Chapter 4

Monte Carlo Simulation

Due to the complexity of the problem, treating irregular spin systems with
competing interactions in thermal equilibrium and nonequilibrium, we are
forced to use Monte Carlo (MC) simulations, since present analytical meth-
ods can not cope equivalently with such systems. The MC method is widely
applied in statistical physics, since it is a powerful tool for the (in princi-
ple) ezact numerical calculation of thermodynamic properties of interacting
many-particle systems. On one hand, equilibrium MC simulations allow for
the study of thermodynamic equilibrium properties, e. g. phase transitions
of systems with many competing interactions, taking into account statistical
fluctuations in contrast to simplified mean-field treatments, as presented in
Sec. F.2. On the other hand, under certain conditions also the nonequilib-
rium stochastic time evolution of interacting many-particle systems can be
calculated with the help of kinetic MC simulations. In the present thesis, the
MC method is used for the investigation of the long-range magnetic ordering
and the magnetic relaxation of nanostructured films during growth described
by the micromagnetic model (Eq. (3.20). For this purpose, the island spin
flip rates, given by Eqs. (3.37) and (3.39), are applied. For details and a
foundation of the MC method the reader is referred to standard textbooks
[10, 59, 13, 92].

In Sec. 4.1, a brief introduction into the MC method is given. The
equilibrium and the kinetic MC method, as applied in our magnetic calcu-
lations, are explained. In Sec. 4.2, a single-spin flip algorithm and a newly
developed cluster-spin-flip algorithm for the application of the MC method
is presented. Finally, in Sec. 4.3, the accuracy of the method is discussed.

4.1 Monte Carlo method

The contact of the interacting island spin system to a heat bath with fi-
nite temperature T leads to random spin reversals. This stochastic pro-
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cess represents a so-called Markov chain X; — X;11 — ... of spin states
X = {S1,...,Sz} in the phase space of the system, with S; = £1 and Z
being the number of spins. Each state X, ; of this process follows from the
preceding state X; by a transition probability per time step (transition rate)
I'(X; — X;11). The dynamics of the system can be described by Markov’s
master equation

dP(X,t)

= ~Y (X - X)) P(X,t)+ ) I(X' — X)P(X',t) (41)

for the probability P(X,t) := P(X;) to find the system at discrete time ¢,
i. e. in the ith configuration, to be in state X. It can be shown that if the
transition rates ['(X; — X, 1) fulfil the condition of detailed balance

[(X — X') Py(X) = D(X' — X) Poo(X') (4.2)

the Markov process converges towards thermodynamical equilibrium, where
the system is found to be in state X with probability

Poy(X) = 2 exp(— B(X)/ksT) | (43)
and where 1P (X)
ezllit =0 . (4.4)

Here, E(X) is the energy of spin state X, given by the micromagnetic model
(Eq. (3.20); Z is the partition function

Z =) exp(—E(X)/ksT) . (4.5)

Detailed balance is a sufficient, but not necessary condition to reach the
equilibrium distribution. In addition, ergodicity has to be fulfilled, stating
that any state of the system is accessible from any other state.

In MC simulations, Markov chains of high-probability spin states are gen-
erated for the calculation of equilibrium and relaxational properties, which
will be explained in the following.

4.1.1 Equilibrium MC method for long-range order

We use the equilibrium MC method [106, 10] for the calculation of the equi-
librium overall magnetization of the island spin system, which characterizes
the long-range magnetic order.

We define the magnetization M of a system in spin state X by
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4.1 Monte Carlo method

which is the component along the easy axis, and where m;(©,T) is the
internal island magnetization at coverage © and temperature 7' (see Ap-
pendix F.1), N; the island size, and S; = +1 the island spin state. For a
canonical ensemble, the expectation value of the magnetization in thermo-
dynamical equilibrium (M,,) is calculated by

=z ZM )exp(—E(X)/kpT) = ZM X) . (47

In the importance sampling MC approach, the complicated and often
impossible summation over all states X of the phase space is avoided. Rather,
this method samples over a number of most important states of the phase
space. For this purpose, one starts from an initial spin configuration X; (at
time ¢;) and successively, by application of transition rates I'(X — X'), one
generates a Markov chain of spin states, which relaxes into states of high
probability at thermodynamical equilibrium. Reaching a high-probability
state at time t,, the subsequent states are assumed to occurr according the
Boltzmann distribution Peq(X). Then, Eq. (4.7) can be reduced to the simple
arithmetic average

t3

> M(X.t) (4.8)

t=to+1

1

ty — to

(Meq) =~ M =

where the sum runs over a large number of states in the Markov chain. Thus,
Eq. (4.8) represents an average over the MC time intervall (t3 — 3) of the
equilibrated system.

In the present case of a nonuniform spin system, one additionally has to
average over a large number G of different structural realizations of the unit

cell, obtaining
el

(Mol low = 5 (Ml (19)

g=1

As already mentioned, the sufficient prerequisite for reaching the equilib-
rium distribution P.q(X) in the Markov process is that the applied transition
rates I'(X — X’) obey the condition of detailed balance (Eq. (4.2)) and er-
godicity. In literature, many single-spin-flip and cluster-spin-flip algorithms
with different efficiencies due to different equilibration times are known to
fulfil these conditions [92]. Both, the Arrhenius-type and the Metropolis-
type rates for island spin flips, Egs. (3.37) and (3.39), fulfil these criteria.
However, for MC simulations of equilibrium properties, we exclusively apply
the latter for all values of the reduced effective field |hST|, since then the re-
laxation of the system into equilibrium is not hindered by anisotropy energy
barriers, resulting in a better efficiency.
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4.1.2 Kinetic MC method for relaxation process

Under certain conditions, the MC method can be interpreted dynamically,
where the computer-generated Markov chain of spin states X represents the
‘true’ nonequilibrium stochastic time evolution of a system towards equilib-
rium, although MC simulations do not solve the equations of motion. For
this purpose, a proper connection between MC time ¢ and physical time t'
is needed. A foundation of this kinetic MC method, which most of the time
has been applied to the study of atomic diffusion processes, can be found in
Refs. [171, 50, 94, 92].

The deterministic trajectory of the interacting island spin system through
phase space can be described by the corresponding set of coupled Landau-
Lifshitz-Gilbert (LLG) equations (Eq. (D.1)), where the probability of a state
develops according to Liouville’s equation. Note that a numerical integration
of the LLG equations is restricted to time scales of the order of the spin
precession time 7,, & 107 sec. However, the characteristic time 7 for island
magnetization reversal over an energy barrier can range up to seconds or even
years so that a numerical integration of the LLG equations for the study of
such slow relaxation behavior is not feasible. This problem can be avoided by
describing island magnetization reversal as a thermally activated stochastic
process, induced by the degrees of freedom on short time scales. In this case,
Liouville’s equation reduces to Markov’s master equation (Eq. (4.1)) for the
stochastic time evolution, which can be solved by the MC method [92, 50].

Most importantly, for a proper connection of MC time ¢ to a physical
time t', the transition rates I'(X — X’) have to be based on a reasonable
dynamical model. For the characteristic time 7 of island magnetization re-
versals, this is achieved by the Néel-Brown model (Eq. (3.14)). This model
results in the Arrhenius-type and the Metropolis-type rates (Egs. (3.37) and
(3.39)) which are applied by us to kinetic MC simulations, depending on the
value of the reduced effective field |hg?|.!

The expectation value of the nonequilibrium magnetization at MC time
t for a given film structure is defined by [13, 12]

(M(1)) =) P(X,t) M(X) | (4.10)

where P(X,t) is the solution of the master equation, Eq. (4.1). Using the
MC method, the relaxation of (M(t)) is calculated by averaging over R > 1

'Recently, an alternative method for MC simulations with physical time step quan-
tification was proposed for vector spins S. The main idea of this novel approach is to
compare the spin fluctuations appearing in a MC time step with the fluctuations within a
given time scale resulting from the linearized stochastic LLG equation [117, 116, 28].
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statistically independent MC runs r, applying

(M(#)) ~ M(t) = % > M) . (4.11)

Each MC run starts from the same initial spin state X, and different Markov
chains of states are generated by application of different sequences of ran-
dom numbers. M, (t) is monitored after MC time ¢. For a nonuniform film
structure, additionally a structural averaging |...|., has to be performed, as

described by Eq. (4.9).

4.2 Monte Carlo algorithms

In the present study, two different algorithms are used for the application of
the MC method: a conventional single-spin-flip algorithm, and a newly devel-
oped cluster-spin-algorithm which yields an improved relaxational behavior
for irregularly connected island systems which are preferably investigated in
this study:.

4.2.1 Single-spin-flip algorithm

In conventional single-spin-flip (SSF) algorithms, e. g. the heat-bath or Metro-
polis algorithm, Markov chains of configurations X in phase space are gen-
erated, using SSF transition rates and computer-generated pseudo-random
numbers.

In the present thesis, the following SSF algorithm is applied for the real-
ization of the MC method:

(1) Specify an initial spin state X; = {Si,..., Sz} in phase space.

(2) Choose a random island spin S; out of the system using a uniformly dis-
tributed random number 7.

(3) Calculate the reduced effective field |A¢t|, using Eq. (3.35).
(4) Calculate the corresponding probability
P =k AtT; (4.12)

for an island flip S; — —5; in the MC time step At, using Egs. (3.36) and
(3.37) or Egs. (3.38) and (3.39).

(5) Generate a second uniform random number 75 € (0, 1).

(6) If ro < P;, perform the spin flip S; — —S;; if 1y > P, leave S; unchanged.
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(7) Goto step (2).

After steps (2) — (7) have been applied Z times, where Z is the number
of spins in the system, the MC time step At = 1 MC step/spin (MCS) has
passed, and the system transforms from the old configuration X; to the new
configuration X, ; in the Markov chain. Within kinetic simulations, At is
adjusted to the physical time step At = k At by the prefactor k appearing
in Eq. (4.12). The assumption of equidistant MC time steps At leads to a
good approximation of the solution of Markov’s master equation (Eq. (4.1)),
where time ¢ is rather a continuous stochastic variable [12, 1].

4.2.2 Cluster-spin-flip algorithm

Conventional SSF algorithms can become very unfavorable for the calculation
of equilibrium properties, since large clusters of aligned spins are updated
very inefficiently by probing single spins. For example, such spin clusters
appear in a uniform system near the critical temperature, where the cor-
relation length diverges, and in random magnets or spin glass systems [11]
at low temperatures. Therefore, sophisticated cluster-spin-flip (CSF) algo-
rithms have been developed to avoid critical slowing down [162, 175, 7] or to
reduce low-temperature relaxation times, e. g. in frustrated systems [96, 141]
or ferrofluids [35]. To our knowledge, cluster algorithms have not been ap-
plied to kinetic MC simulations yet.

In context of the present study, the exclusive consideration of SSF up-
dates of irregularly connected island spin systems yields an extremely inef-
ficient and unrealistically slow relaxation behavior towards thermodynamic
equilibrium at low and intermediate temperatures. For example, in a large
coverage range of the bilayer growth mode, see Fig. 2.6, p. 30, most of the
magnetic islands are connected to neighboring islands and thus form large
island clusters. In such a cluster, the strong exchange interaction favors an
aligned arrangement of island spins 5;. Within the two-state model S; = +1,
subsequent single-spin flips in the cluster are strongly hindered by the ex-
change energy. Thus, a rotation of the entire island cluster becomes very
unlikely, and the role of the dipole interaction and the anisotropy on the
cluster rotation is strongly blurred by the exchange coupling. For efficient
MC calculations of equilibrium properties and for improved kinetic simu-
lations of the relaxation behavior, coherent rotations of the island spins in
such clusters have to be taken into account, since such processes may be more
probable. In other words, coherent rotations enable more favorable paths in
the ‘rough’ energy landscape of the randomly connected island system.

In the remainder of this subsection, we propose a new CSF algorithm
which consideres such coherent processes in addition to internal cluster ex-
citations. Within this algorithm, every MC update consists of two steps.
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In step (I), a cluster of connected island spins is constructed and then, in
step (II), a coherent flip of this cluster is probed:

(I) A cluster C,, consisting of v connected island spins S;, is constructed by
the following scheme:

(1) Choose a random spin S;, representing the first (smallest) spin cluster

(2') Add a random second spin S; which is connected to spin S; (L;; # 0),
resulting in the second cluster C; = {5, 5;}.

(3') Construct subsequently larger spin clusters C,, by iteration of step (2): add
a randomly chosen spin to the preceeding cluster C,_, provided that this
spin is connected to at least one of the v — 1 spins of C,,_;.

(4') Continue this construction procedure, until either no additional adjacent
spins are present,? or until a maximum allowed number A, of spins in
the cluster is reached. From this procedure, a set of A < A,.. clusters

{C1,...,Cy\} is obtained.

(5") Out of this set, choose one cluster C, with weight w, for probing.

(II) Next, all v spins of the chosen cluster C, are probed for a coherent flip
in the usual way, according to steps (3) — (7) of the SSF algorithm given
in the previous subsection. For the calculation of the reduced effective field
he® and the transition probability P, first Eq. (3.41), then Eqgs. (3.47) and
(3.37), or Egs. (3.48) and (3.39) have to be applied.

We point out that not only the largest possible spin cluster Cy can be
probed for flipping, rather all spin clusters out of the constructed set of
clusters are considered. Note that the spins within a spin cluster need not to
be parallel. The CSF algorithm satisfies the condition of detailed balance.
This is guaranteed by the fact that the probabilities for construction and
choice of the cluster C, are the same for both flip directions. Ergodicity is
maintained since any spin state can be reached within a single MC time step
due to the allowance of single-spin flips.

The MC time step At = 1 MCS is defined by the usual condition that
Z spins have been probed. In step (5), different kinds of weights w, can be
chosen in principle, subject to the condition ) w, = 1. However, probing
a cluster C, containing v spins considers the fraction v/Z of the system in
a single update. To ensure that probing of large clusters does not dominate
the relaxation process in kinetic simulations, we assign the weight

w, =1/v (4.13)

2In the present study, this is especially the case for film coverages © < Op.
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for choosing C,, out of the set {Cy, ...,Cy}. This definition implies that within
a MC time step no additional relaxation channels are opened by the consid-
eration of cluster-spin flips.

Note that the proposed algorithm for spin-cluster updates can be applied
to many different nonuniform spin systems such as random magnets and
spin glasses. For example, atomic spins of an irregular magnetic film can be
treated by this method.

4.3 Accuracy of the Monte Carlo method

The accuracy of the MC calculations is determined by the following limita-
tions:

e Finite-size effects due to the usage of finite (500 x 500)-unit cells with
periodic boundary conditions, containing 625 or 1250 island spins. At
phase transitions, where the correlation length diverges, a ‘rounding’
instead of a singularity of thermodynamical quantities is obtained. We
use periodic boundary conditions for the simulation of an extended film
system.

e Statistical error due to averaging over:

— a finite number (t35 — t3) of Markov states in equilibrium calcula-
tions (Eq. (4.8)),

— a finite number R of runs in kinetic calculations (Eq. (4.11)),

— a finite number G of structural realizations (Eq. (4.9)) in equilib-
rium and kinetic calculations.

e Usage of computer-generated pseudo-random numbers, which must be
uniform, uncorrelated and of extremely long period. We make use of
the well tested random-number generators ran2 (Fortran 77) and ran
(Fortran 90), taken from Refs. [135, 136].

In kinetic simulations using the CSF algorithm, the relaxation time depends
on the weight w, = 1/v (Eq. (4.13)) and the definition of a MC time step.
Both need for sound justification and thus have ‘model character’, but still
the CSF algorithm leads to much more realistic results than the SSF for
irregularly connected systems.
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