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7 Appendix 

7.1 Appendix A: Theoretical basis of material constants “n” 

and “k” calculation [71] 

 

In chapter 3.3 a theoretical computer simulation of our cell is done, in order to 

learn about the distribution of light within the cell layers and be able to optimize this. 

For the computer simulation one needs to input data for each separate layer. This data 

includes the refraction index “n” and extinction coefficient “k” of each substance. 

These parameters can not be measured directly, so they have to be calculated from other 

measured data. With the program “Optik”, written by Kristian Peter, this is possible. 

From measured reflection “R” and transmission “T” of each separate layer, n and k can 

be calculated.  

In the following section the principle of calculating n and k from R and T is 

described. 

 

 

 

Figure 65. Reflection and transmittance of a plane wave at an interface; 

indices: s-perpendicular, p-parallel, r-reflected, t-transmitted 

 

The reflection and transmittance of a plane wave E  at an interface of two 

mediums (Figure 65) is characterized by Fresnel-law: 
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,r t : Reflection- and transmittance coefficient describing the component of the E-

vector parallel to plane of incidence;  

,r t⊥ ⊥ : Reflection- and transmittance coefficient describing the component of the 

E-vector perpendicular to plane of incidence; 

 

Regarding transmittance the refracted wave continues without phase skipping. 

Concerning the reflected wave, two cases have to be considered: 

1. n0<n1: There is a phase shift of π  in the perpendicular component. If 

''
2

πϑ ϑ+ >  then the parallel component has also a phase shift of π . 

2. n0>n1: The perpendicular component has no phase-shift, but the parallel 

component has a shift of π  in case ''
2

πϑ ϑ+ > . 

 

Concerning absorbing materials, the refractive index n  becomes complex: 

 

n n ik= +      (3) 

 

and the absorbing coefficient α is defined as 
4 kπα

λ
= , where k is the so called 

extinction coefficient. 

 

In the case of perpendicular incidence of light the Frensel formulas can be 

simplified to: 
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For reflection: 
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The transmittance can be calculated by using the equation: 1T R= −  

 (6a) 

 

In order to analyze the transmittance and reflection of a thin film on a thick 

coplanar substrate we have to divide the problem into two sections. First reflection and 

transmittance of a thin coplanar film will be considered and finally reflection and 

transmittance of a thick coplanar layer will be examined.  

 

Reflection and transmittance of a thin coplanar film 

 

A thin coplanar film with thickness d and refractive index 1n , which is located 

between two mediums with 0n and 2n  is examined. A multiple reflection on the upper- 

and lower-side of the film occurs (Figure 66). 

 

 

 

Figure 66. Thin coplanar film and its interaction with light 
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The amplitude decreases by the factor 
2

exp
kdπ

λ
⎛ ⎞−⎜ ⎟
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 when the layer is penetrated 

once. Moreover a phase shift of 
2 ndπϕ

λ
Δ =  occurs. These effects will be taken into 

account by multiplying the plane wave with ie δ . For δ we have the formula:  

 

2 ( )d n ikπδ
λ

+=      (7) 

 

The following formulas will include the indices “i” and “j”. The index “i” means 

that light comes from the medium i and the index “j” denotes the medium where the 

light is reflected respectively where it penetrates. The reflection- and transmittance-

coefficients are ijr  and ijt  correspondingly. 

For the calculation of the complete transmittance coefficient after infinite 

reflection in the layer one get the equation:  
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Explanation of equation (8): 

01
it e δ  • The light penetrates in the medium 1 and is weakened 

because of covering a distance of one layer thickness. It 

reaches the interface 1-2. 

( )2
12 10

0

ji

j

r r e δ
∞

=
∑  

• The light will be reflected into the layer infinite number of 

times. Every time the amplitude decreases by the factor 2ie δ  

because the light has to go twice through the layer thickness d 

until it will be back at the interface 1-2. The components of 

the light which have already been reflected more often are 

weaker. For this reason there is the exponent “j” in the sum. 

12t  • Every time the light goes with the „probability“ 12t  through 

the interface 1-2. 
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Accordingly there is an equation for the reflection coefficient:  
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Explanation of equation (9): 

01r  • The part of light which is reflected immediately at the 

interface 0-1. 

2
01 12

it r e δ  • The part which is transmitted at the interface 0-1 and 

reflected at the interface 1-2. The light has covered a 

distance of 2d when it reaches the interface 0-1 again. 

The amplitude has decreased by 2ie δ . 
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• The light will be reflected into the layer infinite times. 

Every time the amplitude decreases by the factor 2ie δ  

because the light has to go twice through the layer 

thickness d. The components of the light which have 

already been reflected more often are weaker. For this 

reason there is the exponent j in the sum. 

10t  • Every time the light goes with the „probability“ 12t  

through the interface 1-0 

 

In order to simplify the equations (8) and (9) it is used 01 10r r= − , 10 101t r= −  and 

the equations (4) and (5). Furthermore the equations (8) and (9) include geometric series 

which can be written as 
0

1

1
k

k

q
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−∑  if 0<q<1. 

 

Consequently the following formulas arise from these transformations: 
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Using the formulas (4) and (5) (that are valid for the reflection and transmittance 

on an interface) for 01 12 01 12, , ,r r t t  we obtain the complete reflection and transmittance 

coefficient of a thin coplanar layer. 
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The reflection and transmittance will be calculated with: 

 

2
R r=  (14) and 

22

0

n
T t

n
= ⋅  (15). 

 

Reflection and transmittance of a thick coplanar layer 

 

While treating this problem it is assumed that the thick layer has no interference 

effects and that phase shifting has not to be considered. For this reason the formulas 

include similar sums like the equations (8) and (9) but here calculations can be started 

immediately by using the intensities and not the coefficients: 
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The parts Rij and Tij are the reflection and transmittance of an interface which can 

be calculated with the equations (6) and (6a). 
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Reflection and transmittance of a thin film which is located on a 

thick coplanar substrate 

 

 

 

Figure 67. Thin film on a thick coplanar substrate.  

Setup is similar to a real-life measurement configuration 

 

It is assumed that a thin film shows interference but the thick substrate does not. 

 

The task has to be solved in two steps: 

 

1. The reflection and transmittance of the thin film between two mediums will be 

calculated like it was already described. The results will be denoted: R02, R20, T02 

and T20. Moreover it is valid: 02 20T T= . 

 

2. Finally the whole system will be calculated like a thick coplanar layer. The thin 

film will be regarded as an interface 0-2. 

 

For the reflectivity we obtain: 
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For the transmittance: 
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The values R23 and T23 can be calculated with: 
( )
( )

2 2
2 2

23 2 2
2 2

1

1

n k
R

n k

− +
=

+ +
 (compare 

equation 6 using n3 = 1 and k3 = 0 for air) and 23 231T R= − . 

For evaluating the values of R02, T02 and R20 the formulas for the case of a thin 

absorbing coplanar layer between two mediums are used (equations 12 and 13 in 

connection with the equations 14 and 15). 

 

Solving the equations 

 

If the thickness of the layers is known the refractive index n and the extinction 

coefficient k can be determined from the measurement of reflectivity R and 

transmittance T. The equations (18) and (19) cannot be solved by analytical methods. 

For this reason the two-dimensional Newton-Raphson algorithm is used as an 

approximation. 

In principle this method works in the same way like the Newton algorithm. How 

does the Newton-algorithm work? It is applied a tangent on the graph in the point 

(x0,f(x0). You get a point of intersection with the x-axis, which is the value x1. In the 

point (x1,f(x1)) is applied a tangent again. The procedure will be iterated until the null of 

the function f(x) has been found with the wanted accuracy (Figure 68). 

 

 

Figure 68. The Newton algorithm 
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In our case the reflection and transmittance depend from two parameters, n and k. 

That is why the algorithm has to be accomplished in a two dimensional way (Newton-

Raphson algorithm). 

The following system of equations has to be solved: 

 

( )
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, 0

ex
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R R n k

T R n k
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− =
 

 

Rex and Tex are the experimental found values. Before beginning the 

approximation we have to set start values ( )0 0 0,R n k R=  and ( )0 0 0,T n k T= . 

Then a Taylor expansion of R(n, k) at R0 is done (linearization): 
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The following equation is obtained for the first approximation values n1 and k1: 
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M is the Jakobi matrix: 
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This procedure will be iterated until the values nn and kn deviate from nn-1 and kn-1 

in the wanted limits. 

The Newton-Raphson algorithm is not applicable when several solutions are 

possible. For that reason we used a program called “Optik”, written by Kristian Peter. It 
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uses a special calculation routine. The n and k plane is scanned in a chosen interval. For 

every pair of n and k the Newton-Raphson-algorithm is made. If the wanted interval for 

n and k is exceeded or the iteration not finished after ten steps, the procedure is 

interrupted and the next values for n and k are taken. 
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7.2 Appendix B: Cell up-scaling – sample holder, mask, 

encapsulation 

 

In order to be able to perform space resolved I/V measurements on organic solar 

cells, they needed to be up-scaled to a size of approximately 1 cm2 and reshaped to a 

rectangular form. This was made possible by designing and using during UHV material 

evaporation a new sample holder with a modified mask.  

 

 

Figure 69. Mask for up-scaled solar cells (left) and sample holder (right). On the mask, the green 
areas are the openings through which the organics is shaped in the rectangular form of the cell. The 
grey areas are the openings giving shape to the aluminum contacts and defining the actual cell. The 

mask is being switched to 45° before contacts are being evaporated 

 

The mask (Figure 69, left) was cut out of 1 mm thick stainless steel sheet with a 

laser. It was then fitted in the sample holder ring under the sample stabilizer (right on 

the same figure). Mask and holder were fixed together only by the holder ring, thus a 
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free rotation of the mask at 45° was possible, for switching between organic and metal 

contact openings. 

The up-scaled solar cells were evaporated on ITO glass substrates with size 13x24 

mm. The substrates were structured with a laser cut 5 mm from the short edge, to isolate 

the front from the back contact (Figure 70). 

 

Figure 70. Scheme of a structured ITO glass for solar cell substrate (left). The ITO layer is 
interrupted 5 mm from the edge, done by a laser cut. Thus the front contact is separated from the 
back electrode, eliminating a shortcut. A scheme of the ready solar cell (right) shows how organics 

and contacts are situated. 

 

The schematic view can be compared with solar cells photos on Figure 71. 

 

 

Figure 71. Photographs of the up-scaled solar cells, seen from the metal contact side (left) and 
through the glass (right). The green-blue coloring is the organic layer part of the cell 
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m
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The up-scaled solar cells, of course degrade as their smaller predecessors. That is 

why a corresponding encapsulation had to be designed (Figure 72).  

 

 

 

Figure 72. Up-scaled solar cell encapsulation box (left) and lid (right). The lid is fitted with an o-
ring, which upon closure presses on the substrate, keeping the cell isolated from atmosphere 

 

The encapsulation serves as an environment insulator, which keeps the solar cell 

under inert atmosphere. This allows longer measurements or characterizations with 

slowed cell degradation.  

 

Threading

5,
00

 m
m

45,00 mm

11,00 mm

13,00 mm

24
,0

0
 m

m

50
,0

0
 m

m

5,
00

 m
m

4
,0

0 
m

m

10
,0

0 
m

m

1
 m

m

7
,0

0 
m

m

Fitting sticks

Rubber O-ring

16
,5

0 
m

m




