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Summary

This thesis studies the synthesis of carbon nanotubes and properties of monochiral

carbon nanotube bundles. The synthesis is studied with a focus on chiral selectivity

for which a simplistic growth model based on geometric arguments is developed,

which is based on preliminary work performed in the diploma thesis of the author,

see Reference [1]. We performed density functional theory calculations of carbon

nanotube cap structures on nickel, iron and nickel-iron alloy catalyst clusters to

obtain input parameters for our growth model. The adhesion and excess energies

between nanotube caps and catalyst particles vary in a wide range between dif-

ferent chiralities and catalyst compositions; In contrast to earlier calculations on

flat surfaces we do not find evidence for a preference of certain chiralities. How-

ever, a higher charge transfer to armchair caps than to zigzag caps and increasing

charge transfer with higher iron content in the catalyst particle is observed, which

induces an electric dipole moment. This points to a higher reactivity of armchair

edges and a faster growth rate on iron compared to nickel. Our growth model leads

to chirality dependent growth rates during the growth phase/elongation process of

the nanotubes that depends on the catalyst composition, which has recently been

experimentally confirmed. [2, 3] The number of carbon edge atoms decreases from

armchair to zigzag edges, which serves as a simple geometric argument for a lower

growth rate of low chiral angle (zigzag) tubes, as the number of carbon atoms that

can add at the edge is reduced compared to higher chiral angle (e.g. armchair)

tubes. The study on the nanotube bundles focuses on the bundling and debundling

process of carbon nanotubes and the electronic properties of the bundles, especially

the dependence on the intertube orientation is considered. We find that nanotubes

that share symmetry operations (e.g. a S6 screw-rotation axis) of the bundle show a

dependence of the electronic structure, the binding energy and the intertube distance

on the orientation of the tubes inside of the bundle. The orientation dependence al-

lows to adjust the properties of the tubes and leads to a rich electronic behavior, e.g.

switching between semi-metallic and metallic character. Tubes that do not share

symmetry elements do not show a dependence of their properties on the intertube

orientation. In conclusion we were able to show, that carbon nanotubes have a chi-

rality dependent growth rate, which together with post processing methods allows

to produce monochiral bundles with fascinating properties.



Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit der Herstellung von Kohlenstoffnanoröhren

und den Eigenschaften von monochiralen Bündeln. Der Fokus bei der Untersuchung

des Wachstumprozesses liegt auf der Produktion von chiral-selektierten Kohlen-

stoffnanoröhren, wobei ein einfaches geometrisches Wachstumsmodell basierend auf

den Vorarbeiten in der Diplomarbeit des Autors, siehe Referenz [1], entwickelt

wird. Systeme aus Kohlenstoffkappen und katalytischen Partikeln aus Metallen

wurden mit Hilfe der Dichte-Funktional-Theorie berechnet, um Parameter für das

Wachstumsmodell zu bestimmen. Die Adhäsions- und Überschussenergien zwi-

schen Kappen und Partikeln zeigen eine große Varianz in Abhängigkeit der Chi-

ralität der Kappen und Komposition der Partikel. Im Gegensatz zu früheren Stu-

dien auf flachen Oberflächen, finden wir keinen Hinweis auf die Bevorzugung be-

stimmter Chiralitäten. Stattdessen finden wir einen höheren Ladungstransfer zu

Armchair-Kappen als zu Zigzag-Kappen, der auch mit höherem Eisenanteil im Par-

tikel ansteigt und dadurch ein elektrisches Dipolmoment induziert. Dies weist auf

eine höhere Reaktivität der Armchair-Enden und eine schnellere Wachstumsrate

auf Eisen im Vergleich zu Nickel hin. Unser Wachstumsmodell liefert eine chirali-

täts- und katalysatorzusammensetzungsabhängige Wachstumsrate, welche kürzlich

experimentell beobachtet wurde. [2, 3] Die Anzahl an Kohlenstoffatomen am Ende

der Röhre sinkt von hohen chiralen Winkeln (armchair) zu tiefen chiralen Winkeln

(zigzag). Dies liefert ein geometrisches Argument für eine schnellere Wachstums-

rate an Röhren mit hohen chiralen Winkeln, da für diese mehr Atome pro Zeit

hinzugefügt werden können. Der Fokus bei der Untersuchung der Bündel liegt auf

dem Bündelungs- und Entbündelungsprozess sowie auf den elektronischen Eigen-

schaften der Bündel. Speziell wurden die Eigenschaften in Abhängigkeit der Orien-

tierung der Röhren im Bündel zueinander untersucht. Nanoröhren, die Symme-

trieoperationen mit dem Bündel teilen, zeigen eine Orientierungsabhängigkeit der

Bindungsenergie, des Röhrenabstandes sowie der elektronischen Struktur. Eine

Änderung der Orientierung der Röhren erlaubt es z.B. zwischen metallischem und

semi-metallischem Charakter zu wechseln. Röhren, die keine Symmetrieoperationen

mit dem Bündel teilen, zeigen keine Orientierungsabhängigkeit der Eigenschaften.





List of Publications

1. Heiko Dumlich Growth of Carbon Nanotubes on Catalytic Metal Particles,

Diploma Thesis (FU Berlin, Berlin, 2009) (unveröffentlicht)
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Stillstand

Ernest und sein Zwillingsbruder William konnten sich nicht leiden. Ihren qwirligen

Freund Hermann Ludwig Ferdinand jedoch versuchten sie immer um sich zu haben.

Einerseits versuchten die Zwillingsbrüder so weit voneinander entfernt zu bleiben,

wie sie konnten. Andererseits wollten sie dennoch möglichst nah bei Hermann Lud-

wig Ferdinand sein. Man konnte gar von einer Anziehung zwischen Hermann Ludwig

Ferdinand und ihnen sprechen. Zwischen den Zwillingen hingegen konnte man guten

Gewissens von einer Abstoßung sprechen. Zum Glück war William momentan nicht

zu sehen und Ernest konnte sich ganz allein mit Hermann Ludwig Ferdinand aus-

tauschen. Im Gegensatz zu Ernest, der wie ein Berg in der Landschaft stand und

sich durch fast nichts in Bewegung setzen ließ, war Hermann wie ein Bach, ständig

in Bewegung. Hermann Ludwig Ferdinand drehte einmal mehr in seinem leicht

vertrakten Muster seine Runden, während Ernest sich nur dann bewegte, wenn er

gezwungen wurde, da er viel schwermütiger als Hermann Ludwig Ferdinand war.

Man hätte es eigentlich nicht erwartet, aber Ernest war dennoch viel dünner als

Hermann. Es passierte nichts, Ernest langweilte sich fast ein wenig, als er William

in der Ferne erspähte.



1 Introduction

This dissertation studies the growth and separation of carbon nanotubes to enrich

nanotubes of certain properties. Carbon nanotubes are a synthetic carbon material

which has been recently discovered considering the timescale of human technological

development. [4] While other natural carbon allotropes, like graphite and diamond

were known and used for thousands of years, [5, 6] multi-walled carbon nanotubes

have been first observed as late as 1991, [4] even though claims of a first production

reach back to the 1950s. [7] The technology to produce fullerenes, another carbon

allotrope, was discovered a few years earlier (1985) [8] and served as an unexpected

starting point to manufacture nanotubes. [4] Both fullerenes and nanotubes were

later found to occur in nature. [9–15] Fullerenes naturally occur in certain carbon-

rich rocks and outer space. [9–12] Nanotubes were found to be accidently produced

in flames of, e.g., natural gas or methane, [13–15] and could already be verified in

10,000 year old ice cores. [14]

This study focuses on single-walled carbon nanotubes, which were first produced

in 1993, [16, 17] only two years after the discovery of multi-walled carbon nan-

otubes. [4] Single-walled carbon nanotubes are hollow cylindrical tubes with carbon

atoms on their surface. [4, 18] Their diameter to length ratios of down to 10−8

make them quasi one dimensional. [1, 18] The one dimensionality and the variety

of carbon atom arrangements on the surface of the tubes, called chirality, generate

individualised material properties that are interesting for fundamental studies in

physics. [18–21] At the same time these properties render them interesting for appli-

cations and fueled initial hopes that carbon nanotubes might be used as a superior

material, superseding common materials in almost every imaginable field. [22, 23]

After more then twenty years of research the hopes for carbon nanotubes are still

high, but even though many possible applications had been proposed, the majority of

them could not be turned into commercial applications yet. [22–30] One of the prob-
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Chapter 1. Introduction

lems in carbon nanotube production is that many carbon allotropes are produced in

similar processes, [31, 32] which made technological advancement necessary to allow

for production of high purity single-walled carbon nanotube ensembles. [33] Even

though the technology in the production of selected single-walled carbon nanotubes

made significant progress, [2, 3, 34–41] the major unresolved problem nowaday still

remains to produce nanotubes in a way to use them in devices, with properties

optimised for their use. [23] Therefore nanotubes need to be produced with a spe-

cific chirality, as even high-purity single-walled carbon nanotube growth processes

tend to grow nanotubes of various chiralities. [42] This dissertation focuses on a

theoretical understanding of methods to produce nanotubes with a specific chiral-

ity, either directly by growth, see Chapter 2 and References [43–45] or through the

methodic selection of carbon nanotubes after the growth process by exploitation

of their properties, see Chapter 3 and References [46–48] It also offers a future

perspective on monochiral bundles and their properties, which might lead to new

applications. [46, 47]

The introduction of this dissertation presents the basic knowledge about car-

bon nanotubes and the methods - based on electronic strucure theory - applied

to understand them, their properties, their growth process, and their separation

process. To understand the properties of carbon nanotubes it is instrumental to

understand the properties of the basic units they are made of. [18, 49] The smallest

unit is a single carbon atom which forms hexagonal units on the tube wall. [4, 18]

In a two-dimensional arrangement the hexagonal carbon units form a sheet called

graphene. [50] As a tube can be regarded as a rolled up graphene sheet, most of

the properties derived for graphene can be used as a starting point to derive the

properties of carbon nanotubes (graphene sheet model). [18–20, 49]

12



Chapter 1. Introduction

1.1 Carbon Nanotubes

The first chapter of the introduction is focused on carbon nanotubes and their prop-

erties. In the first section 1 the basic properties of carbon and carbon nanotubes are

presented. The second section focuses on the structure of carbon nanotubes derived

from the graphene sheet model and introduces the chirality of carbon nanotubes.

In the third section carbon nanotube bundles and their properties are discussed.

The last section of the carbon nanotubes chapter finishes with an introduction of

the growth process of nanotubes with a focus on chemical vapor deposition and a

review on ideas for chirality selective growth.

1.1.1 Basics

Carbon nanotubes are made of carbon atoms arranged in a cylindrical tube, see

Figure 1.1 a). [18] Elementary carbon is a non-metal with six electrons, six protons

and the most common isotope 12
6 C has six neutrons. [51] It tends to form chains

with other carbon atoms, [51] assembling into mats of carbon, e.g., graphene [50] or

under the correct conditions [4] and with the help of template particles it can even

assemble into carbon nanotubes. [52, 53] The ground state electron configuration of

carbon is 1s2 2s2 2p2, with 4 valence electrons. [51] Carbon is the material which

forms the highest variety of structures. [51] To illustrate the ability of carbon to

produce various structures of significantly different properties, we present the prop-

erties of the natural allotropes graphite and diamond in detail. [51] Diamond is one

of the hardest known materials as the atoms in diamond form sp3-hybridized bonds

([↑]s[↑ | ↑ | ↑]p → [↑ | ↑ | ↑ | ↑]sp3), leading to a structure where every carbon atom

is surrounded by four other carbon atoms, the diamond structure. [51] The carbon-

carbon distance in diamond is d = 1.54 Å, [51] it is insulating with a bandgap of

5.47 eV and therefore transparent for light. [54] The properties of graphite are com-

pletely different compared to the properties of diamond. [51] Graphite is used as a

lubricant, while diamond is used to cut other materials. [51] The lubricity of graphite

results from its layered structure, especially structural lubricity/superlubricity oc-

curs for incommensurate graphite layers. [51, 55, 56] The individual carbon layers

1The section is partly based on Section 4.7 of the book ”Anorganische Chemie” of Riedel, see
Reference [51] pages 505 ff. and Section I.1.1 of the diploma thesis of the author, see Refer-
ence [1].
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Chapter 1. Introduction

a)

b) c) d)

Figure 1.1: Ball and stick models of carbon nanotube and fullerene structures gen-
erated with Avogadro. [57] a) A carbon nanotube ending in a cap. b)
A Buckminsterfullerene/fullerene composed of 60 carbon atoms with a
soccer ball like structure. [8] c) One of many possible carbon nanotube
caps derived from the C60 fullerene. d) A closer view on the end of the
nanotube, showing that it ends in the cap derived from the C60 fullerene.

of graphite bind through van der Waals interaction. [51] The in-plane σ bonds are

covalently formed by sp2 hybridisation ([↑]s[↑ | ↑ | ↑]p → [↑ | ↑ | ↑]sp2[↑]p). [51] The
distance between the carbon atoms in a graphite layer is smaller than the distance

of carbon atoms in the diamond structure with only d = 1.42 Å. [51] The interplane

distance between the graphite layers is d = 3.35 Å and results from the π-orbitals

of the bonds perpendicular to the planes and their van der Waals interaction with

bonds of the neighbor planes. [51] The π-orbitals of neighboring C-atoms in one

plane can overlap and allow electrons to delocalise. [51] This makes graphite con-

ducting parallel to the carbon planes. [51] The large distance between the layers

makes graphite a much worse conductor perpendicular to the layers. [51] Carbon

has, as we have shown, interesting properties already in its natural occuring al-

lotropes. If it comes to more recent carbon structures, we can speak of a real zoo of

new allotropes.

We will focus here only on single-walled carbon nanotubes and the carbon al-

lotropes most relevant for this dissertation and neglect other carbon allotropes

like, e.g., carbon fibres, [7, 58] carbon onions, [59] and carbon nanohorns. [60] The

fullerenes, [8] see Figure 1.1 b), respectively as half fullerenes form the end struc-
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Chapter 1. Introduction

tures of carbon nanotubes, called caps, see Figure 1.1 c) and d). [18] Fullerenes can

therefore be regarded as ultra short carbon nanotubes, or vice versa nanotubes as

fullerene tubules. [52, 61] Fullerenes contain 12 pentagons that induce the curvature

to close them. [9] A nanotube cap needs to have 6 pentagons to yield the curvature

to grow a nanotube from it. [62, 63] The term nanotube is used for a conglomerate

of structures, which all have a cylindrical base unit in common. [18] A single-walled

carbon nanotube, see Figure 1.1 a), consists of only one wall, however, the way the

atoms arrange on the wall, called chirality, determines the properties of the single-

walled nanotube. [18–20, 61, 64] Multi-walled nanotubes are composed of concentric

single-walled nanotubes, which determine their properties. [4, 18, 24, 32, 65, 66]

The carbon allotrope which lately received the largest interest is graphene, the first

stable two dimensional atomic crystal. [50, 67, 68] Graphene can be regarded as

the building block/unit of fullerenes, nanotubes and also graphite, as it consists

of single layers of hexagonal sp2-hybridized carbon, equivalent to a single layer of

graphite. [18] In the next section, Section 1.1.2, we will show how the graphene sheet

model can be applied to derive common properties of carbon nanotubes simply by

consideration of geometry/symmetry.

In the following we want to have a look at the macroscopic and microscopic

properties of single-walled carbon nanotubes. As-grown carbon nanotube samples

come with an ensemble of different chiralities. [42] They look like a black powder

of fine short wires in macroscopic amounts, which results from the agglomeration

of nanotubes of various chiralities. [1] Nanotube solutions are mostly gray to black,

depending on its concentration and the surfactant. [34, 37] If the nanotubes are

treated by a post processing method to separate the chiralities, phases of various

colors turn up, representing an enrichment of nanotubes of a certain chirality. [34, 37,

41, 69] An individual nanotube can neither be seen by the naked eye nor by an optical

microscope. [18] The smallest nanotube, which has been recently predicted has an

outer diameter of only 0.32 nm, consisting of a double helical carbon chain with

alternating bond order. [70] The largest diameter single-walled carbon nanotubes

reach up to ≈ 10 nm. [71, 72] The longest single-walled nanotubes were reported to

reach up to cm length and were theoretically predicted to be able to reach up to m

length. [73–75] Therefore nanotubes can have extreme diameter to length ratios of

at least up to 2 · 10−8. [1] The same ratio applies to the comparison of the diameter
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Chapter 1. Introduction

of a soccer ball to the diameter of the earth. [1] This quasi one-dimensionality

leads to fascinating properties, e.g., van-Hove singularities, which are singularities

in the density of states. [76, 77] Nanotubes have to be isolated, however, before the

properties can be studied. [78] Otherwise nanotubes will form bundles due to van der

Waals interaction between the nanotube walls, similar to graphite layers. [18, 79, 80]

The aggregation of nanotubes into bundles can, e.g., quench the fluorescence by

interaction of semiconducting and metallic tubes, which substantially broadens the

absorption spectra. [78] Once separated the isolated tubes can be metallic, semi-

metallic or semiconducting with various bandgaps only depending on the way the

atoms arrange on the tube surface, meaning the chirality, [19, 20] see Section 1.1.2.

In summary we presented the basic properties of carbon, which lead to a whole

zoo of allotropes with significantly different properties. [51] The carbon nanotube

is one of the most interesting and recent allotropes with properties that depend on

the symmetry/geometry of the tube. [18]

1.1.2 Structure and Chirality

In this section 2 we present the structure of carbon nanotubes and the properties,

which result, especially, from the chirality of the tubes.

As described in the introduction the single-walled carbon nanotube has a hollow

cylinder like structure. [4, 18] It can be imagined to be built of a rolled up sheet

of hexagonal-oriented carbon atoms, called graphene. [4, 18, 50] Some mechanical

properties of carbon nanotubes can be explained by a continuum model of a hollow

cylinder, see Chapter 6 of Reference [18]. Many other properties can be derived from

the properties of graphene (graphene sheet model) which serves as the basis for the

nanotube structure and allows to derive the properties through boundary condi-

tions/constrictions. [18–20, 49] The electronic band structure, for example, follows

from the arrangement of the carbon atoms on the tube wall, called chirality. [18] To

define the chirality, we first describe the geometry of the two dimensional graphene

model. The graphene basis vectors ~a1, ~a2 form an angle of 60◦ and can be defined

2This section is based on standard introductions into the topic of carbon nanotube structure and
symmetry, which can be found in chapter two and three of the textbook of Reich et al., see
Reference [18], in the review article about the fundamental properties of single-walled carbon
nanotubes by White and Mintmire, see Reference [49], and the diploma thesis of the author,
see Reference [1].
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arm
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zigzag (n,0)
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a)

b)

Figure 1.2: Model of a graphene sheet. a) Rolling the graphene sheet around

the circumferential vector ~Ch leads to the nanotube of the chirality
(n,m), [1, 18, 37, 49] here (7, 4). The graphene basis vectors ~a1 and ~a2
are presented at the left side. The chiral angle θ is the angle between ~a1
and ~Ch. [18, 19] The translational vector ~Th describes the translational
symmetry along the tube-axis. [18, 49, 81] b) The chiralities marked
by a green hexagon have metallic/semi-metallic character. [18–20, 49]
All other chiralities are semiconducting with bandgap size inversely de-
pending on the diameter. [37, 49, 61, 64, 81, 82] The figures are similar
to figures in Reference [37] (courtesy of M. S. Arnold’s PhD thesis) or
Reference [1].
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Chapter 1. Introduction

by: [18, 49]

~a1 = a · ~e1 = a · (1, 0) , (1.1)

~a2 =
a

2
· ~e1 −

√
3a

2
· ~e2 = a ·

(

1

2
,−

√
3

2

)

, (1.2)

where a =
√
3dC-C = 2.461 Å is the graphene lattice constant, dC−C = 1.421 Å

is the carbon-carbon bond length/distance, and ~e1 and ~e2 are the unit vectors in

x and y direction of the cartesian coordinate system, [49] see Figure 1.2 a) at the

left side. The graphene basis has two carbon atoms at 0 · (~a1 + ~a2) (green) and
2
3
· (~a1 + ~a2) (blue), see Figure 1.2 a) at the left side. Rolling the graphene sheet

around the circumference allows to completely define the geometry of a carbon

nanotube by the two chiral indices (n,m) which specify the relative positions of two

points on the hexagonal sheet of carbon atoms. [1, 18, 49] The circumference yields

the chiral/circumferential/”roll-up” vector:

~Ch = n~a1 +m~a2, (1.3)

which allows to derive many properties, [1, 18, 49] see Figure 1.2 a).

The translational vector, that describes the translational symmetry along the tube

axis,

~Th = (2m+ n)~a1 − (2n+m)~a2, (1.4)

can be constructed perpendicular to the circumferential vector ~Ch lying in the

honeycomb lattice, which allows to determine the minimum translational repeat

length by T =
√
3
| ~Ch|
L

with L = gcd (2m+ n, 2n+m), where gcd stands for the

greatest common divisor. [49, 81] This means L = g, with g = gcd (n,m), un-

less (n−m)
3g

is an integer, in that case L = 3g. [49, 81] The unit cell of a nanotube

is formed by the cylindrical surface with the height T and the diameter d. [18]

The number of carbon atoms in the translational unit cell can be large, [49, 81]

which results in a high demand of computer power for calculations involving large

unit cells. To determine the number of carbon atoms in the unit cell of a car-

bon nanotube, we first consider the unit cell of graphene, which is a hexagon that

contains 2 = 6 · 1
3
carbon atoms. [49] The area of the graphene unit cell can be

18



Chapter 1. Introduction

calculated with Ag = |~a1 × ~a2| =
√
3
2
a2. [49] The area of the strip that is rolled

up to form the minimum sized translational unit cell of the nanotube is given by

AT =
√
3
| ~Ch|
L

·
∣

∣

∣

~Ch

∣

∣

∣
=

√
3
|~Ch|2
L

=
√
3a2 (n2 + nm+m2) /L. [49] The number of car-

bon atoms in the unit cell nC follows from the number of hexagons contained in the

translational unit cell multiplied by 2 (two carbon atoms per hexagon):

nC = 2
AT

Ag
= 4

(n2 + nm+m2)

L
, (1.5)

with nC = 4g for achiral tubes. [49]

Further important indexes are the chiral angle θ and the diameter d of the tube,

which can also be used to describe the chirality of a carbon nanotube. [18, 49]

The chiral angle θ is measured clockwise from ~a1 to the circumferential vector

~Ch: [49]

θ = arccos

(

~a1 · ~Ch

|~a1| · | ~Ch|

)

= arccos

(

2n+m

2
√
n2 + nm+m2

)

= arctan

( √
3m

2n+m

)

.

(1.6)

The chiral angle is ordinarily defined for 0◦ ≤ θ ≤ 30◦ with n ≥ m ≥ 0 resulting

in a right handed tube. 3 [18, 19] An equivalent tube with left handed helix and

30◦ ≤ θ ≤ 60◦ can be found for 0 ≤ n ≤ m. [18] Further angles are only repetitions of

the tube structures contained in the first θ = 60 ◦ following from the hexagonal (60 ◦)

rotational symmetry of graphene. [18] Achiral tubes, meaning (n, 0) with θ = 0 ◦

(θ = 60 ◦), called zigzag and (n, n) with θ = 30 ◦, called armchair, see Figure 1.2,

obviously do not have a handedness. [18, 19] All chiral tubes n 6= m 6= 0 possess

a left- or right-handedness, however, the tube properties discussed in this thesis do

not depend on the handedness, [49] therefore we will not consider handedness, with

the exception of chiral tubes in bundles, see Section 3.3. Tubes of the same chirality

can have a different handedness, which can influence how well their surfaces fit to

each other if they are put right next to each other in a bundle. [83]

The diameter of a nanotube can be derived from the formula of the circumference

of a circle, representing the two dimensional projection along the tube axis of the

3The handedness of a nanotube is the way the hexagon-spiral of the nanotube rotates, that can
be left-handed or right-handed. [18]
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Figure 1.3: Brillouin zone of a graphene sheet with reciprocal lattice vectors and
high symmetry points Γ, K, K’, and M. The figure is similar to figures
in Reference [49] or Reference [1].

cylindrical tube

d =

∣

∣

∣

~Ch

∣

∣

∣

π
=

a

π

√
n2 + nm+m2 =

a

π

√
N, (1.7)

with N = n2 + nm+m2 and a = 2.461 Å the graphene lattice constant. [18, 49, 84]

To generate the structure of a nanotube of a certain chirality only two atoms and

the symmetry are needed. [49, 81] The two atoms are mapped onto a cylinder and

the application of rotations and screw operations allows to generate the positions

of the other atoms. [49, 81] We used the program ”wrapping.exe” 4 to generate the

major part of the tube structures used in this thesis.

The chirality of the tube decides its electronic and mechanical properties. [18]

Nanotubes can be metallic as well as semiconducting. [18–20, 61, 64] To derive

the electronic properties we can use the graphene sheet model. [18–20, 49] The

reciprocal lattice vectors of the graphene sheet can be calculated from the graphene

4The program wrapping was used in the version published on 09/14/2004
by Shigeo Maruyama, maruyama@photon.t.u-tokyo.ac.jp, http://reizei.t.u-
tokyo.ac.jp/ maruyama/wrapping3/wrapping.zip. A few selected chiralities were generated by
symmetry considerations and pen and paper work.
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basis vectors ~a1, ~a2 of Equation (1.1) and (1.2): 5

~k1 =
2π

a
· ~e1 +

2π√
3a

· ~e2 =
2π

a
·
(

1,
1√
3

)

, (1.8)

~k2 = − 4π√
3a

· ~e2 =
2π

a
·
(

0,− 2√
3

)

, (1.9)

and ~k3 =
2π
a
·~e3 = 2π

a
·(0, 0, 1). [49] This allows to draw the Brillouin zone of graphene,

see Figure 1.3. The high symmetry points can be found at

Γ = 0 ·
(

~k1 + ~k2

)

= (0, 0) , (1.10)

K =
1

3
·
(

~k1 + 2~k2

)

=
2π

a

(

1

3
,− 1√

3

)

, (1.11)

M =
1

2
· ~k2 =

2π

a

(

0,− 1√
3

)

. (1.12)

The band structure can be restricted to the first Brillouin zone, because of the

periodicity of the graphene lattice. [49] The valence band and conduction band touch

each other at the K points shown at the corners of the first Brillouin zone. [49] The

wavevectors of the K points are given with ±
(

2~k1 + ~k2

)

/3, ±
(

~k1 + 2~k2

)

/3, and

±
(

~k1 − ~k2

)

/3. [49] This can be used to determine if a certain chirality is metallic

or semiconducting by using a one-parameter tight-binding model 6 with periodic

boundary conditions for the circumferential vector:

~k · ~Ch = 2πj, (1.13)

with integer j. [19, 20, 49] The boundary condition restricts the nanotube states

to a set of parallel lines (red) in the reciprocal lattice of graphene, [18–20, 49] see

Figure 1.3 for the example of the (5, 5) tube. Each parallel line corresponds to

5The reciprocal lattice vectors are defined by ~k1 = 2π ~a2×~a3

~a1·~a2×~a3

and cyclic permutations, [85] where
~a1, ~a2 are given by Equation (1.1) and (1.2) which are extended with a zero z-component and
~a3 = (0, 0, 1) is the unit vector in z-direction.

6The tight binding model for graphene is presented in detail in the book of Reich et al. for the
nearest neighbor and third-nearest neighbors, see Reference [18].
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a different j, is perpendicular to ~Ch, and has a distance of 2π/
∣

∣

∣

~Ch

∣

∣

∣
= 2/d to its

neighboring lines. [18, 49] Inserting the wavevector ~k =
(

~k1 − ~k2

)

/3 in Equation

(1.13) yields the condition n−m = 3j, which means that the K point will only be on

an allowed line (metallic), for about 1/3 of the nanotube chiralities. [49] The other

2/3 of the chiralities are semiconducting with a band gap depending inversely on

the diameter of the tube. [49, 61, 64, 81, 82] Only the armchair tubes, however, are

truly metallic as the curvature shifts the lines slightly away from the K points, which

leads to a small gap for tubes with bands of the same symmetry (non armchair). [49]

More details on the properties of carbon nanotubes can be found in the literature,

see , e.g., References [18, 49]. In the following we list some experimental methods to

determine the nanotube chirality and discuss the problems that are involved with

the derivation of a chirality distribution.

Carbon nanotubes obtained in the experimental growth process generally have a

wide chirality distribution. [42] Several methods can be used to determine the chi-

rality of carbon nanotubes. The high resolution transmission electron microscopy

(HRTEM) combined with electron diffraction can determine the chirality, however,

the method is not feasible for large amounts of nanotubes/nanotube ensembles. [86]

Therefore methods that can be applied to the whole nanotube sample are required

for a fast analysis. The most commonly used methods to determine the chirality dis-

tribution of a nanotube ensemble are photoluminescence spectroscopy [42, 87] and

Raman spectroscopy. [42, 88, 89] The photoluminescence (PL) intensity depends

on the chirality of the tubes, which makes it necessary to divide the experimental

PL intensity by a calculated PL intensity to receive an estimated abundance of the

tubes. [87] One problem is that the calculated PL intensity heavily relies on as-

sumptions, e.g., that only one relaxation path from the ES
22 to ES

11 energy level of

the nanotubes dominates. [87] The abundance of chiralities has consequently been

found to quantitatively depend on the method to determine the chiralities. [89] This

generates large uncertainties in all nanotube abundance determinations based on

photoluminescence. [90] Further many studies do not analyse as-grown tube ensem-

bles, but postprocess the tubes before they are analysed. [78] It has been suggested,

that certain chiralities are removed through this process, while others are enriched

by this process, e.g. zigzag and near-zigzag tubes might be removed through the

postprocessing. [91] This is a problem for all theoretical models, as the comparison
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a) b)

Figure 1.4: a) Ball and stick model of a bundle of seven (6, 6) carbon nanotubes in a
trigonal configuration. b) Two dimensional projection of the unit cells of
the (6, 6) tube bundle, blue atoms are in the top row and gray atoms are
in the bottom row of the unit cell. The trigonal configuration resembles
the close packed structure for two dimensional systems, [92] which for
bundles of nanotubes is also the close-packing. [80, 93] The Figure 1.4
b) was inspired by References [46, 48] of the author of this thesis.

between theoretical estimates and experimental results contains some arbitrariness

due to the problem of the chirality determination. [89]

This section presented the chirality of carbon nanotubes and the properties that

can be derived from it. The nanotubes exhibit fascinating properties based on their

geometry, e.g. they can be metallic or semiconducting. [18–20, 49] The chirality

distribution of a nanotube sample, which corresponds to the different abundances of

nanotube chiralities in a sample, is not trivial to determine, which limits the compa-

rability between theoretical predictions of chirality distributions and experimental

observations. [42, 89]

1.1.3 Bundles

In this section we present the aggregation of carbon nanotubes and the properties

of the aggregates/bundles. We further focus on the difference to individual tubes

and how bundles can be separated.
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Carbon nanotubes tend to form bundles/ropes/aggregates of tubes induced by van

der Waals interaction between individual tubes, see Figure 1.4. [16, 80, 94] Bundles

often consist of about 20-100 tubes. [18, 80] To get an impression how incredibly

thin nanotubes are we can consider a bundle of 100 nanotubes and compare it to a

human hair. The bundle has a diameter of about d ≈ 4-50 nm, 7 while the diameter

of a human hair is d ≈ 17-181 µm, [97] making a bundle about 200-60000 times

thinner than a human hair. The formation of a bundle significantly changes the

properties of the carbon nanotubes. [18, 65, 80, 83, 95, 98–102] The most important

reason for the significant change of the properties is the interaction with neighboring

tubes, which mainly occurs through the π-orbitals of nearest neighbor tubes. [103–

105] Bundling reduces the symmetry, even for tubes of the same chirality. [18, 100,

102, 106] This is a result of the hexagonal packing of the bundles which yields a D6h

point group. [18, 80, 102] The tubes in the bundle in general yield another point

group, which allows only for a smaller subgroup to be shared between the bundle

structure and the nanotubes of the bundle, e.g. D2h for achiral tubes and D2 for

chiral tubes. [18, 102] Changing the intertube orientation of the tubes in the bundle

can further reduce the symmetry, [18, 102] e.g. to C2h. [18] Therefore the properties

of bundles depend on the intertube orientation. [102, 107, 108]

The trigonal structure observed for bundles of nanotubes [80] is not necessarily

the only possible nanotube bundle configuration. Therefore studies tested the sta-

bility of other possible configurations, e.g. a tetragonal configuration was found to

be energetically less stable for (6, 6) tubes in a bundle. [93] The trigonal character

starts for bundles of seven tubes. However, bundles of less tubes are also possible,

which can change the optimal structure of the bundle. Bundles of two tubes gen-

erate constrictions for chiral tubes, which can form helices, while achiral tubes can

orient optimally to each other in a parallel structure. [103] Three tubes generally

form a trigonal structure, however, linear configurations have also been studied the-

oretically. [104] Bundles of four tubes tend to create a close packed two dimensional

7We assume a trigonal bundle structure, with one tube in the first shell of the bundle,
6 ·
(

0 + 2 · 1

2

)

= 6 tubes in the second shell, . . . , and 6 ·
(

n− 2 + 2 · 1

2

)

= 6 · (n− 1) tubes
in the nth shell. To approximate the diameter of the bundle we consider a hexagonal form of
the bundle with five shells, meaning 91 tubes to find a hexagonal side length of t = 5 · l0+6 · d,
where l0 = 3.4 Å [95] is the intertube distance and d is the diameter of a nanotube. This leads
to a hexagonal side to side distance of D =

√
3 · t, [96] which we compare to the human hair

diameter.

24



Chapter 1. Introduction

rhomboedric-like shape, [105] also a tetragonal shape is possible, but less stable as

shown for the bulk bundle. [93] Five tube bundles create a square like shape with

one tube in the middle of the bundle [104] or a pentagonal-like bundle. Six tubes

might create a bundle with a hexagonal-like shape or one tube in the middle en-

closed in a five tube shell or an irregular shape. Starting with seven tubes a first

shell around the inner tube is created, which still varies in shape, however, the inner

tube will mostly be influenced by its six next nearest neighbor tubes, as the interac-

tion becomes weaker with increasing distance. [104, 105] Therefore we considered an

inner tube in a trigonal unit cell for the calculations presented in this thesis, which

compares to the situation of a nanotube crystal, see Chapter 3.

The nanotubes in bundles were observed to have a circular cross section, corre-

sponding to the cross section of isolated tubes. [80] Bundles of carbon nanotubes

with increasing diameters, however, have been found to undergo a structural transi-

tion. [109, 110] The tubes in the bundle deform according to the hexagonal structure

of the bundle and become hexagonal/rounded-hexagonal instead of circular. [109,

110] This was attributed to the increase in interaction energy between flattened sur-

faces of neighboring tubes, e.g. like for graphene layers in graphite. [110] This only

happens for larger diameter tubes (d ≥ 25Å), [109] as it costs energy to deform the

bonds in the intratube binding, which for small diameter tubes with high curvature

is energetically less preferable. [110] In our study we consider small diameter tubes

with circular cross sections, see Chapter 3. Small diameter tubes are preferable to

obtain chirality selected samples, as the number of possible chiralities grows with

the diameter [18, 37] and the diameter of the tube can be controlled by the size of

the particle, [52, 111–115] which makes the tube diameter a possible criterium to

narrow the chirality distribution during the chirality selective growth process, see

Section 1.1.4.

Another interesting aspect for the structure of bundles is the possibility to form

helices of tubes in the bundle. [103] The tubes in a bundle are not necessarily aligned

parallel, they can form a helical structure if the energy gain received from the opti-

mum orientational alignment of the neighboring tubes is larger then the energy costs

induced through the coiling stress, however, this was suggested to be less likely if a

large number of tubes is in the bundle. [103] But for two chiral tubes of low pitch an-

gle χ the probability to form a double helix like structure is high, as could be shown
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with high resolution transmission electron microscopy (HRTEM) recently. [103] An-

other possibility to deform the structure of the bundle is by the application of a

magnetic field. [116] The form of the bundles of nanotubes can be shaped by the

magnetic fields, if a magnetic catalyst particle is at the tip of the bundle, whose

growth direction is controlled by the external magnetic field. [116]

From the experimental point of view bundles are often not desirable, as they hide

the properties of the individual nanotubes in the bundle, e.g. by quenching the

fluorescence. [78] The electrostatic charging of tubes in the bundle separates the

tubes, however, only temporarily, as they discharge through contact with ambient

molecules in the air. [117] Therefore the bundles need to be destroyed and the

nanotubes have to be separated. [78] Recently a lot of effort has been put into this

research field. [34, 36, 37, 41, 118, 119] In the following we will give a short overview

on some possible ways to post process the nanotubes and isolate the tubes.

Prior to achieving isolated tubes a first step was to remove certain (metallic) tubes

from the bundles. [24] It was shown that single-walled carbon nanotubes in bundles

of a mix of metallic and semiconducting tubes can be selectively removed by current-

induced electrical breakdown, meaning that a high enough current is applied to the

bundle which leads to the selective creation of defects/oxidation at tubes that have

higher conductivities (metallic tubes). [24]

The first nanotube post processing procedure to successfully destroy bundles and

separate the tubes was performed by ultrasonication, centrifugation and addition

of sodium dodecyl sulphate (SDS) surfactants, which form micelles around the in-

dividual nanotubes. [78] Other studies following this approach have optimized the

procedure to select certain chiralities by the change of surfactants, an overview can

be found in the review article of Hersam in Reference [37]. The most approaches

follow the same procedure of using a surfactant to select nanotubes in combina-

tion with other post processing methods to obtain monochiral samples of nanotubes

which include, e.g. dielectrophoresis, chromatography [36, 41, 119] and ultracen-

trifugation [34]. [37] One of the most promising approaches is the single-surfactant

multicolumn gel chromatography method of the group of Kataura, which allows

a cost efficient and easy separation of carbon nanotubes. [41] An allyl dextran-

based size-exclusion gel (Sephacryl S-200, GE Healthcare) fills a column in which

single-walled carbon nanotubes solved in an aqueous sodium dodecyl sulphate (SDS)
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solution are added on top of the gel. [41] The interaction strength between the gel

and the nanotubes depends on the structure (chirality) of the nanotubes. [41] The

tubes that have the strongest interaction with the gel have the highest probability to

occupy the adsorption sites of the gel. [41] Overloading the column with nanotubes

leads to a replacement of weaker interacting chiralities with stronger interacting

chiralities at the adsorption sites, which increases the selectivity of the gel. [41] Re-

peating this procedure in vertically aligned columns allows to effectively separate

the nanotube ensembles into selected chiralities. [41] The details of the selective pro-

cess, however, are not well understood. [41] It is believed that the coverage of SDS

on the nanotubes scales the interaction strength between the gel and the tubes, [41]

therefore it is of interest to understand the interaction between the nanotubes and

the surfactant. Especially the influence of the chirality in the binding strength be-

tween the surfactant and the tubes is important. The differing bond curvatures,

resulting from the surface π-electron states of different chiralities, were suggested to

be a possible reason for the variation of the SDS coverage on the tube surfaces. [41]

A recent study of the Kataura group suggested that the metal-semiconducting tube

separation can be understood by the Gibbs free energy of adsorption, which is lower

for semiconducting tubes than for metallic tubes. [120]

In Chapter 3 we investigate the binding strength between the nanotubes in a bun-

dle. The binding strengths between the tubes to each other have to be compared

to the binding strength of a surfactant to the tubes to determine, if tubes will stay

in the bundle structure or form a complex with the surfactant and leave the bundle

structure. [104, 105] A general dispersion mechanism was suggested by Strano et al.

that considers the effect of the ultrasonication. [121] The ultrasonication ”frays” the

bundle ends, which then allow surfactant molecules to adsorb and further broaden

the gap in an ”unzippering” fashion until the process terminates with the release

of an isolated surfactant coated nanotube in solution. [121] In general the nanotube

separation of the bundle is a reversible process, which leads to a dynamic equilib-

rium as a function of carbon nanotube and surfactant concentration. [121] In recent

studies the separation of nanotubes with the surfactant sodium dodecyl sulphate

(SDS) [105] and the solvation with aniline [104] have been studied.

Duan et al. used a molecular mechanics approach with force fields to geometry

optimize systems of SDS and nanotubes with the aim of finding their minimal ener-
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gies and morphologies. [105] The van der Waals interaction was modeled by a sum

of Lennard-Jones potentials. [105] The external tube, that is meant to be separated,

can either interact with one, two or three neighboring tubes. [105] The morphol-

ogy of the surfactants on the nanotube surface depends on the number density of

the surfactants; [105] First the SDS molecules wrap around the tube in a circular

alignment (maximizing the surface interaction) which transforms to a cylindrical

micelle around the nanotubes with increasing number density, however, to disperse

the nanotube the SDS molecules first have to get between the tubes. [105] This is

possible due to increased intertube distances, which models the effect of ultrasoni-

cation. [105] To disperse the nanotubes a sufficient number of SDS surfactants has

to adsorb to the nanotube surface, which leads to a higher binding energy between

SDS and the tube than the intertube binding energy. [105]

The binding energy between aniline and a tube covered by aniline was found to

be smaller than the binding energy of a bundle of seven tubes, therefore aniline

is not able to separate/solve nanotubes. [104] Even if the aniline molecule would

enter the bundle it would be squeezed out by thermally induced vibrations. [104]

This was found to correspond to the experimental observation, that aniline is not

a good solvent and it was suggested that larger π systems are needed to provide

enough adsorption strength to be able to separate the tubes from the bundle. [104]

One caveat of the studies on the dispersion of nanotubes, however, is, that they do

not study the effect of the chirality of the tubes on the dispersion. Also the effect

of other, especially chiral, surfactants in the dispersion process stays as a future

problem. [105]

It is not always desired to destroy the bundles of nanotubes, as monochiral bun-

dles can also yield interesting properties. [122] However, as bundles of nanotubes

generally consist of nanotubes with various diameters and chiralities possible prop-

erties of monochiral bundles are suppressed. [122] Therefore it is desirable to use post

processing techniques to design monochiral bundles. Bundles enriched with zigzag

and near zigzag nanotubes have recently been observed, [91] pointing to a possible

structure dependence of the binding strength between nanotubes in a bundle, which

we investigate in Chapter 3.

In this section we learned that nanotubes hide their fascinating properties through

averaging effects induced by the mixed chirality bundles. [18, 122] Therefore separat-
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ing the tubes of the bundle to individual tubes is desired, at best the process would

also be chirality selective. [37, 41, 78] Beneath the possibility of post processing the

nanotubes, there is also another way to produce chirality selected nanotube samples,

the chirality selective growth, which we present in the next section (Section 1.1.4)

and as a part of our research study in Chapter 2.

1.1.4 Growth

In this section 8 we present the basics on the growth of carbon nanotubes, as well as

the advanced topic of chirality selective growth of carbon nanotubes. We therefore

first present the basic concepts of catalysis/crystal growth theory translated to the

case of carbon nanotube structures.

The growth of single-walled carbon nanotubes generally requires a catalyst. [16,

17, 123] A catalyst is a substance that increases the reaction rate, as it lowers the

activation energy for the addition of carbon atoms to the growing nanotube. [124]

The catalyst is a product of the reaction, meaning that it is not consumed during

the reaction. [124] Common catalysts for the synthesis of carbon nanotubes involve

Ni, [125] Fe, [126] and Co [17] or mixtures of these metals with themselves [3, 80, 127,

128] or other elements. [33, 36, 128] The nanotube growth rates vary in dependence of

the chirality [2] and temperature, [129] e.g. between 3 and 22 µm/s. [129] However,

nanotubes have also been grown with a slow growth rate of 8.3 nm/s on a SiO2

substrate, meaning without a metal catalyst, [130, 131] and the first growth of

nanotubes (MWCNTs) was achieved without a catalyst. [4] The nanotube growth

therefore needs only two basic ingredients, carbon and energy. [1, 4] The form of

both ingredients depends on the growth method, which we present in the following.

Carbon nanotubes are commonly produced with three methods, the arc dis-

charge, [4, 135, 136] the laser evaporation/vaporization, [137] and the chemical vapor

deposition (CVD). [52, 123, 138, 139] In the arc discharge method a plasma consist-

ing of metal and carbon atoms is created between an anode and cathode consisting of

graphite, which is commonly mixed with a metal. [4, 140, 141] The nanotubes form

during the cooling process of the plasma and precipitate to the walls of the arc dis-

charge chamber. [141] In the laser vaporization method a high energy laser is focused

on a metal-graphite composite target, which vaporizes the target and generates a

8Parts of this section are based on the diploma thesis of the author of this thesis, see Reference [1].
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Figure 1.5: Schematic picture of an exemplary furnace for the CVD process. The
catalyst (gray) is deposited on a substrate (orange) and forms clusters.
A buffer/carrier gas, e.g., Ar (red) + H2 (green) [132, 133] and a carbon
(blue) precursor gas, e.g., methane [131, 134] are introduced into the
furnace. The figure was inspired by Reference [1] of the author.

carbon-metal vapor. [137] The metal and carbon atoms in the vapor form clusters

which grow nanotubes and get collected on a cooled metal-catalyst collector. [137]

More details about the arc discharge and laser evaporation growth techniques can

be found in the review articles in the References [140, 141]. We want to focus on the

chemical vapor deposition (CVD) method in this thesis, as it is the most promising

growth technique considering its scalability [142] and the possibility to control the

parameters to enable chirality selective growth. [3] In the CVD growth method a

carbon precursor gas is decomposed on a catalyst in a heating chamber/furnace,

see Figure 1.5. [52, 140] The carbon precursor gases include CO, [139, 143] and

the hydrocarbons C2H2, [134, 144], C2H4, [145] CH4, [131, 134] CH3OH, [38] and

C2H5OH. [133] As we focus on the chirality of nanotubes, we do not consider the

growth mechanism of multi-walled carbon nanotubes (MWCNTs) here, as it differs

in many aspects from the growth process of single-walled carbon nanotubes (SWC-

NTs). [1, 146] Details on the growth of multi-walled carbon nanotubes can be found

in References [31, 136, 146–149].

A variety of chemical vapor deposition techniques exist, e.g., thermal CVD,

which often leads to spaghetti like/unaligned nanotubes, [134, 150] alcohol catalytic
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a) b)

Figure 1.6: Sketch of the growth modes of nanotubes in the chemical vapor depo-
sition. The substrate is green, the catalytic particle is blue and the
carbon nanotube, and carbon atoms are in black. a) Tip growth mech-
anism, where the catalyst particle is lifted off the substrate by the elon-
gating tube. [123, 149, 156] The carbon atoms add at the edge of the
tube connected with the catalyst particle lifting the catalyst particle.
b) Root/base growth mechanism, where the catalyst particle stays con-
nected to the substrate and the carbon cap elongates from the catalyst
particle. [123, 157]

CVD (ACCVD), [114, 151, 152] laser assisted CVD, [153], plasma enhanced CVD

(PECVD), which leads to aligned nanotubes, [125, 150, 154] and time-programmed

plasma CVD (TP-PCVD), which leads to narrow chirality distributions. [155] In

the following we will introduce the basics in common for all of the chemical vapor

deposition (CVD) growth techniques focusing on single-walled carbon nanotubes.

In the CVD method two general growth modes exist, the tip growth 9 [149, 158]

and the root/base growth, [149, 157–160] see Figure 1.6. [123] In the tip growth

model the carbon atoms push the metal particle away from the substrate, effectively

lifting it during the nanotube elongation, see Figure 1.6 a). [123, 149, 156] There are

two conditions for the tip growth, first the diffusion time of carbon atoms through

the catalyst particle from its top to the bottom has to be shorter than the time it

takes for the catalyst particle surface to be saturated by carbon atoms. 10 [149, 156]

9The tip growth has been observed for MWCNTs [149] and for horizontal growth of SWC-
NTs. [158]

10If the catalyst particle becomes saturated it will precipitate carbon atoms on its surface leading
to a template for the nanotube formation resulting in base growth. [149] Further the diffusion
time has to be smaller than the impingement time, as otherwise the surface would saturate
and base growth would be initiated. [149, 156] We therefore expect the base growth mechanism
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And second the energy gain from carbon transition from the catalyst particle to

the nanotube has to be higher than the binding energy between the metal and the

substrate. [123, 149, 156] In the base growth mode the catalyst particle stays on

the substrate and the catalyst surface is saturated with carbon which grows into

a nanotube, see Figure 1.6 b). [157] The base growth requires a moderate binding

energy between the substrate and the catalyst, as strong interactions flatten the cat-

alyst particle, disabling the particle as a template for a nanotube. [134] Too weak

interactions can inhibit the growth, as the catalyst particles become too large for

nanotube nucleation and get encapsulated by amorphous carbon. [134] The same

requirement of moderate binding energy is imperative for the carbon-metal adhe-

sion, [159, 161, 162] as too strong adhesion prevents the cap to lift off and elon-

gate, [161] leading to amorphous carbon and too weak adhesion leads to carbon

chain lift off before a cap can form or cap lift off without tube elongation, which

stops the growth due to dome closure of the caps. [159, 162] We will focus on the

root growth mechanism in this thesis, as the catalyst is easier to reuse for repeated

growth cycles if it sticks to a substrate instead of the tips of the nanotubes. [132]

Two basic models have been suggested for the growth of nanotubes, the vapor-

liquid-solid (VLS) model 11 [157, 165] and the screw-dislocation model. [4, 166–168]

The vapor-liquid-solid (VLS) model was first developed for the growth of silicon

whiskers, which do not contain an axial screw dislocation making an impurity es-

sential for the growth. [165] The impurity allows to form a liquid silicon-gold al-

loy droplet, which becomes saturated with silicon leading to the precipitation and

growth of silicon atoms to a whisker. [165] For the nanotube growth the liquid

droplet corresponds to a metal-carbide particle, which after saturation precipitates

carbon atoms that grow into the nanotube. [157] The screw-dislocation model is a

standard model developed for the growth of crystals, which states that real crys-

tals are not perfect. 12 [166, 167] The imperfections, i.e. dislocations ending in the

surface with a screw component, serve as a site for the addition of a new layer and

if the carbon atoms do not diffuse into the catalyst particle and diffuse only on the surface
(surface diffusion). [1]

11Besides the VLS models also vapor-solid-solid (VSS) models have been suggested. [163] Another
recent idea is to model the growth of nanotubes by a nano Czochralski model. [164] In this
model each catalyst particle serves as a nano crucible to grow a rotating nanotube with a
chirality dependent growth rate. [164]

12On a perfect crystal surface the steps which are required for the crystal growth can only be
produced under a highly supersaturated environment. [167]
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avoid the high energy barrier occuring for completed planes. [166, 167] The main

paper on carbon nanotubes by Iijima suggested to use a screw dislocation model to

explain the growth of nanotubes, as the tubes can have spiral growth steps at the

tube ends/rims. [4] Later Ding et al. used the model to derive a dependence between

the chirality and the growth rate of the nanotube. [168] They identified kinks (see

aa.z growth sites in Section 2.1.1) as low-energy-barrier addition sites for carbon

atoms. [168] Following Ding et al. the growth is driven by a monotonous free energy

decrease

∆G = −∆µ ·N, (1.14)

with ∆µ ”the driving chemical potential drop between the carbon dissolved in the

catalyst and its bound state in the tube lattice”, 13 [168] and N the number of

added carbon atoms. [168] However, only chiral tubes contain kinks during the

whole elongation process, achiral tubes (armchair and zigzag) grow in layers. [168]

If a carbon layer is completed an activation energy G∗ is required to initiate the

growth of a new layer, which results from the under-coordinated carbon atoms at

the newly emerging kinks. [168] This leads to the free energy decrease of

∆G = G∗ −∆µ ·N, (1.15)

rendering the growth of achiral tubes significantly slower than compared to the

growth of chiral tubes, if G∗ ≫ kbT . [168]

In the following we present the detailed growth process of carbon nanotubes within

the chemical vapor deposition following the description presented in the diploma

thesis of the author, see Reference [1]. The growth process of carbon nanotubes

in the CVD method can be divided in four phases. The preparation/pretreatment

phase, in which the catalyst and substrate are prepared, [72, 169–171] the nucleation

phase, in which the nanotube caps form, [172–175] the growth phase, in which

the nanotubes elongate with a chirality dependent growth rate, [2, 43, 168] and a

termination phase, in which the growth ends. [169, 176, 177]

The aim of the preparation phase is to grow small clusters on a substrate as

templates for the nanotube caps. [53, 178, 179] Therefore a metal catalyst layer

13The carbon atoms that are not part of the nanotube have a higher energy than carbon atoms
that are incorporated in the nanotube. [74] This drives the carbon atoms to add to the nanotube
to lower the free energy of the system. [74, 168]
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is epitaxially grown on a carefully chosen/designed substrate [35, 72] and a heat

and/or plasma treatment [171] induces the nucleation of catalyst particles due to

interatomic diffusion and the difference in the surface free energy of the substrate

and the metal catalyst. [180] The pretreatment is often performed under a reducing

gas atmosphere to increase the rate of reduction and sintering of metal clusters. [35]

The introduction of a carbon precursor gas, initiates the nucleation phase. The

precursor gas is generally accompanied by an etching, [132] buffer, and/or carrier

gas [132, 133] to generate a gas flow in the system and to prevent the encapsulation

of the catalyst particle, [181] which likely terminates the growth. [169] The carbon

precursor gas either impinges on the catalyst/substrate or it is partly decomposed in

a plasma and the atoms impinge on the catalyst/substrate. [182] The precursor gas

atoms adsorb at the catalyst surface to become decomposed in carbon atoms and

a moiety of the precursor, [182] meanwhile the etching gas removes excess carbon

feedstock [132] or prevents Ostwald ripening. 14 [176] The carbon atoms diffuse on

the surface, [163, 182] sub-surface, [74] or through the bulk of the catalyst [163, 183]

and start to form carbon structures, e.g. chains, Y-like carbon chain junctions, or

seed pentagons. [184, 185] The carbon seed structures form curved graphene-like

sheets through the curved template form of the catalyst. [184, 185] The curvature

is induced by the pentagons in the graphene-like sheets, which were found to be

energetically favorable in the nucleation phase, as the bond saturation is increased

due to the curvature. [172]

The lift off of the graphene-like sheets in the form of a carbon nanotube cap [172,

184] ends the nucleation phase. The carbon nanotubes elongate with a chirality de-

pendent growth rate [2, 43, 168] without changing their chirality, as rearrangements

of the chirality are costly. [151, 179, 186] Carbon atoms therefore add at the edge

of the nanotube [4, 168] and elongate the tube until the growth phase is ended due

to a lack of carbon supply, named the termination phase. [169]

The lack of carbon supply can have various reasons. One reason might be, that

a dense forest of nanotubes prevents carbon feedstock to directly reach the catalyst

atoms and diffusion of carbon species along the tube surface becomes necessary

14Ostwald ripening corresponds to a process where a system of particles increases the system
stability by an increase of the bulk-to-surface ratio (increase of volume and decrease of sur-
face). [177] Smaller metal clusters decrease in size and larger clusters increase in size by a net
diffusion of atoms of smaller clusters to larger clusters. [177]
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to reach the catalyst. [156] Another reason is the encapsulation of the catalyst

particle with amorphous carbon, often called catalyst poisoning. [169] It is also

possible that the catalyst particles become too large to grow nanotubes [115] due

to Ostwald ripening, which was found to be a chirality selective termination process

of the nanotube growth. [177] The termination phase is generally ended with the

extraction of the nanotubes from the catalyst/substrate. The extracted nanotubes

are then processed in a post processing phase for experiments or industrial use, see

Section 1.1.3. [78]

After we presented a model for the general growth mechanism in the chemical

vapor deposition method, we now want to present some ideas to achieve chirality

selective growth of single-walled carbon nanotubes discussed in the literature. All

four phases and the post processing step, see Section 1.1.3 and Chapter 3, influence

the chirality distribution of the nanotube sample. A good starting point for chirality

selection is to reduce the number of possible chiralities that can be accessed with

the specific experimental growth conditions. Therefore a first step towards chirality

selective growth is the preparation of the catalyst particles, as a strong correlation

between the catalyst size and nanotube diameters has been suggested. [52, 111, 114,

139, 187–189] This makes the small diameter carbon nanotubes especially interesting

for chirality selective growth, as the number of accessible chiralities is limited for

diameters in a small diameter range, see Section 1.1.2. A narrow catalyst particle

size distribution therefore leads to a narrow chirality distribution, simplifying the

problem to select a certain chirality.

An experimental study reported the enrichment of metallic tubes (91% up from

33%) due to the variation of the noble gas ambient during the thermal annealing

of the catalysts. [39] The catalyst morphology changed in dependence of the nobel

gas ambient, which was suggested to demonstrate a dependence between the cata-

lyst morphology and the electronic structure of the grown carbon nanotubes. [39]

Another study reported enrichment of semiconducting tubes (88% up from 67%),

especially of the (6, 5) chirality (45%) due to the low temperature growth on a

bimetallic FeCu/MgO catalyst. [90] A preferential growth of semiconducting nan-

otubes was suggested for smaller diameters, 15 as their formation energy was found

15A low temperature grows smaller diameter tubes, as higher temperature leads to larger catalyst
particles. [35]
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to be lower than the formation energy of semi-metallic and metallic tubes. [113] The

use of bimetallic catalysts, e.g. NiFe [3, 127], CoMo [35] or FeRu [36], was observed

to lead to a narrowing of the chirality distribution. [3, 36, 127] The reason for the

narrowing of the chirality distribution for the NiFe bimetallic catalyst was stud-

ied with carbon nanotube caps of various chiralities on a flat surface model, [190]

however, the initial cap structure and the lack of curvature renders the results unre-

liable, see our discussion on the nanotube cap structure in Section 2.1.2 and Section

2.3. The study suggested that the adhesion energy between the catalyst and the

cap is higher for certain chiralities. [190] It had been previously suggested that the

formation energy for caps on a catalyst particle depend on the fit between the cap

and the catalyst surface, which would allow to design catalyst particles that enhance

the yield of certain chiralities in the nucleation phase. [179, 186, 191] This follows,

as the chirality of the nanotube grown from a specific nanotube cap is unique. [63]

Another study, however, pointed out that only the diameter of the cap/nanotube

can be controlled by the catalyst particle and excluded the chirality control. [192]

The authors of the study argue, that the growth temperature required for the carbon

diffusion on the catalyst would lead to a surface or bulk melting of the catalyst par-

ticle, preventing a lattice matched chirality selection mechanism. [192] They further

argue, that the catalyst particles change their shape during the growth process even

at low growth temperatures. [173, 192] The catalyst particle was found to act as a

template for the cap, while the cap also shapes the catalyst, meaning an interplay

of ”template” and ”inverse-template” effect, with a stronger effect from the cata-

lyst on the nanotube. [53] Another study stated that the edge/surface energy of the

nanotube (graphene sheet) on the catalyst decides the chirality of the tube during

the nucleation phase, as armchair and zigzag edge energies are different for different

catalysts. [193] The study, however, did not consider pentagons, 16 needed for the

inclination of the cap [172] and neglected the change in the rim structure, especially

the number of carbon addition sites, with every carbon addition, [43, 44, 63, 195]

see Section 2.1. In an earlier study, the difference of the edge energy of armchair

and zigzag sites on various metals had already been observed, [196] however, only

16In a very recent study the adhesion energy of the caps was found to be lower than the adhesion
energy of the tube. [194] Combining this with the knowledge that nanotube caps often contain
pentagons at the edge, leads to the conclusion, that the pentagons have to be considered to
obtain meaningful adhesion energies.
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small molecules were used to model the rim of the nanotube, neglecting, e.g. the

curvature of the tube and catalyst, as well as the interaction of neighboring carbon

atoms.

A recent study pointed out that the carbon solubility and wetting properties of

catalyst nanoparticles are especially important to optimize the growth of nanotubes

for specific chiralities. [197] The growth simulations of the study found that the wall

of the nanotube cap grows parallel to the molten/surface-molten catalyst with addi-

tion of short carbon chains before the cap detaches and lifts off for elongation. [197]

The nanotube stays connected to the catalyst through a diffuse carbon network,

which serves as carbon addition site. [197] In-situ transmission electron microscopy

footage of the nanotube nucleation indicates that this growth model might be ap-

plicable for certain growth conditions, [173] however, other growth conditions might

lead to the conclusion that the cap elongates from the particle surface without the

intermediate tangential growth step. [174] Another study which included the effect

of the substrate found that the detachment of the cap depends on the adhesion en-

ergy between the catalyst and the substrate, as the capillary forces of the nanotube

growth are counteracted by the substrate. [189] A high adhesion energy between the

substrate and the catalyst particle were found to lead to a flattened shape of the

catalyst particles with a low wetting angle. [189] The study further suggested that

the occupation of hollow sites is a key factor to establish a good fit between the nan-

otube edge and the catalyst particle, which increases the interaction strength. [189]

The interplay between the adhesion energy and the strain energy was found to be

important for the lift-off step of the cap, which was suggested to be chirality selec-

tive. [198]

The chirality, however, does not necessarily need to remain constant during the

nucleation process. [199, 200] In a reactive molecular dynamics/Monte Carlo simu-

lation which applied a force field (ReaxFF) a change of the chirality was observed

during the nucleation process of the cap, which resulted from the restructuring of

the cap structure due to the interaction with the metal catalyst. [199] Another study,

which simulated preformed nanotube caps without a catalyst (in vacuum), found

that the change of the chirality is possible with the addition of single carbon atoms

to the edge of the nanotube cap, while the caps/tubes are elongated for carbon

dimer addition. [200]
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If the chirality is ”quenched in” in the nucleation phase, [179] the only way to

change the yield of the chiralities during the elongation phase is by a chirality depen-

dent growth rate. [43, 168] The theoretical model presented by Ding et al. considers

kinks as carbon addition sites and finds a linear dependence of the growth rate on

the chiral angle. [168] In our own growth model of a chirality dependent growth rate

we extended the idea of the model and included the influence of more external pa-

rameters, i.e. temperature and catalyst, see Chapter 2. 17 [43] We suggested that the

”key is to manipulate the energy difference between armchair and zigzag dangling

bonds through the choice of metal catalyst and growth conditions”. [43] Recently

strong experimental evidence for the model of the chirality dependent growth rate

was reported. [2] The experimental study used in-situ Raman spectroscopic measure-

ments to determine the growth rates in dependence of the chirality and found that

the growth rate of the tubes depends on their chirality. [2] A recent growth model

for the island growth of graphene of the Yakobson group [201] can be regarded as

an extension to their previous growth models presented in the papers of Ding et al.

and Liu et al.. [168, 193] In the extended version of the model various edge struc-

tures are considered and their energetical stability is calculated. [201] This allows

to simulate the atom addition to a graphene edge and derive the addition proba-

bility to a certain site from the energy of the calculated edge configurations. [201]

They find that the first carbon addition to a zigzag edge is ”strongly endoergic, and

[the atom] is likely to fall back onto the substrate”, which corresponds to a larger

barrier for the growth of zigzag edges than for armchair edges. [201] After the first

addition to the zigzag site the growth can occur very fast, as a kink site is created

which grows without energy barrier. [201] The model uses the concentration (si)

times the probability factors (e
Ei
kT ) of the armchair (A), zigzag (Z) and kink sites

(K) to determine a chirality dependent growth speed at the edge for tubes with

ν (χ) ∝ sK (χ) ∝ sin (χ), with χ the chiral angle. [201] For the chirality dependent

growth rate theories to be valid the incorporation of carbon atoms into the nanotube

wall has to be the threshold/rate limiting step for the single-walled carbon nanotube

growth, as recently suggested. [74] The threshold barrier for the growth was calcu-

17A chirality dependent growth rate might not be observed for certain growth conditions, e.g.
forest growth, as the tubes entangle, leading to the same growth speed [1, 74] or the addition of
carbon atoms to the edge of the tubes is limited by the supply of carbon atoms to the tubes, [74]
which is expected to be independent of the growth rate.
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lated for the addition of two carbon atoms to the edge of the tube with about 2 eV

for the common catalysts (Ni, Fe, Co), which is higher than the barriers for carbon

diffusion on metal surfaces (e.g. 0.4 eV [182], respectively < 1.0 eV [74]) and the

carbon decomposition on a metal (e.g. 1.4 eV [182], respectively < 1.5 eV [74]). [74]

The study further applied transition state theory and determined the decomposition

rate of the nanotube to estimate an upper limit of the armchair growth rate (corre-

sponding to the difference of carbon addition to the nanotube and decomposition of

nanotube atoms) with, e.g., 1 mm/s for a growth temperature of 1300 K on Fe. [74]

Another study suggested the charge transfer between the nanotube edge and the

catalyst particle to be important during the growth in general, as well as for the

chirality selection during the growth process. [202] The charge transfer between the

edge/rim and the metal catalyst clusters was suggested to increase the reactivity

of the rim atoms. [202] The study used density functional theory to determine the

charge transfer between nanotube caps (armchair, zigzag and (6, 5)) and a Ni clus-

ter. [202] The kink site at the edge of the chiral (6, 5) cap was suggested to be

more reactive than other sites following from a higher charge distribution to the

kink site. [202] It was proposed that the charge transfer property might be used to

design chirality selective catalyst particles. [202] A follow up study on the charge

transfer analysed various cap structures on a nickel catalyst particle. [194] The ori-

entation and location of the frontier orbitals was identified with a high reactivity,

which was suggested to lead to preferential growth of certain chiralities, i.e. (6, 5)

and (7, 5). [194] Adhesion energies calculated in the study do not show a clear in-

dication on the chirality selectivity and the authors state that the adhesion energy

differences between the studied systems are only minor. [194] Especially, the elon-

gation phase did not show a change in adhesion energy, meaning that the adhesion

energy of the carbon nanotubes is independent of the length of the tube in the elon-

gation phase. [194] Another study focused on the electric dipole moment induced in

bimetallic clusters due to charge transfer of the different elements in dependence of

the cluster composition. [203] The electric dipole moment was suggested to increase

the carbon precursor landing probability at certain spots at the particle due to an

electric field between the carbon precursor and the catalyst cluster. [203] The study

suggested that the growth rate, alignment, and chirality show a close connection to

the electric dipole moment and suggest that they can be controlled by the correct
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choice of elemental composition and size of the catalyst particles. [203]

One chirality selective process during the nanotube growth might also be the de-

fect annealing or the prevention of defects during the growth. [75, 204] The defect

annealing process was suggested to influence the chirality distribution as armchair

edges were found to more easily anneal defects than zigzag edges. [204] A chiral-

ity change is possible if the defects cannot be annealed which makes zigzag tubes

”inferior in maintining their chirality during” the growth process. [204] In contrast

another theory study found efficient healing of defects, allowing the hypothetical

growth of meter long nanotubes without chirality change. [75] The catalyst with

the highest defect annealing efficiency was found to be iron. [75] High growth rates

(commonly used in theoretical studies), however, were suggested to lead to defective

structures, as the catalyst cannot anneal the defects until the next carbon atoms are

incorporated in the tube wall. [75] Another study explicitly argued that the defect

annealing process is not determining the chirality if no catalyst is present at the

edge of the tube. [205]

At some point of time the nanotube growth ends. The termination of the nanotube

growth was found to depend on the chirality, as nanotubes with stronger binding

energy to the catalyst particle have a higher probability to survive the Ostwald

ripening process, which terminates the growth. [177]

Besides the studies that tried to understand the chirality selective growth process

in the chemical vapor deposition, other studies tried to generate chirality selection

by other means. One idea to increase the yield of a certain chirality was to cut the

nanotubes of the desired chiralities and add a catalyst to regrow the tubes. [145, 206]

This increased the yield of the regrown chiralities, however, it seems that this ap-

proach is not followed anymore, as no research studies of newer date are known to

the author. [145, 192, 206] Other approaches to the chirality selective synthesis of

nanotubes, also aiming at the elongation phase, were tried by organic chemists. The

Diels-Alder reaction 18 was suggested as a possible means to elongate a nanotube

cap template into a nanotube. [207, 208] The first nanotube cap templates and short

nanotubes have been synthesized, however, there is still a lack of template molecules

to grow desired chiralities. [209] In another organic chemistry approach it was shown

18In the Diels-Alder reaction a hexagonal ring is formed by the addition of, e.g., acetylene (C2H2)
to the bay region of a carbon nanotube cap. [207]
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that cycloparaphenylenes, which are strings/rings of benzene molecules, are possi-

ble seed and/or precursors to elongate armchair nanotubes. [210] The process was

subsequently studied with quantum chemical simulations (density functional tight-

binding method) and a strong dependence for a chirality dependent growth rate in

a catalyst-free environment was observed. [211]

Even though extensive research effort has been put into the topic of chirality

selective growth, as could be seen in this section, it is still not possible to grow a

specific chirality. It is not even clear, if chirality selective growth is possible in the

sense that certain growth conditions grow only one specific nanotube chirality. It has

been shown, however, especially in the last few years, that the chirality distributions

can be narrowed and certain control of the chirality is possible. [3, 36, 90, 127, 155,

212–215] Combined with post processing we are nowadays able to produce samples

of only a few or even one chirality. [36, 41] However, we still do not understand the

details of the chirality selection.

In this section we presented the growth techniques and methods to produce car-

bon nanotubes. We focused on the carbon vapor deposition (CVD) method and

explained the nanotube growth mechanism in detail. Ideas and studies considering

the chirality selective growth of carbon nanotubes were presented and assessed. We

learned that the chirality selective growth is not fully understood despite many ex-

perimental and theoretical studies. We therefore study the chirality selective growth

with our own models in Chapter 2.
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1.2 Electronic Structure Theory

In this section we present the basics of electronic structure theory and the ab-

initio program package SIESTA, [216] which we utilised for our calculations. In

Section 1.2.1 we give a crude overview of the methodology we need to perform

electronic structure calculations, following the introduction to electronic structure

theory presented in the book of Richard Martin [92], which is a warmly suggested

read for those who are interested in a deeper understanding of electronic structure

theory. Section 1.2.2 gives a short introduction to the basics of the density functional

theory, while Section 1.2.3 introduces the van der Waals dispersion interaction and

the functional, which we use for our calculations of the dispersion between carbon

nanotubes in a bundle, see Chapter 3. Section 1.2.4 presents the code/program

package SIESTA [216] which we used for all density functional theory calculations

presented in this thesis.

1.2.1 Introduction to Electronic Structure Theory

In this section 19 we present the necessary theoretical basics of electronic structure

theory to understand the calculations that we performed in this thesis.

The starting point to derive the electronic structure of a system is the time-

independent Schrödinger equation: [92]

Ĥ|φ〉 = E|φ〉. (1.16)

The expectation value of an operator Ô involves the integration over all coordinates

and yields the time-independent expression for any observable for an eigenstate. [92]

”The total energy is the expectation value of the hamiltonian” Ĥ, [92]

E =
〈φ|Ĥ|φ〉
〈φ|φ〉 . (1.17)

19This section is based on the book of Richard Martin, see Reference [92].
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The hamiltonian for a system containing electrons and nuclei is given with:
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with lower case indices for electrons and upper case indices for nuclei, e.g. the

charge of nucleus I with ZI . [92] The first term describes the kinetic energy of

the electrons T̂ , the second term describes the Coulomb interaction between the

electrons and nuclei, often regarded as an external potential V̂ext due to the nuclei

acting on the electrons, the third term describes the Coulomb interaction between

the electrons, denoted as an internal potential V̂int, the fourth term describes the

kinetic energy of the nuclei T̂N , and the last term describes the Coulomb interaction

between the nuclei EII . [92] This hamiltonian can be simplified using the assumption

that electrons move on much faster timescales than protons and neutrons (atom

core/nucleus). [92] The adiabatic or Born-Oppenheimer approximation states, that

the electrons instantaneously achieve their ground state, if the nucleis change their

position through, e.g. lattice vibrations or translations. [92, 217] This allows to

neglect the kinetic energy term of the nucleis T̂n → 0, if MI is assumed to be infinite,

and describe the interaction between the electrons and nuclei by an external potential

of the nuclei acting on the electrons. [92] We want to study the cohesive energy

(adhesion energy, excess energy), geometric structure, and band structure in this

thesis. These are all ground state properties of the system, therefore we need to find

the ground state wavefunction of the electrons. [92] The ground state wavefunction

can be derived by minimization of the total energy, presented in Equation (1.17). [92]

To solve the time-independent Schrödinger equation, which allows to determine

the total energy, a common approach is to assume that the electrons are independent-

particles, which means that the complicated many-electron problem is replaced ”by

a one-electron problem in which electron-electron repulsion is treated in an aver-

age way”. [92, 218] The electrons are uncorrelated except that they must obey the

exclusion principle. [92] The Hartree-Fock approximation fulfills the condition by

generating a antisymmetrized determinant wavefunction of N electron spin-orbitals

(Slater determinant) and finding the single determinant that minimizes the total en-

ergy for the hamiltonian of Equation (1.18), where the fourth term is removed due to

the Born-Oppenheimer approximation. [92, 219] To solve the Hartree-Fock equation,
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in general a basis needs to be introduced. [92] A basis set is a set of functions (basis

functions, spin orbitals), e.g. a linear combination of Gaussian functions or plane

wave functions, which are combined to create molecular orbitals. [218] To describe

an arbitrary function the basis set needs to be complete, meaning that an infinite

set of functions is needed. [218] In general, however, the basis sets are finite, with a

certain number of functions, which allows to reach a certain accuracy in describing

the function. [218] As the Hartree-Fock equation is nonlinear, the solution has to be

calculated iteratively using the self-consistent-field (SCF) method. [218] The idea

of the SCF method is to make an initial guess at the spin orbitals, which allows to

calculate the average field seen by the electrons generated by the spin orbitals of the

electrons. [218] This average field is then used to determine new spin orbitals, which

leads to an iterative procedure, which ends when the average field does not change

anymore and the spin orbitals become eigenfunctions of the Fock operator. [218]

The problem with the Hartree-Fock approximation is the lack of correlation ef-

fects, which result from the repulsive interaction (Coulomb repulsion) for electrons

of different spins. [92, 220] This is a consequence of the construction of the anti-

symmetric total wave function (slater determinant) as a product of individual spin-

orbitals. [220] The slater determinant vanishes for electrons of the same spin in the

same orbital (Fermi hole), which is a consequence of the Pauli principle and can be

regarded as a strong repulsion between particles of the same spin. [220] The energy

resulting from this effect is commonly called exchange energy and it accounts for a

large part of the correlation of parallel spins, however, the correlation of electrons

with different spins is not included and has to be accounted for separately. [220] The

exchange energy lowers the total energy and ”may be interpreted as the interaction

of each electron with a positive ’exchange hole’ surrounding it”. [92] The correlation

effects can also be interpreted as a ”correlation hole”. [92] The correlation energy

is ”defined as the difference between the exact energy and the energy of an uncor-

related state” in the density functional theory, [92] which we will treat in the next

section. The density functional theory approximates the correlation effects within

its functionals. [221, 222]

In this section we presented a short overview on the basics of electronic struc-

ture theory. We introduced the Schrödinger equation, the hamiltonian for a general

system containing electrons and nuclei, the Born-Oppenheimer approximation, the
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Hartree-Fock approximation, the idea of basis sets, the self consistent field method,

and the exchange and correlation energies and holes. For the interested reader, who

wants to learn more about the details of electronic structure theory methods, we di-

rect to the review article of Payne et al. [223], the book of Szabo and Ostlund [218],

and the book of Richard Martin [92], which cover all methods used in our cal-

culations, e.g. pseudopotentials, k-point sampling, supercells, and the conjugate

gradient method.

1.2.2 Density Functional Theory

In this section we will give a short introduction to the fundamental ideas behind the

density functional theory.

”The density functional theory [(DFT)] is a theory of correlated many-body sys-

tems”, which has become one of the standard approaches for the calculation of

electronic structure in condensed matter. [92] The DFT is based on the theorems

of Hohenberg and Kohn, which yield as its most important result that the ground

state density of a system fully determines the properties of the system. [92, 221] The

hamiltonian of a system of interacting particles (considering the Born-Oppenheimer

approximation) can be written

Ĥ = − ~
2

2me

∑

i

∇2
i −

∑

i

Vext (~ri) +
1

2

∑

i 6=j

e2

|~ri − ~rj |
, (1.19)

see also Section 1.2.1. [92] The first Hohenberg-Kohn theorem states that the exter-

nal potential is uniquely determined (except for a constant) by the ground state elec-

tron density n0 (~r). [92, 221] The reductio ad adsurdum proof of Hohenberg and Kohn

shows an inconsistency for the assumption that two potentials V
(1)
ext (~r) 6= V

(2)
ext (~r)

(differing by more than a constant) with different ground states Ψ(1) 6= Ψ(2) have the

same ground state density n0 (~r), which proofs the correctness of the first Hohenberg-

Kohn theorem. [92, 221] This means Vext (~r) ”is (to within a constant) a unique

functional of” the ground state density n0 (~r). [221] The hamiltonian is fixed by

the external potential and therefore the full many-particle ground state is a unique

functional of the ground state density, which completely determines the properties

of the system. [92] The second theorem states that a universal energy functional
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F [n] exists, which leads to the lowest total energy for the correct ground state den-

sity. [92, 221] The functional can be used to define the energy functional for a given

external potential with

EVext [n] =

∫

Vext (~r)n (~r) d~r + F [n], (1.20)

which can be shown to assume its minimum for the correct ground state density

under the condition that
∫

n (~r) d~r = N , with N the number of electrons in the sys-

tem; [92, 221] Densities restricted by this conditions are called ”V-representable” and

define the space within which the functionals of the density can be constructed. [92,

221] An alternative approach due to Levy and Lieb allows the functional to be de-

fined by ”any density n (~r) derivable from a wavefunction ΨN for N electrons”. [92,

224]

The problem is to derive the universal functional, as no method is known to

derive an exact version. [92] The work of Kohn and Sham paved the way to derive

approximate functionals by replacing the problem of an interacting system with

an auxiliary independent-particle system that includes all many-body effects in an

exchange-correlation functional. [92, 222] Therefore the energy functional can be

rewritten by explicitly separating the classical Coulomb energy from the universal

functional: [221]

EVext [n] =

∫

Vext (~r)n (~r) d~r +
1

2

∫ ∫

n (~r)n (~r′)

|~r − ~r′| d~rd~r′ +G[n], (1.21)

where the new universal functional G[n] is defined by

G[n] = Ts[n] + Exc[n], (1.22)

with Ts[n] the kinetic energy of a system of non-interacting electrons with den-

sity n (~r) and Exc[n] ”the exchange and correlation energy of an interacting system

with density n (~r)”. [222] The exchange-correlation functional Exc[n] is not known

and approximate functionals have to be used. [92] A method to explicitly include

the exchange is to use the Hartree-Fock exchange energy and divide the exchange-
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correlation energy into separate exchange and correlation energy: [222]

Exc [n] = Ex[n] + Ec[n]. (1.23)

The Kohn-Sham auxiliary system corresponds to a problem of minimization with

respect to the density. [92] Therefore we can insert Equation (1.23) in Equation

(1.22), Equation (1.22) in Equation (1.21), and use the ”stationary property” of the

resulting equation (variation of the density) subject to the condition
∫

δn (~r) d~r = 0

to obtain the Kohn-Sham variational equations. [92, 222] The Kohn-Sham equations

have to be solved self-consistently, by starting with a guess for the initial density

n (~r), which allows to construct the potentials that allow to find a new density, [222]

see also SCF method in Section 1.2.1. The correlation energy can be approximated

by a functional, e.g. the local density approximation (LDA), [222, 225] the gener-

alized gradient approximation (GGA), [226] or a recent functional that is able to

describe the van der Waals interaction, see Section 1.2.3. [227, 228]

In this section we presented the fundamental theorems of the density functional

theory.

1.2.3 Van der Waals Density Functional

In this section we present the general idea behind the dispersion/long range inter-

action of microscopic systems. We start with the discussion of the Lennard-Jones

potential and focus on the van der Waals density functional published by Dion,

Rydberg, Schröder, Langreth, and Lundqvist [227, 228] in the second part of the

section.

The attractive force of the long range interaction between microscopic systems

is induced by dynamic polarization, which forms through the motion of electrons

of one atom and couples with the atomic motion of electrons on an atom further

away, meaning that they ”tend to move in phase”. [94] Using a simple model of a

linear harmonic oscillator for the electron in a uniform electric field leads to a static

polarization. [94] Considering a second electron as a parallel rigid dipole in a great

distance r with a potential −A/r3 acting as the external electric field leads to a

polarization energy ∝ R−6. [94] Using the artificial assumption that the aforemen-

tioned electron oscillators are indeed fluctuating dipoles, Lennard-Jones states that
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the two dipoles are not isolated systems. [94] In fact the one dipole is not fluctuating

independently from the other (coupled through the electric field), it ”will be subject

to a dynamic polarization” and the two systems form one coupled system. [94] A

more throughout, however, also more complicated treatment has been performed by

Eisenschitz and London. [229] The analysis of the two coupled oscillators lead to

a van der Waals polarization energy − hν0e4

2k2R6 and ”an attractive force proportional

to the inverse seventh power of the distance”. [94] This corresponds to a potential

proportional to R−6, which is the attractive part of the Lennard-Jones potential.

The repulsive forces are induced by the exchange term, meaning that the van

der Waals repulsive term is a quantum mechanical effect. [94] The repulsive force

decreases very rapidly with distance, containing terms exp (−ar). [94] However, for

distances most effective in atomic collisions, the dependence of λrepr
−n allows to

appropriately model the repulsive force, with a value of n = 13 found by comparison

to experimental data. [94]

A convenient way to describe the van der Waals interaction is to use the Lennard-

Jones potential 20:

VLJ =
λrep

r12
− λatt

r6
, (1.24)

with the attractive term ∝ r−6 resulting from the aforementioned dynamic polariza-

tion and the repulsive term ∝ r−12 resulting from the exchange interaction. [94, 230]

This potential can be rearranged by substitution of λrep = 4εσ12 and λatt = 4εσ6,

see Equation (3.10) page 66 in Reference [85]:

VLJ = 4ε

[

(σ

r

)12

−
(σ

r

)6
]

= ε

[

(rm
r

)12

− 2
(rm

r

)6
]

, (1.25)

with ε the depth of the potential and with a final rearrangement σ = 2−
1
6 rm, where

rm is the distance for the minimal energy, see Figure 3.6 page 67 in Reference [85].

In the second part of this section we want to discuss the van der Waals density

functional of Dion et al.. [227, 228] The problem of standard density functional

20The ”Lennard-Jones” Potential in Reference [230] is given in form of the force f (r) = λn/r
n −

λm/rm, with n = 14 1

3
, 21, 25 for the repulsive force and m = 5 for the attractive force. [230]

The potential can be obtained by integration V (r) = −
∫∞

r f (r) dr. [230] In Reference [94]

Lennard-Jones presents the ”van der Waals polarization energy = − hν0e
4

2k2R6 ” and the repulsive
force with n = 13 and an attractive force with m = 7 corresponding to the (12, 6)-dependence
we use for the potential.
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Figure 1.7: Long range dispersion interaction of two systems. Averaged electron
density profile of two graphene sheets. [231] The overlap of the electron
density does not yield a correct description of the van der Waals disper-
sion interaction (see dotted ellipse). [231] The figure was adapted from
H. Rydberg et al. with permission of B. Lundqvist. [231]

theory (LDA and GGA) is that it does not explicitly consider the van der Waals

interaction, which made the development of a new functional necessary. [231] Some

flavors of the standard density functional theory, however, lead to an energy mini-

mum for van der Waals systems, but this minimum occurs due to the small electron

density overlap depicted in Figure 1.7. [231, 232] This overlap does not account

for the physical binding between two van der Waals systems. [231] It is merely

coincidental that the standard DFT leads to a binding. [231] Standard DFT also

underestimates the binding energies. [231] A way to account for the physical van

der Waals interaction is to include a nonlocal correlation energy term in the density

functional. [231] The functional developed by Dion, Rydberg, Schröder, Langreth,

and Lundqvist uses a nonlocal correlation energy, which is in its simplest form given

by

Enl
c =

1

2

∫

d3rd3r′n (~r)φ (~r, ~r′)n (~r′) , (1.26)

with φ (~r, ~r′) a general function depending on ~r − ~r′ and the densities n in the

vicinity of ~r and ~r′. [227, 228] The exchange-correlation part of the nonlocal energy

functional proposed by Dion et al. can be given in the form [227, 233]:

Exc [n (~r)] = EGGA
x [n (~r)] + ELDA

c [n (~r)] + Enl
c [n (~r)] , (1.27)

where the exchange energy EGGA
x is described by the generalized gradient approxi-

mation (GGA), [234] the local part of the correlation energy ELDA
c is described by
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the local density approximation (LDA), [222] and the nonlocal part Enl
c is given with

Equation (1.26). [227, 233] The idea for systems with planar symmetry is to deter-

mine the nonlocal-correlation energy by comparison of the solutions of the Poisson

[∇ · (ǫ∇Φ) = 0] and Laplace equation [∇2Φ = 0], where a simple plasmon-pole

model is used for the dielectric function, with the plasma frequency and Fermi ve-

locity depending on the local density. [231] For general geometries the determination

of the nonlocal correlation energy is more involved and details can be found in the

References [227, 235].

The exchange-correlation potential corresponding to the van der Waals density

functional, which is needed to perform self-consistent calculations, was derived by

Thonhauser et al.. [236] The potential can be derived by taking the functional

derivative of the energy (Equation (1.26)) with respect to the density vnlc

(

~̃r
)

=

δEnl
c [n]

δn(~̃r)
. [236] An efficient implementation of the van der Waals density functional

was presented by Roman-Perez et al., which was also implemented in the SIESTA

package, see Section 1.2.4. [227, 233] The implementation expresses the nonlocal

correlation energy as a double spatial integral, which leads to a dramatic speedup

(scaling with O (N logN) instead of O (N2) for the evaluation of the double inte-

gral). [233]

The van der Waals functional was recently shown to give adequate results for a

potential energy curve of the adsorption of H2 on Cu(111). [237] The calculation

of nanotube bundles proved the applicability to nanotubes. [238] We calculate the

properties of bundles of tubes with various chiralities using the van der Waals density

functional in Chapter 3.

In this section we presented the dispersion interaction and ways to describe and

treat it. One possibility is to use the Lennard-Jones potential. [94, 230] An alterna-

tive approach to account for the dispersion is the van der Waals density functional

of Dion, Rydberg, Schröder, Langreth, and Lundqvist. [227, 228]

1.2.4 SIESTA - an ab-initio Software Package

In this section we present the method and the code, which is used to perform the

calculations in this thesis.

We performed density functional theory calculations with the ab-initio package
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SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms). [216,

233, 239] SIESTA is a selfconsistent density functional method that uses a nu-

merical linear combination of atomic orbitals (LCAO) basis set. [216, 240] The

atomic orbitals are a product of a numerical radial function and a spherical har-

monic within a cutoff radius rc and zero outside of the cutoff radius, which reduces

the computational costs. [216] The number of orbitals per atom included in the

basis, which is called multiple ζ , allows to increase the accuracy of the calcula-

tion. [216, 240] Polarization orbitals can be added to account for the deformation

induced by bond formation. [216] SIESTA treats the core electrons by a pseudopo-

tential, which allows to further reduce the computational costs, as only valence

electrons need to be explicitly considered for the electron density. [216] The norm-

conserving pseudopotentials used for our calculations are presented in the Appendix

(see Section 5.1). They are generated by the scheme of Troullier and Martins and

transformed into the fully nonlocal form proposed by Kleinman and Bylander for

the calculations in SIESTA. [216, 241, 242] Various exchange-correlation function-

als have been implemented in SIESTA including the standard LDA [222, 225] and

GGA functionals, [226] but also van der Waals density functionals have been re-

cently added. [216, 227, 233] The Hartree and exchange-correlation potentials and

their matrix elements are calculated by projection of the basis functions and the

electron density on a real-space grid. [216] The fineness of the grid is determined

by a grid cutoff Ecut parameter that corresponds (not directly) to the energy cutoff

in plane wave based methods. [216] The radial parts of all atomic orbitals at a cer-

tain grid point are interpolated from numerical tables and used (together with the

spherical harmonics part) to calculate the valence density at the grid point. [216]

The nonlocal core correction, which is a spherical charge density that simulates the

atomic cores, is added to the valence density; [216] With this density the exchange

potential can be determined. [216]

This section ends the introduction chapter with a short overview of the SIESTA

method.
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Die Schwingung

Hermann Ludwig Ferdinand ahnte nicht, was auf ihn zukam. Er wurde unvorbereitet

getroffen, gepackt und fortgerissen. Erst hatte er sich noch an Ernest festgehalten,

dann aber war die Kraft, die auf ihn wirkte doch stärker gewesen und er begann sich

von Ernest zu entfernen. Er spürte wie die Kraft langsam nachließ, umschwang und

ihn nun in die entgegengesetzte Richtung zu zerren begann. Er flog an Ernest vorbei,

der nur unmerklich von dem Treiben beeinflusst wurde. Ernest war schließlich 1836

mal so schwer wie Hermann Ludwig Ferdinand. Durch sein hohes Gewicht konnte er

ruhig auf seinem Platz hocken und beobachten, wie Hermann verzweifelt versuchte,

sich an ihm festzuhalten. Ernest schaute belustigt zu, wie Hermann nichts gegen die

Kraft ausrichten konnte und im Rhythmus der äußeren Kraft schwang. Hermann

blieb nichts anderes übrig als sich hin- und herstoßen zu lassen. Er wartete und

hoffte, dass sich die Situation beruhigen würde und das Ganze so plötzlich aufhören

würde, wie es begonnen hatte. Doch die Kraft schien stärker zu werden und er wurde

immer heftiger herumgewirbelt . . .



2 Chirality Selective Growth

In this chapter we present our studies on the chirality selective growth of carbon

nanotubes. 1 The first section (Section 2.1) introduces the structure of the edge

of carbon nanotubes, as well as the structure of nanotube caps. 2 In the litera-

ture two types of edges for the nanotube cap structures are commonly used for

calculations to determine the adhesion energy between nanotube caps and catalyst

particles. One is the edge derived from the circumferential vector, used, e.g., in

the studies of References [1, 45, 162, 179, 194, 200, 202], the other is an angled

cut edge used in the studies of the References [160, 190, 195, 243]. We study and

compare three edge structures, including the circumferential and angled cut edge,

to determine the effect of the choice of the studied edge on the research results and

conclusions of the research studies. Section 2.2 presents the model of the chirality

dependent growth rate, which describes the chirality selective elongation process of

the nanotube growth. 3 In Section 2.3 we calculate the parameters for the chirality

dependent growth rate model on Ni, Fe and NiFe alloy particles. The parame-

ters are then used to determine chirality selective growth rates on the particles to

determine a possible chirality selection induced by the alloy particles observed ex-

perimentally. [3, 127] We study the effect of the charge transfer between nanotube

1Parts of the results, texts and figures of this chapter have been prepublished by the author of
the thesis in References [43, 44]. The results are partly based on the research work performed
by the author during his time as a diploma student and were partly included in the authors
diploma thesis in Reference [1]. Acknowledgement to the references which were integrated are
given for the specific sections of this chapter. The author felt it to be necessary to introduce
the reader to the topic of the edge/rim structure of carbon nanotubes to be able to understand
the extensions derived in this thesis, as well as the application of the growth rate model.

2Section 2.1.1 is based on Reference [44], which is based on the research work of the unpublished
diploma thesis [1] of the author. Section 2.1.2 is an extension of the ideas of Reference [1]
applied to nanotube caps. Reference [1] presented calculations on two different rim structures,
however, the calculations were performed with a wrong pseudopotential (LDA instead of GGA).

3Section 2.2 is based on Reference [43], the general formalism was developed in the diploma
thesis [1] of the author and extended in this thesis.
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caps and NiFe clusters, which was recently reported to increase the reactivity of

the rim atoms of nanotube caps [194, 202] and which also induces an electric dipole

moment on the cap and cluster system.
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2.1 Structure of Nanotubes During the Growth

Process

In this section 4 we study the structures of carbon nanotubes, especially the structure

of the edges/rims during the growth process. Before we go into the details, we want

to remind on the basics of the growth process, see Section 1.1.4.

The structure of the carbon aggregates changes in various steps of the growth pro-

cess. [159, 163, 170, 172, 182, 184, 244] The first structure/form of the carbon atoms

is the precursor gas. [1, 170] The precursor gas is decomposed at the surface of a cat-

alyst particle and the carbon atoms become individualised to diffuse into the particle

to saturate it [1, 112, 163] or on the particle to form carbon chains. [1, 163, 182, 184]

If the catalyst particle has the correct conditions, e.g. size, [134] shape, [134] and in-

teraction strength with substrate and carbon, [1, 134, 161, 162] a graphene-like layer

with pentagons in it transforms into a carbon nanotube cap structure. [172–175, 184]

The formation of the nanotube cap ends the nucleation/formation stage. Here the

form of the nanotube cap rim/edge, see Section 2.1.2, is especially interesting, as

the form of the cap as well as pentagons as part of the rim might be defined by

the structure of the catalyst particle. [53] Carbon addition to the rim elongates the

nanotube, which is called the elongation stage. [200] During the elongation stage the

structure of the rim is changing with every carbon addition, [1, 43, 44] see Section

2.1.1. In the last phase of the growth process, the termination phase, the growth

ends and the nanotube either closes its growing end, encapsulates the particle with

amorphous carbon or simply stops its growth, as the growth conditions do not al-

low further growth, e.g. no more heat/carbon supply. [169] We will only consider

preformed caps and the elongation phase in this thesis and point to the References

presented in Section 1.1.4 for informations about the other phases.

In the next section we will focus on the structure of the carbon nanotube edges and

present a formalism depending only on the chiral indexes n and m to classify all rim

structures of the nanotubes, see Section 2.1.1. The section also includes a calculation

for the stability of the hexagonal rim structure in comparison to a structure with a

4The results presented in the first part of Section 2.1.1 are based on results of the unpublished
diploma thesis of the author (Reference [1]), as well as on the results published by the author
in References [43, 44]. The theoretical studies were performed by the author of this thesis under
the supervision of the co author of the papers and the thesis advisor Stephanie Reich.
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a) b)

Figure 2.1: 3d wire model of a (5, 5) nanotube and unzipped 2d representation of
its rim. The rim contains addition sites ”.” armchair ”a”, and zigzag
dangling bonds ”z”. a) Rim expected from the circumferential vector
construction. b) Angled rim. The figure was adapted from References
[1, 44] of the author of this thesis.

Klein-edge, which can be obtained by carbon dimer rotation. Section 2.1.2 considers

the rim structure of nanotube caps with a focus on different rim structures for the

same cap. Various properties are studied to determine, if one of the cap structures

is preferred. The section further includes a study on the bond length of carbon

nanotube caps for armchair and zigzag edges, which is correlated with the bond

strength between the carbon atoms.

2.1.1 Structures of the Edge

In this section 5 we present the possible configurations of the open ends (edges/rims)

of carbon nanotubes and formulas to derive the number of armchair and zigzag-type

dangling bonds contained in a specific rim of given chirality (n,m). In the second

part of this section we calculate carbon rim structures to determine the stability of

hexagonal rims.

In the following we discuss the essential properties of rims made up by hexagons.

5The first part of this section is based on the prepublished References [43, 44] of the author
of this thesis. References [43, 44] are partly based on the diploma thesis of the author, see
Reference [1]. Therefore the first part of this section is to be regarded as an introduction
section, that is not part of the research work performed for this thesis. The analyses were
performed by the author of this thesis under the supervision of the co author of the papers and
the thesis advisor Stephanie Reich. The stability calculation of the rim in the second part of
the section is original research work of the author and marked by a footnote.
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arm
chair (n,n)

zigzag (n,0)

0,0

10,1
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1,1
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3,3

4,4

5,5

6,6 7,6

7,7 8,7

8,6 9,6

9,7

8,8

7,5 8,5 9,5 10,56,5

2,0 5,0 6,0 7,0 8,0 9,0 10,011,012,0

2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 11,112,1

3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,211,2

4,3 5,3 6,3 7,3 8,3 9,3 10,311,3

5,4 6,4 7,4 8,4 9,4 10,4
+1,0

+1,+10,+1

Figure 2.2: Rim creation sheet with the possible rim paths for a (3, 3) nanotube.
Connecting the lower corner of the (0, 0) hexagon with the lower corner
of the (3, 3) hexagon by any of the paths inside of the bold (blue) line
border yields a (3, 3) rim. The figure was adapted from References [1, 44]
of the author of this thesis.

All carbon nanotube rims consist of armchair a and zigzag-type dangling bonds z.

Armchair dangling bonds a consist of one of two neighboring twofold C-C bonded

atoms, see Figure 2.1 a). Zigzag dangling bonds z have two saturated C neighbors

and are themselves twofold C-C bonded, see Figure 2.1 b). An addition site denoted

by ”.” elongates the rim by a hexagon with C2 addition. [245] The rim that follows

most closely the circumferential vector (see Section 1.1.2) of a tube has

Na = 2m, (2.1)

armchair and

Nz = n−m, (2.2)

zigzag dangling bonds, see Figure 2.1 a). For the (5, 5) tube we get Na = 10 and

Nz = 0 and the particular rim configuration aa.aa.aa.aa.aa., if we follow the rim

from left to right. The rim of Figure 2.1 b) is an angled rim with one side longer

than the other side, it has Na = 2 and Nz = n +m− 2, with m 6= 0.

Beneath the circumferential vector rim and the angled rim, there are many other

possible rims. The nanotube rims can be derived from the rim creation sheet, see

Figure 2.2 or for more details see the diploma thesis of the author (Reference [1]).

The rims of the (3, 3) nanotube are shown bordered by bold (blue) lines. Following
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Figure 2.3: Rim configurations of the (3, 3)-armchair nanotube from C2 addition.
The numbers at the bottom right of the rims are defined by A.BC with
A the number of added C2, B a counting variable for different rims (0
is special, as these are half or full layers) and C the number of addition
sites. The gray shaded side represents the body of the tube. The figure
was adapted from References [1, 44] of the author of this thesis.

the direct connection between the lower corner of the (0, 0) hexagon to the (3, 3)

hexagon corresponds to the circumferential vector construction, see Figure 2.3 (0.03).

An angled rim can be obtained by following the other bold (blue) line path between

(0, 0) and (3, 3), see Figure 2.2. All the paths inside of the borders created by the

bold (blue) lines in Figure 2.2 lead to different rim configurations, which have to

fulfill the condition Na +Nz = n +m. There are simple rules to derive a rim from

the rim creation sheet: (i) The route must not go in circles, (ii) borders are not

allowed to be crossed and (iii) paths only include ↑ up, ւ down-left and տ up-left

steps.

The (3, 3) nanotube has 20 different rims, see Figure 2.3. Only four of the rim

configurations (0.03, 1.12, 2.12, and 3.11) are unique, with the other rims having

the same structure, e.g. 1.12 = 1.22 = 1.32 = 4.12 = 4.22 = 4.32, which is true

considering the application of simple symmetry operations like rotations and im-
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proper rotations. The numbers at the bottom right of the rims are defined by A.BC

where A denotes the number of added C2 compared to the rim derived from the

circumferential vector (0.03), B is a counting variable for different rims (0 is special,

as these are half or full layers), and C is the number of addition sites. The amount

of carbon atoms that needs to be added to complete a full layer depends on the

chirality and is equal to the number of rim atoms 2 · (n+m). For a (3, 3) tube the

addition of n+m = 6 C2 to a rim structure can lead to an equivalent rim structure,

e.g. 0.03 = 6.03 or 1.32 = 7.32.

The addition of C2 to different addition/growth sites at the rim yields different

transitions for the rim configuration. Three kinds of growth sites can be identified

aa.aa, aa.z and z.z, with z.aa growth sites being identical to aa.z by symmetry,

see Figure 2.3 and Table 2.1. Additions to other rim sites, aa, az, za and zz do

not add hexagons and are energetically less favorable. Addition of C2 to an aa.aa

growth site induces a transition aa.aa → zaaz removing a growth site, see Figure 2.3

(0.03 → 1.22). For aa.z we have a aa.z → zaa. transition with C2 addition, which

shifts the dangling bonds and the growth sites, see Figure 2.3 (1.22 → 2.22). The

C2 addition to z.z induces a transition z.z → .aa. adding a growth site to the rim,

see Figure 2.3 (2.22 → 3.03). It is also possible to create a different growth site type

with C2 addition to a growth site, as dangling bonds and growth sites are moved

and transformed, see Figure 2.3 (1.22 → 2.22), where addition to aa.z turns a z.aa

growth site to a z.z growth site.

The number of growth sites of a rim depends on its chiral indexes (n,m) and

the exact rim configuration. The number of growth sites in the rim configuration

Table 2.1: Overview of site types in a nanotube rim. ”∆.” represents the change in
addition site number and ”transition” the change of the bond structure
with C2 addition.

site ∆. transition example
aa.aa −1 aa.aa → zaaz Fig. 2.3 (0.03 → 1.22)

aa.z/z.aa 0 aa.z → zaa./aa.z → .aaz Fig. 2.3 (1.22 → 2.22)
z.z +1 z.z → .aa. Fig. 2.3 (2.22 → 3.03)
aa - - Fig. 2.3 (3.31)

az/za - - Fig. 2.3 (3.31)
zz - - Fig. 2.3 (3.31)
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derived from the circumferential vector, e.g. 6.03 configuration in Figure 2.3, is

Naa.aa = max (2m− n, 0) =







2m− n if 2m− n > 0,

0 otherwise,
(2.3)

Naa.z = min (m,n−m) , (2.4)

and Nz.z = 0. All chiral tubes have at least one aa.z site in the rim configuration

derived from the circumferential vector at which growth can occur without inducing

so called armchair kinks. [1, 168] Details for the rims of chiral tubes can be found

in the References [1, 44] of the author of this thesis, which show that the same

considerations presented in this section are applicable for chiral and achiral rims, as

both consist of armchair and zigzag bonds.

A pair of armchair kinks, corresponding to a C2 addition between two armchair

sites of the rim, [168] transforms two armchair bonds 2a into two zigzag bonds

2z, see Figure 2.3 (0.03 → 1.22), which corresponds to a aa.aa growth site with

the transition aa.aa → zaaz; With the number of armchair kinks k = 2 · x,
(x = 0, 1, . . . , m − 2, m − 1; kmax = 2 · (m − 1)), we can derive all m possible

rim configurations 6 in dependence of Na the number of armchair bonds

Na = 2 ·m− k, (2.5)

and Nz the number of zigzag bonds

Nz = n−m+ k. (2.6)

The energetically most favorable rim structure depends on its environment. Rims

in contact with other atomic species, e.g. a metallic catalyst, interact with the

surface of the catalyst and the rims are deformed according to the surface struc-

ture. [179] Therefore the rim expected from the circumferential vector is not in

every case the most likely rim, as a preformed contact can force the nanotube rim

into a certain rim configuration. This is the starting point for the next section,

6The configurations of the rims derived by this formula are called standard rims, meaning rims,
that do not change their total number of bond sites. For details see Reference [1] of the author
of this thesis.
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Section 2.1.2 where different rims of carbon nanotube caps are studied on an iron

cluster to understand the interaction between the rim structure and the catalyst

structure. The rim can also be deformed if its environment is taken into account.

In vacuum the dangling bonds tend to bend out of the nanotube axis and the rim

atoms decrease their nearest neighbor distances. [246, 247]

Before we study different rims on a catalyst particle, we first present calculations 7

of a Klein-edge configuration at a pentagon compared to the hexagon configuration

on a graphene sheet model to determine the stability of the hexagonal rims presented

in this section. The graphene sheet models the rim of a carbon nanotube neglecting

the curvature, which can only give an approximation to the rim of a nanotube.

The pentagon Klein-edge configuration corresponds to the hexagon configuration

with rotation of the carbon dimer consisting of the edge atoms of the hexagon

configuration.

We calculated the energy difference between the two structures and estimated

the transition energy from the minimal energy path (MEP) between both config-

urations with density functional theory calculations utilising the ab-initio package

SIESTA. [216, 239] The calculations used norm conserving nonlocal pseudopotentials

generated by the Troullier-Martins scheme with the PBEsol functional. [241, 248]

The carbon pseudopotential was generated in the ground state configuration of car-

bon 1s2 2s2 2p2 with cutoff radii rs,p = 1.29 Bohr and rd,f = 1.50 Bohr. The iron

pseudopotential was generated in an excited configuration [Ar] 3d7 4s1 with cutoff

radii rs,p,d,f = 2.00 Bohr and a pseudocore radius of 0.70 Bohr, more details on

pseudopotentials can be found in the Appendix (Section 5.1). The calculation used

the generalized gradient approximation within the PBEsol parametrization and a

double-ζ basis set with polarization orbitals (DZP). [248] We chose cutoff radii for the

s and p orbital of the carbon atoms with rs = 5.949 Bohr and rp = 7.450 Bohr and for

the s and d orbital of the iron atoms we chose rs = 8.400 Bohr and rd = 8.200 Bohr.

The mesh-cutoff for the real-space integration corresponded to about 750 Ry. We

used a k-point sampling of 9x9x1 to calculate the total energies.

The carbon dimer rotation energy barrier is estimated by comparison of the total

energies of the pentagon Klein-edge configuration, the hexagon configuration and in-

7The following part of the section has not been published before and represents original research
work of the author of this thesis.
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a) c)b)

a)

b)

c)

Figure 2.4: Top view on a ball and stick sketch model of a carbon (gray) dimer
rotation in a graphene/nanotube edge near an iron (orange) catalyst
in the top of the figure. The bottom shows the energy levels of the
configurations normalized to the energy of the hexagon configuration. a)
Pentagon configuration. b) Intermediate (transition) state. c) Hexagon
configuration.
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termediate configurations at the edge of a kinked graphene sheet on an iron catalyst,

see Figure 2.4. The intermediate configurations allow to construct a potential energy

surface, from which we can derive the rotation barrier height. The geometries of the

configurations were optimized to a maximal atomic force of 0.01 eV/Å with fixed

z-coordinates for all atoms and fixed dimer position for intermediate configuration

calculations. 8

The pentagon Klein-edge configuration is 0.29 eV higher in energy than the

hexagon configuration. We find the energy barrier for the rotation of the carbon

dimer at the edge of the carbon rim with 2.91 eV for the pentagon Klein-edge config-

uration and a barrier with 3.20 eV for the hexagon configuration, see the transition

state in Figure 2.4 b). We can translate the two dimensional situation to the nan-

otube rim. If we consider a 90◦ rotated C-C bond in the wall of a nanotube instead

of the edge of a flat graphene rim, we receive a defect composed of two pentagons

and two heptagons, commonly denoted as Stone-Wales defect 9. [251] The Stone-

Wales defect was found to have a high energy barrier of about 9-11 eV in carbon

nanotubes or graphene and about 6-7 eV in C60 fullerenes. [252] The activation en-

ergy, however, is decreased significantly near metal catalyst atoms, e.g. down to

3.25 eV in a (6, 6) nanotube cap with cobalt catalyst [253] or 3.15 eV in a fullerene

with wolfram as catalyst, [254] which is comparable to our rotation barrier from

the pentagon Klein-edge configuration to the hexagon configuration of 2.91 eV, see

Figure 2.4 a) to b). A recent study on the annealing of defects in graphene showed

that the defect annealing increases with higher temperature, which the authors sug-

gested to be important for the chirality selective growth of carbon nanotubes, [255]

see Section 1.1.4. The energy level difference between the hexagon configuration

and the pentagon combined with a Klein-edge configuration is 0.29 eV, which is of

the same order as the average nanotube cap formation energy (0.29 eV/atom). [63]

Combining these observations and using the observation that the addition of single

carbon atoms to pentagons lead to a chirality change of the cap, [200] points to a

chirality selective mechanism in the nucleation stage of carbon nanotubes depending

8This method only allows a rough estimate for the rotation barrier. Improved results can be
obtained by, e.g., the (climbing image-) nudged elastic band (CI-NEB) approach, [249, 250] see
e.g. Reference [75].

9Stone and Wales [251] actually studied rotations of carbon dimer bonds in a two pentagon and
two hexagon environment in C60 molecules.
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on temperature through the carbon addition to/annealing of pentagons.

2.1.2 Nanotube Cap Structures

In this section 10 we cover two important aspects of nanotube cap structures. First

we study the influence of the rim structure on the binding energies and charge

distribution, between an armchair carbon nanotube cap and an iron particle. A

second part considers the bond lengths at the edges of nanotube caps, which correlate

with the binding strength of the bonds.

In the literature two kinds of rim structures (for non-zigzag caps) are commonly

used to calculate the interaction between nanotube caps and catalyst surfaces or

particles. One approach is to use maximally elongated rims which we call angled

rims, see References [1, 53, 190, 195, 243, 256] and Figure 2.5 c). The other approach

is to use the shortest possible cap structures, see References [1, 179, 194, 200, 202,

215, 256] and Figure 2.5 a), which correspond to the rim which is derived from the

circumferential vector and generally used in publications that study the interaction

between nanotubes and catalyst structures. [162, 194, 202] The motivation of this

section is to determine, if there is a preference of a certain rim structure of the

cap by comparison of three possible rim structures of a (5, 5) armchair cap, see

Figure 2.6. We consider the energetic stability, the electronic charge distribution at

the edges, the electric dipole moment, the HOMO-LUMO gap 11, the growth rates

and geometric arguments. To better understand the nanotube cap edges, which

only contain armchair and zigzag sites, we explicitly compare the bond length of

armchair and zigzag edges for the straight rims of the (5, 5) armchair cap and the

(9, 0) zigzag cap.

We begin with a short analysis of the results of studies using elongated cap struc-

tures, which were presented in Reference [190] and Reference [195]. The study of

Dutta et al. models carbon nanotube caps on flat NiFe alloy surfaces. [190] As can

be seen from Figure 5 of Dutta et al. [190] they use caps with angled rims, e.g., a

(8, 4) nanotube cap with 10 zigzag sites (z) and 2 armchair sites (a) at the edge

of the cap. The cap diameter of angled rims is increased, as angled rims have an

10A preliminary comparison between an angled rim and a straight cut rim has been conducted in
the diploma thesis of the author, see Reference [1].

11HOMOmeans highest occupied molecular orbital and LUMOmeans lowest unoccupied molecular
orbital. [194, 257]
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a)

b)

c)

Figure 2.5: C100-fullerene and (5, 5) armchair caps in ball and stick model and re-
duced rim representations [1, 44] of the rims of the caps. The gray pen-
tagons represent the positions of the pentagons in the rim. a) Straight
rim/shortest cap with .aa.aa.aa.aa.aa rim configuration and 30 atoms.
b) Short carbon nanotube/fullerene with two possible rims cut from it
(green). c) Angled rim/longest cap with .zzzzaazzzz rim configuration
and 50 atoms.

a) b) c)

Figure 2.6: Ball and sticks sketch model of the three carbon nanotube caps on a Fe55
catalyst cluster on the top spot. Carbon atoms in gray and iron atoms
in orange. a) The (5, 5) cap shows two Klein-edges through bond break
of a pentagon at the rim. b) The intermediate (5, 5) cap. c) The angled
(5, 5) cap.
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elliptic area compared to the circle produced by straight rims. The (8, 4) cap has an

elliptical shape with two axes of d1 = 11.4 Å and d2 = 7.6 Å, leading to an area of

about 68 Å
2
. [190] For a straight rim, however, the (8, 4) nanotube has an average

diameter of 8.55 Å, see Table 3.1 in Section 3.2.1, leading to an area of about 57 Å
2

with the rim configuration Na = 2 · m = 8 armchair sites and Nz = n − m = 4

zigzag sites. As the calculation was performed on a flat surface, we do not expect

a template effect of the catalyst structure. [53] The structure of the catalyst may

be more stable for certain rim structures, which have a good fit to its surface. The

diameter and rim structure of the cap do not seem adequate for a study on a flat

surface, as the tube/cap ”diameter” is increased compare to the nanotube diameter.

The diameter of the tube is the only factor, which could be verified to show some

correlation with the diameter of the catalyst particle. [52, 111, 114, 139, 187–189]

Therefore the chirality selection should be studied with a cap that has a consistent

diameter to the particle. An elongated rim seems only to be adequate for studies

with steps or a three dimensional particle form.

Angled rim structure caps were also used in the study of Gómez-Gualdrón et al.,

where they are erroneously used to find that the number of favorable growth sites

increases for the (6, 5) cap with increasing cap length. 12 [195] Carbon dimers are

added to the cap until it finishes with a straight rim configuration. This rim config-

uration (without kinks) has the highest number of growth sites, see Section 2.1.1.

The straight rim configuration is found to be the most stable configuration by fol-

lowing the energetically most favorable carbon addition path. [195] The study was

performed in vacuum, therefore the excess energy for zigzag sites Ez is significantly

larger than the excess energy for armchair sites Ea. [80, 258] The oscillatory pattern

of the adhesion energy with adhesion of C2 radicals observed by Gómez-Gualdrón et

al. for the (6, 6) cap [195] can be explained by the change of the rim structure

(armchair into zigzag bonds and vice versa). The initial elongated cap starts with

only one z.z addition site, compare, e.g., Figure 2.5 c) for a similar rim structure of

a (5, 5) rim, which through addition of C2 transforms to one .aa. site. The energy

is low, as the transformation of zigzag to armchair bonds is energetically favorable

in the vacuum. Two possible aa.z addition sites can be found for addition step 2,

12The results of the Gómez-Gualdrón study have already been analysed in some detail in the
diploma thesis of the author, see Reference [1], however, as the diploma thesis was not published
the author considered it important to include the more throughout analysis here again.
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the first addition to any of them does not change the number of zigzag or armchair

bonds, however, it generates a z.z site. Addition step 3 closes the intermediate layer

through addition to the newly formed z.z addition site and generates another .aa.

site accompanied with a low adhesion energy. Three addition sites are filled from

step 4 to 6 leading to four addition sites for steps 7 to 10, at which the fifth addition

site is generated. Five further carbon dimer additions would lead to a straight rim

configuration with six addition sites, however, the study stopped after 10 steps. [195]

The conclusion of the study seems wrong, as the initial cap in the vacuum is un-

likely to be angled, as the number of zigzag sites is maximized for these caps. In the

vacuum zigzag sites are energetically expensive, which suggests, that the cap should

have a straight rim form with a minimum of zigzag sites and a maximum of arm-

chair sites. If the structure was studied on a catalyst on the other hand, the number

of growth sites would not be increased either with the length of the tube, as the

initial rim structure was favorable from the beginning on the cluster. Therefore the

rim structure would not change significantly during the growth and the number of

growth sites would remain low on the angled rim. Only a catalyst-cap deformation

would allow to change the rim structure.

In the following we study a straight, an angled and an intermediate rim structure

of a (5, 5) carbon nanotube cap on an icosahedral iron nanoparticle containing 55

atoms, see Figure 2.6. The computational details of the density functional theory

calculations performed for this section are described in Section 2.3.1. The nanotube

cap structures were derived from geometry optimized fullerene structures, see Sec-

tion 2.3.1. The fullerenes were divided into single caps by cutting either straight

in Figure 2.5 a) to obtain the circumferential vector rim structure or cutting with

an angle to obtain the angled rim in Figure 2.5 c). The intermediate structure was

obtained by removal of the lowest carbon dimer of the angled rim cap, see Figure 2.6

b) and Figure 2.7 b). The single caps were transferred on three different spots of

a catalyst particle, e.g., on the top spot, see Figure 2.6 and Section 2.3.1 for more

details about the catalyst particle. The adhesion energies, excess energies and Bader

charge distributions were derived as described in Section 2.3.1. The bond lengths

were derived from the atom positions contained in the ”.xyz” files with the help of

the program Avogadro, which was also used to produce the ball and stick models in

the figures of this thesis. [57]
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Table 2.2: Comparison of adhesion energies, carbon-metal bond energies, excess elec-
tron charges at the rim, electric dipole moments, and HOMO-LUMO gaps
of (5, 5) nanotube caps with straight, intermediate and angled rim on an
iron cluster. The asterisk denotes the system with at least one Klein-edge
at the rim.

cap spot Ead (eV) ECM (eV) rim charge (e) ∆ (D) HL-gap (eV)
straight 1 -21.2 4.3 4.1 13.7 0.23
straight 2 - - 4.1 13.1 0.18
straight 3* -21.2 4.3 4.3 10.3 0.18

intermediate 1 -20.7 3.6 3.6 15.8 0.16
intermediate 2 -19.4 5.0 3.8 15.0 0.12
intermediate 3 -21.4 3.0 3.7 14.4 0.22

angled 1 -21.5 3.8 3.5 15.1 0.13
angled 2 -20.8 4.6 3.7 14.6 0.10
angled 3 -22.9 2.5 3.5 14.4 0.12

The adhesion energies and excess (carbon-metal bond) energies show no significant

trend, see Table 2.2. Even though the adhesion energy increases from straight to

angled rim, the increase of adhesion energy with only a few eV is negligible for the

cap properties. One of the reasons for the increase is the increase of the number

of zigzag bonds, which is 0 for the straight rim and 8 for the angled rim. In the

vacuum (dissociated cap) the zigzag sites need more energy, as they have dangling

bonds compared to armchair sites which tend to form triple bonds. [258] The energy

difference between the armchair and zigzag bonds at the edge of the cap, however,

was found to be small, see Section 2.3.1. The number of pentagons at the edge may

influence the adhesion energy of the edge, which is only two for the intermediate

and angled rim, while there are five pentagons at the edge of the straight rim. The

adhesion energy describes the energy needed for the cap to lift off of the particle

into the vacuum. The barriers of about −20 eV are large enough to prevent the

caps to lift off into the vacuum, which would end the growth, as the caps would

likely form fullerenes. [159, 162] Therefore a small adhesion energy change of a few

eV is negligible for the stability of the caps on the clusters. The excess energies vary

with spot and rim structure between 2.5 eV and 5.0 eV. No rim structure can be

identified to be preferable for all spots from the excess energies. For example the
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a)

b)

c)

Figure 2.7: Representation of the straight, intermediate and angled (5, 5) carbon
nanotube rims with excess electron charges next to the edge atoms in
10−2 e. The excess electron charges are averaged over three different
cap-catalyst systems, with the cap being connected to different spots on
the catalyst particle. The top spot 3 of the straight rim was excluded,
as it contains a broken pentagon bond resulting in two Klein-edges, see
Figure 2.6. a) Straight rim. b) Intermediate rim. c) Angled rim.

angled rim has a good fit with spot 3 (top) following from the low excess energy. The

low excess energy alone, however, does not allow a conclusion about the formation

probability of a certain cap structure on a catalyst, as the catalyst particle shape

for real systems is expected to be significantly deformed by the substrate and the

cap structure, as the metal atoms are expected to be molten or surface molten. [192]

Therefore the binding energy or surface fit between a catalyst and the cap is not

a good parameter to determine the stability or formation probability of a cap on a

specific catalyst cluster. [192, 194]

The electron charge on the edge atoms establishes a trend, see Table 2.2. If the

carbon nanotube cap is attached to a catalyst particle some charge is transfered

from the metal catalyst atoms to the carbon atoms in the nanotube cap. [202, 256]

The charge transfer is a common phenomenon as the tendency to attract electrons

depends on the element. [51, 259] The tendency to attract electrons is called elec-

tronegativity, which is 1.6 or 1.8 for iron and 2.5 for carbon. [51, 259] The charge

transfer induces a dipole moment on the system, which depends on the amount of

transfered electrons and the geometry of the system. [51, 259] The frontier orbital

theory states that ”reaction sites with higher frontier electron density are more
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reactive”. [202, 257] In the study of Wang et al. for the (5, 5) cap on a Ni clus-

ter of 55 atoms it was found that the ”negative charged outermost edge carbon

atoms have significantly higher electron density near the Fermi level than inner

atoms”, [202] which means that they are more reactive. [202] The charge induced

by the metal catalyst particle was suggested to activate the nanotube edge for the

growth. [202] Another important parameter for the reactivity is the gap between the

highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular

orbital (LUMO), where a small gap points to higher reactivity. [194, 257] Atomic

orbitals can only form molecular orbitals, if the energies and geometries of the or-

bitals are not too different, [51] a small HOMO-LUMO gap means a small difference

in orbital energy. [194, 257]

The straight cap has the highest electron charge on the edge atoms (4.1 e), which

decreases to the lowest value on the angled rim (3.6 e), see Table 2.2. The electron

charge is nearly independent of the spot, which points to an intrinsic property of

the rim structure. We show the charges for the individual atoms of the edge in

Figure 2.7. All charge values are excess values compared to the valence charge of

carbon of 4 e. We average the charge values for individual atoms on the three

different spots to derive the charge redistribution. The atoms that form carbon-

metal bonds (outer edge atoms) receive the major part of the electron charge, while

the carbon atoms connected to the outer edge atoms receive only a smaller amount

of charge, see Figure 2.7. The values of the inner straight rim are between 0.05 e

and 0.10 e. The values on the outer rim are more volatile ranging from 0.31 e to

0.48 e with an average value of (0.41± 0.07) e. The intermediate rim has an average

charge redistribution from the iron atoms to the carbon nanotube outer edge atoms

of (0.37± 0.04) e. The average charge redistribution of the angled rim atoms is

slightly smaller than the value of the straight rim with (0.36± 0.04) e, however,

the zigzag sites have an average value of (0.35± 0.04) e, while the two armchair

sites of the rim have (0.39± 0.03) e. This points to a possible influence of the edge

structure on the charge redistribution and therefore the reactivity of the edge atoms.

For the caps that contain only zigzag sites the electron charge redistribution has

about 70% of the charge at the outer edge ((9, 0) cap), which is lower than for caps

that contain only armchair sites, where about 83% of the electron redistributed

charge is at the edge ((5, 5) cap with straight rim). The intermediate (5, 5) rim
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structure cap has 76% of its charge distributed at the outer edge, while the angled

cap has only 71% at the outer edge, which is likely a result of the high number of

zigzag sites in the angled cap. The higher electron charge on armchair edges allows

them to be more reactive than zigzag edges, which is accompanied by a higher

growth rate.

The electric dipole moments depend on the spot and the rim structure. There is a

small tendency for smaller dipole moments on the straight rim, as well as a tendency

of decreasing dipole moments from spot 1 to spot 3, see Table 2.2. A maximum oc-

curs for the intermediate rim structure, which has a dipole moment of 15.8 Debye

on the square spot 1. The smallest dipole moment of 10.3 Debye on the top spot 3

for the straight rim results from the special structure of the rim with a broken pen-

tagon bond, which developed two Klein-edges. The dipole moments of the isolated

iron cluster are small and lay between 0.2 and 1.2 Debye. The dipole moments are

directed along the axis between the catalyst particle and the nanotube cap, which

corresponds to the nanotube growth direction. This corresponds to the result of

the theoretical model of Mohammad, which suggested that the electric dipole of

bimetallic clusters might be important for the vertical alignment during the growth

of carbon nanotubes. [203] Further the study suggested that the electric field result-

ing from the dipole moment is the driving force for the graphene layer nucleation,

as the field causes an increased graphene layer bending and the carbon precursors

preferentially land on the catalyst particle due to the electrostatic attraction. [203]

The HOMO-LUMO gaps are small for the cap-catalyst systems, pointing to a high

reactivity, see Table 2.2. The lowest gap is found for the angled rim, which slightly

increases to the straight rim. The gap of the isolated caps is high for the straight

rim with about 1.3 eV, lower for the angled rim with about 0.5 eV and lowest

for the intermediate cap with 0.3 eV. The isolated clusters have the lowest gaps

between 0.04 eV and 0.21 eV. As pointed out by Wang et al. the density functional

parametrization of Perdew, Burke and Ernzerhof [226] used for our calculations is

not able to predict energy gaps well, meaning that the results have to be regarded

with care. [194] With this problem in mind we want to try an interpretation of

the results. The electrons of an incoming carbon atom occupy certain energy states,

depending on the chemical potential of the system. A lower gap therefore means that

the chemical potential needed to include the carbon atom to the tube can be lower.
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a) b)

Figure 2.8: Carbon nanotube cap edges/rims projected on a two dimensional sur-
face. a) Zigzag cap rim with zm bonds between two carbon atoms which
can be either at a pentagon zp, between a hexagon and a pentagon zhp,
or at a hexagon zh. A Klein-edge forms through bond break at a pen-
tagon. b) Armchair cap rim with am, ai, and ao bonds between the
carbon atoms.

Here the energy of the electron of the incoming carbon atom would be lower and a

lower gap value would therefore allow easier integration of incoming carbon atoms.

However, we further have to regard the geometry of the system, which means that

the incorporation of a new carbon atom might cost energy due to transformation of

the rim structure, e.g. addition of a single carbon atom to a zigzag site creates a

Klein-edge which is only bonded to one carbon atom with its four possible bonds.

The carbon-carbon bond strength is stronger than the carbon-metal bond strength,

see excess energies in Table 2.2, which could prevent the carbon incorporation. Also

the orbital geometry has to be regarded, as only a high orbital overlap of the HOMO-

LUMO pair leads to an energetically favorable formation of molecular orbitals from

the atomic orbitals. The geometry of the orbitals for straight rim caps of various

chiralities has been studied in more detail by Wang et al. in Reference [194].

In the following we want to compare the bond lengths of the edge atoms between

the straight rim (5, 5) cap and the (9, 0) cap. The edges/rims of the nanotube caps

contain armchair and zigzag sites, see Figure 2.8 a) and b). The edge atoms of the

caps can belong to a hexagon and/or a pentagon. The bond length between the

carbon atoms at the rim of the cap depend on the neighboring atoms. This leads

to a high volatility of bond lengths at the rim, however, we can derive trends for

certain standard configurations.

Zigzag edges form zm bonds between carbon atoms at the inner and outer edge,

see Figure 2.8 a). Outer edge zigzag atoms have two zm bonds and a carbon-metal

bond. Inner edge zigzag atoms have two zm bonds and a carbon-carbon bond not

belonging to the edge. For caps the edge contains pentagons, which have an influence
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on the bond length between the carbon atoms. Therefore we classify the bonds in

zp for bonds at a pentagon, zhp for the bond at a hexagon next to a pentagon, and

zh for a bond at a hexagon. Armchair atoms can form ao bonds between two outer

edge atoms, am bonds between an outer edge and an inner edge atom, and ai bonds

between two inner edge atoms, see Figure 2.8 b). The outer edge atoms are next to

the metal and form one carbon-metal bond, one ao, and one am bond. The inner

atoms form a carbon-carbon bond, which is not part of the edge, an ai, and an am

bond.

The average bond length of the edge atoms is d = 1.475 Å. 13 The bond length of

a single bond is ddiamond = 1.54 Å for diamond. [51] The bond length for a double

bond is dC=C = 1.34 Å. [51] The average bond length of the rim atoms lies between

the value of a double bond and a single bond. Small changes in the bond lengths can

significantly change the bond energies. The bond lengths show a trend of shorter

bond lengths for armchair type chiralities. In detail d
(5,5)
ao = (1.464± 0.023) Å,

d
(5,5)
ai = (1.442± 0.020) Å, and d

(5,5)
am = (1.490± 0.011) Å. Showing that the inner

carbon-carbon bonds tend to have lower bond length values, resulting in higher bond

energies than the outer and middle bonds. The middle bonds have the lowest carbon-

carbon bond energies and longest bond lengths, pushing the outer armchair atoms

further away from the inner cap atoms and lowering their binding energies. The bond

lengths of the (9, 0) cap are d
(9,0)
zp = (1.506± 0.004) Å, d

(9,0)
zhp = (1.502± 0.010) Å,

and d
(9,0)
zh = (1.471± 0.010) Å. The bond lengths of the bonds of the hexagons are

smaller than the other bond lengths. Klein-edges occur at broken pentagon carbon-

carbon bonds, as the increased bond length weakens the bonds and allows the carbon

atom to form a carbon-metal bond by rearrangement of the structure at the rim.

The Klein-edges were found to occur especially on spot 1 (square). The (5, 5) cap

rim exclusively contains armchair sites formed by pentagons. The Klein-edges occur

especially on spot 3 (top).

After we collected informations about the rims and their structures, we want to

add some more geometric facts for armchair and zigzag structures. The number of

growth sites is always lower on angled rims that include a high number of zigzag

sites, as the addition to the zigzag sites contains a barrier. [168] Therefore from

13The average bond length was derived from all edge bonds of various caps on various clusters,
including the alloy clusters in Section 2.3. The other values in this Section correspond to the
(5, 5) and (9, 0) cap on the iron cluster.
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a growth rate point of view the straight rim growth is preferable to obtain higher

growth rates. A higher growth rate means a higher yield of certain chiralities. The

shape of the particle and cap are changing during the growth process [173], therefore

also the energetically preferred rim structure of the cap/nanotube can change. Our

excess energy results show that no rim structure is preferable for all spots, which

accompanied with a changing particle structure gives evidence, that there is no

preferred rim structure on the catalyst spot and further that the nucleation is mainly

diameter selective and not especially chiral angle selective.

Summary

In summary we presented the edge/rim of carbon nanotubes in a model, that de-

scribes hexagonal carbon nanotube rims by armchair and zigzag sites. [1, 43, 44] The

rims contain three different addition sites that keep the hexagon structure intact if

carbon dimers are added. [1, 43, 44] The carbon addition changes the rim structure

and can even add or remove growth sites. [1, 43, 44] To determine the stability of the

hexagon rim the calculation of dimer rotations at the rim was performed. We found

a energy difference between the hexagon and Klein-edge pentagon configuration of

only 0.29 eV, which corresponds to a dimer rotation or Stone-Wales defect at the

nanotube edge. The rotation barrier between the two configurations was estimated

with 2.91 eV, respectively 3.20 eV. The rotation process can be used to incorporate

carbon atoms at the edge of the nanotube cap, transforming between pentagons with

a dangling carbon atom and hexagons, which is relevant during the growth process

of the nanotubes. A more realistic picture can be derived from carbon nanotube

cap rim structure calculations on a catalyst particle, which we performed for three

distinct armchair rims on an iron catalyst particle. We found no preference for any

of the studied rim structures from the adhesion or excess energy, as the energy dif-

ferences are small or do not yield a preferred rim structure for all studied spots. The

fit between the cap and the catalyst particle influences the energies, however, as de-

formations of the catalyst and cap structure occur during the geometry optimization

process, a metastable equilibrium has to be expected, which especially under real

conditions (high temperature), does not allow to use the catalyst particle structure

as a template for the nanotube cap. Another property, the electron charge at the

edge of the nanotube cap seems to be an intrinsic property of the edge structure,
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with a difference between the straight and the angled rim configuration of the nan-

otube cap of 0.6 e. The electric dipole moment of the intermediate rim was found

to be the highest, while the dipole moments align along the cap-catalyst axis, which

supports the suggestion that the dipole moment influences the vertical alignment of

the tube. [203] HOMO-LUMO gaps decrease from straight to angled rim, however,

the addition of a carbon atom changes the edge structure and a conclusion for the

preference of a certain rim is not possible from this parameter alone. One plausible

argument for the preference of straight rims is the number of growth sites, which is

minimal for the angled rim, leading to a low growth rate, as only few energetically

favorable carbon addition sites exist.

75



Chapter 2. Chirality Selective Growth

2.2 Chirality Dependent Growth Rate

In this section 14 we present a model for the elongation process of the carbon nan-

otubes. The model follows the general idea, that the nanotube chirality abundance is

partially determined during the nanotube elongation process, which was proposed by

Ding et al.. [168] This idea is combined with the observation by Gómez-Gualdrón et

al. that the number of growth sites can change during the growth process. [195] We

propose that the growth of a nanotube proceeds through the conversion of armchair

bonds to zigzag bonds and vice versa. This is elucidated by a calculated chirality

distribution derived from our model which we compare to experimental data. We

will show that the growth rate depends on the rim structure (chirality), the energy

barriers for the bond conversion, and the growth temperature. A recent study found

evidence that supports the chirality dependent growth rate model. [2]

2.2.1 Carbon Addition Barrier

Before we consider the chirality dependent growth rate, we want to remind you on the

structure of the edge/rim, see Section 2.1.1. Starting from the rim structure we can

schematically describe the growth of a carbon nanotube, see Figure 2.9 and compare

to Figure 2.3 in Section 2.1.1. The growth proceeds by addition of C2. [245] The first

carbon atom adds exothermically [74] and is followed endothermically by a second

carbon atom. 15 The pentagon created in the first step is energetically less favorable

than a hexagon. [172] We, therefore, expect the next carbon atom to be added

to the pentagon to form a hexagon, see Section 2.1.1. Also, the creation of more

and more pentagons would close the tube 16 [246] and terminate the growth. [260]

Alternatively, a carbon dimer is added. [245]

14A major part of the following text and results has been published by the author of this disser-
tation in Reference [43]. The model was developed mainly in the unpublished diploma thesis
of the author [1] and extended in the published paper of Reference [43]. The research was
performed by the author of this thesis under the supervision of the co author of the paper and
the thesis advisor, for the diploma and PhD thesis, Stephanie Reich. We will focus on the new
results that were not included in the diploma thesis of the author in Section 2.2.2, the necessary
basics were presented in Section 2.1.1 to create an understanding for the growth model. More
details of the growth model can be found in the diploma thesis of the author, see Reference [1].

15An exothermic process is a process, where energy is released, e.g. in form of heat, while an
endothermic process is a process, where heat is absorbed.

16A fullerene cap consists of six pentagons. [62]
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d)c)a) b)

C C

C C

Figure 2.9: Three dimensional (top) and reduced rim (bottom) representations of
half layer growth of a (5, 5) tube. The reduced rim representations at
the bottom are obtained by unzipping the 3d wire model (top). The
”.” denotes a growth site for C2 addition, the a stands for an armchair
and the z for a zigzag dangling bond. The arrow at the left denotes
the growth direction. We assume root growth, but the picture is turned
upside down and a catalyst was omitted for clarity of the C2 addition.
a) A C2 adds at the rim. The induction of a new layer is accompanied by
a barrier. [168] b) 3 C2 additions follow without experiencing an energy
barrier leading to tube c). The last C2 addition leads to a stable rim
or closed layer. d) A half layer is grown compared to a). This process
continues until the growth is terminated. The figure was adapted from
Reference [43] of the author of this thesis.
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Going through the series of tubes in Figure 2.9 a) to d) a layer of carbon atoms is

grown, which corresponds to half a unit cell of the (5, 5) tube. The continuation of

the process - until growth is terminated - leads to an armchair carbon nanotube. [245]

The first C2 addition to the rim starts a new layer by converting two a into z

dangling bonds, which is accompanied by an energy barrier, [168] compare Figure 2.9

a) and b) (addition to aa.aa site, see Table 2.1). The following three C2 additions

do not change the energy of the rim, since they only move a and z dangling bonds

leading to Figure 2.9 c) (addition to aa.z sites, see Table 2.1). The final C2 addition

to Figure 2.9 c) yields a finished armchair layer presented in d) (addition to z.z site,

see Table 2.1). We argue that the conversion and movement of the growth sites

and the energetic barriers for the conversion determine the chirality-specific growth

speed of carbon nanotubes.

During the growth the total number of dangling bonds in the rim remains con-

stant Na + Nz = n + m, while Na and Nz vary. By this condition we include all

reasonable configurations of a growing nanotube and exclude obviously unreason-

able configurations, e.g., one side of the tube being much longer than the other side,

see Figure 2.1 b).

In the starting configuration the number of growth sites in a rim of an (n,m) nan-

otube isNaa.aa = max (2m− n, 0) with ”max” the maximum, Naa.z = min (m,n−m)

with ”min” the minimum, and Nz.z = 0, see Section 2.1.1. Note that for tubes with

2m−n ≤ 0 there are only aa.z growth sites and zigzag tubes (m = 0) do not contain

any growth sites at all. The growth of zigzag tubes is supressed in our model and

needs an intermediate addition of C or C3 to induce a growth site for C2 addition,

that we do not consider here, for more details on a possible zigzag growth process

see Reference [1] of the author. 17 The zigzag sites zz are therefore considered to

yield no growth sites. A C2 addition to the rim will change the type and the number

of growth sites, see Table 2.1 in Section 2.1.1.

The rim of an (n,m) nanotube with n > m > n/2 can be divided into a part

with a chiral vector (2m− n, 2m− n) that contains aa.aa growth sites and a part

with a vector (2n− 2m, n−m) that consists exclusively of aa.z sites. Therefore,

all nanotube rims, except pure zigzag rims, can be divided in aa.aa containing rim

17In a recent study of Artyukhov et al. the carbon addition to a zigzag rim was studied in more
detail. [201]
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parts and aa.z containing rim parts. During the growth the number of growth sites

contributed by a rim part containing exclusively aa.z sites remains constant. 18 The

number of growth sites contributed by a rim part containing exclusively aa.aa sites,

however, changes continously during the growth as is best illustrated by the example

of an armchair tube. Growing a full layer of an armchair rim requires the addition

of 2 · (2m− n) = n + m carbon dimers. The maximum number of aa.aa growth

sites 2m−n occurs only at half and full armchair layers. The other 2 · (2m− n)− 2

growth steps have one growth site less. 19 Summing up the number of growth sites

in each step and dividing by the number of C2 additions yields the average growth

site number

Λaa.aa (n,m) = 2m− n− 1 +
1

2m− n
. (2.7)

Similarily, we find the average growth site number for the rim part containing aa.z

sites Λaa.z = Naa.z .
20 Adding the contributions of aa.aa and aa.z rim parts yields

the average number of growth sites as a function of chiral indexes n and m

Λ (n,m) =







Λaa.aa + Λaa.z if 2m− n > 0,

Λaa.z otherwise.
(2.8)

The addition of C2 to the different growth sites will experience varying energy

barriers, as zigzag dangling bonds (Ez = 2.90 eV) require much more energy than

armchair dangling bonds (Ea = 2.10 eV) in vacuum. [80] The armchair configuration

is energetically favorable because it consists of two dangling bonds on neighboring

C atoms that form a triple bond. [258] To model experimental growth conditions

we need to consider a metal catalyst in most growth scenarios. [196] The energetic

difference between a and z dangling bonds is reduced by the presence of a metal,

as carbon-metal bonds are formed. [168, 179, 196] However, the difference remains

non-zero, as electrons of carbon neighbors influence the total bond energy of the

18The aforementioned statements contain strong assumptions which are considered in more detail
in the diploma thesis of the author (Reference [1]).

19This assumes an optimal growth path with only one addition to an aa.aa growth site and addition
to aa.z sites in every subsequent addition until the layer is closed by an addition to a z.z site.
More details, especially for other less likely growth pathes are presented in the diploma thesis
of the author of this thesis (Reference [1]).

20We assume that the addition to aa.z sites does not create other growth sites, or if they are
created no addition to them occurs, but only to aa.z sites.
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carbon-metal bonds, rendering a lower in energy than z. [196]

The energy barrier for the C2 addition to an aa.aa site depends on the conversion

of aa.aa into zaaz dangling bonds (see Table 2.1 in Section 2.1.1). The conversion

requires an energy

∆a = |Ezaaz − Eaa.aa| = |2Ez − 2Ea| = 2Ea |r − 1| , (2.9)

with Ea the energy of an armchair and Ez the energy of a zigzag dangling bond. 21

With r = Ez/Ea we denote the ratio between the two energies. The total dangling

bond energies as well as their ratio depend on the catalyst. Changing z.z into .aa.

we gain ∆a, if Ez > Ea. Growing at an aa.z site will cost no energy; this growth

happens without an energetic barrier. This energetically different behavior allows

to affect the chirality distribution of carbon nanotubes through external parameters

such as the metal catalyst and the growth temperature.

2.2.2 Gamma - Growth Rate Function

The addition of C2 dimers to the Λ (n,m) sites will lead to a lengthening of the

tube with n +m C2 additions for a single full layer. If we define the abundance of

a certain nanotube chirality to depend on the number of full carbon layers, we find

the growth speed of a tube to be proportional to

Γ (n,m) =
Λ (n,m)

n+m
. (2.10)

The growth factor Γ (n,m) allows us to understand why chiral selectivity occurs

during the nanotube elongation phase. In the following we will show how we can

influence the chirality distribution during the elongation of a nanotube. Therefore

we first add some weight factors (Arrhenius like factor, see Reference [51]) to the

21The formula is modified compared to the one presented in References [1, 43], as the barrier
occurs for the initiation of a new layer as well as for the closing of a layer, which previously
had not been considered. If a layer is finished by a C2 addition, the last z.z site that remained
in the rim configuration is converted to an .aa. configuration, see Table 2.1. This requires a
transformation of 2 z bonds to 2 a bonds, which leads to a barrier, if the zigzag bond energy
Ez is lower than the armchair bond energy Ea.
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Figure 2.10: Comparison of Γ (n,m) for tube diameters d = 0.675-1.055 nm for a)
∆a ≪ kBT ↔ δa = 1. b) ∆a ≫ kBT ↔ δa = 0. The abundance of
metallic/semi-metallic tubes (open circle, red cross) decreases compared
to semiconducting tubes (full circle, gray cross) from a) to b). The
figure was adapted from Reference [43].

growth rate factor equation: 22

Γ (n,m) =







Λaa.aa(n,m)·δa+Λaa.z(n,m)·δaz
n+m

if 2m− n > 0,

Λaa.z(n,m)·δaz
n+m

otherwise,
(2.11)

where δa = exp (−∆a/kbT ) is an exponential factor to account for the temperature

dependence of the addition barrier to armchair sites and δaz = exp (−∆az/kbT ) =

1, as an addition barrier for aa.z sites (kinks) is negligible (∆az = 0). [43, 168]

The growth rate factor Γ can have values between 0.5 and 0, in dependence of the

chirality.

We can insert Equation (2.7) and Λaa.z = Naa.z = min (m,n−m) in Equation

(2.11) to determine Γ. Figure 2.10 shows the growth speed factor Γ as area size in chi-

ral angle and diameter dependence for diameters d = 0.675-1.055 nm. If the addition

to aa.aa sites has a negligible barrier, meaning δa = 1 (r = Ez/Ea ≈ 1 or ∆a ≪ kBT ),

all growth sites can contribute to the growth speed, see Figure 2.10 a). The highest

Γ occur for (n, n) armchair tubes. A small trend for increasing Γ exists for larger

22The inclusion of the weight factors is an extension compared to the formula derived in the
diploma thesis [1] of the author, as well as to the formula presented in Reference [43].
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diameter tubes, resulting from the fractional term of Equation (2.7), as the compar-

ison of the armchair tubes shows. Changing the environment (e.g. another catalyst

with another r or adjustment of temperature) so that ∆a ≫ kBT , the aa.aa growth

sites will not contribute anymore; Equation (2.11) yields Γ = Λaa.z/ (n+m), which

leads to a different growth speed distribution, see Figure 2.10 b). In that case the

highest Γ occurs for
(

n, n
2

)

chiral tubes.

For real samples we expect a distribution of growth speed factors Γ to be between

the two limiting cases presented in Figure 2.10. The thermal energy of nanotube

growth is on the order of kBT ≈ 0.05-0.11 eV. [133, 144] ∆a depends on the catalyst

material, its composition and - less pronounced - on the position of the carbon with

respect to the metal atom. The barriers for metal catalysts are on the order of

∆a ≈ 0-0.12 eV for various metals [168, 179] and thus comparable to the thermal

energy. Therefore, the addition to the aa.aa site is not suppressed. This agrees with

the results of Ding et al., that the barrier for armchair kink introduction - which

corresponds to C2 addition to aa.aa - is negligible. [168] Recently, other materials

like SiO2 were found to catalyze nanotube growth. [131] Further, bimetallic/alloy

catalysts contain different barriers and may be extremely interesting for influencing

the chirality distribution, [3] which we study in Section 2.3.

Up to now we concentrated on the growth/elongation of an existing nanotube

nucleus. Using Equation (2.11) we can derive chirality distributions in dependence

of catalyst composition and growth temperature. The chirality distribution of a

sample, however, will also depend on the nucleation phase, i.e., whether a particu-

lar tube cap is nucleated or not. [63] We assume the tube diameters (and also the

chirality) to be fixed by the nucleation. [179, 186] The diameter of a carbon nan-

otube is determined in the nucleation phase. [111, 186] To consider the dependence

of nanotube diameters on the diameter of the catalyst particles, [111, 114, 188] we

therefore multiply Equation (2.11) by a Gaussian distribution of the nanotube di-

ameters f (d;µ, σ2) [96] and obtain a growth rate factor Γ∗ which leads to a more

realistic chirality distribution,

Γ∗ (n,m) =
1

σ
√
2π

e−
(d−µ)2

2σ2 · Γ (n,m) . (2.12)

The tube diameter distribution might also include additional effects that do not
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result from the particle diameters and which might not be covered by the Gaussian

distribution, however, the distribution serves the simplicity of the model.

In the following comparison to experimental data we assume the barrier to aa.aa

growth sites to be negligible (∆a ≪ kBT ↔ δa = 1). Figure 2.11 a) compares the

chirality distribution of semiconducting nanotubes with d = (0.93± 0.3) nm to

the experimental distribution in HiPco tubes; Figure 2.11 b) is for tubes with

d = (0.75± 0.15) nm and ACCVD samples. [151] The agreement between theory

and experiment in Figure 2.11 b) is striking. Our model very well predicts the overall

increase of the number of tubes with increasing chiral angle. The strong discrepan-

cies for selected chiralities - e.g. the strong luminescence of the (10, 2) tube - is most

likely due to a high quantum yield for some nanotubes. [261] On the other hand,

the nucleation phase might also prefer certain chiralities. [179] It would be highly

desirable to establish an unambigious chirality distribution experimentally to clarify

these points, as different techniques yield different chirality distributions. [89]

The barrier δa is not negligible for the HiPco sample as the deviation between the

theoretical and experimental part of Figure 2.11 a) shows. Better results for the

HiPco sample could therefore be obtained if the barrier was included. The barrier

is negligible, however, for the growth conditions presented in Figure 2.11 b), as the

theory perfectly reproduces the trend with only considering the contribution of the

Γ∗ factor for δa = 1. We conclude that different growth conditions have indeed

an influence on the chirality distributions which result during the elongation of the

nanotubes.

At the end of this section we want to consider how the growth speed factor Γ can

be included into a real growth rate. Therefore we use the results derived by Yuan et

al., which found that the threshold barrier for the growth of carbon nanotubes is

the incorporation of the carbon atoms into the nanotube wall through the catalyst-

nanotube interface. [74] They derive energy barriers G∗
0 of 1.85 eV on Fe and 2.27 eV

on Ni for the diffusion and incorporation of two carbon atoms into the nanotube. [74]

This allow to estimate a growth rate, if one considers that the carbon atoms on the

catalyst have a higher chemical potential than the carbon atoms in the tube. [74] The

difference is given with 2∆µ leading to an overall barrier of G∗ = G∗
0 − 2∆µ. [74]

Yuan et al. further consider the decomposition of the nanotube in single carbon

atoms, which has the barrier G∗
0. [74] This leads to the chemical reaction rates (from
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Figure 2.11: Comparison of chirality distributions. The theoretically calculated dis-
tributions were determined by Equation (2.12) for ∆a ≪ kBT ↔
δa = 1. The experimentally determined chirality distributions are
adapted from Miyauchi et al. (Reference [151]). a) Theory: d =
(0.93± 0.3) nm. [42] Experiment: HiPco sample. b) Theory: d =
(0.75± 0.15) nm. Experiment: ACCVD sample grown at 650 ◦C with
Fe/Co catalyst. The figure was adapted from Reference [43] of the
author of this thesis.
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transition state theory)

K+ =
kBT

h
· exp

[

−(G∗
0 − 2∆µ)

kBT

]

, (2.13)

K− =
kBT

h
· exp

[

− G∗
0

kBT

]

, (2.14)

where kB is the Boltzmann constant, T is the temperature, K+ is the carbon incor-

poration rate to the nanotube and K− is the carbon decomposition rate from the

nanotube. [74] The nanotube growth rate of Yuan et al. was then estimated by a

model that considered the number of active armchair sites at the tube end, [74] we

want to include our growth rate factor Γ instead, which leads to:

R (n,m) = 2 · Γ∗ (K+ −K−) · κ, (2.15)

with the factor 2 to normalize the prefactor, as Γ∗ has values between 0 and 0.5, and

κ = 0.1 nm, which follows from the comparison to the experimental growth rates,

which are considered with R ≈ 250 µm/s at T = 1200 K (∆µ = 0.1 eV).

Summary

In summary, we presented a model for the chirality selective nanotube growth and

elongation process through the structure of the rim. [1, 43, 44] Depending on the tube

chirality the rim contains three different growth sites aa.aa, aa.z and z.z. [1, 43, 44]

Geometric considerations yield the growth factor Γ∗, which in turn determines the

chirality distribution of carbon nanotube samples. [1, 43] We showed that chiral

selectivity can be obtained through the combination of external parameters, i.e.

catalyst and temperature. [1, 43] We combine our growth rate factor Γ with the

results of Yuan et al. [74] to derive a growth rate which can be compared to ex-

perimental growth rates. In the next section (Section 2.3) we will calculate the

armchair and zigzag bond energies needed as input for the growth factor presented

in this section. We especially focus on alloy particles of Ni and Fe.
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2.3 Growth on Ni, Fe and NiFe Alloy Particles

In this section 23 we present density functional theory calculations of carbon nan-

otube caps on Ni, Fe and NixFe1−x alloy particles to determine the a and z bond

energies for the chirality dependent growth rate (see Section 2.2.2) and barrier en-

ergies ∆a. We describe the system and computational methods for our calculations

in Section 2.3.1. Section 2.3.2 studies the adhesion energies and carbon-metal bond

energies of the caps. In Section 2.3.3 we study the charge distribution at the car-

bon atoms and the catalyst particle atoms, as well as the resulting electric dipole

moments. Section 2.3.4 discusses our results in comparison to other theoretical and

experimental results and combines the results of Section 2.3.2 with the growth model

we developed in Section 2.2.2 to estimate some exemplary chirality distributions.

In recent experimental studies it was found that growth on alloy NiFe particles

leads to an enrichment of certain chiralities. [3, 127] A recent theoretical study

attempted to explain the chirality enrichment on the NiFe alloy particles. [190] It,

however, considered plane surfaces and elongated nanotube caps (non-minimal seed

caps with only an inferior number of growth sites/kinks), which does not seem to

be appropriate to describe the chirality selection on a catalyst particle, [190, 256]

see the discussion in Section 2.1.2. Another theoretical study on a nickel particle

suggested that electronic charge transfer might be important to control the chirality-

selective growth process. [202] We study the binding, as well as the charge transfer

properties of the nanotube caps on NiFe alloy particles to solve the puzzle.

2.3.1 Methodology and Catalyst Particles

In this section we present the catalyst particles and nanotube caps used for our

calculations and further present the details of the computational methods. More

details about the caps used for the study can also be found in Section 2.1.2.

We performed spin polarized density functional theory calculations with the ab-

initio package SIESTA. [216, 239] We used the generalized gradient approximation

parameterized by Perdew, Burke and Ernzerhof, [226] as the bias towards compact

cluster structures is reduced compared to the local density approximation. [262] The

23A major part of the texts and results of this section is based on Reference [45]. The calculations
and analyses were performed by the author of this thesis under the supervision of the co authors
of the paper, especially by the thesis advisor Stephanie Reich.
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a) b) c)

Figure 2.12: Top view on a ball and stick sketch model of the spots of a 55 atom
(iron) cluster. The atoms that form the top of the cluster are marked.
a) Spot 1, fcc(100) with a 3 times 3 atom square (9 atoms). b) Spot 2,
fcc(111) with a 3 atom sided triangle (6 atoms). c) Spot 3, with only
1 atom at the top of the cluster. The figure is similar to Fig. 63 of the
diploma thesis of the author (see Ref. [1]).

calculations used the norm conserving nonlocal pseudopotentials presented in Sec-

tion 5.1.1. [241] To balance the computational time and the accuracy to a reasonable

level, we used a double-ζ polarized (DZP) basis set. The cutoff radii of the orbitals

were determined by the parameter ”PAO.EnergyShift” with 7 meV. This leads to

cutoff radii rs = 6.099 Bohr and rp = 7.832 Bohr for the s and p orbital of the

carbon atoms, rs = 9.649 Bohr and rd = 6.001 Bohr for the s and d orbital of the

iron atoms, and rs = 9.187 Bohr and rd = 5.572 Bohr for the s and d orbital of the

nickel atoms. The mesh-cutoff for the real-space integration corresponded to about

350 Ry. We used only the Γ-point to calculate the total energies, as all studied

systems have finite dimensions.

For our calculations we consider the situation, where a carbon nanotube cap has

already formed on a catalyst particle, but is not elongated. The systems studied in

this section therefore consist of two parts, a catalytic particle and a carbon nanotube

cap. We consider the Fe55, Ni12Fe43, Ni27Fe28, and Ni55 clusters to understand the

influence of alloy systems and chiralities on the cap-cluster interaction.

Our (deformed) icosahedral catalyst particles consists of 55 atoms [263] that ini-

tially form a higly symmetric structure containing six fcc(100), eight fcc(111) sur-

faces, and three distinctive spots to add a carbon nanotube cap, see Figure 2.12 a) to

2.12 c). The icosahedral particles have been found to be the most stable configura-
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Table 2.3: Comparison of total energies (Etot) and excess energies (∆Etot) of various
clusters compared to the lowest total energy configuration of a specific
cluster and the absolute value of the electric dipole moments ∆ of the
clusters. The initial cluster structures for the geometry optimization were
used from the specified combined system and the energies of the geometry
optimized clusters are presented. The calculations of the Ni12Fe43 cluster
have been performed for two different initial configurations.

cap particle spot Etot (eV) ∆Etot (eV) ∆ (Debye)
(5, 5) Fe55 1 -41238.69 2.01 1.1
(5, 5) Fe55 2 - - -
(5, 5) Fe55 3 -41239.71 0.99 0.5
(9, 0) Fe55 1 - - -
(9, 0) Fe55 2 - - -
(9, 0) Fe55 3 -41240.69 0.0 0.2
(5, 5) Ni12Fe43 1 -46366.09 1.52 0.3
(5, 5) Ni12Fe43∗ 1 -46365.96 1.65 0.6
(5, 5) Ni12Fe43 2 -46366.97 0.64 0.9
(5, 5) Ni12Fe43∗ 2 -46367.19 0.42 1.3
(5, 5) Ni12Fe43 3 -46366.45 1.16 0.8
(5, 5) Ni12Fe43∗ 3 -46367.61 0.00 0.6
(9, 0) Ni12Fe43 1 -46365.54 2.06 0.8
(9, 0) Ni12Fe43∗ 1 -46366.98 0.63 1.1
(9, 0) Ni12Fe43 2 -46366.96 0.65 0.8
(9, 0) Ni12Fe43∗ 2 -46365.94 1.66 1.1
(9, 0) Ni12Fe43 3 - - -
(9, 0) Ni12Fe43∗ 3 -46365.96 1.65 0.5
(5, 5) Ni27Fe28 1 - - -
(5, 5) Ni27Fe28 2 -52774.82 1.44 0.6
(5, 5) Ni27Fe28 3 -52774.48 1.78 1.0
(9, 0) Ni27Fe28 1 -52775.40 0.86 1.9
(9, 0) Ni27Fe28 2 -52776.26 0.00 0.5
(9, 0) Ni27Fe28 3 -52776.10 0.16 1.1
(5, 5) Ni55 1 -64732.44 3.19 1.0
(5, 5) Ni55 2 -64732.31 3.32 0.7
(5, 5) Ni55 3 -64733.05 2.58 0.9
(9, 0) Ni55 1 -64734.50 1.13 0.5
(9, 0) Ni55 2 - - -
(9, 0) Ni55 3 -64735.63 0.00 0.0
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tion with a magnetic moment of 40 µB for Ni and 150 µB for Fe. 24 [263] The relaxed

particle structures do not keep the icosahedral symmetry and are not expected to

represent the global minimum, as it is not feasible to find the global minimum of the

clusters in density functional theory. 25 [192, 262] The trend, however, is expected to

be correct, see discussion in Reference [192], respectively our calculations of the same

catalyst compositions of Ni12Fe43 particles in slightly different initial configurations,

see Section 2.3.2. Further we used the energies of the geometry optimized catalyst

structures from the initial structures of the combined system to be consistent, see

Table 2.3.

The carbon nanotube caps were created with the program code CaGe using the

isolated pentagon rule (IPR), which states that caps are energetically most stable, if

all six pentagons needed for the cap inclination are isolated from each other. [62, 63,

265] CaGe derives cap structures from a graphtheoretical method. [62] We created

and geometry optimized fullerene structures starting from the graphtheoretically

generated caps from CaGe to get to a decent cap structure. Studying a certain

cap of a given chirality does not allow to draw straight forward conclusions for that

chirality, as there exist many possible cap configurations for a certain chirality. [62,

63] The isolated pentagon rule used for the generation of our caps, however, allows

to reduce the number of possible caps, by only considering energetically favorable

structures. [63] Especially the (5, 5) (30 atom cap) and (9, 0) (39 atom cap) chiralities

only have one possible cap structure which fulfills the isolated pentagon rule, [191]

making them perfect candidates for our study.

The caps were transferred on the three different spots of the catalyst particles,

24Smaller nickel particles (13 atoms) on the walls of CNTs were suggested as single-molecule
sensors, as the addition of a benzene molecule changed the magnetic moment of the system
from 8 µB to 6 µB. [29] This renders the study of the magnetic properties of the system during
the growth interesting, as the nanotube caps are all unique molecules, which might have a
chirality dependent influence on the magnetic properties of the system, see Section 2.3.3.

25The energy values deviate between the different relaxed catalyst structures, depending on the
initial structure, see Table 2.3. Zhu et al. report energy differences between 2-3 eV between
different geometry optimized catalyst cluster structures, [192] which corresponds well to our
results. The catalyst clusters can have various morphologies for the same particle size and it
was found that 1021 local minima exist for a 55 atom (Lennard-Jones) cluster, which was com-
pared to the problem of finding the global minimum in protein folding. [262, 264] Considering
the composition, it becomes even harder, which makes it nearly impossible to find the global
minimum for the clusters of two elements and 55 atoms. Another problem in the comparison
to the experiment may be that the clusters are liquid like or the growth time is smaller than
the morphological relaxation time. [262]
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a) b) c)

Figure 2.13: Ball and sticks sketch model of carbon nanotube caps on a Ni12Fe43
alloy cluster on three different spots. Carbon atoms in grey, Nickel
atoms in green, and iron atoms in orange. a) Spot 1: (9, 0) cap shows
a Klein-edge through bond break of a pentagon at the rim. b) Spot 2:
(9, 0) cap showing a hexagon (blue) and pentagon (green) at the zigzag
rim. c) Spot 3: (5, 5) cap showing an armchair rim formed exclusively
by pentagons (green).

see Figure 2.12. The fit of the rims of the carbon nanotube caps to the spots of

the clusters were performed by hand. In Figure 2.13 we show geometry optimized

structures of the (9, 0) and (5, 5) cap bound to the three spots of the Ni12Fe43 catalyst

as examples for all the systems we studied. The atoms at the rim of the cap bind

to the cluster, see Figure 2.13. The deformation (structure change) of the cluster

is significant for the presented alloy systems. The atoms in the rim of the cap also

adjusted their positions, which suggests a dynamic process of carbon and metal

reshaping, which was studied in detail in Reference [53]. The edges/rims of the caps

are composed of only armchair and zigzag sites, which is true for all nanotubes. [18]

If a pentagon bond gets broken at the edge, a Klein-edge can form and offer a site for

addition of a single carbon to close the edge with a hexagon, see Figure 2.13 a). The

Klein-edge configuration occurs commonly for the (9, 0) cap and might be a possible

way to avoid the initiation barrier for a new layer. [168] The configuration with

the Klein-edge was recently suggested to be energetically favorable for the graphene

growth, however, it was suggested to be relevant for the armchair growth, see A5’

site in Reference [201]. In general there is a nearly continuous number of ways to

combine the cap with the cluster in dependence of the chirality of the cap, however,

the chosen spots are expected to allow the best comparison.

All optimized geometries were relaxed to a maximal atomic force of 0.04 eV/Å.
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The total energy of the combined system as well as the energy of the cluster and

cap were calculated in various structures and basis sets to account for the basis set

superposition error. 26 The SIESTA basis set is incomplete, therefore a BSSE occurs

and we calculated the counterpoise correction term [267, 268] to remove the basis

set superposition error (BSSE):

EBSSE = Eghost
cap −Ecap + Eghost

cluster −Ecluster, (2.16)

with Eghost
cap the energy of the cap in the structure of the combined system with a

cluster of ghost atoms, corresponding to a calculation with the basis of the combined

system, Ecap the energy of the cap in the structure of the combined system with

removed cluster atoms, corresponding to a calculation with the basis of the cap,

Eghost
cluster the energy of the cluster in the structure of the combined system with a

cap of ghost atoms, and Ecluster the energy of the cluster in the structure of the

combined system with removed cap atoms. [266–269] The basis set superposition

errors for our calculations range between 2.0 eV and 3.0 eV with an average error of

(2.5± 0.3) eV. Using the BSSE correction we can calculate the adsorption energy

between the carbon nanotube cap and the catalyst cluster with:

Ead = Etot − Erelax
cap − Erelax

cluster −EBSSE , (2.17)

where Etot is the energy of the geometry optimized combined system of the cap

and the catalyst cluster, Erelax
cap is the energy of the geometry optimized cap, and

Erelax
cluster is the energy of the geometry optimized cluster, see e.g., total energy in

Reference [194] or binding (adhesion) energy in Reference [192].

Another way to assess the stability of the combined system is by the comparison

with other systems that contain the same number of carbon and metal atoms. This

leads to formulas for the excess energy:

Ei
x = Etot − Erelax

cluster − nCE
i
C − EBSSE, (2.18)

26In calculations that use localized atomic orbitals, each of the orbitals uses a unique incomplete
basis set, see Section 1.2.1. [266, 267] The ”basis set superposition error” results from the
problem that the basis set of an adsorbed atom in a molecule uses the basis set of the neighboring
atom, which lowers the energy for all atoms that use the basis sets of neighbors. [266, 267]
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Table 2.4: Comparison of total energies (Etot) and excess energies (∆Ei
tot) per atom

of various carbon systems. The third row compares the excess energies
of the systems to the energy of graphene. The fourth row compares the
excess energies of the fullerenes to the associated nanotubes, meaning
the energy of C60,100 is compared to the energy of the (5, 5) tube and the
energy of C78 is compared to the energy of the (9, 0) tube.

system Etot/atom ∆Egraphene
tot /atom ∆Etube

tot /atom
graphene -154.865 0.00 -
(5, 5) -154.702 0.16 0.00
(9, 0) -154.711 0.15 0.00
C60 -154.510 0.36 0.19
C100 -154.591 0.27 0.11
C78 -154.554 0.31 0.16

with Ei
C the energy per carbon atom for various systems and nC the number of

carbon atoms in the cap of the combined system. [172, 179, 192] In detail we cal-

culate the excess energy per atom in comparison to the energy of a system of an

isolated metal cluster and an infinitely long carbon nanotube, a fullerene, or an infi-

nite graphene sheet, see Table 2.4 for a comparison between the total energies of the

carbon systems. This allows to determine which system configuration is expected

to be lower in energy and therefore more stable. [172, 179, 192] It follows immedi-

ately that the graphene structure has the lowest energy of the studied structures,

see Table 2.4, which means that it is the most stable structure. This, however, is

only true for an infinite graphene sheet, as edges with dangling bonds would signif-

icantly increase the total energy of a graphene flake. A detailed study for various

carbon systems by Fan et al. found that the nanotube cap structure is energetically

favorable on a metal surface, as the dangling bonds are saturated. [172]

Another possibility to obtain the excess energy compared to the fullerene structure

is to remove the dangling bond contributions of the adhesion energy. This leads to

Efullerene
x = ECM = Ead − 2 ·m · Evac

a − (n−m) · Evac
z , (2.19)

where Ead is the adhesion energy, Evac
a is the armchair bond energy in the vacuum,

and Evac
z is the zigzag bond energy in the vaccum. The factor 2 ·m results from the
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number of armchair bonds at the rim of the nanotube cap and the factor (n −m)

results from the number of zigzag bonds at the rim of the cap, see Section 2.1.1

or References [43, 44]. The vacuum bond energies (for a straight cut rim) can be

derived with the equations

Evac
a =

EC60
/2− E

(5,5)
cap

2 ·m , (2.20)

Evac
z =

EC78/2− E
(9,0)
cap

n−m
, (2.21)

where ECi
is the energy of a fullerene formed from two (n,m) caps. The armchair

edges in the vacuum have lower absolute bond energies than zigzag edges, as arm-

chair edges form triple bonds between two edge armchair atoms. [258] Zigzag edge

atoms have dangling bonds, which are energetically even more unpreferable than

the triple bonds of the armchair edge atoms. [258] We find the average armchair

bond energy in the vacuum with Evac
a = (2.61± 0.04) eV 27 (Evac

a,lit = 2.1 eV). [80]

The average zigzag bond energy in the vacuum is Evac
z = (2.69± 0.01) eV (Evac

z,lit =

2.9 eV). [80] The deviation to the literature values results from the deformation

energy of the edge of the cap compared to the edge of the nanotube, as the cap

contains more curvature and pentagons at the edge. Especially the considered arm-

chair cap has five pentagons at the edge, while the zigzag cap only contains three.

We used the system specific vacuum bond energies to determine the carbon-metal

bond energies. To determine the carbon-metal bond energies per bond we divided

through the number of bonds n +m.

An error for the energies was estimated from the standard deviation by averaging

over identical systems with small changes in their initial configuration. The standard

deviations are rather large, as only two values were included which does not have a

statistical significance, however, it allows to estimate the order of the error with at

least 0.1 eV for the excess energy from the comparison of the (5, 5) cap on spot 1 and

2 of the Ni12Fe43 cluster, see Table 2.5 in Section 2.3.2. The error for the adhesion

energy is estimated to be slightly higher with about 0.7 eV. The errors in the total

energy for the combined system following from the eggbox effect (∆ ≈ 0.02 eV) and

27Only edges with armchair sites were considered, therefore edges which contained a Klein-edge
were neglected.

93



Chapter 2. Chirality Selective Growth

the unit cell size (∆ ≈ 0.004 eV) are negligible compared to the error resulting from

the non global minimum catalyst particle structure.

Besides the energies it is also interesting to study the electron distribution to

understand the combined system of a cap and a cluster. We therefore performed

Bader population analysis calculations on the cap-cluster systems to determine the

electron charge transfer between the carbon cap atoms and the catalyst particle

atoms. [270–273] The charge transfer between nanotube edges and nickel catalyst

particles has been suggested to be important for the nanotube growth, as it increases

the reactivitiy of the carbon edge atoms creating reactive sites. [194, 202] Another

study suggested that the electric dipole moment, which is induced by the charge

transfer in bimetallic clusters affects the nanotube growth, as carbon precursor atoms

preferentially land on specific spots of the catalyst due to the electric field. [203]

We do not find a significant difference for the electric dipole moments between

monometallic and bimetallic clusters, see Table 2.3. If the caps connect to the

cluster, however, the charge transfer between the edge of the cap and the clusters

induces electric dipole moments, see Section 2.3.3.

2.3.2 Carbon Metal Energies

In this section we determine the adhesion and excess energies between the nanotube

caps and the metal catalyst clusters.

The adhesion energies are high with slightly more than −20 eV, varying about a

few eV in dependence of the spot, catalyst and cap, see Table 2.5. The armchair

caps have adhesion energies that are a few eV higher than the zigzag energies, which

is a result of the number of dangling bonds at the edge of the caps. The zigzag caps

have n+m = 9+0 = 9 dangling bonds. The armchair caps have n+m = 5+5 = 10

dangling bonds. Therefore the adhesion energy of the armchair cap is higher than

the adhesion energy of the zigzag cap, even though the energy per dangling bond is

lower for the armchair compared to the zigzag bond, [258] see Section 2.3.1.

Averaging the adhesion energies over the alloy compositions we find EFe55
ad =

(−21.0± 0.3) eV, ENi12Fe43
ad = (−22.3± 1.4) eV, ENi27Fe28

ad = (−22.3± 1.5) eV, and

ENi55
ad = (−22.4± 1.5) eV. 28 Two effects account for the adhesion energy. One is

28The results have to be regarded with care, as the number of considered armchair and zigzag caps
is not the same for all average adhesion energies.
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Table 2.5: Comparison of adhesion energies and carbon-metal bond energies of nan-
otube caps on various catalyst clusters. The asterisks denote systems
with at least one Klein-edge at the rim.

cap particle spot Ead (eV) ECM (eV)
(5, 5) Fe55 1 -21.2 4.3
(5, 5) Fe55 2 - -
(5, 5) Fe55 3* -21.2 4.3
(9, 0) Fe55 1 - -
(9, 0) Fe55 2 - -
(9, 0) Fe55 3 -20.7 3.6
(5, 5) Ni12Fe43 1 -23.2 2.6
(5, 5) Ni12Fe43∗ 1 -23.9 2.5
(5, 5) Ni12Fe43 2 -24.2 2.2
(5, 5) Ni12Fe43∗ 2 -24.0 2.3
(5, 5) Ni12Fe43 3* -22.4 3.6
(5, 5) Ni12Fe43∗ 3 -21.3 5.0
(9, 0) Ni12Fe43 1* -20.8 3.4
(9, 0) Ni12Fe43∗ 1* -20.4 3.9
(9, 0) Ni12Fe43 2 -20.7 3.5
(9, 0) Ni12Fe43∗ 2 -22.6 1.7
(9, 0) Ni12Fe43 3 - -
(9, 0) Ni12Fe43∗ 3 -21.6 2.6
(5, 5) Ni27Fe28 1 -23.6 2.7
(5, 5) Ni27Fe28 2 -24.4 2.0
(5, 5) Ni27Fe28 3* -22.5 3.4
(9, 0) Ni27Fe28 1* -20.3 3.9
(9, 0) Ni27Fe28 2 -21.7 2.4
(9, 0) Ni27Fe28 3 -22.6 1.6
(5, 5) Ni55 1 -22.9 3.4
(5, 5) Ni55 2 -23.4 2.9
(5, 5) Ni55 3 -23.2 3.2
(9, 0) Ni55 1 -20.2 4.1
(9, 0) Ni55 2 - -
(9, 0) Ni55 3 -20.2 4.1
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Table 2.6: Comparison of adhesion energies and carbon-metal bond energies of nan-
otube caps on metallic/alloy clusters in eV. The errors are standard de-
viations from averaging over the spots.

cap particle Ead (eV) ECM/bond (eV) ECM (eV)
(5, 5) Fe55 (−21.2± 0.0) (0.43± 0.00) 4.3
(5, 5) Ni12Fe43 (−23.2± 1.1) (0.30± 0.11) 3.0
(5, 5) Ni27Fe28 (−23.5± 1.0) (0.27± 0.07) 2.7
(5, 5) Ni55 (−23.2± 0.3) (0.32± 0.03) 3.2

(9, 0) Fe55 (−20.7± -.-) (0.40± -.-) 3.6
(9, 0) Ni12Fe43 (−21.2± 0.9) (0.33± 0.10) 3.0
(9, 0) Ni27Fe28 (−21.5± 1.1) (0.30± 0.13) 2.7
(9, 0) Ni55 (−20.2± 0.0) (0.46± 0.00) 4.1

the structure and the other is the material. The mixture of two materials distorts

the catalyst structure as they have different electronic structure resulting in different

bond lengths and lattice constants. The adhesion energy shows no significant effect

in dependence of the alloy composition.

The adhesion energies averaged on the three spots introduced in Figure 2.12,

show no obvious trend, with E1
ad = (−22.0± 1.5) eV for the square spot 1, E2

ad =

(−23.0± 1.4) eV for the triangle spot 2, and E3
ad = (−21.7± 1.0) eV for the top

spot 3. We use this result and average over different spots when calculating adhesion

energies as a function of the cap and alloy composition, see Table 2.6. The triangle

spot shows the highest adhesion energy, but the adhesion energies calculated for the

other spots are within the standard deviation of spot 2.

The average adhesion energies for the different compositions of Ni and Fe, show

higher energies for the armchair cap than the zigzag cap, which we already described

as the general trend of the calculations. We further observe an increase of adhesion

energy for the NiFe alloy systems compared to the pure Ni and Fe clusters, see

Table 2.6. The adhesion energy difference is not significant, however, it shows that

the caps are slightly more stable on the NiFe alloy systems compared to the pure

elemental catalyst clusters.

The excess/carbon-metal bond energies decrease non monotonically with increas-

ing Ni content from Fe to Ni, see Table 2.6. The Ni cluster shows the highest excess
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Table 2.7: Charge redistributions between the carbon nanotube caps and the metal-
lic/alloy clusters. qrimC is the total charge shift of the carbon atoms at
the rim of the nanotube cap, qC is the total charge shift considering all
carbon atoms of the cap, qFe is the total charge shift considering all iron
atoms, and qNi is the total charge shift considering all nickel atoms of the
catalyst particle.

cap particle qrimC (e) qC (e) qFe (e) qNi (e)
(5, 5) Fe55 (4.15± 0.14) (5.31± 0.72) (−5.32± 0.72)
(5, 5) Ni12Fe43 (4.08± 0.31) (5.06± 0.52) (−7.18± 0.65) (2.12± 0.46)
(5, 5) Ni27Fe28 (3.67± 0.24) (4.36± 0.36) (−6.46± 0.20) (2.10± 0.32)
(5, 5) Ni55 (2.90± 0.06) (3.32± 0.36) (−3.33± 0.38)

(9, 0) Fe55 (3.26± -.-) (4.68± -.-) (−4.68± -.-)
(9, 0) Ni12Fe43 (3.39± 0.17) (4.62± 0.22) (−6.71± 0.42) (2.09± 0.59)
(9, 0) Ni27Fe28 (2.99± 0.05) (3.96± 0.02) (−6.48± 0.29) (2.52± 0.28)
(9, 0) Ni55 (2.34± 0.08) (3.11± 0.42) (−3.11± 0.42)

energy for the (9, 0) cap. The lowest excess energy is observed for the Ni27Fe28,

which also showed the highest adhesion energy, suggesting that the Ni27Fe28 alloy

cluster yields the best growth conditions for the systems compared in this study.

2.3.3 Charge Redistribution

In this section we study the charge redistribution from the catalyst atoms to the edge

atoms of the carbon nanotube cap, which was suggested to increase the reactivity of

the edge atoms [194, 202] and induce an electric dipole moment, which was suggested

to be relevant for the nanotube growth process. [203]

We study the charge population on the atoms in the rim of the cap and for the

metal atoms in the catalyst particle, see Table 2.7. All charge values are excess

charges compared to the ideal valence electron situation with 8 charges on each Fe

atom, 10 charges on each Ni atom and 4 charges on each C atom. The metal atoms

partially loose their electrons to the carbon atoms in the cap, with whom they form

carbon-metal bonds. The amount of electron charge transfer to the carbon atoms

depends on the catalyst element and on the bond type of the edge atom (zigzag or

armchair). The charge on the rim of the armchair cap is higher than on the rim
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of the zigzag cap. The trend weakens, but does not vanish, if the charge transfer

per bond is considered, as the number of carbon-metal bonds is 10 for the armchair

and only 9 for the zigzag cap. Considering the charge transfer to the whole cap

and dividing through the number of bonds leads to an equal charge transfer to the

armchair and zigzag caps per bond. The highest layer of the catalyst atoms supplies

the major part of the electrons to the carbon nanotube cap. The carbon atoms of

the cap that are not part of the rim have an average valence charge of about 4 e,

with low deviations (below 0.1 e), which means that they do not take part in the

charge redistribution process between the metal catalyst and the carbon cap. The

electron charge redistribution is localised at the outer rim atoms of the cap that

form the carbon-metal bonds. The localisation is slightly higher for the armchair

edges with about 80% of the charge localised at the outer rim atoms compared to

about 74% at the outer edge zigzag cap atoms, which is the reason why the armchair

rim atoms yield a higher charge per bond.

The charge on the cap increases with Fe content and becomes maximal for the

elemental Fe cluster. We observe the same behaviour at the rim, with the exclusion

of the (9, 0) cap on Fe, which, however, may be an artifact, as only one cap was

considered on spot 3. The higher charge points to a higher reactivity on Fe compared

to Ni, which likely leads to a faster growth rate on iron compared to nickel.

The Fe atoms do not only supply their electron charge to C, but also to the

Ni atoms, see the charge transfer for the NiFe alloy systems in Table 2.7. The iron

atoms loose about 5-7 electron charges. The nickel atoms either gain about 2-2.5 e in

the alloy systems or loose about 3 e if Ni is the only element in the catalyst particle.

The carbon atoms in the cap always receive electron charges, see Table 2.7. The

total amount of charge received by the carbon cap is about 3-5 e. The amount of

charge supplied to the rim is slightly lower with about 2-4 e.

Following from the reactivity argument, which results from the increased charge

on the edge atoms, we can give a geometric argument for the preference of armchair

over zigzag structures in the following. It follows from the number of edge sites.

We consider the line density of edge sites, which corresponds to the number of edge

sites divided by the circumference of the nanotube rim

λ =
Na +Nz
∣

∣

∣

~Ch

∣

∣

∣

=
n +m

a0 ·
√
n2 + nm+m2

, (2.22)
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with Na + Nz the number of armchair and zigzag sites and
∣

∣

∣

~Ch

∣

∣

∣
the circumference

of the tube. The righternmost equation follows for straight rim configurations.

Equation (2.22) leads to a line density of λa = 2/
(√

3a0
)

for (n = m) armchair

and λz = 1/a0 for (n ∈ N
+, m = 0) zigzag tubes, for all other tubes (n 6= m 6= 0)

the value of the line density is between λa and λz (λa > λc > λz). Considering

the fact that a higher density of edge sites increases the number of carbon metal

bonds, directly gives the argument why armchair tubes are prefered compared to

zigzag tubes, as the number of electrons at the edge is increased, yielding a higher

reactivity. An easy example is the case of the (5, 5) compared to the (9, 0) tube,

which have nearly identical diameters, see Table 3.1. The number of edge sites on the

(5, 5) tube is N = Na + 0 = 2m = 10. The number of edge sites on the zigzag tube

is N = 0+Nz = n−m = 9. The increased number of sites with higher chiral angles

leads to an enrichment of armchair/near-armchair tubes in nanotube samples from

simple geometric reasoning. This geometric argument can also be translated to the

growth rate of nanotubes, as the edge contains more possible sites for carbon atoms

to dock, independent of addition sites the geometry already dictates that armchair

tubes will have a faster growth rate than zigzag tubes, see also Section 2.2.2.

The charge transfer also induces a dipole moment in the nanotube cap and cluster

system. The dipole moments for the clusters without the caps are about 1 Debye

or lower, see Table 2.3 in Section 2.3.1. If a nanotube cap is connected to the

cluster, however, the dipole moment significantly increases due to the charge transfer

between the cap and the cluster, see Table 2.8. The highest electric dipole moment

can be found with 14.7 Debye for the (9, 0) cap on spot 3 of the Fe cluster and

the lowest electric dipole moment is 7.4 Debye for the (5, 5) cap on the Ni cluster.

A decrease of the electric dipole moment is correlated with the Ni content in the

composition of the catalyst particle, where higher Ni content leads to lower electric

dipole moments. The zigzag caps have higher electric dipole moments compared

to the armchair caps, which is likely a result of the weaker localisation of electron

charge at the carbon-metal bond forming atoms for the zigzag caps. The difference

of the average electric dipole moments of a certain catalyst composition between

armchair and zigzag caps decreases with increasing Ni content, with the highest

difference of 2.3 Debye on Fe and the lowest difference of 1.1 Debye on Ni. The

electric dipole moments generate an electric field, which was suggested to increase

99



Chapter 2. Chirality Selective Growth

Table 2.8: Electric dipole moments ∆ between the nanotube caps and metallic clus-
ters in Debye. The last column of the table shows electric dipole moments
for the armchair/zigzag caps averaged over the spots of a specific catalyst
composition. The asterisks denote systems with at least one Klein-edge
at the rim.

cap particle spot ∆ (Debye) ∆avg (Debye)
(5, 5) Fe55 1 13.7 ↓
(5, 5) Fe55 2 13.1 12.4
(5, 5) Fe55 3* 10.3 ↑
(9, 0) Fe55 1 - ↓
(9, 0) Fe55 2 - 14.7
(9, 0) Fe55 3 14.7 ↑
(5, 5) Ni12Fe43 1 10.5 ↓
(5, 5) Ni12Fe43∗ 1 10.7 ↓
(5, 5) Ni12Fe43 2 9.9 10.6
(5, 5) Ni12Fe43∗ 2 12.5 ↑
(5, 5) Ni12Fe43 3* 9.5 ↑
(5, 5) Ni12Fe43∗ 3 10.5 ↑
(9, 0) Ni12Fe43 1* 12.2 ↓
(9, 0) Ni12Fe43∗ 1* 12.0 ↓
(9, 0) Ni12Fe43 2 13.0 12.1
(9, 0) Ni12Fe43∗ 2 11.5 ↑
(9, 0) Ni12Fe43 3 - ↑
(9, 0) Ni12Fe43∗ 3 10.6 ↑
(5, 5) Ni27Fe28 1 10.4 ↓
(5, 5) Ni27Fe28 2 10.3 10.0
(5, 5) Ni27Fe28 3* 9.3 ↑
(9, 0) Ni27Fe28 1* 12.0 ↓
(9, 0) Ni27Fe28 2 11.5 11.4
(9, 0) Ni27Fe28 3 10.6 ↑
(5, 5) Ni55 1 10.4 ↓
(5, 5) Ni55 2 7.4 8.6
(5, 5) Ni55 3 7.8 ↑
(9, 0) Ni55 1 9.9 ↓
(9, 0) Ni55 2 - 9.7
(9, 0) Ni55 3 9.4 ↑
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the landing probability of carbon atoms on the catalyst particle. [203] Therefore the

landing probability on Fe is higher than on Ni, leading to a higher growth rate on

catalysts containing Fe.

2.3.4 Comparison to the Experiment

In this section we derive chirality distributions based on the carbon-metal energies

calculated in Section 2.3.2 and the formalism developed in Section 2.2.2 and compare

our results to other theoretical and experimental studies.

There are two important results, that can be derived from the carbon-metal bond

energies. First, the energies are important for the nucleation phase, as lower ex-

cess (carbon-metal bond) energies point to more stable cap structures leading to a

higher formation probability. [162, 179] Second, a carbon addition barrier ∆a can

be derived from the carbon-metal bond energies for the growth phase, which was

found to influence the chirality dependent growth rate. [2, 43, 168] Both phases de-

termine the chirality of the carbon nanotube ensemble which is grown during the

nanotube synthesis. The energy barrier for the carbon addition to an armchair rim

was presented in Equation (2.9), ∆a = 2 · |Ez − Ea|, where Ea is the energy of an

armchair carbon-metal bond and Ez is the energy of a zigzag carbon-metal bond

(ECM/bond in Table 2.6), see Section 2.2.1. [43] We determine the barrier energies,

by using Ea = E
(5,5)
CM /bond and Ez = E

(9,0)
CM /bond from Table 2.6 in Equation (2.9).

The barriers result from small deviations between armchair and zigzag bond en-

ergies. Previous studies considered flat metallic surfaces as catalysts and tried to

optimize the fit between catalyst surface and the edge of the cap. [179, 190] On a

curved particle, as in this thesis, a perfect fit between the edge of the nanotube cap

and the catalyst particle is impossible, which might increase the carbon-metal bond

energies. The bond energies for armchair edges from Reich et al., derived for a flat

Ni surface, range from Ea = 0.12 eV to Ea = 1.12 eV, comparing well to our average

value ENi55
a = (0.32± 0.04) eV. [179] The values for zigzag edges from Reich et al.

range from Ez = 0.16 eV to Ez = 1.44 eV, which are also comparable to our value

ENi55
z = 0.46 eV. [179] The caps connect to various spots on the catalyst clusters

which increases the deviation of the bond energies and therefore renders the chiral

selectivity even harder. The large standard deviations point to a general problem

for ab-initio studies of carbon nanotube growth. The quantitative reproducibility is
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Figure 2.14: Normalized abundances in dependence of the tube diameter; a)
(

µ = 9.0 Å, σ = 0.6 Å
)

and c)
(

µ = 8.1 Å, σ = 0.6 Å
)

estimated from
our theoretical growth model, see Equation (2.12); b) and d) from ex-
perimental photoluminescence data by Chiang et al. for nanotubes
grown on Ni and on a nickel-iron alloy at 600◦ C. [3]

rather weak and it should be desired to test various systems with slightly different

configurations/parameters. The energy barriers for the studied catalyst composi-

tions are calculated with ∆Fe55
a = 0.06 eV, ∆Ni12Fe43

a = 0.06 eV, ∆Ni27Fe28
a = 0.06 eV,

and ∆Ni55
a = 0.28 eV. The barriers are equal for all iron containing catalyst composi-

tions, which might be coincidental. A study with more statistical relevance is desired

to determine bond energies with smaller errors, leading to more reliable values for

the carbon addition barriers.

The barriers can be inserted in Equation (2.12) to determine the chirality distri-

butions, where the contribution of Γ (Equation (2.11)) is the same for all systems
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that mainly contain iron atoms (δa = 0.45 for 600◦ C) and only the gaussian di-

ameter distribution factor changes the chirality distribution. This corresponds well

to experimental results for NiFe alloy systems, where the chirality distributions de-

rived from nanotube ensembles grown on catalysts with the composition Ni0.27Fe0.73

and Ni0.5Fe0.5 were found to be almost identical. [3] The Ni catalyst particle has a

significantly larger barrier energy, leading to a suppression of armchair growth sites,

as, e.g. δa = 0.024 for 600◦ C.

Chiang et al. grew nanotubes on NiFe alloy systems to analyse the influence of the

catalyst composition on the chirality distribution of a nanotube ensemble. [3, 127]

They derived chirality distributions from photoluminescence data using calculated

photoluminescence intensities. [3, 87] The chirality distributions satisfactorily fit the

results derived from our growth model, see Figure 2.14. [3] Nanotubes grown on a Ni

catalyst show a relatively wide chirality distribution with a peak for (9, 4). [3, 127]

Especially important seems to be the diameter region of the nanotubes with 9.0 Å

for (9, 4) and 8.8 Å for (7, 6) which have the highest intensity/abundance in the

experimental study. [3] A slight descent of intensity occurs for chiralities with di-

ameters that have smaller/higher tube diameters than about 9.0 Å, pointing to

a lower number of catalyst particles, or other unknown effects, to grow tubes of

that higher/lower diameters. Increasing the iron content of the composition of the

catalyst particles until iron becomes the major component, leads to a significant

narrowing of the chirality distribution to only a few chiralities at lower diameters,

compared to the Ni catalyst particle, see Figure 2.14 c) and Figure 2.14 d). The

fcc-lattice constant of iron aFe = 3.45 Å is lower than the lattice constant of nickel

aNi = 3.63 Å, [1] which leads to smaller diameter alloy catalyst particles with in-

creasing Fe content, which might be a reason for the shift of the chirality distribution

to lower diameter nanotubes ((7, 6) and (8, 4) abundance increased), as the diam-

eters of the grown nanotubes depend on the diameters of the catalyst particles on

which they are grown in the tangential growth mode/under growth conditions close

to thermodynamic equilibrium. [111, 114, 188] The experimental study, however,

tried to obtain equal particle diameters through the preparation process, pointing

to a dependence on the material instead of the catalyst diameters. [3] An enrich-

ment of a small number of chiralities occurs, which is partially reproduced by our

growth model, see Figure 2.14 c), as tubes with armchair growth sites have a higher

103



Chapter 2. Chirality Selective Growth

contribution on Fe containing particles. Our model was not intended to perfectly

reproduce all abundances, however, it still gives a fair approximation to the exper-

imental results and successfully reproduces the significant change in the chirality

distribution by the change of the catalyst.

Besides the chirality distributions obtained from our growth model we also want

to compare our charge transfer results to the literature. Wang et al. suggested

that the short ranged charge distribution on nanotube edge atoms and catalyst

atoms might be important for the chirality-selective growth of carbon nanotubes,

as electron charges would increase their reactivity. [202] We observe an increase of

electron charge on the carbon edge atoms with charge supply by the metal atoms

in agreement with Wang et al.. [202] The average charge values on the carbon rim

atoms, see Table 2.7, compare well to the values calculated by Wang et al. for, e.g.,

the (5, 5) nanotube cap on nickel we find an average value of 0.29 e which compares

to the slightly higher values of Wang et al. between 0.31 e and 0.38 e. [202] To

determine the effect of the charges on chirality distributions, we also put a focus on

alloy systems. In alloy systems a charge distribution between two metallic species

leads to an electron accumulation not only on the carbon edge atoms, but also on

the nickel atoms. We find higher charges on armchair than on zigzag edges, which

was suggested by Wang et al. to be used to influence the chirality. [202] The alloy

composition has a significant effect on the charge distribution. We find an increase

of electron charge on the carbon cap edge atoms from Ni to Fe with increasing Fe

content in the alloy, pointing to an increased growth rate of nanotubes through

increased reactivity of the nanotube edge atoms, which compares well to the higher

growth rates found for iron compared to nickel. [74] Another relevant factor for the

growth rate was found to be the metal d orbital energy. [274] The charge distribution

patterns suggested by Wang et al. [202] resemble the edge structure of armchair and

zigzag sites, see, e.g., Section 2.1.1.

Theoretical studies can only model some aspects of the nanotube growth, ne-

glecting other aspects, e.g., the effect of Ostwald ripening, [177] that influence the

chirality distribution as well. Further the chirality distributions determined in ex-

periments have to be regarded with care as huge differences for the abundances of

the chiralities might arise through the method used to determine the abundances,

i.e. the intensity of a measured entity is not directly proportional to the abundance
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of the tube. [87, 89, 261] Therefore we did not expect to obtain results that perfectly

match our growth model, however, we see it as a success that the model correctly

describes the qualitative features of the chirality selective growth process, which

suggests, that the model might include some part of the truth to solve the puzzle of

chirality selective growth.

Summary

In summary we calculated adhesion energies, excess energies, and electronic charge

redistributions between carbon nanotube caps and NiFe alloy systems using den-

sity functional theory. The highest adhesion energies and lowest excess energies

are found for the Ni27Fe28 alloy cluster, for both armchair and zigzag caps. The

energy differences between armchair and zigzag, however, were found to be low.

The curved form of the catalyst particle can be regarded as a constraint to the fit

between the nanotube edge and the catalyst, which tends to lower the energy dif-

ference between armchair and zigzag caps. The small energy difference between the

armchair and zigzag caps allows to derive a carbon addition barrier, which leads to

a chirality distribution that compares satisfactorily with experimental results. The

charge transfer between the cap and the catalyst particles increases with increasing

Fe content, which further induces a dipole moment. The charge transfer to the

armchair caps is higher than to the zigzag caps, in contrast to the electric dipole

moment, which is higher for zigzag than for armchair caps and has a maximum of

about 15 Debye on the iron particle. The excess electron charges on the carbon rim

atoms increase with Fe content of the catalyst particle from (2.90± 0.06) e for Ni

to (4.15± 0.14) e for Fe. The excess electron charges increase the reactivity of the

carbon cap atoms, which explains why the nanotube growth rate on iron is higher

than on nickel.
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Die Vereinigung

Alles schien zu strahlen. Hermann sah sich selbst, aber war er es ? Oder war es sein

Spiegelbild ? Heftig schüttelte es ihn hin und her. Es schien ihm so als würde er sich

von aussen selbst beobachten können, als wäre er nicht mehr er selbst. Und dann

erkannte er, dass er selbst strahlte. Ihm lief der Schweiss herunter, erst jetzt hatte

er bemerkt, wie heiss es um ihn herum geworden war. Plötzlich tauchte in kurzer

Entfernung neben ihm William auf. Dann riss es ihn wieder fort und es zog ihn zu

Ernest zurück. Ernest hatte nicht mit der Anwesenheit von William gerechnet und

stemmte sich mit aller Kraft von ihm weg, während er überrascht zur Kenntnis nahm,

Hermann doppelt zu sehen. Hermann begriff erst jetzt, dass auch er einen Zwilling

hatte, der ihm aber so sehr glich, dass sie ununterscheidbar waren. Hermann ver-

suchte noch einmal sich von seinem Zwilling zu trennen, musste aber feststellen,

dass er sich dafür von William und Ernest entfernen müsste. Dies führte dazu, dass

er noch einige Male heftig hin- und herschwang bevor er sich schlussendlich seinem

Schicksal ergab und seine Runden im vertrakten Muster wiederaufnahm, wobei es

ihm sein Zwilling in gebührendem Abstand gleichtat.



3 Carbon Nanotube Bundles

After studying a possible path to enrich certain chiralities through the growth pro-

cess in the previous chapter (Chapter 2), we now want to focus on bundles of carbon

nanotubes, which is a common form of occurrence of nanotubes, as nanotube walls

attract each other through van der Waals forces. [80] Before nanotubes can be ef-

fectively studied in experiments or used in devices, often, a first step is to separate

the bundled tubes in individual tubes. [78]

In this chapter we will analyse the binding energies of various nanotube bundles

under the aspect of their structure, in detail, the intertube orientation and chirality.

Section 3.1 presents the computational methods of our study on bundles of nan-

otubes.

In Section 3.2 1 the general properties of bundles are studied, e.g., the intertube

distance and binding energy between tubes in a bundle. This is a starting point to

understand the bundling and debundling processes of nanotubes, which is important

for post processing separation methods and to understand under which conditions

(e.g., temperature, tube diameter) carbon nanotubes form bundles.

Compared to Section 3.3 2 all previous sections considered the question of how

nanotubes of a single chirality can be isolated. In the last part of the results of

this thesis (Section 3.3) we study the electronic structure of monochiral bundles in

dependence of the orientation of the tubes in the bundle, which serves as an example

for the fascinating properties which can arise from monochiral nanotube samples.

Therefore we first consider the symmetry of monochiral bundles. In the last section

of this chapter we focus on the chiralities that experience a symmetry breaking

through the change of the intertube orientation and the influence this symmetry

break has on the electronic properties, i.e., the band structure and density of states.

1The section is based on results prepublished in Reference [48].
2The section is based on results prepublished in Reference [46].
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Before we present our results we give a short refresher about bundles of carbon

nanotubes (see also Section 1.1.3) and a motivation, why it is worthwhile to study

the binding energies of nanotube bundles. 3

Nanotubes tend to form bundles, [80] this, e.g., quenches their fluorescence. [78]

However, isolated tubes are desired to study the extraordinary properties of nan-

otubes which are induced by their one dimensionality. [18] Therefore the bundles

need to be destroyed and tubes have to be isolated. [78] This is achieved by the use

of a combination of sonication or centrifugation and surfactants, e.g., sodium dode-

cyl sulfate (SDS). [37, 118, 122, 275] These processes of bundling and debundling

are not well understood. Especially the influence of the chirality of the tubes on the

binding strength is interesting, as this might help to explain the selectivity of certain

surfactants or debundling methods for certain chiralities. [91, 276–278] Section 3.2

adresses the question if the binding strength of the tubes depends on the chirality

of the tubes.

It was suggested that the orientation of the tubes in a bundle can be compared

to the stacking of graphene layers (e.g. bernal/AB stacked). [107, 279] The binding

energy and intertube distance of AB and AA stacked graphene show a significant

difference, pointing to a structural dependence of nanotubes in dependence of the

intertube orientation. For nanotube bundles, we have to additionally consider the

chirality of the tubes. The structural influence on the bundle properties is espe-

cially interesting for bundles of tubes that consist of only one chirality (monochi-

ral bundles), as these have uniform properties, which are not averaged over mixed

structural surfaces. The mechanical and electronic properties of bundles were al-

ready studied theoretically and experimentally. [65, 80, 83, 95, 99–101] However,

there is little knowledge about the influence of the structure (chirality) of the tubes

on, e.g., the electronic structure of the bundle. [102, 107, 108] Monochiral bundles,

have not been experimentally produced yet, even though their production is ex-

pected in the near future. [40, 41, 91, 122] The studies performed on bundles of

nanotubes so far lack in the level of applied theory. Nanotube bundles and their

electronic structure were studied with density functional theory within the local

density approximation (LDA), which allows to consider the structure of the tubes

3The motivation is a modified version of the introductions of the papers published by the author
of this thesis in References [46, 48].
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in the bundle. [102, 107, 108] The local density approximation, however, fails in

modeling the van der Waals interaction between tubes. [231] Another approach is

to use continuum approximations involving the Lennard-Jones potential. [280–283]

The continuum approximation, however, does not account for the specific configu-

ration of the carbon atoms (structure). [280–283] Other approaches that consider

the structure as well as the van der Waals interaction, do not reach the accuracy of

density functional theory calculations. [284, 285] The van der Waals functional de-

veloped by Dion et al. was shown to be able to model bundles of carbon nanotubes

in density functional theory, however, only one chirality (8, 0) has been studied so

far. [227, 238]
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3.1 Computational Methods

This section 4 presents the computational methods for the calculations on bundles

of carbon nanotubes presented in the following two Sections 3.2 and 3.3.

The calculations were performed with the trunk-version 387 of SIESTA, [216, 239]

which supports calculations using the van der Waals density functional developed

by Dion et al. (Section 1.2.3). [227, 233] The calculation used the norm-conserving

carbon van der Waals pseudopotential presented in the Appendix (Section 5.1.2),

which was generated by the scheme proposed by Troullier and Martins. [241] We

used a double-ζ (DZ) basis set to describe the valence electrons. Cutoff radii for the

s and p orbital of the carbon atoms were rs = 5.949 Bohr and rp = 7.450 Bohr. The

mesh cutoff for the real-space integration corresponded to about 350 Ry. We used

a k-point sampling between 1x1x10 and 1x1x14 k-points in the Monkhorst-Pack

scheme [286] to calculate the total energies; the z-axis was chosen as the tube-axis.

The calculation of band structures requires a better k-point sampling. Therefore the

k point sampling for the band structure calculations of the bundled tubes were 20

k-points in x and y direction and 300 k-points in the z-direction, leading to a k point

sampling of 20x20x300 k-points. The band structure was plotted for certain high

symmetry directions of the hexagonal Brillouin zone, e.g. AHLAΓKMΓ, see Figure

3.1 and Section 3.3.3. We used the whole k-sampled zone to derive the density of

states at an electronic temperature of 20 K.

To derive a decent bundle geometry we first improved the geometry of isolated

tubes. Therefore we optimized the lattice constant of isolated tubes by minimization

of the total energy in dependence of the lattice constant. A geometry optimization

was then performed within the conjugate gradient method to a maximal force tol-

erance of 0.04 eV/Å. The optimized coordinates of the isolated tubes were used

to calculate the properties (binding strength and intertube distance) of the carbon

nanotube bundles. We placed the relaxed tube in a hexagonal unit cell with peri-

odic boundaries to simulate the trigonal bundle structure, see Figure 3.2 a) for the

example of a bundle of (6, 6)-tubes. All tubes are studied as oriented parallel to

4A major part of the methods section has been published by the author of this dissertation in
References [48] and [46]. The calculations of the manuscripts [46, 48] were wrongly performed
with a LDA pseudopotential. An erratum was published in Reference [47]. The data presented
in this thesis were derived from calculations using the correct van der Waals pseudopotential
presented in Section 5.1.2.
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Figure 3.1: Hexagonal Brillouin zone with high symmetry points A, H, L, ∆F, P, U,
Γ, K, and M. The point ∆F is found at about 2

3
π
a
, and corresponds to

the band intersection in metallic armchair carbon nanotubes. [93] The
figure was inspired by the figure of Reference [107].

each other and perpendicular to the xy-plane, this is justified, as the formation of

helical bundles is only expected for chiral tubes with low pitch angle χ due to high

coiling energy costs for tubes with mediocre and high pitch angles. [103] The bundle

has an infinite number of tubes (bulk-bundle/nanotube crystal). Our calculation is

a good approximation for inner tubes (I in Figure 3.2 a)) of the bundle, as bun-

dles have a trigonal structure where inner tubes I have six neighbors (E1, . . . , E6).

External tubes Ei have less than six neighbors, e.g., three interacting neighbors

(e.g., E1 interacts with E6, I, E2) for the structure presented in Figure 3.2 a). Tri-

angle like interaction holes exist at the area where three tube surfaces meet (e.g.

between E1, E2 and I in Figure 3.2 a)), see Figure 3.2 b). The length of a side of

the equilateral triangle of the triangle hole can be derived with

t =
d+D

2
, (3.1)

with the tube diameter d and intertube distance D, see Figure 3.2 b) for a geometric

derivation. Twice the length of the triangle side corresponds to the lattice constant

of the hexagonal unit cell, in which the tube is enclosed, see Figure 3.2 b) right

bottom. The lattice constant of the hexagonal unit cell is given by the diameter of

the tube d plus the inter tube distance D. The intertube distance is independent
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a) b)

Figure 3.2: Sketch of a bundle of seven (6, 6)-tubes based on References [46, 48]. The
hexagon in the middle represents the unit cell for our bundle calculations.
Lines connecting the middle points of the hexagons are added to better
illustrate the symmetry of the system, which is trigonal. The upper
carbon atoms of the tube are in blue and the lower carbon atoms are
in gray; only one unit cell in z-direction is shown. a) Triangle holes
(green) exist between three adjacent tubes, e.g. E1, E2, and I. External
tubes Ei interact with three neighbors, inner tubes I interact with six
neighbors. b) Sketch of the triangle holes around the inner tube of a
bundle of seven (6, 6)-tubes. The tube diameter d is connected with
the length of the side of the equilateral triangle of the triangle hole
by t = d+D

2
, as 2t correspond to the hexagonal lattice constant d + D

(geometric derivation from the figure). The hexagonal lattice constant
consists of the tube diameter d and 2 · D

2
.
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of the tube diameter d (see Section 3.2.1). Therefore the size of the triangle hole

will increase for an increase of the tube diameter and the interaction of neighboring

tubes is reduced, as the distance between atoms of neighboring tubes is increased/a

smaller fraction of atoms of the tube will have a significant contribution to the

intertube interaction. Therefore the intertube binding energy per atom decreases to

a constant, small value for larger diameter tubes (see Section 3.2.2). The triangle

holes have been suggested as channels for doping with one dimensional chains of

atoms to change the electronic properties of the system. [109]

The inner tube was rotated in steps of 1 ◦ or 5 ◦ starting from 0 ◦ to 60 ◦ in its

unit cell for certain chiralities (see Section 3.3.1) to include effects that arise from

the orientation of the tubes (details can be found in Section 3.3). 5 Therefore we

did not perform a relaxation of the bundle structure, as this leads to energetically

lowest states, which does not allow to consider energetically unstable orientations

of the tubes of the bundle. As we did not relax the bundled structure some stress

remains in the systems. The distortion caused by the bundling has little or no effect

on the properties for tubes with diameters below 15 Å. [79, 102] A polygonaliza-

tion/hexagonal deformation suggested [109] and observed [110] for large diameter

nanotubes
(

d ≥ 25Å
)

is negligible in our case, as the tubes studied in our calcula-

tion have diameters in the range of 6-17 Å, with the only exception of the (20, 20)

chirality which has a diameter of 27.8 Å. Special care is taken for the large diam-

eter (20, 20) bundle. The maximal forces for the atoms in the bundle range from

0.05 eV/Å up to 0.15 eV/Å for all the chiralities, except the (8, 6) chirality which has

a slightly higher maximal atomic force of 0.22 eV/Å. The low forces of 0.10 eV/Å

observed for the (20, 20) chirality point to only small effects of a possible hexagonal

deformation induced by the bundling.

The difference between minimal total energy of the bundle and total energy of the

isolated tube is regarded as total van der Waals energy. The minimal total energy

of the bundle was derived by variation of the lattice constant of the hexagonal unit

cell, which corresponds to a variation of the intertube distance. The total energy

was plotted in dependence of the intertube distance/hexagonal lattice constant and

a fourth order polynomial fit was conducted in the attractive region (potential well)

5The rotation of the inner tube corresponds to a simultaneous rotation of all tubes of the bundle
as periodic boundary conditions were applied.
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Figure 3.3: Total energy in dependence of the intertube distance calculated for a
bundle of (6, 6) tubes. The energy is normalized to the energy of an iso-
lated tube, which corresponds to ”infinitely” distant neigboring tubes.
The data points were obtained with SIESTA, see Section 1.2.4. A
Lennard-Jones potential is plotted with ε and rmin parameters fitted
to our data. The figure was inspired by Reference [46].

to find the intertube distance which minimizes the total energy, see Figure 3.3. A

Lennard-Jones potential

VLJ = ε

[

(rm
r

)12

− 2
(rm

r

)6
]

, (3.2)

with ε the depth of the potential and rm the distance for the minimal energy, is

plotted with ε and rmin parameters fitted to our data, see also Section 1.2.3. [85,

94, 230] The Lennard-Jones potential shows a smaller width in the attractive region

compared to the calculated data points, see Figure 3.3. The total energy of the

isolated tube was simulated by the calculation of very high intertube distances.

Therefore the average total energy of two to three intertube distances of about

30-40Å was calculated, which showed only differences in energy on the order of

10−4 meV. Dividing the total van der Waals energy through the number of atoms of

the unit cell yields the van der Waals energy per atom. Dividing the total van der

Waals energy through the length of the unit cell yields the van der Waals energy per

length. The intertube distance can be derived from the optimized xy/hexagonal unit
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cell length by subtraction of the diameter of the tube. The optimized xy/hexagonal

unit cell length was derived by minimization of the total energy in dependence of

xy/hexagonal unit cell length. We derived the diameters of the tubes from the

averaged values of the distances between the individual tube atoms to the center

axis of the geometrically optimized tube.
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3.2 Separation of Carbon Nanotube Bundles

In this section 6 we study the intertube distance (Section 3.2.1) and binding strength

(Section 3.2.2) for inner tubes of carbon nanotube bundles in dependence of their

structure (chirality) with van der Waals density functional theory. [227] We try

to understand the bundling and debundling process of nanotube bundles and test

whether an influence of chirality exists for the binding energy and/or intertube

distance.

3.2.1 Intertube Distances

In this subsection we determine the intertube distance of monochiral carbon nan-

otube bundles as a function of chirality.

Table 3.1 presents an overview of the intertube distances between the tubes of

the bundle in dependence of their chirality and diameter, as well as intertube bind-

ing energies; the values for chiralities marked by an asterisk correspond to average

values for various orientations of the tubes in the bundle, corresponding to the way

described in Dumlich and Reich [46], respectively Section 3.3.2. The orientation

only affects achiral tubes which share symmetry operations with the bundle, e.g.

(6, 6) with a C6-axis. [46]

The intertube distance has no systematic dependence on chirality and diameter,

which agrees with the major part of the literature. [65, 109, 281] The lack of chiral-

ity dependence results from the imperfect matching of the atomic structure of the

neighboring tubes in the bundle. [83] Each inner tube I has six neighbors in the

trigonal lattice, see Figure 3.2 a). This leads to an averaged interaction between

neighboring tubes, as an optimal arrangement of all surfaces between neighboring

tubes is not geometrically possible, except for achiral C6-axis tubes, see Section 3.3.2

or Reference [83].

6A major part of the texts and results of this section, including the subsections, has been pub-
lished by the author of this dissertation in Reference [48]. The calculations and analyses were
performed by the author of this thesis under the supervision of one of the co authors of the
paper and the thesis advisor Stephanie Reich. All parts that have not been calculated/analysed
by the author of this thesis have been omitted. Further all calculations of the manuscript [48]
were wrongly performed with a LDA pseudopotential. An Erratum was published in Refer-
ence [47]. The data presented in this thesis were derived from calculations using the correct
van der Waals pseudopotential presented in Section 5.1.2.
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Table 3.1: Intertube distances D and binding energies for bundles of tubes of various
chiralities (n,m)/chiral angles (θ) (calculated using Equation (1.6)) and
diameters d. For chiralities marked with an asterisk the values were de-
rived by averaging over values for various orientations of the tubes in the
bundle as presented in Dumlich and Reich [46], respectively Section 3.3.2.
The diameters d are for the single tubes of the bundles, the intertube dis-
tance D is the nearest distance between the walls of two neighboring
tubes of the bundle, Eatom

vdW is the intertube binding energy per atom and
Elength

vdW is the intertube binding energy per length.

(n,m) θ (◦) d
(

Å
)

D
(

Å
)

Eatom
vdW (meV) Elength

vdW

(

eV
Å

)

(7, 0) 0 5.73 3.32 34.4 0.221
(8, 0)* 0 6.52 3.32 32.4 0.238
(5, 5)* 30 7.03 3.35 30.3 0.241
(9, 0)* 0 7.30 3.24 32.7 0.271
(8, 2)* 10.9 7.43 3.32 29.8 0.251
(7, 4) 21.1 7.80 3.29 29.9 0.265
(10, 0) 0 8.11 3.33 28.2 0.263
(6, 6)* 30 8.40 3.26 30.2 0.288
(8, 4) 19.1 8.55 3.29 28.4 0.276
(11, 0) 0 8.90 3.34 26.4 0.266
(12, 0)* 0 9.69 3.33 25.6 0.283
(7, 7) 30 9.77 3.31 26.1 0.291
(8, 6) 25.3 9.80 3.32 26.2 0.293
(8, 8) 30 11.15 3.31 24.6 0.313
(14, 0)* 0 11.30 3.31 24.2 0.316
(9, 9) 30 12.53 3.39 21.6 0.308
(12, 6)* 19.1 12.76 3.29 23.6 0.344
(10, 10)* 30 13.91 3.30 22.9 0.364
(20, 0) 0 16.05 3.29 20.5 0.376
(12, 12)* 30 16.68 3.29 20.8 0.396
(20, 20) 30 27.75 3.29 15.8 0.504
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Figure 3.4: Calculated van der Waals energy per atom plotted over single tube diam-
eter for various nanotube bundles. The calculated values are compared
to literature values; for those that are available. [65, 238, 281] The chi-
ralities that share symmetry operations with the bundle, e.g. (6, 6) and
(9, 0), have slightly higher binding energies than expected from the fit,
see Section 3.3.2. The (12, 12) value is only slightly higher, as the effect
due to the shared bundle symmetry weakens with increasing diameters.
The figure was reproduced from Reference [48] with new values.

The intertube distances vary in a small range of 3.24-3.39 Å independently of chiral

angle and diameter with an average diameter of (3.31± 0.03) Å, see Table 3.1.

Our results compare quite well to the intersheet distance for graphite of 3.35 Å

(Ref. [280]) and also to intertube distances of 3.2-3.4 Å reported previously. [16, 65,

80, 103, 106]

3.2.2 Intertube Binding Energies

In this subsection we study the intertube binding energy of inner tubes of bundles

for various chiralities. We start with the calculation and analysis of the intertube

binding energy per atom.

Therefore we first calculate the binding energy per atom as described in Section

3.1. A 1/d and 1/
√
d fit is applied on the calculated van der Waals energy per atom,

see Figure 3.4. The adjusted R2 value7, which is a measure of how good the model

7All adjusted R2 values of this section were calculated using the Mathematica software pack-
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fits the data, [287, 288] was found with R̄2
1/d = 0.954 for 1/d and for 1/

√
d it is

R̄2
1/

√
d
= 0.960. The fitted functions for both models are

Eatom
vdW

(

d
(

Å
))

=
133.0

d
+ 12.4 (meV) , (3.3)

and

Eatom
vdW

(

√

d
(

Å
)

)

=
82.7√

d
− 0.09 (meV) . (3.4)

Both models describe the correlation between the van der Waals energy per atom

Eatom
vdW and d about equally well, with the 1/

√
d-dependence being slightly better.

The strongest deviations occur for chiralities that share symmetry operations with

the bundle, see Section 3.3.2. Especially the (6, 6) and (9, 0), have too high energies,

which is a consequence of their symmetry and averaging over various orientations

of the tubes. Only one orientation was considered for the (9, 9) bundle, which

lead to a value lower in energy than the fit would suggest. The intertube distance

found for the (9, 9) bundle is higher than for all other chiralities, which leads to a

lower intertube binding energy, see Table 3.1. The value of the (6, 6) tube in high

symmetry configuration was found to be EDZ
vdW = 23.7 meV/atom

(

D = 3.44 Å
)

compared to the average value of E
(6,6)
vdW = 30.2 meV/atom

(

D = 3.26 Å
)

, which

shows that the average value of the (9, 9) bundle can be expected to lie higher in

energy if an average value of all orientations is considered, as the (9, 9) bundle shares

symmetry with the bundle. For higher diameters the tube orientation effect on the

binding energy diminishes, e.g., for the (12, 12) bundle. A calculation considering a

higher number of basis functions, i.e. double zeta polarized, lead to a binding energy

of EDZP
vdW = 21.7 (meV/atom) for the high symmetry configuration of the monochiral

(6, 6) bundle. All binding energies can therefore be expected to be slightly (about

2 meV) lower in energy. 8

Increasing the tube diameters increases the size of the triangle holes, reducing

age, utilising the Program routine ”LinearModelFit”. [287] The adjusted R2 values
(

R̄2
)

are

defined as R̄2 = 1 − (n− 1) / (n− p)
(

1−R2
)

, with n the number of data points and p the
number of parameters, [287] while R2 is the coefficient of determination, see Bestimmtheits-
maß/Determinationskoeffizient R2 on page 159 ff. in Reference [288].

8The shift is expected to be of about the same size for all studied bundles; considering the weak
influence of chirality and diameter the change should be slightly smaller for larger diameter
tubes and slightly larger than 2 meV for smaller diameter tubes with higher binding energies
per atom.

119



Chapter 3. Carbon Nanotube Bundles

the van der Waals binding energy per atom, see Figure 3.2 b). As a Gedanken-

experiment, neglecting the effect of a possible polygonalization, [109, 110] we can

estimate the minimal binding energy of the largest nanotubes and find a limiting

energy needed for bundles of circular tubes to be stable. We get a rough esti-

mate of ESWCNT
min = 8-14 meV/atom for the intertube binding energy of the largest

single-walled carbon nanotubes, with diameters of at least 10 nm. [71, 72] The

ESWCNT
min value was extracted from the fitted functions in Equation (3.3) and Equa-

tion (3.4). In an experiment by Ma et al. it was observed, that some large diameter

single-walled carbon nanotubes did not form bundles at room temperature, how-

ever, bundles were observed for small diameter tubes of up to 2 nm. [71] We find a

binding energy per atom of Ebundle
min = 18.4-19.1 meV/atom for tubes with diameters

of 2 nm, which might be regarded as a threshold for these bundles to be stable at

room temperature. The reason, why the large diameter tubes do not form bundles

at room temperature might be the thermal energy kBT300◦K/2 ≈ 13 meV of each

degree of freedom of the system, which is on the order of the binding energy per

atom between large diameter tube bundles. We therefore expect the large diameter

tubes reported by Ma et al. to bundle at low temperatures, e.g., with the largest

diameters becoming bundled at about Tbundle ≈ 160◦-175◦ K.

Our results for the binding energies per atom show good agreement for the (8, 0)-

bundle with Eatom
vdW = 32.4 meV compared to Eatom

vdW = 30 meV [238] 9 and for

armchair-bundles reported by Lu [65], see Figure 3.4.

The binding energies per atom of carbon nanotube bundles are lower than in

graphite; Experimental values for the van der Waals energy per atom were derived

from graphite with
(

35+15
−10

)

meV [280] and more recently (52± 5) meV. [289] The

lower binding energy results from the packing of the tubes, which contain vast

”empty” spaces (triangle holes) induced by the curvature of the tubes compared to

9Kleis et al. used the same van der Waals density functional and a non-self-consistent (post-
GGA) implementation, in detail they replaced the GGA description of the correlation and
used the electron density calculated in the GGA calculation for the evaluation of a nonlocal
correlation energy that includes the ”nature of the van der Waals binding”. [227, 238] We use
a self consistent approach [233] in our study, meaning that the density used to evaluate the
nonlocal correlation energy is fully self-consistent. [236] The utilisation of a larger basis set, i.e.
doubly zeta polarized, leads to an energy shift of about 2 meV lower in binding energy, which
would lead to a value of about Eatom

vdW = 30.4 meV for the binding energy of the (8, 0)-bundle.
Therefore the size of the basis set is regarded as the most important factor for the slightly
higher binding energies we observe. The agreement between the results of the two methods
concurs to previous results that the effect of the self-consistency is low. [236]
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Figure 3.5: Van der Waals energy per length plotted in dependence of diameter
for various nanotube bundles. The calculated values are compared to
literature values; for those that are available. [65, 238, 281] The figure
was reproduced from Reference [48] with new values.

the graphite systems, which are flat and have a more compact packing.

The next quantity of interest is the binding energy per length, calculated as de-

scribed in Section 3.1. We find a linear or
√
d dependence between diameter and

the van der Waals energy per length, see Figure 3.5. The adjusted R2 value, for d is

R̄2
d = 0.963 and for

√
d it is R̄2√

d
= 0.977. The fitted functions for both models are

Elength
vdW

(

d
(

Å
))

= 0.0130 · d+ 0.162635
(

eV/Å
)

, (3.5)

and

Elength
vdW

(

√

d
(

Å
)

)

= 0.0978 ·
√
d− 0.0121

(

eV/Å
)

. (3.6)

Both models succeed to describe the behavior for growing values of d as increasing

tube diameters lead to increasing tube circumferences with more atoms (linear in-

crease [290])/larger areas participating in the binding between the tubes. 10 There-

10The area density of the carbon atoms σ = 2/Ahex = 4√
3a2

0

, with a0 = 2.461 Å the graphene

lattice constant, can be derived from the hexagonal unit cell area Ahex =
√
3

2
a20, [96] which

includes two
(

6 · 1

3

)

carbon atoms. Multiplication with the area of the cylinder/nanotube
surface A = πdl, [96] where d is the tube diameter and l is the tube length, leads to the linear
dependence between the number of carbon atoms and the diameter: NC = σ ·A = 4π√

3

l
a2

0

·d ∝ d.
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fore the binding energy per length increases with increasing diameter. However,

the triangle holes increase with increasing tube diameter, see Section 3.1, which

lowers the binding energy per atom and the effective interaction area, therefore

the order of divergence is lowered. We only considered the small diameter regime

here
(

d ≤ 25 Å
)

, for larger diameter tubes the structural transition to the polygo-

nized/hexagonal structure has to be considered, that changes the expected depen-

dence. [109, 110] The small diameter regime applies for all of our studied bundles,

as even the deformation of the largest diameter tube bundle with (20, 20) chirality

is very small. The increase in binding energy per atom in comparison between the

circular and hexagonal form is about 0.8 meV for the (20, 20) bundle and negligible

for all smaller tubes we studied, if the error of the calculation ±0.2 meV/atom is

considered, see Section 3.3.2 or the error induced by the use of the DZ basis set

instead of a larger basis set.

Our result of Elength
vdW = 0.238 eV/Å shows good agreement for the (8, 0)-bundle

compared to Elength
vdW = 0.225 eV/Å reported previously. [238] For the (10, 10)-bundle

we derive a value of Elength
vdW = 0.364 eV/Å, which lies between Elength

vdW = 0.286 eV/Å

(Ref. [281]) and Elength
vdW = 0.377 eV/Å derived for a bulk-bundle of tubes. [65]

In the following we want to give some details of previous studies and the differ-

ences to our study, especially why using the van der Waals density functional is

superior compared to previous studies. In Reference [281] the interaction between

the tubes was modeled by a continuum model and Lennard-Jones potentials with

Lennard-Jones constants derived from graphite. The electron density was continu-

ously/uniformly distributed on the surfaces of cylindrical tubes to model a bundle of

nanotubes with various chiralities and same diameter. [281] A fit to their data lead

to an energy function of Elength
vdw (

√

d
(

Å
)

) = −0.0803
√
d + 9.39 · 10−3

(

eV/Å
)

. [281]

In Reference [65] the van der Waals interaction was modeled by Lennard-Jones pair

potentials with parameters derived from a measurement on single crystal graphite.

Each atom was assumed to be the center of a spherically symmetric electron dis-

tribution. [65] The structure of the nanotubes was obtained by conformal map-

ping of a graphite strip onto a cylindrical surface. [65] The total intertube in-

teraction was minimized in dependence of the intertube distance to obtain a fit

Compare also to the number of atoms per length of tube, presented by Tersoff and Ruoff with
2πR/Aa, where Aa = 2.62 Å is the area per atom and R is the tube radius. [109]
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of Eatom
vdW (

√

d
(

Å
)

) = 87.0/
√
d (meV) for the van der Waals binding energy per

atom. [65] In Reference [109] the atomic interaction within the tube is modeled with

a valence-force model, the van der Waals interaction between the tubes is modeled

by a Lennard-Jones (6, 12) potential in a parametrization used to describe inter-

layer forces in graphite and the ”interactions are averaged along the atom columns

parallel to the cylinder axis”. [109] The small diameter regime in Reference [109]

leads to a cohesive energy per atom of Eatom
vdW (

√

d
(

Å
)

) = 62.5/
√
d (meV), with

the dependence derived by a consideration of the interaction between two parallel

cylinders. 11 [109]

All three models, the continuum models and discrete atom-atom model, contain

rough assumptions, in opposing directions. [65, 109, 281] Our van der Waals den-

sity functional calculation should lead to results which are closer to reality as non-

uniformly distributed electron densities are used and the discrete atomic structure

is considered. This agrees with the result that our values are between the values

of the discrete and continuum model. Even though, we did not receive straight

forward dependences, the adjusted R2 values were slightly better for the 1/
√
d-

dependence [65] of the binding energy per atom and for the
√
d-dependence [281]

of the binding energy per length, as previously suggested within the lower level of

theory; This supports the previous suggestions. If we consider a larger basis set,

a slight shift to lower binding energies per atom would be observable, shifting our

curves closer to the middle between the previously published results. [65, 281]

An experimentally based value for the binding energy between two double walled

carbon nanotubes of 4 nm diameter was derived with Elength
vdW = 0.225 eV/Å, [291]

which is roughly comparable to our values for the van der Waals energy per length

that lie between 0.221 eV/Å and 0.504 eV/Å. Another experimental value was

derived more recently with peeling force spectroscopy by determining the interaction

of a single-walled carbon nanotube with a highly oriented pyrolitic graphite surface

(HOPG). [292] The peeling force spectroscopy study found a binding energy per

length of (0.612± 0.044) eV/Å for a nanotube with a diameter of d = (37± 4) Å,

11The consideration allows to derive the cohesive energy per atom Ea = − U0Aa

2π
√
R
, with U0 = U (b0)

where b0 = 3.42 Å is the interlayer distance, U (b) =
∫

V
(

b+ η2
)

dη, with η = x/R1/2 and
V (y) is the interaction per unit area between two graphite planes at separation y. [109] The
interaction energy per length of tube is presented with E (b) = U (b)R1/2. [109] For more details
see Reference [109].
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for which our values of both models are in the standard deviation (0.644 eV/Å for

the d model and 0.583 eV/Å for the
√
d model). [292]

Summary

In summary we presented van der Waals binding energies per atom/per length of

various chiralities for inner carbon nanotubes of monochiral bundles. We find a diam-

eter dependence for the van der Waals energy, meaning the curvature of the carbon

nanotubes is the most important factor for the intertube binding strengths. The

binding strengths between the tubes are independent of the chiral angle. However,

this result applies only for inner tubes of the bundle, especially only for the intertube

interaction, neglecting external influences like surfactants. Postprocessing methods

generally try to separate the nanotubes using structurally selected molecules in a

peeling like approach, tube by tube from the outside to the inside. [121] Therefore

the results of our study cannot be directly applied to those postprocessing meth-

ods. An external tube would have to be studied to see the effect of the binding of

its neighbors to it. Further its binding strength would have to be compared with

other structurally preferable molecular systems (surfactants), to find a system with

stronger binding to the tube than its neighboring tubes. As this would call for large

unit cells with an even larger amount of atoms, we used an alternative approach to

show, that the structure has a significant impact for the intertube binding. In the

next section we will show that for certain chiralities a significant influence of the

structure exists, which can be seen as an indicator for the possibility to use specific

molecules to separate nanotubes of a desired chirality.
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3.3 Monochiral Bundles

In this section 12 we study the binding energy, intertube distance and electronic

structure of monochiral bundles of single-walled carbon nanotubes in dependence

of the orientation of the tubes within the bundle to each other. The details on the

computational methodology can be found in Section 3.1.

In Section 3.3.1 we study the symmetry of the bundles. We discuss the van der

Waals energies and intertube distances of bundles in orientational dependence and

the meaning of our results for mixed chirality bundles in Section 3.3.2. At the end of

Section 3.3.2 we discuss the influence of using a local density approximation (LDA)

pseudopotential instead of a van der Waals pseudopotential. In Section 3.3.3 we

discuss the electronic properties, i.e. the electronic band structure and density of

states around the Fermi level, for a selection of bundles ((8, 0), (9, 0), and (6, 6)) as

a function of their tube orientation. We further discuss the effect of tube orientation

for applications of monochiral bundles.

3.3.1 Symmetry of Bundles

Bundles were experimentally observed in triangular lattices that contain up to hun-

dreds of tubes. [80, 293] A comparison between the stability of a nanotube bundle

composed of (6, 6) tubes in tetragonal and hexagonal configuration has been per-

formed using the local density approximation (LDA). [93] The study found that the

hexagonal packing yields a better stability than the tetragonal packing for the case

of a nanotube crystal. [93] We focus our study on large bundles, meaning bundles

that have more than seven tubes. These bulk-bundles are expected to form trigonal

structures based on the aforementioned experimental observations [80, 293] and the-

oretical calculations. [93] If bundles with less tubes are considered other preferable

structures might be possible, see Section 1.1.3. A trivial example of two tubes leads

12A major part of the texts and results of this section, including the subsections, has been pub-
lished by the author of this dissertation in Reference [46]. The calculations and analyses were
performed by the author of this thesis under the supervision of the co author of the paper
and the thesis advisor Stephanie Reich. All calculations of the manuscript [46] were wrongly
performed with a LDA pseudopotential. An Erratum has been recently published in Refer-
ence [47] to account for the previous use of a LDA pseudopotential, which is discussed at the
end of Section 3.3.2. The data presented in this thesis were derived from calculations using the
correct van der Waals pseudopotential presented in Section 5.1.2.
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to a parallel arrangement of the tubes for achiral tubes, [238] however, for chiral

tubes it is possible to find helical structures, if the energy gain of the orientational

alignment of the tubes is larger than the energy costs of bending the tubes into a

helix. [103] If only two tubes are considered the influence of the arrangement of the

surface atoms of the tubes to each other becomes important for the stability of the

tube, [238] especially Figure 3 in Reference [238] shows the impact of the tube-tube

orientation on the intertube distance of about 0.16 Å for two possible configurations

of a pair of (8, 0) tubes (The intertube binding energy per length changes only by

about 0.006 eV/Å). The (8, 0) tube has a fourfold symmetry following from the

atomic positions around the circumference. [238] Kleis et al. found a periodicity in

the variation of the van der Waals binding energy with the relative rotation angle

θ between the tubes, which lead to a reproduction of the binding energies for θ and

θ+ π at the sub meV level, following from the symmetry. [238] This can be seen as

an indication for the importance of the structural fit between adjacent tubes and

their relative tube orientation for the binding between the tubes, which makes it

interesting for the bundling/debundling process of tubes. It was further observed

that achiral C3n-axis tubes (n ∈ N
+) have the largest interaction energy in bundles,

as they can form close-packed bundles. [83]

In our calculations we model the triangular lattice of the bundle by a hexagonal

unit cell, compare Figure 3.2 a) or Figure 3.6. A symmetry breaking occurs, if the

individual tube and the bundle do not share all symmetry operations. The bundle

structure has in general a D6h symmetry, this means it has symmetry axes (2 C6,

2 C3, C2, 3 C’2, 3 C”2), mirror planes (3 σv, 3 σd, σh), one inversion center (i),

rotation-reflection axes (2 S3, 2 S6) and one identity element (E). [295] The tubes

have symmetry operations depending on their chirality. [18] The level of symmetry

breaking depends on the number of shared symmetry elements between the bundle

structure and the chirality of the individual tube. [18] For example, a tube in the

bundle has to have the same atom configuration every 60 ◦ on the circumference of

the tube to share the full rotational symmetry with the bundle, see Figure 3.6. If

the chirality and bundle structure share the rotation-reflection symmetry, we say

that the chirality has a S6-axis and symmetry breaking is lifted in high symmetry

configurations (e.g. 0 ◦ in Figure 3.6 a), which is a C6 axis). The high symmetry

configuration has all symmetry operations of the D6h symmetry, especially mirror
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a) b) c)

Figure 3.6: Ball and stick model of unit cells of a monochiral bundle of (6, 6) tubes.
The color coding in the main pictures is blue for upper layer atoms
and gray for lower layer atoms. For the insets the front tube atoms
are in blue and the rear tube atoms are in green. a) 0 ◦ configuration;
The inset shows the planar projection, corresponding to AA stacked
graphite. b) 10 ◦ configuration; The inset shows the planar projection,
corresponding to AB stacked graphite. [279] c) 15 ◦ configuration; The
inset shows a configuration that can be described as an AA’ configuration
of graphite, [294] as one layer is relativly shifted by half a unit cell in
the z-direction to the other.

planes.

The 0 ◦ configuration of the monochiral (6, 6) bundle can be identified with the

AA stacking of graphite, [107] see the planar projection of the tube stack in the

upper right part of Figure 3.6 a). A simultaneous rotation of all tubes to the

10 ◦ configuration can be identified as AB stacking graphite, [107, 279] see upper

right part of Figure 3.6 b). A further rotation to the 15 ◦ configuration leads to a

high symmetry configuration equivalent to AA’ stacked graphite, [294] where the

nanotube unit cells are relatively shifted by a half unit cell, see lower left part of

Figure 3.6 c).

For our calculations we consider the (6, 6), (12, 12), (9, 0), (12, 0) and (12, 6) 13

S6-axis chiralities. The (12, 0)-tube structure, for example, has the same atomic

configuration every 15 ◦ around the circumference (considering screw operations),

as the full circumference contains 360 ◦ and there are 24 atom positions on the

13As we do not study helical configurations, the (12, 6) bundle is expected to show the same
behavior as if it had no C6/S6-axis, as the symmetry is broken due to the helical structure of
the individual (12, 6) tubes.
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Table 3.2: Comparison of the intertube distance D, van der Waals energy per atom
|Eatom

vdW |, and their variations ∆ (D,Eatom
vdW ) for various chiralities (n,m),

chiral angles θ and tube diameters d. The table presents the depen-
dence of the fundamental properties on the orientation (rotation) of the
tubes in the bundle with minimal and maximal values. Errors for in-
tertube distances are ±0.02 Å and for binding energies the errors are
±0.2 meV/atom.

(n,m) θ (◦) d
(

Å
)

D
(

Å
)

∆D |Eatom
vdW | (meV) ∆Eatom

vdW

(8, 0) 0 6.52 3.31-3.33 0.02 32.3-32.5 0.2
(5, 5) 30 7.03 3.34-3.36 0.02 30.2-30.5 0.3
(9, 0) 0 7.30 3.16-3.35 0.19 29.6-35.4 5.7
(8, 2) 10.9 7.43 3.31-3.32 0.01 29.7-29.9 0.2
(6, 6) 30 8.40 3.16-3.44 0.28 23.6-33.7 10.0
(12, 0) 0 9.69 3.26-3.41 0.15 24.1-27.1 3.0
(14, 0) 0 11.30 3.30-3.32 0.02 24.1-24.3 0.3
(12, 6) 19.1 12.76 3.28-3.31 0.03 23.4-23.7 0.3
(10, 10) 30 13.91 3.29-3.31 0.02 22.7-23.0 0.3
(12, 12) 30 16.68 3.22-3.38 0.16 19.2-22.0 2.8

circumference of the tube. This also means that the (12, 0)-tube has the same atomic

configuration at the angles 0 ◦/360 ◦, 60 ◦, 120 ◦, 180 ◦, 240 ◦ and 300 ◦, therefore it

has a C6-axis. To study the effect of intertube orientation on non S6-axis chiralities

we further study the chiral (8, 2)-bundle, the two zigzag bundles (8, 0) and (14, 0)

and the two armchair bundles (5, 5) and (10, 10), which have nearly no common

symmetry elements with the bundle structure. We use the same handedness for all

the tubes, which, however, is only relevant for the chiral bundles (12, 6) and (8, 2),

as the achiral tubes do not have a handedness.

3.3.2 Influence of the Tube Orientation

In this subsection we present the intertube binding energies and intertube distances

of monochiral bundles of various chiralities in dependence of their relative intertube

orientation.

The minimal values, maximal values and variation in dependence of the orienta-

tion of the tubes (rotation angle) for the intertube distance D and van der Waals

energy per atom |Eatom
vdW | for various chiralities and tube diameters are compared in
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Figure 3.7: Van der Waals binding energy per atom EvdW (green) and intertube dis-
tance D (blue) of a monochiral carbon nanotube bundle of (8, 0) tubes.
The cubic spline fits (lines) are meant to serve as a guide to the eye. No
clear pattern arises from the rotation of the tubes. The energy differ-
ences and intertube differences are of the size of the calculation error,
which shows how small the effect of orientation is for the (8, 0) bundle.

Table 3.2. We only see small variations for the values of non S6-axis chiralities,

e.g. for the bundle of (8, 2)-tubes. The intertube distance of the (8, 2)-bundle varies

by ∆D ≈ 0.01 Å and Eatom
vdW varies by ≈ 0.2 meV, meaning by less than 1%. Our

results correspond well to results of the (10, 10)-bundle, with our maximal difference

between lowest and highest van der Waals energy per atom ∆EvdW = 0.3 meV and

the activation barrier for rotations of ∆EvdW = 0.15 meV reported previously. [99]

The activation barrier results from the reduction in symmetry from D2h to C2h due

to rotation. [100] The properties of bundles made from non S6-axis chiralities show

hardly any dependence on orientation.

Comparing the intertube distance for the (8, 0) and the (14, 0) tube, we find a

variation of less than 1%, whereas the tube diameter increases by ≈ 73 %. The van

der Waals energy per atom decreases about 25 % for the same diameter comparison.

The tube diameter has a strong influence on the binding strength, but does not

influence the intertube distance, see also Section 3.2.1 and Section 3.2.2.

The van der Waals binding energy, as well as the intertube distance in dependence
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of the orientation for the (8, 0) bundle shows no periodic pattern, see Figure 3.7. 14

A weak correlation can be extracted from the figure with higher van der Waals

binding energies for smaller intertube distances, which is most likely an effect of the

attractive r−6 potential. The periodic pattern with θ + π periodicity observed by

Kleis for a pair of two (8, 0) tubes is broken through the trigonal symmetry of the

bundle, which permits an optimal arrangement of the tubes. [238]

For the S6-axis chiralities, we receive a radically different result for the dependence

of the properties of the bundles on the rotation angle. We observe a variation

of the bundle properties in dependence of the orientation for all achiral S6-axis

chiralities, compare Table 3.2. Starting with the zigzag chirality (9, 0); The intertube

distance varies by ∆D ≈ 0.19 Å, corresponding to about 6 % variation, which is

at least six times higher than the variation observed for non S6-axis chiralities and

about six to 19 times higher than the variation associated with tube diameter.

Furthermore ∆Eatom
vdW ≈ 5.7 meV, corresponding to about 17 % variation, which

is at least 17 times higher than the variation observed for non S6-axis chiralities

and only slightly smaller than the variation accounted to the tube diameter. For

the (12, 0) chirality the orientational dependence on the properties weakens, with

∆D ≈ 0.15 Å (≈ 5%) and ∆Eatom
vdW ≈ 3.0 meV (≈ 12%). The rotation energy barrier

∆Eatom
vdW ≈ 3.0 meV corresponds well to the barrier of 3.0 meV previously reported by

LDA calculations, [107] this is most likely a coincidence in the LDA calculation. The

influence of the orientation on the bundle properties decreases with increasing tube

diameter limiting the occurrence of the special properties of the S6-axis bundles to

small diameter nanotubes. We suppose that the increase in low distance interaction

area lowers the influence of the local symmetry. The low distance interaction area

increases through the reduced curvature of larger-diameter tubes.

The (6, 6) armchair bundle shows the strongest orientation dependence with ∆D ≈
0.28 Å (≈ 9%). The rotation energy barrier ∆Eatom

vdW ≈ 10.0 meV (≈ 33%) is larger

than ≈ 5.0 meV previously reported by LDA calculations. [107] Interestingly, the

variations of the bundle parameters in dependence of the orientation are smaller for

the zigzag bundles than for the armchair bundles of comparable tube diameter.

For S6-axis bundles of chiral tubes (e.g. (12, 6)) we see only a very small depen-

14The cubic spline fits presented in Figure 3.7 were performed with the option ”with csplines” in
the gnuplot software package. (http://www.gnuplot.info)
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Figure 3.8: Van der Waals binding energy per atom EvdW (green) and intertube dis-
tance D (blue) as a function of rotation angle for a bundle of (6, 6) tubes.
EvdW and D show a specific (Mexican-hat like) structure in dependence
of the orientation of the tubes. The tubes of the bundle are rotated start-
ing from the high symmetry position (0 ◦, see Figure 3.6 a)). The lines
are cubic spline fits and show symmetry breaking behavior. Global ex-
trema occur every 10 ◦. Maximum binding energies occur at 10 ◦+30 ◦ ·n
and 20 ◦+30 ◦ ·n with integer n. Global minima of the binding energy oc-
cur every 30 ◦ starting from 0 ◦ and local minima occur every 30 ◦ starting
from 15 ◦. The binding energy and intertube distance are clearly anti-
correlated. The insets show the three exemplary configurations of 0 ◦,
10 ◦, and 15 ◦ rotation of the tubes in the bundle, see also Figure 3.6.

dence on the van der Waals energy (∆Eatom
vdW ≈ 0.3 meV (≈ 1%)) and the intertube

distance (∆D ≈ 0.03 Å (≈ 1%)). In chiral S6-axis bundles alignment of neighboring

tubes is impossible due to the handedness of chiral tubes. [83] Neighboring tubes

with the same handedness have opposing surfaces with different handedness leading

to mismatched surface structures of neighboring surface atom layers. [83] It is not

possible to interchange handedness of neighboring tubes to generate alignment for

all neighbors as neighbors with the same handedness remain caused through the

trigonal structure of the bundle. [83]

The intertube distance of achiral S6-axis nanotubes depends on their orientation

and varies by as much as 9%. The binding strength of S6-axis bundles is influenced

through the variation of the intertube distance but at the same time by the orien-
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Figure 3.9: Total energy difference for various intertube distances as a function of
rotation angle for a bundle of (6, 6)-tubes, with energies normalized to
the highest binding energy. The total energy depends on the intertube
distance as well as the orientation of the tubes. The inset shows a side
view sketch of the atomic configuration for the three most interesting
rotation angles, see Figure 3.6. The front tube has blue atoms, the
tube in the back is in gray. The results were calculated with a wrong
LDA pseudopotential, however, the difference to the results calculated
with the van der Waals pseudopotential are small. Figure adapted from
Reference [46].
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tation; see Figure 3.8 or Figure 3.9. The influence of the intertube distance on the

total energy has a strong impact for 0◦ (AA-stacked) and around 10◦ (AB-stacked),

but is weaker around 4◦, see Figure 3.9.

We use the example of the (6, 6)-bundle to discuss the physical properties of a

S6-axis bundle. In this bundle the properties depend most strongly on rotational

orientation. The van der Waals energy per atom of the (6, 6)-bundle as a function of

rotation angle shows symmetry breaking behavior, see Figure 3.8. Symmetry is ini-

tially D6h (0 ◦) and reduces to C6h (loss of mirror planes) due to rotation. The high

symmetry configuration of 0 ◦, corresponding to AA stacking in graphite [107], is

not energetically stable, see Figure 3.8. It has one of the highest intertube distances

of 3.44 Å. The magnitude of the van der Waals energy increases up to a maximum

at ≈ 10 ◦, corresponding to AB stacking in graphite [107], see Figure 3.8. This is

in contrast to previous LDA findings, where a configuration about 2.5◦ off the AB

stacking lead to a maximum at about 7.5 ◦. [107] The configuration at 10 ◦ has one

of the smallest intertube distances observed in our calculations with 3.17 Å. At

15 ◦ the rotation leads to an interesting configuration (AA’) that has glide reflection

planes, with a local binding energy minimum and a moderate intertube distance of

3.27 Å. Further rotations only reproduce the behavior that is contained in the first

15 ◦ rotation, see Figure 3.8. For other S6 axis bundles the periodicity is changed,

e.g. the periodicity of the (12, 12) bundle is contained in the first 7.5 ◦ rotation start-

ing from the high symmetry configuration and for the (9, 0) bundle it is contained

in a 10 ◦ rotation. 15 The 5 ◦ configuration of the (9, 0) bundle can be identified

with the AA’ stacked graphite configuration, while the 15 ◦ configuration can be

identified with the AA stacked graphite configuration. All other configurations are

intermediate between the two stackings, however, no AB stacked configurations can

be obtained for the rotation of zigzag tubes, which is the reason for the lower ro-

tation barrier compared to the (6, 6) bundle, as the AB configuration is the lowest

energy configuration for carbon systems, see Table 3.2. 16

15The number of ”atom configurations” on the surface is n +m for the armchair tubes and 2 · n
for the zigzag tubes. Another factor 2 is gained from the symmetry, see rotation of 0 ◦ to 15 ◦

in Figure 3.8, which is then reproduced for a rotation of 30 ◦ to 15 ◦. Therefore for (12, 12) the
360 ◦ rotation is divided by 48 leading to a need of only a 7.5 ◦ rotation sampling, starting from
the high symmetry position to sample the whole rotational behavior of the (12, 12) bundle.

16The non-AB stacking of zigzag tubes is not a mere artifact of the calculation. It is possible
to shift the unit cells of the zigzag tubes which allows to create AB stacking, however, this
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The error in our calculation can be estimated by comparing two identical con-

figurations, e.g. 10 ◦, 20 ◦, 40 ◦, and 50 ◦ in Figure 3.8. We obtain an error of

±0.2 meV/atom for the total energy. An error of ±0.02 Å for the intertube distance

can be estimated from the data in Figure 3.8.

The smaller activation barrier for rotations between 15 ◦ and 20 ◦ has a value of

∆E = 1.8 meV/atom and the second, larger activation barrier for rotations between

all orientations (e.g. between 0 ◦ and 10 ◦) is ∆E = 10.0 meV/atom. Rotations of

a solid made from C60 fullerenes were experimentally and theoretically found to be

hindered below T ≈ 260 K, implicating that a hinderance of rotations for nanotubes

in a bundle might also be possible. [99, 296–298]

We want to discuss our findings and the implications for mixed chirality car-

bon nanotube bundles in the following paragraph. Most carbon nanotube bundles

contain nanotubes of various chiralities (n,m). [83] The binding strength and inter-

tube distance depend in general on the orientation of the tubes in the bundle. [83]

But the orientational dependence of the aforementioned properties is suppressed by

symmetry breaking induced by mismatch of the bundle and tube symmetry. [83]

We can conclude from our calculations, that the properties of bundles of mixed chi-

ralities have a negligible dependence on tube orientation, which confirms previous

results of Reference [83]. This results from the non S6-axis chirality observations,

which show only a weak dependence on the orientation for the bundle properties

(about or less than 1% variation in orientation dependence). The tube diameter

(curvature) otherwise has a strong influence on the binding strength, but does not

influence the intertube distance. Recently Crochet et al. and others succeeded in

producing nearly mono chirality single-walled carbon nanotube bundles, highlight-

ing the possibility to produce monochiral samples in the near future which would

allow to experimentally test the theoretically predicted properties. [40, 41, 91, 122]

Only the monochiral S6-axis tubes preserve the symmetry in the higher symmetry

configurations. Chiralities with S6-axis can exhibit special properties, e.g. binding

energy and intertube distance are influenced in orientational dependence in contrast

to the tube diameter which only influences the binding energy. Considering real

monochiral bundles at room temperature, however, we have to consider the effect

is limited through the trigonal bundle structure and the AB stacking cannot be achieved for
every neighbor, compare also to the similar discussion on handedness in Reference [83].
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Figure 3.10: Comparison between the density functional theory calculations utilis-
ing a LDA pseudopotential (blue) and the van der Waals pseudopoten-
tial (green) (see Section 5.1.2), using the same van der Waals density
functional. The differences (black) are only small in a range between
0.2 meV and 1.0 meV with a periodic pattern resembling the periodic
pattern of the binding energy results. The difference of the binding
energies per atom by using a larger basis set (about 2 meV) is higher
than the difference by using the wrong LDA pseudopotential, especially
no qualitative feature changes by wrongly using a LDA pseudopoten-
tial. The results of the calculation of the LDA pseudopotential were
published in Reference [46]. An erratum including the new results con-
sidering the van der Waals pseudopotential has been published in Ref-
erence [47].

of rotations, vibrations, twists and defects which reduce effects of chirality.

At the end of this section we want to compare our results calculated with the van

der Waals pseudopotential of Section 5.1.2 with the calculation using a local density

approximation (LDA) pseudopotential (rs,p = 1.29 a.u., rd,f = 1.50 a.u.) published

by us in Reference [46]. The comparison between the binding energies per atom

shows only a small deviation between both pseudopotentials, see Figure 3.10 The

deviations are between 0.2 meV and 1.0 meV with higher deviations for higher bind-

ing energy per atom. Therefore the deviation pattern resembles the pattern observed

in dependence of the orientation. The pseudopotential therefore only has a weak

effect on the results, especially if we compare the results presented in this thesis with
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Figure 3.11: a) Band structure along high symmetry directions of a bundle of (8, 0)-
tubes rotated for configurations between 0 ◦ and 20 ◦ in rainbow colors.
The band structure diagrams are normalized to the Fermi levels and
high symmetry points of the 0 ◦ configuration are shown. b) Density of
states of the same bundle of (8, 0)-tubes and the same configurations.

the results published in Reference [46] we find only small quantitative differences.

The qualitative features remain the same independent of the pseudopotential used

for the calculation, even though it is unphysical to use a pseudopotential generated

from a LDA functional in a calculation using another (van der Waals, VDW-DRSLL,

see Section 1.2.3) functional. A stronger dependence on the binding energy can be

observed for the basis set, which lead to a change of 2 meV for the binding energy

per atom in the AA stacked configuration of the (6, 6) bundle.

3.3.3 Electronic Structure of Monochiral Bundles

In this section we study the band structure and density of states in dependence of

the inter tube orientation at the example of the monochiral bundles of (8, 0), (9, 0)

and (6, 6) chirality. 17 At the end of the section we compare our results to other

theoretical and experimental studies and discuss the influence of rotation barriers

on the electronic properties of bundles.

17The figures for the (6, 6) bundle presented in this section are similar to the figures published by
the author of this thesis in Reference [46], however, all figures were generated with the results
of calculations performed with the van der Waals pseudopotential.
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Figure 3.12: Band structure along high symmetry directions of a bundle of (9, 0)-
tubes rotated for configurations between 0 ◦ and 15 ◦ in rainbow colors.
The band structure diagrams are normalized to the Fermi levels and
high symmetry points of the 0 ◦ configuration are shown. The 5 ◦ config-
uration corresponds to AA’ stack and the 15 ◦ configuration corresponds
to AA stacked graphite. All band structure diagrams in dependence of
mutual intertube orientation are contained between the 5 ◦ configura-
tion and the 15 ◦ configuration, with e.g. the 0 ◦ configuration leading
to the same band structure as the 10 ◦ configuration.

We start our discussion with the band structure and density of states of the (8, 0)

bundle, as the orientation was shown to have only a minor effect on the intertube

binding energy for bundles that share only few symmetry operations with the bundle

structure, see Section 3.3.2. Therefore we expect the same behavior for the electronic

properties. The band structure along the symmetry points presented in Figure 3.1

is nearly unaffected by the inter tube orientations for a large number of bands,

see Figure 3.11 a). Especially close to the Fermi level only the 10 ◦ configuration

shows a slightly lower conduction band leading to a smaller energy gap. This can be

seen in the density of states, which was derived from the whole Fermi surface, see

Figure 3.11 b). The density of states shows no notable change for energies below the

Fermi level. Above the Fermi level only minor changes occur, which lower the band

gap and change the shape of the density of states. The small effect on the electronic

properties for non S6 axis bundles becomes apparent, if we study the effect of the

orientation on S6 axis bundles in the following.

The bundle of (9, 0)-tubes shares the symmetry with the bundle as it contains a S6
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Figure 3.13: Density of states of a bundle of (9, 0)-tubes rotated for configurations
between 0 ◦ and 15 ◦ in rainbow colors. The density of states diagrams
are normalized to the Fermi levels. The inset (right panel) shows the
shift of the pseudogap minimum with respect to the Fermi level (0 eV).

axis. The band structure in dependence of intertube orientation shows that all band

diagrams are contained within the AA’ (5 ◦) and AA (15 ◦) stacked configurations,

e.g. the 4 ◦ configuration and the 6 ◦ configuration have the same band structure, see

Figure 3.12. A band crossing develops along the AΓ-direction for the AA stacked

configuration.

The band crossing for the AA stacked configuration is likely the reason for the

increase of the density of states at the Fermi level for the AA configuration (15 ◦),

see Figure 3.13 and its inset. The density of states at the Fermi level is 1.07 a.u.

for the AA and 0.29 a.u. for the AA’ configuration, meaning more than three times

larger for AA compared to AA’. The valence side of the density of states shows only

small changes in the density of states in dependence of the intertube orientation.

The conduction side on the other hand shows some interesting shifts of the density

of states maxima. The AA stacked configuration (15 ◦) has a maximum of 5.72 a.u.

at 1.03 eV that is higher in energy than the AA’ configuration (5 ◦) with 7.27 a.u. at

0.79 eV, while the valence side is nearly unchanged. This corresponds to a change

in transition energy of about 0.26 eV with a transition energy of 2.53 eV for AA

and 2.27 eV for AA’.

Band structure diagrams of a bundle of (6, 6)-tubes for orientations of 0 ◦ to 15 ◦
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Figure 3.14: Band structure along high symmetry directions of a bundle of (6, 6)-
tubes rotated starting from its high symmetry configuration 0 ◦/AA to
15 ◦/AA’ in rainbow colors. The band structure diagrams are normal-
ized to the Fermi levels and the symmetry points for the AA configura-
tion are used as labels on the x-axis. The inset shows a close up view
of the crossing region with the symmetry points ∆F (see Figure 3.1)
for the AA and AA’ configuration. The ∆F points for the intermediate
configurations are between those of the AA and AA’ configuration.
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show that the bands change their slope with orientation, see Figure 3.14. The valence

band maximum and conduction band minimum shift in energy- and k-direction

through the change in orientation. This is accompanied by a shift of the Fermi level,

as can be seen between A and Γ (all Fermi levels were normalized to 0 eV). The Fermi

levels shift through the changed electron density of each orientation, which result

from a volume change induced by the orientational specific intertube distances.

For the high symmetry configuration (0◦, D6h) the valence band and conduction

band cross at about 42 meV above the Fermi level for the AΓ direction, 18 which

corresponds well to the value of about 70 meV calculated within LDA calculations;

the Fermi level is shifted compared to the Fermi level of the isolated tube. [102]

The kz value for the position of the valence band maximum and conduction band

minimum is between kz = 0.606 · π
a
for 0 ◦ and kz = 0.669 · π

a
for 15 ◦, where

a = 2.515 Å is the lattice constant along the tube. Our kz-values correspond well

to the value in isolated tubes of kz = 2/3 · π
a
. [93] There is no band splitting in

the orientations at 0 ◦ and 15 ◦ along the AΓ direction. The different parity of

the bands allows the crossing of the bands. [93] An equivalent behavior has been

reported in a DFT calculation within the local density approximation (LDA) for the

10◦ orientation corresponding to AB-stacked graphene for the HK-direction, [93] in

contrast to the previous result we find a band gap of 0.24 eV for the AB-stack along

the HK-direction. 19 The band splits by rotating the tubes of the bundle as little as

1 ◦ out of the high symmetry position, which opens up a band gap of Eg = 79 meV

along the AΓ-direction. The mirror symmetry for rotated configurations is broken,

which leads to anticrossing. The band gap increases until ≈ 7.5 ◦ (Eg = 511 meV)

and then becomes smaller again until it vanishes at 15 ◦.

Comparing the behavior along the ∆FPU∆F path, see Figure 3.1, where ∆F is

chosen as the kz vector where the valence and conduction band cross, we find a

flattening of the valence band in dependence of the orientation, see Figure 3.15.

The Fermi level touches the 1 ◦ valence band at ∆F and is lower for all higher ◦

18The sampling in the main picture of Figure 3.14 is not good enough to resolve the crossing,
therefore the inset of Figure 3.14 presents a detailed view around the crossing of the valence
band and conduction band.

19Charlier et al. find band gaps of 0.46 eV along the AΓ direction and 0.25 eV along the ML
direction, [93] comparing to our band gaps of 0.42 eV and 0.16 eV. As our study explicitly
includes van der Waals interactions we believe our results to be more accurate than the results
obtained using the LDA.
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Figure 3.15: Band structure along high symmetry directions of a bundle of (6, 6)-
tubes starting from the position of the valence and conduction band
crossing in rainbow colors, see also Figure 3.1 and inset of Figure 3.14.
The band structure diagrams are normalized to the Fermi levels. The
valence band flattens by a change in orientation while the influence
on the conduction band is smaller and it mostly keeps its shape. The
bands for the orientations with metallic behavior (without pseudogap)
are highlighted (AA and AA’ configuration).
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Figure 3.16: Density of states of a bundle of (6, 6)-tubes rotated starting from its
high symmetry position (0 ◦) in rainbow colors. The density of states
diagrams are normalized to the Fermi levels. The inset (right panel)
shows the shift of the pseudogap minimum with respect to the Fermi
level (0 eV), which can also be observed in Figure 3.14.

orientations. However, starting with the 12 ◦ orientation the conduction bands dive

below the Fermi level and increase the conductivity until the gap closes for the 15 ◦

orientation, see Figure 3.15.

The high symmetry configuration (0 ◦) shows metallic behavior while an increase

of rotation angle of the tubes in the bundle increases a pseudogap, which is maxi-

mal at ≈ 7 ◦, see density of states in Figure 3.16. The pseudogap diminishes with

further rotation until it closes at 15 ◦, which can be accounted for by the symmetry

of the configuration. The 15 ◦ configuration looses mirror planes, but has glide re-

flection planes, which keeps the configuration metallic, see Figure 3.15 and inset of

Figure 3.16. Furthermore, the density of states minima shift around the Fermi level

from about −2.5 meV to 65 meV in dependence of the orientation, with the global

minimum at 7.5 meV see right panel in Figure 3.16. The shift of the density of

states maxima leads to increased density of states at the Fermi level for orientations

between 12 ◦ and 14 ◦, compared to the metal like behavior of the 0 ◦ orientation.

This can partly be understood by comparison to the behavior observed by the band

structure, see the conduction band dive for these orientations below the Fermi level

in the inset of Figure 3.14 and Figure 3.15.

The orientation has a smaller influence on the valence side than on the conduction
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side of the band structure, see Figure 3.16, which has already been observed for the

non S6 axis bundles, see Figure 3.11 b). The first peak of the conduction side shifts

between 1.03 eV and 1.20 eV through rotation; for certain rotation angles (e.g. 15 ◦)

it becomes a shoulder. The valence band shows only small variation for the first two

peaks.

We conclude that the most exciting properties of S6-axis bundles can be found

in the band structure and density of states. Achiral S6-axis bundles can be metal-

lic. Certain orientations possess higher density of states at the Fermi level than

the metallic configurations. The minima of the density of states meanwhile shift

around the Fermi level in dependence of the orientation. The band structure shows

a dive of the conduction band minimum below the Fermi level along the high sym-

metry direction accompanied by a pseudogap opening which closes again for higher

symmetry configurations that have mirror planes or glide reflection planes.

We now want to compare our results to other theoretical studies. The density of

states of the high symmetry and rotated (10, 10) monochiral nanotube bundles were

shown to have very similar behavior, which agrees with our results. [99, 100] For

S6-axis bundles, however, we find a strong coupling between the electronic states

near the Fermi level and the rotational motion, which was suggested to lead to

superconducting behavior previously. [99] In contrast to previous studies we find

metallic behavior for achiral C6-axis bundles (e.g. (6, 6), (12, 12)) for multiple ori-

entations. [107] We were able to show, that no energy gap, but a pseudogap opens

in dependence of orientation of the tubes in the bundle in contrast to previous

studies, which showed an energy gap in the density of states for AB-stacked (6, 6)

bundles as well as for the 8◦ orientation. [107] Furthermore our results show a shift

of the density of state extrema around the Fermi level, corresponding to previously

reported results. [100] We also find, however, an increased density of states at the

Fermi level compared to the metallic configurations for certain orientations. We find

good agreement in comparison to experimentally derived density of states with the

general trend of pseudogaps opening due to the bundling. [101]

At the end of the section we want to discuss the influence of rotation barriers

on the electronic properties of monochiral achiral S6-axis bundles. At low temper-

atures, certain configurations of monochiral S6-axis bundles can be stable, e.g. the

orientation at ≈ 10◦ for the (6, 6)-bundle. At room temperature thermal energy is
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likely to lead to rotations and vibrations of the tubes in the bundle. A complex

electronic behavior is expected, as rotations (orientational changes) and absorption

and emission occur time averaged over the experiment. Especially the slope flipping

behavior and shifts of the bands lead to a further broadening 20 of the width of the

bands, which further broadens the density of states and therefore also the optical-

absorption bands for the S6-axis chiralities. The high symmetry configuration (AA)

with metallic behavior is the energetically most unstable configuration and therefore

semi-metallic behavior has to be expected for bundles of metallic tubes. The 15 ◦

configuration (AA’) is a local maximum in total energy and therefore also expected

to be an unstable configuration, even though it is lower in energy than the high

symmetry configuration. For larger diameter tubes the rotation barriers flatten, al-

lowing metallic behavior in C6-axis bundles of large diameter armchair tubes. The

next paragraph summarizes our study on monochiral bundles.

Summary

In summary we presented van der Waals energies and intertube distances of various

chiralities of carbon nanotube bundles in dependence of the orientation of the tubes

inside of the bundle. Furthermore the electronic structure of the monochiral bundles

was studied in dependence of the tube orientation. The intertube distances are

between 3.2 Å and 3.4 Å but independent of orientation for non S6-axis tubes.

For tubes with a S6-axis the orientation of the tubes in the bundle becomes a new

degree of freedom to adjust the bundle properties. The intertube distance (±5-

9%) as well as the binding strength (±12-33%) vary in dependence of the tube

orientation. This dependence decreases with increasing tube diameter. Therefore

this effect is mainly important for bundles composed of small diameter tubes with

high curvature. The S6-axis bundles experience rotation barriers for the tubes that

are induced by the configuration of the atoms on the tube surfaces. The barriers

can be as high as ∆E = 10.0 meV/atom. Rotation barriers for tubes that do not

share the trigonal symmetry of the bundle are less than ∆E = 0.3 meV/atom. By

variation of the orientation of the tubes in a (6, 6) C6 axis bundle a pseudogap

opens and increases until it vanishes at the next configuration which preserves the

20A broadening of the bandwidths has been reported for bundles previously, which was accounted
to the broken symmetry. [102]
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symmetry. C6 axis bundles of armchair tubes have metallic configurations. Certain

configurations (between AB and AA’ stack) show a higher density of states at the

Fermi level than the metallic configurations. As recent progress suggests monochiral

C6/S6 axis bundles will soon be experimentally available, [40, 41, 91, 122] which will

give access to study the newly arisen bundle properties.
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4 Conclusion

In this thesis we presented a step towards the explanation of chirality selective

production of carbon nanotubes and studied the properties of bundles containing

only tubes of one chirality with a focus on the tube orientation. In this section we

want to summarize our results, draw conclusions, 1 and give an outlook for future

research directions.

In order to study the growth process we presented a formalism to describe the

hexagonal edges/rims of the carbon nanotubes that considers armchair and zigzag

sites. We suggest that carbon nanotube edges that contains only hexagons have

the lowest energy. From this idea we find three different addition sites (aa.aa, aa.z,

and z.z) that keep the hexagon structure intact if carbon dimers are added. The

addition of single carbon atoms is suggested to lead to an intermediate state with

a pentagonal or dangling atom at the edge, which is transformed to a hexagon by a

second carbon atom addition. The rotation barrier for a carbon dimer formed by a

carbon atom at a pentagon edge was estimated with 2.91 eV, which allows to slowly

incorporate carbon dimers in an atom by atom mechanism. The high barrier points

to the preference of an intermediate dangling atom configuration at the nanotube

edge, which is stabilized by metal atoms. This allows to obtain a faster growth rate.

Density functional theory calculations of various initial cap structures of nan-

otubes on an iron catalyst particle allow to study a possible preference for a rim

structure on the catalyst surface. The adhesion and excess energy do not yield

an energetically prefered structure, as the cap and catalyst structure deform each

other to optimize their fit. Under realistic growth conditions the particle cannot be

expected to be used as a template for a certain rim structure, which means that

no chiral angle selectivity is expected from the fit between the rim of the cap and

1As we summarize our results we will not cite other works in this section, with the exception
where we think it to be necessary and refer to the main text for the references.
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the catalyst structure. The electron charge at the edge of the nanotube cap, which

describes the polar binding character between the edge and the catalyst, was found

to be an intrinsic property of the edge structure. The excess electron charge on a

straight rim is about 0.6 e higher than on an angled rim. The electric dipole moment

which results from the polar binding and a small charge transfer to the inner cap

atoms reaches up to about 15 Debye for the angled rim and decreases slightly for

the straight rim. One argument for the preference of a straight rim is the higher

number of addition sites compared to the angled rim, which leads to a significantly

higher growth rate.

We used geometric and energetical considerations to derive a growth rate factor

Γ∗. The growth rate factor depends on a combination of external parameters, i.e.

catalyst and temperature. Combining Γ∗ with the results of Yuan et al. [74] allows

to derive a growth rate which can be compared to experimental growth rates.

To derive the catalyst dependent parameters for Γ∗ we calculated carbon nan-

otube caps on various catalyst compositions using density functional theory. The

calculation was further used to calculate the formation energies of nanotube caps

on catalysts of various compositions to determine if the structural fit between the

catalyst and the nanotube cap lead to a preference of certain chiralities. We did

not find any evidence for a preference of certain chiralities. Considering the catalyst

composition we found the highest adhesion energies and lowest excess energies on

the Ni27Fe28 alloy cluster, for both armchair and zigzag caps. A small energy dif-

ference can be derived between armchair and zigzag caps, which allows to derive a

carbon addition barrier for the growth factor. A chirality distribution, which models

the relative abundance of the tubes satisfactorily compares to the experiment.

The number of carbon edge atoms was found to decrease from armchair to zigzag

edges, which could be used as a simple geometric argument for a lower growth rate

of low chiral angle (zigzag) tubes, as the number of carbon atoms that can add at

the edge is reduced compared to higher chiral angle (e.g. armchair) tubes.

We analysed the charge transfer/polar bonding between the caps and the catalysts

and found an increasing charge redistribution with increasing iron content in the

catalyst cluster, from (2.90± 0.06) e for Ni to (4.15± 0.14) e for Fe. The excess

electron charges increase the reactivity of the carbon cap atoms, which explains why

the nanotube growth rate on iron is higher than on nickel. The charge transfer to
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the armchair caps was found to be higher than to the zigzag caps, in contrast to the

electric dipole moment, which was found to be higher for zigzag than for armchair

caps and has a maximum of about 15 Debye on the iron particle, corresponding to

the mainly zigzag site containing angled rim of an armchair cap.

The second part of the thesis studied bundles of nanotubes of the same chirality.

We presented the van der Waals binding energies per atom/per length of various

chiralities. A diameter dependence was observed for the van der Waals energy.

The binding strengths and intertube distances between the inner tubes were found

to be independent of the chiral angle. The properties of the inner tubes that share

symmetry operations with the bundle show a significant dependence on the intertube

orientation. The intertube distance (±5-9%) as well as the binding strength (±12-

33%) vary in dependence of the tube orientation for tubes that share the symmetry

of the bundle, e.g. tubes with a S6-axis or C6-axis. This dependence was found

to decrease with increasing tube diameter. The change of binding strength with

rotation leads to barriers, which can be as large as ∆E = 10.0 meV/atom. Rotation

barriers for tubes that do not share the trigonal symmetry of the bundle are smaller

than ∆E = 0.3 meV/atom. The fit of the structure between the tubes is found as

the reason for the dependence of the binding strength and intertube distance on the

intertube orientation. This can be regarded as an indication for the possibility to

use specific molecules to separate nanotubes of a desired chirality.

The change of the orientation of the tubes in a (6, 6) bundle was found to open

a pseudogap which increases with rotation to a maximum, decreases again and

vanishes at the next configuration which preserves the symmetry. C6 axis bundles

of armchair tubes were found to have metallic character for certain configurations.

A higher density of states at the Fermi level compared to the metallic configurations

was found for stacks between AB and AA’.

In conclusion we were able to show evidence, that the abundance of carbon nan-

otubes of a certain chiral angle depends on their chirality dependent growth rate

during the elongation phase, while the nucleation phase only determines the diam-

eter of the tubes. The monochiral bundles which share symmetry operations with

the bundle have fascinating electrical properties, which may become accessible in

the near future. [40, 41, 91, 122]

The quest to understand the chirality selective growth of carbon nanotubes is still

150



Chapter 4. Conclusion

going on. There is still a lot left to understand, e.g., how the substrate influences

the growth process, the height of the barriers for carbon addition to the nanotube

on non-metal catalysts, or if the carbon addition to the nanotube edge is the rate

limiting step. A large number of publications already discussed questions on the

general nanotube growth process and also the chirality selective growth process has

been discussed in many publications, see Section 1.1.4, however, one of the biggest

problems is that the results do not converge to one general model. The nanotube

formation process is very complex and the number of parameters is high, which

makes it a hard task to include all of the parameters. The idea for a general growth

model is to find the rate limiting step of the nanotube growth, which was recently

suggested to be the carbon atom incorporation into the nanotube edge. [74] The

verification of this result and further studying the addition process would be an

interesting project for the future, as this step could possibly be used to model the

system in a way to select desired chiralities.

In a future work it would also be interesting to study the properties of an external

tube of a nanotube bundle, which interacts with only three or less neighbors and

has a lower influence from its neighbors than an inner tube. The binding strength

of external tubes is expected to depend on the structure, i.e. the chirality of the

tubes.

At the end we want to thank you for spending the last few hours with the lecture

of this thesis. We hope that it added to your knowledge on the chirality selection of

carbon nanotubes and monochiral bundles.
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Ultrathin carbon nanotube with single, double, and triple bonds. Phys. Rev.

Lett., 109:105501, Sep 2012.

[71] Jie Ma, Jian Nong Wang, and Xiao Xia Wang. Large-diameter and water-

dispersible single-walled carbon nanotubes: synthesis, characterization and

applications. J. Mater. Chem., 19:3033, 2009.

[72] Zhao Jun Han and Kostya (Ken) Ostrikov. Uniform, dense arrays of vertically

aligned, large-diameter single-walled carbon nanotubes. J. Am. Chem. Soc.,

134:6018–6024, 2012.

[73] L. X. Zheng, M. J. O’Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A.

Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson,

S. M. Huang, J. Liu, and Y. T. Zhu. Ultralong single-wall carbon nanotubes.

Nature Materials, 3:673–676, 2004.

[74] Qinghong Yuan, Hong Hu, and Feng Ding. Threshold barrier of carbon nan-

otube growth. Phys. Rev. Lett., 107:156101, 2011.

[75] Qinghong Yuan, Zhiping Xu, Boris I. Yakobson, and Feng Ding. Efficient de-

fect healing in catalytic carbon nanotube growth. Phys. Rev. Lett., 108:245505,

2012.
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5 Appendix

The first section of the Appendix (Section 5.1) presents more details on pseudopo-

tentials. The detailed parameters used for the generation of pseudopotentials used

in the thesis and test calculations for them are presented. In Section 5.2 we present

a list of people, institutions, and software who/which were essential in the creation

of this thesis in one way or the other. The Section 5.3 includes the mandatory ”Selb-

stständigkeitserklärung”, following from § 7 IV Promotionsordnung des Fachbereichs

Physik der Freien Universität Berlin. [299]
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5.1 Pseudopotentials

In this section we present the pseudopotentials generated for our calculation and

study their quality, i.e. their transferability. Before we go into the details, we will

start with a reasoning, why the pseudopotential approximation is physically jus-

tifyable and what the pseudopotential approximation does. The idea behind the

pseudopotential approximation is, that an artificial potential can be used to replace

the core electrons of an atom to reduce the computational costs by reduction of the

number of electrons which need to be considered for a calculation. [241, 300, 301]

The pseudopotential approximation is therefore especially useful for larger atoms

with many core electrons, however, it is not always straight forward to decide which

electrons of the core can be neglected and which electrons have to be taken into

account, as they have mayor contributions to the binding process between different

atoms. The duty of a pseudopotential is to effectively reproduce the effects of the

core electrons on the valence electron wavefunctions, i.e. to enforce the orthogo-

nality of the valence electron wavefunctions to the core states. [241] A method to

generate norm-conserving pseudopotentials was described by Troullier and Martins

in Reference [241]. It is based on the work of Kerker with the general idea to replace

the real wavefunction inside of the core region by a smooth analytical function, e.g.,

a polynomial or exponential, while a nodeless radial pseudo-valencefunction identi-

cally reproduces the real wavefunction outside the core region. [301] The coefficients

of the analytical core pseudo wavefunction are determined by constraints/conditions

to the wavefunction. [301] The number and type of conditions slightly varies between

Kerker (four constraints) [301] and Troullier and Martins (seven constraints). [241]

The conditions given by Kerker are that the eigenvalues of pseudo and atomic wave-

functions are identical, the pseudo-wavefunction has to be nodeless and identical

to the real valence wavefunction behind the cutoff radius rc, the first and second

derivatives of the wavefunctions have to be matched at rc (continuity), and the

pseudo-charge in a sphere around rc has to be identical to the real charge contained

in that sphere. [301] The ”only significant difference between the [Troullier and Mar-

tins] study and old schemes is in the use of an even polynomial instead of a mixed

polynomial in” [241] the equation for the polynomial contained in the exponential

function which forms part of the pseudo-wavefunction defined by Kerker, [241, 301]
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this is:

RPP
l (r) =







RAE
l (r) if r ≥ rc,

rl · exp [p (r)] if r ≤ rc,
(5.1)

where p (r) = c0 +
∑n

i=2 cir
i is the aforementioned polynomial and l is the an-

gular momentum quantum number. [241, 301] The study of Troullier and Martins

increased the order n of the polynomial in the exponential compared to Kerker,

which increased the variational freedom and allowed to study smoothness proper-

ties. [241, 301] Details on the methods can be found in Reference [301] and Reference

[241]. The method of Troullier and Martins can be regarded as superior to, e.g.,

the method of Kerker [301], as larger cut off radii can be used to generate pseu-

dopotentials with comparable transferability properties. [241] The pseudopotentials

are generated from the pseudo wavefunctions by inversion of the radial Schrödinger

equation. [241]

To perform adequate calculations, it is most important to generate accurate pseu-

dopotentials, meaning pseudopotentials, which reproduce the all-electron wavefunc-

tion beyond a cutoff radius rc for all atomic configurations. [302] The results of

calculations with the newly generated pseudopotentials have to be compared to re-

sults of all-electron calculations, especially important are the eigenvalue agreement

for all atomic configurations, as well as the norm conversation in other than the

reference configuration. [241, 302] Further it is common in the literature to per-

form calculations of bulk moduli and lattice constants using the pseudopotentials

to assess the quality of the pseudopotential. [302] We will determine the orbital

eigenvalues of various electron configurations and the total energy differences by

all-electron calculations and calculations using the pseudopotentials. Further we

will compare the lattice constants calculated with pseudopotentials to experimental

values as well as other values derived by density functional theory calculations using

pseudopotentials.

5.1.1 GGA-PBE

In the following we present and study the quality of the pseudopotentials for carbon,

nickel and iron generated within the Troullier-Martins scheme using the generalized
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Table 5.1: List of parameters used to generate our generalized gradient approxima-
tion (GGA) pseudopotentials in the program package ATOM. [303] All
GGA pseudopotentials were generated using the functional of Perdew,
Burke and Ernzerhof (PBE) [226] considering relativistic effects (option:
pbr) within the generation scheme of Troullier-Martins [241] (option:
tm2). The metallic species were generated with a core correction.

atomic species configuration rs rp rd rf rpseudocore
C [He] 2s22p2 1.29 1.29 1.50 1.50 -
Ni [Ar] 3d84s2 2.00 2.30 2.55 2.55 0.75
Fe [Ar] 3d64s2 2.30 2.40 2.70 2.70 0.75

gradient approximation (GGA) functional of Perdew, Burke and Ernzerhof. [226,

241] The parameters used to generate all of our GGA pseudopotentials are presented

in Table 5.1. The cutoff radii of iron and nickel are rather large, which makes the

pseudopotentials smoother/softer, however, it reduces the transferability. [241] A

softer pseudopotential will lead to faster convergence in the calculations, which

lead to our decision to trade off accuracy for speed, as numerous and demanding

calculations had to be performed using the pseudopotentials. However, we will show

in this section, that the agreement between experimental results and calculations

utilising the pseudopotentials lead to good agreement, e.g., the lattice constants

were overestimated by just a few percent. The generalized gradient approximation

tends to overestimate bond lengths/the experimental lattice constants, [302] which

we account for by considering the pseudopotential to be decent for slightly higher

lattice constant values than the experimental lattice constant. We start our in depth

discussion of the pseudopotentials with carbon.

First we compare the orbital eigenvalues of the carbon pseudopotential calculation

with the orbital eigenvalues of the all-electron calculation. The difference for the

reference configuration [He] 2s22p2 for the 2s orbitals is very small with 0.06 mRy,

as well as for the 2p’s (spin) with 0.03-0.05 mRy. To be able to model the valence

binding of the electrons it is important for the pseudopotential to be able to model

other than the reference configuration. [302] We test the [He] 2s12p3, [He] 2s22p13s1,

[He] 2s12p23s1, and [He] 2s02p33s1 configurations by calculation of orbital eigenval-

ues and total energies of these systems with our pseudopotential derived from the
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Figure 5.1: Graph of the minimisation of the total energy in dependence of the
lattice constant to determine the lattice constant of graphene to test the
GGA-PBE pseudopotential for carbon.
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Figure 5.2: Comparison of the s and p wavefunctions for all electrons of carbon
(blue) and the wavefunctions of the GGA-PBE pseudopotential of car-
bon (green). The pseudopotential wavefunctions reproduce the all-
electron wavefunctions behind the cutoff radii.
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Figure 5.3: Plot of the s, p, d and f GGA-PBE pseudopotentials of nickel.

reference configuration. The highest orbital eigenvalue difference was found with

0.77 mRy for the 2s orbital of the [He] 2s22p13s1 configuration, which is still low. 1

The maximal total energy difference was found between the reference configura-

tion and [He] 2s22p13s1, with a difference of 1.1 mRy, which should ”not (be) much

larger than 1 mRy” to generate a good pseudopotential. [303] However, the ”real

proof of good transferability [. . . ] can only come from a molecular or solid-state

calculation”, [303] therefore we tested the carbon pseudopotential in a calculation

of graphene.

Graphene is a small and simple reference system with only two atoms in the unit

cell. The lattice constant calculated with our pseudopotential a = 2.496 Å is - as

expected for GGA functionals - slightly larger than the common literature value

alit = 2.461 Å [304] or the measured lattice constant for graphite (corresponding

to AB-stacked multi layer graphene) 2.4589 ± 0.0005 Å, [305] see Figure 5.1. A

calculation of the lattice constant using the local density approximation with the

Perdew-Zunger functional lead to a = 2.468 Å, [304] however, LDA generally tends

to lead to smaller/better lattice constants than GGA. [241, 302] The wavefunctions

of the pseudopotential for the s and p orbital follow the structure of the all-electron

wavefunctions behind the cutoff radii, see Figure 5.2.

1The ATOM user manual states that eigenvalue differences ”should be of around 1 mRyd for a
good pseudopotential”. [303]
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Figure 5.4: Comparison of the s, p, and d wavefunctions for all electrons of nickel
(blue) and the wavefunctions of the GGA-PBE pseudopotential of nickel
(green).

The second pseudopotential we generated is the nickel pseudopotential, see Fig-

ure 5.3 and Figure 5.4 for the wavefunctions. We decided to use the electron config-

uration of [Ar] 3d84s2 as the ground state/reference configuration, even though the

configuration [Ar] 3d94s1 was found to be lower in energy, however, for a pseudopo-

tential to be transferable, the reference configuration should not change the quality

of the pseudopotential significantly. [241] The eigenvalues, compared by all electron

and pseudopotential calculation, for the reference configuration deviate by 0.05 mRy

for the s orbital and by 0.51 mRy for the d orbitals. As non reference configurations

we tested the excitations [Ar] 3d84s14p1, [Ar] 3d84s1, and [Ar] 3d94s1. The highest

eigenvalue difference was found with 11.77 mRy for the d orbital of the [Ar] 3d94s1

configuration, which is quite high, however, the s to d transfer of the metal systems

is rather tricky, making it hard to get to low values. Pseudopotentials from the

SIESTA pseudopotential database, 2 which is based on the AB-INIT pseudopoten-

tial database, 3 lead to eigenvalue differences of up to 11.8 mRy and total energy

differences of up to 3.7 mRy. Our total energy differences on the other hand have

a maximal difference of only 1.1 mRy for the reference configuration compared to

[Ar] 3d84s1. To have a better impression of the effect of the eigenvalue difference,

especially for the [Ar] 3d94s1 configuration, we test the pseudopotential in a model

system.

2http://www.icmab.es/dmmis/leem/siesta/Databases/Pseudopotentials/periodictable-
intro.html as of 16th October 2012

3http://www.abinit.org/downloads/psp-links/pseudopotentials as of 16th October 2012

194



Chapter 5. Appendix

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

���
1

0 0.5 1 1.5 2 2.5 3 3.5 4

a) b) c)

Figure 5.5: Comparison of the s, p, and d wavefunctions for all electrons of iron
(blue) and the wavefunctions of the GGA-PBE pseudopotential of iron
(green).

The nickel pseudopotential was tested in a fcc bulk calculation, leading to a lattice

constant of a = 3.590 Å, compared to an experimental value of a = 3.52 Å 4 and

a = 3.535 Å derived by a density functional theory calculation using the GGA

functional PW91. [85, 306] The deviation from the experimental value is about 2%,

being decent enough for our calculations and the trade off we expected, as we chose

larger cut off radii for the orbitals to generate smoother pseudopotentials.

The last GGA-PBE pseudopotential we generated is the pseudopotential of iron,

see Figure 5.5 for the pseudo wavefunctions. We decided to use the groundstate

electron configuration of [Ar] 3d64s2 as the reference configuration, even though we

found the configuration of [Ar] 3d74s1 to be lower in energy. Comparison of the eigen-

values of all electron and pseudopotential calculations for the reference configuration

lead to a deviation of 0.04 mRy for the s orbital and 0.36 mRy for the d orbitals.

As non reference configurations we tested the excitations [Ar] 3d64s14p1, [Ar] 3d64s1,

and [Ar] 3d74s1. The highest eigenvalue difference was found with 10.14 mRy for

the d orbital of the [Ar] 3d74s1 configuration. Non-relativistically generated pseu-

dopotentials from the SIESTA pseudopotential database yield eigenvalue differences

of up to 13.0 mRy and total energy differences of up to 6.6 mRy. Even a pseu-

dopotential generated with a small cutoff of rs,p,d,fc = 1.60 a.u. 5, lead to eigenvalue

4From Table 1.3 ”Kristallstrukturen der Elemente” Page 24 in Reference [85].
5The pseudopotential was generated relativistically with all parameters according to our used
pseudopotential, only the cutoff radii were changed, the core correction had a pseudo core of
rpseudo = 0.75 a.u..
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Table 5.2: List of parameters used to generate our van der Waals (VDW) pseudopo-
tentials in the program package ATOM [303] using the functional of Dion,
Rydberg, Schröder, Langreth, and Lundqvist (DRSLL) [227] (option: vw)
within the generation scheme of Troullier-Martins [241] (option: tm2).

atomic species configuration rs rp rd rf
C [He] 2s22p2 1.29 1.29 1.50 1.50

differences of up to 7.8 mRy, being slightly better than the value of our used pseu-

dopotential, however, we found a maximal total energy differences of 6.6 mRy. The

total energy differences of our used pseudopotential are even lower than in the case

of the Ni pseudopotential with a maximal difference of only 0.8 mRy for the ref-

erence configuration compared to [Ar] 3d64s1. The transferability is again tested

with a calculation on a reference system and comparison to experimental and other

theoretical values.

The iron pseudopotential was tested in a bcc bulk configuration with a lattice

constant of a = 2.936 Å, compared to an experimental value of a = 2.87 Å and

a = 2.858 Å or a = 2.963 Å for other calculation by density functional theory

using GGA functionals. [85, 306, 307] The deviation from the experimental value is

therefore about 2.4%, which is in between the values calculated by other theoretical

calculations.

5.1.2 VDW-DRSLL

In the following we present and study the quality of the carbon pseudopotential

generated within the Troullier-Martins scheme using the van der Waals density func-

tional (VDW) of Dion, Rydberg, Schröder, Langreth, and Lundqvist (DRSLL). [227,

241] We used the same parameters for the generation of the GGA-PBE and VDW-

DRSLL pseudopotential and changed only the functional for the generation of the

pseudopotential, see Table 5.2.

The difference for the eigenvalues of the reference configuration [He] 2s22p2 for

the 2s orbitals is again, as for the GGA-PBE carbon pseudopotential, very small

with 0.03 mRy, as well as for the 2p with 0.06 mRy. We tested the same exci-

tation configurations as for the GGA-PBE pseudopotential of carbon, namely the
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Figure 5.6: Comparison of the s and p wavefunctions for all electrons of carbon
(blue) and the wavefunctions of the VDW-DRSLL pseudopotential of
carbon (green). The pseudopotential wavefunctions reproduce the all-
electron wavefunctions behind the cutoff radii, showing an overall good
agreement.

[He] 2s12p3, [He] 2s22p13s1, [He] 2s12p23s1, and [He] 2s02p33s1 configurations. The

highest orbital eigenvalue difference was found with 3.7 mRy for the 2p orbital of

the [He] 2s22p13s1 configuration. The maximal total energy difference was found be-

tween the reference configuration and [He] 2s02p33s1, with a difference of 3.8 mRy.

As the values are higher than the GGA-PBE values, the transferability check for a

reference system is important.

We performed a test calculation of the pseudopotential on graphene. The lattice

constant was found with a = 2.509 Å, slighly higher than the GGA-PBE (≈ 1.7%),

and literature values (≈ 2%). [304, 305] It was found, however, that the van der

Waals density functional tends to overestimate lattice constants (e.g. for out of

plane carbon), which agrees with our result. [236, 308]

The calculation time for the exchange correlation potential was estimated to be

about 10 times larger for the van der Waals functional compared to the calculation

with a generalized gradient approximation (GGA). [233] Comparing to the previous

results for the GGA-PBE calculation, we find an increase of about 20% in total

calculation time for the van der Waals functional calculation (361s) compared to

the GGA-PBE calculation (308s), showing that the calculations performed by the

van der Waals functional are computationally more demanding than standard DFT

(LDA, GGA) calculations, however, they are still manageable.
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selbstständig und ausschließlich unter der Zuhilfenahme der angegebenen Hilfsmittel

und Hilfen angefertigt habe. Ich versichere des Weiteren, dass die Arbeit in keinem
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