A Comparative Study of
Two-Photon-Photoemission
Sources

In this appendix we will discuss the perspectives for two-photon photoemission
experiments using laser and synchrotron radiation in a pump-probe experimental
setup. Formulas for the excitation probability and the total photoemission signal as
well as the expected 1-photon background are derived and several conditions and
setups are discussed.

A.1 Excitation Probabilities

Firstly, formulas for the excitation probabilities as a function of the number of
photons per laser pulse, as well as the reflectivity of the surface, the absorption length
and the focus diameter, will be derived. Secondly, several experimental conditions,
including laser-laser experiments as well as laser-SR experiments for several laser
systems and SR repetition rates, will be compared.

Assuming an amplified laser system with approximatively 1 W power at the funda-
mental wavelength of 800 nm with a repetition rate of 200 KHz (Seedlaser+Coherent
RegA) the number of photons per pulse is about 2 - 10! at the fundamental and
with a conversion efficiency of 50% about 5 - 10'? at the 2nd harmonic. For further
use, we note that with a typical conversion efficiency of less than 10% we may obtain
5 - 10'* photons per pulse in the 3rd harmonic.

These laser photons will now be focussed on a surface area Ay given by the laser
focus lgpeus as Agt = 12... = (0.1 mm)?, which corresponds to 6 - 10'% unit cells in the
case of silicon with a unit cell length [, of 4 A . The number of photons per surface
unit cell ny. is then given as:

e
Z?OCUS

Nye = Npu - (A.1)

where Ny, is the number of pump photons per pulse. For the outlined above
experimental parameters we obtain:

(4-107192 L6 102 photons
(100 -10-6)2 surface unit cell

Nye = 1013 (A.2)
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These photons are either reflected by the surface or absorbed by the solid-state
sample. Introducing the reflectivity R and the absorption length [, the absorption
will be equivalent to the excitation probability Pe.:

luc luc l2 VllC
Poe=(1-R)7— nye=1-R):7—5— Npu=(1-R) - “Npu.  (A3)
labs labs lfocus Vabs

where V. and Vs are the volumes of the unit cell and the absorption region, re-
spectively. For R = 90%, las = 1 um, lye = 4 A, Loews = 100 pm and N, = 103 an
excitation probability of 0.6% has been obtained. Assuming that no further compli-
cations due to selection rules or short life times aggravate the experiment, excitation
of this order of magnitude should be visible in a photoemission experiment.

Typical count rates are about 1000 counts/s for filled states under single bunch
conditions (with the laser on every 6’th single bunch pulse and using gating elec-
tronics for the suppression of the unpumped signal). Therefore one would expect a
countrate about 6 count/s for excited states.

A.2 Background Signal

Another aspect is the problem of the background signal. Background occurs from
several sources: Dark counts from the channeltrons, higher harmonics of the synchrotron
radiation and the finite energy resolution of the electron analyzer. Dark counts are
typically less than 0.1/s and the 2nd harmonic signal from the synchrotron can be
suppressed by, e.g, an aluminium filter (and setting the SR photon energy shortly
below the Magnesium absorption edge at 35 eV) to less than 10~* of the signal of the
filled states in the valence band. The analyzer is operated typically at a resolution of
200 meV (10 eV pass energy and 5 mm slits). This means that the signal above the
Fermi level is suppressed by approximatively exp (—(AFEgr/AE4)?), where AEyy
is the homo-lumo energy difference and AFE, is the electron analyzer resolution. At
AFEy; = 0.5 eV this factor is e 620 ~ 2.1072 at AEy;, =1 eV this factor is 1071,
This illustrates, that the energy spread of the analyzer is an important source of
one-photon background as long as the excited state is close to the Fermi edge.

For the approximation in table [A.1] the following formula for the background
count rate ry, has been used:

Thg = €+ RNy - 1077 (A.4)

where, R, is the repetition rate and Ny, is the number of photons of the probe
pulses. The factor 10~ describes the ratio between the signal from a filled state to
the background above the Fermi level. The constant ¢ reflects the photoemission
efficiency as well as the analyzer transmission. To estimate this constant, we compare
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the filled state photoemission-count-rate 7. for conditions we have in single-bunch
mode with the analyzer electronics gated with 208 KHz. There N, = 10°, 1, is
typically 1000 counts/s and therefore:

Tpe Tpe 1000

= = =5-107" A5
T'photon Nerpr 106 - 208 - 103 ( )

C =

This constant can be thought of as the overall photon efficiency of the photoemis-
sion experiment including the electron analyzer.

A.3 Two-Photon Signal

The formula for the two-photon photoemission signal are easy derived:
ToPPE = C - Pexc ' RpuNpr 5 (A6)

which is just the excitation probability times the signal from a filled state. 2, is the
repetition rate of the laser pump-pulses. In this formula we assumed, that R, < R,
and every pump pulse matches one probe pulse.This is true for the RegA system,
where the laser pulses match every 6th single bunch but not for the Ti:Sa oscillator
running at 83 MHz in single bunch, where only every 200th pump pulse matches
one probe pulse. Collecting terms, the most important parametric dependencies are
(from the point of view of the experimental design):

NpuNpr

TopPE X Rpu : 2
focus

(A7)

This formula explicitly shows the linear dependence of the two-photon signal on
the pump as well as the probe intensity. Laser-laser experiments for example reach
much higher probe intensities than a SR-based experiment. Additionally, 1-photon
background can be completely suppressed by choosing the probe photon energy be-
low the work function of the sample. Assuming that the average power is conserved
in an amplified laser system, it has to be noted on passing, that the 2PPE-signal
is inversely proportional to the repetition rate, because Ny, and Ny, are each pro-
portional to R;ul. This is not true for the laser-SR experiment, because there the
probe intensity can not be increased above the single bunch value of 1.25 MHz.
Further amplification for example by the RegA system will lead to higher excitation
probabilities, but the total two-photon signal will not increase. Only the one-photon
background can be reduced.

A.4 Comparison of Different Setups

In table we compare several experiments. Two laser-laser setups are considered,
an unamplified system with 75 MHz repetition rate and an amplified system with
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Setup Npu Npr lfocus/m Pexc 7'2PPE/S_1 Tbg/s_l

Ir-Ir, unamp. 10" [ 10° [ 5-107° | 2.5-1071 10° 0

Ir-Ir, amp. 103 |10 [ 5.107° | 2.5-1072 3-10° 0
Ti:Sa @ U125-SGM, SB 2.10° | 106 102 [13-108| 3-107° 0.62
Vanadat @ U125-SGM 102 | 108 1073 [64-106]| 4.1072 0.62
Vanadat @ U125-PGM 102 | 10° 107 |64-107* 4 0.62
RegA @ U125-PGM,not gated | 10 | 10° 107 [6.4-1073 6.6 0.62
RegA @ U125-PGM, gated 108 | 105 [ 107* [6.4-1073 6.6 0.10
Ti:Sa @ U125-PGM, MB 10 | 10? 107* [6.4-107° 1.0 12.5

Table A.1: Comparison of several experimental conditions for 2PPE experiments.

250 KHz repetition rate, respectively. The focus in both cases is assumed to be
50um. The laser-SR setups include the Vanadat laser with 1.25 MHz repetition rate
in single bunch under the old conditions at the U125-SGM (1 mm Focus) and the
actually conditions at U125 PGM beamline (0.1 mm focus). The numbers for a
cavity dumped Ti:Sa with 1.25 MHz repetition rate and 80 pJ pulse power would
of course be very similar. Additionally the RegA system with 208 KHz repetition
rate with and without gated analyzer electronics as well as an unamplified Ti:Sa
oscillator synchronized to every 6th bunch in multi bunch (R,, = 63 MHz, R, =
500 MHz) are taken into account. The estimated photon numbers per pulse (N, and
N,;) and focus diameters are found in the table as well as the calculated excitation
probabilities, the two-photon signals reppr, and the background rp,. All excitation
probabilities are calculated for a 4 A unit cell, a surface reflectivity of 90% and an
absorption length of 1 um using the Equations [A.3] [A.4] and [A.6]

A.5 Conclusion

Several aspects can be discussed after this comparison. One of the main motivations
was the question, why laser-laser experiments are so successful. The reason is,
as seen in the table that even so these experiments also work with low excitation
probabilities, they get much more two-photon signal simply due to the several orders
of magnitude higher number of probe photons. Additionally, their advantage is the
complete absence of one-photon background. The price they pay for this is certainly
the very small accessible binding energy and momentum range.

Another aspect for the design of laser-SR experiments is, that further amplification
of the laser for the price of lower repetition rate will not increase the 2PPE-signal,
even so gating electronics can reduce the background and therefore increase the
signal to noise ratio. Without gating the Coherent RegA system has almost no
advantage in comparison to the Vanadat or a comparable cavity dumped Ti:Sa
system running at 1.25 MHz. The higher excitation density is compensated by the
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lower repetition rate. Even an unamplified Ti:Sa oscillator would deliver comparable
two-photon signal in multi-bunch mode, but the expected one-photon background
would make experiments difficult. In this case gating out the right probes pulses
is not so easy and the multi-probe setup has other disadvantages to be discussed
elsewhere.

Nevertheless, the calculations show that with the RegA system in single bunch we
should have a fair chance to see a few counts of two-photon signal on almost zero
background. The condition for this is a stable laser system, an adjustable focus of less
than 0.1 mm and last but not least a system with appropriate absorption parameters
and lifetimes. For the assumed absorption length of 1 um and reflectivity of 90%
we expect an inversion of about 1%. Higher absorption and the absence of surface
reflectivity might increase this number.
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B RKKY-Interaction

The RKKY-interaction stands for Ruderman-Kittel-Kasuya-Yosida and plays a role
in the magnetic spin ordering of gadolinium, with its strong localized magnetic
moment of the 4f ion cores and the lack of angular momentum (S=7/2, L=0), clas-
sifying gadolinium as a Heisenberg ferromagnet. The exchange interaction between
electrons can be expressed by the Heisenberg operator.

H==Y J(Ry)S; S (B.1)

where J is the exchange integral related to the overlap of the charge distribution of
the localized atoms. The minus sign favors the parallel (ferromagnetic) orientation.
The localized 4f electrons (which form the permanent magnetic moments) cannot
interact via direct exchange coupling due to the extremely small overlap between
the wave functions of the 4f electrons. The 4f electrons can more effectively interact
via indirect exchange coupling through the valence band polarizing the electrons in
valence band. This is the RKKY-interaction. Mathematically, the coupling from the
delocalized s-electrons (spin ¢;) with the f-electrons (spin S;) at the same position
j is described by the s-f model (Kondo-lattice model):

ﬁ:_JZSj'Uj (B2)

J

The induced exchange splitting of the (5d'6s?) valence-band states is proportional
to the 4f magnetization. H collapses for temperature reaching the Curie tempera-
ture. A complete calculation of the dependence of the gadolinium-band structure
on temperature was done by Rex et al. [Rex99).

B.1 Conservation Rules
The hamiltonian has to conserve the total angular moment of the system:
J=L.+S.+L,+L, (B.3)

where L is the angular momentum of the electrons, S, is the spin-angular moment
of the electrons, Ly, is the angular momentum of the phonons and L., is the angular
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momentum of the photons. The conservation of angular momentum is one of the
mysteries of instantaneous laser-induced demagnetization. The spin and orbital
moment of the electronic system are related to its magnetic moment. The total
magnetic moment p is:

p = pp(Le + gSe) (B.4)

with the Landé g-factor (¢ = 2). Since the total Hamiltonian of the system conserves
the total angular momentum, a change in magnetization can only be achieved by
exchange among the four contributions on the right-hand side of Equation [B.3] A
classical experiment by de Haas and Einstein in 1913 [Einl5] demonstrated that
the induced magnetization will be compensated by a rotation of the body, i.e., an
exchange occurs between S and L,. Moreover, spin-orbit (SO) coupling is necessary.
Without its presence there is no spin-lattice relaxation that converges the precessing
motion of the electron spins towards a net magnetization parallel to the applied
field. Deducing from this experiment, a transfer of the spin of the electronic system
after laser illumination to the lattice angular moment would allow to explain fast
demagnetization conserving the total angular momentum J [Koo03].
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