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Abstract

Remote sensing is a key technology for systematic and broad-scale observations of the Earth’s
surface and provides the basis for a large body of research and applications. However, region
wide land use intensity mapping as well as monitoring of changes of land management based
on remote sensing data has not yet been studied thoroughly. The main goal of this thesis
was to develop and apply a framework for monitoring land management regimes that differ
in land use intensity in order to advance the mapping and understanding of broad-scale land
use changes based on remote sensing, and to assess the spatio-temporal patterns of land
management regimes. The land management regimes defined in this thesis are large-scale
cropland with a high management intensity, small-scale cropland with a potentially low
management intensity, and farmland abandonment that implies no active land management.
Eastern Europe is a prime example for drastic broad-scale land use changes due to the

momentous political and socio-economic changes after the collapse of the Soviet Union in
1991. In order to monitor land management regimes in western Ukraine, a combination of
different strategies was used. First, a semi-automatic parameter selection was developed
to optimize and economize image segmentation, which is a prerequisite for object-based
analysis. To select the optimal parameters of the Superpixel Contour segmentation algorithm,
a predefined range of parameters is selected by the user and the best image segmentation
is subsequently assessed by the fast internal accuracy assessment of the Random Forest
classifier, and, optionally, by using additional validation data. Second, by integrating optical
and radar data into the object-based image analysis, the synergistic and complementary
effects of both data types were used to improve the mapping and monitoring approach. For
example, the radar data with its high temporal resolution provided elementary information
to distinguish pasture from abandonment, as both classes have a similar grassland cover but
different phenological stages. Moreover, the relatively weather independent radar data was
a reliable alternative to fill gaps of optical time series that can occur, for example, due to
cloud cover. Third, by using a change trajectory analysis approach, land use and land use
intensity changes were monitored for western Ukraine between 1986 and 2010. The results
clearly showed substantial abandonment of the large collectivized farmland in the 1990s
and 2000s. With Ukraine’s integration in world markets and the emerge of agri-business at
the end of the 2000s, many abandoned fields were recultivated. Since the beginning of the
1990s, small-scale cropland as subsistence agriculture emerged for the greatest part directly
from the conversion from large-scale cropland. Nevertheless, large-scale cropland was the
dominant class in the study area at any time during the study period. To further explore the
spatial patterns of land management regimes, the final classification results were overlayed
by a number of spatial indicators related to the marginality of farming, such as soil type,
distance to markets, and elevation. Although a large part of the abandoned farmland was
located on soils not very well suited for agriculture, the analysis showed that there is still a
considerable potential for recultivation and for intensifying small-scale farmland.
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Zusammenfassung

Fernerkundung ist eine Schlüsseltechnologie für die systematische und großflächige Beobach-
tung der Erdoberfläche und bildet die Grundlage für viele Forschungsarbeiten und Anwen-
dungen. Die großflächige, fernerkundungsbasierte Kartierung von Landnutzungsintensitäten
sowie das Monitoring von Landmanagement ist bisher jedoch kaum untersucht worden.
Der Schwerpunkt dieser Dissertation war die Entwicklung und Anwendung eines Systems
zum Monitoring von verschiedenen Landmanagementklassen sowie ihrer jeweiligen Landnut-
zungsintensität, um die Kartierung und das Verständnis von großflächigen Landnutzungs-
veränderungen mittels Fernerkundung zu verbessern und die raum-zeitlichen Muster von
Landmanagement zu bestimmen. Die Landmanagementklassen wurden wie folgt definiert:
Großskaliges Ackerland mit einer intensiven Landnutzung, kleinskaliges Ackerland bzw. Sub-
sistenzlandwirtschaft mit einer potentiell geringen Landnutzungsintensität und aufgegebene
landwirtschaftliche Flächen ohne aktive Landnutzung.

Osteuropa ist ein Musterbeispiel für drastische und großflächige Landnutzungsänderungen,
die durch die tiefgreifenden Umwälzungen nach dem Zerfall der Sowjetunion im Jahr 1991
entstanden sind. Um die unterschiedlichen Landmanagementklassen im Untersuchungsgebiet
in der Westukraine über die Zeit zu untersuchen, wurden verschiedene Analysestrategien
kombiniert. Erstens wurde eine semi-automatische Parameterbestimmung entwickelt um die
Bildsegmentierung hinsichtlich ihrer Qualität und ihres Generierungsaufwandes zu optimie-
ren. Um die optimalen Parameter des Superpixel Contour Segmentierungsalgorithmus zu
erhalten, definiert der Anwender zunächst einen gewissen Parameterbereich und anschlie-
ßend wird die beste Parameterkombination aus dem vordefinierten Bereich anhand der
internen Genauigkeitsuntersuchung des Random Forest Klassifikators, oder optional mittels
eines Referenzdatensatzes, bestimmt. Zweitens konnten durch die Integration von optischen
und radargestützten Satellitendaten innerhalb der objektbasierten Bildanalyse Synergie-
und Komplementäreffekte durch beide Datentypen genutzt werden, um die Kartierung und
das Monitoring zu verbessern. Zum Beispiel waren die Radardaten mit ihrer hohen zeitli-
chen Auflösung eine Voraussetzung für die präzise Unterscheidbarkeit von Weideland und
aufgegebenen landwirtschaftlichen Flächen, da beide Klassen zwar prinzipiell eine Grasland-
bedeckung aufweisen, jedoch unterschiedliche phänologische Phasen haben. Des Weiteren
erlaubten die Radardaten Lücken in der Zeitreihe der optischen Daten effektiv zu füllen,
die beispielsweise auf Grund von Wolkenbedeckung auftreten können. Drittens, durch die
Nutzung von Veränderungstrajektorien konnten die Veränderungen in Landnutzung und
Landnutzungsintensität in der Westukraine für den Zeitraum zwischen 1986 und 2010 ef-
fektiv bestimmt werden. Die Ergebnisse zeigten deutlich die massive Aufgabe von großen,
kollektivierten landwirtschaftlichen Flächen in den 1990er und 2000er Jahren. Mit der Inte-
gration in die Weltmärkte und dem Aufkommen von Agribusiness Ende der 2000er wurden
viele vormals aufgegebene Flächen rekultiviert. Seit Anfang der 1990er Jahre wurde zu-
dem das Aufkommen von Subsistenzlandwirtschaft beobachtet, welches zum größten Teil
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direkt aus den großskaligen Ackerflächen umgewandelt wurde. Dennoch nahm das großskali-
ge Ackerland innerhalb des Untersuchungszeitraums immer die größte Fläche in Anspruch.
Um die räumlichen Muster der Landmanagementklassen im Detail genauer zu untersuchen,
wurden verschiedene Indikatoren zur Bestimmung der landwirtschaftlichen Eignung von
Flächen, wie beispielsweise Bodenqualität, Distanzen zu Märkten oder Höhenlage mit den
Klassifikationsergebnissen verglichen. Obwohl ein Großteil der aufgegebenen landwirtschaft-
lichen Flächen nur geringe Bodenqualität aufwies, zeigten die Analysen, dass es dennoch
ein deutliches Potential zur Rekultivierung von aufgegebenen landwirtschaftlichen Flächen
sowie zur Bewirtschaftungsintensivierung von kleinskaligem Ackerland gibt.
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Chapter I: Introduction

1 Land use, its environmental impact, and perspectives

“Land use” is the manifold use of the Earth’s surface and its natural resources by human
activities, while “land cover” denotes the biophysical character of the Earth’s surface. Both
terms are closely linked when it comes to land cover changes, as these are principally based
on human activities and land use changes. In the case of, for example, agricultural expansion,
such land use/cover changes are accompanied by the replacement of natural ecosystems and
are based on individual or societal need or want (Turner et al., 1990; Ojima et al., 1994;
Walker et al., 1999; Lambin & Geist, 2006).

The pressure that increasing global population puts on land use has started being central to
discussions and thinking already at the end of the 18th century (cf. Malthus, 1798; Godwin,
1820). However, factors and relations are complex and not only the sheer number of people,
but a composition of social organization, technology, lifestyle, and consumption patterns
are likely responsible for population pressure on land use (Ehrlich & Holdren, 1971; Jolly &
Torrey, 1993; Lambin & Geist, 2006). In the past, agricultural expansion led to more and
more land use/cover changes, for example, cropland areas increased more than five times
during the past three centuries (Goldewijk, 2001) and nowadays about 13 million hectares are
converted from natural vegetation to agricultural land every year (Tilman et al., 2001; FAO,
2006). Recent studies estimate that about 80% of new agricultural land is converted from
tropical forests, which are a rich reservoir for biodiversity and ecosystem services (Barlow
et al., 2007; Gibbs et al., 2010). Overall, about 40% of the Earth’s surface is domesticated
by human use for pasture and cropland (Vitousek, 1997; Foley et al., 2005).

Next to agricultural expansion, agricultural intensification was largely responsible to meet
the food demand of the world population, which more than doubled during the past five
decades (Tilman, 1998; Foley et al., 2011). Agricultural intensification, also called the “Green
Revolution”, which started in the 1960s, remarkably increased agricultural yields by using
high-yielding crops, chemical fertilizers and pesticides, improved irrigation techniques, and
mechanization (Tilman, 1998; Matson et al., 1997; Evenson & Gollin, 2003).

The success of increasing agricultural production is immense and the provisioning ecosys-
tem services (i.e., food, fiber, shelter, freshwater) were highly increased in their efficiency
(MEA, 2005), but there are two sides of every coin. Both agricultural expansion and inten-
sification have fundamental impact on the environment and other ecosystem services. The
expansion of agriculture into natural ecosystems, for example due to deforestation, degrades
regulating ecosystem services such as for air quality, water quality, diseases, erosion, and
natural hazards (MEA, 2005). Further consequences of expanding agriculture are the loss of
biodiversity, which is even aggravated by the fragmentation of landscapes, and the change of
the global carbon cycle by the release of huge amounts of carbon and reducing the capacity
of carbon sequestration (Guo & Gifford, 2002; Tscharntke et al., 2005; Foley et al., 2011).
Agricultural intensification, on the other hand, entails negative consequences on different
scales in the world. Local consequences include increased soil erosion, lower soil fertility,
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1 Land use, its environmental impact, and perspectives

and reduced biodiversity due to the high-productive monoculture cultivation (Matson et al.,
1997; Altieri, 1999b). Regional consequences can be the pollution of ground water and
eutrophication of rivers and lakes, due to anthropogenic nutrient inputs from fertilizers
(Matson et al., 1997; Bennet et al., 2001). Global consequences of agricultural intensification
affect the atmospheric constituents and the climate by the emission of greenhouse gases
(Smith et al., 1997; Matson et al., 1997). In total, agriculture is responsible for up to 35% of
the global greenhouse gas emissions, mainly resulting from deforestation, methane emissions
from livestock and rice cultivation, and nitrous oxide emissions from fertilized soils (Foley
et al., 2011).

With the contemporary land use, humanity is degrading the global environment and
potentially undermines the long-term capacities of ecosystems to provide services (Tilman
et al., 2001; Foley et al., 2005). Unfortunately, the situation even seems to get aggravated
in the future. The increasing world population, dietary changes towards an increasing meat
consumption, and the role of bioenergy suggest a global demand for agricultural products
by 2050 roughly twice as high as today (Godfray et al., 2010; Foley et al., 2011). To meet
the surging demand for agricultural products in an environmentally-friendly and sustainable
way will be a grand challenge in the 21st century, involving both science and politics.

Ensuring both secure food supply and environmental sustainability requires the combina-
tion of different strategies: (1) The amount of food that is lost in the food chain has to be
reduced. Nowadays, about one-third of the food produced for human consumption is lost,
this equals around 1.3 billion tons per year (FAO, 2011). This means, on the one hand, that
huge amounts of food are wasted while they are missing in some parts of the world. On
the other hand, huge amounts of resources used for the food production and all associated
environmental impacts are wasted. The amount of food waste in low-income and developing
countries is relatively low, however, improvements in the early stages of the food supply
chains can overcome their food losses, for example, due to financial support, especially for
investments in infrastructure and technical equipment, such as harvesting techniques, storage
and cooling conditions as well as packaging (FAO, 2011). Food losses in medium and high-
income countries are mainly related to consumer and food industry behavior. Changes in
this context could prevent large quantities of food from being thrown away, for example due
to changes in the insufficient purchase planning, the “best-before-dates” principle, or quality
standards such as imperfect shape or appearance (FAO, 2011). (2) Changes on the demand
side can help to increase the rate of available human food. Currently, croplands devoted to
animal feed and pasture together amount to around 75% of the world’s agricultural land
(Foley et al., 2011). As a result, Foley et al. (2011) estimated the potential to increase food
supplies by shifting 16 major crops to human food to over a billion tonnes, which would
be an increase of 28% (around 49% more calories). West et al. (2014) even estimated that
about 70% more calories would become available if the crop production for animal feed and
nonfood uses shifts to direct consumption. Although a worldwide complete shift away from
meat-based diets is unrealistic, these studies generally show the considerable potential of

3



Chapter I: Introduction

shifts in food consumption. (3) Increasing the agricultural production in sustainable ways
completes the strategies to secure food supply while the negative environmental impacts are
minimized.

There are mainly three ways to increase agricultural production. First, agricultural areas
can be expanded into natural ecosystems. This would have large negative consequences
for the environment, as mentioned above. Furthermore, the benefits for food production,
for instance based on deforested tropical areas, are not very clear and seem to be limited
(Foley et al., 2011). Second, existing agricultural land can be intensified in a sustainable
way, which means that the yield of underperforming fields is increased while at the same
time the environmental impact of cultivation is decreased (Cassman, 1999; Clough et al.,
2011; Tilman et al., 2011). For example, improving the management of nutrient and water
can reduce resource inputs for cultivation and as a result also reduce the environmental
impact of land use (Mueller et al., 2012). Organic farming systems produce food with
minimal harm to ecosystems due to its abstinence of artificial fertilizers and pesticides, its
positive impact on biodiversity, and usually with a more diverse crop rotation (Shepherd
et al., 2003; Bengtsson et al., 2005; Hole et al., 2005). The yielding potential of organic
farming is controversial. Some studies found evidence that organic farming can produce
as much as conventional agriculture (Altieri, 1999a; Pretty & Hine, 2001). However, it is
likely that the yield of organic farming is contextual, so that measures like good management
practices, particular crop types, and growing conditions can produce similar yields (Seufert
et al., 2012). In the end, to establish organic agriculture as an essential part of sustainable
agriculture to secure food supply, the factors influencing the yields of organic agriculture
have to be better understood (Seufert et al., 2012). Third, abandoned farmland can be
recultivated to increase agricultural production, whereby the environmental impact depends
on the stage of succession and is generally less dramatic than agricultural expansion into
primary forests (Barthlott et al., 2001; Barlow et al., 2007; Gardner et al., 2008). One of
the greatest potentials for recultivation lies in Eastern Europe with its widespread farmland
abandonment since the collapse of the Soviet Union (Kuemmerle et al., 2011; Alcantara et al.,
2012; Stefanski et al., 2014a). For instance, in Russia alone, around 40 million hectares of
arable land became abandoned since the 1990s (Prishchepov et al., 2012). However, parts of
the former cultivated land are marginally suited for agriculture, for example due to low soil
quality for agriculture or mountainous areas such as the Carpathian Mountains (Stefanski
et al., 2014a; Griffiths et al., 2013). This relativizes the rate of farmland abandonment as the
potential for recultivation. Furthermore, profitable recultivation depends on the costs, which
are directly linked to the type and stage of succession (Larsson & Nilsson, 2005; USDA-FAS,
2008). Natural succession is mainly determined by the soil properties, climate conditions,
and the time elapsed since the abandonment (Schierhorn et al., 2013). For example, the
recultivation costs increase with advanced shrub land and woody vegetation in comparison to
perennial weeds and grasses. In the end, recultivation is a trade-off between the agricultural
potential of the land, recultivation costs, economic and institutional constraints, and, at best,
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the carbon costs involved in recultivating abandoned farmland (Schierhorn et al., 2013).
All in all, the combination of different strategies to secure food supply while minimizing

the negative environmental impact of agriculture is crucial (Foley et al., 2011; West et al.,
2014). Remote sensing can play an important role to map and estimate the current land use
and to derive potentials for intensification and recultivation. This thesis makes a contribution
to a more nuanced mapping of land use to estimate and ultimately better understand land
management patterns and land use intensity (i.e., high and low land use intensity as well as
abandoned land).

2 Remote sensing and methodologies for monitoring land use
dynamics

Remote sensing has a long history that goes back to photographies in the 1850s out of
balloons, while the advent of modern earth observation started with the first commercial
satellite – Landsat-1 – in 1972 (Lillesand et al., 2008). Great advances during the past
decades have led to an expansion of remote sensing in diverse commercial and scientific
applications as well as to an increasing support for decision-makers in economy and politics.
The advances in remote sensing were enabled by both the technical development resulting in
a considerable variety of sensors and the rapid progress in digital image processing with its
advancing methodologies. The unique ability to acquire systematic repetitive observations
of large parts of the Earth’s surface with different spectral and temporal resolutions makes
remote sensing to the most important tool for monitoring and mapping land use dynamics
(Campbell, 2002).

Nowadays, a multitude of remote sensing satellites acquire images of the Earth’s surface at
different spatial resolutions, spectral regions, and temporal characteristics. While satellites
with a high spatial resolution capture relatively small area coverages of the ground (e.g.,
RapidEye 6.5m spatial resolution, 5 spectral bands, and about 80 km swath width), satellites
such as MODIS have a swath width of 2330 km with a spatial resolution between 250m and
1000m, depending on the number of spectral bands, which allows to capture the entire surface
of the Earth in up to two days (Sandau, 2010; Xiong et al., 2003). Therefore, choosing the
optimal sensor for monitoring applications is mainly a trade-off between the spatial/spectral
resolution and the ground as well as repeat coverage. In general, multispectral sensors, which
record natural radiation (e.g., sunlight), offer a wide range of applications with regard to
the spectral band. For example, while the blue spectrum is sensitive to water, the red and
infrared spectra are sensitive to vegetation (Lillesand et al., 2008). The Landsat satellite
mission acquires multispectral images of the Earth’s surface since more than 40 years and the
Landsat archive – in the meantime free of charge – became a fundamental basis for remote
sensing based applications regarding mapping and change detection (Wulder et al., 2012).
The properties of the Landsat images since Landsat-4 represent a good compromise between
the area coverage (185× 185 km) and the spatial resolution (30× 30m), which enable accurate

5



Chapter I: Introduction

yet region-wide analyses (Mika, 1997; Williams et al., 2006). Beside of such passive satellite
systems, satellites with microwave sensors, such as synthetic aperture radar (SAR), are active
imaging systems that allow data acquisitions independently from the day/night cycle and
the characteristic of the radar signal allows to measure through cloud cover and some rain
(Moore, 1983). The radar backscatter is a function of the signal (i.e., frequency, polarization,
incidence angle) and the surface parameters (Moore, 1983). For example, different radar
frequencies have different penetration depths and thus provide different information about the
observed surface. Generally, SAR is sensitive to soil moisture, surface roughness, vegetation
cover, and soil texture (Henderson & Lewis, 1998). The ERS-1/-2 SAR mission provided
continuous observations of the Earth between 1991 and 2011 and enabled a multitude of
land and sea applications (Gens & van Genderen, 1996; Attema et al., 1998; Del Frate et al.,
2000; Quegan et al., 2000). The ERS sensor operated at a frequency of 5.3GHz (C-band)
and a typical standard three-look image has an area coverage of 100× 100 km and a spatial
resolution of 25× 25m (Lehner et al., 1998; Attema et al., 2000).

Each remote sensing sensor has its own advantages and drawbacks. Therefore, the com-
bination of different types of data is a promising avenue to benefit from the multisensory
synergistic and complementing effects, and, ultimately, to make better use of remote sensing
data for numerous applications. On the one hand, increasing the available spectral resolution
or bandwidth due to different sensors likely improves the accuracy of more complex analyses.
On the other hand, the use of multisensor data can increase the temporal resolution, which
often increases the accuracy of the analysis as well as the robustness, for instance in cases
where certain acquisition dates are required but not available due to cloud cover. The joint
use of multitemporal SAR and multispectral data, for example with ERS SAR and Landsat
data, significantly increased the accuracy of land use/cover mapping (e.g., Shupe & Marsh,
2004; Waske & van der Linden, 2008; Stefanski et al., 2014a). Especially the combination of
SAR and multispectral data is beneficial, as the former is able to provide necessary image
observations at specific dates because of the radar properties, and the latter provides a good
spectral resolution useful for many applications.

Beside of the technical development of sensors and computers, digital image processing and
analytical methods have also exhibited great progress in the past decades. Nowadays, they
are used in a multitude of important areas such as medical imaging, in the field of security,
intelligent sensing systems, material science, robotics and manufacturing, apart from remote
sensing (Pitas, 2000). With the advent of machine learning techniques in remote sensing
image analysis, many new applications became feasible. Classification methods can generally
be divided into supervised and unsupervised approaches. Unsupervised classification algo-
rithms analyze images in order to group the data into spectral categories and to assign a class
to every image pixel without foreknowledge of the user or training samples. Unsupervised
approaches are often performed with clustering methods like the k-means clustering and can,
for example, be helpful for determining the spectral class composition prior to subsequent
analysis (MacQueen, 1967; Richards & Jia, 2006). The basis of supervised methods are
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typically multitemporal images, a data set for training of the classification model, and a data
set for validation to estimate the achieved accuracy. Nowadays, supervised algorithms such
as Support Vector Machines (SVM) or Random Forests (RF) are widely used for classification
or regression analyses (e.g., Pal, 2005; Prasad et al., 2006; Waske & Benediktsson, 2007).
Furthermore, such non-parametric classifier have no constrains regarding assumptions of
the data distribution. Non-parametric classifier like RF can easily handle large multisensor
data sets with similar or better accuracies and less training samples compared to parametric
classifiers such as the maximum likelihood classifier (Waske & Braun, 2009; Na et al., 2010;
Rodriguez-Galiano et al., 2012). In comparison to traditional pixel-based analysis, the use
of spatial information in addition to spectral information becomes more popular (Gamanya
et al., 2009; Blaschke, 2010). Image segmentation enables the partitioning of an image into
homogenous regions and thus, finding objects represented of up to several pixels with regard
to the object-size and spatial resolution of the image. The prior object-identification and
utilization of spatial information (e.g., the segments’ mean or variance value) can significantly
enhance the mapping accuracy in comparison to a pixel-based approach, especially in object-
relevant analysis such as agriculture and urban areas (Myint et al., 2011; Whiteside et al.,
2011; Stefanski et al., 2013, 2014a). Object-based image analysis becomes more effective
when the spatial resolution of the image increases. On the one hand, the identification of
objects in high spatial resolution images is easier as objects are covered by more pixels. On
the other hand, object-based information can help to overcome challenges when analyzing
high spatial resolution images, such as spectral variations within single objects caused by
crown textures, rooftops, or shadows (Yu et al., 2006; Wang et al., 2010). However, per-
forming adequate image segmentation is often time consuming when users have to select the
optimal segmentation parameters manually with a “trial-and-error” approach and, besides
that, segmentation parameters cannot be transferred in most cases (Möller et al., 2007; Myint
et al., 2011; Stefanski et al., 2013). The multiresolution segmentation implemented in the
image analysis software eCognition is the most widely used image segmentation method for
remote sensing applications (Baatz & Schäpe, 2000; Blaschke, 2010) and is therefore often
used as a benchmark for new segmentation algorithms.

Satellite remote sensing acquisitions are predestined for change detection and monitoring
land use dynamics because of the repeated coverage at short intervals with a relatively
consistent image quality (Singh, 1989). The basic principle of many change detection
approaches is a set of multitemporal imagery that is analyzed in order to detect spectral
differences that represent the changes of land cover. However, not each spectral difference can
necessarily be traced back to changes of the object since other factors, including atmospheric
conditions, sun or observation angle, or soil moisture can also cause spectral changes (Jenson,
1983; Du et al., 2002). The use of, for example, appropriate data with similar image
recording constellation, calibration methods (e.g., radiometric normalization), or supervised
change detection approaches, may reduce or eliminate effects or consequences of ambiguity
in spectral differences (Singh, 1989). Established change detection is mainly based on either
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bi-temporal or trajectory-based approaches (McRoberts, 2013). While bi-temporal change
detection is well suited to detect type and extend of land conversions (i.e., sudden changes),
it is not able to detect gradual or subtle changes such as land cover modifications between
the two dates. A more detailed analysis of temporal patterns is achieved with a change
trajectory approach that analyzes the characteristics of every pixel in a time series of remote
sensing data (Mertens & Lambin, 2000; Kennedy et al., 2007; Stefanski et al., 2014b). A
common drawback of such change detection approaches, when using optical data, is that
cloud cover can hinder useful image acquisitions, which causes gaps in time series that can
prevent accurate change detection. To overcome such issues and to make change detection
analysis more robust, it is beneficial to use a variable change detection approach including
SAR data. Due to the SAR signal characteristics, SAR data can complement multispectral
data and fill gaps in optical time series (Stefanski et al., 2014b).

3 Ukraine in the context of political and socio-economic changes

In the 20th century, Ukraine was an important producer of agricultural products and has
therefore often been associated as the “granary of the Soviet Union” (Striewe & von Cramon-
Taubadel, 1999; Aslund, 2009). At the end of the 1980s, Ukraine produced about 60% of
the corn, 50% of the sugar beet, and 40% of the winter wheat and sunflower seed of the
Soviet Union, even though Ukraine’s arable land accounted for only around 15% of the
Soviet Union’s total arable land (World Bank, 1996). This is not very surprising given that
the temperate continental climate and the fertile black soils make Ukraine a very favorable
country for agricultural production. Ukraine can culturally and economically be divided into
two parts due to a long history with both Russian/Soviet rule in the east and Polish and
Austro-Hungarian rule in the west (Shulman, 1999). In general, eastern Ukraine is a center
for mining and industry where the majority of the population speaks Russian in contrast
to western Ukraine with its large agricultural sector and a majority of Ukrainian-speaking
population (Shulman, 1999; Aslund, 2009).
The agricultural sector of the Soviet Union was characterized by large industrial and

collectivized farms with high inputs of fertilizer and pesticides (Strayer, 1998). Although
Soviet Ukraine’s crop productivity was one of the highest within the Soviet Union, its
production potential was even higher than being realized under the central planning (Striewe
& von Cramon-Taubadel, 1999). Soviet agriculture was a high-cost agriculture with similar
input use compared to most developed countries, however, the agricultural productivity
was comparatively low (Johnson et al., 1983; Lerman et al., 2003). And the political-
economic system with artificially low food prices and subsidies did not contribute to improving
agricultural efficiency and competitiveness (Csaki & Lerman, 1997). Since the end of the
1970s, the increasing demand for food could not be met by the low growth of agricultural
production (Johnson et al., 1983) and thus, the Soviet Union became a large grain importer
until its collapse (Liefert et al., 2010).
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With the collapse of the Soviet Union and its political-economic system in 1991, the
Ukraine experienced drastic institutional and socio-economic changes. The direct economic
impact for the Ukraine was a sharp decrease of the gross domestic product over 50% and
the grain production decreased by about 20% to 25% in the 1990s (Blanchard & Kremer,
1997; Striewe & von Cramon-Taubadel, 1999; Liefert et al., 2010). With the transition from
command economy to free markets, old production links broke down, for instance the state
input distribution system, and old markets and trade agreements diminished (Blanchard &
Kremer, 1997). Furthermore, the lack of capital investments resulted in a degradation of
infrastructure (e.g., machineries and irrigation systems), a reduced technical efficiency in
crop production, and ultimately limited the economic viability of farms (Johnson et al., 1994;
Hostert et al., 2011). All in all, the drastic changes after the end of socialism resulted in lower
profitability of farming and rural migrations, and, consequently, led to widespread farmland
abandonment and the emerge of subsistence agriculture (Müller & Munroe, 2008; Hostert
et al., 2011; Stefanski et al., 2014b). And although it is commonly understood that the
collapse of the Soviet Union resulted in drastic impacts for the political and socio-economic
systems, rates and spatio-temporal patterns of land changes remain largely unclear.
While the yields in the Ukraine declined during the 1990s, land reforms and a more

stable trade policy started a period of efficiency-driven growth of the agricultural sector,
including increasing yields and profits (Aslund, 2002; OECD, 2004; Liefert et al., 2010).
For example, since 2006, the sunflower, corn, and soybean yields in Ukraine could almost
double, and in 2009, Ukraine became the world’s largest barley exporter (USDA, 2010;
Deininger et al., 2013). A main source of the rising yields and Ukraine’s increasing role as
an important agricultural producer is the emerge of new and more productive operators as
large, vertically integrated enterprises, combining the whole chain of primary agriculture,
processing, distribution, and sometimes retail sale (Liefert et al., 2010; Deininger et al.,
2013). These new operators mainly use former collective farms, and capital invest into
current technology such as machines and irrigation systems, import high-yielding seeds, and
professionalize the management practices. Both the potential for increasing yields and the
availability of idle farmland with perspectives for recultivation are two of the main reasons
why recent studies predict the Ukrainian’s agricultural sector an important role in the future
(USDA, 2010; Liefert et al., 2010; Deininger et al., 2013).

4 Aims and research questions

The main objective of this dissertation was to develop and apply a feasible methodological
approach for mapping and monitoring land use dynamics, and specifically identifying the
spatio-temporal patterns of land use and its intensity. As the global demand for agricultural
products is surging, strategies for increasing agricultural production with a minimized en-
vironmental impact are gaining increasing attention. A prerequisite for the realization of
such strategies is the mapping of current land use patterns including their land use intensity
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and management. To do so, a comprehensive framework was developed that consisted of: 1)
object-based image analysis with a semi-automatic parameter selection to extract additional
spatial information; 2) the integration of multispectral and SAR data into a classification
scheme to advance the mapping of land management regimes due to synergistic and comple-
menting effects; and 3) the use of change trajectory analysis to monitor rates and patterns
of land use intensity changes in western Ukraine.

The mapping of land management regimes that differ in field size (e.g., large-scale cropland
and small-scale cropland) is challenging and hardly possible when solely analyzing spectral
per-pixel information. Using multilevel segmentation (i.e., multiple segmentations with
different parameter settings such as different “scales”) enables the integration of different
spatial information into image analysis and thus increases the sensitivity for different object
sizes. Finding adequate segmentation parameters is often time consuming when the user
has to select appropriate parameter settings by a “trial-and-error” approach, which is an
iterative process of generating a segmentation, visually interpreting the result, and then
adjusting the parameters into a direction the user believes it will improve the result in the
next iteration. To raise the segmentation parameter selection to a new level in terms of
evaluation of the optimal segmentation level and user-friendliness, a classification-optimized
parameter selection in which the user just pre-defines the general parameter range and the
selection of the optimal segmentation is done automatically appears worthwhile. Such an
advanced parameter selection is even more beneficial if a multilevel segmentation is used
and each segmentation level requires a class-specific optimization.
Generally speaking, land use intensity is a complex and multidimensional term. For

example, land use intensity can be measured by agricultural inputs such as the application
rate of fertilizer and pesticides or by agricultural outputs such as yields. As these dimensions
can only rarely be measured by remote sensing analysis, the additional use of ground-based
data containing intensity metrics could overcome this problem. However, such ground-based
data is often not available, especially when the analysis should cover large areas, which
would require extensive and expensive in-situ measurements to collect the intensity metrics.
Therefore, the use of proxy variables such as field size to represent land management regimes
with different intensities seems to be an interesting remote sensing-compatible approach.
Moreover, the joint use of multispectral and SAR data may support a more reliable mapping
of land management regimes. On the one hand, the use of SAR data ensures the provision of
that particular temporal information that is necessary due to the weather independence of
SAR data. On the other hand, in the case of, for example, the discrimination of vegetation
species, SAR data can contribute with information about surface roughness, soil moisture,
or soil texture of the Earth’s surface.

The far-reaching consequences of the collapse of the Soviet Union and the following drastic
institutional and socio-economic changes offer an unique opportunity to study the transition
from planned to free market economy with its broad scale changes of land use and land
management. Unfortunately, our understanding of the impact of major socio-economic
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disturbances on land use is limited. Therefore, it is important to monitor the spatial and
temporal patterns of land use and its intensity to gain information about the rate and extend
of widespread land changes triggered by specific socio-economic disturbances. Moreover, the
mapping and monitoring of active land use, abandonment, and recultivation by using remote
sensing data offers the opportunity to assess potentials for both agricultural intensification
and recultivation, which can increase agricultural production. The large image coverages
with a sufficient high spatial resolution for identifying land systems acquired from remote
sensing satellites such as Landsat/ERS or the upcoming Sentinel-1/-2 mission make remote
sensing a key technology for monitoring land use dynamics.
Overall, the main objectives of this dissertation are addressed by the following research

questions:

1. How can object-based image analysis be optimized and simplified in order to improve
both the quality and feasibility of remote sensing analysis?

2. How can the representation of land use intensity be improved in order to efficiently map
land use management based on remote sensing data and what are the methodological
and data requirements for mapping land management regimes?

3. What were the specific rates and patterns of land use and management changes in
western Ukraine since 1986?

5 Structure of this dissertation

This dissertation is divided into three core chapters (Chapter II–IV), each relating to one
of the research questions that are set out above. Chapter II introduces a semi-automatic
parameter selection to optimize a Superpixel Contour segmentation with a Random Forest
classification-based assessment of the segmentation quality. This method was successfully
tested on two study sites, one data set consisted of RapidEye images and the other one
consisted of SPOT-5 images. The developed parameter selection approach was used to find
optimal segmentation parameter settings for the subsequent object-based analysis regarding
the study in western Ukraine. In Chapter III, land management regimes that differed in
field sizes were mapped to identify different land use intensities in western Ukraine. The
hierarchical, object-based approach to map the land management regimes used Landsat-5
and ERS SAR data. In Chapter IV, the changes of land management regimes between 1986
and 2010 were monitored in order to assess the spatio-temporal patterns of land use intensity
changes. This approach used change trajectory analysis that were based on an extensive
Landsat-5 and ERS SAR time series. Finally, Chapter V presents a synthesis of the results
of the three core chapters, provides answers to the research questions, and discusses future
perspectives and application potentials.
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The core chapters (Chapter II–IV) of this dissertation were written as stand-alone manu-
scripts and published in international peer-reviewed journals:

Chapter II: Stefanski, J., Mack, B., & Waske, B. (2013). Optimization of object-based
image analysis with Random Forests for land cover mapping. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 6,
2492–2504.

Chapter III: Stefanski, J., Kuemmerle, T., Chaskovskyy, O., Griffiths, P., Havryluk, V.,
Knorn, J., Korol, N., Sieber, A., & Waske, B. (2014). Mapping land man-
agement regimes in western Ukraine using optical and SAR data. Remote
Sensing, 6, 5279–5305.

Chapter IV: Stefanski, J., Chaskovskyy, O., & Waske, B. (2014). Mapping and monitoring
of land use changes in post-Soviet western Ukraine using remote sensing data.
Applied Geography, 55, 155–164.

The final reference section includes only the literature cited in the Introduction (Chapter I)
and Synthesis (Chapter V).
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Chapter II: Optimization of object-based image analysis with Random Forests

Abstract

A prerequisite for object-based image analysis is the generation of adequate segments. How-
ever, the parameters for the image segmentation algorithms are often manually defined.
Therefore, the generation of an ideal segmentation level is usually costly and user-depended.
In this paper a strategy for a semi-automatic optimization of object-based classification of
multitemporal data is introduced by using Random Forest (RF) and a novel segmentation
algorithm. The Superpixel Contour (SPc) algorithm is used to generate a set of different
levels of segmentation, using various combinations of parameters in a user-defined range.
Finally, the best parameter combination is selected based on the cross-validation-like out-
of-bag (OOB) error that is provided by RF. Therefore, the quality of the parameters and
the corresponding segmentation level can be assessed in terms of the classification accuracy,
without providing additional independent test data. To evaluate the potential of the pro-
posed concept, we focus on land cover classification of two study areas, using multitemporal
RapidEye and SPOT 5 images. A classification that is based on eCognition’s widely used
multiresolution segmentation algorithm (MRS) is used for comparison. Experimental results
underline that the two segmentation algorithms SPc and MRS perform similar in terms
of accuracy and visual interpretation. The proposed strategy that uses the OOB error for
the selection of the ideal segmentation level provides similar classification accuracies, when
compared to the results achieved by manual-based image segmentation. Overall, the pro-
posed strategy is operational and easy to handle and thus economizes the findings of optimal
segmentation parameters for the Superpixel Contour algorithm.

1 Introduction

Earth Observation (EO) data provide diverse information for decision support and environ-
mental monitoring systems. In this context the mapping of land cover and land use is one of
the major issues and remotely sensed land cover maps support a wide-range of applications,
e.g., in the field of forestry (Walker et al., 2010), natural hazards (Stumpf & Kerle, 2011),
urban climatology (Chen et al., 2006), and agriculture (Lobell et al., 2003; Skriver et al.,
2011).

While most land cover classifications focus on pixel-based image analyses, object-based
image analyses have been emerged over the past decade (Blaschke, 2010). Although, the
classification accuracy of Landsat-like data can be improved by image segmentation (Dorren
et al., 2003; Myint et al., 2008), object-based image analyses are even more attractive
regarding EO data with higher spatial resolution (Wang et al., 2010).

In general, segmentation means the process of partitioning an image into multiple homoge-
nous regions. Neighboring pixels are aggregated to segments, which simplify the representa-
tion of an image. This enables the derivation of additional features like the segments’ mean
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value or variance. The derivation of the segments’ mean value can overcome the problem of
random noise (Blaschke et al., 2000; Wang et al., 2010), which is particularly a problem in
high spatial resolution imagery. Thus, subsequent filter operations are often obsolete (Voorde
et al., 2007). Moreover, image segmentation enables the extraction of spatial information of
the image objects, which can be included in subsequent image analysis, e.g.: van der Werff
& van der Meer (2008) analyzed objects with identical spectral information to distinguish
them on the basis of spatial information. Segl et al. (2003) show that the fusion of spectral
and shape features improves the differentiation of urban surface cover.
However, the definition of an adequate segmentation scale is critical. An inaccurate

segmentation can decrease classification accuracy and different classes and data sets often
require different segmentation levels (cf. Song et al., 2005; van der Linden et al., 2007; Waske
& van der Linden, 2008). Waske & van der Linden (2008) discussed a joint classification of
different segmentation scales from multisensor images using SAR and optical data sets. They
show that different segmentation scales contribute unequally to the classification accuracy of
various rural land cover classes. While one scale is well suited for a specific data set and/or
to describe a class, another scale is more adequate for others.

Similar results were reported in context of classifying urban structure types, using airborne
hyperspectral data. Although segment-based maps visually appear more homogeneous,
positive and negative impacts on the classification accuracies can be observed. Consequently,
no ideal single segmentation scale can be defined, where an increase in classification accuracy
is significant for all urban classes (van der Linden et al., 2007).

Behind these facts, a general accepted segmentation strategy, which produces high quality
results for different types of images and study sites, would be attractive. An adequate
segmentation algorithm as well as recommendations for universally valid default values could
foster object-based image analyses, also in context of large-scale and operational applications.
In most remote sensing applications, the multiresolution segmentation algorithm (MRS)

(Baatz & Schäpe, 2000) in Definiens eCognition is used (Duro et al., 2012b; Myint et al., 2011;
Whiteside et al., 2011). Although a statistical significant difference between pixel-based and
object-based classification is not necessarily achieved (Duro et al., 2012b), in several studies
object-based classifications result in significant higher accuracies when compared to the pixel-
based approach (Myint et al., 2011; Whiteside et al., 2011). In addition, the results show that
usually manual input (e.g., segmentation parameters like scale level) is required to generate
adequate segmentation results (Myint et al., 2011; Duro et al., 2012b). However, parameter
settings cannot be transferred in the very most cases, i.e., diverse remote sensing images
and study sites require specific parameters (Arbiol et al., 2006). Thus, the determination of
optimal parameters is labour intensive, because it is usually based on a manual “trial-and-
error” principle, i.e., the user tests different parameter settings, often by visual interpretation
(Lowe & Guo, 2011). This widely-used technique to determine segmentation parameters is
especially time consuming for non-experienced users. Behind this fact, Duro et al. (2012b)
underlined the demand for strategies, which can reduce the time needed for selecting the
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optimal input parameters for image segmentation, while the quality of the segmentation
should be comparable or even superior. Anders et al. (2011) developed a technique for
semi-automated geomorphologic mapping, which includes a systematic selection of the scale
parameter of eCognition’s multiresolution segmentation. The segment quality is evaluated
by determining a segmentation error based on frequency matrices of the generated objects
and training data. Tarabalka et al. (2012) developed an approach to generate automated
segmentations by a marker-based segmentation, whereas the markers have to be found by a
pixel-wise classification before the segmentation. One prerequisite for a correct segmentation
is that the initial classification must marker all objects, since each region in the segmentation
map contains one marker. Furthermore, some studies introduced approaches for selecting
segmentation parameters (Espindola et al., 2006; Dragut et al., 2010; Dongping Ming
et al., 2012). The segmentation quality criterion of these approaches is the maximization of
intrasegment homogeneity and intersegment heterogeneity. All these parameter selections
have in common that they optimize segment properties before a classification. However,
a systematic parameter selection, which comprises all relevant segmentation parameters,
combined with an unbiased classification-based quality assessment, would be desirable.

To overcome these problems, an alternative segmentation strategy is proposed that enables
the semi-automated adaption of relevant parameters for image segmentation. Therefore,
the Superpixel Contour (SPc) algorithm (Mester et al., 2011) is introduced in context of
remote sensing. Furthermore, the region-based SPc segmentation technique is combined
with the Random Forest classifier (Breiman, 2001). Random Forest (RF) is a supervised
classifier and has demonstrated excellent performance in terms of classifying diverse remote
sensing data sets (Gislason et al., 2006; Waske & van der Linden, 2008; Waske & Braun,
2009; Stumpf & Kerle, 2011; Palsson et al., 2012; Duro et al., 2012a). Moreover, Duro
et al. (2012a) used RF for a multiscale object-based image analysis and feature selection.
They generated a large set of features based on four segmentation scales and five different
object-feature types. Finally, RF was used to select only the “relevant” features concerning
the overall classification. In general, RF performs well with small training sample sets
and often outperforms other methods in terms of accuracy and computation time (Waske
& Braun, 2009). Moreover, the method offers a cross-validation-like accuracy measure,
which will be used for the parameter selection of the segmentation algorithm. Overall, this
study demonstrates that the proposed concept minimizes manual input for the segmentation
procedure in conclusion with an efficient classification method.

In order to evaluate the potential of the proposed concept, we focus on three main research
questions:

1. Is object-based classification capable to significantly increase classification accuracy
compared to a pixel-based approach?

2. Can the Superpixel Contour algorithm perform similar like the widely-used segmentation
method eCognition’s multiresolution segmentation?

18



2 Methods

3. Is the proposed strategy able to enhance and economize the optimization of segmenta-
tion parameters?

2 Methods

2.1 Superpixel Contour

A wide-range of segmentation algorithms, which are based on different partitioning techniques:
1) pixel-based; 2) edge-based; 3) region-based; and 4) combined, have been introduced
(Blaschke, 2010). The Superpixel Contour algorithm (Mester et al., 2011) is an iterative,
region-based segmentation procedure based on a stochastic model capable to separate images
into homogenous regions, i.e., segments or superpixels. These regions are created by the
aggregation of neighboring pixels, following certain criteria like homogeneity of pixel values
or shape of the segments. A detailed description on the general concept of the SPc algorithm
is given by Mester et al. (2011). A brief summary is given below.
The principle of the SPc algorithm is to optimize a non-specified initial segmentation

along its boundaries. This so-called contour relaxation is based on the statistical distribution
of each region. The distributions of two neighboring regions are derived for the case that
a contour pixel belongs to one region or to the other. The pixel is assigned to the region
that maximizes the posterior distribution. The idea behind this is a maximum-a-posteriori
(MAP) segmentation running iteratively until the optimal segmentation is found.

The fast and efficient processing is enabled by the principle of the SPc algorithm to consider
only the pixels at the boundary of each region. Therefore, the image is scanned several
times with a systematically varying pixel visiting scheme. In every pass through the image,
to minimize the bias of the results, pixels are visited from all four possible directions: 1)
left-right, up-down; 2) left-right, down-up; 3) right-left, up-down; and 4) right-left, down-up.
SPc is based on the assumption that the considered image is separable into meaningful

regions and the probability measure can be derived, e.g., the statistical distribution must
be known. Let x be the vector of measurements (e.g., spectral values of a remotely sensed
imagery). The first step of the segmentation framework is the generation of an initial seg-
mentation Q0 = {R1, R2, . . . , Rn} with the maximum number of superpixels n. We propose
an initial grid with equal distances defined by parameter G (in pixel) as a presegmentation.
Each region Ri receives a parameter vector Θi = Θ(Ri), which comprises the stochastic
component.
The next step is the contour relaxation based on the prior distribution p(Q) and the

likelihood function p(x | Q) of x given Q. For an efficiently generation of optimized segments,
the SPc considers systematically the contour pixels and only the direct neighborhood of grid
pixels x0 is taken into account. The current region label q(x0) depends on the potential
of the 8 cliques that include pixel x0. Clique potentials are defined as pairs of neighboring
pixels and depend on whether the label values are identical or not. The probability for a
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label change at the contour of a region is

p(Q) = k1 · exp (−n′BB − n′CC) (II-1)

with the constant k1. B and C are the cost factors for inhomogeneous paraxial (horizon-
tal/vertical) and diagonal cliques, respectively. Depending on a change of q(x0), the numbers
of inhomogeneous cliques are expressed by n′B and n′C .
The conditional likelihood function of the image x given the partition Q is obtained by

p(x | Q) = k2 ·
∏
{Rj}

p(x(Rj) | Θ(Rj)). (II-2)

This equation consists of a constant k2 and a variable term depending on q(x0). The model
parameter Θ are determined by a maximum-likelihood estimation (MLE).
Every contour pixel x0 obtains the specific label that maximizes

p(x, Q) = k1 · k2 · exp (−n′BB − n′CC) ·
∏
{Rj}

p(x(Rj) | Θ(Rj)) (II-3)

based on equation II-1 and II-2. Due to practical applicability, the negative logarithm (energy
function) of equation II-3 is minimized.
In this study the maximum likelihood estimation is computed under a given Gaussian

distribution. However, the SPc allows the use of different probability density functions (pdf),
depending on the distribution of input data.

Overall, SPc has four parameters: B and C are the cost factors for inhomogeneous cliques,
G is the initial grid size and max_iter is the maximum number of iterations. However,
the presented algorithm is simple to handle because only 2 out of these 4 parameters have
to be adapted to each application. We propose to set the clique costs B between 0 and
1 and C = B/

√
2. The cost factor B controls the shape of the segments, i.e., a large

cost factor leads to more block-like segments. The user can control the segment size by
varying the initial grid size G (scale factor). Preliminarily results suggest 10 as the maximum
number of iterations, since no further significant changes in segment quality and subsequently
classification accuracy could be observed.

2.2 Random Forest

In the presented study, the Random Forest classifier, an ensemble of classification trees, is
used. A detailed description on the general concept of the RF is introduced by (Breiman,
2001). An overview in the context of remote sensing is given by (Gislason et al., 2006; Waske
& Braun, 2009). A brief summary of the RF algorithm is given below.

The principle of the RF is to build a set of k randomly generated decision trees, which are
independent from each other. During the tree building process, m features (i.e., bands) are
randomly chosen at each split rule, with m < D and D as the number of bands. Moreover,
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each tree within the ensemble is constructed using a randomly generated subset from the
original training data by sampling with replacement. Because the selection is done with
replacement, some training samples can be selected several times for a specific training set,
whereas other samples are not considered in this particular sample set. A majority vote over
the results of the different trees is used to generate the final classification result. While for
every tree different, randomly selected training samples are used, the remaining samples are
not considered for the training of this particular tree. These remaining sample subsets are
called “out-of-bag” (OOB) and can be used for an unbiased estimation of the classification
error (Breiman, 2001).
Random Forest is a classification algorithm with a number of advantages. Due to its

underlying principle, the RF is robust against outlier and overfitting (Breiman, 2001). Fur-
thermore, the RF is easy to handle, because it relies on only two user-defined parameters, i.e.,
k and m, which are reactively insensitive in terms of the classification result. Thus, default
values or recommendations for the two parameters can be provided. The default settings
for the number of trees k is 500. However, parameter k can easily be adapted during the
classifier training by using the OOB error rate. The number of randomly selected variables
m is usually set to the square root of the number of input features (Breiman, 2001; Gislason
et al., 2006). Due to limiting the number of variables at each internal node of a tree, the
computational complexity of the classifier is simplified. As a result the RF is adequate for
handling high-dimensional data sets, even with a small number of training samples.

2.3 Optimization of segmentation parameters

The proposed approach semi-automatically optimizes segmentation parameters by minimizing
the unbiased OOB error of all trees of the Random Forest. Therefore, SPc systematically
generates a set of segments with different combinations of parameters. The set of parameters
G and B is generated in a user-defined range and the best combination for G and B is selected
based on the OOB error. Finally, the segmentation with the best parameter set is used for
generating the final land cover map. By using the internal unbiased accuracy assessment of
the RF, the parameters for the segmentation can be determined without providing additional
independent test data. This method is comparable to a cross-validation, for example for
estimating the error rate of a prediction rule (Efron & Gong, 1983) or the selection of kernel
parameters in context of a classification by Support Vector Machines.
The criterion to assess the segmentation quality is the overall classification accuracy,

using the OOB error. This means that the proposed method does not necessarily produce
the “best” visual segmentation result, however, it produces the optimal segmentation result
regarding the classification accuracy. Furthermore, it is possible to optimize the parameter
selection for only one or a few classes by weighting the class-specific OOB error rates. The
experiments were performed with an in-house SPc implementation and a freely available RF
code (Jaiantilal, 2009). Both algorithms are combined in a single work flow in MATLAB.
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3 Study area and data

Two multitemporal data sets from different study sites were used in this study. The first
study site lies in Luxembourg (Lux) and covers approximately 360 km2 (Figure II-1A). The
rural study area is characterized by agricultural land use, forests and urban regions, with
grassland, corn and winter wheat being the main agricultural classes. The classification
aims on identifying the following 8 agricultural land cover classes: grassland, potatoes, corn,
spring barley, winter barley, winter rape, winter triticale and winter wheat. A multitemporal
RapidEye data set containing three images, acquired on May 02, June 27 and September 25,
2011, is available. The RapidEye images have a spatial resolution of 5 meters and consist
of 5 spectral bands: blue (440–510 nm), green (520–590 nm), red (630–685 nm), red-edge
(690–730 nm) and near-infrared (760–850 nm). The data was ordered in level 3A format and
thus has already been radiometric and geometric corrected.
The second study site is located near Bonn in Germany (Ger) and covers approximately

144 km2 (Figure II-1C). The almost flat study site is dominated by agricultural use, with
cereals and sugar beets as main crops. The following 8 land cover classes are investigated
in the second study area: grassland, orchards, cereals, corn, rape, root crops, forest and
urban. The data set consists of two SPOT 5 images, acquired on June 24 and July 17,
2006. The SPOT 5 images have a spatial resolution of 10 meters and consists of 4 spectral
bands: green (500–590 nm), red (610–680 nm), near-infrared (780–890 nm) and mid-infrared
(1580–1750 nm).

For both study areas, detailed land cover information is available on field plot basis for
classifier training and validation of the results. The reference data was randomly separated
(each 50% for training and testing) on field plot level to generate independent and spatially
disjoined training and test data. Consequently, training and test samples are not included
in the same field plot.

4 Experimental Results

Several land cover maps were generated, using different combinations of the multitemporal
data sets and two segmentation techniques: SPc and multiresolution technique (MRS) in
eCognition. In this study, the derived segments’ mean values were used in addition to the
pixel-based values. Therefore, a feature vector in the object based classification contains the
pixel values of each band as well as the segments’ mean values of each band. Consequently,
the pixel-based approach of two images (e.g., June+July with each 5 dimensions) uses a 10-d
feature vector, while the joint object-based classification is based on a 20-d feature vector.
Although the pixel-object combination led to a relative large feature vector, Random Forests
are capable to cope with large data sets and experimental results showed that, overall,
the combined pixel-object classification improved the accuracy compared to object-based
classification. Moreover, these results were compared to a standard pixel-based classification.
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A 

B C 

Figure II-1: A: Reference data in Luxembourg (Lux); B: Study areas located in Luxembourg
and Germany, Europe; C: Reference data in Germany (Ger).

Accuracy assessments were performed using confusion matrices on pixel-basis in order to
derivate the overall, producer’s and user’s accuracies. Furthermore, statistical-based compar-
ison was assessed to determine the statistical difference between the different classification
results (i.e., pixel-based, SPc, and MRS), using a McNemar test with a 95% confidence
interval (Foody, 2004). For generating the final training sample set, an equalized random
sampling was performed, selecting 500 training samples per class.

4.1 Optimization of segmentation parameters

The semi-automatic process of selecting the ideal segmentation parameters for the SPc algo-
rithm combined with the quality assessment by Random Forest’s OOB error is demonstrated
in this section. In the initial phase the parameter B is set to 1, while G is tested in a range
between 1 and 50. Figure II-2 shows the OOB error and the test error rate achieved on the
joint classification of the multitemporal data, using different values for G. For both study
areas, both error rates have the highest values at G = 1 and asymptotically decrease with an
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Figure II-2: Comparison of the classification error using test data (stars) and OOB data
(circles) with different segmentation grid sizes G; Left: Based on the Luxembourg
data set (joint classification of May + June + Sep.); Right: Based on the German
data set (joint classification of June + July).

increasing value for G. The minimum error, i.e., highest overall accuracy, is achieved with
G = 25 for the Luxembourg data set and G = 21 for the German data set. Using a G value
above 25 or 21 for Lux or Ger, respectively, the test error rate increases again, while the
OOB rate approximately remains on the same level.
Behind these facts, the parameter G is ideally set to the smallest potential value with

regard to the OOB error (i.e., Lux : G = 25, Ger : G = 21). While the OOB error rate steadily
decreases up to G = 25 for Lux or G = 21 for Ger, no appreciable changes/improvements
can be observed for values above. Therefore, for example, values G = 32− 38 for Lux and
G = 34 for Ger are not recommended for use (Figure II-2).
The results also confirm the general findings in terms of object-based image analysis

(Bruzzone & Carlin, 2006). While an under-segmentation (i.e., high G parameter) can
result in misclassifications, because an image segment can include more than one object,
the positive impact of image segmentation is limited by an over-segmentation (i.e., small G

parameter).
Some applications focus on the classification of specific classes (van der Linden et al., 2007;

Walker et al., 2010). Therefore, class specific OOB error rates are used to determine the
optimal segmentation parameters. Figure II-3 illustrates the F-measure (Baeza-Yates &
Ribeiro-Neto, 1999) of winter wheat and corn based on OOB and test data for Lux and Ger,
respectively. The pixel-based classification accuracy of corn, for example, is significantly
improved by object-based analysis under the assumption of using the optimal value of G,
since the F-measure of the test set is decreased from about 34% (G = 1) to less than 23%
(G = 21) for Ger. Although the ideal class-specific segmentation parameters are identical
with the respective global optimum, the results confirm the use of OOB error rates to
determine adequate segmentation parameters for individual classes, since the OOB error
behaves similar compared to the independent test error.
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The determination of parameter B is executed with different values of G. Figure II-4
depicts the OOB error for evaluating B from 0 to 1 with different grid sizes G. The results
demonstrate that parameter B is not very sensitive with regard to the classification results
(e.g., Lux: error rate of G = 25 between 3.7% and 4.2%), however, SPc tends to provide
better results with a B close to 1 (e.g., Ger : error rate of G = 21 from 4.8% with B = 0 to
4.1% with B = 1). Therefore, the parameter B is set to 1 during this study.
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Figure II-3: Comparison of class specific classification errors (F-measure) using test data
and OOB data with different segmentation grid sizes G; Left: Based on the
Luxembourg data set (joint classification of May + June + Sep.); Right: Based
on the German data set (joint classification of June + July).
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Figure II-4: Determination of Superpixel Contour parameter B with different values of G
based on the OOB error rate; Left: Based on the Luxembourg data set (joint
classification of May + June + Sep.); Right: Based on the German data set
(joint classification of June + July).
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4.2 Superpixel segmentation

Various classifications were performed, using different input images and following the method
described above, i.e., the parameters for the Superpixel Contour algorithm were semi-
automatically optimized.
The classification accuracies for different pixel-based and object-based classifications of

the Luxembourg data set are shown in Table II-1. The results demonstrate the positive
impact of image segmentation in terms of accuracy, independently of the input images and
the land cover classes.

Table II-1: Accuracy assessment for Lux: Comparison of pixel-based and SPc classification,
with different input data sets (Pb = pixel-based, PA = producer’s accuracy, UA
= user’s accuracy)

Land cover Pb (Jun) SPc (Jun) Pb (Jun+Sep) SPc (Jun+Sep)
PA [%] UA [%] PA [%] UA [%] PA [%] UA [%] PA [%] UA [%]

Grassland 80.4 89.0 88.2 88.0 88.8 92.6 91.4 92.5
Potatoes 48.7 13.7 41.8 37.5 53.6 20.6 50.4 53.5
Corn 53.1 81.6 62.8 80.1 86.7 91.9 89.3 91.3
Spring barley 39.9 10.9 38.1 20.4 38.2 16.2 30.2 23.7
Winter barley 84.3 62.4 85.2 64.7 83.8 68.4 85.0 68.2
Winter rape 88.2 61.0 84.4 71.6 88.6 76.1 88.1 79.2
Winter triticale 54.2 27.9 51.2 31.5 53.1 33.5 49.8 36.3
Winter wheat 63.2 82.2 72.7 84.3 64.1 88.4 73.4 88.6
Overall accuracy 67.2% 73.7% 78.2% 81.6%
Kappa 0.60 0.67 0.73 0.77

The use of SPc increases the overall accuracy and kappa statistics for June from 67.2% and
0.60 to 73.7% and 0.67, respectively. Particularly user’s accuracies are significantly increased
and thus more balanced producer’s and user’s accuracies are achieved. The producer’s
accuracies of grassland, corn and winter wheat are improved by approximately 9% by SPc.
Furthermore, the user’s accuracies of potatoes and winter rape are increased by more than
10% based on June + SPc.

The object-based classification of June + September shows overall improvements for all
classes, when compared to the accuracies achieved on pixel-level. The overall accuracy and
kappa statistics increase from 78.2% and 0.73 to 81.6% and 0.77, respectively. Particularly
potatoes, which are difficult to classify on pixel-level, are more accurately classified due
to image segmentation. Similar results were found for other single-month and two-month
classifications.
Table II-2 shows the pixel-based and object-based classification results of the second

data set. These results confirm the positive impact of image segmentation to improve
classification accuracies, since nearly all producer’s and user’s accuracies are increased. The
overall accuracy from June to SPc (June) is improved by 5.4% and the overall accuracy from
July to SPc (July) is increased from 77.5% to 84.6% by about 7.1%.

The results achieved with the whole multitemporal data sets, i.e., the joint classification of
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Table II-2: Accuracy assessment for Ger : Comparison of pixel-based and SPc classification,
with different input data sets (Pb = pixel-based, PA = producer’s accuracy, UA
= user’s accuracy)

Land cover Pb (Jun) SPc (Jun) Pb (Jul) SPc (Jul)
PA [%] UA [%] PA [%] UA [%] PA [%] UA [%] PA [%] UA [%]

Grassland 40.9 32.1 48.2 36.8 59.1 35.4 59.1 42.6
Orchards 51.4 37.5 61.3 45.0 65.2 34.4 60.0 45.1
Cereals 76.7 93.2 83.7 93.2 66.0 90.6 77.4 90.0
Corn 49.9 27.4 49.4 43.3 64.1 36.4 66.6 54.5
Rape 81.8 39.1 79.7 67.0 64.3 21.3 47.0 27.7
Root crops 78.6 77.5 79.3 77.8 84.1 84.5 90.1 84.8
Forest 93.5 96.8 97.0 98.0 87.5 97.6 94.1 98.6
Urban 81.8 86.6 92.6 95.4 79.8 82.4 89.7 89.3
Overall accuracy 80.7% 86.1% 77.5% 84.6%
Kappa 0.75 0.82 0.72 0.80

all acquisitions, clearly demonstrates the benefit of multitemporal information for land cover
mapping (Table II-3). The pixel-based overall classification accuracies of the Luxembourg
and German data sets can be increased with the three-month and two-month data sets
in comparison to the one-month data. However, the accuracies achieved on pixel-level are
already very high (Lux : OA: 86.4%; Ger : OA: 87.5%). Therefore, the classification accuracy
improvement due to image segmentation is lower when compared to the results achieved on
monotemporal data sets.

Moreover, the McNemar tests showed statistically significant differences between the pixel-
and object-based classifications (z = 3.09 > 1.96 for Lux and z = 4.24 > 1.96 for Ger).

Table II-3: Classification accuracy of the joint multitemporal data set Lux (June + May +
Sep.) and Ger (June + July)

Data set Pixel-based SPc
Lux 86.4% 88.5%
Ger 87.5% 90.6%

4.3 Superpixel in comparison to MRS

To assess the general performance of the SPc algorithm, results were compared to an object-
based classification, using eCognition’s multiresolution segmentation algorithm for image
segmentation. Various parameter settings were manually tested to get the optimal segmenta-
tion result for the latter approach, while the SPc parameters were optimized by the proposed
approach. Table II-4 and Table II-5 show the defined image segmentation parameters and
the number of the corresponding segments.
The initial grid size G of SPc is comparable to the scale level of MRS. They define the

relative size of the segments and mainly the total number of segments. For agricultural
land cover mapping homogeneously and thus more block-like objects are advantageous,
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Table II-4: Segmentation parameters and number of segments for Lux
Parameters SPc MRS Parameters

G 25 102 scale
B 1 0.8 shape

0.5 compactness

# segments 22,895 22,828

Table II-5: Segmentation parameters and number of segments for Ger
Parameters SPc MRS Parameters

G 21 20 scale
B 1 0.8 shape

0.5 compactness

# segments 3363 3341

because they better represent typical spatial patterns of a rural study site. Consequently,
high values for the parameters B and shape were used to generate blocky objects. The
third multiresolution segmentation parameter is compactness, which has been kept at the
default value of 0.5. Both segmentation algorithms generated almost the same number of
segments for Lux with 22,895 and 22,828 and for Ger with 3363 and 3341 for SPc and MRS,
respectively.
Different segmentation results for the Luxembourg data set are depicted in Figure II-5

(A-F). A visual assessment of the segmentation results demonstrates that Superpixel Contour
and multiresolution segmentation produce similar results. The segments, generated with
ideal parameters (Figure II-5B and E) are well adapted to the field plot boundaries and
show a good separation of the different types of fields. To avoid highly fractal objects B = 1
for SPc and shape = 0.8 for MRS prove to be suitable. Lower scale levels yield in a high
over-segmentation, where fields are mostly represented by several segments (Figure II-5A
and D). On the other hand, high scale levels lead to an under-segmentation (Figure II-5C
and F).
Similar segmentation results are achieved for the German data set shown in Figure II-5

(G-L). As for the other study site, the proposed strategy results in adequate segments that
are well adapted to the natural objects in the very most cases (Figure II-5H). However, some
segment boundaries are not perfectly matched with regard to the June scene. Although,
many different parameter values were tested for the MRS, no better segmentation result was
achieved by the multiresolution segmentation (Figure II-5K). Both segmentation algorithms
have some missing boundaries regarding the June scene (Figure II-5H and K), however,
in contrast to the SPc segmentation, MRS has difficulties to detect the correct boundary
between two fields whereby the spectral differences are very apparent in most cases.
The detailed accuracy assessment of the three classification approaches for Lux is shown

in Table II-6. Both segmentation methods improve the producer’s and user’s accuracies
in the most cases. Potatoes have the highest increase of the user’s accuracy from 48.4%
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 A        G = 15 (SPc)  B        G = 25 (SPc)  C        G = 35 (SPc) 

   

 D     scale = 54 (MRS)  E     scale = 102 (MRS)  F     scale = 155 (MRS) 

   

 G        G = 11 (SPc)  H         G = 21 (SPc)   I          G = 35 (SPc) 

   

 J      scale = 10 (MRS)  K      scale = 20 (MRS)  L      scale = 32 (MRS) 

   
 

Figure II-5: Segmentation comparison of Superpixel Contour and eCognition’s Multireso-
lution Segmentation of Lux (RGB: May) and Ger (nIR-R-G: June). SPc
(Lux): A,B,C with grid size G = 15, 25, 35. MRS (Lux): D,E,F with
scale = 54, 102, 155; SPc (Ger): G,H,I with grid size G = 11, 21, 31. MRS
(Ger): J,K,L with scale = 10, 20, 32.
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(pixel-based) to 78.8% and 79.7% (SPc and MRS, respectively), whereas the producer’s
accuracy is decreasing by about 10%. Spring barley has a similar behavior compared to
potatoes. The producer’s accuracy of winter wheat is increased by approximately 5%– 6%,
when comparing pixel-based and object-based classification results.

Table II-6: Accuracy assessment of three classification approaches based on the Luxembourg
data set: joint classification of May, June and September (PA = producer’s
accuracy, UA = user’s accuracy)

Land cover Pixel-based SPc MRS
PA [%] UA [%] PA [%] UA [%] PA [%] UA [%]

Grassland 94.3 95.3 96.1 94.1 96.3 94.5
Potatoes 67.9 48.4 54.8 78.8 57.9 79.7
Corn 92.1 94.3 94.1 93.6 94.0 93.7
Spring barley 70.7 44.2 61.9 63.7 59.5 57.8
Winter barley 85.1 71.5 86.1 72.7 85.7 72.3
Winter rape 97.0 95.1 97.0 95.1 97.0 95.5
Winter triticale 64.1 46.1 60.5 54.6 63.2 53.9
Winter wheat 77.5 93.6 83.2 92.9 82.4 93.6
Overall accuracy 86.4% 88.5% 88.5%
Kappa 0.83 0.85 0.85

Table II-7 shows the detailed accuracy assessment of the three classification approaches for
Ger. Most producer’s and user’s accuracies are improved by the SPc and MRS segmentation
approaches. The highest increase of the producer’s accuracy can be observed for urban
land cover from 87.1% to 93.8% and 92.9% for SPc and MRS, respectively. The pixel-
based producer’s accuracy of corn can be improved from 71.1% to 76.2% for SPc, whereas
the producer’s accuracy decreases to 70.1% for MRS. The user’s accuracy of corn can be
increased by about 15% from 63.5% to 78.4% and 79.0% for SPc and MRS, respectively. In
general, the findings from the other study area are underlined, as the image segmentation
improves most classification accuracies.

Furthermore, the McNemar tests showed no statistically significant differences between the
classification results provided by SPc and MRS (z = 0.19 < 1.96 for Lux and z = 1.20 < 1.96
for Ger).
Classification maps of the three classification approaches of Lux are depicted in Figure

II-6. In general, the pixel-based classification (Figure II-6B) shows a good classification of
most agricultural field plots. Nevertheless, some noise and misclassifications are inherent and
a few borders between individual agricultural field plots appear slightly blurred. Grassland
and corn is classified clearly by all three approaches, which is supported by the accuracy
assessment in Table II-6. Potatoes and winter wheat have the largest uncertainties in the
pixel-based classification, which is improved by SPc (Figure II-6C) and MRS (Figure II-6D).
For example, the large winter triticale field in the lower left corner has an error of commission,
as some parts of the field are classified as winter wheat.

Figure II-7 shows the land cover maps of the three classification approaches of the second
data set. Overall, the pixel-based approach generates a visually correct map. However,
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4 Experimental Results

Table II-7: Accuracy assessment of three classification approaches based on the Germany
data set: joint classification of June and July (PA = producer’s accuracy, UA =
user’s accuracy)

Land cover Pixel-based SPc MRS
PA [%] UA [%] PA [%] UA [%] PA [%] UA [%]

Grassland 63.1 48.6 64.7 49.3 64.9 46.6
Orchards 75.6 47.3 74.5 58.1 73.2 58.9
Cereals 85.1 94.7 88.2 94.4 86.0 93.5
Corn 71.1 63.5 76.2 78.4 70.1 79.0
Rape 81.3 69.5 79.6 75.6 78.7 64.3
Root crops 88.4 84.7 89.4 87.0 89.3 84.5
Forest 94.6 98.1 97.3 98.8 97.9 99.0
Urban 87.1 90.8 93.8 96.1 92.9 96.9
Overall accuracy 87.5% 90.6% 89.8%
Kappa 0.84 0.88 0.87

A 

C D 

B 

Figure II-6: Lux study site: A: RapidEye (RGB: June); B: Pixel-based classification; C:
SPc classification; D: MRS classification; (black: area of no reference).
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SPOT 5 Pixel-based SPc MRS 

Figure II-7: Ger study site: SPOT 5 scene (June 24, 2006; nIR-R-G); Pixel-based, SPc and
MRS based classification maps.

in comparison to the SPc and MRS based land cover map, the pixel-based result is more
noisy and some misclassifications can be observed. Only a few differences occur, when
comparing the two maps achieved by SPc and MRS. Thus, the visual comparison confirms
the independent accuracy assessment.

5 Discussion

5.1 Impact of image segmentation

The use of image segmentation proves useful to improve the accuracy of land cover mapping.
Irrespective of the segmentation algorithm, the object-based classifications outperform the
classifications on pixel-level in terms of overall, producer’s and user’s accuracies. Moreover,
the class accuracies (producer’s and user’s accuracies) are usually more balanced. However,
the generation of adequate image segments is critical. An inadequate value for the SPc
parameter G decreases the positive impact of image segmentation on the classification
accuracy. Thus, the results are in accordance with previous studies (Song et al., 2005;
Waske & van der Linden, 2008). Even though only one segmentation level is generated, the
resulting segments are adequate for the different land cover classes in the very most cases.
Nevertheless, the methods can be easily adapted for a multi-level classification approach
(Waske & van der Linden, 2008; Bruzzone & Carlin, 2006), e.g., by generating class-specific
segmentation levels.
As in other studies (Song et al., 2005; Shackelford & Davis, 2003; Aguirre-Gutiérrez

et al., 2012), the segments’ mean values were derived and added as additional feature for
the subsequent classification. However, other object information, such as texture, shape and
neighborhood relations can be extracted. Behind these facts, the use of RF is particularly
useful because the method is well suited for high dimensional feature spaces. Moreover, the
method is non-parametric and can even handle categorical variables.
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5 Discussion

It is worth to underline that in particular the single-date classifications are significantly
improved by image segmentation. In some cases, similar accuracies are achieved when
compared to the accuracies achieved by multitemporal data sets. Although the accuracy
of a multitemporal classification is increased by object-based analysis, the positive effect is
lower, when compared to the single-date classifications. Nevertheless, adequate temporal
information is still required for an accurate classification result and cannot be fully replaced
by image segmentation alone. This might be one reason for the relatively low classification
accuracy of spring barley in Lux, using the June and September image.

Both segmentation algorithms, SPc and MRS, perform similar in terms of visual examina-
tion (Figure II-5) and classification accuracy (Table II-6 and II-7). Beside the increase of the
producer’s accuracies of most classes, segmentation supports the correctness of the generated
land cover maps, i.e., the user’s accuracies are improved in comparison to the pixel-based
approach. Particularly the user’s accuracies for classes like potatoes, spring barley and winter
triticale, which are difficult to map on pixel-level, are increased. Moreover, the producer’s
and user’s accuracies are more balanced. However, some producer’s and user’s accuracies
are still relatively low. Reasons for this could be the environmental setting of the study site
and the spectral characteristics of land cover classes. Orchards, for example, usually consists
of individual trees on grassland. Hence the class orchards can appear as mixture between
forest and grassland. The study sites are characterized by typical high-frequent land cover
changes between individual plots. Moreover, some agricultural field plots are relatively small.
Thus, the classification accuracy can be decreased (Smith et al., 2002, 2003).

5.2 Optimization of segmentation parameters

As stated in the introduction and it is reported in several studies, object-based image
analysis requires manual input to determine adequate parameters for image segmentation
(Myint et al., 2011; Duro et al., 2012b). The optimal parameters are usually determined by
visual interpretation and/or “trial-and-error” and therefore, the parameter selection is often
time-consuming as well as user-dependent. However, independently from the segmentation
algorithm the positive impact of segmentation on the classification accuracy is decreased by
suboptimal parameter settings.
The proposed semi-automatic parameter selection for the SPc algorithm is based on

minimizing the classification error, indicated by the OOB error estimation. The OOB error
estimation is a cross-validated accuracy estimation, since for the kth tree the respective out-
of-bag samples were not used for classifier training. Thus, the quality of image segmentation
can be assessed in terms of the map accuracy, without providing additional test data. Results
of both study areas prove that the OOB error is appropriate for the parameter selection.
While most applications aim on the generation of an optimal overall accuracy, the accuracy
of individual single land cover classes can be optimized by class-specific OOB error rates.

Furthermore, the utilization of the RF to optimize and evaluate the segmentation param-
eters proves useful regarding the computational time. Whether a small or large training set
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is used, the time for generating the classification model with the RF is relatively fast.
Although a more detailed grid-search is possible, intervals of G = 5 seems adequate for

the parameter optimization method (Figure II-3). The classification results are relatively
insensitive to the SPc parameter B in terms of the accuracy. Thus, it is recommended to
test parameter B for the best three grid sizes G.

6 Conclusions

Object-based image analysis is frequently used to optimize the accuracy of various land
cover maps. However, accurate image segmentation is a prerequisite to generate an adequate
classification result.

In the presented study, an object-based classification strategy was presented that enables
the semi-automatic determination of optimal segmentation parameters in terms of the classi-
fication accuracy. The approach is based on the Random Forest and the Superpixel Contour
algorithm, which is newly introduced in context of remote sensing. Segmentation parameters
are systematically tested in a user-defined range and the quality of the image segmentation
is evaluated by the OOB error provided by the RF. Consequently, no additional test set
is required for the parameter selection. Furthermore, the good classification results for
separating agricultural classes, which are often difficult to map by monotemporal data sets,
underline the benefit of multitemporal analyses.
Three research questions were stated in the beginning regarding: 1) the impact of the

object-based classification compared to pixel-based classification; 2) the performance of the
SPc algorithm; and 3) the parameter optimization in terms of the classification accuracy.
Experimental results show that image segmentation can significantly increase the accuracy
of land cover maps, which is in accordance to previous studies. Furthermore, the Superpixel
Contour algorithm provides very similar results in comparison to the well established and
widely-used multiresolution segmentation in eCognition. The SPc algorithm is simple to
handle, because it mainly depends on two parameters and provides accurate segmentation
maps. The proposed approach, the use of the OOB error rate for parameter determination
proves useful and results in optimized image segmentation in terms of classification accuracy.
Therefore, the manual and subjective parameter selection, which is usually required in
object-based image analysis, is economized and optimized. Another benefit of the proposed
parameter optimization is the scale-invariance, as the optimal parameters are determined
only with respect to the classification accuracy. Besides the functional OOB error, the use
of RF seems particularly interesting with their simple handling and fast training times. In
addition, RF is well suited for the classification of different remote sensing data sets, even
with a small number of training samples. Overall, the proposed concept, the combination of
SPc and RF with a semi-automatic parameter selection, constitutes a feasible approach and
a useful modification of regular object-based image analysis.
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Abstract

The global demand for agricultural products is surging due to population growth, more meat-
based diets, and the increasing role of bioenergy. Three strategies can increase agricultural
production: (1) expanding agriculture into natural ecosystems; (2) intensifying existing
farmland; or (3) recultivating abandoned farmland. Because agricultural expansion entails
substantial environmental trade-offs, intensification and recultivation are currently gaining
increasing attention. Assessing where these strategies may be pursued, however, requires
improved spatial information on land use intensity, including where farmland is active and
fallow. We developed a framework to integrate optical and radar data in order to advance the
mapping of three farmland management regimes: (1) large-scale, mechanized agriculture; (2)
small-scale, subsistence agriculture; and (3) fallow or abandoned farmland. We applied this
framework to our study area in western Ukraine, a region characterized by marked spatial
heterogeneity in management intensity due to the legacies from Soviet land management, the
breakdown of the Soviet Union in 1991, and the recent integration of this region into world
markets. We mapped land management regimes using a hierarchical, object-based framework.
Image segmentation for delineating objects was performed by using the Superpixel Contour
algorithm. We then applied Random Forest classification to map land management regimes
and validated our map using randomly sampled in-situ data, obtained during an extensive
field campaign. Our results showed that farmland management regimes were mapped reliably,
resulting in a final map with an overall accuracy of 83.4%. Comparing our land management
regimes map with a soil map revealed that most fallow land occurred on soils marginally
suited for agriculture, but some areas within our study region contained considerable potential
for recultivation. Overall, our study highlights the potential for an improved, more nuanced
mapping of agricultural land use by combining imagery of different sensors.

1 Introduction

Human-caused land use and land cover change is one of the major drivers of global environ-
mental change (Foley et al., 2005; Turner et al., 2007). Historically, agricultural expansion
was the principal mode of land use change leading to, for example, an increasement of crop-
land areas by about 550% over the last three centuries (Goldewijk, 2001). Nowadays, up
to 38% of the land surface is used for agriculture and every year about 13 million hectares
covered by natural vegetation are transformed into agricultural land (Foley et al., 2005; FAO,
2006). Next to agricultural expansion, agricultural intensification has recently become an
important mode of reaching higher agricultural outputs (Siebert et al., 2010; Ellis et al.,
2013; Erb et al., 2013). Especially since the advent of industrial fertilizer and the green
revolution, intensification has been responsible for the majority of yield increases in recent
decades (Matson et al., 1997; Rounsevell et al., 2012; Erb et al., 2013; Ellis et al., 2013).
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1 Introduction

Both agricultural expansion and intensification entail substantial environmental trade-offs.
Approximately 35% of the anthropogenic CO2 emissions since 1850 are directly traced back
to land use changes (Foley et al., 2005). On the one hand, expansion of agriculture into
native ecosystems is the major driver of biodiversity loss, releases huge amounts of carbon
and plays a major role in changing the global carbon cycle (Brooks et al., 2002). On the
other hand, agricultural intensification can increase soil erosion, lower soil fertility, threaten
biodiversity, pollute ground water and lead to the eutrophication of rivers and lakes, and
contribute to climate change via the emission of CO2 and other green-house gases (Matson
et al., 1997). Mapping the extent and the intensity of agriculture is therefore important for
assessing environmental and socio-economic trade-offs of agriculture.

As demand for agricultural products (e.g., food, feed, bioenergy) continues to increase and
land resources are increasingly becoming scarce (Lambin & Meyfroidt, 2011; Godfray et al.,
2010), identifying strategies for increasing agricultural production in sustainable ways has
become a research priority (Foley et al., 2011; Mueller et al., 2012). There are three strategies
that could lead to increasing agricultural production: (1) cultivation of new farmland; (2)
intensifying existing farmland; or (3) recultivation of unused or abandoned farmland. How-
ever, assessing where sustainable intensification or recultivation could be fostered, requires
improved maps that go beyond broad land cover classes such as cropland and are sensitive to
land use intensity and that include information on active and fallow/abandoned agriculture.
Unfortunately, such information does not exist for most parts of the globe (Kuemmerle et al.,
2013; Fritz et al., 2013).

Satellite remote sensing has doubtless become the most important technology to monitor
agricultural land use and changes therein (Rudorff, Bernardo Friedrich Theodor et al.,
2010; Skriver et al., 2011; Atzberger, 2013; Sieber et al., 2013; Li et al., 2014). Yet,
existing approaches to do so have mainly focused on cropland extent and the proximate
drivers, leading to changes in cropland area (e.g., deforestation due to agricultural expansion,
agricultural abandonment) (Alcantara et al., 2012; Souza, Jr, Carlos et al., 2013). What is
generally lacking are methods able to capture the heterogeneity and the varying management
intensity within the broad agricultural class.

One reason for the lack of approaches sensitive to land use intensity is that intensity in itself
is a complex and multidimensional term. Agricultural land use intensity can be measured via
inputs to agriculture (e.g., fertilizer, pesticide application rate), the outputs from agriculture
(e.g., yields), or in terms of system properties that change due to management (e.g., human
appropriation of net primary production) (Turner & Doolittle, 1978; Kleijn et al., 2009;
Kuemmerle et al., 2013). Unfortunately, remote sensing can only rarely measure any of
these dimensions directly and therefore a combination of remote sensing and ground-based
data is often needed to determine land use intensity metrics. This is problematic because
comprehensive and detailed in-situ data on land management is unavailable for most parts of
the world, either because of the lack of monitoring schemes or the confidentiality issues (Zaks
& Kucharik, 2011; Verburg et al., 2011; Kuemmerle et al., 2013). Approaches that allow
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to better characterize management intensity directly from satellite imagery are therefore
potentially highly beneficial for a better understanding of the impacts of agriculture on the
environment.

A promising avenue for a more nuanced representation of agriculture is to identify and map
management regimes with different intensities (Kuemmerle et al., 2013; Verburg et al., 2011).
Such management regimes (or land systems) may be easier to map than all the individual
dimensions of management intensity itself, yet provide a proxy variable for tracking changes
in management intensity and their impacts (e.g., shifts from subsistence to capital intensive
farming). A few studies have used such approaches recently at the global scale. For example,
combining land cover data with human population density allowed deriving anthromes of
varying land use intensity (Ellis & Ramankutty, 2008). Or, using clustering techniques on
a comprehensive set of environmental and socio-economic variables allowed to map land
system archetypes (Václavík et al., 2013).

Likewise, combining global data sets on cropland extent, yield gaps, livestock distribution,
and market accessibility allowed to map different “land use systems”, which represented
different levels of management intensity (Asselen & Verburg, 2012; Václavík et al., 2013).
Examples relying on remote sensing data to characterize land management regimes are even
scarcer. At the regional scale, Landsat images were used to map swidden agricultural systems
of varying management intensities for Laos (Hett et al., 2012). Furthermore, the spatial
distribution of farming types in Ethiopia was analyzed based on Landsat, but additionally
to remote sensing data, local spatial contextual information was needed (Wästfelt et al.,
2012). While these studies highlight the value of mapping management intensity regimes,
there is a general lack of studies developing methods to map management regimes using
remote sensing data.

One important indicator to characterize agricultural land use intensity is field size, which
is a proxy variable for the degree of mechanization. While small fields indicate low levels of
mechanization, often accompanied by low levels of fertilizer and pesticide use, large fields tend
to require a high degree of mechanization and are typical for industrialized agriculture (Killeen
et al., 2008; Rodriguez & Wiegand, 2009). Mapping land management regimes that differ in
field sizes (e.g., large-scale cropland and small-scale cropland) is challenging due to spectral
similarities of fields and mixed signatures within groups of small fields. Studies mapping
field sizes based on remote sensing data are scarce. While some remote sensing-based studies
used predefined vector data or texture measures to analyze field sizes (Ferguson et al., 1986;
Aplin & Atkinson, 2001; Lloyd et al., 2004; Ozdogan & Woodcock, 2006; Kuemmerle et al.,
2009) or an object-based approach using Landsat data to extract fields (Yan & Roy, 2014),
there is no classification-based approach to directly derive management regimes differing in
field sizes up to now.

Object-based approaches use additional information compared to pixel-by-pixel approaches,
for example, spatial context and object-based features such as spectral mean or variance.
Object-based classification of land use and land cover often results in higher accuracies, when
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compared to pixel-based classifications (Cleve et al., 2008; Moskal et al., 2011; Whiteside
et al., 2011; Stefanski et al., 2013). Some studies also used hierarchical classification ap-
proaches, mainly to integrate different data types into a comprehensive mapping framework
(Dai & Khorram, 1998; Jones et al., 2009; Sulla-Menashe et al., 2011; Li et al., 2013).
However, to our knowledge, no study has used segmentation algorithms to make better use
of field size information inherent in satellite images in order to improve the mapping of
agricultural management intensity.

Landsat has arguably become the most important sensor to characterize land cover and land
use at regional to landscape scale (Cohen & Goward, 2004; Loveland et al., 2008; Griffiths
et al., 2013; Kindu et al., 2013), especially since the recent opening of the United States
Geological Survey (USGS) Landsat archives (Woodcock et al., 2008). However, Landsat data
availability can be limited in regions of persistent cloud cover or due to the relatively low
revisiting rates of the Landsat sensors (16 days). For example, the limits regarding image
acquisition dates and temporal coverage are critical for the mapping accuracy of agricultural
abandonment (Prishchepov et al., 2012; Kovalskyy & Roy, 2013).
Contrary to optical data, synthetic aperture radar (SAR) data are almost independent

from weather conditions. Thus, multitemporal data sets covering any stage from one growing
season in regions like Central Europe can reliably be produced by using SAR sensors. Several
studies used SAR data for land use and land cover mapping (Waske & Braun, 2009; Bargiel
& Herrmann, 2011; Cable et al., 2014). In addition, SAR data provides different, but
complementary information on land cover, when compared to optical data. For example,
discriminating vegetation species can be difficult due to their similar spectral signature.
In this case, radar can contribute with signal differences in surface roughness, shape, and
moisture content of the observed ground (Pohl & Van Genderen, 1998).
Jointly using optical and SAR data to map land use and land cover change is therefore

an attractive option, but has so far rarely been employed. This is unfortunate because such
multisensor approaches can result in more reliable maps than using only one data source
alone. For example, the fusion of multispectral and SAR data from an agricultural area
outperforms the mono-sensorial approach in terms of the classification accuracy (Waske &
Benediktsson, 2007). Overall, several studies noted higher accuracies in the differentiation
of classes by the combined use of optical and SAR data in context of land use and land
cover mapping (Kuplich et al., 2000; Shupe & Marsh, 2004; Waske & van der Linden,
2008; Gong et al., 2011), for example by minimizing spectral ambiguities and improving
the characterization of phenological variability (Griffiths et al., 2010). However, none of
these studies have assessed how the combined use of optical and SAR data can advance the
mapping of management intensity of cropland.

Here, we explore the synergetic effect of multispectral Landsat and SAR data to map land
management regimes, as proxies of land use intensity, in our study area in western Ukraine.
Land use intensity here refers to the management intensity in terms of capital-related
inputs such as industrial fertilizer, pesticides, or heavy machinery. Eastern Europe and
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especially western Ukraine are particular interesting for mapping land management regimes
(Kuemmerle et al., 2006; Müller et al., 2009; Alcantara et al., 2012). Land management
in the region has changed drastically in recent decades, triggered by the breakdown of the
Soviet Union in 1991, when industrialized and the large agricultural fields, established during
Soviet times, were abandoned (Baumann et al., 2011; Ioffe et al., 2012). Furthermore, large
fields were converted to small fields as subsistence agriculture became important after 1991
(UNEP, 2005; Kuemmerle et al., 2006; Baumann et al., 2011; Kuemmerle et al., 2011).
Recently, global trends in food prices have led to a growing interest in the region, which
triggered the recultivation of much farmland and a renaissance of industrial agriculture,
including a consolidation of small fields into large ones (Sabates-Wheeler, 2002). The rates
and patterns of these trends remain unclear, however, especially with regard to changes in
management intensity, which in this region is intimately linked to changes in agricultural field
size. Mapping land management regimes can therefore offer important insights about land
use change and ultimately the effect of economic and institutional drivers on land change in
western Ukraine.

The overall goal of our study was to develop an approach for mapping agricultural land
management regimes of different intensities for our study area in western Ukraine, and
to use this methodology to assess the patterns and rates of agricultural land use in this
region. To do so, we used field size (large-scale cropland and small-scale cropland) as a
proxy for management intensity and evaluated the potential of object-based image analysis to
merge multispectral and SAR images within a hierarchical classification framework in order
to discriminate different land cover/use categories, including different land management
regimes. Specifically, our objectives were to:

1. Analyze whether object-based mapping improves the separation of land management
regimes

2. Assess whether the combination of multispectral and SAR data enhances the classifi-
cation of land management regimes.

3. Map land management regimes and analyze them across gradients of soil marginality,
elevation, and distance to markets.

2 Material

2.1 Study area

Our study area is located in Volynska and Lvivska Oblasts in western Ukraine and covers
about 7500 km2 (Figure III-1). The study area contains seven raions (i.e., administrative
unit at the district-level). In addition, the three cities Volodymyr-Volynsky, Novovolynsk,
and Chervonograd are self-governing municipalities. Elevation in the study area varies from
about 150m to 300m. The climate is temperate continental with average temperatures from
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Figure III-1: Map of the study area in western Ukraine. (A) Study area boundaries (grey);
(B) Location of the study area in Europe; (C) Landsat footprint (green) and
ERS footprint (red); (D) Administrative boundaries of (a) Turiyskyi Raion; (b)
Volodymyr-Volynskyi Raion; (c) Lokachynskyi Raion; (d) Ivanychivskyi Raion;
(e) Horokhivskyi Raion; (f) Sokalskyi Raion; and (g) Radekhivskyi Raion.

−2.9 ◦C in January to 19.0 ◦C in July (NOAA, 2011). The region is dominated by agricultural
land use and forests. Soil types vary within the study area with mainly Podzols and Gleysols
in the wooded northern and southern part and Phaeozems as well as Chernozems in the
central part. Approximately half of the population in the region is living in rural areas
(State Statistics Committee of Ukraine, 2001).

The study area in western Ukraine is particular interesting to investigate land manage-
ment regimes because it comprises a large variability of socio-economic and environmental
conditions, resulting in a large heterogeneity of management practices. The Soviet land
management was characterized by collectivized and large-scale farmland (Kuemmerle et al.,
2011). With the collapse of the Soviet Union in 1991, the region experienced drastic changes
in institutions and socio-economic conditions. For example, the collapse of the Soviet Union
and associated economic changes (e.g., price liberalization, rising competition, and break-
away of former markets) resulted in the substantial abandonment of agricultural fields on
the one hand, and an emergence of a substantial subsistence agriculture sector on the other
hand (Sabates-Wheeler, 2002; Kuemmerle et al., 2006; Baumann et al., 2011). Furthermore,
changes in the land ownership lead to farmland fragmentation (Sabates-Wheeler, 2002).
More recently, recultivation of abandoned land and conversion of subsistence farming to
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Table III-1: Land categories, defined classes, class descriptions.
Categories Classes Description

Agriculture Large-scale cropland
Potentially intensive use; large fields (100 ha)
indicating a high degree of mechanization and other
capital-related inputs (e.g., pesticides, fertilizer)

Agriculture Small-scale cropland
Kitchen gardens, subsistence agriculture; small
field size indicates high labor intensity, but low
intensity in terms of capital related inputs

Agriculture Pasture Grassland used for grazing of cattle, sheep, or goats

Agriculture Fallow
Areas without sign of management, including
perennial vegetation (willow, alder, or birch shrubs),
all indicating potentially abandoned agricultural land

Forestry Forest Mixed forest or forests dominated by coniferous or
deciduous forests species

Urban Urban Dense settlements or cities

large-scale farming has become common.
We decided to map the following land use and land cover classes (Table III-1). The four

agricultural management regimes we mapped comprised large-scale cropland (LSC), small-
scale cropland (SSC), fallow and pasture (Figure III-2). While LSC is a potential indicator
for intensive agricultural use, fallow areas are abandoned or currently unused fields. SSC
refers to subsistence agriculture and kitchen gardens, and thus indicates low management
intensity. Forest and urban completed the land use/cover categories in the study area.

2.2 Data set and preprocessing

To map the different land use/cover classes including our land management intensity regimes,
we acquired multispectral Landsat TM data (30m resolution) and ERS-2 SAR data (about
25m spatial resolution). We used a total of two Landsat scenes (7 June 2010 and 14 November
2010, path/row 185/25) and nine ERS-2 scenes (each month in 2010 except for January, May,
and August). The Landsat images were already preprocessed to level L1T, which ensures
a sufficient geometric and radiometric accuracy for our analysis (USGS, 2013). The ERS-2
data were ordered in a single look complex (SLC) image format. Preprocessing of SAR
data was carried out with NEST-4C. Standard SAR preprocessing was applied, containing
radiometric and geometric corrections as well as multitemporal speckle-filtering. The ERS-2
images were resampled to a 30 meter pixel size to match the resolution of the Landsat TM
data for all subsequent analysis.
We used additional data to analyze the land management regimes map. To receive

information about soil qualities, an Ukrainian soil map with a scale of 1:1,000,000 was
digitized in-house. Elevation data was derived from the digital elevation model of the Shuttle
Radar Topography Mission (SRTM) (Figure III-1A). Furthermore, a map with buffer zones
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Figure III-2: Photos of the agricultural category taken during our field campaign. (A) Large-
scale cropland (B) Small-scale cropland (C) Pasture (D) Fallow/potential
abandoned, high grass with some bushes.

around the cities was prepared with GIS analysis. We used a city layer created on the basis
of a topographic map from OpenStreetMaps (OSM) and visual interpretation. Only cities
with more than 10,000 inhabitants were taken into account (Figure III-1A).

We acquired in-situ data during an extensive field campaign in 2012 and controlled the
data for validity in the study period (2010) by visually inspecting high-resolution imagery.
We used a random clustered sampling technique to allocate 357 points to be used for the
validation data set. To do so, we generated 40 clusters, where each cluster contained five
points in a (+) shape with a distance of 100 m between points along the horizontal and
vertical axis. Three teams, each containing two to three surveyors, accessed each point in
the field, noted the land use/cover at the point and photo documented the area in each
direction from the point. The survey protocol was derived from the Land Use and Cover
Area frame Survey (LUCAS) guidelines (EUROSTAT, 2009). We created a field protocol
with land use and land cover categories based on the LUCAS guidelines, which contained
hierarchical land cover categories (e.g., agriculture → arable land → cereals/root crops →
wheat/potatoes) and as well as land use categories (e.g., agriculture/fallow and abandoned
land/kitchen gardens). In a last step, we expanded the set of five points assessed in the
field to a nine point (3 × 3) grid, using the field photos and on-screen interpretation of
high-resolution RapidEye data to determine the land use/cover category of the additional
four points per cluster. Three sample points were removed, due to inaccessibility in the field
and uncertainty in on-screen interpretation. Thus, the reference set contains 357 points.

The training data acquisition was also based on the field campaign and was additionally
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supported by visual interpretation of RapidEye data. The training data was generated
independently from the test data set. To do so, we ensured that the (1) training and test
data are spatially disjoint and (2) no training and test data are located within the same field
plot.

3 Methods

To map land management regimes in our study region, we compare (1) a pixel-based (Land-
sat); (2) an object-based (Landsat); and (3) a hierarchical object-based classification ap-
proach (Landsat+ERS) in terms of the mapping accuracy. The following sections introduce
the underlying methods for these three approaches.

3.1 Random Forest classifier

We chose a Random Forest (RF) classifier for all three approaches. RF performs efficiently
with large data sets, is robust to outliers and overfitting, and its parameter selection is
user-friendly (Breiman, 2001). The RF has demonstrated excellent performance in terms
of classifying diverse remote sensing data sets (Gislason et al., 2006; Waske & Braun, 2009;
Stumpf & Kerle, 2011; Rodriguez-Galiano et al., 2012; Stefanski et al., 2013) and especially
joint optical and radar data sets (Waske & van der Linden, 2008; Zhu et al., 2012).

Random Forests are based on a combination of a set of k different decision tree classifiers.
Decision trees have a tree-like hierarchy, consisting of a root node, which includes all samples,
internal or split nodes that contain a decision rule, and final leave nodes, representing the
different classes. A majority vote is used to combine the outputs by the k decisions trees to
generate the final classification result. Each tree in the RF is trained by a randomly selected
subset of the training data. The remaining training samples, which are called “out-of-bag”
(OOB), enable a cross-validation-like accuracy measure through the OOB error estimate.
The RF split rules are based on a subset m of all n features, whereby m is a user-defined
value, with m < n. As RF parameters, we used standard values such as 500 trees for k and
the square root of the total input features for m. However, the classification accuracy is
relatively insensitive to the RF parameters (Breiman, 2001; Gislason et al., 2006).

In this study, the classification model was generated with 1000 training samples per class,
which were selected by an equalized random sampling out of the training set.

3.2 Superpixel Contour segmentation

To perform an image segmentation, we used the Superpixel Contour (SPc) segmentation
algorithm in combination with a semi-automatic parameter selection (Stefanski et al., 2013).
The SPc, introduced by Mester et al. (2011), is an iterative, region-based segmentation
algorithm. The principle of the SPc is to optimize a non-specified initial segmentation to
separate the image into homogenous regions (i.e., segments or superpixels, ideally represent-
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ing real-world objects). Therefore, the initial segmentation is optimized along its boundaries
based on the statistical distribution of each region. The boundary pixels are assigned to
the region that maximizes the posterior distribution. The general principle behind this is
an iteratively running maximum-a-posteriori (MAP) segmentation. The SPc algorithm is
computationally efficient as only the boundary pixels of each region are taken into account
for the optimization process.
The SPc segmentation algorithm has four parameters. However, SPc is generally user-

friendly as only two (parameter G and B) out of four parameters have to be adapted to
the respective application (Stefanski et al., 2013). The user can control the scale of the
segments with G and the shape of the segments with B. Stefanski et al. (2013) introduced a
concept to semi-automatically select the optimal segmentation parameters with respect to the
classification accuracy, which was used in this study. The basic idea of the concept is to define
a set of parameters for G and B that are segmented by SPc and evaluated by the OOB error
rate of the RF. Then, the best parameter combination based on the classification accuracy
can be used for subsequent object-based classifications. This approach is comparable with a
grid-search which is, for example, frequently used to select the parameters of Support Vector
Machines (Hsu et al., 2003).

The identification of an ideal segmentation level for all classes is often challenging. More-
over, different segmentation levels can provide different types of information (Bruzzone &
Carlin, 2006; Waske & van der Linden, 2008). Waske & van der Linden (2008) proposed
a multilevel segmentation strategy for the classification of SAR and multispectral data.
They demonstrated that both aspects, the combination of information from different sensor
sources as well as the use of multiple segmentation levels, proved useful in terms of accuracy.
Thus, using the parameter optimization approach mentioned above, we analyzed various
segmentation levels (i.e., segmentation scales based on different values for G) for the land
management regimes in our study area. The class-specific OOB error rate, provided by the
RF, enables the detection of the “optimal” representation for each class in terms of the
segmentation level and the classification accuracy. For example, the classification accuracy
of large-scale cropland increased with higher segmentation levels while the effect was vice
versa with the accuracy of urban areas. Initial tests showed that the subclasses of active
agriculture (i.e., LSC, SSC, and pasture) were difficult to classify solely on pixel-level due
to spectral similarities. We used object-based analysis to overcome this issue, however,
the class-specific analysis showed that there is no single object-size that results in a high
classification accuracy. This can be explained by the inhomogeneous object-sizes within SSC
and pasture.
Therefore, we used three segmentation levels (G = 15, 20, 25) in addition to the original

pixel information. As object-based features, we derived the mean value for Landsat and
the mean value and standard deviation for ERS-2 SAR. Thus, the dimension of the feature
space is 111, containing the pixel information from the two Landsat images (i.e., 2 images
× 6 bands) and 9 SAR images (i.e., 9 images × 1 band), the segments’ mean derived from
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Figure III-3: Diagram showing the hierarchical classification framework and derived indica-
tors for management intensity. (1) Classification of active agriculture, fallow,
forest and urban; (2) Classification of cropland and pasture within active agri-
culture; (3) Classification of large-scale and small-scale cropland; (4) Indicators
of land management, derived from the hierarchical classification.

Landsat (2 × 6 × 3 segmentation levels) and ERS-2 SAR (i.e., 9 × 1 × 3 segmentation
levels), and the standard deviation from ERS-2 SAR (i.e., 9 × 1 × 3 segmentation levels).

3.3 Hierarchical classification framework

We used a hierarchical classification framework to integrate optical and SAR data as well
as object-based features from different scales into one classification scheme (Figure III-
3). For each of the three classification levels (1–3), a separate classification model was
generated. (1) First, active agriculture, fallow, forest and urban were classified. For this
step, a single-level object-based approach based on Landsat and ERS-2 features was used;
(2) Second, active agriculture was separated further in either cropland or pasture. To do
so, a multilevel, object-based classification based on Landsat and ERS-2 data was used; (3)
The last classification differentiated cropland into large-scale and small-scale cropland, using
the same input features as in Step 2. After performing the classification, indicators for land
management intensity were derived from the generated map (cf. Figure III-3(4)).

3.4 Accuracy assessment

We assessed our results by using a randomly clustered field-based validation set. Validation
points were fully independent from the training data. We calculated confusion matrices,
producer’s, user’s, and overall accuracies, and corrected mapped areas for classification errors
in the error estimates (Foody, 2002; Olofsson et al., 2013). To quantitatively evaluate the
classification, error-adjusted area estimates with 95% confidence intervals were calculated by
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Figure III-4: Map showing the distribution of soil in our study area.

using a poststratified estimator (Olofsson et al., 2013). To assess whether our classifications
were statistically significantly different from each other, we performed a McNemar test
(Foody, 2004).

3.5 Exploring spatial patterns in land management regimes

To further explore the spatial pattern of land management intensity regimes in our study
area, we overlay our final classification result with a number of spatial indicators related to
the marginality of farming. First, we analyzed if there were spatial correlation between the
classes large-scale cropland, small-scale cropland, pasture, fallow, and forest on the one hand
and the quality of the soil for farming on the other hand. To do so, we used a soil map to
calculate the ratio of each class to the underlying soil type (Figure III-4). The occurring
soil types were: histosols (marshy area; not attractive for agriculture), leptosols (stony,
chalky; not suitable for agriculture), podzol (sandy, nutrient-poor, acidic soils; not attractive
for agriculture), phaeozems (dark humus, fertile soil; very attractive for agriculture), and
chernozems (black soil, rich in organic matter; very attractive for agriculture) (IUSS Working
Group WRB, 2006).
Second, to reveal the spatial relationships between our land management classes and

market access (or in other words the remoteness of an agricultural plot), we analyzed the
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proportion of each management regime in several buffer zones around the cities. To do so,
the proportion of the different agricultural classes were summarized in buffer zones with the
Euclidean distances of 0.5, 1, 2, 4, 6, 8, and 10 km from the city boundaries.

Third, we analyzed the distribution of each class in relation to elevation by overlaying the
management regimes and other land cover classes with the digital elevation model based on
the SRTM.

4 Results

We used three classification approaches – (1) pixel-based (Landsat); (2) object-based (Land-
sat); and (3) hierarchical object-based (Landsat + ERS) – to map land management intensity
regimes. Generally, our classifications showed the substantial potential of improved char-
acterizations of land management regimes when using multispectral and SAR data jointly
in a hierarchical framework (Table III-2). The overall accuracy of the pixel-based classi-
fication (67.4%) was increased markedly in the object-based classification (78.3%). The
hierarchical classification, integrating Landsat and ERS data as well as object-based features,
outperformed both other approaches in terms of the classification accuracy (83.4%).
The confusion matrix of the pixel-based classification indicated the difficulty to classify

large-scale cropland (LSC ) and small-scale cropland (SSC ) solely on pixel-level due to
spectral ambiguities (i.e., field size cannot reliably be differentiated spectrally) (Table III-3).
Furthermore, there was a noticeable confusion within active agriculture (LSC, SSC, pasture)
as well as between active agriculture and fallow agriculture. This caused relatively low
producer’s and user’s accuracies for the agricultural classes in the pixel-based classification
(Table III-2).

The object-based classification reduced the confusion between LSC and SSC as well as the
fallow class substantially (Table III-4). Specifically, the misclassification of SSC within LSC
was reduced from 25.8% to 10.1% and the misclassification of fallow within LSC from 25.8%
to 5.6%. As a result, the producer’s accuracy of LSC increased by about 34% from 51.6% to

Table III-2: Accuracy assessment: comparison of pixel-based, object-based and hierarchical
classification (PA = producer’s accuracy, UA = user’s accuracy, OA = overall
accuracy) with error-adjusted estimates.

LS classes Pixel-based Object-based Hierarchical
PA [%] UA [%] PA [%] UA [%] PA [%] UA [%]

LSC 51.6 70.8 85.4 89.0 85.1 89.7
SSC 73.2 43.3 92.5 56.3 91.8 71.4
Pasture 56.5 55.0 74.3 56.6 62.5 65.9
Fallow 67.3 69.4 58.0 81.9 74.0 79.2
Forest 96.8 95.1 92.3 96.1 94.1 96.2
Urban 54.5 76.9 29.5 77.8 63.2 80.0
OA 67.4% 78.3% 83.4%
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Table III-3: Confusion matrix for the pixel-based classification of LS.

Classified Reference
LSC SSC Pas. Fal. For. Urb. Tot.

LSC 34 4 5 3 1 1 48
SSC 23 29 5 6 4 67
Pasture 7 2 22 9 40
Fallow 23 4 5 75 1 108
Forest 1 1 2 77 81
Urban 1 2 10 13

Total 89 41 38 95 79 15 357

Table III-4: Confusion matrix for the object-based classification of LS.

Classified Reference
LSC SSC Pas. Fal. For. Urb. Tot.

LSC 73 4 3 2 82
SSC 9 36 2 11 6 64
Pasture 2 2 30 19 53
Fallow 5 2 5 59 1 72
Forest 1 2 74 77
Urban 1 1 7 9

Total 89 41 38 95 79 15 357

85.4% and the user’s accuracy of LSC rose by about 20% to 89.0%. Similar improvements
between the pixel-based and object-based classification were observed for the producer’s
accuracies of SSC and pasture. However, there was still considerable remaining confusion
between fallow and SSC as well as pasture. Thus, the producer’s accuracy of fallow as well
as the user’s accuracy of SSC and pasture were still relatively low at about 56.0% (Table
III-2).
With the use of additional SAR data within the hierarchical classification framework,

the detection of fallow areas was improved substantially, which consequently reduced the
confusion between SSC and pasture (Table III-5). This led to an increase in the producer’s
accuracy of fallow (74.0%) as well as the user’s accuracies of SSC (71.4%) and pasture
(65.9%) (Table III-2).

Tests of statistical significance based on the McNemar statistics indicated that the object-
based classification resulted in a significantly more accurate map (p < 0.001) compared to the
pixel-based classification (Table III-6). The hierarchical classification performed well with
regard to the classification accuracy, resulting in an overall accuracy that was significantly
higher in comparison to the pixel-based (p < 0.001) and object-based (p < 0.05) approach.
(Table III-6).

The map of land management regimes and land cover of our study area showed a heteroge-
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Table III-5: Confusion matrix for the hierarchical classification of LS.

Classified Reference
LSC SSC Pas. Fal. For. Urb. Tot.

LSC 70 1 2 2 2 1 78
SSC 7 35 2 4 1 49
Pasture 3 27 11 41
Fallow 12 6 76 1 1 96
Forest 1 2 75 78
Urban 2 1 12 15

Total 89 41 38 95 79 15 357

Table III-6: Results of McNemar’s tests for the statistical significance of differences between
the pixel-based, object-based, and hierarchical classification approaches.

Methods |z| p

Pixel-based Object-based 3.41 < 0.001
Pixel-based Hierarchical 5.18 < 0.001
Object-based Hierarchical 2.07 < 0.05

neous landscape with mainly forest and fallow in the northern part of Volodymyr-Volynskyi
Raion and the southern part of Sokalskyi (Figure III-5). Ivanychivskyi and Horokhivskyi in
the center of the study area were mainly covered by active farmland. Pasture was mostly
concentrated in the northern, southern, and western central part of the study area. The SSC,
mainly subsistence agriculture, can contain individual houses or small villages, since urban
represented cities with wide impervious surfaces and large urban structures. Consequently,
the majority of the urban population lived in the big cities solely located in the western part
of the study area while rural populations were concentrated in the central and eastern parts
of the study area.

According to the error-adjusted area estimates (Figure III-6), our study area was mostly
covered by large-scale cropland (29%, ≈190,000 ha). Small-scale cropland covered 15%
(≈94,000 ha) and pasture 12% (≈77,000 ha). Therefore, the agricultural categories with active
land use occupied approximately 53% of the study area, whereas about 22% (≈141,000 ha)
of the study area was fallow land. Forests accounted for about 20% of the study area and
the cities covered about 2% of the study region.

Comparing the distribution of land management regimes and land cover types along
indicators of the marginality of agriculture revealed interesting patterns. Soil quality is a key
element for agricultural productivity. As expected, our analysis revealed that the majority
of large-scale cropland and small-scale cropland was cultivated in areas with comparatively
good soils (Figure III-7). About 54% of the LSC was cultivated on Phaeozems (28%) and
Chernozems (25%). Even 60% of SSC occurred on Phaeozems and Chernozems. Forest,
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Figure III-5: Agricultural land management regimes and additional land cover classes,
mapped using the hierarchical classification based on Landsat and ERS data
(LSC = large-scale cropland, SSC = small-scale cropland).
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Figure III-6: Error-adjusted area estimates of the hierarchical classification with 95% confi-
dence intervals (LSC = large-scale cropland, SSC = small-scale cropland).

pasture and fallow areas were mainly located on Podzols (>40%), the sum of these classes
on Phaeozems or Chernozems was below 20%.
The distribution of each class also varied substantially with distance to cities (Figure

III-8). The areas very close to the cities (0.5 km) in the study area contained over 25% of
SSC and only about 13% of LSC, 4% pasture, and 6% fallow. With an increasing distance to
cities (and thus local markets), SSC decreased while the share of LSC and pasture increased
steadily. The dominance of land management regimes near cities changed from small-scale
cropland to large-scale cropland between 2 and 4 km away from cities. Fallow areas increased
rapidly up to a distance of 4 km around cities.

Analyzing the distribution of our land management and land cover classes along elevation
gradients showed interesting differences between the land management regimes (Figure III-9).
The active farmland classes (LSC and SSC ) had their peaks at about 220 meter elevation,
whereby LSC was more equally distributed compared to SSC. Pasture, fallow, and forest
occurred mainly at elevations between 180 and 200 m, whereby pasture and fallow were
similarly distributed.

5 Discussion

A growing world population, diet changes, and an increasing role of bioenergy all contribute
to a surging demand for agricultural products, and unless major shifts in consumptive
behavior occur, this requires potentially a doubling of agricultural production by 2050
(FAO, 2009; Godfray et al., 2010; Foley et al., 2011; Tilman et al., 2011; Ray et al., 2013).
Production increases can be achieved following three options: (1) expanding agriculture
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Figure III-7: Distribution of the area of each class across underlying soil types (H: Histosols,
L: Leptosols, Pod: Podzol, Phae: Phaeozems, Ch: Chernozems).
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Figure III-9: Histogram showing the distribution of each class in dependency of the elevation;
Grey lines show the overall distribution of the elevation in the study area.

into natural ecosystems; (2) intensifying existing farmland; or (3) recultivating abandoned
farmland. To decide which strategy is attractive to increase production while mitigating
the environmental trade-offs of agriculture, first and foremost it is important to better map
and understand spatial heterogeneity in agricultural management intensity, ranging from
industrialized to abandoned lands. Mapping agricultural management regimes such as large-
scale cropland, and small-scale cropland (indicating high and low management intensity,
respectively), and fallow land with remote sensing data provides interesting avenues to
improve our understanding of the patterns of agricultural land use intensity, particularly
where ground-data on the different aspects of management are scarce.

Our first objective was to analyze the value of an object-based approach in comparison
with a pixel-based classification to map land management regimes. Our analyses clearly
showed that the pixel-based approach was not capable of differentiating large-scale cropland
and small-scale cropland with high accuracies (Table III-2), likely because of similar spectral
characteristics of these classes. In our case, additional object-based features from a multilevel
segmentation with different segment scales helped to overcome this problem. The spatial
relationships and the different features within the segments provided information about (1)
relatively homogenous large fields with one crop type and (2) small fields with inhomogeneous
spectral characteristics due to multiple crops within a cluster of kitchen gardens, which is
not included in pixel-by-pixel information. Therefore, multilevel object-based features were
the key elements to distinguish large and small fields, and thus large-scale cropland and
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small-scale cropland in our study area.
Our second objective was to assess the value of SAR data (ERS-2 images in our case)

within a hierarchical classification framework to enhance the mapping of land management
regimes compared to using optical data (Landsat images in our case) alone. As we already
noted, pasture and fallow fields can have similar spectral signatures as well as spatial similar-
ities contrary to large-scale cropland and small-scale cropland. Therefore, the object-based
approach, which was based on the optical data alone, did not noticeably improve the classi-
fication accuracy of pasture and fallow land in comparison to the pixel-based classification.
However, the integration of SAR data within the hierarchical classification approach did
appreciably improve the classification accuracies of both classes. This was likely due to two
reasons. On the one hand, SAR data included complementary information to optical data.
On the other hand, additional temporal information of SAR data (i.e., nine available scenes
over the year), which enabled an enhanced extraction of information about different pheno-
logical stages of pasture and fallow, likely contributed to the higher classification accuracies,
when using optical and SAR data jointly.

In general our results emphasize that the integration of both sources, i.e., multisensor
data as well as object-based features from different scales, proved useful in terms of the
mapping accuracy. This is in accordance with the results achieved by other studies (Shupe
& Marsh, 2004; Waske & van der Linden, 2008; Gong et al., 2011), for example, where
crop type mapping was enhanced by classifying multiple segmentation levels from SAR and
multispectral data (Waske & van der Linden, 2008).
The algorithms that were used in our study proved to be well suited for mapping land

management regimes. The Superpixel Contour algorithm was able to separate the Landsat
images into meaningful regions, as the visual inspection and the significant improvement of
the classification accuracies by the generated objects confirmed. This is also in accordance
with the results achieved by Stefanski et al. (2013), where the Superpixel Contour algorithm
was analyzed in more detail. The Random Forest classifier also performed very well, as it
was already shown in previous studies (Waske & van der Linden, 2008; Stumpf & Kerle,
2011; Rodriguez-Galiano et al., 2012), and seems adequate for handling multisensor data as
well as different multilevel features.

Our third objective was to explore the spatial distribution of land management regimes.
Generally, the patterns observed in our study region were well in accordance with patterns
that we would predict based on classical land rent theory (Ricardo, 1821; Von Thünen, 1966)—
i.e., less intensive or no land use on the most marginal plots (higher elevations, less suitable
soils, far away from markets). Interestingly, small-scale cropland was most widespread in
the vicinity of cities (Figure III-8), whereas large-scale agriculture (i.e., potentially more
capital intensive) was found away from cities. Two factors explain this pattern. First, during
the Soviet time, large industrialized farms were established and these were often far away
from settlements and cities. Second, with the breakdown of the Soviet Union, subsistence
agriculture became more important and thus farmland in the vicinity of cities was used for

63



Chapter III: Mapping land management regimes in western Ukraine

small-scale farming and gardening, explaining the concentration of small-scale cropland close
to the cities.
The pattern of the class distribution with regard to elevation can be explained by the

local topography. Large-scale cropland and small-scale cropland is basically concentrated in
the center of the study area, where the elevation is higher compared to the north and south,
where pasture, fallow, and forest occurred mainly. The occurrence of farmland abandonment
in Eastern Europe on lower elevations was surprising, and on first glance not in line with land
rent theory. However, other studies (Baumann et al., 2011) have found similar patterns and
the factors mentioned above (i.e., collapse of large corporate farms after the breakdown of
the Soviet Union, concentration of farming around settlements) explain these patterns as well.
Furthermore, some of the lower areas in our study region are frequently flooded (especially
as drainage dikes were abandoned), making these areas not well-suited for agriculture.
Earlier studies have found substantial potential for recultivation in the region (Baumann

et al., 2011). Our results suggest—about 22% of the whole study area was fallow in 2010—
some potential for recultivation of abandoned farmland. However, advanced processes of
forest succession (i.e., high amount of woodland) causes increasing recultivation costs (Lars-
son & Nilsson, 2005). In this context, the additional use of approaches that quantify
succession seems sensible (Bergen & Dronova, 2007). About 15% of the study area was
small-scale cropland with low intensive farming, which suggests some potential for agricul-
tural intensification. We caution though, that the socio-economic and environmental impacts
of intensification, and recultivating currently idle cropland, have to be taken into account
carefully.

Our study demonstrated that agricultural management regimes can be reliably determined
from remote sensing imagery alone when field size can be used as a proxy, which is an
important finding given that ground data on management practices is not available for
large parts of the world (Kuemmerle et al., 2013; Fritz et al., 2013). Nevertheless, several
avenues for further improving our approach are possible. First, auxiliary data may be
capable of improving the precision of area estimates. For example, spatial relationships can
contribute to classify land management regimes more accurately or population density data
may be useful to improve the precision of land cover change estimation (Stehman, 2009).
In this context, non-parametric methods that can deal with continues and categorical data
like Random Forests appear to be appropriate to integrate and classify diverse datasets,
including multisensor data, terrain models, or categorical variables, for example, derived
from soil maps (Gislason et al., 2006).

Second, ground data on management or yields could further help to generate a better map
of intensity, whereby geostatistical approaches are suitable to integrate such data. Analyzing
management regimes over several years may also further improve the precision of mapping
management regimes. For example, using previous analyses as prior knowledge or prior
probabilities may improve mapping accuracies (McIver & Friedl, 2002).

Third, auxiliary data can be used to avoid misinterpretations of land management regimes
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maps. For example, Figure III-6 implied that 22% of the study area was fallow and therefore
this region should offer great potential for recultivation. However, analyzing the proportion
of fallow land regarding its underlying soil type revealed that 45% of the fallow areas were
on Podzol (Figure III-7). As Podzols are generally less attractive soils for cropping due to
the low nutrient status, low level of available moisture, and low pH values (IUSS Working
Group WRB, 2006), realistic potentials for recultivation in this region have to be further
analyzed.

6 Conclusions

Our study aimed at mapping land management regimes as proxies for agricultural land
use intensity from satellite imagery. To do so, we compared pixel-based, object-based,
and hierarchical classification approaches using Superpixel Contour for segmentation and
Random Forests for classification. The proposed classification strategy constitutes a very
feasible approach, because the underlying methods (Superpixel Contour/Random Forest)
depend only on a few parameters. The object-based approach produced significantly better
classification accuracies compared to the pixel-based approach. The hierarchical, multisensor
classification based on Landsat and SAR data outperformed both other approaches and
yielded a reliable land management intensity regime map.

As demand for agricultural products continues to increase and land resources are in-
creasingly becoming scarce, identifying strategies for increasing agricultural production in
sustainable ways has become a research priority and this necessitates better maps on land
management. We emphasize the value of our hierarchical multi-sensor approach for mapping
land management regimes, as we derive adequate indicators for land use intensity by remote
sensing for our study area. This can be a first step to further evaluate trade-offs and benefits
from different management regimes as well as methods to systematically asses potentials
for increasing agricultural production. The use of auxiliary data as soil maps enable more
detailed analysis of the spatial patterns and supports to evaluate the potential of agriculture
and recultivation of abandoned farmland in western Ukraine.

Overall, our methodology contributes to new methods for mapping land use intensity, using
multisensor remote sensing data. Regarding recent and upcoming missions with increased
revisit times and better spatial resolutions as, for example, RapidEye and TerraSAR-X as
well as Sentinel-1/-2, the use of multisensor data become even more attractive. In addition,
it seems interesting to make full sense of the unique image record that the Landsat image
archives provide.
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Chapter IV: Mapping and monitoring of land use changes in post-Soviet western Ukraine

Abstract

While agriculture is expanded and intensified in many parts of the world, decreases in land use
intensity and farmland abandonment take place in other parts. Eastern Europe experienced
widespread changes of agricultural land use after the collapse of the Soviet Union in 1991,
however, rates and patterns of these changes are still not well understood. Our objective was
to map and analyze changes of land management regimes, including large-scale cropland,
small-scale cropland, and abandoned farmland. Monitoring land management regimes is
a promising avenue to better understand the temporal and spatial patterns of land use
intensity changes. For mapping and change detection, we used an object-based approach
with Superpixel segmentation for delineating objects and a Random Forest classifier. We
applied this approach to Landsat and ERS SAR data for the years 1986, 1993, 1999, 2006, and
2010 to estimate change trajectories for this time period in western Ukraine. The first period
during the 1990s was characterized by post-socialist transition processes including farmland
abandonment and substantial subsistence agriculture. Later on, recultivation processes and
the recurrence of industrial, large-scale farming were triggered by global food prices that
have led to a growing interest in this region.

1 Introduction

Substantial increase in land-based production (e.g., food, fiber, bioenergy) is needed as
long as the global demand for agricultural products steadily increases and no changes in
consumption occur (Godfray et al., 2010; Lotze-Campen et al., 2010; Tilman et al., 2011). To
increase land-based production, either agriculture can be expanded into (other) ecosystems,
existing farmland can be intensified, or abandoned farmland can be recultivated. While
the transformation of forest to agricultural systems is widely studied and relatively well
understood, particularly in the tropics, (Geist & Lambin, 2002; Hansen et al., 2008), patterns
of agricultural intensification and abandonment remain unclear for most parts of the world
(Kuemmerle et al., 2013; Fritz et al., 2013). However, monitoring status and trends of
agricultural landscapes can provide important information to reduce the environmental
impact of agricultural production (Zaks & Kucharik, 2011) and to identify potential regions
for sustainable intensification or recultivation.

During the last decades remote sensing became a valuable tool for environmental monitor-
ing and land cover mapping. In context of agriculture, existing studies mainly focused on
mapping different crop types (Wardlow et al., 2007; McNairn et al., 2009a; Waske & Braun,
2009) as well as on monitoring changes in cropland extent and the proximate drivers so far
(Shalaby & Tateishi, 2007; Zhang et al., 2013; Wagner et al., 2013). However, there are lacks
of approaches sensitive to land use intensity because remote sensing can only rarely measure
the complex terms of land use intensity (Kuemmerle et al., 2013).
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1 Introduction

One way for a more nuanced representation of agricultural landscapes is to map land
management regimes as proxies of land use intensity (Verburg et al., 2011; Kuemmerle
et al., 2013; Stefanski et al., 2014). Only a few studies have used such approaches at global
(Ellis & Ramankutty, 2008; Václavík et al., 2013) or regional scales (Stefanski et al., 2014).
Stefanski et al. (2014), for example, used the representation of management regimes that
differed in field sizes, i.e., (1) large-scale, mechanized agriculture, (2) small-scale, subsistence
agriculture, and (3) fallow or abandoned farmland. While large-scale, mechanized agriculture
implied high management intensity, small-scale, subsistence agriculture had basically a low
management intensity. Monitoring land management regimes, however, requires adequate
data sets and methods.
Although optical remote sensing data are generally a powerful tool for mapping land

use/cover changes (Loveland et al., 2008; El-Kawy et al., 2011), the problem of cloud cover is
a potentially limiting factor (Moran et al., 2002). This seems particularly critical in context
of agricultural landscapes. Managed cropland and grassland show typical temporal patterns
due to the phenology of planted crops and management activities, while abandoned farmland
is not affected by these activities. Nevertheless, a differentiation between grassland and
cropland or grassland and abandoned farmland can be challenging due to spectral ambiguity
of the multispectral remote sensing data. Accordingly, the use of multitemporal data seems
promising. Prishchepov et al. (2012) recommends the use of three Landsat scenes - from
spring, summer, and fall - for a reliable mapping of agricultural abandonment in Eastern
Europe.
Moreover, besides the requirement of an adequate data set for one time period, the

monitoring of land management changes requires multitemporal data sets from different
years for the same study site. However, regarding the repetition rate of typical systems like
Landsat and the problem of cloud cover, the generation of adequate multitemporal data sets
can be challenging, while data with higher temporal coverage and wide swath (e.g., MODIS
and MERIS) are inadequate in capturing land use/cover changes at fine scales.
Synthetic Aperture Radar (SAR) data on the other hand might overcome spectral am-

biguities of multispectral data and are (almost) weather independent and thus useful to
fill gaps in optical time series. Furthermore, multispectral and SAR systems operate in
different wavelengths, ranging from visible to microwave and consequently provide different,
but often complementary information (Pohl & Van Genderen, 1998). Thus, a combination
of multispectral imagery with SAR data is worthwhile and it has been demonstrated in sev-
eral studies that multisensor analysis significantly improves the accuracy of land use/cover
classifications (Kuplich et al., 2000; Waske & Benediktsson, 2007; McNairn et al., 2009a).
Besides the availability of adequate image data for all relevant time periods, the use

of adequate classifier algorithms and change detection approaches is critical. Standard
classifiers are often not adequate for classifying multisensor and multitemporal data sets,
because in most cases the class distributions cannot be modeled by adequate multivariate
statistical models. However, machine learning algorithms such as support vector machines
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and classifier ensembles have emerged over the past years in the remote sensing community
and are well suited for handling diverse remote sensing data sets (Gislason et al., 2006;
Waske et al., 2009; Mountrakis et al., 2011). Particularly the classifier ensemble Random
Forests (Breiman, 2001) is well suited for handling multitemporal SAR and multisensor data
and has proved to be simple and accurate (Waske & van der Linden, 2008; Waske & Braun,
2009; Rodriguez-Galiano et al., 2012).

Remote sensing based change detection includes basically bi-temporal and trajectory-based
change detection methods (McRoberts, 2013). While bi-temporal change detection assesses
only the type and extent of change between two defined points in time, trajectory analyses use
three or more dates to additionally assess trends and temporal patterns of change over time
(Mertens & Lambin, 2000; Kennedy et al., 2007; Carmona & Nahuelhual, 2012). However,
using trajectory analyses for detailed characterization of land change dynamics typically
requires extensive time series (Kennedy et al., 2007; Sieber et al., 2013). Since the backscatter
intensity of SAR data is almost independent from weather conditions, time-series can be
produced most reliably using SAR imagery.
In our study, we explored the potential of multispectral Landsat and ERS SAR data to

monitor land management regimes in western Ukraine. After the collapse of the Soviet
Union, Eastern Europe experienced drastic political and socio-economic changes. This led
to farmland abandonment as well as the conversion of (collectivized) large-scale agriculture
to small fields, used for subsistence agriculture (Müller & Sikor, 2006; Kuemmerle et al.,
2006; Alcantara et al., 2012). While widespread farmland abandonment often results in
land fragmentation and simplification of landscapes (Sikor et al., 2009; Peringer et al.,
2013), small-scale agriculture or basically subsistence agriculture in rural areas can preserve
natural resources (Ioja et al., 2014). Analyzing traditional agricultural land use with its
positive aspects for natural and cultural biodiversity in a case study in Eastern Europe seems
therefore particularly interesting (Angelstam et al., 2013; Munteanu et al., 2014). More
recently, recultivation of abandoned farmland emerges, triggered by the global trend of food
prices. Overall, this region is particularly interesting to monitor land management regimes
over the past decades.
Farmland abandonment in Eastern Europe was successfully mapped in different studies,

using optical remote sensing data at different scales (Alcantara et al., 2012; Kuemmerle et al.,
2006, 2011; Griffiths et al., 2013). In contrast to this, the recultivation of abandoned farmland
and extend of subsistence agriculture were rarely discussed. Stefanski et al. (2014) mapped
current land management regimes in western Ukraine, including large-scale agriculture and
small fields, using optical and SAR data. However, this study is based on a data set from one
time period and consequently, temporal changes in land use management were not analyzed.
Therefore, we explore the spatio-temporal patterns of land management regimes between
1986 and 2010 in this study.

We used an object-based approach based on Landsat and ERS SAR data to map land
use/cover in the years: 1986, 1993, 1999, 2006, and 2010. Then, we used change trajectories
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Figure IV-1: Map showing the study area in western Ukraine and a footprint of the used
ERS data.

to derive changes of cropland (including large-scale and small-scale cropland), grassland,
and fallow or abandoned land. Overall, we focused on the following objectives: (1) assessing
the potential of SAR data to complement optical data for monitoring land management
regimes, (2) analyzing the changes of land management intensities, i.e., the transformation
of industrial, large-scale farming to subsistence agriculture, and (3) analyzing the spatio-
temporal patterns of farmland abandonment and recultivation.

2 Material

2.1 Study area

Our study area is located in Volynska and Lvivska Oblasts in western Ukraine and covers
about 7,500 km2 (Figure IV-1). The study region is dominated by agriculture and forests.
Agricultural land use types vary from large-scale, intensively managed farmland to small-scale,
subsistence and low intensively managed farmland to fallow or abandoned farmland.

The study area is particularly interesting to monitor land management regimes because this
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region is characterized by a large variability of socio-economic and environmental conditions,
which caused marked spatial heterogeneity in management intensity. During the Soviet
time, land management was characterized by collectivized, large-scale farmland (Mathijs &
Swinnen, 1998). With the breakdown of the Soviet Union in 1991, drastic shifts in political
and socio-economic conditions triggered widespread land changes such as land fragmentation,
substantial abandonment of agricultural fields, and the emergence of subsistence agriculture
(Sabates-Wheeler, 2002; Kuemmerle et al., 2006; Baumann et al., 2011). Yet, with the recent
integration of this region into world markets, recultivation of abandoned land takes place.

2.2 Data set and preprocessing

To monitor land management regimes between 1986 and 2010, we used optical (Landsat)
and SAR (ERS) data for different dates (Figure IV-2). As the ERS-1 satellite was launched
in 1991, we used four Landsat scenes (path/row 185/25) recorded at 4 April, 8 August, 11
October, and 12 November 1986 to map land use and land cover during the Soviet period.
To map the land use changes in the following years, we used six (1993) and eight (1999, 2006)
ERS SAR images. For the mapping of land management regimes in 2010, we combined two
Landsat (7 June 2010 and 14 November 2010) and nine ERS images (Figure IV-2).
We acquired the Landsat scenes already preprocessed on level L1T, which ensured a

sufficient geometric and radiometric accuracy for our analysis (USGS, 2013). All ERS scenes
were acquired in a single look complex (SLC) image format. We applied a standard SAR
preprocessing using NEST-4C separate for each year, including radiometric and geometric
corrections as well as Gamma speckle-filtering. Finally, we resampled all ERS images to 30
meter pixel size to match the resolution of Landsat data.

Reference data were acquired during an extensive field campaign in 2012 (Stefanski et al.,
2014). By using a random clustered sampling technique, we allocated 357 points to be
used for validation. Three surveying teams assessed the points in the field by using a
survey protocol based on the Land Use and Cover Area frame Survey (LUCAS) guidelines
(EUROSTAT, 2009). Additionally, high-resolution RapidEye images supported the field
mission and generation of the reference set. To adjust the 357 points for validation to the
years 1986, 1993, and 2006, we visually interpreted Landsat data for each year.

To acquire training data for 2010, we used information collected during the field campaign
that was independent from validation data and, additionally, visually interpreted RapidEye
data. During the generation of the training data, we ensured that training and test data
were spatially disjoint. The adjustment of the training set to the years 1986, 1993, and 2006
was analogous to the validation set.

3 Methods

The monitoring of land management regimes was based on object-based approaches with the
following steps: (1) generating a base map for 1986, including the land use classes cropland,
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Figure IV-2: Acquisition dates of remote sensing data used in this study.

grassland, forest, and urban, (2) mapping cropland and grassland for the years 1993, 1999,
and 2006, (3) mapping land management regimes for 2010, including large-scale cropland,
small-scale cropland, and grassland, and finally (4) a trajectory analysis to determine changes
of land management regimes. Based on our field campaign and visual interpretation of remote
sensing data, we made three general assumptions in our study. First, the class cropland
incorporated solely large-scale cropland in 1986. An explanation for this is the general
collectivization of agricultural fields to large fields in the Soviet system. Second, as we did
not find changes of forest and urban areas over the time, we summarized both classes in
“Forest and Urban” and masked them. Third, we analyzed the abandonment of cropland
(i.e., the transition of cropland to grassland) and did not differentiate managed/unmanaged
grassland, which is not resolvable with Landsat and ERS SAR data.
For the classifications of step (1)–(3), we used an object-based approach by using the

Superpixel Contour algorithm (Mester et al., 2011) for image segmentation and the Random
Forest classifier (Breiman, 2001) for classification. The Superpixel Contour segmentation,
the freely available Random Forest code (Jaiantilal, 2009), and the trajectory analysis were
implemented in MATLAB.

3.1 Object-based classification

The Superpixel Contour (SPc) algorithm is an iterative, region-based segmentation approach
introduced by Mester et al. (2011). The SPc proved well in context of remote sensing and
provides very similar results in comparison to the widely-used segmentation algorithm in
eCognition (Stefanski et al., 2013). The general principle of a segmentation algorithm is to
separate an image into homogenous regions such as segments or superpixels, which ideally
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represent real world objects. To do so, the SPc optimizes a non-specified initial segmentation
along its boundaries based on the statistical distribution of each segment. An iteratively
running maximum-a-posteriori (MAP) segmentation is used to assign the boundary pixels
to the region that maximizes the posterior distribution. Because only the boundary pixels of
each segment have to be optimized, the SPc algorithm is computationally efficient. To find
adequate segmentation parameters, we used a semi-automatic parameter selection (Stefanski
et al., 2013) that is based on the out-of-bag error provided by Random Forests.

The Random Forest (RF) classifier was introduced by Breiman (2001) and demonstrated
excellent performance in classifying remote sensing data (Gislason et al., 2006; Waske &
Braun, 2009; Ghosh et al., 2014). The RF has several advantages for its application in remote
sensing. For example, the RF can efficiently handle large data sets and input variables, is
robust to outliers and overfitting, and its parameter selection is user-friendly (Breiman,
2001). The principle of the RF is to build an ensemble of k randomly generated decision
trees and using a majority voting over all trees to receive the final result. Each tree is build
by choosing randomly m features at each split node of the tree, whereby m is a subset of all
features. Furthermore, for each tree only a randomly selected subset of the training data is
used for classifier training. Remaining training samples, the so called “out-of-bag” (OOB)
samples, allow an estimation of the classification error. To estimate this OOB error, the
out-of-bag samples are classified by the particular decision tree and the final OOB error is
derived by the classification error of all OOB samples. Since the RF is relatively insensitive
to the parameters k and m when using a certain amount of trees, standard values for the
parameters can be used. We used 500 trees for k and the square root of the number of input
features for m.
The features of our object-based classification contained for each pixel both the spectral

values and object features (mean values). For training the classifier, we used 1000 training
samples per class. The training samples were selected by an equalized random sampling out
of the training set. We validated the classification results by calculating confusion matrices,
producer’s, user’s, and overall accuracies (Foody, 2002; Olofsson et al., 2013), which were
based on the randomly clustered field-based validation set.

3.2 Trajectory analysis

The change trajectories were defined by the successive transitions between the land use/cover
categories between the years. To monitor land management regimes, we used every cropland
and grassland pixel in 1986 to determine changes, while urban and forest areas have been
masked. We defined the following eight major change trajectories with regard to 2010:
(1) permanent large-scale cropland, (2) permanent grassland, (3) permanently abandoned
(i.e., conversion of cropland to grassland with no subsequent use), (4) LSC → abandoned
→ LSC (i.e., large-scale cropland to abandonment to large-scale cropland), (5) LSC →
abandoned → SSC (i.e., large-scale cropland to abandonment to small-scale cropland), (6)
LSC → SSC (cropland parcellation, i.e., transformation of large-scale cropland to small-scale
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cropland), (7) grassland → large-scale cropland, and (8) grassland → small-scale cropland.
We summarized the remaining land use changes under the class “Others”, including, for
example, multiple changes of cropland to grassland (e.g., cropland 1986→ grassland 1993→
cropland 1999 → grassland 2006). The eight major change trajectories enabled the analysis
of the pattern of land management regimes and potential changes of land use intensity:
large-scale cropland to small-scale cropland as potentially decreasing land use intensity and
cropland abandonment, which implied no active land use intensity. However, the time period
of farmland abandonment and recultivation were not assessed with this approach.
Thus, for a more detailed analysis of the spatio-temporal patterns of abandonment and

recultivation, we analyzed the following change trajectories: (1) permanent cropland (2) per-
manent grassland, (3) permanently abandoned 1993 (i.e., conversion of cropland to grassland
until 1993 with no subsequent conversion), (4) permanently abandoned 1999, (5) permanently
abandoned 2006, (6) permanently abandoned 2010, (7) recultivated 1999 (i.e., fields that
became abandoned till 1993 and recultivated again until 1999), (8) recultivated 2006, (9)
recultivated 2010, and (10) grassland to cropland. We summarized the remaining land use
changes under the class “Others”.
As the previous trajectory analysis investigated the permanent abandonment and the

recultivation, a third trajectory analysis assessed the total abandonment rate for each year
of investigation. Therefore, we used the trajectories of cropland to grassland between 1986
and 2010 without considering whether the field is permanently abandoned or recultivated
afterwards. With other words, we detected the total rate of farmland abandonment for each
year. Differences between permanent abandonment and total abandonment may result from
the fact that total abandonment can also include multiple changes of cropland/grassland
conversion, which is not included in the permanent abandonment, but in the class “Others”.

4 Results

4.1 Object-based classification

We generated five different land use/cover maps: 1986 (Landsat), 1993, 1999, 2006 (ERS
SAR), and 2010 (Landsat + ERS SAR), using an object-based approach. Our accuracy
assessment was based on confusion matrices to calculate the overall, producer’s, and user’s
accuracies.
The base map of 1986 showed an overall accuracy of 97.2% (Table IV-1). In addition,

the classification resulted in high producer’s and user’s accuracies for the individual classes
(cropland, grassland, forest, and urban).

In the next step, we classified the ERS data of the years 1993, 1999, and 2006 into cropland
and grassland and achieved high class-specific as well as overall accuracies with 97.4%, 93.2%,
and 92.1%, respectively (Table IV-2). Although the overall accuracy was lowest for 2006,
the accuracy was still on a very high level (92.1%).
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The classification 2010 achieved a good separation of the different land management regimes
and showed an overall accuracy of 87.2% (Table IV-3). The producer’s and user’s accuracies
of large-scale cropland and grassland reached accuracies between 85.1% and 90.0%. The
producer’s and user’s accuracies of small-scale cropland was 91.8% and 71.4%, respectively.
Overall, these five land use/cover maps showed very high overall accuracies, which is

essential for an accurate change trajectory analysis.

Table IV-1: Accuracy assessment: classification results for 1986 (PA = producer’s accuracy,
UA = user’s accuracy, OA = overall accuracy).

Classes 1986
PA [%] UA [%]

Cropland 97.3 98.6
Grassland 93.3 95.5
Forest 98.7 100.0
Urban 100.0 73.7
OA 97.2%

Table IV-2: Accuracy assessment: classification results for 1993, 1999, and 2006 (PA =
producer’s accuracy, UA = user’s accuracy, OA = overall accuracy).

Classes 1993 1999 2006
PA [%] UA [%] PA [%] UA [%] PA [%] UA [%]

Cropland 99.1 97.7 93.2 97.3 89.7 96.5
Grassland 89.6 95.6 93.4 84.5 95.5 86.9
OA 97.4% 93.2% 92.1%

Table IV-3: Accuracy assessment: classification results for 2010 (PA = producer’s accuracy,
UA = user’s accuracy, OA = overall accuracy, LSC = large-scale cropland, SSC
= small-scale cropland).

Classes 2010
PA [%] UA [%]

LSC 85.1 89.7
SSC 91.8 71.4
Grassland 90.0 88.3
OA 87.2%

4.2 Trajectory analysis

We used a change trajectory analysis to assess land management regimes changes between
1986 and 2010. Generally, our change detection showed substantial potential for monitoring
land management regimes due to high accuracies of our classification of each year.
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Table IV-4: Quantification of the land management regimes change (LSC = large-scale
cropland, SSC = small-scale cropland).

Change estimation [ha] [%]
LSC permanent 105,867 24.5

Grassland permanent 22,340 5.2
Permanently abandoned 76,591 17.7

LSC → abandoned → LSC 46,593 10.8
LSC → abandoned → SSC 29,738 6.9

LSC → SSC 79,735 18.5
Grassland → LSC 8,402 1.9
Grassland → SSC 4,379 1.0

Others 58,412 13.5

The final land management regimes change map showed that large parts of the study
area were permanently used for large-scale cropland, mainly in the center of the study area
(Figure IV-3). In the central eastern part of the study area, the farmland parcellation, i.e.,
the transformation from large-scale cropland to small-scale cropland (dark yellow), frequently
occurred. In contrast, in the south east of the study area, large-scale cropland, which was
temporarily abandoned, was recultivated as large-scale cropland until 2010 (orange). Land
use conversion from grassland to either large-scale cropland or small-scale cropland was
spread over the study area, however, it was very rare in its extent.
The non-forest and non-urban area (from now on referred to as area) covered about

432,000 ha. About 24.5% of this area was permanently cultivated with large-scale cropland
between 1986 and 2010 while 18.5% was transformed from large-scale cropland to small-
scale cropland (Table IV-4). At the same time, 10.8% of the area was recultivated as
large-scale cropland after becoming abandoned and 6.9% was recultivated as small-scale
cropland. While about 17.7% (10.8% + 6.9%) of the area was only temporally abandoned
and recultivated later on, 17.7% became permanently abandoned and was not recultivated
during the observation period.
Analyzing the spatio-temporal patterns of farmland abandonment revealed that parts of

the northern study area were the first that became permanently abandoned in the 1990s
(yellow and orange). Thus, permanent grassland and abandonment were dominant in the
northern part of the study area (Figure IV-4). Conversely, in the south and west of the
study site farmland abandonment occurred at a later time, particularly between 2000 and
2006 as well as between 2007 and 2010 (dark red and light red). Moreover, selected areas
were recultivated until 2010 (dark green).
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Figure IV-3: Land management regimes change map, based on Landsat and ERS data be-
tween 1986 and 2010 (LSC = large-scale cropland, SSC = small-scale cropland).
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Figure IV-4: Change map showing farmland abandonment and recultivation, based on Land-
sat and ERS data between 1986 and 2010.
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The analysis of the temporal stages of farmland abandonment revealed that only about
3.4% of the non-forest/non-urban area was permanently abandoned since 1993 (Table IV-5).
In 1999, 7.9% (sum of 1993 and 1999) of the area was already permanently abandoned.
The cumulative permanent farmland abandonment increased to 13.9% in 2006. Until 2010,
we observed the highest permanent abandonment with 17.7% of the area, while about
3.8% became permanently abandoned between 2006 and 2010. Moreover, 17.7% of former
abandonment was recultivated, particularly at the end of the 2000s (i.e., 13.5% recultivated
2010).

Table IV-5: Quantification of farmland abandonment and recultivation.
Change estimation [ha] [%]
Cropland permanent 185,602 43.0
Grassland permanent 22,340 5.2

Permanently abandoned 1993 14,734 3.4
Permanently abandoned 1999 19,500 4.5
Permanently abandoned 2006 26,134 6.0
Permanently abandoned 2010 16,223 3.8

Recultivated 1999 10,238 2.4
Recultivated 2006 7,670 1.8
Recultivated 2010 58,423 13.5

Grassland → Cropland 12,781 2.9
Others 58,412 13.5

The quantitative analysis of the total abandonment revealed that about 11.1% (47,897 ha)
of the non-forest/non-urban area that was cropland in the 1980s was abandoned in 1993
(Table IV-6). In 1999, the total abandonment increased to 13.7% of the area. The highest
total abandonment was in 2006 with 30.6% (132,406 ha) of the study area. In 2010, the total
abandonment decreased in comparison to 2006 to 19.7%.

Table IV-6: Quantification of the total abandonment for each time step.
Change estimation [ha] [%]

Total abandonment 1993 47,897 11.1
Total abandonment 1999 59,120 13.7
Total abandonment 2006 132,406 30.6
Total abandonment 2010 85,171 19.7

5 Discussion

In the presented study, we monitored and analyzed changes in land use and management,
including farmland abandonment, recultivation, and the transformation from common large-
scale agriculture to small-scale agriculture. Due to spectral ambiguities, phenological vari-
ability, and limited data availability, a detailed and accurate mapping of these processes is
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5 Discussion

challenging. Therefore, an adequate strategy to monitor land management regimes is pro-
posed, using an object-based approach with multitemporal SAR and multispectral remote
sensing data.
By using Landsat and ERS SAR data, we received high overall classification accuracies

between 87.2% and 97.4%. The good temporal coverage of at least one observation per
season (Figure IV-2) has possibly favored the detection of land management. For example,
grassland has a relatively constant signal signature during a year while, for example, plowing
and harvesting can cause sharp changes in the signal of arable land. As expected, the use
of spatial information due to object-based features in addition to the spectral information
of each pixel ensured the precise mapping of classes that are hard to differentiate solely
at pixel level, such as large-scale cropland and small-scale cropland (Hussain et al., 2013;
Stefanski et al., 2014). This is in accordance with other studies that have shown the benefit
of object-based classification of remote sensing data (Whiteside et al., 2011; Stefanski et al.,
2013; Blaschke et al., 2014).

The analysis of change trajectories demand accurate classifications at every time step,
which we achieved in general with relative high producer’s and user’s accuracies. Furthermore,
the class “Others” summarized all remaining, not particularly investigated change classes,
including implausible classes such as multiple changes of cropland to grassland. Therefore,
inaccurate change classes were more likely assigned to this residue class, while the mapping
of the relevant change classes was more reliably.

The first objective was the assessment of the value of SAR data for complementing optical
data for monitoring land management regimes. Estimating land use and land cover changes
by change trajectory analysis demand accurate land cover maps at each step. Our accuracy
assessment clearly showed that SAR data are very well suited for mapping cropland and
grassland with high classification accuracies (Table IV-2). The high accuracies for mapping
agricultural classes, which are hard to separate by mono-temporal analyses, underline the
value of multitemporal analyses. This is in accordance with the results in other studies
(Blaes et al., 2005; McNairn et al., 2009b; Waske & Braun, 2009), where multitemporal
C-Band data was used for crop type mapping. In general, these findings indicate that
multitemporal SAR data are a promising alternative to complement optical data. SAR-
based classifications can be used to fill temporal data gaps where no optical data is available
for a particular year of interest and thus, enable a more detailed change analysis within
time. Although most applications are based on C-band data, land cover information can be
mapped by other frequencies such as X- and L-band data (McNairn et al., 2009b; Sonobe
et al., 2014), for example, provided by TerraSAR-X and ALOS PALSAR. Nevertheless, for
long-term monitoring the use of C-band is particularly interesting, because ERS-2, Envisat
and RADARSAT have provided SAR data for several years. Moreover, data continuity is
secured due to ongoing missions such as RADARSAT-2 and the recently launched Sentinel-1.
As discussed in other studies, the classification accuracy can be further increased by

combining optical and SAR data (Waske & van der Linden, 2008; McNairn et al., 2009b;
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Stefanski et al., 2014). The main reason for this is assumed to be the different nature of the
used data types. SAR and optical systems operate in different wavelengths, ranging from
visible to microwave domain. Consequently, the two systems provide different information.
Moreover, optical data are characterized by a high spectral resolution, when compared to
SAR data, while multi-temporal data sets within one growing season can be produced most
reliably using SAR systems. The latter fact seems particularly relevant when the application
demands specific acquisition periods. In context of mapping farmland abandonment, a
spring observation is highly relevant to differentiate arable land and abandoned arable
land. Moreover, a higher number of observations further increases the mapping accuracy
(Prishchepov et al., 2012). The combination of SAR data with (a limited number of) optical
images seems particularly relevant over larger areas, where the availability of adequate optical
data sets is likely to decrease. Moreover, SAR-based maps can be used to fill-in spatial gaps
in optical-based classifications, where clouds and haze result in missing values (McNairn
et al., 2009b).

Our second objective was to analyze the changes of land management intensities between
1986 and 2010. The mapped changes such as the substantial permanent farmland aban-
donment (17.7% – Table IV-4) and the emerge of subsistence agriculture (26.4% – Table
IV-4) can be traced back to the collapse of the Soviet Union and its planned-economy, which
led to the end of guaranteed prices, the breakaway of former markets, and a rising foreign
competition (Sabates-Wheeler, 2002; Kuemmerle et al., 2006; Baumann et al., 2011). The
limits in infrastructure and migration from rural areas were additional issues that lead to
increases in farmland abandonment (Ioffe & Nefedova, 2004; Müller & Munroe, 2008).

Economic transition in Eastern Europe led to the emergence of a large subsistence sector
(Kostov & Lingard, 2004). Subsistence agriculture is often seen as a reaction of rural
households to deal with hardships of transition (Mathijs & Noev, 2004), which is emphasized
by the fact that the majority of subsistence agriculture (small-scale cropland) in our study
area was directly converted from large-scale cropland. This process of land use intensity
change was likely favored by the substantial political changes that led to the abandonment
of the kolkhoz (i.e., collective farms in the Soviet Union) and thus, the ownership of the
fields passed to the private property of the rural population.

However, about one quarter of the non-forest/non-urban area was permanently cultivated
as large-scale cropland. The high rate of recultivation as large-scale cropland (i.e., potentially
high intensive farming) led to a rate of 24.5% large-scale farming in 2010. The main reason
for this may lie in the dominant soil types in this region. Stefanski et al. (2014) found that
54% of the large-scale cropland and even 60% of the small-scale cropland was cultivated on
fertile Phaeozems and Chernozems, which are attractive for agriculture.

Our third objective was the analysis of spatio-temporal patterns of farmland abandonment
and recultivation between 1986 and 2010. While about 11.1% of the area became abandoned
until 1993, most fields were recultivated later on and only 3.4% in 1993 became permanently
abandoned. That most fields became abandoned between 1999 and 2006 up to a rate of
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30.6% was unexpected, as we expected the highest rates of abandonment in the 1990s (Table
IV-6). However, we mentioned above that the kolkhoz collapsed in the 1990s and during
these times a high amount of fields had to be used for subsistence farming. In the year
1999, an important page was turned in agricultural policy in Ukraine, including land reforms
and a more stable trade policy (Aslund, 2002; OECD, 2004). This led to a period of
improved efficiency-driven growth in the agricultural sector. Consequently, less farmland for
self-sufficiency was needed and a continued decline in formal farm employment took place
(OECD, 2004). This may explain the high rate of abandonment in 2006. With the recent
integration in world markets and the emergence of agri-business, large areas were recultivated
in 2010 while the abandonment rate decreased (Table IV-5).
Our agricultural land change rates are in accordance to previous case studies in Eastern

Europe. For example, Kuemmerle et al. (2011) detected about 13% of farmland abandonment
in western Ukraine in 2007. Likely reasons for the moderate differences to our results (17.7%
permanent abandonment) are that their abandonment rate was based on the entire study
area, and not just accounting the non-forest and non-urban area, as it was in our case.
Alcantara et al. (2012) detected 15.1% abandoned cropland in Eastern Europe for 2005 by
using MODIS data at a large scale (parts of the Baltic States, Belarus, Poland, and Ukraine).
In contrast to this, other studies showed abandonment rates of 21% in Southern Romania
(Kuemmerle et al., 2009) and 29% in the Carpathians Mountains (Griffiths et al., 2013).
However, mountainous regions are marginal for agriculture and thus, farmland abandonment
is more likely in such less suitable regions (Ioffe et al., 2012; Griffiths et al., 2013; Prishchepov
et al., 2013).

6 Conclusions

Wemonitored land use changes, including large-scale cropland, small-scale cropland, farmland
abandonment, and recultivation in western Ukraine by using an object-based approach with
Landsat and ERS SAR data. With the utilization of a change trajectory analysis, we
successfully estimated long term changes of land use intensity. We showed that SAR data
is worthwhile to fill gaps of optical data. The good results that we received for separating
different land use/cover classes at several time periods enabled a detailed trajectory analysis.
This is especially beneficial as the availability of optical data can be limited due to cloud
cover. This fact is particularly critical when mapping large areas and the accurate separation
of individual land cover classes demands specific acquisitions. While the availability of
adequate optical data sets can be limited in this context, data sets with high temporal
coverage within a year can best be produced by using synthetic aperture radar. In our
study region, we found substantial farmland abandonment both in the 1990s, basically
characterized by the post-socialist transition processes, and in the 2000s. Some reasons
for farmland abandonment in the 2000s might be land reforms and a more stable trade
policy that led to a period of improved efficiency-driven growth in the agricultural sector.
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Furthermore, we found a noticeable conversion of large-scale cropland to small-scale cropland
in western Ukraine, showing the emerge of subsistence agriculture due to the demand of
self-sufficiency. Especially between 2006 and 2010, we detected an increasing recultivation
rate of abandoned cropland in western Ukraine, traced back to the recent integration in world
markets and the emergence of agri-business. Overall, our approach constitutes a feasible
and accurate approach for monitoring land management regimes over a long time period.
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Chapter V: Synthesis

1 Summary and main findings

The overarching goal of this thesis was to develop a framework for monitoring land manage-
ment regimes that differ in land use intensity and to apply this to a case study in western
Ukraine to advance the mapping and understanding of broad-scale land use changes. Eastern
Europe is a prime example for studying such land changes because of the profound political
and socio-economic upheavals within the past three decades. To advance object-based image
analysis, its prerequisite, the image segmentation process, was optimized by the develop-
ment of a semi-automatic parameter selection. This method was integrated into an overall
mapping framework consisting of a hierarchical, object-based analysis, using a joint data set
of multispectral and SAR imagery. In addition to the remote sensing data, auxiliary data
was used for a more detailed analysis of the land use patterns, which revealed interesting
interconnections. Finally, land use and land cover changes were monitored between 1986
and 2010 in order to assess the spatio-temporal patterns of land use intensity during the
Soviet and post-Soviet time.
In the following, each research question corresponding to one of the core chapters of this

dissertation is answered, the main conclusions are presented, and future perspectives are
discussed.

Research Question 1: How can object-based image analysis be optimized and simplified
in order to improve both the accuracy and feasibility of remote sensing analysis?

In Chapter II, a new semi-automatic parameter selection approach for the Superpixel Contour
segmentation algorithm was developed. It advances the image segmentation process in order
to get optimal segmentation results with regard to the classification accuracy. The Superpixel
Contour algorithm was newly introduced in the remote sensing context and proved to be
useful to partition images into multiple homogenous regions. Its segmentation-based object
features, such as mean value and standard deviation, led to significant higher classification
accuracies in comparison to pixel-based approaches. Since image segmentation parameters
have to be selected for each individual segmentation task, which can even include multiple
segmentations for one image to capture different object-sizes, the segmentation parameter
selection is often time consuming and requires a certain user knowledge. To optimize this
process with regard to the segmentation quality and the users’ expenditure of time, the
proposed semi-automatic parameter selection supports the user in finding overall and class-
specific optimal segmentations. The parameter selection strategy is based on the internal
accuracy assessment of the Random Forest, which is fast and only requires training data.
Optionally, the segmentation quality can also be assessed by using validation data. The
Random Forest is very suitable for the parameter selection process because it does not need
a specific parameter selection itself and provides fast and robust classifications. Furthermore,
the proposed approach is scale-invariance due to the classification-based segmentation quality
assessment, which means that the parameter selection works independently from the image
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resolution. The semi-automatic parameter selection was successfully evaluated by land cover
classifications of two study areas and the general performance (i.e., independently from the
parameter selection approach) of the Superpixel Contour algorithm was similar to the widely-
used multiresolution segmentation in eCognition. Finally, the semi-automatic parameter
selection supported the finding of optimal image segmentations for the object-based analysis
of land use and land cover in western Ukraine.

Research Question 2: How can the representation of land use intensity be improved in
order to efficiently map land use management based on remote sensing data and what are
the methodological and data requirements for mapping land management regimes?

In Chapter III, land management regimes were used to represent different land use intensity
stages: 1) large-scale, intensive farmland; 2) small-scale, subsistence farmland; and 3)
farmland abandonment that implies no active land use. Since land use intensity is a complex
and multidimensional term and not directly mappable with remote sensing data, the use
of field size as a proxy variable for the degree of mechanization enabled the mapping of
land management regimes in western Ukraine. While large fields tend to require a high
degree of mechanization and are typically intensively used in industrialized agriculture, small
fields indicate low management intensity with a low degree of mechanization and are often
accompanied by low levels of fertilizer and pesticide inputs. The identification of large-scale
and small-scale cropland is not possible when using only spectral per pixel information.
This makes object-based analysis with its spatial information essential for mapping land
management regimes. To adequately distinguish pasture and fallow/abandoned farmland, it
is necessary to have a good temporal resolution of the remote sensing data, because both
classes account basically to grassland and the extraction of different phenological stages over
the time is the key difference to distinguish both classes. As multispectral data depends on
cloud-free image acquisition dates, the relatively weather independent SAR data ensured
detailed temporal information. Overall, a hierarchical classification framework was used to
integrate multispectral and SAR data as well as object-based features from different scales
to map the land management regimes. Based on the generated land management regimes
map and auxiliary data, the spatial patterns of land use and management were explored. In
general, the observed patterns were as expected and in accordance with the classical land
rent theory so that the land use intensity is lower on plots marginal for agricultural land
use (e.g., on less suitable soils, high elevations, or far away from markets). Only small-scale
cropland as subsistence agriculture with a potentially low management intensity showed
slightly different patterns, as this was mostly found on soils suitable for agriculture. However,
this is not very surprising as small-scale cropland became important after the collapse of the
Soviet Union and many fertile soils in the vicinity of the cities were transformed from the
former large-scale cropland to subsistence agriculture.
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Research Question 3: What were the specific rates and patterns of land use and
management changes in western Ukraine since 1986?

In Chapter IV, the monitoring of land management regimes between 1986 and 2010 was
presented and discussed. The results clearly showed widespread changes of land management
after the collapse of the Soviet Union in 1991, such as the emerge of farmland abandonment
and subsistence agriculture. Substantial farmland abandonment of large, collectivized fields
during the Soviet era were detected in the 1990s and 2000s. While the abandonment in the
first period was characterized by post-socialist transition processes due to the dissolution of
former collective farms (kolkhoz), the farmland abandonment in the 2000s likely goes back
to land reforms, which improved the farmland efficiency so that less farmland was required
for self-sufficiency. With the integration in world markets and the emerge of agri-business
at the end of the 2000s, about 13.5% of the former abandoned farmland was recultivated
between 2007 and 2010 and the total abandonment rate decreased to around 19.7% in 2010.
In total, 17.7% of the abandoned farmland between 1994 and 2010 was recultivated. Another
consequence of the collapse of socialism was the emerge of subsistence agriculture. Since
the beginning of the 1990s, around 18.5% of the large-scale cropland was directly converted
to small-scale cropland, 6.9% of the abandoned farmland was recultivated as small-scale
cropland, and about 1.0% of the former grassland was used as small-scale cropland. In total,
the rate of small-scale cropland added up to about 26.4% in 2010. Large-scale cropland was
the most widespread agricultural class in 2010 with a rate of 37.2%, composed of 24.5% of
permanent large-scale cropland, 10.8% recultivation as large-scale cropland, and about 1.9%
of grassland to large-scale cropland conversion.

2 Main conclusions and future perspectives

The rising demand for agricultural products, based on the growing world population, diet
changes, and an increasing role of bioenergy is expected to require a doubling of the agricul-
tural production by 2050 (FAO, 2009; Godfray et al., 2010; Foley et al., 2011). Increasing
agricultural production by expanding agriculture into natural ecosystems entails negative
consequences for the environment and biodiversity. In comparison to agricultural expansion,
the intensification of existing farmland in sustainable ways (e.g., based on efficient organic
farming on underperforming fields or improving the management of nutrient and water) and
the recultivation of abandoned farmland are promising avenues for increasing agricultural
production with minimal environmental disadvantages. To assess where such strategies can
be pursued requires advanced spatial information about land use intensity that goes beyond
broad land use and land cover classes. In general, a spatially detailed map of regions with
potentials for increasing agricultural production would be highly beneficial.
This dissertation makes a step into the direction for a more nuanced mapping of land

use and land cover and to examine proxies for land use intensity with a resolution on field
plot basis. With the approach for mapping and monitoring land management regimes, a
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framework was developed to explore land use classes in more detail by detecting large-scale
cropland, small-scale cropland, and farmland abandonment, representing high, low, and no
management intensity, respectively. In Chapter IV, a rate of 26.4% of small-scale cropland and
19.7% of total farmland abandonment was identified in western Ukraine for 2010, suggesting
a considerable potential for agricultural intensification respective recultivation in general.
However, the analysis in Chapter III showed that 45% of the abandoned farmland was on
Podzols, 28% on Histosols, and 2% on Leptosols, which means that about 75% of the former
farmland is not very suitable for agriculture. This likely results from the massive agricultural
expansion during the Soviet era (Ioffe & Nefedova, 2004). Around 60% of the small-scale
cropland was located on fertile soils (Phaeozems and Chernozems). Altogether, 25% of
the abandoned farmland and 60% of the small-scale cropland was on fertile soils, which
suggests still an interesting potential for increasing agricultural production. The identified
potential for increasing agricultural production offers the opportunity to further strengthen
Ukraine’s position in the global agricultural sector, which is in concordance with other studies,
predicting Ukraine an important future role in the global agricultural market (USDA, 2010;
Liefert et al., 2010; Deininger et al., 2013). The consequences of farmland abandonment
are manifold. On the one hand, negative consequences of farmland abandonment are an
increasing fire risk or sometimes desertification, depending on the individual local conditions
such as climatic influences, soil type, and the former intensity of land use (Hölzel et al.,
2002; Romero-Calcerrada & Perry, 2004). On the other hand, the positive mid- and long-
term impacts of abandoned farmland are a result of revegetation (i.e., shrub land, forest
succession), increasing biodiversity, sometimes even including rare species, and the recovery
of ecosystem services like soil recovery or carbon sequestration, which can finally result in
new natural landscape types, for example, steppe or secondary forests (Hölzel et al., 2002;
Romero-Calcerrada & Perry, 2004; Rey Benayas, 2007; Navarro & Pereira, 2012). In the
end, the environmental trade-offs of increasing agricultural production should be taken into
consideration from case to case.

The methodological core of this research was an object-based approach based on multi-
sensor data, using the Superpixel Contour segmentation with a semi-automatic parameter
selection and the Random Forest classifier. The combination of both approaches to one
comprehensive framework proved to be very suitable for an accurate and robust mapping and
monitoring of land management regimes. Object-based image analysis with its geospatial
information has generally great potential for improving various remote sensing applications,
for example in the context of farmland/rangeland, vegetation, forest inventory, or urban
mapping (Stefanski et al., 2014a; Laliberte et al., 2007; Yu et al., 2006; Chubey et al., 2006;
Thomas et al., 2003). Particularly, the combination of the presented mapping framework of
land management regimes with the direct linking with indicators of agricultural suitability
(e.g., soil type, elevation, slope, remoteness to cities) can complete an optimal approach for
creating a mapping system that systematically evaluates the direct agricultural potential
for each field. For a systematic and broad-scale mapping of land management regimes, the
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combination of the developed hierarchical, object-based mapping framework with a chain
classification technique could be an interesting methodological approach. The principle of
a chain classification is that the initial scene is traditionally classified and its result – in
the overlapping part with the neighboring scene – is used to derive training samples for the
next classification, which allows generally an accurate broad-scale mapping with a reduced
demand for expensive in-situ data (Knorn et al., 2009). Furthermore, the use of Import
Vector Machines (IVM) could be interesting, as they perform similar as the widely used Sup-
port Vector Machines (SVM), but provide additionally reliable probabilities (Zhu & Hastie,
2005; Roscher et al., 2012). These probabilities could be used to improve the classification
accuracy and compensate small training sets to a certain degree by performing a self-training
to identify new training samples. However, a systematic and broad-scale mapping of land
management regimes would require the availability of adequate remote sensing and auxiliary
data as well as suitable proxies for land use intensity, which may vary according to the
study region. The opened Landsat archive and the current Landsat-8 mission as well as
the upcoming Sentinel missions offer a huge potential for such mapping and monitoring
applications for the future (Woodcock et al., 2008; Malenovský et al., 2012; Wulder et al.,
2012). The Sentinel-1A (C-band SAR) satellite has already started and operates in a single
or dual polarization mode with a resolution of up to five meters and is supposed to continue
the tradition of the ERS and Envisat SAR missions (Torres et al., 2012). The Sentinel-2
(multispectral) mission will operate with up to 13 spectral bands and with a resolution be-
tween 10–60 meters and is supposed to complement the Landsat and SPOT satellite missions
(Drusch et al., 2012).

With the use of optical and SAR multisensor data, different yet complementary information
about the Earth’s surface could be used to significantly improve the land use and land cover
classification accuracy. In the case of, for example, pasture and fallow, which have a similar
land cover but differ in their phenological stages, the SAR data with its high temporal
resolution provided elementary information to differentiate both classes. In general, the joint
use of optical and SAR data can contribute to a more precise mapping for many applications
(Kuplich et al., 2000; Blaes et al., 2005; Waske & Benediktsson, 2007). Furthermore, with
the relatively weather independent SAR sensors, temporal constrains regarding specific
target dates can be satisfied with SAR data if cloud cover prevents the use of optical image
acquisitions. This is especially relevant in time critical situations like natural hazards or
disaster management (DiGiacomo et al., 2004; Joyce et al., 2009), in which the satellite
systems provide nearly real-time information. Furthermore, SAR data is very useful if a
constant time series is required, for example to observe different phenological stages, surface
deformations, or for a detailed monitoring of soil moisture (Lanari et al., 2004; Balenzano
et al., 2011). For the monitoring of land use changes in Chapter IV, a combined optical
and SAR time series was successfully used and it was shown that SAR can be a reliable
alternative to fill gaps of optical time series. Overall, the synergistic effects of optical and
SAR data sets are valuable for both inter- and intra-annual analysis.
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