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A B S T R A C T

Standard turbulence models, like Reynolds averaged Navier-Stokes (RaNS) and
large eddy simulation (LES), are applied to flows e. g. in engineering and geo-
physics, but they miss small scale effects, which are frequently of importance,
e. g. in reactive flows, flows with apparent Prandtl or Schmidt number effects,
or even wall bounded flows. A recent alternative to these standard approaches
is the one-dimensional turbulence (ODT) model, which is limited to 1D sub-
domains.

In this thesis we provide a generalized, innovative filter strategy for highly
turbulent flows, called extended LES (XLES), including a formal theory and
one special approach in the XLES family of models, called ODT closed XLES
(ODTLES).

ODTLES combines the ODT ability to describe all turbulent scales including
molecular diffusion within a 1D sub-domain, with the ability of XLES to rep-
resent a 3D domain with a 3D resolution at most weakly depending on the
turbulent intensity.

XLES and especially ODTLES are shown to be consistently derived from
the governing equations and numerically sufficiently approximated, which in-
cludes the convergence towards direct numerical simulations (DNS).

Comparative and predictive numerical studies for turbulent channels, ducts
and Rayleigh-Bénard flows show the potential of ODTLES.
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Z U S A M M E N FA S S U N G

Turbulenzmodelle wie Reynolds averaged Navier-Stokes (RaNS) und Large
Eddy Simulationen (LES) werden unter anderem in ingenieurwissenschaftlichen,
aber auch geophysikalischen Strömungen eingesetzt, vernachlässigen dabei
allerdings kleinskalige Effekte, die oftmals von großer Wichtigkeit sind, wie
zum Beispiel bei Verbrennungen oder in Strömungen die abhängig von Prandtl-
oder Schmidt-Zahlen sind. Ein alternativer Modellierungsansatz wird in one-
dimensional turbulence (ODT) Modellen verfolgt, die zwar auf einen 1D-Unter-
raum beschränkt sind, darin allerdings alle turbulenten Skalen beschreiben
können.

In dieser Dissertation wird eine Verallgemeinerung bekannter LES-Verfahren,
genannt extended LES (XLES), vorgestellt und eine Schließung der XLES-Gleich-
ungen mit dem ODT-Modell sowohl hergeleitet als auch umgesetzt.

Das ODT closed XLES (ODTLES) Modell kombiniert die Vorteile des ODT-
Modells mit der Möglichkeit komplexe 3D-Gebiete in Simulationen zu be-
schrieben. Dabei wird gezeigt dass XLES und insbesondere ODTLES wohl
definierte und konsistente Gleichungssysteme beschreiben, deren numerische
Lösung gegen direkte numerische Simulationen (DNS) konvergiert.

In numerischen Studien werden Kanal-,Duct-,und Rayleigh-Bénard Strömung-
en untersucht, die sehr gut mit vorhandenen DNS-Ergebnissen übereinstim-
men.
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Phantasie ist wichtiger als Wissen, denn Wissen ist begrenzt.
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ǎ resolved small scale XLES property
a XLES matrix

a directly and indirectly resolved XLES property
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4 introduction and overview

Motions of fluids are part of our everyday life, e. g. if a droplet of blue ink
dribbles into a glass of water several physical phenomena effect the flow: Small
filaments of ink develop and move (convection) through the water. Addition-
ally the ink seems to fade out (diffuse) and vanishes after some time leaving a
glass of very pale blue water. By stirring the fluid this effect is greatly acceler-
ated due to turbulent mixing.

To describe and predict the effects of turbulence is essential to understand
this turbulent mixing and more importantly phenomena with major technolog-
ical and environmental impacts on human society and even human existence.
Turbulence influenced the density and associated gravity variations that led
to the formation of present-day galaxies, stars, and planets. Without turbu-
lent mixing, planetary atmospheric phenomena such as clouds, storms, and
precipitation essential for life on Earth would be unimaginably different. Tur-
bulence in the ocean has innumerable effects on oceanic biota, starting with
the commingling of phytoplankton with needed nutrients. Due to its broad
influence and baffling complexity, progress in fundamental and practical un-
derstanding of turbulent mixing is exceptionally challenging, yet crucial for
scientific advancement encompassing a wide class of problems in earth science,
astrophysics, and engineering. For such problems, better understanding of tur-
bulence interactions with buoyancy effects and chemical and thermodynamic
processes is essential (adapted from [2]).

On a molecular level of fluid motions innumerable molecules are rapidly
moving, interacting with each other and with the boundaries (surface of the
glass in the example above). Fortunately these molecules are often locally in an
equilibrium.

This allows to represent a wide range of molecular movements due to a fluid
state (e. g. defined by the density (ρ), pressure (p), temperature (T ), ...) and the
actual transport of fluid parcels with the velocity in xi-direction (ui), i = {1, 2, 3}
within a continuum interpretation (see section 1.1). The non-dimensional Knud-
sen number (Kn = λ

L ) corresponds to the ratio of the mean free path (λ) of the
fluid molecules and the problem specific representative physical length scale
(L). For Kn � 1, which is valid for all problems considered in this thesis, a
continuum representation is accurate. Noteworthy exceptions are e. g. flights
in high altitude and flows in micro-machineries. The size of this representative
physical length scale (L) depends on the fluid properties and the boundary-and
initial conditions (see e. g. [109] and [25] for details). The dynamic of such a con-
tinuous fluid is mathematically well described by partial differential equations
(PDEs): E. g. the compressible Navier-Stokes equations represent the conserva-
tion of density (ρ), momentum density (ρui) and energy density (ρE), but an-
alytic solutions cannot be derived for real life applications e. g. with complex
boundary conditions. For a turbulent flow, even in a very simple domain, a
numerical approximation of these PDEs is indispensable. Due to growing com-
putational power, an increasing number of scientific and industrial problems
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are amenable to computer simulations, not least in the field of computational
fluid dynamics (CFD).

In a direct numerical simulation (DNS) all temporal and spatial scales occur-
ring within a flow are numerically represented (see section 2). Thus impacts of
numerical errors and simplifying model assumptions are not influencing the
investigated physics. DNS is limited to moderate turbulent Reynolds numbers
(Ret) and Rayleigh numbers (Ra) due to the high computational effort and thus
mostly used in fundamental turbulence research. E. g. many real-world flows
have friction Reynolds numbers Reτ& 106 (following [94]), but until now the
most turbulent wall-bounded DNS (by Lee and Moser [62]) describes a flow
with Reτ≈ 5200. Note that due to Kn ∼ 1

Ret
even highly turbulent regimes are

well described by a continuous fluid.
A wide range of techniques are developed to decrease the computational ef-

fort of numerical simulations. The techniques can be separated into numerical
techniques (including high-order approximations, adaptive mesh-refinement,
multi-grid methods) and model based approaches, e. g. reduced chemical mech-
anisms and of course turbulence models, see section 3. Realistic turbulent prob-
lems, e.g. in engineering and meteorology, require the application of these tur-
bulence models to reduce the computational effort.

The concept of all turbulent models considered here is to decrease the prob-
lem size (number of degrees of freedom (#DoFs)) by exploiting properties of
the investigated turbulent problems. This includes e. g. eddy viscosity assump-
tions, self-similarity assumptions of turbulent scales, and case specific domain
symmetries.

Thus turbulence models can be classified into models exploiting:

1. Self-similarity properties and eddy viscosity:

Most turbulence models, e. g. Reynolds averaged Navier-Stokes (RaNS)
and large eddy simulation (LES), assume an eddy viscosity or take advan-
tage from self-similarity properties of turbulent scales. Hereby the #DoFs
(and therefore the computational effort) is reduced mostly by affecting
the representation of small scale effects, e. g. small turbulent scales.

RaNS describes the dynamics of time-averaged fields while the influence
of fluctuating terms is modeled (see section 3.1). On the one hand highly
turbulent flows (e.g. Reτ & 106) corresponding to realistic flows are com-
putationally feasible. On the other hand RaNS generally is not useful
for computing time-accurate flow statistics and small scale effects. Un-
steady Reynolds averaged Navier-Stokes (URaNS) models allow to de-
scribe problems which are unsteady on a timescale widely independent
of turbulent timescales.

LES is increasingly used for industrial applied and fundamental turbu-
lent flows in recent years. In LES spatially filtered equations are numeri-
cally solved while the unresolved sub-grid scale (SGS) terms are modeled
to close the equations, e.g. by an eddy viscosity sub-grid model (SGM)
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(see section 3.2). Even in very fundamental turbulent flows LES resolves
a wide range of scales including at least some portion of the inertial
range of the turbulent cascade. On the one hand this limits the achievable
Reynolds numbers relative to the achievable Reynolds numbers in RaNS
simulations. On the other hand the higher level of description allows to
apply LES, e. g. to aeroacoustics and unsteady turbulent problems.

The parameterization of a certain range of small scales in RaNS and LES
can cause problems especially in multi-physics regimes such as buoyant
entrainment phenomena (e. g. investigated by Dietze et al. [22]) and react-
ing flows because much of the complexity is relegated to the unresolved
small scales. In these cases LES modeling might include statistical mod-
els, e. g. probability density function (PDF) methods, to increase the level
of representation.

RaNS-LES hybrid schemes, especially to mention the detached eddy sim-
ulations (DES) (see [97]) try to balance the strengths and weaknesses of
URaNS (see section 3.1) and LES.

2. Domain symmetry properties:

1D model approaches e.g. the linear-eddy model (LEM) (see [74]) and
the one-dimensional turbulence (ODT) model (see section 3.3) reduce the
#DoFs by describing the 3D turbulence within a 1D sub-domain. These
models appropriately describe the full turbulent cascade and can repro-
duce self-similarity properties of the turbulent scales, but they are lim-
ited to problems with one characteristic and predominant direction. Such
a regime is valid inter alia in important problems within the research
fields of fundamental combustion, atmospheric science, and fundamental
turbulence research. Thereby the numerical representation of molecular
diffusive effects and various other small scale effects become computa-
tionally feasible also in highly turbulent flows. E. g. Meiselbach [71] re-
cently described wall bounded flows with Reτ6 6× 105 using adaptive
ODT (aODT) (by Lignell et al. [67]), which is clearly in the range of real-
world applications, but limited to cases that are reasonable within a 1D
sub-domain.

3. Combination of 1. and 2.

There are several approaches combining 1D models with a LES-related
concept to describe turbulent flows including small scale effects in a 3D
computation, e.g. LES-ODT (e.g. by [10]), LES-LEM (by [74]), LEM3D (e.g.
by [86]), and the ODTLES model introduced by Schmidt et al. [89].

In [2] an extended LES (XLES) approach (see section 3.4) is introduced
leading to 2D filtered equations especially tailored to be closed by 1D
models and concurrently preserving consistent large scale properties. OD-
TLES can be interpreted as an ODT closed XLES approach (see section
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3.5). Thus ODTLES is one special approach in the XLES family of mod-
els.

Hereby ODTLES benefits from the ability of ODT to computationally
feasibly represent the full turbulent spectrum of highly turbulent flows.
Thus the 3D resolution is not required to resolve a certain portion of
the turbulent spectrum (like in LES) and therefore is mainly indepen-
dent of the turbulence intensity. Nevertheless a 3D representation of non-
turbulent effects not captured by ODT is required, e. g. inherent sec-
ondary instabilities as shown for the flow through a square duct in section
4.2.

An equivalent interpretation with identical consequences is that the 1D
approach closing the XLES equations only requires local symmetry prop-
erties which ideally corresponds to the XLES 3D resolution.

An as yet unrealized XLES model implementation is called aODT closed
XLES (aODTLES). aODTLES potentially reaches the computational costs
of RaNS simulations for highly turbulent flows, e. g. over a flat-plate air-
foil, as estimated in section 3.5.7.

Additionally an ensemble mean closure (EMC) called SGM can be ap-
plied, if the ODT-SGM within ODTLES is not fully resolved (investigated
by McDermott [69] and introduced into ODTLES by Schmidt et al. [89]).
This leads to a three-tiered multi-scale model with ODT closing unre-
solved 3D terms and EMC representing unresolved ODT scales. In this
thesis an EMC model is not used.

Of course the classification above does not claim to be complete, but illus-
trates conceptual differences and similarities between individual models.

Related model concepts are the superparameterizations known from meteo-
rology and climatology (see e. g. [34], [46]): E. g. in Cloud Resolving Convec-
tion Parameterizations (CRCP) a 2D simulation describes the cloud dynamics
within a 3D cell of a global circulation model (GCM). This CRCP model can be
interpreted to some extent by a 1D filtered XLES approach. These 1D filtered
XLES equations are not further investigated in this thesis.

Another model concept not further addressed in this thesis is the class of
PDF models, which describes turbulence properties using a time-dependent
probability density function (PDF). For an overview we refer to [82].

In table 1 turbulent flows are classified by their turbulence intensity, the
complexity of the computational domain, and the ability of the approach to
resolve physical small scale effects, including e. g. chemical reactions and scalar
properties.

ODTLES is a promising alternative to RaNS and LES for moderate turbu-
lent Reynolds number flows in domains of moderate complexity, especially for
multi-physics problems with inherent small-scale effects. Future implementa-
tion might close the XLES equations using aODT. This aODTLES model poten-
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Table 1: Suitability of turbulence models in characteristic turbulent flow regimes, clas-
sified by the turbulent intensity and the domain complexity. Additionally the
superscript ∗ indicates that small scale effects are numerically represented.
The expression (a)ODT ((a)ODTLES) encompasses ODT and aODT (ODTLES
and aODTLES). Here RaNS also includes RaNS-LES-hybrid models.

simple domain moderate domain complex domain

low Ret DNS∗ DNS∗ DNS∗

RaNS RaNS RaNS

LES LES LES

(a)ODT∗

(a)ODTLES∗ (a)ODTLES∗

moderate Ret RaNS RaNS RaNS

LES LES LES

(a)ODT∗

(a)ODTLES∗ (a)ODTLES∗

high Ret RaNS RaNS RaNS

aODT∗

aODTLES∗ aODTLES∗

tially increases the achievable turbulent Reynolds number significantly without
loosing the ability to accurately represent small scale effects.

E. g. the flow around a flying airplane is clearly within the regime of com-
plex domains with high turbulent Reynolds numbers and RaNS models (and
increasingly RaNS-LES-hybrid models) are currently applied. To increase the
level of description table 1 suggests two model candidates: the turbulent Reynolds
number achievable by LES can be increased due to progress in modeling and
computational resources (Spalart [95] predicts LES to be applicable to an air-
plane in the year 2045), and aODTLES can be developed and extended to more
complex domains. Thus aODTLES can become a worthwhile field of research
opening perspectives in computational engineering including highly turbulent
flows.

In this work fundamental studies of highly turbulent flows in simple do-
mains are investigated: In chapter 4 shear driven flows through channels and
ducts and in chapter 5 buoyancy driven flows are shown. All computed results
are in good agreement with existing DNS and furthermore ODTLES is able to
exceed the turbulence intensities achievable by DNS.

Some ideas and figures have appeared previously in the author’s publica-
tions [1, 2, 3], as indicated within the corresponding sections.

In this work we distinguish between the expressions XLES to describe the
XLES approach including an approximation or model for arising microscale
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terms, ODTLES if these terms are in particular described by ODT and unclosed
XLES (XLES-U), if microscale terms are neglected.

If not mentioned otherwise the term XLES corresponds to the 2D filtered
XLES approach.

Note that in this work no Einstein summation convention is used.

1.1 continuum mechanics

The compressible Navier-Stokes equations describe flow dynamics using con-
servation laws (for ρ, ρui, ρE). In a (sufficiently smooth) continuum these dy-
namic variables are well defined and their derivatives are available in each
point in space.

Additional assumptions about the inner structure of the fluid are necessary
to close the equations: In this thesis an ideal gas (equation of state) and a
Newtonian fluid (linear relation between viscous stresses and local strain rate)
is presumed (see [109]).

Within these compressible Navier-Stokes equations, non-dimensional num-
bers correspond to characteristic physical regimes. E. g. the Mach number (Ma =
u
c ) defines the ratio of the velocity (u) to the local speed of sound (c). Note that
due to Kn ∼ Ma flows with very high Mach number disobey continuity prop-
erties and methods of rarefied gas dynamics are required (see e. g. [41]). In this
thesis the low-Mach number regime is presumed, which means that acoustic
waves have a negligible effect.

Klein [55, 56, 57] introduces an asymptotic analysis of the compressible
Navier-Stokes equations amongst others leading to low-mach number flow
regimes described by e. g. the Oberbeck-Boussinesq equations for buoyant flows
without background stratification. The Oberbeck-Boussinesq approximation,
widely used in buoyant engineering problems and fundamental geophysical
research, is valid if variations in the density are much smaller than the density
itself. By decomposing the density into ρ = ρ0 + ρ

′ with a constant mean den-
sity (ρ0) and a density variation (ρ ′), the Oberbeck-Boussinesq approximation
states ρ ′ � ρ0.

The conservation of mass (Eq. (1)) and momentum (Eq. (2)) are enriched by
a equation for a scalar field θ = ρ ′

ρ0
(Eq. (3)):

0 =

3∑
j=1

∂xjuj (1)

0 =
1

ρ0
∂xip+

∂t − ν 3∑
j=1

∂2xj

ui + 3∑
j=1

∂xjuj · ui − g2θ+ Fi (2)

0 =

∂t − κ 3∑
j=1

∂2xj

 θ+ 3∑
j=1

∂xjuj · θ (3)
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with the kinematic viscosity (ν), the thermal diffusivity (κ), the pressure (p), a
possible specific external forcing in Cartesian xi-direction (Fi), and the gravity
acceleration in the x2-direction (g2) influencing the vertical velocity u2. Only
small temperature differences occur on the Oberbeck-Boussinesq approxima-
tion, which leads to an alternative scalar interpretation θ = ρ ′

ρ0
= α(T − T0)

with the mean temperature (T0) and the coefficient of volume expansion (α).
For simplicity we assume in this thesis a constant ν, κ, and the constant mean
density (ρ0) to be 1 kg

m3
. The velocity in xi-direction (ui) and the scalar field (θ)

are summarized by the solution field φi = {ui, θ}.
In a non-dimensional form, Eq. (2) includes the non-dimensional turbulent

Reynolds number (Ret = u ′ Lt
ν ) which describes the ratio of advective and dif-

fusive effects and corresponds to a turbulent intensity. Hereby a representative
turbulent length scale (Lt) and a characteristic velocity (u) are necessary. In a
turbulent flow the smallest length scale is estimated by the Kolmogorov length
scale ηK = ν3Lt

u3
∼ Lt

Re
3/4
t

. There are other non-dimensional numbers, e. g. the

Prandtl number (Pr = ν
κ ), which corresponds to another small length scale

(the Batchelor length scale). Also chemical processes, e. g. in atmospheric flows
or in combustors lead to important small scale effects (not described by Eqs.
1–3). In buoyancy driven flows the Rayleigh number (Ra =

g(∆θ)
νκ L

3) describes
the ratio of buoyant and molecular-transport effects. Hereby a representative
physical length scale (L) and a characteristic temperature difference (∆θ) are
necessary. In a DNS all these physical effects are numerically represented.

The Eqs. 1–3 are applied to a Rayleigh-Bénard convection in chapter 5 to
demonstrate the ODTLES ability to describe buoyancy driven flows.

In chapter 4 shear driven turbulent problems are investigated. In the consid-
ered cases the gravitational forcing plays a subordinated role and therefore is
neglected. Nevertheless the scalar field (θ) can be interpreted as a passive scalar
as realized in ODTLES results presented in [1]. In this thesis shear driven turbu-
lent flows are computed by solving the so called incompressible Navier-Stokes
equations (conservation of mass in Eq. (4) and momentum in Eq. (5)):

0 =

3∑
j=1

∂xjuj (4)

0 = ∂xip+

∂t − ν 3∑
j=1

∂2xj

ui + 3∑
j=1

∂xjuj · ui + Fi. (5)

These equations are another (more simplified) asymptotic limit of the com-
pressible Navier-Stokes equations (cf. [54]):
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There is a wide range of numerical methods appropriate to describe incom-
pressible flows, e. g. finite difference methods (FDM), finite volume methods
(FVM), and finite element methods (FEM).

Historically FDM (see e. g. [37]) is the oldest numerical method to solve PDEs
and still successfully used e. g. in state of the art DNS solvers (see e. g. [73]).

FEM (see e. g. [114]) is suitable for elliptic and parabolic problems and es-
pecially applied to solid body problems but also used in further engineering
areas. Many commercial flow and multi-physics solvers are based on FEM (e. g.
ANSYS® CFX®1, COMSOL Multiphysics®).

The FVM (see e. g. [104]) is very successfully applied to hyperbolic problems,
e. g. to describe convective transport problems in compressible and incompress-
ible flows. A number of commercial and non-commercial flow solvers are based
on FVM, e. g. STAR-CD®, ANSYS® Fluent®, and OPENFOAM®2.

More recent developments lead to discontinuous Galerkin methods (DGM)
suitable to solve hyperbolic, elliptic, and parabolic problems. These are applied
in the fields of gas dynamics, acoustics, in plasma physics and so on (see e. g.
[39]).

The present ODTLES implementation uses ideas of FVM and FDM. The
mathematical ansatz of FEM and DGM allows an alternative and equivalent
interpretation of the XLES approach, as introduced in appendix A.3.

In the following, variables (e.g. the velocities ui) and operators are assumed
to be continuous. Discretized variables are marked with the superscript d (e.g.
the discrete velocity: udi ).

2.1 implemented numerical methods

To solve the conservation equations (1) – (3) the derivation operators ∂xi , ∂
2
xi

,
and ∂t have to be numerically approximated.

This thesis focuses on turbulence modeling and thus easy to implement and
well known numerical schemes are applied. These schemes have to be stable
and numerical properties like dissipation or dispersion should not strongly
affect the underlying physics to allow a deeper investigation of the turbulence
modeling approach (introduced in section 3.4) and its apparent influence on
the physics (investigated in chapters 4 and 5).

The full computational domain (Ω) is discretely approximated by computa-
tional grid cells. In this thesis only structured (regular) grids are used. In one
computational grid cell, the discrete velocity values ui are face-centered, while
the pressure (p) and the scalar field (θ) are cell centered, which is called a stag-
gered grid. Especially the treatment of the mass conservation equation Eq. (1)
and the related pressure gradient ∂xip within the momentum equation Eq. (2)
is more straightforward on a structured grid (see e. g. [24]).

1 CFX is a trademark of Sony Corporation in Japan
2 released free and open source to the general public
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In section 2.1.1 the implemented spatial numerical approximations of the in-
dividual conservation terms are introduced. Section 2.1.2 introduces the imple-
mented time discretizations. The individual combinations of the chosen spatial
and temporal schemes lead to a numerical approximation with the required nu-
merical properties. The XLES approach requires several terms to be spatially
approximated by different resolutions simultaneously (see section 3.4.2.2) and
thus leads to coupled numerical schemes investigated in sections 3.6.2 and
3.6.3.

2.1.1 Spatial Schemes

The numerical schemes applied in the current ODTLES implementation are
briefly introduced. For an overview of existing numerical discretizations we
refer to textbooks (e. g. [24]).

The ODTLES implementation introduced in this thesis uses a spatial sec-
ond order central difference method (CDM). As shown in section 3.6.2 a CDM
potentially leads to a dissipation free advection scheme with low dispersive
behavior. Thus the CDM is also used in recent DNS simulations (see e. g. [78]).
Rai and Moin [83] showed that a second-order FDM in a DNS leads to accurate
low-order statistics, while high order statistics require high-order approxima-
tions.

For stability and accuracy reasons a CDM can require a high order time
discretization (see section 2.1.2).

Spatial FDM are derived from a Taylor series

φ(x) =

∞∑
n=0

∂nxφ(a)

n!
≈ φ(a) + ∂xφ(a)(x− a) +

1

2
∂2xφ(a)(x− a)

2 (6)

here aborted after the second order term. Eq. (6) contains the first and second
order derivatives ∂xφ(a) and ∂2xφ(a) at a specific point a.

2.1.1.1 First Order Derivative

From the Taylor series in Eq. (6) we find the CDM approximation of first order
derivatives on a regular grid in 1D:

∂xφ(x) ≈
[
φ

(
x+

∆x

2

)
−φ

(
x−

∆x

2

)]
/∆x. (7)

For a staggered grid interpolations are required, especially for the nonlinear
advection terms, as summarized in table 2 for the advecting velocity (advected
property) A (B).



14 numerical methods

Table 2: CDM first order derivatives approximated on a staggered grid include lin-
ear interpolations. By applying a regular grid the computational cells are num-
bered by the integers {m,n,o} corresponding to {x1, x2, x3}-directions. Here A (B)
corresponds to the advecting velocity (advected property). (AB)

(
xn + ∆x

2

)
and

(AB)
(
xn − ∆x

2

)
can be interpreted as fluxes within a FVM. The scalar advection

term (first row) is illustrated in figure 1. All terms are shown w.l.o.g. for j = 2 (cor-
responding to the x2-direction). According to Eq. (7) all discrete terms are divided
by ∆x2 (neglected here for clarity reasons).

CDM: ∂x2(AB)(x) (AB)
(
xn +

∆x
2

)
(AB)

(
xn −

∆x
2

)
A = ud2 (xn)

B = θd (xn)

A = ud;m,n,o
2

B ≈ 1
2

(
θd;m,n+1,o + θd;m,n,o) A = ud;m,n−1,o

2

B ≈ 1
2

(
θd;m,n,o + θd;m,n−1,o)

A = ud2 (xn)

B = ud1 (xn)

A ≈ 1
2

(
ud;m+1,n,o
2 + ud;m,n,o

2

)
B ≈ 1

2

(
ud;m,n+1,o
1 + ud;m,n,o

1

) A ≈ 1
2

(
ud;m+1,n,o
2 + ud;m,n,o

2

)
B ≈ 1

2

(
ud;m,n,o
1 + ud;m,n−1,o

1

)
A = ud2 (xn)

B = ud3 (xn)

A ≈ 1
2

(
ud;m,n,o+1
2 + ud;m,n,o

2

)
B ≈ 1

2

(
ud;m,n+1,o
3 + ud;m,n,o

3

) A ≈ 1
2

(
ud;m,n,o+1
2 + ud;m,n,o

2

)
B ≈ 1

2

(
ud;m,n,o
3 + ud;m,n−1,o

3

)
A = ud2 (xn)

B = ud2 (xn)

A ≈ 1
2

(
ud;m,n+1,o
2 + ud;m,n,o

2

)
B ≈ 1

2

(
ud;m,n+1,o
2 + ud;m,n,o

2

) A ≈ 1
2

(
ud;m,n,o
2 + ud;m,n−1,o

2

)
B ≈ 1

2

(
ud;m,n,o
2 + ud;m,n−1,o

2

)
Within table 2 the terms ∂x2(AB)(xn −

∆x
2 ) and ∂x2(AB)(xn +

∆x
2 ) can be in-

terpreted as fluxes within a FVM. Thus the XLES implementation introduced
within section 3.4 can be interpreted as a FVM on several coupled staggered
grids. The CDM is also applied to derive the pressure gradient (not shown in

table 2), e. g. ∂x2p
(
xn +

∆x

2

)
≈ p

d;m,n+1,o − pd;m,n,o

∆x
.

2.1.1.2 Second Order Derivative

From the Taylor series in Eq. (6) we find the CDM for a spatial second order
derivative on a 1D regular grid:

∂2xφ(x) ≈
φ (x+∆x) − 2φ (x) +φ (x−∆x)

(∆x)2
(8)

which is for a discrete property φd = {udi , θd} w.l.o.g. in x2-direction

∂2xφ ≈
φd;m,n+1,o − 2φd;m,n,o +φd;m,n−1,o

(∆x)2
(9)

as illustrated in figure 1.
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Figure 1: Regular, staggered grid illustration with cell centered discrete scalar val-
ues θd and pressure (p) and face centered discrete velocities w.l.o.g. in x2-
direction ud2 . An additional index indicates an integer counter n through the
grid in x2-direction with 1 6 n 6 N2. The computational domain (Ω) is
represented by N2 discrete cells in x2-direction.

2.1.1.3 Boundary Conditions

To treat boundary conditions for the staggered grid in figure 1 the Taylor series
in Eq. (6) with derivatives at the first cell a = x1 leads to the discrete approx-
imation ∂xφd;m,1,o and ∂2xφd;m,1,o. To eliminate one unknown derivative from
Eq. (6) two conditions have to be fulfilled (indexes {m,o} are skipped):

• Here we are using a Dirichlet boundary condition

φ(x1 −
1

2
∆x) = φd;0 = φd;1 + ∂xφ

d;1
(
−
1

2
∆x

)
+
1

2
∂2xφ

d;1
(
−
1

2
∆x

)2
(10)

• and a condition for the second cell φ(x2) = φd;2

φ(x1 +∆x) = φ
d;2 = φd;1 + ∂xφ

d;1(∆x) +
1

2
∂2xφ

d;1(∆x)2 (11)

For the first order derivative the Dirichlet boundary condition determines
the corresponding flux, while the second flux stays unchanged.

For the second order derivative at the first cell we find the ansatz 2φ(x1 −
1
2∆x) +φ(x1 +∆x) solves the system of Eqs. (10) and (11), leading to

∂2xφ
d;1 =

−4φd;1 + 4/3φd;2 + 8/3φd;0

∆x2
. (12)

The equivalent derivations for the last cell a = xN are skipped here.
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2.1.2 Time Schemes

The transport equation

0 = ∂tφ+ f(φ) (13)

has to be integrated in time from timestep n (at tn) to timestep n+ 1 (at tn+1):

0 =

∫ tn+1
tn

∂tφdt+
∫ tn+1
tn

f(φ)dt = φ(tn+1) −φ(tn) +
∫ tn+1
tn

f(φ)dt. (14)

The function f(φ) is approximated by one of the spatial discretizations intro-
duced in section 2.1.1.

The approximation
∫tn+1
tn

f(φ)dt ≈ f(φ(tn))∆t leads to the first order for-
ward Euler scheme (EE1):

φ(tn+1) = φ(tn) +∆t f(φ(tn)) (15)

with the time step size ∆t. The time step size of explicit schemes is restricted
by a (global) Courant-Friedrichs-Lewy condition, e. g. for the advective terms:

∆t 6 CFL min
i,m,n,o

(
∆xd;m,n,o

i

ud;m,n,o
i

)
(16)

with the spatial cell size in xi-direction ∆xi and a Courant-Friedrichs-Lewy
number (CFL-number), which is a constant for each specific numerical time
scheme (see e. g. [104]).

In local time stepping schemes the time step size is restricted locally, e. g.
for each individual computational cell (see e. g. [30]). The additional level of
approximation and implementation effort is justified especially for very inho-
mogeneous spatial resolutions within (oftentimes unstructured) grids.

Using the approximation
∫tn+1
tn

f(φ)dt ≈ f(φ(tn+1))∆t leads to the first order
backward Euler scheme (IE1):

φ(tn+1) = φ(tn) +∆tf(φ(tn+1)) (17)

which is implicit and stable without any time step restriction. This time scheme
requires the solution of a system of linear equations.

The 2nd order Crank-Nicolson scheme (CN) is in between the EE1 and IE1
using the approximation

∫tn+1
tn

f(φ)dt ≈ 1
2(f(φ(tn)) + f(φ(tn+1)))∆t leading to

φ(tn+1) = φ(tn) +∆t
1

2
(f(φ(tn)) + f(φ(tn+1))) (18)
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Table 3: Coefficients for RK3 by Spiteri and Ruuth [98] are required to solve Eq. (19).

Ns αls βls

3

1
3
4

1
4

1
3 0 2

3

1

0 1
4

0 0 2
3

and also requires a system of equations solver. For both the IE1 and the CN
with a spatial CDM the system of equation can be written as a tridiagonal
matrix which is efficiently solved by the Thomas algorithm (see e. g. [72]).

Higher order approximations of the integral
∫tn+1
tn

f(φ)dt are given e. g. by
Runge-Kutta schemes (see e. g. [98]).

In this thesis next to the CN, a 3 stage 3rd order TVD Runge-Kutta scheme
(RK3) is used for advection terms. For details on XLES specific time integration,
see sections 3.6.2 and 3.6.3.

Most explicit Runge-Kutta schemes can be written as a recursive multi-stage
approach with Nsl+ 1 number of Runge-Kutta stages:

∫ tn+1
tn

f(φ)dt ≈
i−1∑
s=0

(
αlsφ(t

′
s) +βls∆tf(φ(t

′
s))
)

with i = 1, ..., l+ 1 (19)

with t ′0 = tn and t ′l+1 = tn+1. Numerous Runge-Kutta schemes are possible,
where e. g. the representation order, the memory requirements, and possible
CFL-numbers restrictions depend on the coefficients αls and βls, and Ns.

In this thesis a 3 stage 3rd order TVD Runge-Kutta scheme (RK3) by Spiteri
and Ruuth [98] with the coefficients αls and βls in table 3 is used.

2.1.2.1 1D Advection Schemes

The 3D advection scheme in the current XLES implementation is connected
to XLES and ODT specific modeling ideas and thus investigated in detail in
section 3.4. Even the 1D advection scheme contains coupled numerical schemes
(investigated e. g. in section 3.6.2), which are briefly investigated here.

The XLES specific 2D filtering leads to highly resolved and coarsely resolved
properties, which are treated numerically differently:

• Highly resolved properties are discretized using a standard 2nd order
Crank-Nicolson scheme (CN) in time (see [19]). We will refer to this fully
discrete scheme as CN scheme in time and spatial CDM (CN-CDM).

• The coarse grained resolved properties are discretized using a 3 stage 3rd
order TVD Runge-Kutta scheme (RK3) (see [98]). We will refer to this fully
discrete scheme as RK3 scheme in time and spatial CDM (RK3-CDM).
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The numerical properties of the (uncoupled) numerical schemes are:

• The advection scheme CN-CDM is stable, dissipation free and has low
dispersion.

• The RK3-CDM scheme is found to be stable and produces little dispersion
and dissipation.

These properties transfer to the coupled advection schemes, as demonstrated
in sections 3.6.2 and 3.6.3.

2.1.3 Poisson Problem

The pressure gradient in Eq. (5) can be used to enforce mass conservation in
Eq. (4), here shown for the incompressible Navier-Stokes equations. Therefore
a predictor-corrector idea is often applied (see also section 3.5.5), where the
predictor generates an interim velocity field u∗i by solving

u∗i = ui(tn) +

∫ tn+1
tn

−ν

3∑
j=1

∂2xjui(tn) +

3∑
j=1

∂xjuj(tn) · ui(tn) + Fi(tn)

 dt,

(20)

ui(tn+1) = u
∗
i +

∫ tn+1
tn

∂xipdt. (21)

where discrete approximations introduced in section 2.1.1 can be applied. The
time integrals in Eqs. (20) and (21) can either be approximated by an EE1
scheme or the full predictor-corrector cycle can easily be solved in each stage
of an explicit Runge-Kutta scheme.

The interim velocity u∗i is not necessarily divergence free (violating Eq. (4)),
even if the velocity field ui(tn) is divergence free.

Inserting Eq. (21) into the mass equation (4) and discretizing the time integral
in Eq. (21) using e. g. an EE1 scheme leads to a Poisson equation, an elliptic
problem:

1

∆t

3∑
i=3

∂xiu
∗
i = −

3∑
i=3

∂xi∂xip (22)

where a discrete approximation of 1
∆t

∑3
i=3 ∂xiu

∗
i is known from the predictor

step (Eqs. (20)). Note that within the Laplace operator
∑3
i=3 ∂xi∂xi the partial

derivatives ∂xi are coming both, from the momentum equation (4) and the
mass equation (5), which should be considered for the discretization of this
Laplace operator (see e. g. [24] for details).

The Poisson equation (22) can be solved using an iterative equation solver
e. g. provided by the HYPRE library (e. g. [23]).
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In the ODTLES implementation an algebraic multigrid method (AMG), pro-
vided by the HYPRE library, is applied.
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Turbulence is a multi-scale process involving all scales from an integral
length scale (e. g. the size of the domain) down to the Kolmogorov length
scale (ηK). The most widely used turbulence models in CFD are based on eddy
viscosity assumptions or self-similarity properties of the turbulent scales. In
particular the governing equations are averaged in time (RaNS) or space (LES)
to significantly decrease the computational effort compared to DNS. The influ-
ence of non-represented scales on the spatial or temporal averaged flow state
needs to be modeled.

Physical small scale effects are not necessarily describable by viscosity or
obeying self-similarity properties and thus are hard to describe within com-
monly applied models.

In consequence the resolved state misses small scale effects, which are fre-
quently of importance, see e.g. in the whole area of reactive flows, flows with
apparent Prandtl or Schmidt number effects, or even wall bounded flows.

Near-wall flows locally disobey eddy viscosity properties of turbulent scales
and thus require an additional treatment in many RaNS and LES models either
by highly resolved near-wall regions or wall-specific model assumptions.

Some ideas of RaNS and especially LES are used in the XLES derivation and
thus these models are briefly introduced.

3.1 reynolds averaged navier-stokes equations

Reynolds averaged Navier-Stokes equations describe the dynamic of mean flow
variables. Therefore the governing incompressible Navier-Stokes equations (Eq.
(4) and Eq. (5)) are averaged, indicated by 〈 〉.

Additionally the corresponding scales of the flow variables are decomposed
for modeling purpose into:

uj =
〈
uj
〉
+ u ′j (23)

with the mean velocity field

〈ui〉 = lim
τ→∞ 1τ

∫ t+τ
t

ui dt ′ (24)

and the fluctuating terms u ′i = ui − 〈ui〉.
Note that the mean field in Eq. (23) is correctly defined as an integral over

the velocity PDF, but following the ergodic hypothesis for a statistically sta-
tionary flow this mean can be replaced by the time integral in Eq. (24). An
ensemble average is another approach estimating the mean for flows that can
be replicated.

In unsteady Reynolds averaged Navier-Stokes (URaNS) equations all occur-
ring turbulent time scales, which are required to define the mean fields in Eq.
(24), are assumed to be finite and smaller than some time evolution of the mean
field itself. This assumption has to be validated carefully for each individual
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problem and allows in principle time dependent RaNS simulations (see [95]
and authors cited therein for details).

Using the identity〈
u ′i
〉
= 0, (25)

which is valid for time averaging (see [82]), the RaNS equations (here shown
for the incompressible Navier-Stokes equations (4) and (5)) are:

0 =

3∑
j=1

∂xj 〈ui〉 (26)

0 = ∂xi 〈p〉+

∂t − ν 3∑
j=1

∂2xj

 〈ui〉+ 3∑
j=1

∂xj
〈
uj
〉
· 〈ui〉+ 〈Fi〉+ τRaNS

ij (27)

with the Reynolds stresses

τRaNS
ij = ∂xj

〈
u ′j · u ′i

〉
(28)

which has to be modeled.
A wide range of RaNS models are known (see e. g. [112] and [82] for an

overview) and can be classified into two categories:

1. Models based on an eddy viscosity hypothesis:

The Reynolds stress terms τRaNS
ij are described by a turbulent viscosity

(νT ):

〈
u ′j · u ′i

〉
−
2

3
kδij ≈ −νT

(
∂xj 〈ui〉+ ∂xi

〈
uj
〉)

= −2νT
〈
Sij
〉

(29)

with the mean rate-of strain tensor
〈
Sij
〉
, the Kronecker delta (δij) and

the specific turbulent kinetic energy (k). The most simple models are al-
gebraic models: The mixing-length model describes νT by a characteristic
length scale l∗ = lm and a characteristic velocity change u∗ = lm|∂x 〈u〉 |
(using e. g. the wall-normal gradient of the mean velocity |∂x 〈u〉 |. This
characteristic velocity change is related to the specific turbulent kinetic
energy by k ∼ (u∗)2. The resulting turbulent viscosity is:

νT = l∗u∗ ≈ (lm)(lm|∂x 〈u〉 |) (30)

where the flow specific length scale lm has to be prescribed and an effec-
tive viscosity can be defined νeff = ν+ νT . The mixing-length model is
incomplete, because lm need to be specified.

The Spallart-Allmaras model (see [96]) solves a model transport equation
for νT and is complete (independent of lm), but requires 8 closure coeffi-
cients and 3 closure functions and is restricted mainly to aerodynamics.
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The most frequently applied model is the k− ε-model (see e. g. [44]).

The characteristic velocity is described by u∗ ∼ k1/2. The turbulent dissi-
pation (ε) behaves like ε ∼ k3/2/lm which leads to a turbulent viscosity
described by νT ∼ k2

ε . Two model transport equations for k and ε are
solved, leading to a complete model which requires 5 model parameters
(see e. g. [60] for details).

Further two equation models are e. g. described by Wilcox [112].

Eddy viscosity models require additional treatment in the near-wall re-
gion, e. g. damping functions, to improve the results.

2. Reynolds-stress models:

Reynolds-stress models solve an model transport equation directly for
τRaNS
ij , which requires a model description of dissipation effects, a pressure-

rate of strain, and Reynolds-stress fluxes. There are simple algebraic mod-
els (not complete) and models using up to 7 additional model transport
equations, which increases the computational effort by a factor of ≈ 2

compared to standard k− ε-models. Contrary to eddy viscosity models,
some Reynolds-stress models can e. g. describe the secondary flow in a
duct.

3.2 large eddy simulation

Early large eddy simulation was originally motivated by meteorological appli-
cations (e. g. [93]). Nowadays LES is still used for meteorological flows, but
also applied to complex geometries occurring in engineering applications (see
e. g. [28]).

In LES the governing equations (here shown for the incompressible Navier-
Stokes equations (4) and (5)) are spatially filtered. Commonly applied 3D filter
functions [l1l2l3] are usually defined as tensor products of 1D filter functions
[lk] (k = {1, 2, 3}). Here an operator notation for the filter in xk-direction is used.

If these operations are applied to continuous fields the filter corresponds to
a convolution and the filtered field is continuous too.

Another concept, applied in this thesis, is the idea of implicit filtering, which
is often presupposed in LES: The numerical grid (cf. figure 2b) with the large
scale cell size ∆xLES

k implicitly defines the filter. Thus the implicit filtered fields
are strongly connected to the discretization. Figure 2 shows illustrative discrete
grids for DNS and LES. The effective filter length [leffk ] depends mainly on the
properties of the implemented numerical scheme:

[leffk ] = Q∆xLES
k (31)

with a numerical sub-filter parameter Q= O(1) depending on the numerical
scheme which is investigated for XLES in section 4.1.3.
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(a) DNS grid: udi ≈ ui. (b) LES grid: ud,LES
i ≈ [l1l2l3]ui.

Figure 2: In DNS all present spatial scales of the velocity field ui are numerically rep-
resented by a discrete grid (illustrative with NDNS = 16 cells per direction).
In LES 3D filtered velocity fields ud,LES

i = [ld1 l
d
2 l
d
3 ]ui (ldk defined in Eq. (32))

are numerically represented (illustrated with NLES = 4 cells per direction).
The spatial #DoFs is decreased from 163 to 43 in this example.

The acronym LES is used to differentiate between standard LES properties
and those defined in XLES in section 3.4.

Here a discrete 1D box filter

[ldk]ui =
1

∆xLES
k

∫ ∆xLES
k
2

−
∆xLES
k
2

ui dx ′k (32)

is applied to the continuous velocity field and corresponds to the discrete LES
grid.

Because of this box filter, the cell-averaged variables are used during the
computation and a numerical interpretation in terms of the FVM is more intu-
itive as a point value based FDM for both the considered LES and introduced
XLES schemes. The idea of implicit filtering and the consequences to a FVM
are studied e. g. by Denaro [20].

In LES the filtered velocities correspond to the 3D large scale field uLES
i =

[l1l2l3]ui while the sub-grid scale (SGS) terms correspond to the small scale
field ũLES

i = [1 − l1l2l3]ui. Here [lk] can be interpreted as the effective implicit
filter in Eq. (31). The numerical sub-filter parameter (Q) and the characteristic
filter form is not required to derive the filtered equations, but influence the
SGM.

Note that some SGMs require the simultaneous application of multiple 3D
filtered fields with different filter sizes.

To derive the 3D filtered equation (to be simulated) and the sub-grid scale
(SGS) terms (to be modeled) the spatial scales are separated for modeling pur-
pose using these 1D filter operators:

ui = [l1l2l3 + (1 − l1l2l3)]ui = u
LES
i + ũLES

i (33)

with the unity operator [1] and the resolved LES scales uLES
i and unresolved

LES scales ũLES
i .
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The 3D filtered LES equations are:

0 =

3∑
j=1

∂xju
LES
i (34)

0 = ∂xip
LES +

∂t − ν 3∑
j=1

∂2xj

uLES
i +

3∑
j=1

∂xju
LES
j · uLES

i + F
LES
i + τLES

ij (35)

with the residual stress tensor representing the SGS terms

τLES
ij = ∂xj

(
uj · uiLES − uLES

j · uLES
i

)
(36)

which describes the unresolved scales influencing the large scale field. In par-
ticular for homogeneous turbulence the turbulent small scales are acceptably
represented by simple models, e. g. by eddy viscosity models. The Smagorinsky
model was the first eddy viscosity based LES model introduced by Smagorin-
sky [93] (see also [68]).

The eddy viscosity assumption (cf. Eqs. (28) and (29)) is

τLES
ij = −2∂xjνrS

LES
ij (37)

with the filtered rate-of-strain

S
LES
ij =

1

2

(
∂xju

LES
i + ∂xiu

LES
j

)
(38)

and the residual viscosity (νr). For an incompressible Newtonian fluid the
derivative of this strain rate is of a similar form as diffusion terms. Thus an
effective viscosity ν+ νr can be applied. In analogy to the mixing-length hy-
pothesis (see section 3.1) the residual viscosity is

νr ∼ l
2
mS

LES
ij → νr = (CS∆x)

2S
LES
ij (39)

with the filter length ∆x. Here the filter length is assumed to match the grid
size ∆xLES, corresponding to Q= 1. Nevertheless other Q-values can be used
to shift the Smagorinsky constant (CS). The filter length scale corresponds to a
typical length scale (cf. Eq. (30)). In standard LES the filter length is within the
inertial range of the turbulent cascade.

For every eddy viscosity model with νr > 0 the energy transfer is from the
filtered motions to the residual ones (no backscatter effect). This is only realistic
for flows with a downward turbulent cascade. For homogeneous turbulence
the turbulent cascade is downwards and the Smagorinsky constant CS≈ 17

can be estimated for a sharp spectral filter (see e. g. [82],[68]). Unfortunately a
Smagorinsky LES with constant CS leads to wrong behavior for laminar flows
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occurring e. g. in the near-wall region of wall-bounded flows and the required
LES resolution strongly depends on the local flow properties.

Several modifications were proposed to overcome this limitation: Moin and
Kim [75] introduced a damping function leading to a non-constant CS. Near-
wall models have been introduced leading to wall-modeled LES (LES-wm) con-
trary to wall-resolved LES (LES-wr).

Additionally the standard Smagorinsky model is shown to be too dissipative
in applications (following [111]). Therefore Germano et al. [32] proposed a dy-
namical Smagorinsky model using multiple 3D filter functions, which became
a very successful LES model.

Each numerical scheme that approximates the LES equations leads to vari-
ous numerical effects on the filtered field. To exploit this fact, e. g. the spatial-
truncation errors can replace the eddy viscosity model and act like a SGM. This
approach is called implicit LES (see e. g. [7]) and requires a profound under-
standing of the numerical properties and effects of the implemented schemes.

Note that contrary to RaNS an LES identity of the form uLES
i

LES
= uLES

i does
not hold in general (cf. Eq. (25)).

Thus a more detailed investigation of small-scale effects requires a decompo-
sition of the SGS terms (introduced by Leonard [64]):

τLES
ij = L3Dij + C3Dij +R3Dij (40)

with

• 3D Leonard stresses

L3Dij = ∂xj

(
uLES
j · uLES

i

LES
− uLES

j · uLES
i

)
(41)

describe the influence of the 3D test-filter on the resolved advection terms.

• LES cross-stress terms

C3Dij = ∂xj

(
uLES
j · ũLES

i + ũLES
j · uLES

i

LES
)

(42)

describe the interaction of resolved and unresolved terms.

• 3D SGS Reynolds stresses

R3Dij = ∂xj

(
ũLES
j · ũLES

i

LES
)

(43)

describe the interaction of unresolved terms.

Here the outer filter is often called test-filter revealing notational similarities
to functional formulations (cf. appendix A.3). A more recent decomposition
introduced by Germano [31] provides advantageous properties e. g. Galilean
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invariant individual stress terms, but in preparation for section 3.4 the decom-
position by Leonard [64] is sufficient.

Jiménez and Moser [42] have shown that “the good a posteriori performance
of dynamic Smagorinsky sub-grid models in LES [...] appears to be only weakly
related to their ability to correctly represent the subgrid physics”. Thus in
multi-physics computations modeling of physical small-scale effects is espe-
cially hard and requires serious caution not least concerning any resolution
decisions (see e. g. [21]).

3.3 one-dimensional turbulence (odt)

Note that this section introduces ODT in a buoyant extension. Parts of this
section are adapted from the incompressible Navier-Stokes interpretation of
ODT introduced by the author in [3, section 2].

The ODT model describes the dynamics of a three dimensional turbulent
flow within a one-dimensional sub-domain, including fully resolved molecular
diffusion. Thus ODT exploits problem specific symmetry properties and is e. g.
able to describe the turbulent channel flow including high order flow statistics
with satisfactory accuracy (see section 4.1.2).

ODT stand-alone is able to compute meaningful results, even with one veloc-
ity component (see [50]). Nevertheless to capture anisotropic flow behavior and
especially as a closure within a 3D approach, two or three velocity components
are advantageous.

In wall-bounded flows (especially in turbulent channel flows) described by
ODT with three velocity components, the wall-normal and the spanwise ve-
locities are identical, so two-component ODT captures similar statistical flow
properties. (Note that ODT results in section 4.1.2 are computed with 2 velocity
components).

Here we introduce ODT including 2 velocity components. This ODT model
is a modification of the ODT vector formulation by Kerstein et al. [53], which in-
cludes 3 velocity components. A corresponding ODT example code is available
online (see [51]). Additionally the concept of a variable density formulation of
ODT by Ashurst and Kerstein [6] is incorporated.

ODT emulates the time evolution of a turbulent fluid in a 1D sub-space,
which is oriented in the Cartesian xk-direction. The 2ODT velocity components
uk,i = ui(xk) (w.l.o.g. u1,2 and u1,3 for k = 1) are oriented orthogonally to the
xk-direction. The time evolution of a velocity field uk,i = ui(xk) (cf. Eq. (2)) and
a scalar field θk = θ(xk) (cf. Eq. (3)) in this 1D sub-space is described by:

0 = ∂tuk,i +DODTk(uk,i) + euk,i(uk,j, x0, l) with i, j,k = {1, 2, 3} ∧ i 6= k∧ j 6= k
(44)

0 = ∂tθk +DODTk(θk) + eθk(x0, l) (45)
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with the ODT diffusion terms DODTk(uk,i) = −ν∂2xkuk,i and DODTk(θk) =

−κ∂2xkθk which are numerically approximated by IE1 in time and a CDM in
space (see sections 2.1.1 and 2.1.2). An example clarifies the index notation
in Eq. (44): for w.l.o.g. k = 1 the velocities u1,i with i = {2, 3} are advanced,
where w.l.o.g. for i = 2 the function eu1,2(u1,j, x0, l) depends on the two velocity
components u1,j with j = {2, 3}. The index notation resembles the XLES index
notation used in the following sections where the velocity uk,i is oriented in
the xi-direction within a grid representing XLES equations (XLES-grid) highly
resolved in the xk-direction (i 6= k).

The terms euk,i(uk,j, x0, l) respective eθk(x0, l) are instantaneous eddy func-
tions affecting uk,i respective θk within the eddy range xk ∈ [x0, x0+ l]. A maxi-
mum eddy size (lmax) is enforced, hence l 6 lmax. The eddy function eφk,i (with
the solution field φk,i = {uk,i, θk}= {ui(xk), θ(xk)}) is introduced to represent a
stochastic procedure that emulates turbulent advection:

eφk,i :

(
ui(xk, t)
θ(xk, t)

)
→

(
ui(f(xk, x0, l), t) + ci(uk,j)K(xk)

θk(f(xk, x0, l), t)

)
. (46)

Note that the advection function euk,i(uk,j, x0, l) depends on both velocity com-
ponents uk,j (with j 6= k) due to ci, defined in Eq. (48). The mapping func-
tion f(xk, x0, l), representing fluid transport, is measure preserving (the non-
local analog of vanishing velocity divergence), continuous, and satisfies the
requirement of scale locality (at most order-unity changes in property gradi-
ents). These indispensable physical requirements for f(xk, x0, l) are satisfied
by a triplet map, which places three compressed copies of the original profile
({uk,i(xk), θk(xk)}, xk ∈ [x0, x0 + l]) in the eddy range x0 < xk < x0 + l. The
middle copy is reversed to preserve continuity, as illustrated in figure 3. The
triplet map xk → f(xk, x0, l) is:

f(xk, x0, l) = x0 +



3(xk − x0), if x0 6 xk 6 x0 + 1
3l

2l− 3(xk − x0), if x0 + 1
3l 6 xk 6 x0 +

2
3l

3(xk − x0) − 2l, if x0 + 2
3l 6 xk 6 x0 + l

(xk − x0), else.

(47)

In Eq. (46), K(xk, x0, l) is a kernel function which in combination with the
amplitudes ci assures momentum and energy conservation and controls the
energy redistribution among the velocity components. A possible definition is:
K(xk, x0, l) = xk − f(xk, x0, l). This energy redistribution is a 1D interpretation
of the pressure-fluctuation effect in a 3D flow and therefore is called ‘pressure
scrambling’.
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(a) Profile before triplet map. (b) Profile after triplet map.

Figure 3: Illustration of a continuous triplet map in Eq. (47): The profile within the
eddy range x0 < xk < x0 + l is replaced by 3 compressed copies of the
original profile, while the middle copy is reversed.

Determination of the amplitudes ci requires additional modeling. Kerstein
et al. [53] derive the amplitudes:

ci =
27

4l

−uK;k,i + sgn(uK;k,i)

√
u2K;k,i +

∑
j 6=k
αTiju

2
K;k,j

 ; i 6= k (48)

with the definition

uK;k,i ≡
1

l2

∫
uk,i(f(xk, x0, l))K(xk, x0, l)dxk (49)

and the transfer matrix

αT = α

(
−1 1

1 −1

)
. (50)

Note that Eq. (50) is valid for 2 velocity components, while the transfer matrix
in [53] is 3-dimensional.

The free parameter α ensures the amplitudes ci in Eq. (48) to be real values
for 0 6 α 6 1. We choose α = 1/2 corresponding to the equalization of the two
component available energies in the present formulation.

During an eddy event, the transfer matrix T redistributes the turbulent ki-
netic energy among velocity components.

This ‘pressure scrambling’ accounts for the tendency for pressure fluctua-
tions to restore isotropy (especially for α = 1/2) and is invariant under ex-
change of indices. By construction the momentum and total energy are not
changed by the pressure scrambling.

During the ODT time evolution in Eqs. (44) and (45), the eddy size l and
the location x0 are sampled from a probability distribution representing the
physics: For a given {l, x0} an eddy turnover time τe can be calculated leading
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to an occurrence frequency 1
τe

. Since the ODT triplet map is an instantaneous
process, the frequency for the eddy specified by {l, x0} is chosen from an event
rate distribution:

λ(x0, l) =
C

l2τe(x0, l)
=
C

l3

√
k− V −

ν2

l2
Z (51)

involving particular definitions of the available specific turbulent kinetic en-
ergy (k) and the created specific potential energy difference (V). The values
lmax, C, and Z are adjustable model parameters. The latter is introduced to cut
off eddies with unphysically small energy and the parameter C is an overall
rate coefficient determining the strength of the turbulence. The maximum eddy
size (lmax) is chosen to characterize the largest (global) scale within the flow,
e.g. half channel height, half duct height, or Rayleigh-cell height (h).

Meiselbach [71] found the Z-parameter to be weakly dependent on the tur-
bulent Reynolds number, but the dependency is marginal for Reτ6 10000, in-
vestigated in this thesis.

3.4 extended large eddy simulation (xles)

Note that this section introduces XLES and ODTLES in the Oberbeck-Boussinesq
approximation. Parts of this section are adapted from the incompressible Navier-
Stokes interpretation of XLES and ODTLES introduced by the author in [2] and
[3]. All following sections and chapters contain scientific contribution by the
author and their validation.

Extended LES (XLES) is a new approach and concept to filter the governing
equations. Possible modifications of the 3D filtering applied in LES are:

• 2D filtering the governing equations: Since ODT incurs relatively low
computational costs to fully resolve small scale effects (e.g. molecular
diffusion) in 1D, it is worthwhile but also fairly non-trivial to include it
into an LES-like 3D approach. To achieve this, XLES solves 2D filtered
equations on a structured grid, tailored to include 1D models as SGMs,
because one highly resolved Cartesian direction is maintained (this e.g. al-
lows resolved molecular diffusion within an ODT sub-grid model). In this
sense the term SGM is used to describe unresolved terms rather than to
describe unresolved spatial scales. To derive a preferably general model,
all Cartesian directions are treated equally: Three 2D filters, each corre-
sponding to one highly resolved Cartesian direction, are applied inde-
pendently to the governing equations. This leads to three coupled sets
of 2D filtered equations, derived in detail in section 3.4. This 2D filtered
XLES is investigated in this work and XLES refers to 2D filtered XLES if
not mentioned otherwise. As considerations in appendix A.3.3 suggest,
XLES is not restricted to structured grids.
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• 1D filtering the governing equations: E. g. the concepts of superparam-
eterizations for meteorological flows is related to 1D filtered equations
within the XLES framework. Multiple coupled 1D filtered (2D highly re-
solved) systems of equations are imaginable. The 3D large scale fields
are consistent due to coupling terms. The 1D filtered equations are not
investigated in detail in this work.

There are conceptual conclusions: On the one hand XLES can be interpreted
as a superparameterization using 1D models. On the other hand e. g. the con-
cept of the Cloud Resolving Convection Parameterization (CRCP) model by
Grabowski and Smolarkiewicz [34] and quasi-3D multi-scale modeling (Q3D)
by Jung and Arakawa [46] can be expressed to some extend by XLES-like 1D fil-
tering. Note that superparameterization approaches often contain another level
of sub-grid modeling for the highly resolved properties. In ODTLES this can
be achieved by introducing the ensemble mean closure (EMC), as described by
Schmidt et al. [89].

Though primarily intended to explain ODTLES to the LES community, XLES
also gives new insights into ODTLES. E. g. XLES allows the representation of
scalar properties by multiple XLES-grids consistently (see section 3.4.2.2) and
moreover is a novel autonomous modeling strategy because the ansatz is very
general and not limited to one-dimensional models like ODT.

In ODTLES, in the one hand the ODT-SGM is able to represent the full spec-
trum of the turbulent cascade within a 1D sub-domain, including the large
scale effects and on the other hand XLES contains 1D small scale terms. Thus
the classical term ‘scale separation’ is misleading for XLES and especially OD-
TLES, because it is often associated with 3D large scale terms to be simulated.
We will refer to a ‘filter separation’ between the XLES resolved scales and the
unresolved scales modeled by ODT, where not necessarily 3D large scale terms
are treated by XLES, but 1D or 2D filtered equations are solved. Especially in
ODTLES the ‘filter separation’ can be interpreted to separate rather physical ef-
fects than spatial (or temporal) scales. Thereby the XLES approach only needs
to represent 3D effects not represented by ODT (e. g. the domain geometry or
secondary instabilities, as investigated in section 4.2.1). This leads to a XLES
3D resolution which is rather independent of the turbulence intensity. ODTLES
can describe highly turbulent flows including small scale effects in domains of
moderate complexity, relevant e.g. in the fields of combustion research, atmo-
spheric science, fundamental turbulence research and many more. ODTLES
results in chapters 4 and 5 demonstrate this ability for shear driven and buoy-
ancy driven turbulent flows.
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To derive resolved (to be simulated) and unresolved (to be modeled) terms
the spatial 1D scales are separated for modeling purpose using these 1D filter
operators:

ui = [1 1 1]ui (52)
= [(l1 + (1 − l1))(l2 + (1 − l2))(l3 + (1 − l3))]ui

≡ [(l1 + s1)(l2 + s2)(l3 + s3)]ui

= [l1l2l3 + s1l2l3 + l1s2l3 + l1l2s3 + s1s2l3 + s1l2s3 + l1s2s3 + s1s2s3]ui

with the unity operator (1) and the 1D small scale operator

[sk] = [1 − lk]. (53)

The tensor product ansatz causes combinations of 1D operators to be com-
mutable, e.g. s1l2l3 = l3s1l2.

In table 4 the ‘filter separations’ are compared between LES, DNS and XLES
(2D filtered). Additionally the XLES (1D filtered) idea is used to introduce a
notation for a possible superparameterization related to CRCP by Grabowski
and Smolarkiewicz [34] (here called XLES-CRCP).

Table 4: Comparison of ‘filter separation’ approaches. LES is summarized in section
3.2. φi = {ui, θ} summarizes the dynamic variables. XLES-CRCP is an XLES-
interpretation of a CRCP superparameterization by Grabowski and Smo-
larkiewicz [34] (here x2 is the vertical direction).

Model resolved unresolved

LES φ
LES
i = [l1l2l3]φi φ̃LES

i = [s1l2l3 + l1s2l3 + l1l2s3

+s1s2l3 + s1l2s3 + l1s2s3 + s1s2s3]φi

DNS [1 1 1]φi 0

XLES φi = φ̃i =

[l1l2l3 + s1l2l3 + l1s2l3 + l1l2s3]φi [s1s2l3 + s1l2s3 + l1s2s3 + s1s2s3]φi

XLES-CRCP φi = [l1l2l3 + s1l2l3 + l1s2l3+ φ̃i = [s1l2s3 + s1s2s3]φi

l1l2s3 + s1s2l3 + l1s2s3]φi

The LES ‘3D scale separation’ is a special case of a ‘filter separation’, but
essential differences exists in the capability of the microscale models ODT and
an LES eddy viscosity model (see section 3.2).

In DNS all available scales are resolved numerically.
In XLES the resolved scales are connected to 2D filtered fields. W.l.o.g. we

apply [l1l2] leading to:

[l1l2]φi = [l1l2l3 + l1l2s3]φi. (54)
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To treat all Cartesian directions equally, all possible 2D-filtered terms [l2l3]φi,
[l1l3]φi, and [l1l2]φi are resolved numerically.

The XLES resolved approach can be interpreted as the LES resolved scales
([l1l2l3]) with additionally 1D resolved small scale (RSS) terms in all Cartesian
directions ([s1l2l3] + [l1s2l3] + [l1l2s3]). Both, the XLES resolved scales and the
unresolved scales (e. g. modeled by ODT) impose special requirements on the
numerical scheme and modeling, because techniques known from LES cannot
be applied one-to-one to XLES.

The XLES-CRCP concept is based on 1D filtered equations for [l1]φi = [l1(l2+

s2)(l3 + s3)]φi and [l3]φi = [(l1 + s2)(l2 + s2)l3]φi leaving 2 highly resolved 2D
systems of equations to be simulated (also possible with three 2D systems).
These equations can be solved numerically. This concept is a reinterpretation
of a CRCP approach and shows the relation of XLES and meteorological con-
cepts. Further details might be in the scope of future investigations.

3.4.1 XLES: Spatial 2D-Filtering

The basic XLES concept is to apply 2D filters to the mass, momentum, and
scalar equations (1)–(3), maintaining one Cartesian direction highly resolved.
Using these filters, three 2D filtered XLES solution fields φk,i = {uk,i, θk}, each
corresponding to one highly resolved Cartesian direction xk (k = {1, 2, 3}), are
introduced.

We use a vector notation (called XLES vector notation), indicated by an un-
derbar (e.g. φ

i
). Each vector element contains one of the three 2D filtered solu-

tion fields:[l2l3]φi

[l1l3]φi

[l1l2]φi

 =

l2l3 0 0

0 l1l3 0

0 0 l1l2


φiφi
φi

 ≡ l2Dφi ≡ φ̂i (55)

with the 2D filter matrix l2D. Here w.l.o.g. the 2D filter operator [l2l3] (corre-
sponding to XLES-grid 1) corresponds to a tensor product of 1D filter operators
[l2] and [l3]. This tensor product is commutable: [l2l3]=[l3l2].

The 2D filtered fields φ̂
i

(we refer to φ̂
i

as the XLES vector) are discretized
using three overlapping staggered XLES-grids with face-centered velocities and
cell-centered pressure and scalar fields, illustrated in figure 4b–4d, where each
XLES-grid k = {1, 2, 3} discretizes one XLES vector element φ̂k,i.

The 2D filtering follows the idea of implicit filtering (cf. section 3.2). The
discrete grid contains averaged values corresponding to the discrete 1D box
filter definition [ldk]:

[ldk]φi =
1

∆xLES
k

∫ ∆xLES
k
2

−
∆xLES
k
2

φi dx ′k. (56)
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(a) LES grid:
φ
d,LES
i ≈ [l1l2l3]φi.

(b) Grid 1:
φ̂d1,i ≈ [l2l3]φi.

(c) Grid 2:
φ̂d2,i ≈ [l1l3]φi.

(d) Grid 3:
φ̂d3,i ≈ [l1l2]φi.

Figure 4: In XLES the solution field φi = {ui, θ} is resolved using multiple XLES-grids
illustrated in 4b-4d. 3D large scale properties, corresponding to a standard
LES grid are for illustration represented with NLES = 4 cells per direction
in 4a (cf. figure 2). In XLES the 3D large scale properties are derived by
1D filtering the XLES properties: φLES

i = [lk]φ̂k,i, k = {1, 2, 3}. The discrete
XLES resolved small scale (RSS) properties are represented for illustration by
NRSS = 16 cells in 4b-4d.

The effective implicit filter size in xk-direction is [leffk ] = Q∆xLESk with the nu-
merical sub-filter parameter Q≈ O(1) depending on the numerical scheme.
Thus the discrete representation and the filter properties are strongly con-
nected. Again [lk] can be interpreted as the effective implicit filter. The numer-
ical sub-filter parameter (Q) and the characteristic filter form is not required
to derive the 2D filtered equations, but influence especially the choice of the
maximum eddy size (lmax) within the ODTLES model.

By explicitly averaging the flow state in the highly resolved XLES-grid direc-
tion using Eq. (56) a discrete representation within a 3D large scale grid (see
figure 4a) is possible with the equivalent effective large scale filter properties
as in the two filtered directions. Thus computations using this 3D large scale
grid correspond to an implicitly 3D filtered scheme with an effective filter size
[leffk ] = ∆QxLESk in each direction xk, k = {1, 2, 3}.

The XLES ‘filter separation’ (cf. table 4) decomposes the full solution field
into three parts (using the XLES vector notation):

φ
i
≡

φiφi
φi

 =

[l2l3]φi

[l1l3]φi

[l1l2]φi

+

[l1s2l3 + l1l2s3]φi

[s1l2l3 + l1l2s3]φi

[s1l2l3 + l1s2l3]φi

+

[S]φi

[S]φi

[S]φi


≡ l2Dφ

i
+Cs1Dl2Dφ

i
+ [S]φ

i
(57)

with the XLES-SGS terms S = [l1s2s3 + s1l2s3 + s1s2l3 + s2s2s3]:

1. ‘Directly Resolved’:

The 2D filter l2D applied to the full solution field (φi) leads to the XLES
vector: φ̂

i
= l2Dφ

i
. Each XLES-grid represents its own ‘directly resolved’

solution field distinct from the other XLES-grids.

2. ‘Indirectly Resolved’:
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There are ‘indirectly resolved’ small scale terms (‘directly resolved’ by
another XLES-grid): Cs1Dl2Dφ

i
. Especially within non-linear advection

terms (in Eq. (2)), they determine the coupling between the XLES-grids.
The coupling matrix C and the small scale matrix s1D in Eq. (57) are:

C =

0 1 1

1 0 1

1 1 0

 and s1D =

s1 0 0

0 s2 0

0 0 s3

 . (58)

The matrix s1D defines the resolved small scale (RSS) properties φ̌
i

(these
are simulated in XLES, contrary to LES):

s1Dl2Dφ
i
≡ φ̌

i
= φ̂

i
− l1Dφ̂

i
= φ̂

i
−φ

LES
i

(59)

with the 1D filter matrix

l1D =

l1 0 0

0 l2 0

0 0 l3

 . (60)

In index notation: The term (w.l.o.g.) [l1s2l3]φi = [l1l3]φi − [l1l2l3]φi can
be interpreted numerically, because φ̂2,i = [l1l3]φi is exclusively available
in XLES-grid 2 and the 1D filtered XLES field [l2]φ̂2,i = [l1l2l3]φi, corre-
sponding to the LES properties φLESi (see figure 4), is also available in
XLES-grid 2.

3. ‘Not Resolved’:

The scales [S]φi = [s1s2l3 + s1l2s3 + l1s2s3 + s1s2s3]φi are not resolved in
any XLES-grid , but their influence could be modeled e. g. by the ODT
model (see sections 3.3 and 3.5).

We summarize all resolved scales (‘directly’ and ‘indirectly’):

φ
i
= [l1l2l3 + s1l2l3 + l1s2l3 + l1l2s3]φi = (l2D +Cs1Dl2D)φ

i
. (61)

A possible interpretation of the XLES resolved scales is the numerical approx-
imation of φi instead of φLES

i = [l1l2l3]φi in LES (cf. table 4). Appendix A.1
shows that expressing φ

i
in index notation automatically leads to three cou-

pled XLES-grids (corresponding to Eq. (61)).
An equivalent derivation and interpretation of the XLES filter idea is de-

scribed in appendix A.3: Formally this procedure is similar to derivations of
variational methods, as FEM and DGM and thus allows the application of tech-
niques known from these methods also to the XLES framework. This can e. g.
include unstructured grids. Thereby 2D convolutions are applied as ansatz and
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test functions (an extension of the implicit filter and a test-filter) to the govern-
ing equations.

3.4.2 XLES: Momentum Conservation

Similar to LES, in XLES filtered equations are solved. Contrary to LES the
XLES equations are derived by applying a 2D filter matrix l2D to the governing
equations. For the momentum equations (2) this leads to (using XLES vector
notation):

0 =∂xip̂ +

∂t − ν 3∑
j=1

∂2xj

 û
i
+

3∑
j=1

∂xjûj ∗ ûi +
3∑
j=1

τXLES
ij + g2θ̂ + F̂i (62)

with the 2D filtered pressure

p̂ = l2Dp =

[l2l3]p

[l1l3]p

[l1l2]p

 , (63)

the 2D filtered gravitational forcing (g2θ̂, see also section 3.4.3), the XLES resid-
ual stress tensors τXLES

ij , and the Hadamard operator ∗, an entry-wise multipli-
cation between XLES vectors and matrices.

The three 2D filtered momentum equations, each describing three velocity
components (hence the number of equations is tripled), coexist and are solved
simultaneously.

Compared to LES advection terms ∂xju
LES
j uLES

j the XLES advection terms
∂xjûj ∗ ûi = ∂xj(u

LES
j + ǔj) ∗ (uLES

i + ǔi) contain additional XLES-grid specific
RSS terms.

The contribution associated with the XLES residual stress tensors

τXLES
ij = l2D

(
∂xjuj ∗ ui

)
− ∂xjûj ∗ ûi (64)

is captured through the use of some form of modeling or approximation.

3.4.2.1 Decomposition of the XLES Residual Stresses

To investigate the XLES residual stresses in more detail, a 2D decomposition
(a modified version of the 3D decomposition by Leonard [64] in section 3.2) is
performed , leading to:

τXLES
ij = XXLES

ij +L2Dij + CXLES
ij +RXLES

ij (65)

where:

• XLES coupling tensor terms
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XXLES
ij = ∂xj

(
ûj ∗Cs1Dl2Dui +Cs1Dl2Duj ∗ ûi +Cs1Dl2Duj ∗Cs1Dl2Dui

)
(66)

involve ‘indirectly resolved’ terms. These stress terms couple the mo-
mentum equations represented by different XLES-grids. A possible ap-
proximation of XXLES

ij is investigated in section 3.4.2.2. In LES these terms
are not simulated and therefore typically modeled or approximated and
contribute to LES cross-stress and 3D SGS Reynolds stress terms (cf. sec-
tion 3.2).

• 2D XLES Leonard stresses

L2Dij = (l2D∂xj
(
ûj ∗ ûi

)
− ∂xjûj ∗ ûi) + (l2DXXLES

ij −XXLES
ij ) (67)

describe the influence of the 2D test-filter on the (‘directly’ and ‘indi-
rectly’) resolved XLES advection terms (see section 3.4.2.3 for details and
compare to LES in section 3.2).

• XLES cross-stress terms

CXLES
ij = l2D∂xj

(
ũj ∗ ûi + ûj ∗ ũi

)
+ l2D∂xj

(
ũj ∗Cs1Dl2Dui +Cs1Dl2Duj ∗ ũi

)
(68)

describe the interaction of resolved (‘directly’ and ‘indirectly’) and unre-
solved XLES terms (see section 3.4.2.3 for details and compare to LES in
section 3.2).

• 2D SGS Reynolds stress terms

RXLES
ij = l2D∂xj

(
ũj ∗ ũi

)
(69)

describe the interaction of terms not resolved in XLES (see section 3.4.2.3
for details and compare to LES in section 3.2).

The XLES stress terms L2Dij , CXLES
ij , and RXLES

ij are investigated in more detail
in section 3.4.2.3 and can be interpreted in the context of the ODT model, as
shown in section 3.5.

As mentioned in section 3.2 an improved decomposition by Germano [31]
is possible also for the 2D filtered fields investigated here. Nevertheless the
2D decomposition following [64] is sufficient to introduce ODT into the XLES
framework and therefore used here in preparation for section 3.5.
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3.4.2.2 XLES: Coupling Tensor Terms

The XLES coupling tensor terms (XXLES
ij ) in Eq. (66) are decomposed into two

terms (using ǔi from Eq. (59 )):

XXLES
ij =C∂xj

(
ûj ∗ ûi − uLES

j ∗ uLES
i

)
+ ∂xj

(
1 ǔj ∗ 1 ǔi − 1(ǔj ∗ ǔi)

)
(70)

(proof by insertion) with the matrix of ones 1 and where:

1. The first term in Eq. (70) exclusively contains advection terms with ad-
vecting and advected velocities represented within the same XLES-grid.
This can be interpreted as a linearization affecting the coupling, while
the individual advection terms ∂xjûk,jûk,i and ∂xju

LES
k,j u

LES
k,i in each XLES-

grid k remain non-linear. We investigate w.l.o.g. one element of a coupling
vector

(
C∂xjûj ∗ ûi

)
in detail: For XLES vector element 1 we find e.g.

∂xj([l1l3]uj [l1l3]ui) (71)

with the velocities [l1l3]uj = û2,j (j = {1, 2, 3}) only discretely represented
in XLES-grid 2.

This coupling vector can be reinterpreted:

(C∂xjûj ∗ ûi) ≈ l
† ∗C∂xjûj ∗ ûi (72)

with the matrix

l† =

 1 l−11 l2 l−11 l3

l−12 l1 1 l−12 l3

l−13 l1 l−13 l2 1

 . (73)

Using Eq. (72) the same example in Eq. (71) leads to:

[l−11 ][l2]∂xj([l1l3]uj [l1l3]ui) (74)

which is computed in XLES-grid 2 and then coupled to XLES-grid 1. Eq.
(73) contains deconvolution operators [l−1k ], which are realizable if only
large scale information is present. This is the case in XLES: the velocities
[l1l3]uj and [l1l3]ui in the example in Eq. (74) are large scale in the x1-
direction, which is the direction of the deconvolution.

A discrete (numerical) approximation l†d ≈ l† is provided by Eq. (56)
for the averaging and an algorithm is introduced in section 3.6.1 for the
reconstruction (deconvolution). Note that the reconstruction algorithm
maintains the averaged values.
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Using the matrix l† (including deconvolutions) the linearized XLES cou-
pling tensor terms are:

XXLESij = l† ∗C∂xj
(
ûj ∗ ûi − uLES

j ∗ uLES
i

)
. (75)

The deconvolution within the coupling terms Eq. (75) is fundamentally
different in XLES than in existing approaches without resolved small
scales. The reason is that the deconvolution in XLES is not intended to
construct small-scale features that are otherwise non-existent, but rather,
to modify a small-scale structure that already exists at the resolved small
scales, recognizing that this structure also has low-wavenumber content.
Indeed, the goal in principle is to modify appropriately that low-wavenum-
ber content while preserving the high-wavenumber content to the great-
est possible extent (see the example in sections 3.6.2 and 3.6.3).

2. The second term in Eq. (70) can be expanded as follows:

∂xj
(
1 ǔj ∗ 1 ǔi − 1(ǔj ∗ ǔi)

)
(76)

=∂xj1(ǔ1,jǔ2,i + ǔ1,jǔ3,i + ǔ2,jǔ1,i + ǔ2,jǔ3,i + ǔ3,jǔ1,i + ǔ3,jǔ2,i).

These terms contain interactions of small-scale velocities resolved in dif-
ferent XLES-grids. We neglect these non-linear coupling terms. For an
intact energy cascade within the turbulent flow this assumption is rea-
sonable because it implies that the velocities ǔk,j = ûk,j−u

LES
k,j are smaller

than ûk,j.

By neglecting the non-linear coupling terms an XLES-U spatial momentum
error term can be defined:

σ
spatial
XLES−Uij

=∂xj
(
1 ǔj ∗ 1 ǔi − 1(ǔj ∗ ǔi)

)
. (77)

In unclosed LES (LES-U), the LES-limit of XLES-U (see section 3.4.7), the
model error σspatial

XLES−Uij
vanishes and thus comparing a convergence study of

XLES-U and LES-U allows to estimate σspatial
XLES−Uij

for a specific case (cf. section
4.1.4).

3.4.2.3 XLES-SGS: Leonard Stress, Cross-Stress and SGS Reynolds Stress Terms

In this section the (to be modeled) stress tensors containing XLES unresolved
terms τXLES

ij −XXLES
ij = L2Dij + CXLES

ij +RXLES
ij are investigated:

• The Leonard stresses L2Dij = l2D∂xj

(
ûj ∗ ûi +XXLES

ij

)
−∂xj

(
ûj ∗ ûi +XXLES

ij

)
can in principle be calculated by explicit filtering the directly and indi-
rectly resolved XLES advection terms.
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For implicit filtered LES and XLES the filter shape and effective filter
length are not known, but the 2D Leonard stresses are expected to be
small within a discrete formulation using implicit filtering, as long as the
test-filter also corresponds to the discrete representation.

Ferziger and Peric [24] (and authors therein) report that explicit filtering
the LES advection terms produces immoderate dissipation and neglecting
the 3D Leonard stresses improves the outcome.

According to these arguments we neglect L2Dij .

Other attempts to model the 3D Leonard stresses are not transferred to
the 2D Leonard stresses in this work.

• The XLES cross-stress terms (CXLES
ij ) and 2D SGS Reynolds stress terms

(RXLES
ij )

describe interactions including the XLES unresolved scales ũi = [S]ui (see
table 4). These terms can be modeled (e.g. by ODT).

We decompose these stress terms:

CXLES
ij +RXLES

ij =∂xj(l
2D + l† ∗C l2D)

(
ũj ∗ ǔi + ǔj ∗ ũi

)
(78)

+∂xj(l
2D )

(
ũj ∗ uLES

i + uLES
j ∗ ũi + ũi ∗ ũj

)
into:

1. The terms ∂xj(l
2D + l† ∗C l2D)

(
ũj ∗ ǔi + ǔj ∗ ũi

)
depend on the resolved small scale velocities ǔj exclusively available
in one XLES-grid.

2. The terms ∂xjl
2D
(
ũj ∗ uLES

i + uLES
j ∗ ũi + ũi ∗ ũj

)
are independent of the XLES-grid (equal in all XLES-grids). If a mod-
eling approach is simultaneously applied in different XLES-grids, a
SGS-coupling is required to guarantee a consistent 3D large scale
field. Ad hoc introduction of an additional coupling, e.g.(

l2D + l† ∗C l2D
)(
ũj ∗ uLES

i + uLES
j ∗ ũi + ũi ∗ ũj

)
, (79)

would lead to double counting of small scale terms available in all
XLES-grids. Nevertheless the exact relation

l2D
(
ũj ∗ uLES

i + uLES
j ∗ ũi + ũi ∗ ũj

)
(80)

=
1

3

(
l2D + l† ∗C l2D

)(
ũj ∗ uLES

i + uLES
j ∗ ũi + ũi ∗ ũj

)
.

avoids double counting due to the factor 1
3 (proof of

l2D1 = 1
3

(
l2D + l† ∗C l2D

)
1 by insertion).
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We reformulate and summarize the XLES unresolved terms in Eq. (78):

CXLES
ij +RXLES

ij = (l2D + l† ∗C l2D)Mij (81)

with the XLES momentum microscale term

Mij = ∂xj

(
ũj ∗ ǔi + ǔj ∗ ũi +

1

3

(
ũj ∗ uLES

i + uLES
j ∗ ũi + ũj ∗ ũi

))
. (82)

Each vector element Mk,ij contains the unresolved terms in XLES-grid
k. These terms are coupled to the other XLES-grids by the SGS coupling
terms l† ∗C l2DMij.

Additionally to the XLES-U spatial momentum error term (σspatial
XLES−Uij

) in Eq.
(77) neglecting the Leonard stresses introduces SGS momentum error term:

σ
spatial
SGSij

= L2Dij . (83)

Summarizing section 3.4.2.2 and 3.4.2.3 we can write the XLES momentum
equations:

0 =∂xip̂ +

∂t − ν 3∑
j=1

∂2xj

 û
i
+

3∑
j=1

∂xjûj ∗ ûi + g2θ̂ +
3∑
j=1

(
l2DMij

)
+

3∑
j=1

σ
spatial
XLESij

+

3∑
j=1

(
l† ∗C∂xj(ûj ∗ ûi − u

LES
j ∗ uLES

i ) + l† ∗C l2DMij

)
(84)

with the spatial momentum error term σ
spatial
XLESij

= σ
spatial
XLES−Uij

+ σ
spatial
SGSij

. The last
line in Eq. (84) corresponds to the full coupling, including the SGS terms and
the ‘indirectly resolved’ terms.

Please note at this stage no concrete SGS model is introduced to model Mij.

3.4.3 XLES: Scalar Conservation

In the XLES momentum equation (84) the gravitational forcing g2θ̂ depends
on the scalar field. Thus an XLES interpretation of the scalar equation (3) is
required:

0 =

∂t − κ 3∑
j=1

∂2xj

 θ̂ + 3∑
j=1

∂xjûj ∗ θ̂ + τ
XLES
θj (85)

with the XLES residual scalar flux

τXLES
θj = l2D

(
∂xjuj ∗ θ

)
− ∂xjûj ∗ θ̂. (86)
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Following considerations for LES by Sagaut [85], the XLES residual scalar
flux can be decomposed similar to the XLES residual stress tensor (τXLES

ij ) in
section 3.4.2.1:

τXLES
θj = XXLES

θj +L2Dθj + CXLES
θj +RXLES

θj (87)

with the XLES scalar coupling terms (XXLES
θj ), the XLES scalar Leonard stress-

type terms (L2Dθj ), the XLES scalar cross-stress-type terms (CXLES
θj ), and 2D scalar

SGS Reynolds stress-type terms (RXLES
jθ ).

The decomposed XLES residual scalar fluxes in Eq. (87) are defined equally
to the XLES residual stress tensors in sections 3.4.2.2 and 3.4.2.3. The arguments
leading to Eq. (75) also lead to

XXLESθj = l† ∗C∂xj
(
ûj ∗ θ̂ − uLES

j ∗ θLES
)

(88)

and the reasoning leading to Eq. (82) leads to the XLES scalar microscale term:

Mθj = ∂xj

(
ũj ∗ θ̌ + ǔj ∗ θ̃ +

1

3

(
ũj ∗ θ

LES
+ uLES

j ∗ θ̃ + ũj ∗ θ̃
))

(89)

and its coupling l† ∗C l2DMθj. The corresponding spatial scalar error terms are:

σ
spatial
θ =∂xj

(
1 ǔj ∗ 1 θ̌ − 1(ǔj ∗ θ̌)

)
+L2Dθj . (90)

All arguments concerning the XLES Leonard stress in section 3.4.2.3 apply also
to the XLES scalar Leonard stress-type term.

Note that within the LEM3D model an alternative scalar coupling is intro-
duced (see [86]), bypassing some small scale energy conservation issues. This
coupling approach behaves well for mixing applications and in principle can
be used within XLES. Note that this scalar coupling does not result from the
filtered governing equations.

3.4.4 XLES: Time Scale Separation

The XLES advection terms are represented by three overlapping XLES-grids,
including coupling terms between these XLES-grids, and an additional ODT ad-
vancement for ODTLES. This ODT advancement involves instantaneous stochas-
tic mappings (cf. section 3.3).

On the one hand, the simplest and physically most convenient way to ad-
vance the coupling terms and a dynamical SGM (like ODT) in time is an EE1
(see section 2.1.2), which allows a straightforward interpretation of coupling
terms and the stochastic turbulent advection within ODT. On the other hand,
an efficient numerical advection scheme includes high order time integration.
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A known compromise is to linearize the advection: The linear advection part
is advanced by a high order numerical scheme (here RK3 and CN, see section
2.1.2), while the non-linear part is implemented by an EE1. One possible way to
interpret such an approach is to integrate the dynamical velocity field over one
time step and use this velocity field to advect the dynamical variables within
the next time step.

Within this macroscale time step multiple random occurrences of instanta-
neous ODT mappings can change the instantaneous velocity profile. Due to
the time integration these mappings are considered within the advecting veloc-
ity profile of the next time step.

In section 3.6.4 alternative time schemes are suggested which potentially
avoid the linearization of the advection terms.

A time scale separation is not required to derive a well-defined XLES ap-
proach (see [2]). Nevertheless the time scale separation simplifies the inclusion
of ODT and thus is invoked here:

uj =
〈
uj
〉
+ u ′j (91)

with the large time scale

〈
uj
〉
=
1

τ

∫ t+τ
t

uj dt ′ (92)

and the small time scale (fluctuations) u ′j = uj −
〈
uj
〉
. Note that the time filter

and spatial filters in XLES are independent of each other:
〈
[lk]uj

〉
= [lk]

〈
uj
〉
.

In contrast to RaNS and URaNS models, time averaging is not applied to the
dynamical variables, but to the advecting velocities. This is especially reason-
able because ODT is a dynamical model introducing small time scale effects.

The integral time scale (τ) corresponds to the 3D large scale flow while in
URaNS τ is assumed to correspond to the largest turbulent scale. A natural
choice for τ in XLES is the discrete time step size of the 3D large scale ad-
vancement scheme. Thus the modeling strategy is directly connected to the
numerical realization which does not imply that the XLES approach is not
complete.

As introduced in section 2.1.2 the time step size τ within an explicit time
integration scheme is restricted by:

τ = CFLLES min
k,i,o,m,n

(
∆xLES

k

ûd;o,m,n
k,i

)
(93)

within all XLES-grids k = {1, 2, 3} and with all velocity directions xi (i =

{1, 2, 3}).
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The time scale separation within XLES-U implies additional error terms
caused by the time scale separation:

σ
temporal
XLES−Uij

= ∂xjû
′
j ∗ ûi, (94)

σ
temporal
XLES−Uθj

= ∂xjû
′
j ∗ θ̂. (95)

By defining the integral time scale τ based on the resolved small scale cell
size ∆xRSS

k in XLES-grid k, the time scale separation is suppressed, because all
XLES-U velocities are large scale in time:

τ = CFLRSS min
k,i,m,n,o

(
∆xRSS

k

ûd;m,n,o
k,i

)
. (96)

The CFL-number can be used to switch between Eq. (93) and Eq. (96) and thus
becomes a model parameter balancing (and controlling) the temporal model er-
rors σtemporal

XLES−Uij
and σtemporal

XLES−Uθj
and the model performance. For a regular grid the

CFL-numbers CFLLES and CFLRSS are directly connected to the XLES resolution
ratio KN = NRSS/NLES due to CFLLES = KNCFLRSS.

E. g. the CFL-number can be increased from CFLRSS = 0.5 to CFLLES = 0.5
for performance reasons: On the one hand ODTLES is still stable and well
defined and e.g. for NRSS = 512 and NLES = 16 this leads to an increased XLES
time-step size by a factor of KN = 32 (ODT advancement only is indirectly
influenced). On the other hand this approach tolerates certain model errors
(see Eqs. (94) and (95)).

In specific problems, e. g. the Rayleigh-Bénard flow investigated in chapter
5 the CFL-number and therefore also the error terms σtemporal

XLES−Uij
and σtemporal

XLES−Uθj
only have small effects.

Since ODTLES allows a huge number of turbulent ODT events within the
time scale τ, the averaged velocities are smoothed, which is part of the ODTLES
modeling strategy. Again the CFL-number is controlling this modeling impact,
because with τ based on Eq. (96) the number of ODT turbulent events per τ is
decreased.

ODT describes fluctuations (small time scale terms) in ODT-direction xk cor-
responding to advection terms of the form ∂xjû

′
k,kûk,i and ∂xjû

′
k,kθ̂k. The cor-

responding time averaged advecting velocity 〈ûk,k〉 is specified due to mass
conservation, see section 3.4.5. The terms ∂xjû

′
k,kûk,i and ∂xjû

′
k,kθ̂k correspond

formally to the temporal XLES-U model error in Eqs. (94) and (95), controlled
by CFL-number, but can be interpreted by ODT, which is possible due to the
time scale separation.
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Additionally to the terms Mij and Mθj, ODT ‘directly’ and ‘indirectly’ (due
to coupling) represents fluctuations across 3D large scale cells:

3∑
j=1

(
∂xjû

′
j ∗ ûi + (C∂xjû

′
j ∗ ûi)T

)
=
(

1 + l† ∗C
)

∂x1û
′
1,1û1,i

∂x2û
′
2,2û2,i

∂x3û
′
3,3û3,i

+

3∑
j=1

σ
temporal
ODTLESij

,

(97)

3∑
j=1

(
∂xjû

′
j ∗ θ̂ + (C∂xjû

′
j ∗ θ̂)T

)
=
(

1 + l† ∗C
)

∂x1û
′
1,1θ̂1

∂x2û
′
2,2θ̂2

∂x3û
′
3,3θ̂3

+

3∑
j=1

σ
temporal
ODTLESθj

.

(98)

This model assumption leads to a temporal ODTLES model error terms replac-
ing Eqs. (94) and (95):

σ
temporal
ODTLESij

=


∂x2ǔ

′
1,2ǔ1,i + ∂x3ǔ

′
1,3ǔ1,i

∂x1ǔ
′
2,1ǔ2,i + ∂x3ǔ

′
2,3ǔ2,i

∂x1ǔ
′
3,1ǔ3,i + ∂x2ǔ

′
3,2ǔ3,i

 , (99)

σ
temporal
ODTLESθj

=


∂x2ǔ

′
1,2θ̌1 + ∂x3ǔ

′
1,3θ̌1

∂x1ǔ
′
2,1θ̌2 + ∂x3ǔ

′
2,3θ̌2

∂x1ǔ
′
3,1θ̌3 + ∂x2ǔ

′
3,2θ̌3

 . (100)

The error term in Eqs. (99) and (100) summarize all fluctuating terms not in
ODT-direction xk. Again these error terms are controlled by the CFL-number.

Applying the time scale separation to the advecting velocities leads to a
modified XLES momentum equation (cf. Eq. (101)):

0 =∂xi

〈
p̂
〉
+

∂t − ν 3∑
j=1

∂2xj

 ûi + 3∑
j=1

∂xj
〈
ûj
〉
∗ ûi − g2θ̂ + F̂i

+Mi
ODT + σ

spatial
ui + σ

temporal
ODTLESui

(101)

+

3∑
j=1

l† ∗ ∂xjC
(〈
ûj
〉
∗ ûi −

〈
uj
〉LES ∗ uLES

i

)
+ l† ∗CMi

ODT
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and a modified scalar equation (cf. Eq. (85):

0 =

∂t − κ 3∑
j=1

∂2xj

 θ̂ + 3∑
j=1

∂xj
〈
ûj
〉
∗ θ̂ +Mθ

ODT + σ
spatial
θ + σ

temporal
ODTLESθ

(102)

+

3∑
j=1

l† ∗ ∂xjC
(〈
ûj
〉
∗ θ̂ −

〈
uj
〉LES ∗ θLES

)
+ l† ∗CMθ

ODT.

The advection terms assumed to be modeled directly by ODT (involving 3
velocity components) are:

Mi
ODT =

3∑
j=1

(
l2DMij + ∂xip̂

′ + ∂xjû
′
j ∗ ûi

)
(103)

Mθ
ODT =

3∑
j=1

(
l2DMθj + ∂xjû

′
j ∗ θ̂

)
. (104)

The derivation of the ODTLES microscale term MODT = {Mi
ODT,Mθ

ODT} in Eqs.
(101) and (102) is tailored for ODT, which is emphasized by the acronym ODT.
Additionally the ODT advancement is coupled between the XLES-grids due to
l† ∗CMODT .

The term ∂xip̂
′ = l2D∂xip

′ describes pressure fluctuations. By construction
ODT is mass conservative, nevertheless pressure fluctuations are modeled by
applying the so called ‘pressure scrambling’ (see section 3.3).

The full ODTLES advancement cycle is summarized in section 3.5.5.
An alternative approach to include the ODT advancement cycle into a 3D

approach is applied by Cline [18] within the lattice-based multiscale simula-
tion (LBMS): Each individual turbulent event within the ODT advancement is
coupled. This approach introduces small time scale communication within a
parallel algorithm, potentially impactful for highly turbulent flows with many
ODT turbulent events.

3.4.5 XLES: Mass Conservation

In the incompressible flow regime, the filtered velocity fields need to be diver-
gence free to ensure mass conservation. Because the XLES dynamics take place
on the integral time scale (τ), the 2D filtered mass equation Eq. (4) (in XLES
vector notation)

0 =

3∑
i=1

∂xil
2D 〈u〉i =

3∑
i=1

∂xi 〈ui〉
LES +

3∑
i=1

∂xi 〈ǔi〉 , (105)
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is decomposed into 3D large scale velocity fields 〈ui〉
LES and RSS velocities 〈ǔi〉.

Eq. (105) is enforced on the integral time scale τ by the procedure described in
this section, while velocity fluctuations (corresponding to the small time scale),
described by the ODT advancement, are mass conservative by construction (see
section 3.3).

A possible approach to solve Eq. (105) is to ensure mass conservation for
both decomposed velocity fields 〈ui〉

LES and 〈ǔi〉 = s1D
〈
ui
〉
:

1. The equation 0 =
∑3
i=1 ∂xi 〈ui〉

LES

corresponds to the mass conservation in LES schemes. A standard dis-
crete approach applied in LES can be used. In our implementation a pres-
sure Poisson equation is solved (see section 2.1.3). This leads to a large

scale pressure field
〈
p
〉LES

= l3D
〈
p
〉
, whose gradient enforces a diver-

gence free velocity field 〈ui〉LES by solving ∂t 〈ui〉LES + ∂xi

〈
p
〉LES

= 0 (cf.
Eq. (21)).

2. The equation 0 =
∑3
i=1 ∂xi 〈ǔi〉,

corresponding to the RSS velocity fields, is discretely fulfilled without
additional effort under some conditions.

In appendix (A.2) the XLES mass conservation is derived in detail and
three conditions are identified to ensure the RSS velocities to be diver-
gence free:

• Consistency condition: 〈uk,i〉LES is equal in all XLES-grids k which

is valid due to the coupling terms
〈
XXLES
ij

〉
and

〈
l† ∗CMi

ODT

〉
(see

section 2.1.3).

• A divergence free 3D large scale velocity field which is valid after
the standard pressure projection.

• A tensor product of discrete 1D box filters (averaging) defined in
Eq. (56) is used. Here we use the coarse-grained (large scale) and
staggered control volume of the size ∆xLES

k (this cell size equals the
filter size) shown in figure 4a. Please note this filter definition is only
used explicitly to create 〈ui〉LESd = [ldk] 〈ûk,i〉 within the coupling
terms and the mass conservation.

In summary the discrete mass conservation is assured by a standard 3D
approach (large scale) with O(N3LES) cells, if a discrete box filter and a staggered
grid are used. Especially the Poisson problem can limit the parallel scalability
of DNS implementations (it scales with O(N3DNS) per timestep).

In XLES the velocity fields, including consistent 3D large scale informations,
are discretely interpreted in three XLES-grids simultaneously. Owing to the
absence of a 3D small scale velocity field, small scale pressure effects vanish
from the equations: [l−1dk ldk] 〈p̂〉 = 〈p̂〉, but ODT explicitly models small time
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scale pressure effects (see section 3.3). For the XLES system of equations an
existing redundancy of the discrete velocity fields can be exploited by deriving
the velocity components ûdk,k within each 3D large scale cell due to a direct
solution, w.l.o.g. in XLES-grid 1:

ûd1,1

(
−∆xLES

1

2
+ x1

)
= ud, LES

1

(
−
∆xLES

1

2

)
(106)

−

∫−∆xLES
1
2 +x1

−
∆xLES
1
2

∂x2û
d
1,2 dx ′1 −

∫−∆xLES
1
2 +x1

−
∆xLES
1
2

∂x3û
d
1,3 dx ′1

for x1 6 ∆xLES
1 . Eq. (106) is a semi discrete interpretation of Gauss’s theorem

for a divergence free velocity field, here for velocities in XLES-grid 1 (see fig-
ure 4b) within one 3D large scale cell (see figure 4a) on a staggered grid (no
interpolation necessary).

Since w.l.o.g. û1,1 is specified due to Eq. (106), the momentum equation Eq.
(101) in XLES-grid 1 only needs to be solved for i = {2, 3}. In consequence 6
momentum equations are dynamically solved (2 velocity components in each
of 3 XLES-grids), while 3 velocity components can be derived by Eq. (106).

These reduced momentum equations can be expressed by multiplying a Kro-
necker delta operator matrix

1 − δi =

1− δ1i 0 0

0 1− δ2i 0

0 0 1− δ3i

 , with (1− δki) =

0, if k = i

1, else
(107)

to the momentum equation (101), leading to

0 =(1 − δi)

∂xi〈p〉LES
+

∂t − ν 3∑
j=1

∂2xj

 û
i
+

3∑
j=1

∂xj
〈
ûj
〉
∗ ûi

 (108)

+(1 − δi)

 3∑
j=1

(
l† ∗C∂xj(

〈
ûj
〉
∗ ûi −

〈
uj
〉LES ∗ uLES

i )
)+ (1 − δi)

3∑
j=1

(σ
spatial
XLESij

+ σODTij)

+(1 − δi)

3∑
j=1

(
l2DMi

ODT

)
+ (1 − δi)

3∑
j=1

(
l† ∗C l2DMi

ODT

)
.

Please note the Kronecker delta operator matrix is also applied to the OD-
TLES momentum microscale term (Mi

ODT) and therefore can be exploited within
a model approach, which leads to an ODT model with 2 velocity compo-
nents (see section 3.3). Additionally the factor 1

3 within Eq. (82) can be re-
placed by 1

2 . We introduce the reduced ODTLES microscale term M
δi
ODT =
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{(1 − δi)M
i
ODT,Mθ

ODT}, which contains 2 velocity components per vector ele-
ment.

Since in XLES no 3D small scale velocity field is defined, small scale pres-
sure effects can only be captured by the modeling approach, in ODT due to
‘pressure scrambling’ (see section 3.3).

Note that the Kronecker delta operator matrix is not applied to the scalar
equation (102), because for the scalar fields only the 3D large scale field θLES is
redundant, corresponding to the consistency condition which is enforced due
to coupling terms (see section 3.4.6).

In the XLES and especially ODTLES implementation the XLES velocity fields
calculated due to Eq. (106) are checked in each timestep to be consistent with
the boundary condition. The computed inconsistency does not exceed 10−12

which lies in the range of the chosen floating point accuracy.
In general an XLES approach with 3 velocity components in each XLES-grid

is possible. Such XLES momentum equations are derived similarly to the scalar
XLES equation introduced in section 3.4.3.

3.4.6 XLES: Consistency Preservation

Both, the XLES mass conservation in section 3.4.5 and the coupling terms in
sections 3.4.2.2 and 3.4.2.3 assume the 3D large scale solution fields φLES

i
=

{uLES
i , θLES

} to be consistent, meaning each XLES-grid k contains the identical
3D large scale field: φLES

i = φ
LES
k,i ≡ [lk]φ̂k,i with [lk] being defined in Eq. (56)

and φLES
k,i = {uLES

k,i , θLES
k }.

In the XLES vector notation this condition can be written as:

l1Dφ̂
i
= φ

LES
i

= φ
LES
i

11
1

 (109)

with the 1D filter matrix defined in Eq. (60). This means consistency preserving
terms should be independent of the XLES-grid k.

We assume that the initial conditions are consistent (this can easily be achieved)
and need to prove a consistency preserving XLES-advancement including ad-
vective and diffusive terms and the sub-grid modeling.

The ‘directly resolved’ advection terms themselves (∂xjûj ∗ φ̂j) are violating
the consistency condition, but by including the corresponding coupling (‘indi-
rectly resolved’ terms):

∂xjûj ∗ φ̂i + l
† ∗ ∂xjC

(〈
ûj
〉
∗ φ̂

i
−
〈
uj
〉LES ∗φLES

i

)
, (110)

the consistency is preserved. The same is valid for unresolved terms and their
couplings: l2DMφj + l

†a ∗C l2DMφj (proof by insertion).
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Figure 5: On the one hand the consistency preservation is invoked before the advection
step to define the coupling terms. On the other hand the coupling guarantees
the consistency to be still preserved after the advection step. The velocity and
scalar fields depend on each other due to physical motivated terms, e. g. the
gravitational forcing term.

By rearranging the XLES advection terms and their corresponding couplings,
we find:

ûj ∗ φ̂i + l
† ∗ ∂xjC

(〈
ûj
〉
∗ φ̂

i
−
〈
uj
〉LES ∗φLES

i

)
= uj ∗φi − σXLESφj (111)

with φk,i = [l1l2l3+ s1l2l3+ l1s2l3+ l1l2s3]φi, which is equal in all XLES-grids k.
Note that the term σXLESφj is also equal in all XLES-grids (cf. Eqs. (76) and (77)).
Thus XLES can alternatively be interpreted to advance φ

i
with the coupled

advection terms in Eq. (111). In this interpretation the XLES residual stress
tensor (Eq. (64)) would only include terms modeled by ODT. Since XXLES

ij is
approximated by a simplifying linearization, it is reasonable to include XXLES

ij

and XXLES
θj to the residual stress instead of the advection term.

In the implementation of XLES-U and ODTLES we check that the 3D large
scale velocity and scalar fields are still consistent every 100 timesteps to avoid
numerical errors violating consistency preservation. All computations show
the consistency to be limited by the floating point accuracy.

3.4.7 XLES: ‘LES-limit’ and ‘DNS-limit’

In the limit NRSS → NLES the 2D filtered XLES-U equations collapse to the 3D
filtered LES-U equations in each XLES-grid, because the RSS velocities vanish:
φ̌
i
= φ̂

i
−φ

LES
i

= 0 and therefore σspatial
XLES−Uij

and σspatial
XLES−Uθj

also vanish.
For NLES → NDNS in each direction, all velocity scales are resolved by the 3D

grid and XLES-U (and LES-U) converges to DNS.
Within the ODT model, applied as an SGM within ODTLES, all turbulent

events are suppressed in the ‘DNS-limit’. Thus DNS is also a distinguished
limit of ODTLES.
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Figure 6: Illustrative 1D stack in XLES-grid 2 in x2-direction at (xS1 , xS3).

The ‘LES-limit’ and ‘DNS-limit’ also hold for the scalar equation (102) by
assuming a LES-U respective DNS approximation of the Oberbeck-Boussinesq
equations Eqs. (1) – (3).

Results in section 4.1.4 show XLES-U, LES-U, and ODTLES to converge to-
wards DNS.

3.5 odt closed xles (odtles)

In this section ODT is interpreted as a microscale model within the XLES ap-
proach. In ODT a stochastic process mimics 3D turbulent advection within
a 1D sub-domain. Thus, an interpretation of the ODT turbulent advection in
terms of the Navier-Stokes advection is not straightforward and ODTLES is
not directly deducible from filtered Navier-Stokes equations.

Nevertheless XLES microscale terms w.l.o.g. in XLES-grid 2 (Mδi
2,ODT in Eq.

(103)) are interpreted by NLES1
×NLES3

so called stacks, each containing highly
resolved 1D information, e.g. defined by one line at (xS1 , x2, xS3) with constant
xS1 and xS3 (see figure 6). The unresolved terms M

δi
2,ODT (x

S
1 , x2, xS3) in each of

these stacks S contain 2 velocity components and can be modeled by the ODT
advancement (Eq. (46)):

M
δi
2,ODT (x

S
1 , x2, xS3) = e2,i(û2,i; x2, l) + σk,ODT , and l 6 lmax = ∆xLES

k (112)

with the ODT momentum error term (σODTij). Note that the ODT model intro-
duced in section 3.3 also advances 2 velocity components which are orthogonal
to the xk-direction.

The maximum eddy size (lmax) within the ODT model corresponds to the
largest (global) scale. By using ODT as a model within the XLES framework,
the maximum eddy size lmax defines the boundary between turbulent scales de-
scribed by the 3D advection scheme and by the ODT turbulent advection. Since
ODT should capture turbulent effects not resolved by the 3D advection scheme,
the maximum eddy size (lmax) mainly depends on the numerical properties of
the 3D advection scheme and needs to be determined by numerical tests (see
section 4.1.3). We found lmax = ∆xLES

k to be convenient, which corresponds
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to the ability of the implemented numerical advection scheme to resolve e.g.
the Kolmogorov length scale (ηK) with approximately one 3D cell in the ‘DNS-
limit’ of XLES (all scales are represented in 3D) as described in section 4.1.4.
Additionally the choice lmax = ∆xLES

k corresponds to a numerical sub-filter pa-
rameter (Q) in the range of one. ODTLES computations in section 4.1.2 and
especially the shown spectrum of the streamwise turbulent kinetic energy (in
figure 23) confirm lmax = ∆xLES

k to be appropriate.
Closure of XLES can involve any form of modeling that specifies the RSS

time advancement on an entire XLES-grid such as XLES-grid 2 shown in figure
4c. This is not required to involve a collection of model instantiations on indi-
vidual stacks, such as the illustrative stack in that figure. Nevertheless, ODT
advancements within ODTLES are formulated in this way. On this basis, the
XLES 3D advection can be viewed as a form of coupling of the ODT stacks
within one grid. In this context, the grid-to-grid coupling can be seen as a
higher level of coupling. This is mentioned because previous ODTLES formu-
lations (cf. section 3.5.6) did not envision the XLES closed by ODT. Thereby
ODT is not the only conceivable RSS closure strategy within an XLES-grid.

3.5.1 ODTLES: ODT Modeling Effects

ODT introduces local turbulent events depending on the local flow state. In
low Reynolds number channel flows the 3D grid is under-resolved only in the
near-wall region (unless the grid is very coarse) and thus ODT works as a
dynamical and highly accurate near-wall model, as figure 7a illustrates. Thus
ODTLES overcomes the lower quality of ODT stand-alone simulations for low
Reynolds number flows. For highly turbulent flows, the 3D resolution in the
core region of the channel is under-resolved too: In this case ODT small scale
eddy events additionally occur in the core region introducing local turbulent
transport effects, as figure 7b illustrates.

In contrast to wall-modeled LES, the ODT turbulent transport treats all re-
gions consistently without introducing additional assumptions for the near-
wall region.

Additionally the ODT modeling depends on a fully resolved (1D) flow state
and thus allows dominant small scale effects (e.g. local stratification, chemical
processes, ...), which are not well captured by commonly applied eddy viscosity
models.

Note that ODT ‘eddies’ occur mainly in wall-normal ODT-lines, because the
ODT parameters are adjusted for wall-bounded flow (see ODT parameter study
in section 4.1.1).

3.5.1.1 ODTLES Modeling: Connection to Implicit LES

Von Larcher et al. [110] uses an FEM-BV-VX approach by Horenko [40] which
“makes use of Finite-Element Method (FEM)-based time series analysis with
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(a) Eddies at Reτ = 395. (b) Eddies at Reτ = 2040.

Figure 7: ODT turbulent events (‘eddies’) illustrated as error bars occurring in XLES-
grid 2 (superposition of eddies in wall-normal direction x2). The size of the
3D cell closest to the walls is illustrated by red lines (NLES = 32). For low
Reynolds numbers, ODT primarily acts as a near-wall model (7a); for high
Reynolds numbers ODT acts as a sub-grid model over a larger extent of the
flow domain (7b).

(a) NLES = 25: 2 local models:
core model (yellow) and wall
model (red).
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(b) NLES = 50: 3 local models: core
model (yellow), transition model
(red), and wall model (brown).

Figure 8: Implicit LES channel flow study by von Larcher et al. for Reτ = 590 and differ-
ent resolutions NLES = {25, 50}. Time series are analyzed by an FEM-BV-VX
approach. They found 2 respectively 3 local and static models appropriate to
reproduce key flow properties. The figures were published by von Larcher
et al. [110]:
[Reproduced with permission from T. von Larcher: Towards a Framework for the
Stochastic Modelling of Subgrid Scale Fluxes for Large Eddy Simulation, Meteorol-
ogische Zeitschrift, 2015. ©2015 Schweizerbart Science Publishers].
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bounded variation (BV) of model parameters, and it allows for the simultane-
ous dimension reduction and identification of dynamical models with external
factors”1 to analyze high order implicit LES simulations of a turbulent chan-
nel flow with Reτ= 590. Hereby the VX in FEM-BV-VX indicates that a vector
model with exogenous variables is used.

For two investigated equidistant resolutions they find:

• NLES= 25 cells per direction:

The solution is optimally represented by 2 local models where both mod-
els are static in time.

• NLES= 50 cells per direction:

The solution is optimally represented by 3 local models where all models
are static in time.

Figure 8 shows the local distribution of the optimal models for NLES= 25 (fig-
ure 8a) and NLES= 50 (figure 8b).

The study is compatible with the ODTLES ‘eddy’ distribution in figure 7. The
core model by von Larcher et al. [110] corresponds to the XLES-U sub-model
of ODTLES without ‘eddies’ (cf. figure 8a and 7a), the transitional and the wall
models correspond to the full ODTLES model (XLES-U and ODT) indicated
by the occurrence of ‘eddies’ in figure 7. The ODTLES interpretation of the
transitional model only occurs for the high Reynolds case in figure 7b.

3.5.2 ODTLES: ‘ODT-limit’

From an algorithmic point of view ODTLES includes another distinguished
limit that we refer to as the ‘ODT-limit’: ODTLES collapses to the ODT stand-
alone model if only one 3D large scale cell represents the full computational
domain (Ω). In this case there are no fluxes corresponding to XLES-U, but ODT
turbulent effects are simulated.

From an physical point of view in the ‘ODT-limit’ only property variations
in one direction can occur within the control volume. Thus a physically reason-
able behavior requires a certain symmetry properties to allow a one-dimensional
description.

For such a symmetric case, e. g. a turbulent channel with infinite walls, the
‘ODT-limit’ can be used to estimate the ODT momentum error term (σODTij) by
comparing ODT and DNS (see 4.1.2).

The ability of ODT to describe the full spectrum of 3D turbulent effects
is a required property to get an ODTLES 3D resolution largely independent
of the turbulent intensity unless Reynolds-number variations trigger a global
flow structure transition (see duct flow in section 4.2.1). Indeed, demonstrated
model performance in the ‘ODT-limit’ (i.e. ODT stand-alone, see 4.1.2) strongly

1 von Larcher et al. [110]
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indicates that ODT adequately describes the XLES-SGS terms. This is also sup-
ported by ODTLES results that are shown to be in good agreement with DNS in
chapters 4 and 5. Unfortunately a detailed theoretical investigation of the ‘ODT-
limit’ requires a convenient ODT interpretation in Navier-Stokes terms, which
is not derived to a satisfying level yet, but ensemble statistics are formally anal-
ogous to corresponding Navier-Stokes terms to a considerable extent (e.g. the
interpretation of ODT budget terms of the turbulent kinetic energy in 4.1.2).

3.5.3 ODTLES: ODT Momentum Coupling

The turbulent ODT advection eφk,i (in XLES-grid k) models the unresolved
XLES terms Mδi

ODT. These are coupled across the XLES-grids due to the SGS cou-
pling term l† ∗CM

δi
ODT (see also Eq. (108)). The ODT diffusion terms DODTk =

(−ν)∂2xkûk,i (for k 6= i) in XLES-grid k represent the molecular diffusion as a
continuum and are connected to the XLES diffusion terms
(1 − δ

i
)(−ν)

∑3
j=1 ∂

2
xj
ûk,i. The XLES diffusion terms w.l.o.g. in XLES-grid 1:

ν∂2x1û1,i + ν∂
2
x2
û1,i + ν∂

2
x3
û1,i , with i = {2, 3} (113)

are solved in three ways:

1. Diffusion ‘directly resolved’ by ODT: DODT

The terms −ν∂2x1û1,i with i = {2, 3} in Eq. (113) are interpreted by ODT
incorporated in XLES-grid 1. These terms are resolved by NRSS cells (rep-
resenting molecular diffusion, similar to DNS)

2. Diffusion ‘indirectly resolved’ by ODT: l† ∗CDODT

The terms −ν∂2x2û1,3 and −ν∂2x3û1,2 in Eq. (113) are interpreted by ODT
domains residing in XLES-grid 2 respectively XLES-grid 3. E. g. , the first
term is coupled from XLES-grid 2 to XLES-grid 1 by −[l−11 ][l2]ν∂

2
x2
û2,3

(index notation for l† ∗CDODT). The diffusion is fully resolved, but addi-
tionally averaged (convolved) and reconstructed (deconvolved, cf. section
3.6.1).

3. Diffusion resolved by XLES: DXLES

The terms −ν∂2x2û1,2 and −ν∂2x3û1,3 in Eq. (113) are not interpreted by
ODT in any XLES-grid (this is caused by (1 − δ

i
); see section 3.4.5). A

numerical interpretation is possible within XLES-grid 1 using NLES cells:
−ν∂2xiû1,i with i = {2, 3}. These diffusive terms are not resolved down
to the molecular level. The XLES resolved diffusion terms are written as
DXLES and numerically represented by an explicit Euler scheme in time
and a spatial central difference scheme (see also section 3.5.5).
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In summary the ODT model is incorporated into XLES-grid k by interpreting
diffusive effects DODTk and the unresolved advection terms M

δi
ODTk

:

M
δi
ODTk

− ν∂2xkûk,i = euk,i +DODTk(ûk,i) + σODTk,ij , for i 6= k (114)

Additionally the (diffusive and advective) ODT terms are coupled between the
XLES-grids by l† ∗ C(eui +DODT(ûi)). XLES diffusion terms DXLES are intro-
duced to represent diffusive terms not captured by ODT.

The under-resolved diffusion terms DXLES are generally smaller than the cor-
rect local diffusion and might be omitted in typical applications. Nevertheless
these terms are conceptually desirable, because they allow the correct behavior
in the ‘DNS-limit’ (and are included in all computations in this thesis). Note
that omitting those terms might also enhance the parallel efficiency.

3.5.4 ODTLES: ODT Scalar Coupling

The main difference between the treatment of the XLES velocity ûk,i and the
XLES scalar θ̂k in each individual XLES-grid k is that due to the mass con-
servation (in section 3.4.5) a redundancy of the discrete velocity fields ûdk,i is
exploited and thus only ûk,i with k 6= i is dynamically treated. For the scalar
field θ̂k the only redundancy corresponds to the existence of a scalar large scale
θ

LES
= [ldk]θ̂k which is consistent with all scalars θ̂k in different XLES-grids (see

section 3.4.6).
Thus the XLES diffusion terms w.l.o.g. on XLES-grid 1

κ∂2x1 θ̂1 + κ∂
2
x2
θ̂1 + κ∂

2
x3
θ̂1 (115)

are resolved in three different XLES-grids: The diffusion term represented by
ODT-lines in XLES-grid k is DODTk

= −κ∂2kθ̂k. E. g. XLES diffusion terms in
XLES-grid 1 are fully resolved by NRSS cells (representing molecular diffusion,
similar to DNS) and additionally averaged (convolved) and reconstructed (de-
convolved) for k 6= 1 (coupled diffusion terms). Thus the ODT model repre-
sents θk in XLES-grid k by interpreting diffusive effects DODT and the unre-
solved advection terms Mθ

ODTk

Mθ
ODTk

− κ∂2xk θ̂k = eθk +DODT(θ̂k) + σODTθ , for k, i = {1, 2, 3} (116)

and its coupling l† ∗C(eθ +DODT(θ̂)).
An additional XLES scalar diffusion term (cf. section 3.5.3) is not required.
The scalar treatment can also be used as a basis for an ODT closed XLES

approach with 3 velocity components in each XLES-grid.
In section 3.5.5 the ODTLES advancement cycle is described, which in some

sense also summarizes sections 3.5.3 and 3.5.4.
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3.5.5 ODTLES: Time Advancement and Synopsis

To advance the XLES equations in time a modified predictor-corrector proce-
dure (cf. section 2.1.3) is used: The XLES equations including coupling terms
and ODT advancement are solved, predicting velocity fields in each XLES-grid.
Simultaneously time averaged velocity fields are computed. A corrector step
enforces the time averaged velocity fields to be divergence free (to ensure mass
conservation).

Since the predictor-step involves ODT advancement and several coupling
terms, a fractional time step algorithm is introduced. Table 5 summarizes the
numerical discretizations of the individual fractional steps. The multi-scale na-
ture of ODTLES is reflected in the advancement algorithm, which involves
spatial as well as temporal operator splitting. The mesh geometry is a two-fold
spatial decomposition, consisting of three XLES-grids that are each spatially
well resolved in one of the coordinate directions, with a further decomposition
of each XLES-grid into a 2D array of ODT instantiations. Hereby all velocities
are discretized using a staggered grid while the scalar field and the pressure
are cell-centered. The full time advancement cycle includes predictor (p) and
corrector (c) steps:

• (p 4) in table 5:

The most highly disaggregated time-advancement sub-process is the con-
current autonomous advancement of these ODT instantiations (cf. section
3.3). The advective mechanism during this advancement represents tur-
bulent eddy motions not resolved on the coarse 3D grid. In each ODT in-
stantiation, only the small eddies aligned with the XLES-grid orientation
are represented. Therefore this advancement does not account for the ef-
fects of small eddies aligned in the other coordinate directions. However,
these effects are captured in the ODT instantiations within the XLES-grids
oriented in those directions. The ODT advancement within ODTLES also
contains the XLES diffusion terms (DXLES) treated as forcing terms for
the ODT diffusion solver.

• (p 5) in table 5:

A coupling correction is applied that modifies each ODT state after au-
tonomous ODT advancement in order to incorporate the effect of small
eddies captured by ODT advancement on the other two XLES-grids. This
is implemented by evaluating the net eddy-induced property fluxes through
each face of the coarse 3D grid. Each of these faces is on the boundary
between two adjacent ODT domains (or on a flow boundary). The asso-
ciated property fluxes, evaluated as described in section 3.3, determine
property transfers between these ODT domains through the faces. These
fluxes are applied to the corresponding box-filtered ODT states, giving
an corrected coarse 3D flow field. This correction is communicated back
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to the ODT-resolved level by means of reconstruction, represented sym-
bolically by the operator [l−1k ] within the convolution and deconvolution
matrix (l†). This coupling includes ODT-resolved diffusive fluxes (see sec-
tions 3.5.3 and 3.5.4).

• (p 2) in table 5:

Unlike autonomous ODT advancement, the subsequent advection sub-
process is coarse-grained (though in a time filtered rather than spatially
filtered sense) and its advancement is fully 3D within each XLES-grid.
This captures, in some fashion, the 3D-resolved advective fluxes through
all control-volume faces within each XLES-grid, but because the three
XLES-grids contain separately evolving small-scale structure, the result-
ing coarse 3D flow field is different on each XLES-grid.

• (p 3) in table 5:

These inconsistencies are corrected in a manner somewhat like the cou-
pling correction used to incorporate directional coupling effects follow-
ing autonomous ODT advancement. As in the correction of autonomous
ODT advancement, the correction that restores consistency of the coarse
3D flow fields on the three XLES-grids after the 3D advection sub-process
is communicated back to the ODT-resolved level by means of reconstruc-
tion, as indicated symbolically by the operator [l−1k ] within convolution
and deconvolution matrix (l†). The corresponding coupled numerical ap-
proximations are described and validated in sections 3.6.2 and 3.6.3.

• (c 1), (c 2), and (p 1) in table 5:

Upon the completion of the corrected 3D advection advancement, the
coarse 3D flow fields on the three XLES-grids are consistent, but this con-
sistent flow field does not obey the continuity equation. To restore the
solenoidal property of this constant-density flow, pressure projection is
applied as indicated in (c 2). As in the other correction procedures, the
pressure-projection update is communicated back to the ODT-resolved
level by means of reconstruction, as indicated symbolically by the 1D

deconvolution matrix l−1 =

l
−1
1 0 0

0 l−12 0

0 0 l−13

 in (p 1).
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Table 5: ODTLES time advancement (predictor (p) and corrector (c)). ODT indicates
the ODT-advancement. Individual spatial and temporal discretizations are in-
troduced in section 2. Coupled advection schemes are investigated in sections
3.6.2 and 3.6.3. In step (p 1) the pressure gradient enforces the time averaged
velocities to be divergence free. Step (p 2) and (p 3) describe the XLES-U ad-
vection and coupling, while (p 4) and (p 5) contain the ODT advancement
and corresponding coupling. The corrector steps (c 1) and (c 2) describe the
solution of the pressure Poisson problem on the 3D large scale.

step advanced term time spatial

p 1

〈
u∗i
〉LES

= 〈ui〉
LES (t) +

∫ t+τ
t

∂xi

〈
p
〉LES

t
dt ; 〈ûi〉t = l

−1
〈
u∗i
〉LES EE1 UP1

u∗i
LES

= ui
LES(t) +

∫ t+τ
t

∂xi

〈
p
〉LES

t
dt ; û∗i = l

−1u∗
LES
i EE1 UP1

p 2
û∗∗i = û∗i +

∫ t+τ
t

3∑
j=1

∂xj(
〈
ûj
〉
t
∗ û∗i ) dt ′ CN-RK3,

RK3-RK3

CDM

θ̂
∗
= θ̂ +

∫ t+τ
t

3∑
j=1

∂xj(
〈
ûj
〉
t
∗ θ̂) dt ′ CN-RK3-

RK3

CDM

p 3
û∗∗∗i = û∗∗i +

∫ t+τ
t

l† ∗
3∑
j=1

∂xj

(〈
ûj
〉
t
∗ û∗i −

〈
uj
〉LES
t
∗ u∗,LES

i

)
dt ′ EE1 CDM

θ̂
∗∗

= θ̂
∗
+

∫ t+τ
t

l† ∗
3∑
j=1

∂xj

(〈
ûj
〉
t
∗ θ̂ −

〈
uj
〉LES
t
∗ θLES

)
dt ′ EE1 CDM

p 4

û∗∗∗∗i = û∗∗∗i +

∫ t+τ
t

(eui(û
∗∗∗
i ) +DODT) (û

∗∗∗
i ) dt ′

+

∫ t+τ
t

DXLES(û
∗∗∗
i ) dt ′ −

∫ t+τ
t

g2θ̂
∗∗

dt ′
IE1,
ODT,
EE1

CDM

θ̂
∗∗∗

= θ̂
∗∗
+

∫ t+τ
t

(
eθ(θ̂

∗∗
) +DODT

)
(θ̂
∗∗
) dt ′ IE1

ODT
CDM

p 5
ûi(t+ τ) = û

∗∗∗∗
i +

∫ t+τ
t

l† ∗C (eui(û
∗∗∗
i ) +DODT) (û

∗∗∗
i ) dt ′ EE1 CDM

θ̂(t+ τ) = θ̂
∗∗∗

+

∫ t+τ
t

l† ∗C
(
eθ(θ̂

∗∗
) +DODT

)
(θ̂
∗∗
) dt ′ EE1 CDM

c 1 〈ui〉
LES
t+τ = l

1D 〈ûi〉t+τ ; uLES
i (t+ τ) = l1Dûi(t+ τ) 1D filter

c 2 0 =

3∑
i=1

∂xi 〈ui〉
LES
t+τ → ∂xi

〈
p
〉LES

t+τ

AMG
(Poisson problem)
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The subscript (e.g. 〈 〉t) introduced in time averaged properties indicates the
time t (averaged over the last time step) respective t + τ (averaged over the
actual time step with the time step size τ).

The ODT advancement is for highly turbulent flows the most costly sub-
process in the ODTLES advancement cycle, which leads to a highly paralleliz-
able algorithm (see section 3.5.8).

3.5.6 ODTLES: Comparison to Previous ODTLES Versions

The first ODTLES model was introduced by Schmidt et al. [89] and further
examined in [33] and [1] is called here first ODTLES version (ODTLES#1) to
differentiate it from the ODT closed XLES (ODTLES) introduced and examined
in [2], [3], and in this thesis.

ODTLES#1 is not derived as a 2D filter approach of the governing equations,
but as an intuitive inclusion of 3D effects into the ODT model. Despite the very
different conceptual ideas behind ODTLES and ODTLES#1 equations, differ-
ences in both the derived equations and the computed results are moderate and
the XLES notation can be used even to present the conceptual differences. This
for an ODTLES#1 advancement cycle is presented in table 6 (without scalar
equation) to be compared with table 5.

Table 6: ODTLES#1 time advancement (predictor (p) and corrector (c). ODT indi-
cates the ODT-advancement. The Poisson equation is solved by a Jacobi-
preconditioned conjugate gradient method (CG).

step advanced term time spatial

p 1

〈
u∗i
〉LES

= 〈ui〉
LES (t) +

∫ t+τ
t

∂xi

〈
p̂
〉LES

t
dt ; 〈ûi〉t = l

−1
〈
u∗i
〉LES EE1 UP1

û∗i = ûi(t) +

∫ t+τ
t

l−1∂xi

〈
p
〉LES

t
dt EE1 UP1

p 2 û∗∗i = û∗i +

∫ t+τ
t

3∑
j=1

∂xj(
〈
ûj
〉
t
∗ û∗i ) dt ′ EE1 CDM

p 4

û∗∗∗i = û∗∗i +

∫ t+τ
t

(ei(û
∗∗
i ) +DODT) (û

∗∗
i ) dt ′

+

∫ t+τ
t

DXLES(û
∗∗
i ) dt ′

EE1,
ODT,
EE1

CDM

c 1 〈uk,i〉LES
t+τ =

1

2

3∑
k=1;k 6=i

[lk] 〈ûk,i〉t+τ 1D filter

c 2 0 =

3∑
i=1

∂xi 〈ui〉
LES
t+τ → ∂xi 〈p〉

LES
t+τ

Jacobi-precond. CG
(Poisson problem)
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The differences between ODTLES and ODTLES#1 are categorized into:

• Differences in the equations are illustrated by the advancement cycles in
tables 5 and 6:

– In ODTLES#1 the ODTLES specific coupling terms (p 3) and (p 5)
in table 5 are not considered. Thus the predicted ODTLES#1 veloc-
ity fields û∗∗∗i are not consistent on the 3D large scale. An ad-hoc

coupling 〈uk,i〉LES
t+τ =

1

2

3∑
k=1;k 6=i

[lk] 〈ûk,i〉t+τ is performed to define a

3D large scale velocity field, which is required to ensure mass con-
servation. Thus the ODTLES#1 fields ûi are only coupled due to the
pressure projection.

– This also implies that a coupled scalar equation cannot be derived
for ODTLES#1. Nevertheless in [1] a scalar equation is included, but
only represented by XLES-grid 2 and thus no scalar coupling is re-
quired.

• Differences in the numerical approximation:

– The applied ODT version is slightly different (ODTLES#1 uses an
ODT model by Vebjorn Nilsen, e. g. presented in [69]), but both ver-
sions lead to similar results and thus differences are not presented
in detail.

– All time integrations in ODTLES#1 are approximated using EE1. Es-
pecially the resulting EE1 scheme in time and spatial CDM (EE1-
CDM) is known to be unstable for advection terms.

– The Poisson solver in the corrector step (c 2) differs. The conjugate
gradient method (CG) solver applied in ODTLES#1 leads to similar
solutions compared to AMG, but requires considerable larger com-
putation time.

– In ODTLES#1 an unlimited reconstruction algorithm (see section
3.6.1) is applied.

– ODTLES#1 uses the ODT parameter lmax = 4∆xLES (compared to
lmax = 1∆xLES in ODTLES). As declared at the beginning of section
3.5 this parameter mainly depends on the numerical properties of
the implemented unclosed approach.

Schmidt et al. [89] provides a homogeneous turbulence examination using
ODTLES#1 especially indicating that the interplay between the 3D advance-
ment and the ODT model behaves well and leads to a reasonable turbulent
cascade.

Comparing ODTLES and ODTLES#1 shear driven turbulent flows, ODTLES#1
introduces certain oscillations to the root mean square velocities (reported by
[33] and [1]) but no further major qualitative change in results.
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The reasons for the similarity in the computed results, even considering the
conceptual and numerical differences between ODTLES#1 and ODTLES espe-
cially include the higher lmax-parameter which increases the ODT turbulence
effect and thus compensate shortcomings of the ODTLES#1 3D advection rep-
resentation. Section 4.1.3 shows the influence of lmax for a turbulent channel
flow. In particular the unclosed ODTLES#1 approach (ODTLES#1 without ODT
turbulent advection) would not show a convergence like the XLES-U approach
(presented in section 4.1.4).

3.5.7 ODTLES: Efficiency

Different turbulence models, e.g. RaNS, wall-modeled LES (LES-wm), wall-
resolved LES (LES-wr), and ODTLES, differ strongly in both represented phys-
ical effects and computational effort. In this section the computational costs
of the different model approaches are estimated by developing a relation be-
tween the grid-size (used as a measure for the computational effort) and the
Reynolds number following Chapman [13] and especially Choi and Moin [17]
and references cited therein.

The investigated domain is a box of the size L1 × L2 × L3. A highly turbu-
lent boundary layer over a flat-plate airfoil of the thickness δ fills the volume
[x0,L1]× δ(x1)× L3. The flow is assumed to reach the plate at x1 = x0 with a
turbulent intensity Rex0 . The boundary layer size δ(x1) increases until reaching
x1 = L1 with a corresponding Reynolds number ReL1 . The number of grid cells
Nwithin the turbulent boundary layer is estimated for ODTLES and compared
to RaNS, LES and DNS. From Choi and Moin [17] we extract the Reynolds de-
pendent grid size for RaNS and LES-wm:

NRaNS|wm = 54.7
L3
L1
n1n2n3Re

2/7
L1

[(
ReL1
Rex0

)5/7
− 1

]
, (117)

for a LES-wr:

Nwr = 0.021
L3
L1

n2,laminar

∆x+1,w∆x
+
3,w
Re
13/7
L1

[
1−

(
Rex0
ReL1

)6/7]
, (118)

and for DNS:

NDNS = 0.000153
L3
L1
Re
37/14
L1

[
1−

(
Rex0
ReL1

)23/14]
. (119)

Here n1n2n3 is the number of grid points within the cube δ× δ× δ, n2,laminar
is the number of wall-normal grid points within the laminar sublayer, and x+k,w
is the LES cell size in wall units.
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Following Chapman [13] RaNS typically resolves the cube δ× δ× δ using
n1n2n3 ≈ 1× 20× 0.5 = 10 cells, while for wall-modeled LES Choi and Moin
[17] report typical grid resolutions n1n2n3 ≈ [1200, 33000]. In wall-resolved
LES Choi and Moin [17] find typical resolution values n2,laminar

∆x+1,w∆x
+
3,w
≈ [ 1390 , 125 ].

Here LES models represent turbulent scales down to the inertial range of the
turbulent cascade. The ODT model, applied within XLES, potentially describes
the full turbulent cascade within a 1D sub-domain, which leaves the 3D grid
to capture non-turbulent effects (e.g. the domain or secondary instabilities).
For the flat-plate airfoil even ODT stand-alone potentially leads to reasonable
results (Lignell et al. [67] apply a ODT to a comparable turbulent case, but
including buoyancy, by spatially advancing the ODT line). In consequence the
(equidistant) XLES 3D resolution Nk in xk-direction (k = {1, 2, 3}) is chosen
independently of the Reynolds number for a flat-plate airfoil.

In the current ODTLES implementation the resolved small scales are repre-
sented byNRSSk equidistant cells in xk-direction. Following Choi and Moin [17]
for highly turbulent flows the number of grid points resolving the Kolmogorov
length scale along a small distance dx1 is NRSS1 = 0.116

dx1
x1
Re
13/14
x . Equidistant

ODTLES uses the smallest length scale globally in all 1D sub-domains, leading
to

NODTLES = 0.116KODTNLES2NLES3
L3
L1
Re
13/14
L1

. (120)

A factor KODT ≈ 3×6 takes into account that 3 XLES-grids are used (we assume
that NLES1 = NLES2 = NLES3) and equidistant ODT uses at least 6 cells to allow
a turbulent event (‘eddy’) within the Kolmogorov length scale.

In principle ODTLES can be extended to non-equidistant grids within the
1D sub-domain, which is for example realized by the aODT implementation
by Lignell et al. [67]. Although adaptive ODT is not used as a sub-grid model
within a XLES approach yet, we investigate this interesting case as a worth-
while perspective and refer to it as aODTLES. For an adaptive grid we assume
on average a resolution similar to DNS (in 1D) and integrate over the boundary
layer thickness with δ

x = 0.16Re−1/7x (see [17]) in the 1D sub-domain, leading to

NaODTLES = 0.0103936KaODTNLES1NLES3
L3
L1
Re
11/14
L1

[
1−

(
Rex0
ReL1

)25/14]
.

(121)

For adaptive ODT we assume KaODT = 3 because 3 XLES-grids are required
(here we assume each XLES-grid uses the same RSS resolution and NLES1 =

NLES2 = NLES3). There is no additional assumption of a minimum number of
cells representing the Kolmogorov length scale required for aODT.

We compare typical RaNS and LES resolutions (following [17] and [13]) with
the ODTLES and aODTLES approach for different 3D resolutions in figure 9.
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aODT

ODT

LESwm

LESwr

DNS

RaNS

Figure 9: Number of grid points N required for the numerical simulations of a flow
over a flat-plate airfoil with aspect ratio L3/L1 = 4 and a turbulent in-
flow with Rex0 = 5 × 105. LES-wm (n1n2n3 = 2500) , wall-resolved LES
(n2,laminar/∆x

+
1,w∆x

+
2,w = 1/200), RaNS (n1n2n3 = 10), ODTLES and aOD-

TLES with NLES1 = NLES3 = {10, 100} cells, and the ODT and aODT stand-
alone model are shown. Additionally, actual simulations for a turbulent chan-
nel (assuming Ret ≈ ReL1) are shown for DNS (Reτ = 5200, black point),
ODTLES (Reτ = 10000, green point), and aODT (Reτ = 6 × 105, magenta
point).

Additionally numerical computations for a turbulent channel are presented as-
suming a similarity of the turbulent Reynolds number in the channel and ReL1 .
Hereby the DNS by Lee and Moser [63] (we assume N ≈ 8.5× 109, estimated
for L3/L1 = 4), an aODT result by Meiselbach [71] (NaODT ≈ [80000, 120000]
(from Meiselbach [70])) and the ODTLES result with Reτ = 10000 in section
3.5.8 are used.

For weakly turbulent flows, ODTLES is subject to additional computational
costs compared to standard LES. But ODTLES requires 3D resolutions inde-
pendent of the turbulence intensity (except secondary effects), and thus highly
turbulent flows in moderately complex domains are well described with low
computational costs. In some flow regimes ODTLES is more efficient than LES-
wm and although it represents advective and diffusive effects down to the Kol-
mogorov length scale. Incorporating aODT into a XLES framework seems to be
an especially promising alternative to LES-wm and even RaNS simulations for
highly turbulent flows in simple domains (requiring low 3D resolutions). Note
that the aODTLES model for a low 3D resolution (e. g. NLES= 10 cells per di-
rection) is even more efficient than an equidistant ODT approach stand-alone.

Additionally incorporating the EMC-SGM into ODT or aODT can further
decrease the computational costs of ODTLES (cf. [89]) and aODTLES.

Note that in the presented estimation the costs of the computation within one
discrete cell is neglected, because the different modeling strategies typically
vary by a low factor (. 2), which is not strongly affecting the estimation in
figure 9.
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(a) LES grid

rank 1

rank 2

(b) XLES-grid 1

rank 3
rank 4

(c) XLES-grid 2

rank 5
rank 6

(d) XLES-grid 3

Figure 10: Illustrative ODTLES domain decomposition for XLES-grids in 10b – 10d for
6 CPUs (here declared ranks) and NLES= 4 in each direction. The Poisson
problem is solved serial on the 3D large scale grid illustrated in 10a.

(a) Varying Reτ. (b) Varying NLES. (c) Varying CFL = CFLRSS.

Figure 11: Strong parallel scaling for an ODTLES turbulent channel flow. As not stated
otherwise the scaling for Reτ = 1020, NLES = 16, NRSS = 2048 (NRSS = 8192
for Reτ = 4080), and CFL = CFLRSS = 0.5 is shown in 11a–11c.

3.5.8 ODTLES: Parallelization

The scope of this work does not include the development of a highly parallel al-
gorithm. Nevertheless the CPU-time and memory required to compute highly
turbulent flows call for a sufficiently parallel algorithm. Especially to handle
the ODTLES memory requirements, a shared memory parallelization using a
message passing interface (MPI) is advantageous.

Figures 10b–10d illustrate the domain decomposition of the XLES-grids. Within
each of these XLES-grids the predictor-step implementation is identical to stan-
dard approaches includes ghost cells. The Poisson problem is limiting parallel
performance in many DNS implementations. This term can be treated in OD-
TLES with relative low effort, because the corrector step is performed only
on the 3D large scale grid (see figure 10a). In the present implementation the
Poisson problem is solved serial and in most cases limiting the parallel perfor-
mance. The current ODTLES implementation is sufficient to perform computa-
tions using up to O(100) CPUs with reasonable parallel efficiency.

We conduct a strong parallel scaling study for a turbulent channel, whereby
the identical problem is computed with different numbers of CPUs {1, 6, 12, 24}.
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E. g. with 6 CPUs a parallel efficiency of ≈ 50% means a speedup factor ≈ 3
compared to a single CPU computation. All parallel results show a linearly
decreasing parallel efficiency.

Very specific in ODTLES is the fact that the advancement is dominated by
ODT triplet maps without parallel communication requirements which leads to
advantageous parallel properties: It has a positive effect for the parallelization
efficiency with increasing Reτ (figure 11a), increasing XLES resolution ratio
(KN) (figure 11), and increasing CFL-number (figure 11c).

The ODTLES approach is highly parallelizable for highly turbulent flows in
simple domains, because especially for these flows high XLES resolution ratios
(KN) and the high ODT activity further increase the parallel efficiency with
increasing turbulence intensity.

3.6 numerical properties of the xles implementation

There are XLES and ODTLES specific terms, which cannot be adapted from
standard LES approaches. In particular the coupling terms include a deconvo-
lution. In this section a possible numerical approximation of the deconvolution
l−1k in xk-direction is introduced (section 3.6.1) and the numerical properties of
the coupled advection scheme are investigated in section 3.6.2 and 3.6.3.

3.6.1 Deconvolution Algorithm

In sections 3.4.2.2 and 3.4.2.3 coupling terms between the XLES-grids are in-
troduced. A discrete interpretation of the coupling matrix (C l2D) ≈ l† ∗C l2D

is required to numerically represent these coupling terms. Within the matrix
l† (see Eq. (73)) a deconvolution operator [l−1k ] has to be interpreted numeri-
cally. Note that exact continuous definition of a deconvolution operator is not
available within implicit filtered equations.

In general the fields φ = {u, θ} (indices are skipped in this section) cannot
be reconstructed exactly ([l−1l] 6= 1), because by averaging (e.g. φLES = [ld]φ)
information gets lost. This is not reconstructible, unless only large scale infor-
mation is present in the full spectrum, which is fortunately the case in XLES,
as shown by an example in Eq. (74). A possible interpretation of a convolu-
tion includes, that the convolved property can be numerically approximated
within the same spatial grid, but contains no small scale properties. By apply-
ing the discrete box filter in Eq. (56) the convolved quantity is represented on
a large scale grid which corresponds to the filter size. The discrete deconvo-
lution [l−1d] interprets a large scale property which is represented on a large
scale grid within a highly resolved grid, of course still containing only large
scale informations. In this sense the discrete operators [l−1dld] correspond to
the above mentioned interpretation of a convolution .

In principle the deconvolution approach is not restricted to one particular
filter definition (e.g. spectral filter, box filter, Gaussian filter), but the mass
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conservation is greatly simplified if the discrete box filter in Eq. (56) is used, as
shown in appendix (A.2).

The deconvolution within XLES is not intended to construct small-scale fea-
tures, but rather, to modify the low-wavenumber content of an existing fully
resolved property.

The deconvolution is related to the reconstruction within a FVM and this for
the term reconstruction has been used in [89] and [69]. McDermott [69] and
authors therein investigate several possible reconstruction algorithms suitable
for 3D approaches incorporating ODT. This modification must meet several
requirements:

• Integral constraints are imposed to satisfy conservation laws at the level
of the individual 3D coarse-grained cells. This means the averaged large
scale field needs to be preserved by the deconvolution, e.g. to enable the
consistency preservation of the 3D velocity field, which is required for
the mass conservation and the coupling terms, as well as for the ‘LES
limit’ of the XLES model (in section 3.4.7):

[ld][l−1d] = 1. (122)

• The deconvolution must in some sense modify the large scale structure
along the resolved direction and simultaneously preserve the small-scale
structure. In this sense this deconvolution is a reconstruction of existing
structures rather than a construction of something that does not other-
wise exist.

• The reconstruction method is required to be high-order accurate to avoid
noticeable discontinuities.

In this section we introduce a discrete approximation of the deconvolution
operator [l−1] for the purpose of computing highly resolved fields φd ≈ [l−1d]φLESd

by discretely interpreting [l−1d] from a box filtered field φLESd = [ld]φ.
Schmidt et al. [89] introduces a multilevel Fromm reconstruction algorithm

(here called Schmidt’s scheme), which fulfills the requirements: The recursive
algorithm approximates φd ≈ [l−1d]φLESd exhibiting the smoothness of a 8th
order interpolation without changing the box filtered field ([ld]φd = φLESd ≡
[ld]φ). The algorithm is computational fast, stable, well-behaved, and uses only
a 3-point stencil in each recursive step nr to achieve its high accuracy.

The continuous deconvolution problem φd = [l−1d]φLESd with a known dis-
crete box-filtered field φd,LES exactly satisfies the relation

φd,LES(xj) =
1

KN

jK∑
i=(j−1)K+1

φd(xi) (123)
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(a) First iteration. (b) Second iteration.

Figure 12: Multilevel Fromm reconstruction. First and second iterations are shown in
12a and 12b. Further iterations follow the steps of the second iteration.

for a smooth set ofNRSS = KNN
LES (where KN = NRSS/NLES= 2

nr) discrete val-
ues φd(xi) at uniformly spaced locations xi. Note that Eq. (123) is the discrete
form of the continuous box filter definition in Eq. (56).

Here Schmidt’s algorithm is shown to compute a set of 2N reconstructed
values φnr+1(xi) from the initial set of N original values φnr(xj). This process
is recursively repeated (nr − 1) times for any resolution ratio KN = 2nr . In the
first recursive step we use φ1(xj) = φd,LES(xj) and in the last recursive step the
highly resolved values φd(xi) = φlog2(KN)(xi) are computed.

For each recursive step nr, an iterative multilevel Fromm schemes is applied
(nI counts the iterations; denoted like φnrnI(xj)): Two ‘starred’ values φ∗(xi±)
with xi− and xi+ denote the first and second i-values located in cell j (see
figure 12a) and are cell average preserving:

φ∗(xi−) =
φnrnI(xj) + f

∗(xj − (∆xnr)/2)

2
(124)

φ∗(xi+) =
φnrnI(xj) + f

∗(xj + (∆xnr)/2)

2
(125)

with the face values f∗nI (see figure 12a) in the first iterative step nI = 1:

f∗1(xj − (∆xnr)/2) =
φnr1 (xj) +φ

nr
1 (xj−1)

2
(126)

f∗1(xj + (∆xnr)/2) =
φnr1 (xj) +φ

nr
1 (xj+1)

2
. (127)

To guarantee a cell average preserving scheme the ‘starred’ values are cor-
rected leading to the first iteration values

φnrnI+1(xi−) = φ
∗(xi−) +Cj (128)

φnrnI+1(xi+) = φ
∗(xi+) +Cj (129)
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(a) Unlimited iteration (b) Limited iteration

Figure 13: Limited multilevel Fromm reconstruction. The linear limiter undermines
the iterative process, but is used in each recursive step. Thus a higher order
approximation is possible.

with the correction in cell j

Cj = ∆x
nr +

φnrnI(xi−) +φ
nr
nI(xi+)

2
. (130)

The slope between φnr+1(xi−) and φnr+1(xi+) corresponds to the Fromm slope
(see e. g. [66])

∆Frommj =
1

2

(
φnr(xj+1) −φ

nr(xj−1)
)

, (131)

illustrated in figure 12a.
Further iterative steps increase the accuracy by recalculating the face values

using

f∗>1(xj − (∆xnr)/2) =
φnrnI+1(xi−) +φ

nr
nI+1

(xi−−)

2
(132)

f∗>1(xj + (∆xnr)/2) =
φnrnI+1(xi+) +φ

nr
nI+1

(xi++)

2
. (133)

based on the first iteration values φnrnI+1(xi), where i++ and i−− donate the
value of (i+)+ 1 respective (i−)− 1, as illustrated in figure 12b.

The method converges rapidly as the iterations nI proceed. As Schmidt et al.
[89] and Gonzalez-Juez et al. [33] report the algorithm lead to sufficient results
using 4 iterations and thus one recursive level is finished:

φnr+11 (xi) = φ
nr
4 (xi). (134)

As McDermott [69] shows, Schmidt’s scheme does not preserve monotonic-
ity for scalar shocks and therefore violate essentially non-oscillatory (ENO)
properties: The algorithm produces artificial local extrema in areas of mono-
tone large scale fields with large gradients, e.g. occurring near a wall.
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Figure 14: A representative instantaneous streamwise velocity profile u (solid) for a
turbulent channel (Reτ = 1020) with NLES = 16 and NRSS = 1024 is shown.
The large scale velocity uLESd = [ld]u is represented with points. The decon-
volution ud ≈ [l−1d ]uLESd using Schmidt’s algorithm is dashed-dotted and
the limited algorithm is dashed. For both algorithms (limited and unlimited)
the reconstructed field ud preserves the box-filtered values [ld]ud = uLESd ,
but without the limiter unphysical overshoots occur near the walls.

Therefore Schmidt’s scheme is expanded by applying a slope limiter adapted
from Burbeau et al. [8] in each recursive level. Note that Burbeau et al. [8]
shows the limiter to almost preserve the order of a high-order DGM by ap-
plying the limiter in each step of a RK3 time scheme. Contrary to the original
limiter by Burbeau et al. [8], we limit Schmidt’s algorithm at an individual
recursive level, only if an artificial extrema in a monotone region is directly
identified, as figure 13a illustrates. Hereby monotonicity is defined locally for
one cell j by including its neighbors j− 1 and j+ 1.

Since the limiter is only applied in monotone areas its definition simplifies
(here in a slope limiter notation):

∆j = min
(
φnr(xj+1) −φ

nr(xj),φnr(xj) −φnr(xj−1)
)

(135)

as figure 13b illustrates.
This procedure guarantees ENO properties, but suppresses the iterative char-

acter of the algorithm, which leads to a reduction of the approximation order.
Nevertheless since the limiting process is decided for each individual recursive
level, the resulting approximate order in limited regions is generally higher
than linear.
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The properties of the original algorithm and the limited one are demon-
strated for a realistic instantaneous streamwise velocity profile u of a turbulent
channel flow with high gradients at the walls, shown in Figure 14.

The numerical deconvolution algorithm error term (σspatial
† ) can be written

formally:

σ
spatial
† = (l† ∗C− l†d ∗C)

(
∂xj

(〈
ûj
〉
∗ φ̂

i
−
〈
uj
〉LES ∗φLES

i

)
+ l2DMδi

ODT

)
(136)

for φi = {ui, θ}.
There is no spectrally sharp way to implement this type of deconvolution.

Various non-equivalent procedures are possible in principle. Schmidt et al. [89]
describe a particular approach that is adopted here with a technical modifica-
tion that improves its behavior near walls. To summarize, although the inverse
operator [l−1] arises as a natural and necessary consequence of the XLES ansatz,
the ansatz per se does not uniquely define its meaning nor guarantee that it
can be specified in a way that is free of unintended artifacts.

In section 5.1.2 a specific situation is investigated where the deconvolution
algorithm error term (σspatial

† ) can be dominant for the scalar coupling.

3.6.2 Coupled Linear Advection Scheme: Momentum Transport

The characteristic shape of the XLES-grids (figure 4b–4d) is considered when
choosing the numerical schemes to be implemented, e.g. an implicit time dis-
cretization in the highly resolved direction is applied, while explicit time schemes
are used to advect large scale properties (cf. section 2.1.2). Therefore different
numerical advection schemes are mixed due to the XLES coupling terms, be-
cause the same property, represented by several XLES-grids is simultaneously
advanced by different numerical schemes. Additionally the coupling requires
a deconvolution function, which interacts with these numerical schemes.

In this section we present the numerical properties of this coupled advection
scheme. For simplicity the 3D large scale velocity fields uLES

i are resolved by
NLES cells in each direction. The RSS properties are discretized with NRSS cells
in all XLES-grids.

The coupled momentum advection scheme numerically approximates the
equation

0 =(1 − δi)

∂tûi + 3∑
j=1

∂xj〈û〉j ∗ ûi +
3∑
j=1

(
l† ∗C∂xj(

〈
ûj
〉
∗ ûi −

〈
uj
〉LES ∗ uLES

i )
)

(137)

(according to Eq. (108); diffusive and SGS terms are not considered).
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(a) Case 1: j = i in Eq. (137). Coarsely re-
solved advection in XLES-grid 3 (left)
and XLES-grid 2 (right).

(b) Case 2: j 6= i in Eq. (137).
Highly (coarsely) resolved advection
in XLES-grid 3 (left) (XLES-grid 2

(right)).

Figure 15: XLES requires a coupled advection scheme. The advected velocity ûi (bold
arrows) is advected with the constant wave speed cj (dashed arrows) and is
resolved in two XLES-grids. For the two relevant cases the discrete staggered
grids within one 3D large scale cell (cf. figure 4) are shown in (a) and (b).

Fundamental properties of the coupled advection scheme, e.g. the numerical
dissipation and dispersion, can be demonstrated by solving a one dimensional
linear advection problem. Then a constant wave speed cj replaces the advecting

velocities in Eq. (137): û
j
= uLES

j = cj

(
1 1 1

)T
. In this section the linearized

coupled advection scheme is investigated, while the full coupled non-linear
advection scheme is studied in a convergence study of a turbulent channel
flow (see section 4.1.4).

W.l.o.g. the advected velocity u1 is represented by the two staggered XLES-
grid containing û2,1 and û3,1 respectively while û1,1 is evaluated using Eq. (106).

Two situations occur (see figure 15), as discussed here by a concrete example
(generalization to other indices is trivial):

• Case 1: j = i
w.l.o.g.
= 1 in Eq. (137): Advection into x1-direction; In both

XLES-grids 2 and 3 the advection is coarsely resolved with NLES grid
cells.

• Case 2: 2
w.l.o.g.
= j 6= i

w.l.o.g.
= 1 in Eq. (137): Advection into direction x2;

In XLES-grid 2 the advection is resolved with NRSS cells, respective with
NLES cells in XLES-grid 3.

To spatially discretize the advection terms, a central difference method (CDM)
on a staggered grid is used (see section 2.1.1).

Two different advection schemes, CN-CDM and RK3-CDM are deployed
within the coupled advection.

The properties of the CN-CDM and RK3-CDM schemes transfer to the cou-
pled advection schemes (in Cases 1 and 2).

Based on the expressions RK3-CDM and CN-CDM the coupled advection
scheme in Case 1 (Case 2) is called coupled scheme with RK3 and RK3 in time
and spatial CDM (RK3-RK3-CDM) (coupled scheme with CN and RK3 in time
and spatial CDM (CN-RK3-CDM)).
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To illustrate the coupling procedure w.l.o.g. for the CN-RK3-CDM scheme,
and rewrite Eq. (137) in a semi-discrete form (in index notation). Hereby û3,1
is discretized in XLES-grid 3 in Eq. (138) and û2,1 in XLES-grid 2 in Eq. (139):

(∆t)û3,1 =

∫
RK3

c2∂x2û3,1 dt (138)

+ [l−1d3 ][ld2 ]

(∫
CN
c2∂x2û2,1 dt−

∫
RK3

c2∂x2u
LES
2,1 dt

)
(∆t)û2,1 =

∫
CN
c2∂x2û2,1 dt (139)

+ [l−1d2 ][ld3 ]

(∫
RK3

c2∂x2û3,1 dt−
∫
RK3

c2∂x2u
LES
3,1 dt

)
.

Here the numerical time discretizations of the advection terms are indicated
(CN and RK3). The discrete coupling operators [ldk] and [l−1dk ] (see Eq. (56) and
the algorithm described in section 3.4.2.1) are discretized by an EE1 scheme in
time. Also the non-linear advection part, which is not considered in the linear
advection problem is discretized by an EE1 scheme in time (see section 3.4.4).

The numerical properties of the underlying discrete advection schemes (CN-
CDM and RK3-CDM), like stability and dissipative behavior, transfer to the
fully discrete coupled linear advection schemes:

• The coupled advection scheme converges to the analytical solution for
NLES → ∞ as illustrated in section 3.6.2.1 where the theoretical predic-
tion e.g. shown in [105] is reproduced. This property is required to nu-
merically realize the ‘LES limit’ and ‘DNS limit’ of XLES (section 3.4.7).

• The coupled advection scheme including the deconvolution (see section
3.6.1) maintain well defined large scale properties, even by simultane-
ously transporting small scale properties, as investigated in section 3.6.2.1.

The highly resolved CN-CDM scheme (using NRSS cells) contributes to the
coupled CN-RK3-CDM scheme (Case 2) and additionally increases the numer-
ical accuracy of the coupled scheme. This is neither required for a well de-
fined and converging XLES scheme nor the ‘LES limit’ (or ‘DNS limit’) of
XLES. As investigated in section 3.6.2.1 the highly resolved advection terms
increase the coupled numerical accuracy up to a XLES resolution ratio KN =

NRSS/NLES . 10. With NRSS & 10NLES the overall numerical error is dominated
by the coarsely resolved RK3-CDM scheme.

The coupled numerical schemes, simultaneously discretized by multiple XLES-
grids, are found to be appropriate for linear advection.
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Figure 16: A linear wave is propagated with constant velocity ûj = cj over 10 wave-
lengths. The coupled numerical schemes CN-RK3-CDM (dashed) and RK3-
RK3-CDM (solid) with N = NRSS = NLES = {32, 64} are shown. The black
line is the analytical result.

3.6.2.1 Coupled Linear Advection Scheme: Numerical Test

The coupled advection scheme is investigated and verified by computing a
linear wave propagation. The initial condition

u1 = sin(4πx1) (140)

and periodic boundary conditions are used. The number of cells for the re-
solved small scale fields NRSS and the 3D large scale field NLES are varied. The
wave is propagated for 10 wavelengths (t = 5 L/cj; L ≡ 1; constant wave speed
cj).

We found the coupled advection schemes RK3-RK3-CDM (Case 1) and CN-
RK3-CDM (Case 2) to be stable and slightly dispersive (see figure 16). Addition-
ally RK3-RK3-CDM is little dissipative. The difference between RK3-RK3-CDM
and CN-RK3-CDM is not significant. With increasing 3D resolution (NLES) the
dispersive behavior decreases (convergence).

Numerical convergence for the XLES coupled advection scheme is uncondi-
tionally obtained for increasing 3D resolution (NLES → ∞). This is valid for
both coupled schemes: RK3-RK3-CDM and CN-RK3-CDM.

The convergence for the CN-RK3-CDM scheme with increasing small scale
resolution (NRSS → ∞) and two choices of constant 3D resolution NLES =

{16, 64} is additionally investigated. This kind of numerical convergence is not
required to ensure a well defined and converging XLES approach.

A phase shift Φ describes the numerical dispersion and thus measures the
numerical accuracy (see figure 17).
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Figure 17: Φ is the phase difference between the analytical solution and the numerical
result. Case 1: RK3-RK3-CDM scheme with N = NLES = NRSS. Case 2: CN-
RK3-CDM scheme with N = NRSS and NLES = {16, 64}. For a CN-CDM
scheme Tsai et al. [105] analytically predict the behavior : Φ ∼ N−2.

We find the numerical accuracy of the coupled advection scheme increasing
up to a XLES resolution ratio KN . 10. With higher KN the numerical error
of the coarse resolved scheme (RK3-CDM) dominates the coupled numerical
error.

Thus the numerical accuracy is increased by increasing the resolved small
scales within XLES up to some limit in addition to possibly resolving addi-
tional physical effects.

In this section the CN-RK3-CDM scheme demonstrates the preservation of
(spectrally separated) large and small scale properties which are represented
w.l.o.g. in XLES-grid 2.

A multi-scale wave with the initial condition

u2,1 = sin(4πx2,1) + 0.2 sin(128πx2,1) (141)

u3,1 = [l−1d3 ][ld2 ]u2,1 = sin(4πx3,1) (142)

is propagated for 10 wavelengths using NLES = 64 and NRSS = 4096 cells in the
x2-direction (advanced by Eq. (139) and (138)).

Note that the higher mode 0.2 sin(128πx2,1) is only resolved within XLES-
grid 2 while XLES-grid 3 only captures the lower mode.

The box filtered and small scale properties are preserved, but little dispersed
due to numerical effects (see figure 18a).
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(a) Momentum transport.
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(b) Scalar transport.

Figure 18: A multi-scale wave with the initial condition in Eq. (141) (black lines) prop-
agates for 10 wavelengths. The full domain (small box) and one wave peak
are shown. The big points in 18a corresponds to the 3D large scale velocity
field (NLES = 64 cells). For scalar advection (18b) large scale scalar fields
(NLES = 64 cells) are represented in 3 XLES-grids, indicated by big points
and open circles. The small points corresponds to the resolved small scales
(NRSS = 4096). There is not difference between linear momentum transport
(advanced by 2 XLES-grids) and scalar transport (advanced by 3 XLES-grids).
The black line corresponds to the analytical result.

3.6.3 Coupled Linear Advection Scheme: Scalar Transport

The scalar advection differs slightly from the momentum equation because the
scalar field (θ) is defined in all XLES-grids while each velocity component is
advanced only in 2 XLES-grids (due to reasoning in section 3.4.5). The coupled
scalar advection scheme solves the equation (cf. Eq. (137)):

0 =∂tθ̂ +

3∑
j=1

∂xj
〈
ûj
〉
∗ θ̂ +

3∑
j=1

(
l† ∗C∂xj(

〈
ûj
〉
∗ θ̂ −

〈
uj
〉LES ∗ θLES

)
)

.

(143)

There is only one case to consider for the coupled scalar advection scheme,
because θ is represented by 3 XLES-grids:

• Case 1: j
w.l.o.g.
= 1 in Eq. (143): In XLES-grid 1 the advection term is highly

resolved while in XLES-grids 2 and 3 it is coarsely resolved.

The scalar field (θ) is cell-centered while the velocities w.l.o.g. 〈û1〉 are face-
centered on a staggered grid (see section 2.1.1.1).

The corresponding coupled scheme with CN and two times RK3 in time and
spatial CDM (CN-RK3-RK3-CDM) gives identical numerical results compared
to CN-RK3-CDM for the linear momentum advection case, as figure 18 illus-
trates.
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3.6.4 Alternative Time Schemes

There are other time schemes, which potentially can be adapted to the special
requirements of the ODTLES time advancement (see section 3.5.5), e.g.:

• An implicit/explicit time scheme (IMEX) (see e.g. [12] and references
cited therein) applied to XLES can in principle lead to a high-order time
approximations for all terms (including non-linear advection and cou-
pling). In these schemes an implicit scheme (e. g. CN or an implicit Runge-
Kutta scheme, see e. g. [9]) is applied to selected terms in each stage of an
explicit Runge-Kutta cycle. To apply this idea to ODTLES the coupling
terms and ODT advancement have to be interpreted as explicit terms ap-
plied in each Runge-Kutta stage, which is especially counter-intuitive for
the ODT advancement. For now we let this to be investigated in future
studies.

• Adapting split-explicit schemes (see e.g. [29]) to the XLES coupled advec-
tion can especially decrease the dispersive effects that arise (numerical
dispersion of the implemented coupled advection scheme is investigated
in sections 3.6.2 and 3.6.3).

• Large time step wave propagation schemes based on the work by LeV-
eque [65] can perhaps improve the numerical properties by replacing the
applied CN scheme within the XLES advection scheme.
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Note that parts of this chapter, especially several figures are also presented
in [2] and [3].

Shear driven turbulent flows occur in various engineering applications. Fun-
damental research in this area mostly simplifies the computational domain to
purely investigate the influence of turbulence. Additionally turbulence models
are often verified and parameters are determined by applying these models
to fundamental turbulent flows. This chapter presents ODT, XLES-U, and OD-
TLES results for a turbulent channel (section 4.1) and a turbulent squared duct
(section 4.2) to verify the model assumptions and numerical implementations
and determine the model parameters. An ODTLES#1 heated channel study
was performed by the author in [1].

4.1 turbulent channel flow

The fully developed turbulent channel flow is one of the computationally most
investigated flows in fundamental turbulence research. The simple domain (see
figure 19) allows to investigate wall-bounded, incompressible flows including
shear-driven turbulence without disturbing interactions by other physical ef-
fects and thus yields fundamental insights into statistical and structural char-
acteristics of wall-bounded flows and turbulence per se.

The channel flow is bounded by 2 infinite parallel walls with a distance 2h (h
is the channel half height) and can be investigated in terms of the incompress-
ible Navier-Stokes equations (Eqs. 4 and 5 for XLES) by neglecting e. g. acoustic
and gravitational effects. Within the Navier-Stokes equations, the flow is forced
e. g. by a constant pressure gradient (Fi in Eq. (5)). Periodic boundary condi-
tions in spanwise and wall-normal directions are applied. The maximum size
of undisturbed simulated coherent structures is limited by the computational
domain indicated in figure 19.

This flow regime is challenging in reference experiments: High spanwise to
wall-normal aspect ratios in very long ducts are required to observe a statisti-
cally stationary flow.

Figure 19: Coordinate system
and computational domain
of the turbulent channel in-
vestigated here. The bold ar-
row illustrates a possible 1D
sub-domain.

In section 4.1.2 ODT turbulent channel flow results including high order
statistics within a 1D sub-domain (see figure 19) are shown to be in good
agreement with DNS simulations, whereby the symmetry properties of the
channel are exploited. As discussed in section 3.5.2 a good agreement of ODT
results with DNS implies an acceptable ODT momentum error term (σODTij)
and indicates the ODT model to be an appropriate SGM within XLES.
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Additionally LES-U, XLES-U, and ODTLES approaches are compared within
a convergence study in section 4.1.4. The presented results imply that suitable
numerical schemes are applied and the XLES-U spatial momentum error term
(σspatial

XLES−Uij
) is reasonably low (cf. section 3.4.7).

The ODTLES model represents key flow features with unrivaled low 3D
resolutions and pretty independent of the friction Reynolds number (Reτ) as
shown for highly turbulent channel flows in section 4.1.5.

In particular for a turbulent channel flow the ‘ODT-limit’ for NLES = 1 (sec-
tion 3.5.2) and the ‘DNS-limit’ for NLES = NDNS (section 3.4.7) of ODTLES
implies both the representative quality and the computational costs to lie in
between ODT and DNS, fully controlled by the chosen 3D resolution NLES.

For a laminar flow through a channel a stationary solution is sufficiently
described by the Stokes equation

0 = ν∂2x2u1 + F1 (144)

with the constant specific external forcing in x1-direction F1 = 1m
s2

(e. g. a con-
stant pressure gradient) and the velocity in streamwise direction u1 (see fig-

ure 19). Eq. (144) can be solved analytically leading to u1(x2) =
F1(hx2−x

2
2)

2 ν .
From this the wall shear stress (τW = ρν∂x2u1|x2=0) and the friction velocity
(uτ =

√
τW/ρ) are determined leading to the definition of the friction Reynolds

number (Reτ = uτ h
ν ) for a laminar channel (we will refer to this as Relcτ ).

Relcτ is fully determined by the forcing F1 and the kinematic viscosity (ν) and
corresponds to the mean Reτ-value for a turbulent channel . Here a constant
density ρ = 1 kg

m3
is assumed.

4.1.1 ODT: Parameter Study

To describe the channel flow by ODT, Eq. (44) is solved.
The ODT model contains 3 model parameters: C influences the overall eddy

rate, Z the viscous damping, and the maximum eddy size (lmax) is chosen
lmax = h for a turbulent channel flow. Additionally lmax is an important pa-
rameter within the ODTLES model, because it describes the scale separation
between the XLES-U and ODT sub-models.

Figure 20 shows illustrative tendencies of the ODT flow for model param-
eters deviating from the production parameters C = 6.5 and Z = 300. These
productive parameters fairly match the parameters used by Meiselbach [71]
(C = 7, Z = 400) for aODT and Gonzalez-Juez et al. [33], and [1] (C = 6.35,
Z = 392) for ODTLES#1. The fact that the ODT model applied in this thesis
contains 2 velocity components has no noticeable impact on the model param-
eters.
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Figure 20: ODT parameter study for the law of the wall of a turbulent channel flow,
mean streamwise velocity shown here. Results computed with production
parameters Z = 300, C = 6.5, and lmax = h have a solid line. Influence
of parameter deviations for Z (green), C (blue) and lmax (black) are shown.
Profiles are shifted. The parameters Z influences the transition from the sub-
layer to the turbulent flow. The parameter C changes the slope within the
law of the wall. With decreased lmax the logarithmic layer is restricted to the
area near the wall (y+ = x+2 . lmax).

4.1.2 ODT: Turbulent Channel Flow

As discussed in section 3.5.1, ODT momentum error terms (σODTij) can roughly
be estimated by comparing ODT and DNS flow statistics for sufficient symmet-
ric cases. The turbulent channel is an appropriate study case for ODT because
of its distinct predominant direction. ODT results with friction Reynolds num-
ber Reτ = 395 are compared to the DNS by Kawamura et al. [49] (online avail-
able: [48])

The ODT model parameters are C = 6.5, Z = 300, and lmax = h follow-
ing section 4.1.1. The ODT resolution is NODT = 1024 (NODT corresponds
to NRSS in XLES). This corresponds to a equidistant ODT resolution in wall
units ∆x+2,ODT = 0.77. Here the wall coordinates are: x+2 = x2uτ

ν . To com-
pute reliable ODT flow statistics a larger averaging period compared to DNS
(or ensemble averaging) is required: the non-dimensional averaging time is
taveu

2
τ/ν = 5× 106 non-dimensional time units after reaching a steady state,

which is significantly larger than taveu2τ/ν > 7900 in DNS.
Figure 21 illustrates representative results for ODT: The averaged streamwise

velocity profile (see figure 21a) and the overall turbulent kinetic energy (see
figure 21c–21e) are described very well within the ODT model including the
full spectrum of the turbulent cascade. The ODT specific determination of the
turbulent kinetic energy budget terms is described by Meiselbach [71]. The sim-
ilarity of ODT and DNS results implies a considerably small ODT momentum
error term (σODTij). An exemplary ODT computing time is ≈ 9 CPU-seconds
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(a) ODT:
law of the wall.

(b) Streamwise (uRMS) and spanwise
(wRMS) velocity RMSs.

(c) Production (Prod) and Dissipation
(Diss) of the turbulent kinetic energy.

(d) Viscous transport of the turbulent ki-
netic energy (tv).

(e) Advective transport of the turbulent ki-
netic energy (ta).

Figure 21: Turbulent channel flow results (Reτ = 395) for DNS (small crosses) and
ODT (solid) with NODT = 1024 cells.
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to simulate for taveu2τ/ν = 7900 (the overall computing time is higher, because
in the example the flow is averaged over taveu2τ/ν = 5 × 106). Due to these
low computational costs, ODT is a convenient sub-grid model. The ODT-SGM
within ODTLES outperforms commonly used eddy viscosity models, because
it computes a wide range of complex physical effects including realistic wall
profiles for turbulent wall-bounded flows.

Further ODT results, including various physical small scale effects, are avail-
able in the literature (see e. g. [53], [88], [113], and [90]).

4.1.3 XLES and ODTLES: Parameter Study

The ODTLES model uses an ODT model to close the XLES equations. Since for
a channel flow ODT is able to describe the flow stand alone (in section 4.1.2) it
is reasonable to use the productive ODT parameters introduced in section 4.1.1
also for the full ODTLES model.

As mentioned in sections 4.1.1 and 3.5.1 the maximum eddy size (lmax) has
a special role in ODTLES, because it controls the maximum turbulent scale,
which is described by ODT and thus defines the spectral scale transition be-
tween the ODT and XLES-U sub-models. The ideal value for lmax depends
on the numerical properties of the discretized XLES equations and has to be
determined in numerical tests, as shown in figure 22.

Section 3.5 states lmax = ∆xLES is a convenient choice. This is supported by
figure 22 and the spectrum of the streamwise turbulent energy in figure 23.
This choice also leads to a reasonable ‘ODT limit’.

Figure 23 illustrates that ODTLES produces a reasonable spectrum for the
specific turbulent kinetic energy independent of the 3D resolution. Contrary
to LES, in ODTLES the spectrum includes high wave number content which
is generated by the ODT-SGM. For lmax = ∆xLES the transition from XLES-U
to ODT represented turbulent energy is smooth and without artifacts in the
estimated wave number region k ≈ NLES. Increasing lmax slightly decreases
the agreement of the shown turbulent kinetic energy spectrum with the DNS
results. In LES it seems especially challenging to simultaneously reproduce
both a reasonable power spectrum and the right mean flow behavior for a
turbulent channel (cf. [20]). In ODTLES both can be accomplished without
changing properties of the SGM and additionally with little sensitivity to the
3D resolution.

In ODTLES the CFL-number controls the ODTLES momentum temporal er-
ror term (σtemporal

ODTLESij
) (see section 3.4.4). On the one hand higher CFL-values

increase the computational performance, on the other hand it leads to inac-
curacies, as shown in figure 22 and thus choosing the CFL-number requires
a cost-benefit estimation. For the turbulent channel, we use a CFL-number
CFLRSS 6 1 corresponding to the highly resolved cell size (cf. Eq. (93)) to mini-
mize σtemporal

ODTLESij
.
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(b) ODTLES: Velocity RMS parameter
study for CFLRSS.
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(c) ODTLES: Velocity RMS parameter
study for lmax

Figure 22: Additionally to the ODT model
parameters C (here C = 6.5) and Z

(here Z = 300), ODTLES requires the
maximum eddy size (lmax) and the
CFL-number (here CFLRSS). lmax de-
termines the turbulent scale edge be-
tween ODT and XLES-U and CFL con-
trols the XLES error term σ

temporal
XLES−Uij

.
Figure 22a shows the influence on the
mean velocity, while 22b and 22c il-
lustrate the influence on the velocity
RMSs (uRMS

1 : solid; uRMS
3 : dashed).
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Figure 23: Spectrum of the streamwise turbulent kinetic energy in the channel center
for Reτ ≈ 395. The wave number k is oriented in the x3-direction. OD-
TLES uses NRSS= 1024 cells for the RSS and NLES = 16 (lmax = ∆xLES open
magenta squares) respective NLES = 32 3D cells (lmax = ∆xLES blue stars,
lmax = 2∆xLES gray triangles, and lmax = 4∆xLES green triangles). Addition-
ally unclosed LES with NLES = 32 (cyan squares) and NLES = 64 (black
circles) cells are shown. For comparison a DNS result (red line with pluses,
by Lee and Moser [63]) and the k−5/3 power law (dashed green line) are
shown.
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Table 7: Channel flow resolution in wall coordinates for NRSS = 1024 in each direction
using the domain in figure 19 and equidistant cells.

Reτ NLES ∆x+RSS1

∆x+RSS2

∆x+RSS3

∆x+LES1

∆x+LES2

∆x+LES3

395 16 2.46 0.77 1.23 156.0 49.4 79.0

395 32 2.46 0.77 1.23 78.0 24.7 39.0

395 64 2.46 0.77 1.23 39.0 12.3 19.5

4.1.4 XLES and ODTLES: Convergence Study

The ODTLES model includes some temporal and spatial model error terms
σODTij and σspatial

XLES−Uij
. σODTij is shown to be small following section 4.1.2. The

temporal error term σ
temporal
ODTLESij

vanishes for CFL-numbers based on the RSS cell

size (∆xRSS).
Additionally numerical errors can lead to inaccuracies which includes espe-

cially the error term due to the reconstruction σspatial
† .

4.1.4.1 Compare XLES-U and LES-U

To verify that the spatial XLES-U error terms σspatial
XLES−Uij

and numerical errors
are acceptable, a convergence study of XLES-U compared to LES-U and DNS
results is convenient, as suggested in section 3.4.7.

The convergence study is performed for a fully developed turbulent flow,
including the full diversity of non-linear advective effects: A turbulent channel
flow with a friction Reynolds number Reτ = 395 is computed and compared
to DNS results by Kawamura et al. [49] (online available: [48]). This case also
corresponds to the ODT results in figure 21.

The DNS is resolved withNDNS = 192 non-equidistant cells in the horizontal
direction (between the walls). For the spatial discretization a CDM is used. The
time is discretized using a CN scheme for the wall-normal non-linear terms
and a second order Adams-Bashforth scheme for other terms (results for higher
resolutions and higher order schemes are also available online). This numerical
scheme is comparable to the XLES-U numerical scheme (see sections 2 and 3.6).

For the XLES-U convergence study, the number of equidistant 3D large scale
cells NLES for all directions is increased using the values NLES = {16, 32, 64}
while NRSS = 1024 is kept constant.

Using the domain in figure 19 and equidistant cells lead to the resolutions
in wall coordinates shown in table 7. As stated in section 3.5.1 ODT ‘eddies’
mainly occur in the wall-normal direction x2 in a channel flow. Thus the RSS
resolution in the other directions is not required to be sufficient to allow ODT
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triplet maps, nevertheless the cell size is still in the range of the Kolmogorov
length scale (ηK).

The time step size is limited by Eq. (96) with CFLRSS = 0.45 corresponding
to the small spatial cells ∆xRSS.

To produce statistically significant results, the flow is averaged for taveu2τ/ν >
9875 non-dimensional time units (compared to taveu2τ/ν = 7900 for DNS) after
reaching a statistically steady state.

Additionally equidistant discretized LES-U channel flow results (solving Eqs.
(101) and (105) with NRSS = NLES, see section 3.4.7) are compared to XLES-U.
The latter resolves additional advective and diffusive small scale effects. Those
can be identified by comparing the XLES-U and LES-U channel flow results.
The error term σ

spatial
XLES−Uij

does not occur in LES-U.
Figure 24 illustrates the results: The mean velocity profiles computed by

XLES-U (see figure 24b) and LES-U (see figure 24a) are compared to DNS.
Additionally the streamwise and spanwise velocity RMSs (see figure 24c)

and the budget terms of the turbulent kinetic energy (see figure 24d- 24f) are
shown for XLES-U, LES-U, and DNS.

Both XLES-U and LES-U show convergence towards the DNS results with
increasing 3D resolution. Following arguments in section 3.4.7 this implies the
XLES error term σ

spatial
XLES−Uui

to be small. Additionally the non-linear terms for
XLES-U and LES-U are sufficiently represented and converging, even if the
under-resolved velocity profile (figure 24a and 24b) indicates noticeable nu-
merical dissipation. This behavior is very similar to comparable LES studies,
e. g. by Denaro [20].

XLES-U is able to accurately represent diffusive effects, e.g. the laminar sub-
layer near the walls, independent of the 3D large scale resolution and repro-
duces basic advective effects including turbulence with NLES & 32 cells for
Reτ = 395. Additionally the turbulence statistics profit from the additional
small scale effects represented by XLES compared to LES-U even with low 3D
resolutions.

4.1.4.2 Comparison of ODTLES and XLES-U

To show the significant effect of ODT as a SGM, the ODTLES model is inves-
tigated in a similar convergence study Additionally the DNS results by Kawa-
mura [48] are presented for comparison reasons.

For this convergence study illustrated in figure 25 both, XLES-U and OD-
TLES, are usingNLES = {16, 32, 64} (equidistant) 3D large scale cells andNRSS =

1024 cells resolving the small scale. The resolutions in wall coordinates equal
those in table 7.

The XLES time step size is again limited by Eq. (96) with CFLRSS = 0.45 to
minimize σtemporal

ODTLESij
. The ODT advancement is only indirectly influenced by

this CFL-number.
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(a) LES: law of the wall (uLES
1 ). Profiles

shifted with increasing NLES.
(b) XLES: law of the wall (û2,1). Profiles

shifted with increasing NLES.

(c) Streamwise (uRMS
1 ) and spanwise

(uRMS
3 ) velocity RMS.

(d) Production (Prod) and Dissipation
(Diss) of the turbulent kinetic energy.

(e) Viscous transport of the turbulent ki-
netic energy (tv).

(f) Advective transport of the turbulent
kinetic energy (ta).

Figure 24: Turbulent channel flow results for DNS (small crosses), LES-U, and XLES-U
with NLES = 16 (dash-dotted), NLES = 32 (dashed), and NLES = 64 (solid).
The XLES-U small scales are resolved using NRSS = 1024 cells. XLES-U
mean and statistical flow properties are based on the velocity field perpen-
dicular to the channel walls û2,i (in the LES limit: û2,i = u

LES
i ).
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(a) ODTLES: law of the wall (û2,1). Pro-
files shifted with increasing NLES.

(b) XLES : law of the wall (û2,1). Profiles
shifted with increasing NLES.

(c) Streamwise (uRMS
1 ) and spanwise

(uRMS
3 ) velocity RMS

(d) Production (Prod) and Dissipation
(Diss) of the turbulent kinetic energy

(e) Turbulent diffusion of the turbulent ki-
netic energy (tv)

(f) Molecular diffusion of the turbulent ki-
netic energy (ta)

Figure 25: Turbulent channel flow results for DNS (small crosses), ODTLES, and XLES-
U with NLES = 16 (dash-dotted), NLES = 32 (dashed), NLES = 64 (solid). The
small scales are resolved using NRSS = 1024 cells. The flow statistics are
based on the velocity field û2,i.
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The ODT model parameters are C = 6.5 and Z = 300 according to section
4.1.1. The maximum eddy length lmax in XLES-grid k equals the 3D large scale
cell size ∆xLES

k (following section 4.1.3).
To produce statistically significant results, the flow is averaged for taveu2τ/ν >

9875 non-dimensional time units similar to the XLES results.
The mean velocity profiles computed by ODTLES (see figure 25a) and XLES

(see figure 25b) are compared to DNS.
Additionally the streamwise and spanwise velocity RMS (see figure 25c) and

the budget terms of the turbulent kinetic energy (see figure 25d–25f) are shown.
ODTLES and XLES-U show convergence towards the DNS results with in-

creasing 3D resolution. ODTLES is able to represent the flow field and turbu-
lent statistics even with the very low 3D resolution NLES = 16, including the
laminar sublayer near the walls and the budget terms of the turbulent kinetic
energy.

Heated Channel flow studies using ODTLES#1 were presented in Glawe et al.
[1]. Thereby the scalar property was represented only by XLES-grid 2.

4.1.5 ODTLES: High Reynolds Number Flow

ODTLES combines the ability of the ODT model to describe all scales of highly
turbulent flows within a 1D sub-domain of the full 3D domain with a coarse
grained XLES approach representing the geometry of the 3D domain for a tur-
bulent channel and introducing additional 3D effects compared to ODT stand-
alone.

As shown in a convergence study in section 4.1.4 low Reynolds numbers
are well described by ODTLES with only NLES = 16 cells. To demonstrate the
ODTLES ability to describe highly turbulent flows within a simple domain,
we conduct turbulent channel flow computations with NLES = 32 cells (in 3D)
and up to NRSS = 16384 cells to represent additional small scale effects, which
allows Reynolds numbers Reτ 6 10000.

The RSS and 3D resolutions are summarized in table 8. The CFL-number is
chosen following Eq. (96) with CFL 6 1 and ODT parameters are: C = 6.5,
Z = 300, and lmaxk = ∆xLES

k .
The mean velocity profiles for several friction Reynolds numbers are illus-

trated in figure 26a and compared to DNS by Kawamura et al. [49] and Lee
and Moser [62] (online available: [48] and [63]). The ODTLES computation with
Reτ = 10000 is in good agreement with the laminar solution near the wall and
the law of the wall. This corresponds to a logarithmic function u+2 = u2/uτ =
1
κln(x

+
2 ) +C

+ with the von Kármán constant κ = 0.384 and an additional con-
stant C+ = 4.15 (obtained by Lee and Moser [62] for a turbulent channel with
Reτ = 5200).

The streamwise and spanwise velocity RMS (see figure 26b) are in good
agreement with the available DNS in the laminar region near the wall and
beyond the first 3D cell. Within the first 3D cell, ODT typically has some issues
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(a) Law of the wall. Profiles shifted with
increasing Reτ.

(b) Streamwise (uRMS) and spanwise
(−wRMS) velocity RMS.

(c) Production (Prod) and Dissipation
(Diss) of the turbulent kinetic energy.

(d) Viscous transport of the turbulent ki-
netic energy (tv).

(e) Advective transport of the turbulent
kinetic energy (ta).
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(f) Wall shear stress τW :
linear (left) and logarithmic (right).

Figure 26: Turbulent channel flow results for ODTLES (solid) and available DNS
(dashed) for NLES = 32 (if not indicated otherwise). The resolution in wall
coordinates is presented in table 8. The size of the first 3D cell is illustrated
by vertical lines for the different Reτ values. Figure 26f compares the ODT
and ODTLES wall shear stress (Reτ = {395, 1020}) for various NLES to DNS
(Reτ = 1240). For Reτ = 10000 no DNS result is available.
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Table 8: Channel flow resolution in wall coordinates for NLES = 32 in each direction
using the domain in figure 19 and equidistant cells. All DNS results are pro-
duced using a non-equidistant grid.

Reτ NRSS ∆x+RSS1

∆x+RSS2

∆x+RSS3

∆x+LES1

∆x+LES2

∆x+LES3

∆x+DNS2

395 1024 2.46 0.77 1.23 78.8 24.7 39.4 >0.44

1020 2048 3.20 1.00 1.61 204.2 63.8 102.0 >0.15

2040 4096 3.20 1.00 1.61 408.4 127.6 204.2 >0.43

5200 8192 4.02 1.26 2.00 1040.0 325.0 520.0 > 0.07

10000 16484 3.89 1.22 1.96 2000.0 625.0 1000.0 –

in representing the velocity RMS (this also applies for the budget terms of the
kinetic energy).

In figure 26c–26e the budget terms of the turbulent kinetic energy are shown
to be in good agreement with the DNS results, especially for highly turbulent
flows.

The convergence of ODTLES with increasing 3D resolution can be observed
within statistical properties including 3D effects not represented by ODT: The
PDF of τW shows e. g. convergence with increasing 3D resolution, while within
other statistical informations, e. g. the velocity RMS the ODT specific effects are
represented in decreasing strengths with increasing NLES.

ODT and ODTLES wall shear stress statistics for Reτ = 1020, illustrated in
figure 26f, are compared to DNS results by Schlatter and Örlü [87] for Reτ =

1240. The ODT wall shear statistics are in rather good agreement with the DNS
(see figure 26f left), which indicates ODT to be an accurate near-wall model,
yet by including additional 3D resolution NLES > 1 within ODTLES the PDF
is significantly improved. A more detailed investigation (see figure 26f right)
shows that ODTLES underestimates rare backflow events. The reason could be
that the responsible 3D structures near the wall are not represented due to the
coarse 3D resolution, because the 3D cell size in wall units is ∆x+LES2

≈ 31.9
for the highest considered 3D resolution NLES = 64 (with Reτ = 1020). The
result with lower Reynolds number (Reτ = 395) with 3D cell size in wall units
∆x+LES2

≈ 24.7 supports this hypothesis. With increasing 3D resolution ODT
specific issues in the near-wall statistics decreases in ODTLES. Here we assume
a low Reynolds number sensitivity of the wall shear stress statistics, as Schlatter
and Örlü [87] report, to qualitatively compare τW-statistics with different Reτ.

In summary ODTLES is able to capture the mean flow and turbulence statis-
tics of highly turbulent flows up to Reτ = 10000 within a simple domain. The
computational costs are significant lower compared to DNS: Lee et al. [61] re-
port to use about 260× 106 CPU hours on 786× 103 cores for the DNS with
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Reτ = 5200, while the corresponding ODTLES simulation takes ≈ 15000 CPU
hours on 24 cores.

A detailed investigation of the expected computational costs relative to RaNS,
LES and DNS in section 3.5.7 shows ODTLES to be convenient to describe
highly turbulent flows in domains of moderate complexity.

4.2 square duct flow

Sections 4.1.4 and 4.1.5 show turbulent channel flow results for the ODTLES
model to be in good agreement with DNS. With increasing 3D resolution a con-
vergence to DNS is observed, but even within an ‘ODT-limit’ (corresponding
to a single 3D cell) the ODT model reproduces key flow features stand-alone
(see 4.1.2).

The squared duct flow combines a simple geometry (see figure 28a) and
a complex flow behavior including secondary instabilities (secondary flow of
Prandtl’s second kind) and turbulent fluctuations. In the turbulent duct flow,
a turbulence induced flow structure transitions, these secondary instabilities
occur, which are not captured by ODT.

Since the ODT model cannot describe secondary instabilities within a duct
flow, a proper ‘ODT-limit’ cannot be expected. Thus key secondary features are
required to be resolved in 3D, leading to the enhanced Reynolds dependency
of NLES compared to the channel flow.

For low Reynolds numbers (near the value for sustained turbulence) the size
of the secondary flow structures in cross-stream direction corresponds to the
half duct height (h). This flow regime in a squared duct is investigated by
Uhlmann et al. [107] using DNS. Even for higher turbulent Reynolds numbers
the cross-stream extension of the secondary instabilities is rather large scale
compared to turbulent fluctuations occurring e.g. near the wall. Nevertheless
these small scale fluctuations play an important role for the duct flow because
they generate secondary instabilities. The ODT model was shown to accurately
describe small scale fluctuations and the secondary instabilities correspond
to a rather large scale 3D flow feature which can be described by the XLES
framework. Thus ODTLES is a promising model to describe the duct flow, as
shown in ODTLES#1 (see [33] and [1]) and ODTLES studies (see [3]).

Figure 27: Coordinate system
and computational domain
(Ω) of the squared duct in-
vestigated here.

A 1D solution equivalent to the laminar channel flow in section 4.1 is not
possible for a laminar duct flow. Nevertheless the friction Reynolds number
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(Reτ) can be computed at each lateral position (e. g. −1 < x3 < 1; x2 = −1 in
figure 27). Influenced by the side walls the friction Reynolds number (Reτ) is
smaller in each lateral position than the corresponding Reτ for a laminar chan-
nel (called Relcτ in this section) with identical forcing F1 and kinematic viscosity.
The spanwise averaged friction Reynolds number is Reτave =

1
|∂Ω|

∫
∂Ω

uτ(x)h
ν dx1 dx2|3

and characterizes the global interplay between the flow and the walls.
The squared duct flow is often characterized by its bulk Reynolds number

(ReB) with (ReB = uB h
ν ). Hereby the bulk velocity (uB) is the volume averaged

streamwise velocity uB = 1
|Ω|

∫
Ω u1 dx1 dx2 dx3.

ODTLES duct flow results are computed by solving Eqs. (101) and (105) iden-
tically to the channel flow, but for the computational domain shown in figure
27. Thus both Reτave and ReB are derived from computed ODTLES results.

4.2.1 ODTLES: Square Duct Flow

The CFL-number is chosen following Eq. (96) with CFLRSS 6 1. The ODT model
parameters are C = 6.5, Z = 300, and lmaxk = ∆xLES

k , which is identical to the
channel flow setup in section 4.1.5.

The flow is averaged for taveuB/h > 2800 non-dimensional time units after
reaching a steady state which is assumed to be sufficient to investigate the
secondary instabilities. This is supported by a study of vortex structures by
Uhlmann et al. [107] where nearly symmetric 8-vortex structures are observed
for lower averaging times at bulk Reynolds number ReB > 2600. Additionally
the ODTLES results are averaged over the 4 quadrants. Note that the DNS
by Pinelli et al. [81] uses taveuB/h > 7000 to produce meaningful high order
statistics.

Figure 28 compares the secondary flow computed by ODTLES for a mod-
erate bulk Reynolds number ReB ≈ 2600 with the DNS by Pinelli et al. [81]
(online available: [106]). Hereby ODTLES uses NLES = {16, 32} large scale cells
per direction and the XLES specific small scale properties are resolved by
NRSS = 1024 cells. The corresponding RSS and 3D resolutions are summarized
in table 9.

Table 9: Duct flow resolution in wall coordinates in each direction using the domain in
figure 28a and equidistant cells. The wall coordinates are based on Relcτ for the
laminar channel which is an upper limit for maximum local friction Reynolds
number within the duct.

Relcτ ReB Reτave NRSS NLES ∆x+RSS1

∆x+RSS2

∆x+RSS3

∆x+LES1

∆x+LES2

∆x+LES3

250 2667 174 512 16 6.14 0.98 0.98 196.2 31.3 31.3

250 2514 174 512 32 6.14 0.98 0.98 98.2 15.6 15.6

322 3485 226 1024 32 3.94 0.62 0.62 126.4 20.2 20.2
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666 8446 464 2048 32 4.08 0.66 0.66 261.4 41.6 41.6

1250 17338 870 2048 32 7.66 1.22 1.22 490.6 78.1 78.1

2500 38387 1758 4096 32 7.66 1.22 1.22 981.3 156.3 156.3

5000 83457 3486 8192 32 7.66 1.22 1.22 1962.4 312.5 312.5

The primary flow and key features of the secondary flow shown in figure
28 are in good agreement with the DNS results even with the very low 3D
resolution of NLES = 16 cells. Furthermore the ODTLES results indicate a con-
vergence towards the DNS results with increasing 3D resolution.

The secondary mean velocity field alters with increasing Reynolds number,
as investigated in figure 29. In particular each secondary vortex structure tends
towards a triangular shape for increasing Reynolds number. The vorticity ap-
proaches the duct corner with increasing Reynolds number, indicating fast
changes of the secondary flow directions in this area.

In the present formulation, both ReB and Reτave are simulated results. Nev-
ertheless their correlation states the relation of near-wall flow phenomena with
global flow structures. Especially ODTLES results with a 3D resolution NLES =

{16, 32, 64} are consistent with the empirical correlation by Jones [43]1 even for
high bulk Reynolds numbers, as illustrated in figure 30. This indicates a good
ODTLES representation of the global flow structures and a well represented
near-wall flow (laterally averaged) for highly turbulent flows with low 3D res-
olutions. In particular this means that in the investigated regime the friction
velocity grows almost linearly with the bulk velocity. Also figure 30 suggests,
that at least NLES = 16 3D cells per direction are required to resolve 3D flow
structures corresponding to the secondary flow. The XLES-U results in figure
30 tend towards the laminar solution, which implies that the ODT-SGM is re-
quired for high bulk Reynolds numbers.

ODTLES results with low 3D resolutions show a tertiary instability above
some NLES-dependent threshold Reynolds number (between 8446 and 17338

for NLES = 32) in the corner region (see figure 31).
The 3D tertiary structure in the corner region is of similar size as the cor-

responding 3D computational cell. Its influence on the flow is primarily local.
The insufficient 3D resolution leads to an under-resolved pressure gradient
which could prevent an adequate change of a fluid parcel’s direction (blue
arrows within figure 31).

In particular highly 3D resolved result in figure 31c suggest that the insuffi-
cient 3D resolution causes the tertiary instabilities. Nevertheless even with low
3D resolutions the cross-stream flow is adequately resolved in the wall-normal
direction (green arrows within figure 31). An equivalent interpretation is that
the local symmetry properties required by the ODT-SGM are not valid in the

1 Correlation: f−1/2 = 2 log10(2.25ReBf
1/2) − 0.8, with the friction factor f = 8u2τ/u2B
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(a) Geometry and illustrated XLES-grids. (b) DNS: ReB = 2600.

(c) ODTLES: NLES = 16, ReB = 2667. (d) ODTLES: NLES = 32, ReB = 2514.

Figure 28: All results are averaged in time and streamwise direction. One quadrant of
the duct is shown (see 28a). The 3D grid is indicated by white lines (for the
DNS only in the corner region). ODTLES properties are illustrated like cell
centered and show additional small scale features (resolved by NRSS = 1024
cells) using the XLES-grid highly resolved in vertically x2-direction (horizon-
tally x3-direction) in the lower right (upper left) triangular region, as illus-
trated in 28a. Only dynamical variables are plotted for ODTLES (no bound-
ary conditions), which leads to the gap in the flow field at the corner. Con-
tour lines of the primary mean flow (black) for u1 = {0.2, 0.4, 0.6}max(u1),
streamlines of the secondary mean flow (u2,u3) in red and the 2D vorticity
ω2D = ∂x2u3 − ∂x3u2 (RGB color coded) are shown.
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(a) DNS:
ReB = 3500.

(b) ODTLES:
ReB = 3485, NRSS = 1024.

(c) ODTLES:
ReB = 8446, NRSS = 2048.

(d) ODTLES:
ReB = 17338, NRSS = 2048.

(e) ODTLES:
ReB = 38387, NRSS = 4096.

(f) ODTLES:
ReB = 83457, NRSS = 8192.

Figure 29: ODTLES and DNS squared duct results with NLES = 32 for different bulk
Reynolds numbers (ReB). Primary and secondary streamlines and vorticity
are illustrated similar to figure 28.
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Figure 30: The correlation between Reτave and ReB in the turbulent regime is empiri-
cally described by Jones [43] (red line) and confirmed by DNS (e. g. [106];
green line). ODTLES with NLES = 32 (blue line) and even with NLES = 16

(blue dashed-dotted line) corresponds to the empirical prediction up to a
highly turbulent regime. ODTLES results with NLES = 8 (blue dashed line)
and XLES-U results (magenta line) slightly tends towards the laminar solu-
tion (black line). This indicates that the 3D resolution is not sufficient (for
NLES = 8) and the ODT model is required.

duct corner. More reliable and conclusive results might be possible through
future DNS studies.

Nevertheless the tertiary structure is very local and not preventing the OD-
TLES model from describing the global key flow features of the primary and
secondary flow, as figure 30 suggests.

Figure 32 illustrates ODTLES streamwise mean velocities and their RMSs
with NLES = 32 at several lateral positions x3/h = {0, 0.25, 0.75}. For moderate
ReB the ODTLES results are in good agreement with DNS results (see [106]).
For high ReB (where no DNS is available) a logarithmic behavior is observed
for the positions near the duct center (x3/h = {0.0, 0.25}) This corresponds to
the law of the wall for turbulent channel flows, obtained by Lee and Moser [62]
for a turbulent channel with Reτ = 5200. The velocity RMSs behave similar to
the RMSs of the turbulent channel flow: Within the first 3D cell, as indicated
by vertical lines, the velocity RMS deviates from the DNS results, which is an
effect caused by the ODT-SGM (cf. figure 26).

Mean spanwise velocities and their RMSs are illustrated in figure 33.
The averaged spanwise velocity in the vicinity of the duct corner (x3/h =

0.75) is of higher magnitude and well represented by ODTLES. The spanwise
velocity RMSs are in good agreement with existing DNS results, but show
the ODT specific behavior within the first 3D cell. A low correlation between
ODTLES and DNS is observed in the spanwise velocity in the duct center which
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(a) ReB = 3485, NRSS =
1024, NLES = 32, cf. fig-
ure 29b

(b) ReB = 17338, NRSS =
2048, NLES = 32, cf. fig-
ure 29d

(c) ReB = 17338,
NRSS = 2048,
NLES = 64.

Figure 31: Zoom into the corner region of the squared duct flow. Primary and sec-
ondary streamlines and the vorticity are illustrated similar to figure 28.
Figure 31a additionally shows the small scale resolution (illustrative with
NRSS = 256 instead of simulated NRSS = 1024). An exemplary cross-stream
flow approaches the corner parallel to the horizontal wall (green arrows)
with wall-normal velocity gradients highly resolved only in the XLES-grid
2 (cf. figure 28a). Near the corner the vertical wall forces a flow stagnation
and an associated pressure gradient drives the flow in the horizontal direc-
tion (blue arrows) which is highly resolved only in XLES-grid 3. For high
Reynolds number duct flows (31b) both effects occur within one 3D cell,
which is not well represented by ODTLES because the coupling procedure
only communicates small scale effects affecting the large scale. This could
lead to unphysical flow behavior within the 3D cell containing the corner.
With increased 3D resolution the effect disappears (figure 31c).
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Figure 32: The ODTLES streamwise mean velocity (corresponding to the law of the
wall) and the streamwise velocity RMSs are shown at different lateral lo-
cations for 2514 < ReB < 83457 (see legend in 32a). All ODTLES compu-
tations use NLES = 32 large scale cells. The profiles are not averaged over
the 4 quadrants. The dashed lines correspond to available DNS data or the
logarithmic law obtained for a turbulent channel with Reτ = 5200 by Lee
and Moser [63]. The vertical and dotted lines indicate the size of the first 3D
cell.
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is of low magnitude (similar to the turbulent channel flow, where the averaged
spanwise velocities vanish). Possibly this flow properties depends stronger on
the averaging period tave.

In summary ODTLES demonstrates its ability to describe and predict non-
trivial flow behavior including secondary instabilities within a squared duct.
Qualitative and quantitative properties are in good agreement with DNS re-
sults and behave reasonably also for bulk Reynolds numbers not reached by
DNS yet. The correlation of Reτave to ReB behaves according to an empirical
correlation by Jones [43] for ODTLES with at least NLES = 16 cells per direc-
tion.

We suspect that the flow transition leading to tertiary instability is a model
artifact, which is supported by results with higher 3D resolution, although a
physical cause cannot be ruled out until definitive evidence such as a DNS
result becomes available. Nevertheless the tertiary structure is very local and
not preventing the ODTLES model from describing the key flow features of the
primary and secondary flow.
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(c) Spanwise velocity at
x3 = 0.75/h.
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Figure 33: The ODTLES spanwise mean velocity (corresponding to the law of the wall)
and the spanwise velocity RMSs are shown at different lateral locations
for 2514 < ReB < 83457 (see legend in 33a). All ODTLES computations
use NLES = 32 large scale cells. The profiles are not averaged over the 4
quadrants. The dashed lines corresponds to available DNS data. The vertical
dotted lines indicate the size of the first 3D cell.
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Buoyancy driven turbulent flows occur in various engineering and meteo-
rological applications. To investigate convective transport this chapter present
ODT and ODTLES results including determination of model parameters for
Rayleigh-Bénard flows, which are one of the most fundamental buoyancy driven
flows.

5.1 rayleigh-bénard flow

The domain is very similar to the channel domain, but with different aspect
ratios (Γ ) (see figure 34). The infinite walls are heated from the bottom and
cooled down at the top of the Rayleigh-Bénard cell, which leads to an unsta-
ble stratification and convective Rayleigh-Bénard motion. The XLES Oberbeck-
Boussinesq equations (101), (102), and (105) are solved.

Figure 34: Coordinate system
and computational domain
for the Rayleigh-Bénard cell
investigated here: with Γ =
2 and periodic boundary
conditions in the horizontal
directions. The bold arrow
illustrates a possible 1D sub-
domain.

The Rayleigh number (Ra =
g(∆θ)
νκ L

3) corresponds to the ratio of typical con-
vective and diffusive effects (cf. section 1.1).

Upon a critical Rayleigh number (Rac) convective transport occurs. The over-
all transport phenomena include a large scale circulation (LSC) in the bulk
region and transport through thermal and kinematic boundary layer regions
near the walls. The LSC includes plumes, as obtained in many geophysical
flows, e. g. for the Earth’s core mantle convection (recently studied e. g. by Mu-
lyukova et al. [76]).

Due to convection the net heat transport, expressed by the Nusselt number
(Nu = αL

κ ), is significantly enhanced (Nu= 1 corresponds to pure diffusive
transport). Thus in particular the behavior of the Nusselt number with respect
to Ra and Pr are of interest to prescribe the global properties of a Rayleigh-
Bénard cell and the influence of convective transport per se. Section 5.1.4 inves-
tigates the Nusselt number correlation with ODT and ODTLES.

Grossmann and Lohse [35] establish a qualitative understanding of con-
vective phenomena and corresponding boundary layer effects (see also [101]
for updated prefactors). Universal scaling properties of pure convection, even
considering side walls, are developed. Grossmann and Lohse [35] introduce
4 regimes to describe Nu(Ra,Pr) and Ret(Ra,Pr) depending on whether the
boundary layer or the LSC dominates the global thermal respective kinetic en-
ergy dissipation. Subregimes additionally describe whether the thermal or the
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Figure 35: Nusselt number scaling for various Pr (0.7 . Pr . 102) and aspect ratios Γ =
{0.5, 1}. The solid (black) lines indicates the theory by Grossmann and Lohse
[35] and the dashed blue lines include the corrected factors by Stevens et al.
[101]. In 35a open symbols indicate the uncorrected data and solid symbols
the data after correction for the finite plate conductivity. The figures were
published by Stevens et al. [101]
[Reproduced with permission from R.J.A.M. Stevens and D. Lohse: The unifying
theory of scaling in thermal convection: the updated prefactors, Journal of Fluid
Mechanics 730:295–308, 2013. ©2013 Cambridge University Press].

viscous boundary layer is thicker. For Pr= 1, as investigated in this thesis, two
regimes occur:

1. For Ra . 1.66× 1010 the thermal and kinetic dissipation rates (εθ and εν)
are boundary layer dominated.

2. For Ra & 1.66× 1010 the thermal and kinetic dissipation rates are bulk
dominated (by the LSC.)

In figure 35 these scaling laws are compared to various experiments and
DNS for Γ= 1

2 and Γ= 1 and for various Prandtl numbers.
Kraichnan [58] predicts another regime transition, towards the often called

‘ultimate regime’, at very high Ra & Rau (with the critical Rayleigh number
(Rau)). Upon Rau the laminar shear boundary layer is speculated to break
down through nonlinear transition to turbulence and a scaling Nu ∼ Ra1/2

is expected. The transition towards this ‘ultimate regime’ at Rau depends on
Pr and the aspect ratio (Γ ). Chillà and Schumacher [16] e. g. state that roughly
Rau ∼ Γ−2.5 holds. As figure 35b suggests experiments found a sudden change
in the Nusselt number behavior for Γ= 1

2 , but these experiments are extremely
challenging and controversially discussed (cf. [36]). Highly resolved numerical
simulations are not reaching this second Rau yet.

In experiments and most DNS circular and rectangular geometries with side-
walls are used. The application of ODT is more meaningful for the more ideal-
ized Rayleigh-Bénard flow without side walls (periodic boundary conditions),
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(a) ODT: scalar field (θ) (b) ODT: RMS of θ

Figure 36: Rayleigh-Bénard flow computed by ODT for Ra= 5× 106, Pr= 1, NODT =
1024, and tave = t

√
g ∗ (∆θ) ∗ Γ/h > 5400: 36a shows the mean scalar field

(shifted), 36b its RMS. θ fairly agrees using an increased eddy rate (C = 38.7,
Z = 66.7). The RMS does not reproduce the DNS in the near-wall region for
any parameter set. The lmax parameter does not influence the computed
results.

because due to the symmetry a 1D sub-domain (see arrow in figure 34) is more
reasonable.

DNS results with periodic boundary conditions are provided by Petschel
et al. [79, 80] and compared to ODT in section 5.1.1 and ODTLES in sections
5.1.2 and 5.1.3.

5.1.1 ODT: Parameter Study

Wunsch and Kerstein [113] presents Rayleigh-Bénard studies and ODT Nusselt
number scaling for varying Pr and Ra numbers. Especially PDFs of small scale
fluctuations and global Nu scalings agree well with available experiments. In
their study Wunsch and Kerstein [113] determine ODT parameters C and Z

for Rayleigh-Bénard flows, which differ from those in shear-driven flows. They
present 3 possible parameter sets, that maintain scaling properties within ODT.
We will use the parameters C = 38.7 and Z = 66.7, which lead to a good agree-
ment of the mean scalar field (θ) with existing DNS results. Additionally the
productive parameters C = 6.5 and Z = 300 for the turbulent channel flow are
applied to the Rayleigh-Bénard case. The occurring discrepancy between com-
puted ODT results helps to understand the underlying physical mechanisms.
According to their role in Eq. (51), the parameters C = 38.7 and Z = 66.7 in-
crease the eddy rate distribution and therefore the ODT turbulent transport
compared to the channel parameters C = 6.5 and Z = 300.

As illustrated in figure 36a the parameters C = 38.7 and Z = 66.7 better
agree with the DNS by Petschel et al. [79, 80] for Ra = 5× 106 and Pr = 1.
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Nevertheless ODT higher order statistics differ significantly from the DNS, as
shown in figure 36b.

Figure 36 also demonstrates, that the parameter lmax does not influence the
ODT results, but experiments and 3D simulations conclude that a significant
amount of heat transport is due to LSC. This implies that the ODT model com-
pensates the inability to describe 3D large scale convective transport by an in-
creased amount of small scale transport, which explains the better θ-agreement
with C = 38.7 and Z = 66.7. This indicates that the ODT results with these pa-
rameters can be associated with the bulk-dominated regime (cf. section 5.1.4),
but to some extent the good agreement in the θ-profile in figure 36a does not
mean that ODT represents the right physical mechanisms.

5.1.2 ODTLES: Parameter Study

All presented cases use aspect ratio Γ = 2 and periodic boundary conditions
in the horizontal directions. In each direction NLES= 32 (if not mentioned oth-
erwise) equidistant 3D cells are used. Due to the aspect ratio this leads to a 2

times higher 3D resolution in the wall-normal direction.
ODTLES is able to describe the LSC and thus the ODT compensation for LSC

due to small scale transport is not necessary, as the parameter study in figure
37 demonstrates. ODTLES yields reasonable results, even with C = 6.5 and
Z = 300, the parameters used for shear-driven flow, as investigated in figure
37.

From a conceptual point of view applying these ODTLES parameters also
to buoyancy driven flows maintains a universality of the parameters, but the
outcome has to be reasonable. Even if slightly varying the parameters might
enhance the computed results, we prefer to use the same parameters as in shear
driven flows (cf. figure 37), because they lead to a satisfactory outcome.

Additionally the similarity of scalar results by XLES-U and ODTLES implies
that the essential scales for the chosen Rayleigh number are sufficiently de-
scribed even without the ODT-SGM. Nevertheless the velocity statistics differs
noticeably and ODT small scale advection becomes more relevant for more
highly turbulent cases (presented in section 5.1.3).

The CFL-number only has a small influence to the flow results, as shown in
figure 37, which implies that the temporal error terms σtemporal

ODTLESij
and σtemporal

ODTLESθj
are rather small in the investigated flow configuration. This allows to increase
of CFL-number in computations for performance reasons with acceptable model
errors.

The influence of the 3D resolution NLES is investigated in figure 38. Hereby
we find, that very coarse 3D resolutions with fully coupled scalar fields (θ) lead
to an artifact: An additional unphysical inflection point in the θ mean profile
occurs whose spatial extent is related to the 3D large scale cell size (∆xLES)
and vanishes with a certain Ra-dependent 3D resolution. For Ra = 5× 106 and
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(a) ODTLES: θ. (b) ODTLES: RMS of θ.

(c) ODTLES: horizontal velocity RMS. (d) ODTLES: vertical velocity RMS.

Figure 37: ODTLES Rayleigh-Bénard flow with Ra= 5× 106, Pr= 1, NLES= 32, NRSS=
1024, and tave = t

√
g ∗ (∆θ) ∗ Γ/h > 135. Compared to the ODT results (cf.

figure 36) ODTLES only weakly depends on the ODT parameters C and Z.
Good agreement of XLES and DNS results indicate relative weak influence
of ODT turbulent events. A weak influence of the CFL-number indicates
that σtemporal

ODTLESij
and σtemporal

ODTLESθj
are small.
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Figure 38: ODTLES: Mean scalar field (θ) for Ra= 5× 108. ODTLES results converge
for increasing 3D resolution , but require a Ra-dependent threshold 3D res-
olution (NLES ≈ 64 for Ra= 5× 108) to prevent unphysical inflection points
from occurring in the mean θ-profile. The unphysical behavior is related to
XLES scalar coupling terms. Neglect of these terms (called ODTLES∗ here)
improves the results.

NLES = 32 no artifacts are found but by increasing the Rayleigh number to
Ra = 5× 108 a higher 3D resolution is required to prevent additional inflection
points. We find this slow convergence to physical behavior to be related to the
XLES scalar coupling terms

Xθj ≈ l† ∗ ∂xjC
(〈
ûj
〉
∗ θ̂ −

〈
uj
〉LES ∗ θLES

)
(145)

(see (p 3) in table 5), because neglecting the term in Eq. (145) prevent the
reported unphysical behavior. We will call the ODTLES model with neglected
XLES scalar coupling terms ODTLES∗ in this section. Note that the scalar ODT
advancement including molecular diffusion terms are still coupled between
different XLES-grids. For ODTLES∗ the ‘LES-limit’ still holds and for highNLES
a convergence towards DNS can be observed.

To investigate specific XLES scalar coupling terms in detail a turbulent scalar
flux in XLES-grid 2 for different 3D resolutions is shown in figure 39. This
flux corresponds to an averaged coupling term within the XLES scalar cou-
pling term (XXLES

θj ). The shown flux properties induce a strong NLES and Ra

dependency of σspatial
† due to the reconstruction of the scalar. This means high

Rayleigh number results by ODTLES require a considerably higher 3D resolu-
tion, butODTLES∗ results still agree well with existing DNS and are performed
for high Ra (see section 5.1.3).

This behavior for highly under-resolved scalar flows is rather a limitation of
the reconstruction algorithm for challenging near-wall profiles (the flux in fig-
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(a) NLES = 16 (b) NLES = 32

Figure 39: The ability of the reconstruction algorithm is limited as shown for one scalar
coupling flux term for very coarse 3D resolution with NLES = 16 (39a) and
NLES = 32 (39b). This scalar coupling flux is an statistical average of the
XLES scalar coupling terms in Eq. (145) (with i = 2 and XLES-grid 2). The
‘original’ flux ∂x2(θ̂

′
2û
′
2,2) (red dots) is computed using NLES = 128 cells

(tave = t
√
g ∗ (∆θ) ∗ Γ/h ≈ 15). The spatial averaged flux (black crosses)

is computed by [ld2 ]∂x2(θ̂
′
2û
′
2,2) using the corresponding 3D resolution and

the reconstructed flux (green dots) corresponds to [l−1d2 ld2 ]∂x2(θ̂
′
2û
′
2,2). Here

[l−1d2 ] is computed by Schmidt’s algorithm. An additional limiter (blue dots)
prevent an artificial overshoot, but locally reduces the approximation order.
The limiter does not influence the occurrence of unphysical inflection points
(cf. figure 38).
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ure 38) than a fundamental problem within the coupling terms per se. The
approximation and especially reconstruction of these challenging near-wall
profiles requires an increased 3D resolution in ODTLES. One possible interpre-
tation is that the deconvolution algorithm error term (σspatial

† ) locally exceeds
the magnitude of the XLES scalar coupling term itself for very coarse 3D reso-
lutions.

Here further investigations of the interplay of XLES coupling terms and re-
construction algorithms are advisable to decrease the Ra-dependency of the
ODTLES 3D resolution due to challenging coupling flux profiles. Note that for
this coupling flux, the limiter applied to the reconstruction algorithm (cf. . sec-
tion 3.6.1) locally leads to a linear reconstructed profile, which is not the case
in investigated reconstructed profiles in shear-driven flows.

No evidence was found that similar artifacts caused by the reconstruction
algorithm for very coarse 3D resolutions occur for the shear-driven flows in-
vestigated in chapter 4.

5.1.3 ODTLES: Rayleigh-Bénard Flow

The ODT model parameters for ODTLES Rayleigh-Bénard flows are C = 6.5,
Z = 300, and lmaxk = ∆xLES

k , which is identical to the channel and square duct
flow setup in chapter 4. The CFL-number is chosen following Eq. (93) with
CFLLES 6 0.2.

The flow is averaged for tave = t
√
g ∗ (∆θ) ∗ Γ/h > 135 non-dimensional

time units after reaching a steady state compared to e. g. tave = 110 in the DNS
by Kaczorowski and Wagner [47].

We compare ODTLES results for Ra= 5 × 106 and Pr= 1 with DNS by
Petschel et al. [79, 80]. This DNS is appropriate for comparison, because pe-
riodic boundary conditions are used for the horizontal flow. Contrary to the
DNS which mainly investigate the influence of Prandtl numbers on the bound-
ary layers, here the influence of the Rayleigh number on the overall flow is
investigated. In particular the Nusselt number behavior is investigated in sec-
tion 5.1.4.

About the required resolution to represent all boundary layer effects, Shishk-
ina et al. [91] states for Pr = 1: “one is on the safe side if”

∆xDNS . 2−3/2a−1Nu−3/2h (146)

with the a ≈ 0.482 (measured for a cylindrical cell with Γ= 1). We estimate the
Nusselt number a priori (see Eq. (147).

Figure 40 illustrates the influence of the Rayleigh numbers (Ra6 5× 1010) to
the scalar and velocity fields. The computational domain (Ω) is illustrated in
figure 34 with Γ= 2. Following arguments in section 5.1.2, for high Rayleigh
numbers the scalar XLES-U coupling terms in Eq. (145) are omitted, leading
to a slightly modified ODTLES∗ model. Computations are conducted using
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(a) ODTLES: θ. (b) ODTLES: RMS of θ.

(c) ODTLES: Scalar Dissipation. (d) ODTLES: horizontal velocity RMS.

(e) ODTLES: vertical velocity RMS.

Figure 40: ODTLES and ODTLES∗ high-Ra flow in a Rayleigh-Bénard cell with NLES=
32 cells for all cases. Following arguments in section 5.1.2, XLES-U coupling
terms are neglected for high Ra (leading to the ODTLES∗ model). Following
Petschel et al. [80], velocity RMSs are normalized by the volume-averaged
viscous dissipation rate.
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Table 10: The required resolution to fully resolve the boundary layer (∆xDNS) is esti-
mated for Pr= 1 in [91] and compared to the RSS resolution in ODTLES in
wall-normal (∆xRSS

2 ) and horizontal direction (∆xRSS
1 = ∆xRSS

3 for Γ= 2).

Ra NRSS ∆xDNS ∆xRSS
2 ∆xRSS

1

5× 106 1024 8.674× 10−3 9.77× 10−4 1.195× 10−3

5× 107 2048 3.299× 10−3 4.88× 10−4 9.77× 10−4

5× 108 4096 1.238× 10−3 2.44× 10−4 4.88× 10−4

5× 109 8192 4.59× 10−4 1.22× 10−4 2.44× 10−4

5× 1010 16384 1.68× 10−4 6.10× 10−5 1.22× 10−4

5× 1011 32768 6.0× 10−5 3.05× 10−5 6.10× 10−5

NLES= 32 cells per direction to represent the 3D LSC. The RSS resolutions are
summarized in table 10. Figures 40a–40c show ODTLES scalar field statistics
to be in good agreement with the DNS (cf. [79, 80]) for Ra= 5× 106 and Pr= 1.
Figures 40d and 40e also show the horizontal and vertical velocity RMS to be
in good agreement with available DNS data.

ODTLES results for higher Rayleigh numbers behave reasonably in their
scalar and kinematic statistics. Note that higher Rayleigh number DNS results
for periodic boundary conditions are currently not available for comparison.
Nevertheless the ODTLES and ODTLES∗ results show similar behavior for in-
creasing Rayleigh number as DNS results with side walls.

5.1.4 ODT and ODTLES: Nusselt Number Scaling

Typical experiments and numerical results for the Nusselt number scaling ob-
tain Nu = CNu Ra

γeff with a Nusselt scaling prefactor (CNu) and the effective
Nusselt scaling exponent (γeff).

For the Rayleigh-Bénard convection with Pr = 1, Grossmann and Lohse [35]
suggest a Nusselt number scaling over a wide range of Ra including several
regimes (cf. previously in section 5.1) with

Nu = 0.27 · Ra1/4 + 0.038 · Ra1/3 (147)

which is in agreement with experimental results for Pr ≈ 1 (prefactors are
derived using experimental data). This scaling law is almost indistinguishable
from the scaling Nu = 0.22 · Ra0.289 for 106 < Ra < 1014 (cf. figure 41). Follow-
ing Ahlers et al. [4] the influence of Γ (investigated for Γ= 1

2 and Γ= 1) to γeff
is small, but CNu varies noticeable (also compare figures 35b with 35a). Note
that Rau∼ Γ−2.5 which influences the transition towards the ‘ultimate regime’
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Figure 41: The ODTLES and ODTLES∗ Nusselt number behavior is compared to the
theory by Grossmann and Lohse [35] for Pr= 1 (black solid line). Follow-
ing this theory there are two regimes additively affecting the Nusselt num-
ber behavior: the boundary layer dominated (black dashed line) and the
bulk dominated (black dotted line) regime. Additionally ODT results for
Pr= 0.71 with C = 38.7 and Z = 66.7 are presented. The 3D resolution
in ODTLES∗ and ODTLES (Ra6 5× 107) is NLES = 32 and NLES = 64 for
ODTLES with Ra= 5× 108. ODTLES results show a scaling behavior com-
parable to theory for the computed Ra. ODTLES∗ results seem to include
the regime transition, but the additive character is missing.

with Nu ∼ Ra1/2 introduces a strong correlation between the Nusselt number
and the aspect ratio.

Figure 41 shows the Nu scaling by Grossmann and Lohse [35] with ODTLES
and ODT results.

ODT results use the parameters C = 38.7, Z = 66.7, and lmax = h and up
to NODT = 262144 cells for a slightly decreased Prandtl number Pr = 0.71. As
discussed in section 5.1.1 the chosen parameters describe a bulk dominated
regime (corresponding to γeff= 1/3), but ODT eddy events replace the LSC.
ODTLES results are computed for Ra 6 5 × 108 using NLES = 32 cells for
Ra < 5× 108 and NLES = 64 cells for Ra = 5× 108, as shown in figure 41. For
ODTLES simulations with higher Rayleigh numbers a higher 3D resolution (cf.
section 5.1.2) is required due to the necessary reconstruction of challenging
coupling flux terms near the walls. To avoid this Ra-dependency of the 3D
resolution a possible approach is to neglect the XLES scalar coupling terms.
This is done by the ODTLES∗ model which is even able to describe the transi-
tion between the boundary layer dominated and the bulk dominated regime,
but their additive character is missing. Possibly this effect can be explained
by the neglected XLES-U scalar coupling or temporal error terms σtemporal

XLES−Uij

and σ
temporal
XLES−Uθj

caused by the increased CFL-number. Of course the applica-
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tion of the ODTLES∗ model is rather a quick fix than a well-founded model-
ing strategy and further investigations especially of these challenging coupling
fluxes and alternative reconstruction strategies are required. Maybe deconvo-
lution strategies developed in the field of image processing can lead to further
improvements of the XLES and especially ODTLES models. Nevertheless we
can learn something about the ODTLES model behavior and the underlying
physics even from the ODTLES∗ model results. The Nusselt number behavior
in both the boundary layer and the bulk dominated regimes are well repre-
sented by the ODTLES∗ model. Especially the regime transition seems to fur-
ther depend on the neglected coupling flux terms. A possible interpretation is
that this regime transition especially requires transfer between the RSS repre-
sented near wall boundary layer behavior and 3D resolved bulk flow properties.
This transfer is partly represented by the XLES scalar coupling terms neglected
in ODTLES∗.

ODTLES shows its fundamental ability to reproduce scaling law proper-
ties for buoyancy driven flows including regime transitions between bound-
ary layer dominated and bulk dominated flows. Compared to the turbulent
channel flow in section 4.1 where an increasing 3D resolution can be used to
smoothly adjust the outcome from the ODT stand alone result (for one 3D cell)
towards the DNS result for very high 3D resolutions, in the Rayleigh-Bénard
flow a certain 3D resolution is required to approximate certain XLES scalar
coupling fluxes. Considering the ODT stand alone result for Rayleigh-Bénard
flow, which requires an adjustment of the ODT parameters C and Z, this is not
surprising. Neglecting certain XLES scalar coupling terms within theODTLES∗

model helps to avoid the introduction of additional inflection points within θ-
profile. This indicates that the XLES scalar coupling plays a major role by cre-
ating these behaviors. Further investigations of the XLES scalar coupling and
especially the reconstruction of challenging near-wall flux profiles is required
to use the ODTLES model in high Rayleigh number flows.

The transition towards the ‘ultimate regime’ is assumed to be caused by
enhanced turbulence due to increasing LSC kinetic energy. The ODTLES rep-
resentation of such an effect strongly depends on the chosen values for the
parameters C and Z. Thus ODTLES is less appropriate to investigate the tran-
sition in detail. Nevertheless an investigation of the properties of the ‘ultimate
regime’ itself seems to be a worthwhile topic for future ODTLES or aODTLES
studies.
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C O N C L U S I O N

In this work an extended LES (XLES) approach is introduced. This approach is
intended as a basis for a new class of turbulence models, tailored to describe
a (XLES specific) macrostructure of highly turbulent flows including highly
resolved 1D or 2D effects (e. g. molecular diffusion or cloud convection) in
domains of moderate complexity.

The ODTLES model is one special approach in the XLES family of models,
where the one-dimensional turbulence (ODT) model closes the XLES equations
(as a sub-grid model). Contrary to LES and RaNS, the ODT model exploits
domain specific symmetry properties and is not based on eddy viscosity or self
similarity assumptions of turbulence scales. ODT describes all turbulent scales,
including small scale effects like molecular diffusion, but ODT stand alone
requires a certain global domain symmetry. Thus the XLES filter approach can
be interpreted to rather separate physical effects than physical 3D scales (like
LES), but notwithstanding unclosed XLES (XLES-U) and ODTLES collapse to
DNS and unclosed LES within distinguished limits.

The ODTLES model can be interpreted as a compromise between LES and
ODT, which only requires local symmetry properties. This is valid for flows
in rather simple domains. In particular the XLES 3D resolution can be chosen
independent of the turbulence intensity, unless turbulent Reynolds number
changes cause a global flow structure transition, e.g. due to secondary insta-
bilities (see section 4.2.1). In principle this allows the computation of highly
turbulent flows, e. g. over a flat-plate airfoil, including the full range of phys-
ical scales, but with computational costs comparable to wall-modeled LES, or
even RaNS.

Especially in fundamental research including atmospheric flows and com-
bustion, crucial small scale effects in domains of moderate complexity fre-
quently occur. These additional physical effects, described by chemical mecha-
nisms and additional scalar fields, are well tested for ODT and can be adapted
to ODTLES. Scalar coupling terms between different XLES-grids can be formu-
lated using the XLES coupling introduced in this thesis and the XLES frame-
work is the first approach which consistently couples scalar properties as well
as velocities between XLES-grids (in previous ODTLES version only velocities
were coupled). Especially the XLES scalar coupling terms and the incorporated
reconstruction require further investigation to allow very low 3D resolutions.
Alternatively the application of the less rigorous ODTLES∗ model, which ne-
glects XLES scalar coupling terms, can be used. An alternative scalar coupling
is provided by the LEM3D model (cf. [74]).
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Especially to demonstrate the ODTLES ability to describe statistical proper-
ties occurring in geophysical flows ODTLES is applied to the Rayleigh-Bénard
flow, which uses the coupling of scalar properties represented by different
XLES-grids.

The unclosed XLES equations and its numerical representation are verified:

• By analyzing the coupled (linear) advection scheme occurring in XLES.

• By performing a convergence study: The turbulent channel flow with
Reτ = 395 is compared to DNS and LES-U. Thereby XLES-U requires
relatively low 3D resolutions (compared to LES-U) to reproduce funda-
mental flow statistics, especially in the near wall region. E.g. the laminar
sublayer is fully represented independently of the 3D resolution.

ODTLES results are demonstrated to be in good agreement with DNS and
possess predictive capabilities:

• By performing a convergence study: The turbulent channel flow with
Reτ = 395 is compared to DNS and XLES-U. Even for very low 3D reso-
lutions ODTLES represents the channel flow very well.

• ODTLES accurately describes a turbulent channel flow up to friction
Reynolds number Reτ 6 10000 with high accuracy and relatively low
computational costs, even using very coarse 3D resolutions (e.g. NLES =

16 cells per direction).

• ODTLES is able to reproduce the primary and secondary flow in a square
duct with coarse 3D resolution and considerable high bulk Reynolds
numbers ReB 6 83457.

• ODTLES (andODTLES∗) incorporate buoyancy effects and model Rayleigh-
Benárd flows realistically including large scale circulations for consider-
ably high Rayleigh numbers Ra 6 5× 1011.

These cases are important examples for fundamental, highly turbulent flows in
rather simple domains that are of interest in fundamental turbulence research,
meteorology, and other associated fields of application. Thus ODTLES and
other future XLES models are promising and highly parallelizable approaches
for fundamental and applied turbulent flows.
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O U T L O O K

The focus of this work is to introduce the mathematical framework necessary to
derive the XLES approach, which is a consistent way to incorporate ODT into
3D simulations. The present ODTLES implementation uses a simple, equidis-
tant ODT model resulting in a relative high number of grid cells (#DoFs) com-
pared to adaptive ODT.

There are several ways to improve the present ODTLES formulation.
Any improvement leading to a gain in efficiency and reduced #DoFs can be

used either to increase the reachable turbulence intensity (increasing NRSS) or
to increase the treatable complexity of the computational domain (increasing
NLES).

Suggestions by the author include:

1. Improve ODT:

a) aODT by Lignell et al. [67] outperforms the turbulence intensity
reachable by equidistant ODT, as Meiselbach [71] recently showed
in aODT simulations up to Reτ 6 6× 105, but aODT introduces ad-
ditional interpolation effects.

b) The ensemble mean closure (EMC) model further decrease the re-
quired #DoFs by introducing another layer of modeling.

2. Improve XLES-U:

a) Non-equidistant XLES-grids would distribute the necessary 3D reso-
lution more efficiently.

b) The XLES formulation in function spaces can be used to derive a
XLES formulation e. g. for unstructured grids (see appendix A.3).
This would require research especially to close the filtered equations,
since the current ODT model formulations might not be applicable.

c) Numerical improvements are possible and suggested within the cor-
responding sections. E. g. IMEX schemes might decrease numerical
inaccuracies. Several alternative advection schemes potentially out-
perform the numerical properties of the implemented CN-RK3-CDM
and CN-RK3-RK3-CDM schemes (see section 3.6.4).

3. Improve algorithm:

a) The parallelization can be significantly improved. Especially due to
the high computational time spend within the ODT advancement
and the Poisson problem solved on the 3D large scale, a potential
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high parallelization is possible, which even gets more efficient for
increasing turbulence intensities (cf. section 3.5.8).

b) From an algorithmic point of view a well-structured (object-oriented)
CFD-codes can be expanded to XLES-U with moderate coding effort
by reusing existing mesh-structures to define XLES-grids. This could
also include 3 velocity components within each XLES-grid.

It is the authors opinion that especially combining available state-of-the-art
CFD-codes (point (3.b)) with the aODT model (point (1.a)) can automatically in-
clude points (2.a), (2.c), and (3.a) with manageable effort and potentially leads
to a powerful tool in fundamental turbulent research and supplement the scope
of RaNS and LES applications by problems with essential small-scale features.

Another long term goal could be to develop an unstructured XLES model
(point (2.b)) which could supplement RaNS simulations in engineering appli-
cations.

Recently Jozefik et al. [45] present a compressible aODT model and its appli-
cation to combustion problems. This aODT model in principle allows to close a
compressible XLES framework to be developed. Especially the XLES formula-
tion within function spaces can be extended to use a DGM numerical scheme,
which is appropriate to solve compressible XLES filtered equations. In this
context the autonomous microstructure evolution (AME) model introduced by
Kerstein [52] has to be mentioned. AME solves pseudo-compressible equations
using a XLES-related framework.

The XLES filter concept can help to reduce issues within current superpa-
rameterization approaches, e. g. the CRCP approach. Therefore XLES-CRCP
involves two (or three) coupled 1D filtered grids. Thus future investigations of
superparameterizations in XLES-like formulations might improve meteorolog-
ical or climatological models or even build the basis for new models.
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a.1 xles : vector notation

We introduce an alternative to the vector notation in section 3.4 by writing the
XLES solution field in index notation. The XLES vector φ̂

i
includes the XLES

vector elements φ̂k,i represented in XLES-grids k, k = {1, 2, 3}.
In index notation the resolved small scale (RSS) terms s1l2l3, l1s2l3, and l1l2s3

can be expressed by one term: sklk⊕1ll⊕2, where {k,k⊕ 1,k⊕ 2} is a positive
permutation of {1, 2, 3} (the 1D filter operators are commutative). The operator
⊕ denotes the positive permutation:

q⊕ x = ((q+ x− 1) mod 3) + 1 (148)

for q = {1, 2, 3} and x = {1, 2} (valid in three dimensions).
The XLES resolved XLES solution fields (Eq. (61)) are written in index nota-

tion (using the operator ⊕):

φi = [l1l2l3 + s1l2l3 + l1s2l3 + l1l2s3]φi

=

l1l2l3 + 3∑
q=1

sqlq⊕1lq⊕2

φi (149)

=

 3∑
q=1

(
lqlq⊕1lq⊕2 + sqlq⊕1lq⊕2

)
− 2l1l2l3

φi.
The 3D large scale operator [l1l2l3] in the last row of Eq. (149) can be ex-

pressed in terms of [lqlq⊕1lq⊕2 + sqlq⊕1lq⊕2]:

−2l1l2l3 =−

3∑
q=1

(1− δqk)(lqlq⊕1lq⊕2)

=−

3∑
q=1

(1− δqk)((lqlq + lq − lqlq)lq⊕1lq⊕2) (150)

=−

3∑
q=1

(1− δqk)lq(lqlq⊕1lq⊕2 + (1− lq)︸ ︷︷ ︸
=sq

lq⊕1lq⊕2)

with the Dirac Delta operator defined in Eq. (107).
Here an additional arbitrary index k = {1, 2, 3} is introduced. Eq. (150) is

satisfied for k = 1, k = 2, and k = 3. This index k spans the XLES vector.
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Insertion of the 3D large scale operator (Eq. (150)) into the XLES resolved
scales (Eq. (149)) leads to:

φk,i =

 3∑
q=1

(1− (lq − lqδqk))
(
lqlq⊕1lq⊕2 + sqlq⊕1lq⊕2

)φi, k = {1, 2, 3}.

(151)

This XLES resolved solution field φk,i reproduces exactly the XLES resolved
scales in Eq. (61) including the XLES coupling Cs1Dl2D. XLES is interpreted as
approach filtering the governing equations by applying the operator
[l1l2l3 + s1l2l3 + l1s2l3 + l1l2s3] compared to [l1l2l3] in LES (cf. table 4).

a.2 xles : mass conservation : resolved small scales

Divergence-free XLES velocity fields ûdi are guaranteed, if the 3D large scale
velocity field uLESdi = [ldk]ûk,i fulfills three conditions (see section 3.4.5):

• Con.1: uLESdk,i is consistent (uLESdi = uLESdk,i )

• Con.2: uLESdi is divergence free (enforced by a 3D standard approach)

• Con.3: [ldk] is a discrete 1D box filter (defined in Eq. (32)) in xk-direction.

The XLES velocity fields ûi are divergence free as proved within one 3D
large scale cell of the size ∆xk in xk-direction (operator ⊕ is defined in Eq.
(148), superscript d skipped):

0 =

∫ ∆xk
2

−
∆xk
2

3∑
j=1

∂xj(u
LES
k,j + ǔk,j)dxk =

∫ ∆xk
2

−
∆xk
2

3∑
j=1

∂xjûk,j dxk (152)

=

∫ ∆xk
2

−
∆xk
2

∂xkûk,k dxk +
∫ ∆xk

2

−
∆xk
2

∂xk⊕1ûk,k⊕1 dxk +
∫ ∆xk

2

−
∆xk
2

∂xk⊕2ûk,k⊕2 dxk

= ûk,k

(
∆xk
2

)
− ûk,k

(
−
∆xk
2

)
+ ∂xk⊕1

∫ ∆xk
2

−
∆xk
2

ûk,k⊕1 dxk + ∂xk⊕2

∫ ∆xk
2

−
∆xk
2

ûk,k⊕2 dxk

Con.3
= uLES

k,k

(
∆xk
2

)
− uLES

k,k

(
−
∆xk
2

)
+ ∂xk⊕1u

LES
k,k⊕1 + ∂xk⊕2u

LES
k,k⊕2

=

∫ ∆xk
2

−
∆xk
2

3∑
j=1

∂xju
LES
k,j dxk

Con.1
=

∫ ∆xk
2

−
∆xk
2

3∑
j=1

∂xju
LES
j dxk

Con.2
= 0.

for each XLES-grid k = {1, 2, 3}. Here a staggered grid is used, leading to
ûdk,k

(
∆xk
2

)
= u

LESd
k,k

(
∆xk
2

)
(without additional interpolation).

This in particular means the resolved small scale (RSS) velocity fields ǔdj are
divergence free by construction.
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a.3 alternative xles interpretation : convolution function space

Variational formulations of the governing equations lead to the well-known
finite element methods and discontinuous Galerkin methods. In this section
the mathematical techniques known from variational formulations are applied
to describe different filter strategies.

Thereby the aim is to connect the idea to describe the governing equation in
a test function space (FT ) and the dynamic variables (e. g. ui) within an ansatz
function space (FA), whereby for XLES-like approaches FT and FA are related
to tensor products of 1D convolution functions similar to the ansatz in section
3.4.2.1. A rigorous derivation especially of the properties of the functional con-
volution spaces FT and FA is out of the scope of this section and only indicated.
To some extent this concept is related to LES-filtering: The decomposition e. g.
of the XLES Leonard stress (L2Dij ) includes an ansatz and a test filter. In this
case the corresponding ansatz and test spaces are one-dimensional.

This section is not required to understand the XLES and especially ODTLES
models and can be interpreted as an outlook section. Nevertheless the pre-
sented alternative interpretation of filter strategies provides a mathematical
framework that can be extended for specific requirements (e. g. unstructured
grids, cf. section A.3.3).

As an example section A.3.2 introduces the XLES-U approach for a simpli-
fied governing equations in this formulation. Thereby the focus is to reproduce
the XLES-U system of equation derived in section 3.4.

The notation in this section is related to the XLES vector notation. Slight
differences are stated explicitly.

a.3.1 General Formulation

The simplified equation (without pressure term) describes advective transport

of the velocity u =
(
u1 u2 u3

)T
in an integral form:

0 =

∫
Ω
∂tu dx +

∫
Ω
∇ · F dx (153)

with the spatial coordinates in vector notation x =
(
x1 x2 x3

)T
and the advec-

tive fluxes F = u⊗ u (⊗ is an outer product). In this section a standard vector
notation for coordinates and variables (bold fonts) is used additionally to the
variational vector formulation (indicated by an underbar).
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Similar to the variational formulations, the variables u and F are approxi-
mated using an ansatz function, e. g. :

u(x, t) ≈
A∑
l=1

Ψl(x)ul(t) = ΨT (x)uA(t) with uA =
(

u1 ... uA
)T

, (154)

F(x, t) ≈
A∑
l=1

Ψl(x)Fl(t) = ΨT (x)FA(t) (155)

where a A-dimensional ansatz function space (FA) and a T -dimensional test
function space (FT ) are used. Here uA and FA are vectors of coefficient corre-
sponding to the filtered fields for a XLES-like approach.

The governing equation (153) is multiplied by the test functions ϕ within a
T -dimensional test function space leading to

0 =

∫
Ω
ϕ∂tΨ

TuA +

3∑
j=1

ϕ∇ ·ΨTFA. (156)

Note that the size of the test function space not necessarily equals the size of
the ansatz function space.

So far this formulation corresponds to a standard variational formulation. If
the test function space equals the ansatz function space the resulting scheme is
called a Galerkin scheme.

a.3.2 XLES-U Interpretation

The scope of this section is to introduce an unclosed XLES equivalent approach
using the idea of functional convolution spaces.

For test functions that are stationary we can state:

0 =

∫
Ω
∂tϕΨ

TuA dx +

∫
Ω
ϕ∇ΨTFA dx. (157)

In standard variational formulations ϕ∇ is expressed in a weak sense, where
the derivative of the test functions is used. For a XLES-like formulation the
nabla-operator interchanges with ϕ, because the partial derivatives are still
well defined within each XLES-grid corresponding to the each test function (cf.
Eq. (159)).

To follow an XLES-U like approach we use the ansatz

ΨT =
(
l1l2l3 s1l2l3 l1s2l3 l1l2s3

)
(158)

with the 1D filter operator in xk-direction [lk] (cf. to the XLES resolved scales
in table 4). This ansatz contains all scales which are represented by XLES.
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The XLES-U ansatz (158) neglects the XLES unresolved terms [l1s2s3+ s1l2s3+

s1s2l3 + s1s2s3], which are not further considered here.
The test function leading to an XLES formulation is

ϕ =

l2l3l1l3

l1l2

 . (159)

This choice automatically allows a discrete representation of the governing
equation (157) within the XLES-grids illustrated in figures 4b–4d.

Note that only the XLES-U equation is derived and numerical approximation
errors are not investigated. Additionally the filter operators themselves do not
allow a statement e. g. about the effective implicit filter length.

The ansatz and test function spaces are connected due to a FT -FA-transform-
ation matrix V :

Ψ = VT ϕ (160)

with

V =

l1/3 1 − l1 0 0

l2/3 0 1 − l2 0

l3/3 0 0 1 − l3

 . (161)

This transformation matrix takes the role of the so called Vandermonde matrix
in certain variational formulations but is not unique for the XLES-U formula-
tion. An alternative transformation matrix is e. g. :

V ′ =

l1 1 − l1 0 0

0 0 1 − l2 0

0 0 0 1 − l3

 (162)

and leads to an identical behavior (inserted in Eq. (160)). This reflects the 3D
large scale consistency condition l1(l2l3) = l2(l1l3) = l3(l1l2) = 1

3(l1(l2l3) +

l2(l1l3) + l3(l1l2)).
Using the transformation matrix V we can further investigate the governing

equation (157):

• to compute the linear term ∂tϕΨ
TuAi the mass matrix equivalent ϕΨT

has to be investigated. By assuming e. g. a spectral filter we can use
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l2k = lk, k = {1, 2, 3} in the linear term (in standard LES only one filter
application is required for linear terms) leading to:

ϕΨT = ϕϕTV

l1l2l3 l2l3 − l1l2l3 0 0

l1l2l3 0 l1l3 − l1l2l3 0

l1l2l3 0 0 l1l2 − l1l2l3


(163)

The resulting velocity scales are discretely represented by the XLES-grids
and the 3D large scale grid illustrated in figure 4.

• the non-linear terms ∇ϕΨTFAij require a representation of the advective
fluxes within the XLES-grids (cf. figures 4b–4d) corresponding to the test
function space (FT ).

The advective flux can be interpreted using Eq. (160):

∇ϕ (VT ϕ)TFA = ∇ϕϕTV FA, (164)

where the matrix ϕϕTV has to be interpreted. To derive an XLES frame-
work similar to section 3.4, we also have to identify e. g. the L2Dij (L2D,
which is the matrix form of L2Dij ) in this variational-like ansatz: the XLES
Leonard stress can be interpreted by rearranging the test function:

ϕV FA = (1 +ϕ− 1)V FA =
(
(ϕ−1) ∗ϕ+ϕ− 1

)
V FA (165)

where L2D = (ϕ− 1)ϕTV FA, the element-wise Hademard multiplication

(∗), and ϕ−1 =
(
l−12 l

−1
3 l−11 l

−1
3 l−11 l

−1
2

)T
.

The resulting advection terms are

∂xjϕϕ
TV FA = ∂xj(ϕ

−1 ∗ϕ)ϕTV FA + L2D. (166)

Note that both the XLES Leonard stresses and the resulting advective
fluxes ((ϕ−1) ∗ϕϕTV FA) are defined within the test function space.

The full convolution matrix within the non-linear XLES terms is

(ϕ−1 ∗ϕ)ϕTV =

l2l3 l2l3 − l1l2l3 l1l3 − l1l2l3 l1l2 − l1l2l3

l1l3 l2l3 − l1l2l3 l1l3 − l1l2l3 l1l2 − l1l2l3

l1l2 l2l3 − l1l2l3 l1l3 − l1l2l3 l1l2 − l1l2l3

 .

(167)
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Following arguments in section 3.4.2.2 the matrix

(l† ∗ 1)ϕTV = ϕ (ϕ−1 ∗ϕ)TV (168)

=

l2l3 l2l3 − l1l2l3 l2l
−1
1 (l1l3 − l1l2l3) l3l

−1
1 (l1l2 − l1l2l3)

l1l3 l1l
−1
2 (l2l3 − l1l2l3) l1l3 − l1l2l3 l3l

−1
2 (l1l2 − l1l2l3)

l1l2 l1l
−1
3 (l2l3 − l1l2l3) l2l

−1
3 (l1l3 − l1l2l3) l1l2 − l1l2l3


can be numerically interpreted within the test function space which cor-

responds to the XLES-grids.

Eq. (168) shows an alternative argumentation to introduce l†: Instead of
(l† ∗1) the XLES Leonard stress can be build using the transposed (l† ∗1)T

within the convolution matrix ϕϕTV , which leads to the required form
(168). This can be interpreted as a modified XLES Leonard stress L2D =

ϕ(ϕ− 1))TV FA which is rather based on the ansatz-filter than the test-
filter.

The advective flux F = u⊗u is linearized in section 3.4.2.2. In the variational-
like formulation this means that the full matrix in Eq. (168) is applied to
both the advecting velocities and the advected velocities. Thereby terms
of the form [l1l2]u⊗ [l2l3]u are neglected (cf. Eq. (76)).

Note within Eq. (168) the submatrix l2l3 − l1l2l3 l2l
−1
1 (l1l3 − l1l2l3) l3l

−1
1 (l1l2 − l1l2l3)

l1l
−1
2 (l2l3 − l1l2l3) l1l3 − l1l2l3 l3l

−1
2 (l1l2 − l1l2l3)

l1l
−1
3 (l2l3 − l1l2l3) l2l

−1
3 (l1l3 − l1l2l3) l1l2 − l1l2l3


(169)

applied to FT (∈ FT ) equals the XLES-U coupling l† ∗ C (ûj ∗ ûi − uLES
j ∗

uLES
i ) as described in section 3.4.2.2.

In summary we can state that the ansatz and test functions in Eqs. (158 and
159) can be used to derive the XLES-U equations if the same approximations
as in section 3.4.2.2 are used.

The XLES-U equation can also be derived for a Galerkin equivalent ansatz

function space by using ϕ = Ψ =

l2l3l1l3

l1l2

 which is not shown in detail here.

a.3.3 Towards Unstructured XLES

In XLES-U the test functions are local (in the XLES example box filters), so Eq.
(157) is valid for each individual computational 3D grid cell (Ωn) (correspond-
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ing to the 3D large scale grid cell in figure 4a). The same concept is also used
in discontinuous Galerkin methods.

For an unstructured grid, the ‘filter separation’ can be performed on a cubic
reference cell, even if each cell in the physical space is e. g. a tetrahedron. The
transformation between the physical coordinates (e. g. tetrahedrons) defined

by the coordinates x =
(
x1 x2 x3

)T
into the cubic reference cell with a =(

a1 a2 a3

)T
can be described by a spatial transformation matrix T such that

x = Ta. (170)

The specific appearance of T depends on the unstructured discretization in
the physical space and is not further investigated here. For several choices, e. g.
tetrahedrons, the transformation matrices are known and routinely applied in
DGM (cf. [39]).

The corresponding Jacobi matrix J in 3D is defined by

J =

∂a1x1 ∂a2x1 ∂a3x1

∂a1x2 ∂a2x2 ∂a3x2

∂a1x3 ∂a2x3 ∂a3x3

 (171)

and fulfills dx = J da.
Thus the ∇-operator in physical space is:

∇x = (J)−1∇a =
1

det (J)
T∇a. (172)

In the integral formulation of Eq. (157) for one individual computational 3D
grid cell (Ωn) we find

0 =

∫
Ωn

ϕ∂tu dx +

∫
Ωn

ϕ∇Tx F dx

=

∫
Ωn

ϕ∂tu det (J)da +

∫
Ωn

ϕ

(
(T∇a)

T

det (J)

)
F det (J)da (173)

=

∫
Ωn

ϕ∂tu det (J)da +

∫
Ωn

ϕ∇Ta F(a)da,

where the dynamic variables u can be interpreted in both coordinate systems,
e. g. :

u ≈ ΨT (x)uA(x) = ΨT (a)uA(a). (174)

and the advective flux is

TTF = F(a) ≈ ΨT (a)FA(a) (175)
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Thus all computations are possible within the reference cell. For XLES-like
approaches this means the filter operations (including the ansatz functions
ΨT (a)) are defined in this reference cell. E. g. for a tetrahedral physical cell, the
Jacobi determinant only depends on the physical cell volume.

This concept is a basis for a possible unstructured XLES formulation. In
principle similar transformations can be defined for the XLES formulation in
section 3.4. Details are in the scope of future investigations. Its uncertain if ODT
can perform reasonably within a system of reference cells or if other models
can close the unstructured XLES equations.

a.3.4 Further Potentially Related Approaches

In section A.3.2 the 2D filtered XLES-U apprach is briefly investigated in a
variational-like formulation. In principle all XLES-related filter approaches, e. g.
as summarized in table 4, can be interpreted within this variational-like formu-
lation. The corresponding ansatz and test functions are shown in table 11.

The standard discontinuous Galerkin method uses basis functions φ in the
variational formulation. Hesthaven and Warburton [39] summarized possible
choices for φ. A possible concept is to connect the convolution ansatz and test
functions and the DGM basis functions as orthogonal subspaces within higher-
level ansatz and test function spaces. In this way the XLES filter concept and
the variational DGM-formulation do not interfere. At the end each XLES-grid
is discretized using a DGM formulation.

For further theoretical and applied investigations of the XLES-vector space
or related spaces defined by ‘filter separations’, especially its relation to func-
tional spaces, it might be useful to take further advantage of the techniques de-
veloped for FEM and DGM. At this stage the XLES-vector space is interpreted
more as a modeling concept than a mathematical product space. Nevertheless
we hope that a variational-like filter formulation might help as a starting point
to investigate the properties and applications of XLES-related models (e. g. in
table 11) in future studies.
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Table 11: Suggested test functions (ϕ) and ansatz functions (Ψ) lead to different po-
tential XLES-related model approaches. The unresolved terms S have to be
modeled, e. g. by ODT (in ODTLES) or an eddy viscosity model (in LES).
For unstructured XLES, ϕ and Ψ are defined within reference 3D cells with
known transformation rules (cf. section A.3.3). The functions φ refer to a
possible DGM basis function system. Thus for DG-XLES-U the full function
space can be defined using orthogonal subspaces for the XLES-filtering and
the DGM basis functions.

Model ϕ Ψ

XLES-U (l2l3, l1l3, l2l3)T (l1l2l3, s1l2l3, l1s2l3, l1l2s3)T

XLES (l2l3, l1l3, l2l3)T (l1l2l3, s1l2l3, l1s2l3, l1l2s3, S)T

DG-XLES-U φ× (l2l3, l1l3, l2l3)T φ× (l1l2l3, s1l2l3, l1s2l3, l1l2s3)T

unstructured XLES (l2l3, l1l3, l2l3)T (l1l2l3, s1l2l3, l1s2l3, l1l2s3, S)T

LES-U (l1l2l3) (l1l2l3)

LES (l1l2l3) (l1l2l3, S)T

DNS 1 1

DG-DNS φ φ
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