
Chapter 3

Magnetic Model

In this chapter, the micromagnetic model for the description of the magnetic
properties of a laterally nanostructured film during growth is presented. The
main physical idea of this model is to describe such a nanostructured system
as an ensemble of interacting magnetic islands. The short-range exchange
coupling, a uniaxial magnetocrystalline anisotropy, the long-range dipole cou-
pling, and the coupling to an external field are taken into account within a
Heisenberg-type model.

In Sec. 3.1, the magnetic interactions appearing in a Heisenberg-type
spin model are introduced. Sec. 3.2 summarizes previous results on the
magnetization reversal of noninteracting single-domain islands due to an ap-
plied magnetic field and due to thermal activation. In addition, ensemble
properties of such systems in thermodynamical equilibrium and nonequilib-
rium are discussed. In Sec. 3.3, the micromagnetic model suited for grow-
ing nanostructured films is presented. In Sec. 3.4, rates for magnetization
reversals in interacting island systems are deduced. In addition to single-
island flips, rates for coherent magnetization reversals of connected islands
are treated. In Chapter 4, these flip rates will be applied to MC simulations
of the magnetic ordering and relaxational behavior of ultrathin films during
growth.

3.1 Magnetic interactions

For the description of the magnetism of a ultrathin film system, we start
from a classical1 Heisenberg model2 with local anisotropy, long-range dipole

1For the length and time scales investigated in the present thesis, the neglect of the
quantum nature of the magnetic moments is a satisfying approximation.

2The Heisenberg model with localized atomic magnetic moments µ yields a good de-
scription of the magnetic properties of 4f metals. For itinerant magnetism - as present for
the 3d metals Fe, Co, and Ni - the Heisenberg model still yields acceptable results. This is
due to the fact that the spin density of the d electrons adopts large values only in a small
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3 Magnetic Model

interaction, and an external magnetic field. The assumed model Hamiltonian
reads

H = Hex + Hcrys + Hdip + HZ . (3.1)

The terms appearing on the right-hand side are explained below:

• The first term Hex describes the short-range Heisenberg exchange in-
teraction. It results from the fact that for atoms with open electronic
shells the Coulomb repulsion combined with the Pauli principle can
lift the energetic degeneracy of the spin directions. In the Heisenberg
model, the corresponding exchange energy term is written as [61]

Hex = −1

2

∑

i6=j

Jij si sj , (3.2)

where classical three-dimensional spins si = µi/µi with unit length are
assumed, representing the directions of the atomic magnetic moments
µi. The exchange integral Jij determines the relative spin directions.
In the present thesis, only a uniform exchange integral Jij = J between
nearest neighbors 〈i, j〉 is taken into account. Thus, the Heisenberg
term simplifies to the isotropic expression

Hex = −J

2

∑

〈i,j〉

si sj . (3.3)

For J > 0, the exchange interaction can lead to a spontaneous ferro-

magnetic ordering at temperatures below the Curie temperature TC.
The ferromagnetic ordering is characterized by a finite magnetization

M = n 〈µ〉 = n µat〈s〉 , (3.4)

where the brackets 〈 〉 denote the expectation value in thermodynamical
equilibrium and n is the spin density. For the description of real sys-
tems, J is treated as a parameter which can be adjusted to experimen-
tally measured Curie temperatures TC ≈ qJ , q being the coordination
number. Thus, the order of magnitude results in J ≈ 102 K ≈ 10−2 eV
for bulk Fe, Co, and Ni.

• The second term Hcrys denotes the magnetocrystalline anisotropy which
results from the on-site spin-orbit coupling and depends sensitively on
the local electronic structure [164, 113]. A ferromagnetic system can
minimize its magnetocrystalline anisotropy energy by aligning the mag-
netization along some preferred cystalline axes (easy axes). Generally,

range around the ion core, in contrast to the charge density [51].

38



3.1 Magnetic interactions

the bulk and interface crystalline anisotropy can be expanded in succes-
sive powers of the direction cosines of the magnetization. For uniaxial

systems, which will be investigated in this thesis, the corresponding
Hamiltonian reads [23]

Hcrys = −Kcrys

∑

i

(sα
i )2 , (3.5)

where α = x or z denotes the easy axis of the system, and where
a positive anisotropy constant Kcrys favors an alignment of the spins
along the easy axis. For example, a uniaxial easy axis is present in
crystals with hcp structure (e. g. bulk Co) along the c axis, or for
surfaces or thin film layers perpendicular to the surface (out-of plane
magnetization). For thin films, the crystalline anisotropy constant is
typically of the order of Kcrys ≈ 10−5 − 10−3 eV [23].

• The third term Hdip represents the long-range magnetostatic interac-
tion between the magnetic moments of the atoms which is therefore
also called dipole interaction. It results from the multipole expansion
of the spin density distribution. This contribution can be written as
[72, 23]

Hdip =
µ2

at

2

∑

i6=j

1

r3
ij

(

sisj − 3
(sirij)(sjrij)

r2
ij

)

, (3.6)

with µat being the atomic magnetic moment and rij = rj − ri the
distance vector between the moments i and j. If all moments are
assumed to be parallelly aligned, as a consequence of the dominating
exchange interaction, the dipole energy may be rewritten as

Hdip =
µ2

at

2

∑

i6=j

sisj

r3
ij

(1 − 3 cos2 θij) , (3.7)

where θij is the angle between the magnetization M and the distance
vector rij. The dipole interaction is an anisotropic coupling and thus
contributes to the total magnetic anisotropy. It is also called shape

anisotropy , since due to the long-range property of this interaction the
shape of a magnetic specimen is significant. The dipole interaction fa-
vors always a magnetization parallel to the surfaces of the magnetic
system and thus preferres an in-plane magnetization for thin films. For
a pair of next neighbored 3d-atomic moments, the dipole energy is ap-
proximately 103-times smaller than the exchange energy and amounts
to ∼ 10−5 eV.
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3 Magnetic Model

• The last term HZ is the Zeeman term. It represents the coupling of the
spins to an external magnetic field B and can be written as

HZ = −µat B
∑

i

si . (3.8)

For a 3d-atomic moment and field B = 1 T, the order of magnitude for the
Zeeman energy amounts to 10−4 eV.

Generally speaking, a finite-sized ferromagnetic system can minimize its
total magnetic energy, Eq. (3.1), by the formation of magnetic domains with
different magnetization directions and comparatively narrow domain walls

in which the magnetization rotates continuously. This can be calculated by
solving the Euler-Lagrange equation of the corresponding continuous varia-
tional problem, as shown e. g. in the textbook by Hubert and Schäfer [69].
For a system with uniaxial anisotropy the energy per spin of a 180◦ domain
wall (Bloch wall) is given by

γB = 4
√

J Kcrys / 2 , (3.9)

which typically amounts to values of the order 10−3 − 10−2 eV. The width of
the domain wall can be estimated by

δB = ro π
√

J / 2 Kcrys , (3.10)

where ro is the interatomic distance. The overall magnetization of a fer-
romagnet with a multi-domain magnetic structure vanishes or is only very
small. The spontaneous magnetization M is defined within a domain, where
the magnetic moments are parallelly aligned due to the exchange interaction.

For small magnetic particles with extensions d less than the domain wall
width δB, the single-domain state is energetically more favorable than the
multi-domain state. Inserting typical bulk values for K and J into Eq. (3.10),
we estimate the critical diameter of a single-domain particle to be dc ≈ δB ≈
10 nm. Thus, the ground state of small ferromagnetic islands of a growing
thin film can assumed to be single-domain.

3.2 Single-domain magnetic islands

In this section, we discuss the magnetization reversal of a single-domain is-
land due to (1) an applied magnetic field and (2) thermal activation. This
section provides the physical foundation of our micromagnetic model for lat-
erally nanostructured ultrathin films and of the island magnetization flip
rates which will be applied in the MC simulations. Furthermore, the en-
semble properties of noninteracting magnetic islands in thermodynamical
equilibrium and nonequilibrium are discussed.
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3.2 Single-domain magnetic islands

3.2.1 Magnetization reversal of an island

The first theoretical description of the magnetic switching of a small single-
domain particle (of the order d . 10 nm) was given by Stoner and Wohlfarth
[157, 158]. The authors assumed that due to the strong exchange coupling
between the atomic spins, the particle is always in the single-domain state, in
particular also during the magnetization reversal process. Thus, a magnetic
particle containing N atomic magnetic moments µat can be described by a
single giant moment µ = Nµat. This coherent rotation mode of the atomic
magnetic moments was later called the Stoner-Wohlfarth (SW) model [110],
which is a good approximation for small particles, see Appendix D.

Below, we discuss the magnetization reversal of a SW island, subject
to an effective uniaxial anisotropy, resulting from the crystalline anisotropy,
Eq. (3.5), and the shape anisotropy, Eq. (3.7), and exposed to an opposite
external magnetic field, Eq. (3.8). The easy axis of the anisotropy defines the
z axis of the coordinate system, the magnetic field B = Bẑ is assumed to be
collinear to the easy axis and aligned along the −ẑ-direction, see Fig. 3.1.

From the Hamiltonian, Eq. (3.1), the magnetic energy E(φ) of the SW
island as function of the angle φ between the magnetization direction and
the ẑ-direction is given by

ε(φ) =
E(φ)

KN
= − cos2 φ − 2h cos φ , (3.11)

where we have introduced the reduced field h = Bµat/2K, and where K is
the effective anisotropy constant. In Fig. 3.2, a sketch of ε(φ) is depicted as
function of the angle φ for different strengths of the reduced field h. Depend-
ing on the applied field, the height of the energy barrier between the two
minima varies; for fields |h| ≥ 1 a maximum and a minimum are present.

After an analysis of Eq. (3.11) (using ∂E/∂φ = 0 and ∂2E/∂φ2 ≶ 0),
we distinguish two cases for the reversal process of the island magnetic mo-
ment from the initial state φ = 0 to the reversed state φ = π, and for the
corresponding characteristic times τ , see Appendix D:

(1) For magnetic fields |B| ≥ |Bc| (|h| ≥ 1), the magnetic reversal from
the maximum to the minimum of E(φ) is governed by spin precession

processes. The order of magnitude of the switching time τ of the island
moment is given by the spin precession time

τpr =
2π~

µat B
(3.12)

of a single atomic moment µat in the external magnetic field B. Here,
~ = h/2π is Planck’s constant.
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3 Magnetic Model
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Figure 3.1: Sketch of a SW island subject to an opposite magnetic field B = B ẑ,
B < 0. The z axis is the easy axis of the system, φ is the angle between the
magnetic moment µ = Nµat and the +ẑ-direction.
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Figure 3.2: Sketch of the magnetic energy ε(φ) of a SW island as function of the
angle φ for different reduced fields h. The energy barrier ∆ε = ∆E/(KN) is
indicated for the case h = 0.
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3.2 Single-domain magnetic islands

(2) For |B| < |Bc| (|h| < 1) a magnetization reversal over the anisotropy
energy barrier

∆E = K N (1 − h)2 . (3.13)

can occur via thermal activation.3 The order of magnitude of the char-
acteristic time τ of such a process is given by the Néel-Brown model
[112, 20, 21]

τ = τo exp (∆E/kB T ) , (3.14)

where T is the temperature, kB is Boltzmann’s constant, and where
τo is given by the spin precession time τ c

pr of an atomic moment in
the coercive field Bc (Eq. (3.12)), which typically amounts to τ c

pr ≈
10−10 − 10−9 sec.

3.2.2 Noninteracting island ensembles

For magnetic fields |B| ≥ |Bc| the switching of island magnetic moments
into the direction of the field evolves very fast, on a time scale of 10−10 sec.
However, if energy barriers ∆E are present, then, the characteristic time τ
for thermal switching depends exponentially on the ratio ∆E/kBT , according
to the Néel-Brown model, Eq. (3.14). For an illustration the consequences of
such a dependence, assume ∆E/kBT ≈ 25, where an increase of this fraction
by a factor 2 leads to 1011-times larger τ ! This has important implications
for measurements on ferromagnetic particle systems.

Assume an ensemble of parallelly aligned, identical, noninteracting SW
magnetic moments µ = Nµat with uniaxial anisotropy at time t = 0, at
which an oppositely oriented magnetic field B = Bẑ is applied. The total
magnetization of the ensemble is measured after the time texp. On one hand,
for switching times τ � texp, the system remains in the nonequilibrium state,
and a metastable ferromagnet close to its saturation magnetization Ms = nµ
is observed, where n is the spin density. On the other hand, for τ � texp,
the thermodynamical equilibrium magnetization Meq of the noninteracting
system is measured, which amounts to Meq = 0 for B = 0.

In the case of a vanishing anisotropy K, the equilibrium magnetization
Meq/n in direction of the applied field is given by the Langevin function [110]

〈µz〉
µ

= L(y) = coth y − 1

y
, (3.15)

where y = µB/(kBT ).4

3Another possibility is quantum mechanical tunneling, as observed for molecular mag-
nets [6].

4Wildpaner calculated the equilibrium magnetization Meq of ensembles of small parti-
cles in external fields at finite temperatures using the MC technique. The author consid-
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3 Magnetic Model

For a two-state model µ = µz = ±Nµat (strong uniaxial anisotropy K),
the equilibrium magnetization is given by the Brillouin function [110]

〈µz〉
µ

= B(y) = tanh y . (3.16)

In both cases, the system behaves like a paramagnetic ideal gas of nonin-
teracting, giant magnetic moments µ = Nµat. This phenomenon is called
superparamagnetism [110].

Roughly speaking, for given observation time texp the magnetization of
the ensemble changes from the nonequilibrium to the superparamagnetic
behavior at the so-called blocking temperature

Tb =
∆E

kB ln (texp/τo)
, (3.17)

which follows from Eq. (3.14).5

In the remainder of this section, we discuss the time dependence of the
magnetic relaxation of a noninteracting island ensemble with uniaxial single-
island anisotropies and parallel easy axes from a fully aligned state into
thermal equilibrium Meq = 0. Assume the two-state model µ = ±Nµat for
the directions of the island magnetic moments (strong uniaxial anisotropy).
Then, in case of identical island sizes N , the relaxation of the magnetization
of the system M(t), after a saturating magnetic field has been switched off,
is described by [110]

M(t) ∝ µ exp (−2 t/τ) , (3.18)

where t is the time and where the characteristic time τ is given by the Néel-
Brown model (Eq. (3.14)) and the anisotropy energy barrier ∆E = K N .
On the other hand, for nonuniform island sizes Ni, the decay of the mag-
netization of the ensemble follows a superposition of exponential laws, given
by

M(t) ∝
∑

i

µi exp (−2 t/τi) , (3.19)

where τi results from Eq. (3.14) and from the corresponding energy barrier
∆Ei = Ki Ni of island i.

ered exchange coupled atomic moments µat. For spherical noninteracting identical parti-
cles with vanishing anisotropy, he found excellent agreement with the Langevin function
L(y) and the SW model [174].

5Superparamagnetism is relevant for magnetic data storage devices, where bits must
be stable for several years at room-temperature. For large storage densities, the bits must
be as small as possible, but not smaller than the superparamagnetic limit, which therefore
represents the natural limit for miniaturization [139].
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3.3 Micromagnetic model of nanostructured films

3.3 Micromagnetic model of nanostructured

films

In this section, the micromagnetic model for laterally nanostructured (island-
type) films during growth is presented. It follows from a discretization of the
nanostructured system by use of the SW model, and from the magnetic
Hamiltonian, Eq. (3.1). The basic physical idea of this model is to describe
a nanostructured film as a system of interacting, magnetic islands.

We treat each magnetic island i of a nanostructured film at coverage Θ
and temperature T as a SW particle with single giant magnetic moment µi =
µat mi Ni Si. Here, mi(Θ, T ) is the coverage- and temperature-dependent
relative internal island magnetization, 0 ≤ mi ≤ 1, due to the finite exchange
coupling between the atomic magnetic moments and the finite size of the
island. Ni(Θ) is the number of atoms of the island. The direction of the
magnetic moment of the island is represented by the unit vector Si = µi/µi.

The total (free) energy of this system of interacting magnetic islands is
given by

E(Θ, T ) = Edw(Θ, T ) + Eani(Θ, T ) + Edip(Θ, T ) + EZ(Θ, T ) . (3.20)

The terms on the right-hand side are analogous to the terms of the Hamil-
tonian given by Eq. (3.1) and are explained in the following:

• The first term represents the inter-island exchange coupling or magnetic
domain wall energy

Edw(Θ, T ) = −1

2

∑

i>j

Lij(Θ) γij(Θ, T ) SiSj . (3.21)

If the magnetic moments of two connected islands i and j have opposite
directions, they minimize their mutual exchange coupling by formation
of a magnetic domain wall with energy Lijγij, where Lij is the number
of atomic bonds between the islands and γij is the domain wall energy
per atomic bond. The energy γB for an undisturbed Bloch domain
wall in a bulk ferromagnet is given by Eq. (3.9). The corresponding
energy of a domain wall with a finite extension in a nanostructured
system is in general not known. Bruno recently studied constricted
domain walls with atomic dimensions theoretically [24]. He showed
that the wall width δB and the wall energy γ/J are independent of the
material parameters and are determined only by the geometry of the
constriction. Hence, in the present work, we treat γij as a parameter
and put J > γij > γB, as calculated in Ref. [24].
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• The second term denotes the single-island effective uniaxial anisotropy
energy

Eani(Θ, T ) = −
∑

i

Ni(Θ) Ki(Θ, T ) (Si)
2 (3.22)

with Ki the coverage- and temperature-dependent, effective anisotropy
constant per atomic spin, which results from the magnetocrystalline
anisotropy, Eq. (3.5), and the intra-island dipole coupling (shape an-
isotropy), Eq. (3.7). As an approximation, due to this anisotropy we
allow only two stable directions for each island moment (Si = ±1)
along the easy axis. Two different geometries will be assumed: (1) an
out-of-plane easy axis along the z axis (Si = Sz

i ) and (2) an in-plane

easy axis along the x axis (Si = Sx
i ). We point out that a possible

anisotropy energy barrier ∆Ei, Eq. (3.13), is still taken into account
during magnetization reversal of an island.6 In the case of an isolated
island we obtain ∆Ei = NiKi, which e. g. for Ni = 103 atoms is of the
order 0.01 − 1 eV.

• The third term describes the long-range inter -island dipole coupling
between the magnetic moments µi

Edip(Θ, T ) =
∑

i>j

µi(Θ, T ) µj(Θ, T )

r3
ij

(

SiSj −3
(Sirij) (Sjrij)

r2
ij

)

, (3.23)

where rij = |ri − rj| is the distance between the centers of islands
i and j. This dipole coupling is treated within the point-dipole ap-
proximation.7 In the present thesis, the inter-island dipole energy is
calculated by use of Ewald’s summation technique for an infinite pe-
riodical arrangement of the unit cell without a cut-off radius. For
this, we follow the description given by Jensen [76]; the application
of his method is explained in detail in Appendix E. For an order-
of-magnitude estimate of the dipole energy of an island pair, assume
two near-neighbored flat islands, containing Ni atoms each. Then,
the distance R between their centers is comparable to the diameters,
R ≈ D ∝ ro

√
Ni. The point-dipole energy of the island pair is

Edip ≈ (Ni µat)
2/R3 ≈ 5.37 · 10−5 (µ2

at/r
3
o)
√

Ni [K]. For µat = 2.0 µB,
the atomic magnetic moment in units of Bohr magneton, measured for
a 2-ML Co film [155], ro = 2.5 Å the Co interatomic distance [124],
and Ni = 103, one obtaines Edip ≈ 10−3 eV ≈ 10 K. Note that this

6Thus, the two-state approximation Si = ±1 represents an Ising-type model including
anisotropy energy barriers ∆Ei for the dynamics.

7The point-dipole approximation underestimates the exact dipole energy by maximally
∼ 50% for closely neighbored islands, whereas it is already almost exact for island distances
rij , larger than several times the island diameters [79].
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3.4 Island magnetization flips in the effective field

value can be orders of magnitude larger than Edip of a pair of next
neighbored atomic moments.

• The last term describes the coupling of the island magnetic moments
to an external magnetic field B,

EZ(Θ, T ) = −B
∑

i

µi(Θ, T ) Si . (3.24)

The internal magnetic order mi(Θ, T ) of a single island decreases for in-
creasing temperature and depends on the finite size. This leads to varying
effective single-island anisotropy coefficients Ki(Θ, T ) and domain wall ener-
gies γij(Θ, T ). In the present thesis, these quantities are estimated within a
mean-field theory (MFT) which is given in Appendix F.1.

We emphasize that Eq. (3.20) describes a system of separated dipole-
coupled islands at coverages Θ far below the percolation threshold Θ � ΘP

(where Lij = 0) as well as a connected ferromagnetic film at much larger
coverages Θ � ΘP (where Lij � 0). We point out that the transition
between these extremal cases during film growth is described within the same
model.

Generally, such an interacting island ensemble represents a spin-glass-
type system, characterized by nonuniform competing interactions [11]. The
assumption of individual magnetic islands with varying sizes Ni(Θ) and bond
lengths Lij(Θ) – as resulting from the growth procedure, see Fig 2.8, p. 32 –
is a natural discretization of the system. This is a good working hypothesis
as long as the ultrathin film remains laterally nanostructured. However, for
smooth (uniform) films the nonuniform quantities Ni(Θ) and Lij(Θ) may
represent an unphysical discretization of the system due to the artificially
induced randomness.

Similar micromagnetic models have been reported in literature, on one
hand for the description of continuous 2D systems [101, 88, 116], e. g. of thin
polycrystalline MnBi films [118], and on the other hand for 2D or 3D sys-
tems of separated magnetic particles [9, 26, 57, 41]. So far, only few calcula-
tions have been performed on the basis of coverage- or particle-concentration-
dependent models [62, 143, 121]. In many studies, not all interaction terms
have been taken into account.

3.4 Island magnetization flips in the effective

field

In this section, rates for island magnetization reversals of interacting islands
– as described by the micromagnetic model, Eq. (3.20) – are deduced. In
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Figure 3.3: Two different cases for the island easy axes are assumed: (a) out-of-
plane direction along the z axis, (b) in-plane direction along the x axis.

addition to the switching of single islands, magnetization reversals of island
clusters are treated.

3.4.1 Angular-dependent magnetic energy of an island

We determine the magnetic energy of a single island of the interacting island
system as function of the angle φ between its magnetization direction Si

and the positive direction of the easy axis. Two stable states for Si along
the easy axis are taken into account. We assume that during the rotation
Si → −Si all other island moments of the system remain unchanged in the
states Sj = ±1. Thus, deviations of the island magnetization directions
from the easy axes are neglected, the island magnetizations remain always
collinear. The external magnetic field B is always assumed to be parallel to
the easy axes.

For the calculation of the dipole energy E i
dip(φ) of island i as resulting

from Eq. (3.23) and the above mentioned assumptions, we distinguish two
different cases for the easy axes, Fig. 3.3.

(1) Out-of-plane easy axes along the z axis: The dipole energy of the island
as function of the polar angle θ between Si and the +ẑ-direction is
obtained to be

Ei
dip(θ) = H i

dip,1 cos θ , (3.25)

with the dipole field acting on island i

H i
dip,1 = µi

∑

j

µj Sz
j

(

x2
ij + y2

ij

r5
ij

)

. (3.26)
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3.4 Island magnetization flips in the effective field

(2) In-plane easy axes along the x axis: In this case, the dipole energy
of the island as function of the azimuthal angle φ between Si and the
+x̂-direction is given by

Ei
dip(φ) = H i

dip,2 cos φ − 3 H∗ i
dip,2 sin φ , (3.27)

with the dipole fields

H i
dip,2 = µi

∑

j

µj Sx
j

(

y2
ij − 2 x2

ij

r5
ij

)

(3.28)

and

H∗ i
dip,2 = µi

∑

j

µj Sx
j

(

xij yij

r5
ij

)

. (3.29)

In our calculations, we neglect the sin φ-term which will simplify the
determination of the anisotropy energy barriers ∆E(1).8 For the energy
differences ∆E(2) between the stable states Si = ±1, this term does not
contribute.

If a particular geometry (1) or (2) is chosen, we will refer to the island spins
Si by use of the symbols Sz

i or Sx
i . We will use the common notation φ for

both polar and azimuthal angles θ and φ.
In summary, the angular dependent magnetic energy of island i resulting

from all terms of the micromagnetic model, Eq. (3.20), reads

Ei(φ) = −H i
ani cos2 φ −

(

H i
dw − H i

dip + H i
Z

)

cos φ , (3.30)

with the anisotropy field
H i

ani = Ni Ki , (3.31)

the field resulting from the inter-island exchange coupling

H i
dw =

1

2

∑

j

Lij γij Sj , (3.32)

and the external field
H i

Z = µi B . (3.33)

Analogously to Eq. (3.11) for the energy of a single island in an external
field, we rewrite Eq. (3.30) to the more convenient expression

εi(φ) =
Ei(φ)

H i
ani

= − cos2 φ − 2 hi
eff cos φ , (3.34)

8This approximation is justified, since the ratio 3H∗ i
dip,2/H i

dip,2 amounts in the average

only to ∼ 20 %, resulting in an underestimation of the energy barriers ∆E(1) by ∼ 5 %, if
the dipole field is relevant.
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with the reduced effective field resulting from all interaction terms

hi
eff =

H i
dw − H i

dip + H i
Z

2 H i
ani

. (3.35)

3.4.2 Rates of single-island magnetization flips

Analogously to the discussion of the magnetization reversal of an isolated
single-domain particle in an external field (Sec. 3.2.1), we distinguish now
two cases for the magnetization reversal and the corresponding flip rates of
island i in respect to the effective interaction field, see also Fig. 3.2, p. 42:

1. |hi
eff | < 1: During the forward or backward transition Si = ±1 ↔

Si = ∓1 the island magnetization has to surmount the energy barrier
resulting from the single-island anisotropy

∆E
(1)
i = H i

ani (1 ± hi
eff)2 . (3.36)

The rate of such a process is described by the Néel-Brown ansatz [112,
20, 21]

Γ
(1)
i = Γo exp (−∆E

(1)
i /kBT ) , (3.37)

with the attempt frequency Γo ≈ 1/τ c
pr.

2. |hi
eff | ≥ 1: The two states Si = ±1 refer to a maximum and a minimum.

Here, the energy difference

∆E
(2)
i = ± 4 H i

ani h
i
eff (3.38)

has to be surmounted during the reversal processes. We treat this case
with the Metropolis-type rate [106, 92]

Γ
(2)
i =

{

Γo exp (−∆E
(2)
i /kBT ) , ∆E

(2)
i > 0

Γo , ∆E
(2)
i ≤ 0

, (3.39)

where an Arrhenius-type rate with the same attempt frequency Γo as
given above is applied for the ‘upward’ thermal excitation, and the pre-
cession frequency Γo for the ‘downward’ transition to the lower energy
state.

In Sec. 4.2.1, the single-spin-flip rates described by Eqs. (3.37) and (3.39)
will be applied to MC simulations of the magnetic behavior of interacting
island systems during growth.
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3.4 Island magnetization flips in the effective field

3.4.3 Rates of island-cluster magnetization flips

The last part of this section is concerned with coherent magnetization rever-
sals of island clusters, consisting of connected islands. The consideration of
coherent island rotations is of eminent importance for efficient and more re-
alistic calculations of the magnetic relaxation of a irregularly connected film
using the MC method and allows for the calculation of the magnetic prop-
erties in the entire coverage range within the same model. The advantage of
such a cluster MC method in contrast to conventional single-spin-flip algo-
rithms, the construction procedure for the island clusters, and the application
of the cluster-flip rates will be discussed in Sec. 4.2.2.

The flip rates of a spin cluster Cν = {S1, S2, . . . , Sν} which we define as a
set of connected islands are calculated in analogy to the previous subsection,
as if the cluster forms a single large island. Note that the island moments
within an island cluster need not to be parallel. Thus, the magnetic energy
of this island cluster as function of angle φ between the island magnetization
directions Sk and the easy axis is given by

εν(φ) =
Eν(φ)

Hν
ani

= − cos2 φ − 2 hν
eff cos φ . (3.40)

The reduced effective field, acting on Cν, reads

hν
eff =

Hν
dw − Hν

dip + Hν
Z

2 Hν
ani

, (3.41)

where
Hν

ani =
∑

k

Nk Kk , (3.42)

and

Hν
dw =

1

2

∑

kl

Lkl γkl Sk Sl , (3.43)

and
Hν

Z = B
∑

k

µk Sk (3.44)

are the corresponding fields, resulting from Eq. 3.20. The dipole field is given
either by

Hν
dip,1 =

∑

kl

µk µl Sk Sl

(

x2
kl + y2

kl

r5
kl

)

(3.45)

or by

Hν
dip,2 =

∑

kl

µk µl Sk Sl

(

y2
kl − 2 x2

kl

r5
kl

)

, (3.46)
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3 Magnetic Model

depending on the chosen geometry for the local easy axis. The k-sums run
over all spins inside, and the l-sums over all spins outside the spin cluster
Cν. We have made use of the condition Sl = ±1 during the rotation of the
spin cluster. In case of an in-plane easy axis, we have again neglected the
sin φ-term of Eq. (3.40), resulting from the dipole interaction.

Analogously to the previous subsection, for |hν
eff | < 1, the energy barriers

∆E(1)
ν = Hν

ani (1 ± hν
eff)2 (3.47)

have to be surmounted. For this, the Arrhenius-type cluster-flip rate Γ
(1)
ν

given by Eq. (3.37) is applied. For |heff
ν | ≥ 1, the cluster-flip rate Γ

(2)
ν is

calculated by use of the Metropolis-type rate, Eq. (3.39), considering the
energy difference

∆E(2)
ν = ± 4 Hν

ani h
ν
eff . (3.48)

In Sec. 4.2.2, these cluster-flip rates will be applied to cluster MC simulations
of the magnetic behavior of irregularly connected island spin systems during
growth. We will see that for such systems single-spin-flips are not suited.

52


