Low Temperature STM Investigation of Molecular Manipulation, Decoupling, and Switching

im Fachbereich Physik der Freien Universität Berlin

eingereichte Dissertation vorgelegt von

Micol Alemani

18 December 2006

Diese Arbeit wurde in der Zeit von Dezember 2002 bis Oktober 2006 unter der Aufsicht von Frau Priv. Doz. Dr. F. Moresco am Fachbereich Physik der Freien Universität Berlin durchgeführt.

Erstgutachter: Priv. Doz. Dr. F. Moresco Zweitgutachter: Prof. Dr. K. Horn Disputationstermin: 18 Dezember 2006

Abstract

In this thesis, large organic molecules are investigated on metal and oxide surfaces by means of a low temperature scanning tunneling microscope (LT-STM) working at 5 K. All the studied systems are of particular interest for the development of molecular electronics, which is based on the application of single molecules for electrical devices.

This work begins with the study of the lateral manipulation in constant tip height of the Lander molecule, a specially designed molecular wire, on Cu(211). The exact molecular conformations of the molecule on Cu(211) were determined with the help of theoretical calculations and allow a first understanding of the modifications induced to the molecule upon manipulation. A statistical analysis of the manipulation experiments was done demonstrating the effect of the substrate atomic corrugation on the manipulation direction. Furthermore, by studying the current signal recorded during the manipulation and comparing it with theoretical calculations, information on the molecular deformations during its movement on the surface were extracted.

In the second part of the thesis, the study of the formation of thin vanadium oxide films grown on $Cu_3Au(100)$ is presented. New oxide phases have been formed that exhibit novel, non-bulk-like structures. The thin vanadium oxide films have been used to decouple pentacene molecules from the metallic substrate. The adsorption of the pentacene molecule was investigated firstly on $Cu_3Au(100)$, then on the oxidized $Cu_3Au(100)$, and finally on thin vanadium oxides films. The decoupling effect of the oxide film has allowed the imaging of the unperturbed molecular HOMO (highest occupied molecular orbital).

Finally, an azobenzene derivative is studied on Au(111). The molecular conformation upon adsorption was exactly determined. Azobenzene is a very well known molecular switch in the gas phase and in solution, based on a *trans-cis* isomerization. By applying voltage pulses with the STM tip, the reversible isomerization of the molecules from the *trans* to the *cis* configuration was realized. The switching process was studied in detail by changing the STM parameters thus successful selecting diverse driving mechanisms of the isomerization process. It turned out that the reversible isomerization is induced by the electric field in the STM junction. Furthermore, in the case of the cis—trans switching, the role of tunneling electrons in the process was investigated.

molecular imaging and manipulation, which has been used for the experiments described in this thesis.

Kurzfassung

In dieser Arbeit werden grosse organische Moleküle auf Metall- und Oxydoberflächen mit einem Tieftemperatur-Rastertunnelmikroskop (TT-RTM) bei 5 K untersucht. Die betrachteten Systeme sind alle von grossem Interesse für die Entwicklung der molekularen Elektronik, welche auf der Anwendung einzelner Moleküle für elektrische Baugruppen basiert.

Die Arbeit beginnt mit der lateralen Manipulation eines sogenannten "Lander- Moleküls", als Beispiel eines molekularen Leiters ("molecular wire") auf einer Cu(211) Oberfläche, mit dem RTM bei konstanter Spitzenhöhe. Die detaillierten molekularen Konformationen dieses Moleküls auf Cu(211) wurden mit Hilfe theoretischer Rechnungen bestimmt. Sie erlauben weiterhin ein erstes Verständnis der spitzeninduzierten Modifikationen bei der Manipulation. Der Einfluss der Substratkorrugation auf die Manipulationsrichtung wurde durch eine statistische Analyse verifiziert. Aus einem Vergleich des gemessenen Manipulationstunnelstroms mit Rechnungen erhält man Informationen über die Deformation der Moleküle während der Bewegung auf der Oberfläche.

Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit dem Wachstum dünner Vanadiumoxydfilme auf Cu₃Au(100). Oxydphasen mit neuen nicht "bulk"-ähnlichen Strukturen wurden hergestellt. Diese dünnen Filme wurden benutzt um Pentacenmoleküle von der metallischen Oberfläche zu entkoppeln. Die Adsorption der Pentacenmoleküle wurde systematisch in allen Präparationsschritten des Vanadiumoxydfilms untersucht; zuerst auf reinem Cu₃Au(100), dann auf oxydiertem Cu₃Au(100) und schliesslich auf den Vanadiumoxydfilmen. Der Oxydfilm entkoppelte das Molekül von der metallischen Oberfläche, so dass das molekulare HOMO ("highest occupied molecular orbital") im RTM-Bild ungestört dargestellt werden konnte.

Schliesslich wird im letzten Teil der Arbeit ein Azobenzolderivativ auf Au(111) untersucht. Das Molekül präsentiert einen bekannten molekularen Schalter in der Gasphase und in Lösung, basierend auf einer *trans-cis* Isomerisierung. Die Konformation der adsorbierten Moleküle wurde untersucht. Die reversible Isomerisierung des Moleküls auf der Oberfläche von *trans* nach *cis* wurde durch Spannungspulse mit der RTM- Spitze induziert. Die zugrundeliegenden Mechanismen dieses Schaltprozesses wurden in einer systematischen Studie durch Änderung der RTM Parameter erforscht. Die reversible Isomerisierung von *trans* nach *cis* wird durch das elektrische Feld unter der RTM- Spitze induziert. Weiterhin wurde die Rolle der Tunnelelektronen im Prozess der *cis* \rightarrow *trans* Isomerisierung untersucht.

Ein Teil der Arbeit behandelt den Aufbau des Tieftemperatur- Rastertunnelmikroskops zur Abbildung und Manipulation von Molekülen auf Oberflächen, das in dieser Arbeit benutzt wurde.

Contents

Contents

1	Intr	oduction	1
2	Basi	c principles	5
	2.1	Scanning Tunneling Microscopy	5
	2.2	Scanning Tunneling Microscopy: theoretical description	6
	2.3	Scanning Tunneling Spectroscopy	10
	2.4	Elastic Scattering Quantum Chemistry	12
	2.5	Manipulation of atoms and molecules by STM	15
		2.5.1 Atomic forces	15
		2.5.2 Tunneling electrons	18
		2.5.3 Electric field	19
3	Exp	erimental setup of the low temperature STM	23
	3.1	Vacuum system	23
	3.2	The preparation chamber	24
	3.3	Cryostat	28
	3.4	Scanner	30
	3.5	STM-Tip	33
	3.6	Wiring system	34
	3.7	Electronics	34
	3.8	Isolation	35
		3.8.1 Mechanical noise	35
		3.8.2 Electronic noise	36
	3.9	Performance of the LT-STM	37

4	Man	nipulation of Lander molecules on Cu(211)	39
	4.1	The Cu(211) surface	40
	4.2	Lander molecule	40
	4.3	Adsorption	41
	4.4	Constant height manipulation on Cu(211)	46
	4.5	Manipulation signal	51
		4.5.1 Manipulation parallel to the Cu(211) steps	51
		4.5.2 Manipulation perpendicular to the Cu(211) steps	56
	4.6	Conclusion	57
5	Gro	wth of thin vanadium oxide films and adsorption of pentacene	59
	5.1	Pentacene molecule	61
	5.2	Preparation of thin vanadium oxide films on $Cu_3Au(100)$	62
	5.3	$Cu_3Au(100)$ and adsorption of Pentacene	65
	5.4	Oxygen on $Cu_3Au(100)$ and adsorption of Pentacene	68
	5.5	Thin $V_x O_y$ films and adsorption of Pentacene	71
	5.6	Conclusion	76
6	Tip-	induced isomerization of an azobenzene derivative on Au(111)	79
	6.1	A molecular switch: azobenzene molecule	80
	6.2	The Au(111) surface	82
	6.3	TBA molecule	83
	6.4	Adsorption of TBA on Au(111)	84
		6.4.1 Isolated molecules	86
		6.4.2 Islands	89
	6.5	Tip-induced isomerization of TBA	91
	6.6	Model for the <i>cis</i> -isomer	95
	6.7	Study of the isomerization mechanism	97
		6.7.1 Dependence of the isomerization process on the sample voltage	
		and on the tip height	97
		6.7.2 Lateral distribution of the switching process	100
		6.7.3 Switching by electric field in the STM junction	100

		6.7.4	cis \rightarrow trans isomerization for small tip heights $\ldots \ldots \ldots$. 103
		6.7.5	Scanning tunneling spectroscopy	. 107
	6.8	Conclu	ision	. 110
7	Con	clusions	s and outlook	113
Bi	oliogr	aphy		117
Ap	pend	ix		133
Cı	rricu	lum vit	ae	136
Pu	blicat	tions		138
Ac	know	ledgme	nts	139

List of Figures

2.1	Tunnel effect	6
2.2	Principle of Scanning Tunneling Spectroscopy	11
2.3	ESQC	13
2.4	Manipulation with chemical forces	16
2.5	Manipulation modes: pulling, pushing, sliding	17
2.6	Manipulation with tunneling electrons	18
2.7	Electric field in the STM junction	19
3.1	The pumping system	24
3.2	The UHV chamber	25
3.3	The manipulator	26
3.4	The evaporator of molecules	27
3.5	The cryostat	29
3.6	The STM scanner	31
3.7	The STM coarse approach	32
3.8	Test measurement 1	37
3.9	Test measurement 2	38
4.1	Cu(211)	40
4.2	Lander molecule	41
4.3	Lander adsorption on Cu(211) at low temperature	42
4.4	Legs conformations of Lander molecule on copper	43
4.5	Models calculated of the adsorption of Lander molecular board on Cu(211)	44
4.6	Conformations of Lander molecule on Cu(211)	44
4.7	Lander adsorption on Cu(211) at room temperature	46
4.8	Constant height manipulation mode	47

4.9	Formation of a molecular chain by means of STM manipulation	48
4.10	Manipulations of Lander on Cu(211)	49
4.11	Signal of manipulation parallel to the intrinsic steps of $Cu(211)$	51
4.12	Calculated signal for manipulation parallel to the intrinsic $Cu(211)$ steps .	54
4.13	Signal of the manipulation perpendicular to the intrinsic steps of Cu(211)	56
5.1	Pentacene molecule	61
5.2	Bulk phases of vanadium oxide	62
5.3	Preparation of thin vanadium oxide film	64
5.4	$Cu_3Au(100)$	65
5.5	Overview of pentacene adsorbed on $Cu_3Au(100)$	66
5.6	Pentacene adsorbed on $Cu_3Au(100)$	67
5.7	$Cu_3Au(100)+O$	68
5.8	Pentacene adsorbed on $Cu_3Au(100)+O$	70
5.9	Thin vanadium oxide films with low vanadium coverage (1/12 MLE) and	
	annealing at 700 K for three minutes	72
5.10	Manipulation of atoms of vanadium oxide	73
5.11	Thin vanadium oxide films with high vanadium coverage ($1/3$ MLE) and	
	annealing at 700 K for three minutes	74
5.12	Thin vanadium oxide films with low vanadium coverage ($1/12$ MLE) and	
	annealing at 600 K for three minutes	75
5.13	Adsorption of pentacene on vanadium oxide	76
6.1	Azobenzene molecule	79
6.2	Photo-isomerization	81
6.3	Au(111)	83
6.4	TBA molecule	84
6.5	Photo- and thermal- isomerization of TBA in solution	85
6.6	Adsorption of TBA on Au(111)	86
6.7	Isolated molecules on Au(111)	87
6.8	Model of TBA on Au(111) in the <i>trans</i> - form	87
6.9	Adsorption of isolated molecules on Au(111)	88

6.10	Ordering of molecular islands	89
6.11	Structure of molecular islands	90
6.12	Isomerization experiment	92
6.13	cis-isomer	93
6.14	Manipulation with chemical forces	94
6.15	Isolated <i>cis</i> - isomer	95
6.16	Model of the <i>cis</i> - isomer of TBA	96
6.17	Dependence of the threshold voltage on the tip height for the $trans \rightarrow cis$	
	isomerization	98
6.18	Dependence of the threshold voltage on the tip height for the $cis \rightarrow trans$	
	isomerization	99
6.19	Calculations of TBA isomerization by electric field	102
6.20	Manipulation signal for small tip height: current versus time	103
6.21	Time distribution of the switching process for small tip height	104
6.22	Rate of the switching process for small tip height	105
6.23	Schematic of isomerization by inelastic tunneling (vibrational excitation)	106
6.24	Schematic of the isomerization by electronic-excitation mechanism	106
6.25	dI/dV spectra of TBA for positive sample voltages	107
6.26	dI/dV spectra of TBA for negative sample voltages	109
7.1	Complete sequence of a switching experiment	135

List of Tables

4.1	Statistics of the m	nanipulation	experiments													50
-----	---------------------	--------------	-------------	--	--	--	--	--	--	--	--	--	--	--	--	----

Abbreviations

A/D - Analog to Digital
D/A - Digital to Analog
DSP - Digital Signal Processor
ESQC - Elastic Scattering Quantum Chemistry
fcc - face centered cubic
FWHM - Full Width at Half Maximum hcp - hexagonal close packed
HOMO - Highest Occupied Molecular Orbital
LDOS - Local Density of States
LT - Low Temperature
LUMO - Lowest Unoccupied Molecular Orbital
ML - Monolayer
MLE - Monolayer Equivalent
MM - Molecular Mechanics
STM - Scanning Tunneling Microscope
STS - Scanning Tunneling Spectroscopy
TAS - Tip apex Adsorbate Substrate
TBA - 3,3',5,5'-tetra- <i>Tert</i> -Butyl-Azobenzene
TBP - 3,5-di- <i>Tert</i> -Butyl-Phenyl
TBPP - Cu-tetra-3,5 di-Ter-Butyl-Phenyl Porphyrin
UHV - Ultra High Vacuum