end, four consecutive steps were conducted starting with 

the analysis of SULT1E1 crystal structures to understand the structural basis of enzyme activity 

and substrate specificity (chapter 4.1). Based on the structural investigation, a computer-based 

model for SULT1E1 ligands was developed and validated that allows differentiation between 

substrates and inhibitors (chapter 4.2). The final prediction model was applied in a virtual 

screening of several publicly available databases to assess the extent of SULT metabolism on 

current drugs, natural products and chemicals (chapter 4.3). Lastly, a selection of compounds 

was chosen and experimentally tested for validation of the computer-based prediction model of 

SULT1E1 activity (chapter 4.4).   

5.1. Structural investigation on SULT1E1 
 

The first step of this study was to structurally investigate the enzyme to identify catalytically 

important features and descriptors influencing the substrate specificity of SULT1E1. The 

inspection of all available crystal structures of SULT1E1 revealed basic enzymatic features that 

were taken into account later on during model development. These features include the barrel-

like conformation of the active site which is lined with lipophilic and/or aromatic amino acid 

residues creating an environment that favours ligands with high LogP values and the catalytic 

centre at the inner end of the ligand-binding site consisting of catalytically important amino acids 

Lys105 and His107. The co-crystallised ligands from four of the PDB structures, which include 

highly potent inhibitors and the natural substrate E2 show similar binding conformations in 

which the hydroxyl groups of the ligands point towards the active site centre, i.e. His107 and 

cofactor PAPS, while occupying distances of 2.4 Å to 2.8 Å. The distance between the hydroxyl 

group of a substrate and His107 is of critical importance for the sulfonation reaction since this 

residue is responsible for deprotonating the substrate which triggers the nucleophilic attack of 

the substrate oxygen towards the sulphur of the cofactor. Interestingly, not only substrates 

occupy this position but also highly affine inhibitors as seen after crystal structure 

superimposition. The finding that inhibitors also occupy space in close proximity to His107 

indicates that this distance is important for sulfonation reactions but also enzyme inhibition. 

Another criterion that was reported to influence the substrate specificity of SULTs are the three 
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protein loops that surround the active site of SULTs. These loops have been reported to be flexible 

and are able to modulate the shape of the active site90. This loop flexibility could not be observed 

across the five crystal structures of SULT1E1 which showed nearly identical protein backbones. 

Only slight variations in protein backbone conformation were found in loop 1. The comparison 

of SULT1E1 to -1A1 and -2A1 revealed differences in loop conformations and also amino acid 

residue composition, especially in loop 1 and loop 2. This finding supports the theory that these 

loops shaping the active sites of SULTs contribute to specific substrate selectivities and that ligand 

binding also depends on the size and physicochemical properties of a molecule.  

5.2. Development of a prediction model for SULT1E1 
 

Based on observations obtained during structural investigations, a workflow for the development 

of a prediction model was developed (chapter 4.2.1). Molecular dynamics simulation was the 

method of choice to explore structural flexibility of the active of SULT1E1. Based on these 

simulations, protein conformations were extracted that had diverse loop conformations, i.e. 

diverse active site shapes. These conformations in combination with a ligand database of active 

SULT1E1 ligands were used in an ensemble docking approach to investigate protein-ligand 

interactions. After statistical and visual inspection of the docking results, 3D pharmacophores 

were created that were based on different ligand types (different molecular scaffolds) and classes 

(substrates, inhibitors, and CDLs) to address the broad ligand spectrum of SULT1E1 and to 

broaden the applicability of the model. For prediction refinement, machine learning models were 

created based on SVMs that allow substrate and inhibitor classification. The novelty of these 

models lies in the usage of the PFS as descriptors which, on the present state of our knowledge, 

has not been reported before.  

To this day, only two other structure-based prediction models have been published that 

incorporated protein flexibility by applying MD simulations to the enzyme to sample the 

conformational space187,188. The first study utilized docking in a virtual screening of the 

DrugBank40 and a distance cut-off was set to predict ligands of SULT subtypes 1A1 and 2A1 

reporting accuracies of 100 % (based on experimental evaluation of predicted substrates)187. In the 

second study applied to SULT1A1, -1A3, and -1E1 MD simulations and docking were performed. 

The resulting energy calculations were used to create QSAR models to predict ligands of the 

enzymes188. Though lacking experimental validation, their models achieved (retrospective) 

prediction accuracies of 67 %, 78 %, and 76 %188. In comparison, the here presented study showed 

a pharmacophore specificity of 60 % with a decoy rate of 2 % and a SVM classification accuracy 
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of 91 % and 85 % for substrates and inhibitors of SULT1E1, respectively. Furthermore, the results 

from the experimental evaluation of nine chosen compounds confirmed the in silico prediction. 

Unfortunately, the selection of tested molecules was restricted to a number of nine. Nevertheless, 

almost one third of the molecules that were predicted ligands of SULT1E1 were confirmed 

through literature search which indicates solid reliability of the prediction model. 

Evidence of active site flexibility caused by the protein loops of SULTs203, led to the decision of 

performing MD simulations on SULT1E1 as a first step of the model development, even though 

the five available crystal structures of SULT1E1 showed only minor indications of such flexibility 

(chapter 4.2.2). The simulations of SULT1E1 in presence and absence of cofactor PAPS displayed 

increased flexibility of the protein backbone, especially in loop 1 with fluctuations of up to 6.8 Å. 

In general, substrate specificities of different SULT subtypes are very distinct. SULT1A1, -1E1, 

and -2A1 have substrate preferences for small phenolic molecules, estrogens, and 

hydroxysteroids, respectively. Interestingly, SULT2 enzymes evolutionarily lack loop 1 leaving 

the active site entry more open to bigger ligands. It could be surmised that the increased flexibility 

of loop 1 observed in SULT1E1 enables larger ligands to bind, such as molecules with steroidal 

scaffold similar to SULT2 enzymes. Further it was stated by Cook et al. that loop 3 is divided by 

a hinge region and that the active site oscillates between a closed and an open state194,204. This 

finding was supported by the MD simulations of SULT1E1 in which the division of loop 3 into a 

part covering the active site and another part covering the cofactor binding site resulted in a 

disjunction of loop 3 movements. In absence of cofactor PAPS, the part of loop 3 that covers this 

molecule, was highly flexible while staying closely attached to the protein in presence of the 

cofactor. Surmising that loop 3 plays a crucial role in the formation of dead-end complexes, the 

energy barrier for PAP release after sulfonation might force the enzyme to prolong its inactive 

state with catalytically-incompetent PAP bound. PAP release was also found to be the rate-

limiting step98,99 supporting this theory of the origin of dead-end complexes.  

An advantage of performing MD simulations is the possibility to simulate protein conformations 

that differ from the template structure. Although, it should be noted that according to the Ergodic 

hypothesis which states that the time average equals the ensemble average, full conformational 

sampling is restricted by simulation time. If a simulation is ergodic and indefinitely evolves in 

time, eventually the system will adopt all possible conformations. Due to the fact that MD 

simulations are restricted to time scales ranging from nano- to miliseconds, sampling of the 

conformational space of the molecular system is limited. Here, MD simulation trajectories were 

clustered based on active site conformations and extracted for further docking experiments 

(chapter 4.2.4). Studies have been published reporting benefits from using ensemble docking with 
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multiple protein structures328,329. It should be mentioned, that the protein template, PDB crystal 

structure 1HY3, which was used for MD simulations, was excluded from the ensemble docking 

approach and only ten protein conformations were used that were extracted from MD 

trajectories. It would have been interesting to investigate protein preferences for ligand-binding 

during ensemble docking between the PDB template and the ten MD conformations. This 

approach was used later in this study. In two ensemble docking experiments, the nine 

experimentally tested compounds were docked into cofactor-bound MD conformations P1 to P5 

in absence and presence of the PDB template. Comparing the results of these two approaches via 

heat mapping, the PDB template showed increased suitability for ligand binding since the 

majority of the nine compounds was docked preferentially into the PDB template. In absence of 

the PDB, docking preferences evolved towards cofactor-bound conformation P3. 

Based on MD simulations and ensemble docking, eight specific 3D pharmacophores were created 

(chapter 4.2.5). Cofactor-bound protein conformations were chosen as structural templates to 

model the 3D pharmacophores based on catalytically competent enzyme states (in contrast to the 

apo conformations). The phenomenon of substrate inhibition and thus the differentiation 

between substrates and inhibitors was addressed on the assumption that these molecules – 

although occupying the same space in the active site of SULT1E1 - have different interaction 

patterns with the enzyme in terms of pharmacophore features. Thus, specific 3D pharmacophores 

were created that enable efficient virtual screening of molecule databases and identification of 

substrates, inhibitors, and CDLs regarding specific ligand-protein interactions. These eight 3D 

pharmacophores were developed based on different ligands featuring various chemical scaffolds 

to cover a broad range of potential active ligands of SULT1E1. Additionally, these 3D 

pharmacophores take into consideration the steric environment of the active site of SULT1E1 and 

thereby also reflect the structural flexibility and active site volume (restrictions) of the enzyme. 

Nevertheless, the phenomenon of substrate inhibition of SULTs has not been fully elucidated yet 

and still, many hypotheses exist regarding its causes. One of the proposed reasons for substrate 

inhibition in SULTs is the formation of so-called dead-end complexes, i.e. un-sulfonated cofactor 

PAP bound to the enzyme, which renders it catalytically incapacitated. These dead-end 

complexes could not be considered during prediction model development due to infeasibility of 

incorporating this factor into a computer-based prediction model. Another hypothesised reason 

for substrate inhibition in SULTs is the presence of multiple binding sites, though a remotely-

placed binding site in SULTs has not been reported (presumably also due to the small size of the 

enzyme of 35 kDa). Nevertheless, an allosteric binding site within the active site was proposed in 

several studies on SULT subtype 1A1 and evidence for double-ligand binding to the enzyme was 
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supported by x-ray crystallography330,331. The available crystal structures of SULT1E1 do not 

indicate the existence of such an allosteric binding site for this SULT subtype and allosteric 

binding was not considered in the presented final prediction model of SULT1E1. The 

phenomenon of substrate inhibition turns the endeavour of developing a prediction tool for SULT 

activity into a difficult process. Another factor that influences enzyme kinetics, which is highly 

challenging to abstract into an in silico prediction model is the change of cofactor concentrations 

in the cytosol of a cell. It has been shown that PAPS concentrations highly vary in vivo depending 

on the tissue and also depending on the sulfonation rates and the activity of PAPS-forming 

reactions332. Furthermore, PAPS concentrations depend on the presence or concentration of 

cytosolic and systemic sulfate which might vary depending on the physiological state of the 

human body. Thus, fluctuations in cytosol composition, concentrations in sulfate, PAPS, and 

enzymes, and other cytosolic interactions all together influence enzyme activity, such as 

SULT1E1, and complicate in vivo prediction accuracies. The developed prediction model reported 

here addresses the two physiologically relevant reactions of enzyme inhibition and sulfonation 

which are predicted based on the 3D pharmacophore fit of a molecule, its physicochemical 

properties, and its steric conformity towards the active site of SULT1E1. Due to the fact that an 

ensemble of 3D pharmacophores was developed based on different ligand types (molecular 

scaffolds) and classes (substrates, inhibitors, and CDLs), a broad range of potential substrates can 

be covered during virtual screening. Nevertheless, the overall specificity of 60 % (based on the 

test set of active molecules) indicates incomplete coverage of the full range of active ligands. 

Fortunately, the usage of 3D pharmacophores as prediction model provides the opportunity to 

easily expand the model by creating more pharmacophores to increase the specificity of the 

prediction model and to increase the applicability of the model. 

Two SVM models were trained to refine the prediction and classify hit molecules that were 

identified via pharmacophore screening into substrates and inhibitors (chapter 4.2.7). The 

accuracy of these two models showed solid classification performance (91 % for substrate 

classification and 85 % for inhibitor classification). In consideration of the fact that these machine 

learning models were used for prediction refinement and not as stand-alone prediction models, 

the choice of molecular descriptors that were used as classification criteria were kept relatively 

simple and manageable (pharmacophore fit scores and basic physicochemical descriptors). The 

final models were based on the best-performing combination of descriptors, leaving the models 

interpretable. This approach is also supported by the principle of 'Occam's razor' which is 

associated with the theoretical work of William of Ockham (1287 – 1347) and which suggests to 

select the hypothesis with the fewest assumptions in case of competing hypotheses (i.e. 
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supporting simplicity of hypotheses). Historically, this principle was adduced as a heuristic 

method for the development of theoretical models during scientific research333,334. Still, it would 

have been interesting to further explore whether the usage of other, more sophisticated 

descriptors, such as fingerprints, would have influenced model performance. Nevertheless, the 

chosen approach to keep the models simple and interpretable served our purpose of refining the 

prediction of hit molecules and evaluation of the final model indicated solid performance. 

5.3. Virtual screening and prediction of SULT1E1 ligands 
 

The prediction model was used in virtual screening approaches of the DrugBank40 and the vendor 

libraries from OTAVA Ltd. (database of drug-like chemicals) and AnalytiCon Discovery GmbH 

(database of natural products). The DrugBank screening resulted in 68 hits from which about 

28 % were identified as active ligands through literature search. Among the DrugBank hits were 

FDA-approved drugs with estrogenic properties, such as contraceptives or SERMs which reflects 

the substrate specificity for SULT1E1 for estrogenic compounds. The screening of the OTAVA 

and AnalytiCon databases resulted in 104 and 279 total hits, respectively. For AnalytiCon, 14 % 

of the inhibitors, about 30 % of the CDLs, and 24 % of the substrates could be validated through 

literature, indicating robust applicability of the prediction model on natural product libraries. 

From the 279 total hits of the AnalytiCon screening, three were confirmed through literature. The 

low number of identified hits might be caused by the chemical nature of the compounds and the 

fact that these compounds were not experimentally assessed as frequently as natural products or 

drugs. 

5.4. Experimental validation of predicted hits 
 

From the predicted DrugBank hits, nine compounds were selected for experimental evaluation 

which was conducted in collaboration with the German Institute of Human Nutrition (DIfE) 

Potsdam-Rehbrücke, Germany, and the University of Potsdam, Nuthetal, Germany. Two 

experimental approaches were established to address both reactions, enzyme inhibition and 

molecule sulfonation, and the experimental results confirmed our in silico hypotheses. 

Interestingly, two of the molecules that were classified as substrates also showed relatively strong 

enzyme inhibition (IC50 values of about 90 nM for compound 9 and about 21 µM for compound 

8). This finding triggers the question why these compounds were not predicted to be CDLs. To 

shed light on this matter, it should be noted that the here presented prediction model was based 



DISCUSSION 

 

86 
 

on a database of active ligands that were reported in current literature. Though very often, these 

experimental studies that report inhibition of SULT or sulfonation of molecules catalysed by 

SULT do not test (or report) both reactions but rather focus on either enzyme inhibition or the 

detection of metabolites. Generally, the computer-based prediction can only be as accurate as the 

experimental data it was built on, meaning in this case, that the prediction of a molecule being a 

substrate does not rule out the possibility of potential enzyme inhibition by the same molecule. 

Thus, every prediction should be taken with care and should only be used for guidance or alert 

during drug discovery campaigns. 
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6. CONCLUSIONS AND OUTLOOK 

Acting in phase II metabolism, the enzyme family of SULTs is responsible for the 

biotransformation of molecules serving detoxification. Due to their involvement in drug 

inactivation and the transformation of substances into chemically reactive metabolites, SULT 

metabolism is a criterion that should be considered during development and risk assessment of 

novel active substances. The aim of the present study was to develop, validate and apply a 

computer-based prediction model for SULT1E1 ligands that allows efficient virtual screening of 

large databases, identification of active molecules, and further differentiation into SULT1E1 

substrates and inhibitors.  

 

Investigations of SULT crystal structures and sequence alignments revealed structural elements 

that are important for ligand binding and allow distinction between the SULT subtypes 1E1, 1A1, 

and 2A1. For the development of an in silico prediction model of SULT1E1 ligands, a specific 

workflow was designed based on MD simulations to investigate structural flexibility of the 

enzyme, which was linked to their broad substrate spectra and sample the conformational space 

to generate conformations that differ from the conformation found in SULT1E1 crystal structures. 

An ensemble of structurally diverse protein conformations was extracted and used in an 

ensemble docking approach to generate ligand-target complexes of active SULT1E1 ligands 

including substrates, inhibitors, and CDLs. Statistical analysis of the docking performance 

resulted in heat maps that provided useful guidance for the selection of ligand-protein complexes 

for further 3D pharmacophore development. Based on a selection of complexes, eight specific 3D 

pharmacophores were created, addressing different ligand types (substrates, inhibitors, and 

CDLs) and classes (different binding affinities or IC50 values). These eight 3D pharmacophores 

were validated based on a test set and overall sensitivity and specificity were 60 % and 98 %, 

respectively. In order to refine the pharmacophore-based prediction, which was ambiguous in 

some instances, a specific substrate filter was established that was used to filter out molecules 

without hydroxyl group (which is a prerequisite for sulfonation reactions). Furthermore, two 

classification models based on SVMs were developed to efficiently classify predicted hits into 

substrates or inhibitors of SULT1E1. These classification models were based on basic molecular 

descriptors and the pharmacophore fit score to keep the model simple and interpretable. The 

prediction accuracies of the substrate and the inhibitor SVM models equalled 91 % and 85 %, 

respectively. 
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The final prediction model was used in a virtual screening of the DrugBank consisting of about 

6,500 experimental and FDA-approved drugs to investigate the impact of SULT1E1 sulfonation 

and inhibition on current drugs. From the predicted 68 hit molecules, 28 % were found to be 

active SULT1E1 ligands through literature. A selection of nine compounds was experimentally 

tested in collaboration with the German Institute of Human Nutrition (DIfE) Potsdam-

Rehbrücke, Germany, and the University of Potsdam, Germany. The experimental evaluation 

was based on two approaches, firstly, to analyse inhibition of SULT1E1, and secondly, to 

determine sulfonation of selected compounds by the enzyme. The experimental results confirmed 

our computer-based hypotheses and led to the identification of compounds listed in the 

DrugBank that were not identified to be active on SULT before. Furthermore, the in silico 

prediction model allowed correct prediction of the site of metabolism of the tested substrates and 

could therefore not only be used for substrate identification but also SOM prediction. To date, the 

here presented prediction model is the first experimentally validated prediction model for 

SULT1E1 ligands that was based on a structure-based approach using MD simulations.  

Although this study reports on a successful development, validation, and application of an in 

silico prediction model for SULT1E1 ligands based on 3D pharmacophores and machine learning 

classification, there are certain points that could be addressed to further improve the reported 

model and, thus, the screening performance in the future as an extension of the presented work. 

As mentioned before, the eight developed 3D pharmacophores showed an overall specificity of 

60 % indicating insufficient coverage of the range of known active SULT1E1 ligands. The usage 

of 3D pharmacophores as a prediction tool provides the opportunity to extend the 

pharmacophore ensemble by new pharmacophore models to increase prediction specificity and 

to cover a broader range of potential SULT1E1 ligands. Another result confirming the lack of the 

model to cover all active ligands was the prediction of 68 hits after virtual screening of the 

DrugBank, i.e. a hit rate of about 1.1 % of the complete database. It was reported that about 75 % 

of all marketed drugs are also substrates of enzymes that belong to the phase II metabolism22. 

This indicates that the here presented prediction model of SULT1E1 might be too restrictive and 

should be extended to cover a broader range of active molecules.  

Another factor that could be improved is the practicability of the current model. Although the 

first step during in silico prediction, the 3D pharmacophore screening, is very feasible and 

efficient, the second part, i.e. the application of SVM models, is relatively inconvenient. Thus, 

streamlining the second part of the prediction by developing intuitive and user-friendly 

command line tools would improve practicability of the prediction model. In addition to that, the 
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development of an online application or implementation of the prediction model into a webserver 

would improve usability and speed even further. 

Also, the universality of the model could be improved regarding general metabolism prediction 

by including more prediction models for other SULT subtypes or even other metabolic enzymes, 

such as UDP-glucuronosyltransferases, into a more comprehensive prediction model. 

It could be hypothesized that the accuracy of the SULT1E1 prediction could be improved by 

incorporating high-quality kinetic data into the prediction model, such as kon and koff values. As 

mentioned before, the binding conformations of active substrates and inhibitors of SULT1E1 are 

relatively similar for these molecules regardless of their nature (inhibition or sulfonation). This 

raises the question what the defining factor is that differentiates substrates from inhibitors. As 

often reported for SULTs, dead-end complexes are among the main reasons for the phenomenon 

of substrate inhibition, caused by the presence of catalytically inactive PAP which renders the 

enzyme incapable of sulfonation. Surmising that ligand binding and un-binding rates will also 

play a role during substrate inhibition, it would be very interesting to conduct experiments 

measuring kon and koff rates of SULT1E1 substrates, inhibitors, and CDLs and investigate enzyme 

kinetics. The generation of such data and their incorporation into the prediction model might 

improve prediction accuracy. 

Moreover, only nine compounds were tested experimentally. In the future it would be interesting 

to investigate all predicted molecules for example in high-throughput assays and assess model 

accuracy based on experiments of the entire prediction.  
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7. EXPERIMENTAL SECTION 

7.1. Computational methods 
 

Molecular dynamics simulations 

As template for structure-based studies on human SULT1E1, Protein Data Bank (PDB) entry 

1HY393 (resolution of 1.8 Å) was selected. This enzyme was crystallised as a homodimer in 

complex with cofactor PAPS in its active form (instead of un-sulfonated PAP). Chain B of the 

crystallised enzyme was analysed and fixed (e.g. insertion missing atoms) using the software 

Molecular Operating Environment (MOE) 2010.12273. The prepared monomer was submitted to 

MAESTRO (SCHRÖDINGER release 2014-2, version 9.8) for protein preparation and set up of 

the system. Molecular dynamics (MD) simulations were performed using the Desmond MD 

package version 3.1.51335 and the OPLS-AA 2005 force field239. For pKa calculations, PROPKA336 

was applied and crystal water was removed beyond 5 from the protein. Using an orthorhombic 

box with a distance of 10 Å from the protein, the box was filled with simple point charge (SPC) 

water with a salt concentration of 0.15 M NaCl for overall neutral charge. Minimization 

conditions were set to 2000 iterations with a convergence threshold of 1.0 kcal/mol/Å and 

relaxation was achieved using the Desmond relaxation protocol for NPT conditions using the 

following time changes: 360 ps and 720 ps instead of 12 ps and 24 ps, respectively. All simulations 

were performed in triplicates with a total runtime of 100 ns each on the Soroban computer cluster 

at the Freie Universität Berlin.  Trajectory frames were recorded every 4.8 ps. MD simulations 

were analysed based on root-mean-square deviations (RMSDs) and root-mean-square 

fluctuations (RMSFs). RMSD-based clustering using the g_cluster tool of GROMACS225 was 

performed to extract diverse enzyme conformations with a focus on the active site (Cα atoms of 

residues 84 to 87, 237 to 259, and 142 to 150). The first 3000 frames were excluded from the 

clustering process (equals 14.4 ns). Gromos method was chosen as clustering method with cutoffs 

of 0.28 for PAPS-bound conformations and 0.25 for apo conformations. Cluster centres were 

extracted as pdb files for subsequent molecular modelling steps. 

Further, MD simulations were run in order to create dynophores of the ligand-protein complexes 

that were originally used to develop the eight 3D pharmacophores that were incorporated into 

the final prediction model of SULT1E1 ligands. These ligand-protein complexes were prepared 

and systems were built as described above. All eight systems were simulated for 100 ns in 

triplicates in presence of cofactor PAPS. The eight ligand-protein complexes were simulated as 

follows: SUB1 = P3 and Cole-2b [REF]; CDL1 = P5 and E2; CDL2 = P3 and kaempferol; INH1 = P5 
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and 2-OH-1,3,7,8-tetrachlorodibenzo-p-dioxin; INH2 = P3 and 4-OH-2,3,5,2’,4’,5’-

hexachlorobiphenyl; INH3 = P5 and 4-OH-2,2’,4’,6’-tetrachlorobiphenyl; INH4 = P3 and 2-OH-

7,8-dichlorodibenzo-p-dioxin; INH5 = P5 and daidzein-4-sulfate. Dynophores were kindly 

provided by Dominique Sydow using the DynophoreApp312.  

 

Dataset preparation 

In order to collect active ligands of human SULT1E1, literature search and investigation of the 

database BRENDA305 was performed. Reported substrates and inhibitors were collected and their 

3D structures were processed using the software Corina 3.0.0337. Minimization of the molecules 

was achieved based on the force field MMFF94338. Due to the fact that some active molecules 

showed substrate inhibition, i.e. they were simultaneously reported as substrates that are able to 

inhibit SULT1E1 in a concentration-dependent manner, these molecules were categorized as 

'concentration-dependent ligands', or CDLs. The full list of active molecules comprised 36 

substrates, 72 inhibitors, and 10 CDLs. For visualization of the datasets and identification of 

potential clusters or outliers, principal components analysis (PCA) was performed based on 

standard molecular descriptors calculated via MOE273. 

For developing and validating 3D pharmacophores, the subsets of inhibitors and substrates from 

the full list of collected molecules that are active on SULT1E1 were further partitioned into a 

training and a test set. Partitioning was manually performed based on structural similarity. The 

creation of decoys, i.e. presumably inactive molecules regarding SULT1E1, was performed using 

an in-house KNIME317 workflow implemented by Dr. Susanne Dupré that is based on the ZINC 

database339 and the online webserver Directory of Useful Decoys, Enhanced (DUD-E)266. 

 

Ensemble docking and 3D pharmacophores 

Based on active site clustering of the trajectories of MD simulations of the apo and cofactor-bound 

enzyme SULT1E1, ten conformations (5 apo and 5 PAPS-bound structures) were extracted for 

usage in an ensemble docking approach. Two ensemble docking runs were performed each with 

the training set of active molecules. One approach was based on the five apo and the second, 

based on the cofactor-bound structures. The input files were submitted to the GOLD suite v5.1243 

using default parameters and the Piecewise Linear Potential (ChemPLP) scoring function340. Each 

molecule was docking 100 times into the five apo or cofactor-bound conformations. The docking 

protocol was legitimized by reproduction of the conformation of ligand  3,5,3’,5’-

tetrachlorobiphenyl-4,4’-diol co-crystallised in PDBID 1G3M298. 
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The software LigandScout 3.1267-269 was used to analyse the ensemble docking results statistically 

in terms of 3D pharmacophore features. These features include hydrogen bond donors and 

acceptors, hydrophobic contacts, aromatic and ionic interactions. Data matrices were submitted 

to Gnuplot 4.6 for heat map generation. LigandScout was used to create 3D pharmacophores of 

selected protein-ligand complexes. Validation of the 3D pharmacophores was performed based 

on virtual screening of test set molecules. Sensitivity and specificity were calculated to guide 3D 

pharmacophore refinement based on the training set and to validate the final pharmacophores 

based on test set screening. 

Further, ensemble docking was performed using the nine selected compounds that were 

predicted from the virtual screening of the drug bank. Two ensemble docking approaches were 

pursued using either all five MD protein conformations extracted via clustering, P1 to P5, plus 

the PDB template 1HY3 [REF], or using only the five MD protein conformations, P1 and P5, in 

absence of the PDB template. Docking runs were performed as described above with 100 docking 

runs per ligand. The results were analysed based on 3D pharmacophore features using 

LigandScout267-269 and matrices with statistic data were transformed into heat maps using Gnuplot 

4.6. The docking conformations were carefully, visually analysed in LigandScout and 3D 

pharmacophores were created in order to characterize and investigate ligand-protein 

interactions.  

 

Virtual screening 

Databases were obtained from providers (DrugBank, OTAVA Ltd. and AnalytiCon Discovery 

GmbH) and molecules were prepared using the software MOE273. Screening libraries were 

created using the LigandScout tool idbgen with default parameters. Libraries to screen comprised 

the DrugBank 3.040, which consisted of 6,494 experimental and FDA-approved drugs, the OTAVA 

Ltd. database OTAVA green, that contained 137,912 molecules with properties matching 

Lipinski's Rule of Five, and the AnalytiCon MEGx database provided by AnalytiCon Discovery 

GmbH, which comprised 4,558 natural products from plant or microorganisms (size of databases 

equals number of molecules in the libraries after library generation via idbgen). All three libraries 

were screened with the eight developed 3D pharmacophores. Literature search using SciFinder341 

was performed on all hit molecules. 

 

Machine learning 

Classification models were developed based on selected active molecules from the previously 

created database of SULT1E1 ligands and decoys. In order to develop a classification model for 
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inhibitors and a separate classification model for substrates, two different approaches were 

pursued. The inhibitor training set comprised 57 molecules with 41 active and 16 inactive 

substances, and the test set included 1289 molecules with 27 active, 18 inactive, and 1244 decoy 

molecules. The threshold for inhibitor discrimination was defined as 10 µM (IC50). The training 

set for substrate classification contained 23 actives and 29 decoys, and the test set comprised 23 

actives and 979 decoys. Descriptor calculation which included standard molecular properties 

(relative topological surface area (Rel. TPSA), number of rotatable bonds, acceptors, donors, 

rings, cLogP, MW, and heavy atoms ) and the pharmacophore fit score (PFS)268 of the eight 3D 

pharmacophores was performed using LigandScout 3.1267-269. Definition of the PFS was is as 

follows: PFS = (10 x n) + (9 – 3 x min(r,3)) with n being the number of geometrically matched 

feature pairs, and r being the RMSD of the matched feature pair distance268. The software MOE273 

was used to handle molecule databases of training and test sets and KNIME317 was used for 

subsequent development of classification models for substrates and inhibitors of SULT1E1. 

Applied methods included support vector machines (SVM)342,343, decision trees (DT)344,345, neural 

networks (NN) (multi-layer perceptron)346, random forest (RF) and Naive Bayes classification 

(NB). 

Descriptor selection was performed manually for the SVM model and was legitimized in 

comparison to the WEKA KNIME node attribute selector which was used as an automated 

descriptor selector (Best fit method)317,318. The SVM models were built using a polynomial kernel 

with power, bias and gamma set to 1 and the final models for inhibitor and substrate classification 

were incorporated into the final prediction model. For reasons of comparison, other machine 

learning models were built in comparison to SVM models based on WEKA descriptor selections. 

The models based on ANN had the following settings: maximum number of iterations = 50, 

number of hidden layers = 1, number of hidden neurons per layer = 10. Decision tree settings 

included a pruning method to avoid overfitting. Applicability domains of input molecules were 

evaluated based on Euclidian distances. Model performance was assessed by creating confusion 

matrices including true positive (TP), false positive (FP), true negative (TN), and false negative 

(FN) hits. Classification quality was evaluated in terms of sensitivity (Se) (equation 5), specificity 

(Sp) (equation 6), accuracy (ACC) (equation 7), and Matthew’s correlation coefficient (MCC) 

(equation 8).  
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7.2. Experimental methods 
 

The experimental part of this study was conducted in the facilities of the German Institute of 

Human Nutrition (DIfE), Nuthetal, Germany, and the University of Potsdam, Nuthetal, 

Germany. The enzymatic assay was set up and conducted by Christin Rakers under supervision 

of Dr. Walter Meinl and Prof. Hansruedi Glatt (DIfE). The metabolite detection using mass 

spectrometry was performed by Dr. Fabian Schumacher under coordination of Prof. Burkhard 

Kleuser (University of Potsdam).  

 

Chemicals 

Carbosynth Limited (Berkshire, UK) supplied isoliquiritigenin (1) (CAS 961-29-5) and 17-

epiestriol (9) (CAS 1228-72-4) with purities of > 98 %. Indazole-Cl (2) (CAS 848142-62-1), 

prinaberel (3) (CAS 524684-52-4), ZM241385 (4) (CAS 139180-30-6) and 2-(4-

hydroxyphenylazo)benzoic acid (7) (CAS 1634-82-8) with compound purities of ≥ 98 % as well as 

α-naphthol (CAS 90-15-3) with a purity of > 99 % and α-naphthylsulfate, potassium salt (CAS 

6295-74-5) were purchased from Sigma-Aldrich (Taufkirchen, Germany). Ambinter (Orléans, 

France) supplied Amb1890033 (5) (CAS 341977-89-7), Amb1899186 (6) (CAS 769166-22-5) and 

Amb4444666 (8) (CAS 158860-23-2) with purities of 99 %, 99 %, and 93 %, respectively. 

Due to lack of vendor specifications, purities of compounds 5, 6, and 8 were assessed using an in-

house HPLC protocol. Compounds were dissolved in Acetonitrile and 0.1 % DMSO and 5 µl of 

each sample were injected into the HPLC. Runs were performed under isocratic conditions using 

80 %/ 20 % Acetonitrile/H2O with a total run time of 15 min. Calculated peak areas and absence 

of other peaks were used as indicators for compound purity. 

Using the recombinant enzyme PAPS synthetase 1 which is expressed in Escherichia coli, PAPS 

(3'-phosphoadenosine-5'-phosphosulfate) was produced and purified using preparative anion 

exchange HPLC. The purity of PAPS was determined as ≥ 99 % (HPLC with UV detection). 

 

Bacterial strains and cytosolic preparations 

The human enzyme SULT1E1 was expressed in S. typhimurium TA1538 using the pKK233-2 

expression vector as described previously347,348. After overnight growth of modified bacteria in 

presence of ampicillin (100 µg/ml) in Luria Broth medium (Roth, Karlsruhe, Germany) under 

shaking at 37 °C for 8 h, preparation of cytosolic, bacterial fractions was performed as described 

previously348,349. Using the bicinchoninic assay (Thermo Fisher Scientific, Bonn, Germany) 
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according to manufacturer’s recommendations, the final protein concentration was determined 

as 4.6 mg/ml. Aliquots were stored at -80 °C.  

 

Enzymatic assay of SULT1E1 

Based on preliminary assays to optimize experimental conditions, the incubation time of the 

enzyme SULT1E1 with substrate α-naphthol was set to 15 min and the protein concentration with 

linear formation of α-naphthylsulfate was determined to be 2.3 µg per incubation sample. Each 

sample contained a standard mixture of 50 mM potassium phosphate buffer (pH 7.4), 5 mM 

MgCl2, 50 µM PAPS, and 2.3 µg protein in a total volume of 100 µl. Pre-incubation of samples for 

2 min at 37 °C under gentle shaking was followed by substrate addition which initiates the 

enzymatic reaction. For determining Michaelis-Menten kinetics of α-naphthol sulfonation by 

human SULT1E1, ten different substrate concentrations were added to the incubation samples, 

ranging from 0.1 to 30 µM. After incubating the samples for 15 min at 37 °C under shaking, the 

enzymatic reaction was terminated by heat inactivation for 2 min at 95 °C. After another 10 min 

of incubation on ice, denatured, samples were centrifuged at 15,000 rpm at 4 °C for 10 min and 

supernatant was stored at –20 °C.  

Inhibition assays for the purchased compounds were conducted by pre-incubating standard 

sample mixtures with different concentrations of those compounds at 37 °C for 2 min under 

gentle shaking. The enzymatic reaction was initiated by adding 10 µM α-naphthol to the samples 

and subsequent steps were conducted as described above. The concentrations for the nine 

compounds were as follows: 1 to 10 µM for 1, 0.5 to 8 µM for 2, 0.1 to 1 µM for 3, 30 to 140 µM 

for 4, 50 to 800 nM for 5 and 6, 0.25 to 4 mM for 7, 5 to 80 µM for 8, and 75 to 300 nM for 9. 

To determine potential sulfonation of the purchased compounds, samples were incubated with 

compounds 1 to 4 and 7 to 9 using concentrations close to their IC50 values (8 µM of 1, 4 µM of 2, 

1 µM of 3, 200 µM of 4, 1 mM of 7, 30 µM of 8, and 200 nM of 9). In absence of previously used 

substrate α-naphthol, sample mixtures were incubated at 37 °C for 3 h under gentle shaking 

before terminating the reaction by heat inactivation (95 °C, 2 min) and subsequent cooling on ice 

for 10 min. Supernatants were stored at -20 °C after centrifugation at 15,000 rpm at 4 °C for 10 

min for liquid chromatography-tandem mass spectrometry (LC-MS/MS) measurements.  

All enzymatic assays were conducted in triplicates except for the preliminary tests that were 

performed to refine inhibitor concentrations. Analysis of data was executed using GraphPad 

Prism 5 from GraphPad Software (La Jolla, CA, USA). Based on the Michaelis-Menten model 

supported by Prism, Km and Vmax for α-naphthol sulfonation were determined to be 2.82 ± 0.49 
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µM and 1432 ± 78 pmol min-1 mg-1, respectively. IC50 values were determined by nonlinear 

regression (four parametric logistic standard curve analysis function).  

 

HPLC analysis 

α-Nahpthol and α–naphthylsulfate were determined in all enzyme assay samples using HPLC 

(Dionex, Idstein, Germany) with a NovaPak C18 column (4 µm, 150 x 3.9 mm) from Waters 

(Eschborn, Germany) at 30 °C isocratically with 0.1 M KH2PO4 containing (v/v) 0.1 % acetic acid, 

0.75 % isopropanol and 4 % methanol at a flow rate of 0.7 ml/min. Both analytes were detected at 

280 nm under ultraviolet detection and α-naphthylsulfate was determined under fluorescence 

detection (λex = 280 nm, λem = 340 nm). Using standards ranging from 1 to 1,000 nM, calibration 

curves of α-naphthylsulfate were prepared for quantification. 

 

LC-MS/MS analysis 

Due to lack of standards (i.e. sulfonated compounds 1 to 4 and 7 to 9), LC-MS/MS parameters 

could not be optimized for each individual compound. Chromatographic parameters and 

instrumental settings of the mass spectrometer based on a method previously described [REF] 

were kept identical for determination of sulfo-conjugated compounds. Metabolite analysis was 

performed using an Agilent 1260 Infinity LC system coupled to an Agilent 6490 triple 

quadrupole-mass spectrometer (both from Waldbronn, Germany) interfaced with an electrospray 

ion source operating in the negative ion mode (ESI-). Chromatographic separation was carried 

out using an Agilent Poroshell 120 EC-C18 column (2.7 µm, 3 x 50 mm) tempered at 30 °C with 

eluents A (10 mM ammonium acetate/methanol (90:10, v/v)) and B (acetonitrile/methanol (95:5, 

v/v)). Before injecting 20 µl of each sample into a mobile phase of 90 % eluent A, all samples from 

the enzyme assay described above were centrifuged at 15,000 rpm at 4 °C for 10 min. Using a 3-

min linear gradient to 30 % eluent A (flow rate 0.4 ml/min), analytes were eluted from the column. 

Including re-equilibration of the column, total run time was 7 min. The following settings of the 

ESI source were used: drying gas temperature = 120 °C, drying gas flow = 11 l/min of nitrogen, 

sheath gas temperature = 400 °C, sheath gas flow = 12 l/min of nitrogen, nebulizer pressure = 40 

psi, capillary voltage = 3000 V, nozzle voltage = 1500 V. For identification of the seven sulfonated 

compounds, all samples were first screened for precursor ions by full scan MS mode (m/z 100 to 

500). Identified precursor ions were then fragmented in the collision cell and characteristic 

product ions were determined via product ion scans (low mass cutoff: m/z 50). In order to obtain 

optimal product ion mass spectra, different collision energies ranging from 0 to 70 V were used.  
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Figure A- 1 Sequence alignment of SULT subtypes 2A1 (PDBID 3F3Y), 1E1 (PDBID 1HY3) and 1A1 (PDBID 

2D06). Amino acids of loops 1, 2 and 3 surrounding the active site of SULTs are highlighted through black boxes. 

Colouring of amino acids indicates the following: red = small and hydrophobic residues (incl. Y) (AVFPMILW), blue 

= acidic residues (DE), magenta = basic residues (excl. H) (RK), green = hydroxyl, sulfhydryl, amine (incl. G) 

(STYHCNGQ), grey = unusual amino/imino acids etc (other residues). Symbols underneath the sequences: asterisk (*) 

= positions with fully conserved residues; colon (:) = conservation between groups of strongly similar properties 

(scoring > 0.5 in the Gonnet PAM 250 matrix); period (.) = conservation between groups of weakly similar properties 

(scoring ≤ 0.5 in the Gonnet PAM 250 matrix).   
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List of active molecules of SULT1E1 
 
 

Table A- 1. List of active substrates of SULT1E1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A- 2. List of active inhibitors of SULT1E1. 

 Molecule IC50 [µM] Reference 

1 3',4',7-Trihydroxyisoflavone 4 143 

2 3',4'-Dihydroxyflavone 3 143 

3 3,6-Dihydroxyflavone 1 143 

4 3,7-Dihydroxyflavone 8 143 

5 6-Hydroxyflavanone 2 143 

6 6-Hydroxyflavone 0.7 143 

7 Baicalein 6 143 

8 Daidzein-4,7-bisulfate 10 143 

9 Daidzein-4-sulfate 20 143 

10 Daidzein-7-sulfate 20 143 

 Molecule Km [µM] Reference 

1 2-OH-Estradiol 0.22 127 

2 2-OH-Estrone 0.27 127 

3 4-OH-Estradiol 0.18 127 

4 4-OH-Estrone 0.31 127 

5 Compound 2a 0.99 311 

6 Compound 2b 1.42 311 

7 Compound 2c 1.42 311 

8 Compound 2d 2.11 311 

9 Compound 2e 1 311 

10 Compound 2f 0.9 311 

11 Compound 2g 2.36 311 

12 Compound 2h 0.56 311 

13 Compound 2i 0.52 311 

14 Compound 2j 0.25 311 

15 Compound 2k 1.32 311 

16 Compound 2l 0.12 311 

17 Compound 2m 0.77 311 

18 Compound 2n 0.43 311 

19 1-Naphthol 1 87 

20 6-Hydroxymethyl-naphthalen-2-ol 7 87 

21 Equilenin 1 87 

22 4-Hydroxytamoxifen 30 350 

23 Naringenin 10 350 

24 2-Naphtol 3 351 

25 6-Ethyl-naphthalen-2-ol 0.7 351 

26 6-Methyl-naphthalen-2-ol 1.3 351 

27 DHEA 0.2 352 

28 2-Methoxy-Estradiol 9* 353 

29 2-Methoxy-Estrone 5* 353 

30 4-Methoxy-Estradiol 13* 353 

31 4-Methoxy-Estrone 6* 353 

32 4-n-Nonylphenol 2.5 354 

33 4-t-Octylphenol 7.8 354 

34 Bisphenol_A 43 354 

35 3-alpha-Hydroxytibolone 0.18 355 

36 3-beta-Hydroxytibolone 0.48 355 
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11 Equol 0.6 143 

12 Formononetin 10 143 

13 Galangin 0.9 143 

14 Genistein-4-sulfate 20 143 

15 Hesperetin 3 143 

16 Kaempferol 2 143 

17 Luteolin 3 143 

18 Kehoe_1 0.25 306 

19 Kehoe_2 3 306 

20 3,3'-(OH)2-4,4'-Dichlorobiphenyl 0.0435 151 

21 3-OH-2,4,5,2',3',4',5'-Heptachlorobiphenyl 0.011 151 

22 3-OH-2,4,5,3',4'-Pentachlorobiphenyl 0.0225 151 

23 3-OH-4,5,2',3',4'-Pentachlorobiphenyl 0.49 151 

24 3-OH-4,5,3',4',5'-Pentachlorobiphenyl 0.315 151 

25 3-OH-4,5,3',4'-Tetrachlorobiphenyl 0.31 151 

26 4,4'-(OH)2-3,5,3',5'-Tetrachlorobiphenyl 0.00015 151 

27 4-OH-2,2',3',4',5'-Pentachlorobiphenyl 0.315 151 

28 4-OH-2,2',3',4',6'-Pentachlorobiphenyl 0.2225 151 

29 4-OH-2,2',3',5',6'-Pentachlorobiphenyl 0.355 151 

30 4-OH-2,2',4',6'-Tetrachlorobiphenyl 0.245 151 

31 4-OH-2',3',4',5'-Tetrachlorobiphenyl 0.645 151 

32 4-OH-2,3,5,2',3',4'-Hexachlorobiphenyl 0.00051 151 

33 4-OH-2,3,5,2',4',5'-Hexachlorobiphenyl 0.0099 151 

34 4-OH-2,3,5,3',4-Pentachlorobiphenyl 0.0002 151 

35 4-OH-2,3,5,6,2',4',5'-Heptachlorobiphenyl 0.0184 151 

36 4-OH-2',4',6'-Trichlorobiphenyl 0.64 151 

37 4-OH-3,2',3',4',6'-Pentachlorobiphenyl 0.185 151 

38 4-OH-3,2',3',5',6'-Pentachlorobiphenyl 0.315 151 

39 4-OH-3,2',4',6'-Tetrachlorobiphenyl 0.23 151 

40 4-OH-3,3',4'-Trichlorobiphenyl 0.00605 151 

41 4-OH-3,5,2',3',4',5'-Hexachlorobiphenyl 0.025 151 

42 4-OH-3,5,2',3',4'-Pentachlorobiphenyl 0.00029 151 

43 4-OH-3,5,3',4',5'-Pentachlorobiphenyl 0.00044 151 

44 4-OH-3,5,3',4'-Tetrachlorobiphenyl 0.00041 151 

45 4-OH-3,5,3',5'-Tetrachlorobiphenyl 0.000735 151 

46 1-OH-2,4,7,8-Tetrachlorodibenzofuran 0.26 152 

47 2-OH-1,3,7,8-Tetrachlorodibenzofuran 0.0039 152 

48 2-OH-1,3,7,8-Tetrachlorodibenzo-p-dioxin 0.00425 152 

49 2-OH-3,7,8-Trichlorodibenzo-p-dioxin 0.034 152 

50 2-OH-6,7,8-Trichlorodibenzofuran 0.575 152 

51 2-OH-7,8-Dichlorodibenzofuran 0.395 152 

52 2-OH-7,8-Dichlorodibenzo-p-dioxin 0.295 152 

53 3,3',5,5'-Tetrabromobisphenol_A 0.0225 152 

54 3,3',5,5'-Tetrachlorobisphenol_A 0.041 152 

55 3-OH-2,4,7,8,9-Pentachlorodibenzofuran 0.00018 152 

56 3-OH-2,4,7,8-Tetrachlorodibenzofuran 0.00144 152 

57 3-OH-2,6,7,8-Tetrachlorodibenzofuran 0.0074 152 

58 4-OH-1,3,6,7-Tetrachlorodibenzofuran 0.00665 152 

59 4-OH-2',3,4',5,6'-Pentabromodiphenylether 0.22 152 

60 Meclofenamic acid 6.5 131 

61 2-OH-3,2'-Dibromobiphenyl 3.1 356 

62 3-OH-2,2'-Dibromobiphenyl 0.32 356 

63 3-OH-4,4'-Dibromobiphenyl 0.44 356 

64 4-OH-2,2'-Dibromobiphenyl 0.64 356 

65 4-OH-3,4'-Dibromobiphenyl 0.04 356 
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66 4-OH-4'-Monobromobiphenyl 0.47 356 

67 6-OH-2,2'-Dibromobiphenyl 1 356 

68 Dienestrol 2.1 294 

69 Hexestrol 0.54 294 

70 Zearalenone 0.64 294 

71 Enterolactone 1.25 357 

72 Progesterone 2.7 357 

 

 

Table A- 3. List of active CDLs of SULT1E1. 

 Molecule Km  [µM] Reference IC50 [µM] Reference 

1 17-β-Estradiol, E2 0.02 87 0.03 357 

2 Apigenin 5.3 358 3 143 

3 Chrysin 4.5 358 5 143 

4 Daidzein 3.4 359 5 143 

5 Diethylstilbestrol, DES 10 87 0.75 357 

6 Estrone, E1 0.11 127 0.005 357 

7 Ethinylestradiol, EE 1 87 0.06 357 

8 Genistein 10 350 0.5 143 

9 Quercetin 2 358 1.4 360 

10 Resveratrol 0.53 360 1.6 360 
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Plots from MD simulations of SULT1E1  
 

 

 
Figure A- 2. RMSD plots (Cα-atoms) of the protein SULT1E1 from MD simulations of apo and cofactor-

bound conformations. Total simulation time was 100 ns for each run.  
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Figure A- 3. RMSD plots of the cofactor PAPS bound to SULT1E1 from MD simulations. The RMSD values 

were calculated based on all heavy atoms of the cofactor PAPS. Total simulation time was 100 ns for each run. 
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Figure A- 4. RMSF plots of the amino acid residues of SULT1E1 from MD simulations of apo and cofactor-

bound SULT1E1. The simulation time equalled 100 ns.  
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ROC Curves of the 3D pharmacophore validation 
 

 

 

 

Figure A- 5. ROC curves for the substrate-, CDL- and inhibitor-pharmacophore validation. The 3D 

pharmacophore features include hydrogen bond donors/acceptors (green/red spheres), hydrophobic contacts (yellow 

spheres) and aromatic interaction (blue disks).  
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Decision trees for inhibitor and substrate classification 
 

 

 

Figure A- 6. Decision tree for inhibitor classification of SULT1E1 ligands.  
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Figure A- 7. Decision tree for substrate classification of SULT1E1 ligands.  
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Pharmacophore hits from DrugBank screening that were excluded 

in subsequent steps 
 

 

Figure A- 8. Compounds that were predicted via 3D pharmacophore screening of the DrugBank but classified 

as inactive hits through SVM classification and post-filtering.  
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Table of DrugBank screening hits 
 
Table A- 4. Complete list of predicted molecules from the DrugBank screening. (Yellow rows indicate the 

molecules that were experimentally tested; * found in species other than human or SULT subtype not specified; ** 

Daidzin is hydrolysed by the intestinal microbiota to the de-glycosylated form daidzein, which is reported to be 

sulfonated359,361; Abbreviations: CDL = concentration-dependent ligand, INH = inhibitor, n/a = not available, SUB = 

substrate. 

# DB entry Name 
In silico 

prediction 

commercial 

availability 

Reported 

ligand in 

SULT1E1 

(Literature) 

Reported 

ligand in 

SULT* 

(Literature) 

1 DB00162 Retinol SUB +     

2 DB01014 Balsalazide SUB +     

3 DB01250 Olsalazine SUB +   362
 

4 DB02115 Daidzin SUB + 359,361**   

5 DB02224 Quercetin SUB + 358
   

6 DB02699 4-Oxoretinol SUB +     

7 DB03124   SUB n/a     

8 DB03467 Naringenin SUB + 350   

9 DB03623   SUB n/a     

10 DB04573 Estriol SUB + 294,363   

11 DB06884   SUB n/a     

12 DB06898   SUB +   364
 

13 DB07502   SUB n/a     

14 DB07510   SUB n/a     

15 DB07702 17-Epiestriol SUB +     

16 DB07880 
2-(4-Hydroxyphenylazo)-

benzoic acid 
SUB +     

17 DB07914   SUB n/a     

18 DB08048   SUB n/a     

19 DB08181   SUB n/a     

20 DB08216   SUB n/a     

21 DB08252 Amb4444666 SUB +     

22 DB08480   SUB n/a     

23 DB08773 Raloxifene core SUB + 166,294   

24 DB00255 Diesthylstilbestrol CDL + 87,357   

25 DB00481 Raloxifene CDL + 166,294   

26 DB00783 Estradiol CDL + 87,357   

27 DB00890 Dienestrol CDL + 294
   

28 DB00977 Ethinylestradiol CDL + 164,357   

29 DB01645 Genistein CDL + 143,350   

30 DB01852 Kaempferol CDL + 143,359   

31 DB02323   CDL n/a     

32 DB02709 Resveratrol CDL + 360,365   

33 DB03285 Isoliquiritigenin CDL +     

34 DB03601 Liquiritigenin CDL +   366
 

35 DB04202 Isoformononetin CDL +     

36 DB04216 Quercetin CDL + 358,360   

37 DB06832 Prinaberel CDL +     

38 DB06875   CDL n/a     
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39 DB06927   CDL n/a     

40 DB06937   CDL n/a     

41 DB07009   CDL n/a     

42 DB07032   CDL +     

43 DB07119   CDL n/a     

44 DB07198   CDL n/a     

45 DB07230   CDL n/a     

46 DB07236   CDL n/a     

47 DB07352 Apigenin CDL + 143,358   

48 DB07706 2-Hydroxyestradiol CDL + 127
   

49 DB07708 Indazole-Cl CDL +     

50 DB07712   CDL n/a     

51 DB07795 Fisetin CDL + 143
   

52 DB07931 Hexestrol CDL + 294
   

53 DB08399 Piceatannol CDL + 167
   

54 DB08466 Dihydroresveratrol CDL +   367
 

55 DB08517 Sakuranetin CDL +   368
 

56 DB08770 ZM241385 CDL +     

57 DB06949   INH n/a     

58 DB06950 Amb1890033 INH +     

59 DB06978 Amb1899186 INH +     

60 DB07047   INH n/a     

61 DB07098   INH n/a     

62 DB07638   INH n/a     

63 DB07694   INH +     

64 DB07832   INH n/a     

65 DB08100   INH n/a     

66 DB08101   INH n/a     

67 DB08205   INH n/a     

68 DB08206   INH n/a     
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Dynophore data 
 
Table A- 5. RMSD values from MD simulations of ligand-protein complexes for dynophore generation. The 

eight ligand-protein complexes were simulated as follows: SUB1 = P3 and Cole-2b311; CDL1 = P5 and E2; CDL2 = P3 

and kaempferol; INH1 = P5 and 2-OH-1,3,7,8-tetrachlorodibenzo-p-dioxin; INH2 = P3 and 4-OH-2,3,5,2’,4’,5’-

hexachlorobiphenyl; INH3 = P5 and 4-OH-2,2’,4’,6’-tetrachlorobiphenyl; INH4 = P3 and 2-OH-7,8-dichlorodibenzo-

p-dioxin; INH5 = P5 and daidzein-4-sulfate. Abbreviations: avg = average RMSD of Cα-atoms of the protein backbone, 

MD = molecular dynamics, std = standard deviation for the average RMSD value. 

 

 

 

 

 

 

 

 

 

 

 

Complex MD run 
Protein RMSD Ligand RMSD PAPS RMSD 

avg std avg std avg std 

SUB1 1 1.58 0.32 1.07 0.40 0.77 0.14 

  2 1.58 0.32 1.27 0.44 0.80 0.15 

  3 1.37 0.18 1.46 0.41 0.73 0.17 

CDL1 1 1.37 0.14 0.53 0.12 0.43 0.09 

  2 1.40 0.17 0.53 0.12 0.42 0.10 

  3 1.49 0.17 0.50 0.16 0.41 0.09 

CDL2 1 1.44 0.16 1.19 0.60 0.72 0.18 

  2 1.79 0.23 1.35 0.52 0.79 0.15 

  3 1.76 0.27 1.05 0.52 0.90 0.17 

INH1 1 1.52 0.24 0.31 0.09 0.49 0.10 

  2 1.62 0.35 0.38 0.13 0.54 0.17 

  3 1.44 0.28 0.41 0.13 0.43 0.10 

INH2 1 1.72 0.38 0.51 0.18 0.79 0.17 

  2 1.50 0.23 0.37 0.08 0.72 0.19 

  3 1.79 0.18 0.67 0.20 0.70 0.17 

INH3 1 1.44 0.19 0.43 0.15 0.63 0.10 

  2 1.29 0.10 0.32 0.09 0.42 0.13 

  3 1.44 0.13 0.39 0.11 0.41 0.10 

INH4 1 1.49 0.26 0.23 0.06 0.75 0.17 

  2 1.58 0.24 0.29 0.12 0.75 0.18 

  3 1.56 0.19 0.41 0.10 0.79 0.16 

INH5 1 1.52 0.16 1.46 0.34 0.65 0.19 

  2 1.44 0.11 1.51 0.37 0.42 0.09 

 3 1.49 0.17 1.73 0.41 0.60 0.21 
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Table A- 6. Summary of pharmacophore features occurring during MD simulations of ligand-protein 

complexes. The eight underlying ligand-protein complexes for the models were as follows: SUB1 = P3 and Cole-2b 

[REF]; CDL1 = P5 and E2; CDL2 = P3 and kaempferol; INH1 = P5 and 2-OH-1,3,7,8-tetrachlorodibenzo-p-dioxin; 

INH2 = P3 and 4-OH-2,3,5,2’,4’,5’-hexachlorobiphenyl; INH3 = P5 and 4-OH-2,2’,4’,6’-tetrachlorobiphenyl; INH4 = 

P3 and 2-OH-7,8-dichlorodibenzo-p-dioxin; INH5 = P5 and daidzein-4-sulfate. Dynophores were kindly provided by 

Dominique Sydow using the in-house tool DynophoreApp. 

MODEL  % Pharmacophore feature  % Pharmacophore feature  % Pharmacophore feature 

SUB1 0.1 AR 2994, 2997, 2992, 

2991, 2998, 2993 %0.1 

1.9 AR 2991, 2989, 2992, 2990, 

2988 %1.9 

0.3 AR 4849, 4847, 4850, 

4848, 4846 %0.3 

    3.8 AR 2994, 2997, 2992, 2991, 

2998, 2993 %3.8 

1.9 AR 4851, 4850, 4854, 

4855, 4849, 4852 %1.9 

  1.9 AR 3003, 3013, 3004, 

3012, 3002, 3005 %1.9 

0.8 AR 3003, 3013, 3004, 3012, 

3002, 3005 %0.8 

1.0 AR 4856, 4858, 4863, 

4859, 4862, 4857 %1.0 

  0.2 H 2988 %0.2 0.2 H 2988 %0.2 0.4 H 4846 %0.4 

  99.8 H 2991, 2989, 2992, 2990, 

2988 %99.8 

99.8 H 2991, 2989, 2992, 2990, 

2988 %99.8 

99.6 H 4849, 4847, 4850, 

4848, 4846 %99.6 

  100 H 2997, 2992, 2993, 2998, 

2994, 2991 %100.0 

100 H 2997, 2992, 2993, 2998, 

2994, 2991 %100.0 

100 H 4854, 4851, 4850, 

4855, 4852, 4849 %100.0 

  99.9 H 3005, 3013, 3003, 3002, 

3004, 3012 %99.9 

99.9 H 3005, 3013, 3003, 3002, 

3004, 3012 %99.9 

98.9 H 4856, 4859, 4863, 

4862, 4857, 4858 %98.9 

  0.0 HBA 2990 %0.0 0.0 HBA 2990 %0.0 0.9 HBA 4848 %0.9 

  27.8 HBA 2995 %27.8 23.1 HBA 2995 %23.1 21.8 HBA 4853 %21.8 

  70.1 HBD 2995 %70.1 61.9 HBD 2995 %61.9 31.5 HBD 4853 %31.5 

  36.0 HBD 3006 %36.0 20.2 HBD 3006 %20.2 34.4 HBD 4860 %34.4 

CDL1 100 H 4850, 4886, 4885, 4848, 

4851, 4849 %100.0 

100 H 4850, 4886, 4885, 4848, 

4851, 4849 %100.0 

100 H 4866, 4850, 4848, 

4865, 4849, 4851 %100.0 

  3.2 H 4855, 4859, 4854, 4856, 

4860 %3.2 

3.4 H 4855, 4859, 4854, 4856, 

4860 %3.4 

    

  0.6 H 4859 %0.6 0.6 H 4859 %0.6 3.1 H 4858 %3.1 

  0.2 H 4860 %0.2 0.2 H 4860 %0.2 1.3 H 4859 %1.3 

  2.1 H 4866 %2.1 2.0 H 4866 %2.0 2.1 H 4860 %2.1 

  3.5 H 4867 %3.5 3.4 H 4867 %3.4 3.7 H 4861 %3.7 

  91.0 H 4872 %91.0 99.6 H 4872 %99.6 98.6 H 4862 %98.6 

  1.3 H 4877 %1.3 1.3 H 4877 %1.3 1.0 H 4863 %1.0 

  0.1 H 4878 %0.1 0.1 H 4878 %0.1 0.2 H 4864 %0.2 

  83.3 HBA 4847 %83.3 60.6 HBA 4847 %60.6 94.7 HBA 4847 %94.7 

  3.0 HBA 4857 %3.0 21.9 HBA 4857 %21.9 61.4 HBA 4857 %61.4 

  98.4 HBD 4847 %98.4 96.5 HBD 4847 %96.5 99.9 HBD 4847 %99.9 

  19.0 HBD 4857 %19.0 16.1 HBD 4857 %16.1 18.3 HBD 4857 %18.3 

CDL2 1.0 AR 2987, 2989, 2992, 

2990, 2991, 2988 %1.0 

2.3 AR 4850, 4846, 4847, 4849, 

4848, 4845 %2.3 

0.2 AR 4849, 4846, 4845, 

4847, 4850, 4848 %0.2 

  19.3 AR 3002, 3000, 2998, 

3003, 3001, 2999 %19.3 

28.3 AR 4852, 4854, 4857, 4855, 

4856, 4853 %28.3 

3.1 AR 4852, 4857, 4855, 

4854, 4856, 4853 %3.1 

  0.7 AR 3010, 3000, 3008, 

3001, 3009, 3007 %0.7 

30.6 AR 4863, 4855, 4861, 4860, 

4854, 4862 %30.6 

19.3 AR 4854, 4862, 4863, 

4860, 4855, 4861 %19.3 

  100 H 2990, 2992, 2987, 2989, 

2991, 2988 %100.0 

99.4 H 4849, 4846, 4847, 4845, 

4850, 4848 %99.4 

98.9 H 4845, 4848, 4847, 

4849, 4846, 4850 %98.9 

  72.6 HBA 2994 %72.6 47.3 HBA 4851 %47.3 19.6 HBA 4851 %19.6 

  0.5 HBA 3004 %0.5 1.2 HBA 4858 %1.2 14.9 HBA 4858 %14.9 

  0.0 HBA 3006 %0.0 3.4 HBA 4859 %3.4 11.3 HBA 4859 %11.3 

  74.6 HBA 3012 %74.6 7.9 HBA 4864 %7.9 28.7 HBA 4864 %28.7 

  0.3 HBA 3015 %0.3 3.2 HBA 4865 %3.2 3.3 HBA 4865 %3.3 
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  71.3 HBD 2994 %71.3 90.2 HBD 4851 %90.2 55.5 HBD 4851 %55.5 

  28.9 HBD 3004 %28.9 36.3 HBD 4858 %36.3 42.2 HBD 4858 %42.2 

  94.4 HBD 3012 %94.4 29.6 HBD 4864 %29.6 49.7 HBD 4864 %49.7 

  9.5 HBD 3015 %9.5 37.2 HBD 4865 %37.2 47.4 HBD 4865 %47.4 

INH1 0.0 AR 2995, 2992, 2991, 

2994, 2993, 2990 %0.0 

0.0 AR 2995, 2992, 2991, 2994, 

2993, 2990 %0.0 

2.7 AR 4859, 4857, 4856, 

4860, 4861, 4858 %2.7 

  0.2 AR 3002, 3000, 3001, 

3004, 3003, 2999 %0.2 

10.2 AR 3002, 3000, 3001, 3004, 

3003, 2999 %10.2 

    

  100 H 2994 %100.0 100 H 2994 %100.0 100 H 4852 %100.0 

  100 H 2996 %100.0 100 H 2996 %100.0 98.6 H 4865 %98.6 

  66.9 H 3006 %66.9 90.3 H 3006 %90.3 100 H 4863 %100.0 

  67.2 H 3007 %67.2 82.7 H 3007 %82.7 99.8 H 4862 %99.8 

  97.8 H 3010 %97.8 95.7 H 3010 %95.7 100 H 4854 %100.0 

  35.3 HBA 2989 %35.3 46.0 HBA 2989 %46.0 60.5 HBA 4847 %60.5 

  39.3 HBD 2989 %39.3 71.1 HBD 2989 %71.1 74.7 HBD 4847 %74.7 

INH2 34.0 AR 2990, 2988, 2992, 

2991, 2993, 2989 %34.0 

44.9 AR 2990, 2988, 2992, 2991, 

2993, 2989 %44.9 

0.2 AR 4848, 4847, 4851, 

4850, 4849, 4846 %0.2 

  3.0 AR 3001, 2998, 2997, 

2999, 3000, 2996 %3.0 

2.2 AR 3001, 2998, 2997, 2999, 

3000, 2996 %2.2 

2.0 AR 4855, 4858, 4853, 

4856, 4857, 4854 %2.0 

  94.6 H 2992 %94.6 100 H 2992 %100.0 100 H 4850 %100.0 

  99.7 H 2994 %99.7 100 H 2994 %100.0 100 H 4852 %100.0 

  99.9 H 3003 %99.9 100 H 3003 %100.0 100 H 4859 %100.0 

  99.9 H 3004 %99.9 100 H 3004 %100.0 100 H 4860 %100.0 

  100.

0 

H 3006 %100.0 100 H 3006 %100.0 100 H 4861 %100.0 

  100.

0 

H 3007 %100.0 100 H 3007 %100.0 98.1 H 4862 %98.1 

  100 H 3008 %100.0 100 H 3008 %100.0 99.8 H 4863 %99.8 

  18.6 HBA 2987 %18.6 0.2 HBA 2987 %0.2 67.7 HBA 4845 %67.7 

  10.6 HBD 2987 %10.6 0.1 HBD 2987 %0.1 95.0 HBD 4845 %95.0 

INH3 0.0 AR 2990, 2993, 2992, 

2994, 2991, 2995 %0.0 

    0.0 AR 4853, 4849, 4850, 

4848, 4851, 4852 %0.0 

  0.4 AR 3003, 3000, 3001, 

2998, 3002, 2999 %0.4 

3.5 AR 4855, 4854, 4857, 4858, 

4859, 4856 %3.5 

1.0 AR 4859, 4858, 4856, 

4857, 4855, 4854 %1.0 

  99.9 H 2994, 2995, 2991, 2990, 

2992, 2993 %99.9 

99.9 H 4853, 4850, 4851, 4848, 

4849, 4852 %99.9 

99.6 H 4848, 4853, 4851, 

4850, 4852, 4849 %99.6 

  100 H 3004 %100.0 100 H 4862 %100.0 99.6 H 4862 %99.6 

  100 H 3006 %100.0 100 H 4861 %100.0 99.8 H 4861 %99.8 

  100 H 3008 %100.0 100 H 4860 %100.0 97.6 H 4860 %97.6 

  100 H 3009 %100.0 100 H 4863 %100.0 99.9 H 4863 %99.9 

  58.0 HBA 2989 %58.0 89.7 HBA 4847 %89.7 37.0 HBA 4847 %37.0 

  93.4 HBD 2989 %93.4 99.8 HBD 4847 %99.8 90.0 HBD 4847 %90.0 

INH4 0.0 AR 2991, 2993, 2988, 

2990, 2989, 2992 %0.0 

0.5 AR 4847, 4850, 4851, 4848, 

4849, 4846 %0.5 

0.1 AR 2992, 2990, 2988, 

2989, 2991, 2993 %0.1 

  3.5 AR 3002, 2999, 3000, 

3001, 2997, 2998 %3.5 

0.8 AR 4857, 4854, 4856, 4858, 

4853, 4855 %0.8 

5.1 AR 3002, 2999, 3000, 

3001, 2997, 2998 %5.1 

  100 H 2990, 2993, 2991, 2989, 

2988, 2992 %100.0 

100 H 4848, 4850, 4851, 4846, 

4849, 4847 %100.0 

100 H 2990, 2993, 2991, 

2989, 2988, 2992 %100.0 

  97.7 H 3004 %97.7 99.6 H 4860 %99.6 100 H 3004 %100.0 

  95.9 H 3005 %95.9 96.5 H 4859 %96.5 99.8 H 3005 %99.8 

  17.9 HBA 2987 %17.9 18.1 HBA 4845 %18.1 9.4 HBA 2987 %9.4 
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  67.4 HBD 2987 %67.4 58.7 HBD 4845 %58.7 52.4 HBD 2987 %52.4 

INH5 59.8 AR 3001, 3003, 3005, 

3004, 3002, 3000 %59.8 

5.3 AR 4860, 4863, 4859, 4861, 

4862, 4858 %5.3 

45.5 AR 3002, 3000, 3004, 

3005, 3001, 3003 %45.5 

  0.1 AR 3017, 2996, 2995, 

3013, 3018, 3014 %0.1 

0.2 AR 4866, 4869, 4853, 4854, 

4868, 4865 %0.2 

0.2 AR 3017, 2996, 2995, 

3013, 3018, 3014 %0.2 

  99.9 H 3003, 3004, 3005, 3001, 

3000, 3002 %99.9 

98.6 H 4860, 4863, 4858, 4861, 

4862, 4859 %98.6 

68.7 H 3003, 3004, 3005, 

3001, 3000, 3002 %68.7 

  100 H 3013, 3018, 3017, 3014, 

2995, 2996 %100.0 

100 H 4866, 4865, 4853, 4868, 

4869, 4854 %100.0 

99.8 H 3013, 3018, 3017, 

3014, 2995, 2996 %99.8 

  75.2 HBA 2989 %75.2 41.2 HBA 4847 %41.2 33.1 HBA 2989 %33.1 

  11.7 HBA 2991 %11.7 44.6 HBA 4849 %44.6 35.3 HBA 2991 %35.3 

  34.9 HBA 2992 %34.9 81.3 HBA 4850 %81.3 30.9 HBA 2992 %30.9 

  0.0 HBA 2993 %0.0 2.4 HBA 4851 %2.4 0.6 HBA 2993 %0.6 

  0.1 HBA 2997 %0.1     2.5 HBA 2997 %2.5 

  3.9 HBA 3008 %3.9 0.2 HBA 4864 %0.2 92.2 HBA 3008 %92.2 

  39.5 HBA 3015 %39.5 6.3 HBA 4867 %6.3 2.1 HBA 3015 %2.1 

  69.5 HBD 3008 %69.5 8.2 HBD 4864 %8.2 92.5 HBD 3008 %92.5 

  95.4 HBD 3015 %95.4 6.8 HBD 4867 %6.8 8.2 HBD 3015 %8.2 

  92.9 NI 2991, 2989, 2992, 2993, 

2990 %92.9 

99.3 NI 4847, 4850, 4849, 4851, 

4848 %99.3 

91.5 NI 2989, 2992, 2991, 

2993, 2990 %91.5 

 
 

 

 

Figure A- 9. Dynophore (left side) of the SUB1 model (protein P3 and molecule Cole-2b311) in comparison to 

the static pharmacophore (right side). The 3D pharmacophore features include hydrogen bond donors/acceptors 

(green/red arrows or clouds), hydrophobic contacts (yellow spheres or clouds) and aromatic interaction (blue disks or 

clouds). 
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Figure A- 10. Dynophore (left side) of the CDL2 model (protein P3 and molecule kaempferol) in comparison 

to the static pharmacophore (right side). The 3D pharmacophore features include hydrogen bond donors/acceptors 

(green/red arrows or clouds), hydrophobic contacts (yellow spheres or clouds) and aromatic interaction (blue disks or 

clouds). 

 

  

Figure A- 11. Dynophore (left side) of the INH1 model (protein P5 and molecule 2-OH-1,3,7,8-

tetrachlorodibenzo-p-dioxin) in comparison to the static pharmacophore (right side). The 3D pharmacophore 

features include hydrogen bond donors/acceptors (green/red arrows or clouds) and hydrophobic contacts (yellow 

spheres or clouds).  
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Figure A- 12. Dynophore (left side) of the INH2 model (protein P3 and molecule 4-OH-2,3,5,2’,4’,5’-

hexachlorobiphenyl) in comparison to the static pharmacophore (right side). The 3D pharmacophore features 

include hydrogen bond donors/acceptors (green/red arrows or clouds), hydrophobic contacts (yellow spheres or clouds) 

and aromatic interaction (blue disks or clouds).  

 

 

Figure A- 13. Dynophore (left side) of the INH3 model (protein P5 and molecule 4-OH-2,2’,4’,6’-

tetrachlorobiphenyl) in comparison to the static pharmacophore (right side). The 3D pharmacophore features 

include hydrogen bond donors/acceptors (green/red arrows or clouds), hydrophobic contacts (yellow spheres or clouds) 

and aromatic interaction (blue disks or clouds).  
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Figure A- 14. Dynophore (left side) of the INH4 model (protein P3 and molecule 2-OH-7,8-dichlorodibenzo-

p-dioxin) in comparison to the static pharmacophore (right side). The 3D pharmacophore features include 

hydrogen bond donors/acceptors (green/red arrows or clouds), hydrophobic contacts (yellow spheres or clouds) and 

aromatic interaction (blue disks or clouds).  

 

 

 

Figure A- 15. Dynophore (left side) of the INH5 model (protein P5 and molecule daidzein-4-sulfate) in 

comparison to the static pharmacophore (right side). The 3D pharmacophore features include hydrogen bond 

donors/acceptors (green/red arrows or clouds), hydrophobic contacts (yellow spheres or clouds) and aromatic 

interaction (blue disks or clouds).  
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List of Abbreviations 

 

µ  Micro 

3D  Three-dimensional 

ADME  Absorption, distribution, metabolism, and excretion 

ANN  Artificial neural network 

AR  Aromatic interaction (3D pharmacophore feature) 

BFRs  Brominated flame retardants 

CDL  Concentration-dependent ligand 

cLogP  Computationally calculated log P 

CYP  Cytochrome P450 enzyme family 

Da  Dalton 

DB  DrugBank 

DHEA  Dehydroepiandrosterone 

DT  Decision tree 

E1  Estrone 

E2  17-β-Estradiol 

E3  Estriol 

EDC  Endocrine disrupting chemical 

EE  17-α-Ethinyl-estradiol 

H  Hydrophobic contact (3D pharmacophore feature) 

HBA  Hydrogen bond acceptor (3D pharmacophore feature) 

HBD  Hydrogen bond donor (3D pharmacophore feature) 

HPLC  High-performance liquid chromatography 

IC50  Half maximal inhibitory concentration 

Ki  Inhibition constant 

Km  Michaelis constant given in Molar units 

LC-MS/MS Liquid chromatography-tandem mass spectrometry 

LogP  Octanol-water partition coefficient 

m  Milli 

M  Molar (1 M = 1 mol/l)  

MD  Molecular dynamics simulation 

MS  Mass spectrometry 

MW  Molecular weight 

n  Nano 

NB  Naïve Bayes classifier 

NI  Negative ionisable area (3D pharmacophore feature) 

ns  Nanosecond 

OECD  Organisation for Economic Cooperation and Development 

PAP  3’-Phosphoadenosine-5’-phosphate 

PAPS  3’-Phosphoadenosine-5’-phosphosulfate 

PAINS  Pan Assay Interference Compounds 

PCA  Principal component analysis 
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PCBs  Polychlorinated biphenyls 

PDB  Protein Data Bank 

PI  Positive ionisable area (3D pharmacophore feature) 

PLS  Partial least squares regression method 

RF  Random forest 

RMSD  Root-mean-square deviation 

RMSF  Root-mean-square fluctuation 

ps  Picosecond 

QSAR  Quantitative structure-activity relationship 

SAR  Structure-activity relationship 

SASA  Solvent-accessible surface area 

SERM  Selective estrogen-receptor modulator 

SOM  Site of metabolism 

SULT  Sulfotransferase 

SULT1E1 Sulfotransferase subtype 1E1 

SVM  Support vector machine 

TPSA  Topological polar surface area 

vdW  van der Waals forces 

Vmax  Maximum velocity of the enzymatic reaction 

VS  Virtual screening 
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