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Abstract

In recent years the quantum simulation of condensed-matter physics problems has resulted from ex-

citing experimental progress in the realm of ultracold atoms and molecules in optical lattices. In this

thesis we analyze theoretically a spinor Bose gas loaded into a three-dimensional cubic optical lattice.

In order to account for different superfluid phases of spin-1 bosons with a linear Zeeman effect, we work

out a Ginzburg-Landau theory for the underlying spin-1 Bose-Hubbard model. To this end we add

artificial symmetry-breaking currents to the spin-1 Bose-Hubbard Hamiltonian in order to break the

global U(1) symmetry. With this we determine a diagrammatic expansion of the grand-canonical free

energy up to fourth order in the symmetry-breaking currents and up to the leading non-trivial order

in the hopping strength which is of first order. As a cross-check we demonstrate that the resulting

grand-canonical free energy allows to recover the mean-field theory. Applying a Legendre transfor-

mation to the grand-canonical free energy, where the symmetry-breaking currents are transformed to

order parameters, we obtain the effective Ginzburg-Landau action. With this we calculate in detail at

zero temperature the Mott insulator-superfluid quantum phase boundary as well as condensate and

particle number density in the superfluid phase.

We find that both mean-field and Ginzburg-Landau theory yield the same quantum phase transition

between the Mott insulator and superfluid phases, but the range of validity of the mean-field theory

turns out to be smaller than that of the Ginzburg-Landau theory. Due to this finding we expect that

the Ginzburg-Landau theory gives better results for the superfluid phase and, thus, we restrict ourselves

to extremize only the effective Ginzburg-Landau action with respect to the order parameters. With-

out external magnetic field the superfluid phase is a polar (ferromagnetic) state for anti-ferromagnetic

(ferromagnetic) interactions, i.e. only the hyperfine spin 0 (1) is macroscopically occupied, in accor-

dance with previous mean-field results. On the other hand, in the presence of the external magnetic

field for ferromagnetic interaction, the superfluid phase does not change as the minimization of the

energy implies the maximal spin value. However, when an anti-ferromagnetic interaction competes

with the linear Zeeman effect, we can distinguish various ferromagnetic and anti-ferromagnetic su-

perfluid phases within the range of validity of the Ginzburg-Landau theory. Increasing the external

magnetic field yields a breaking of spin singlet pairs and a subsequent alignment of spins, thus anti-

ferromagnetic phases decrease until only a ferromagnetic superfluid phase prevails. In addition, we

find that the superfluid-Mott insulator phase transition is always of second order for both ferromag-

netic and anti-ferromagnetic interactions. However, the transitions between different superfluid phases

for an anti-ferromagnetic interaction can be both of first and second order depending on whether the

respective macroscopic occupation of hyperfine spin states changes discontinuously or continuously.

The established Ginzburg-Landau theory for spin-1 bosons in optical lattices will certainly be the

basis for many further applications as, for instance, time-of-flight absorption pictures or collective

excitations, which are of experimental importance.
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Kurzzusammenfassung

In den letzten Jahren ist die Quantensimulation von Problemen der Physik der kondensierten Materie

aus spannenden experimentellen Fortschritten auf dem Gebiet der ultrakalten Atome und Moleküle

in optischen Gittern hervorgegangen. In dieser Arbeit untersuchen wir theoretisch ein Spinor-Bose-

Gas, das in ein dreidimensionales kubisches optisches Gitter geladen wird. Um die verschiedenen

superfluiden Phasen von Spin-1 Bosonen mit linearem Zeeman-Effekt zu untersuchen, erarbeiten wir

eine Ginzburg-Landau-Theorie für das zu Grunde liegende Spin-1 Bose-Hubbard-Modell. Zu diesem

Zweck fügen wir künstliche symmetriebrechende Ströme zum Spin-1 Bose-Hubbard-Hamiltonian, um

die globale U(1)-Symmetrie zu brechen. Dann bestimmen wir eine diagrammatische Entwicklung

der großkanonischen freien Energie bis zur vierten Ordnung in den symmetriebrechenden Strömen

und bis zu der führenden nicht-trivialen Ordnung im Tunnelmatrixelement, die von erster Ordnung

ist. Zur Kontrolle zeigen wir, dass die resultierende großkanonische freie Energie in der Lage ist, die

Molekularfeld-Theorie zu reproduzierien. Eine Legendre-Transformation der großkanonischen freien

Energie, wo die symmetriebrechenden Ströme in Ordnungsparameter umgewandelt werden, führt auf

die effektive Ginzburg-Landau-Wirkung. Damit berechnen wir im Detail am absoluten Temperatur-

nullpunkt die Mott-Isolator-Superfluid-Quantenphasengrenze sowie Kondensat- und Teilchenzahldichte

in der superfluiden Phase.

Wir finden, dass sowohl Molekularfeld- als auch Ginzburg-Landau-Theorie denselben Quanten-

phasenübergang zwischen Mott-Isolator und superfluider Phasen erhalten, aber der Gültigkeitsbereich

der Molekularfeld-Theorie stellt sich als kleiner als der der Ginzburg-Landau-Theorie heraus. Auf-

grund dieser Erkenntnis erwarten wir, dass die Ginzburg-Landau-Theorie zu besseren Ergebnissen in

der superfluiden Phase führen wird und beschränken uns daher darauf, die effektive Ginzburg-Landau

Wirkung bezüglich der Ordnungsparameter zu extremalisieren. Ohne äußeres Magnetfeld ist die su-

perfluide Phase ein polarer (ferromagnetischer) Zustand für anti-ferromagnetische (ferromagnetische)

Wechselwirkung, d.h. nur der Hyperfeinspin 0 (1) ist makroskopisch besetzt in Übereinstimmung

mit früheren Molekularfeld-Ergebnissen. In der Anwesenheit des externen Magnetfeldes für ferromag-

netische Wechselwirkung ändert sich die superfluide Phase nicht, da eine Minimierung der Energie zu

einem maximalen Spin führt. Wenn jedoch eine anti-ferromagnetische Wechselwirkung mit dem lin-

earen Zeeman-Effekt konkurriert, können wir verschiedene ferromagnetische und anti-ferromagnetische

superfluide Phasen im Gültigkeitbereich der Ginzburg-Landau-Theorie unterscheiden. Eine Erhöhung

des externen Magnetfeldes bricht Singulett-Paare auf und führt anschließend zu einer Ausrichtung

der Spins, also verringern sich die anti-ferromagnetischen Phasen, bis nur noch eine ferromagnetis-

che superfluide Phase übrig bleibt. Darüber hinaus finden wir, dass der Superfluid-Mott-Isolator

Phasenübergang sowohl für ferromagnetische als auch für anti-ferromagnetische Wechselwirkungen

von zweiter Ordnung ist. Jedoch können die Übergänge zwischen verschiedenen superfluiden Phasen

für eine anti-ferromagnetische Wechselwirkung sowohl von erster als auch von zweiter Ordnung sein,
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abhängig davon, ob sich die jeweilige makroskopische Besetzung von Hyperfeinspin-Zuständen diskon-

tinuierlich oder kontinuierlich ändert.

Die etablierte Ginzburg-Landau-Theorie für Spin-1-Bosonen in optischen Gittern wird sicherlich

die Grundlage für viele weitere Anwendungen sein, wie zum Beispiel Flugzeit-Absorptionsbilder oder

kollektive Anregungen, die von experimenteller Bedeutung sind.
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1. Introduction

The observation of Bose-Einstein condensation (BEC) started in 1995 by its first experimental realiza-

tion in dilute atomic gases which opened a new era in the study of many-body quantum physics and

was, thus, honored with the Nobel prize in 2001. This experimental demonstration produced by the

group of Cornell and Wieman as well as that of Ketterle, achieved BEC of dilute gases of alkali metal

atoms by using lasers and magnetic fields.

In this chapter, we present a brief summary of the history, recent experiments, and the theoretical

description of Bose-Einstein condensation. Furthermore, we study Bose gases in optical lattices.

1.1. History of Bose Einstein Condensation

In three dimensions all identical atoms are either fermions or bosons, i.e. they are characterized by

half-integer or integer spin. Fermions obey the Fermi-Dirac statistics which includes the Pauli exclusion

principle that the two identical fermions cannot occupy the same quantum state. On the other hand,

bosons obey the Bose-Einstein statistics where they can collapse into the same quantum ground state

in order to form a Bose-Einstein condensate. In 1925 Einstein [1] predicted this phenomenon by

extending the original work of Bose for photons [2] to massive particles. At a critical temperature,

Einstein predicted that a macroscopic particle number of an ideal gas condenses into a single quantum

state of lowest energy. The mean occupation number of atoms in quantum state s with the energy ǫs
in equilibrium at temperature T is given by Bose-Einstein distribution:

ns =
1

eβ(ǫs−µ) − 1
, (1.1)

where µ denotes the chemical potential, β = 1/ (kBT ) represents the reciprocal temperature, and kB

is the Boltzmann constant. Once a macroscopic number of particles occupies the ground state, the

phase transition to a Bose-Einstein condensate has happened, which is characterized by a “giant matter

wave”. The occurrence of this phase transition can be described by the de Broglie wavelength

λdB =

√

2π~2

mkBT
, (1.2)

where ~ is Planck’s constant and m is the atomic mass. At room temperature the inter-particle distance

of the atoms, which is of order of n−1/3, is much greater than the de Broglie wavelength λdB, where

n denotes the particle density. When the temperature of the gas decreases, but is still larger than

the critical temperature, the atoms of the gas represent “wave packets” with the extension λdB. If

the temperature equals the critical temperature, the atomic wave functions begin to overlap i.e. the

thermal de Broglie wavelength equals the inter-particle distance of the atoms and a Bose-Einstein
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1. Introduction

Figure 1.1.: Occurrence of Bose-Einstein condensation [3]. At high temperature, the atoms of the gas
behave like point particles (top). When the temperature is decreased, the wave nature of
the particles is clearer visible. When the critical temperature of BEC is reached, the atomic
wave functions overlap and the de Broglie wavelength (1.2) equals the average distance
d = n−1/3 between the atoms. When the temperature is nearly close to zero, a pure Bose
condensate is obtained.

condensate forms as shown in Fig. 1.1. When the temperature is lowered near to zero, all individual

atomic wave functions form a single macroscopic matter wave. However, in order to get BEC, the

phase space density of the gas ρ = nλ3dB should be one.

In 1938 Kapitza [4] as well as Allen and Misener [5] discovered the superfluidity in liquid helium.

In the same year, London showed the connection between Bose-Einstein condensation and the phe-

nomenon of superfluidity in 4He, despite the strong interactions in this system [6]. Tisza, initiated by

London, came up with the two-fluid model, which describes the character of liquid helium by two parts,

a normal component, that moves with friction, and a superfluid component that moves without friction,

where the superfluid component is interpreted in terms of Bose condensed 4He atoms [7]. The model

was further developed by Landau based on the novel idea of “weakly interacting quasi-particles” [8].

In 1947 Bogoliubov suggested a microscopic theory of superfluidity in terms of a weakly interacting

Bose gas [9]. He explained the effect of the interaction between bosons upon the properties of a Bose

gas in terms of Landau quasi-particles with a characteristic excitation spectrum. Nonetheless, further

theoretical progress was achieved by Penrose and Onsager in 1956 [10], who showed that Bose-Einstein

condensation is related to the existence of off-diagonal long-range order in the single-particle density

matrix. The equation of motion for the macroscopic wave function of the condensate atoms, which de-

fines the mean-field order parameter, was independently deduced by both Gross [11] and Pitaevskii [12].

This Gross-Pitaevskii equation played a principal role to describe a pure Bose-Einstein condensate at

temperatures near absolute zero.

It took 75 years since the theoretical prediction of Bose-Einstein condensate before its experimental

realization was achieved in 1995 by Cornell, Wiemann at JILA [20] in a rubidium vapor and by Ketterle
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1.2. Ultracold Spinor Atomic Gases

Figure 1.2.: Periodic table where all elements, which are high-lighted in green, have been Bose-Einstein
condensed.

at MIT [13] in a sodium vapor by using the advances made in laser cooling techniques. The reason

for this long period lies in the experimental difficulty to cool down the atoms to temperatures in

the nK regime and to catch them in a trap. These experiments use a magneto-optical trap (MOT),

where a particular arrangement of laser beams and magnetic fields allows to cool the atoms in order

to produce samples of cold, trapped, neutral atoms at micro-Kelvin temperatures using laser cooling

techniques [14]. Then, these atoms are transferred to a magnetic trap in order to cool them at nano-

Kelvin temperatures using evaporative cooling [15]. Finally, we mention that Bose-Einstein condensates

have so far been produced with thirteen chemical elements as shown in the periodic table of Fig. 1.2.

The first column in the periodic table includes hydrogen [16], lithium [17], sodium [13], potassium [18],

rubidium [19, 20], and cesium [21]. Bose-Einstein condensation for rare-earth element like ytterbium

atoms in optical trap is done in 2003 [22]. In 2009 Bose-Einstein condensation was achieved for

the alkaline earth metals calcium [23] and strontium [24, 25]. Bose-Einstein condensation in a dilute

gas of helium was observed in 2001 [26, 27]. Furthermore, strong dipolar BECs were observed in

chromium [28], erbium [29], and dysprosium [30].

1.2. Ultracold Spinor Atomic Gases

Spinor ultracold gases are those comprised of atoms with non-zero internal angular momentum, where

all orientations of the atomic spin may be realized. The Zeeman hyperfine energy levels are described

by the total atomic angular momentum F which is the sum of nuclear I and electronic angular momenta

J , where the latter is the sum of the orbital angular momentum L and the spin of the outer electrons

S. Each ground-state subspace is defined by manifolds of Zeeman states which are charcterized by
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1. Introduction

Figure 1.3.: Counter-propagating laser beams produce an optical lattice in two (a) or three (b) dimen-
sions [55].

{|F,mF 〉}, where mF is the magnetic quantum number which can take values from −F to F [31].

Spinor condensates, which are Bose-Einstein condensates with atomic spin internal degrees of free-

dom, allow to study the magnetization in the quantum gas. The first theoretical discussion of a BEC

with spin degrees of freedom was performed in Refs. [32,33]. There the Hamiltonian of a spinor Bose-

Einstein condensate and the mean-field condensate wave function were determined. This ansatz was

verified experimentally by the Ketterle group by studying the ground state of the spin-1 system con-

sisting of 23Na atoms [34]. Furthermore, the MIT group succeeded to transfer a spin-polarized 23Na

condensate, which was produced in a traditional magneto-optical trap in one hyperfine state, into a

dipole trap formed by the focus of a far-off-resonant laser [35]. Such an optical lattice confines neutral

atoms due to the interaction between the electric field of the laser light and the induced electric dipole

moment of the atoms. Therefore, in contrast to the magneto-optical trap, a dipole trap allows to trap

the atoms in all hyperfine spin states [36]. With this, spinor condensates opened a new area to study

various aspects of the quantum magnetism such as spin dynamics [37–40], spin waves [41, 42], or spin

mixing [43, 44]. These examples result from coherent collisional processes between two atoms, where

the total magnetization is constant but the spins of the individual particles can change.

1.3. Optical Lattice

An optical lattice is a periodic potential produced by the interference of counter-propagating laser

beams. Its realization has opened a new era in atomic physics in the context of atom diffraction [45,46].

Hemmerich et al. [47–49] and Grynberg et al. [50] have succeeded in cooling the atoms to the micro-

Kelvin regime in a two and three-dimensional optical lattices. Before the production of BEC, the

band structure in the optical lattice played a principal role in the gases under the effect of external

forces which induce non-adiabatic transitions between Bloch bands at micro-Kelvin temperature where

Landau-Zener tunneling is achieved [51, 52]. Anderson and Kasevich observed Bose-Einstein conden-

sates, Bloch oscillation and Landau-Zener tunneling between different energy bands in an optical lattice

by using the gravitational force of the earth on a vertically oriented lattice in one-dimension [53]. Af-

terwards, Josephson junction arrays and Josephson oscillations were achieved with a Bose-Einstein

condensate [54].
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1.4. Spinor Gases in Optical Lattice

The advantages of optical lattices are the following. Firstly, the height of the lattice can be used to

control the strength of atom-atom interactions by changing the intensity of the laser field. However,

using a Feshbach resonance the interaction strength, symmetry and sign for repulsive or attractive can

be changed without modifying the lattice height [56]. Secondly, lattice site filling factor and lattice

geometry has been controlled. Thirdly, the dimension of the quantum gas can be changed from 3D to

1D or 2D in an optical lattice as shown in Fig. 1.3. Fourthly, the optical lattice is free of defects, and

so the atoms undergo no scattering due to imperfections in the crystal.

The physics of optical lattices is that the interaction between the neutral atoms and the laser light

is carried out in both a conservative and a dissipative way. The interaction between the light and the

induced dipole moment of the atom is called conservative interaction. This interaction leads to a shift

in the potential energy called ac-Stark shift. The dissipative interaction results from the absorption

of photons due to spontaneous emission in which the net effect is a dissipative force on the atoms. It

stems from the transfer of momentum to the atom by the absorbed or spontaneously emitted photons.

In Ref. [57] it was suggested to load a BEC in a periodic potential, so the atoms of the system

are condensed in the weakly interacting regime. As the lattice potential is increased, the band gap

between the first and second Bloch bands increases. Therefore, all atoms are assumed to reside in

the lowest Bloch band and the system can be described by a single-band Bose-Hubbard model that

describes the physics of strongly interacting bosons by the competition between kinetic and interaction

energy. It has been studied analytically and numerically with different techniques like mean-field

approximations [58–60] and quantum Monte Carlo methods [61–64].

Fisher et. al. [65] predicted theoretically within the Bose-Hubbard model the phase transition

between the superfluid and Mott insulator phase, which was later on realized experimentally by Greiner

et. al. [66]. Fig. 1.4 shows that the superfluid-Mott insulator transition is obtained by changing the

lattice depths. When the lattice depth is small, the uncertainty of momenta is small and then a huge

spatial uncertainty is achieved due to the Heisenberg uncertainty principle. Thus, the ground state

is a superfluid as the bosons are delocalized and the phase is coherent over the entire lattice. On

the contrary, a huge uncertainty of momenta results from a large lattice depth and thus the spatial

uncertainty will be small. Then, the ground state is a Mott insulator, where the bosons are localized

in one of the respective minima and can no longer tunnel to the neighboring minima. The location

of the quantum phase transition can be more precisely determined from slightly tilting the optical

lattice. The Mott insulator is characterized by gapped excitations and, thus, a slight tilt does not lead

to a motion of bosons. Contrary to that the superfluid phase is characterized by a gapless Goldstone

mode and, thus, a slight tilt initiates a motion of bosons. Furthermore, extensions of the Bose-Hubbard

model have been investigated, which cover for instance, superlattices [67], Bose-Fermi mixtures [68–71],

quantum simulations like entanglement of atoms or quantum teleportation [72], and disorder [73–75].

1.4. Spinor Gases in Optical Lattice

Preparing experimentally a spin-1 BEC of 23Na or 87Rb atoms in an optical trap the atomic spin degrees

of freedom are not frozen due to the electric dipole force between atoms and the electric field of a laser

beam [34, 76]. This experimental realization of an optically trapped BEC opened a new window to
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1. Introduction

Figure 1.4.: Superfluid to Mott insulator transition in an optical lattice for different lattice depths: (a)
0 ER, (b) 3 ER, (c) 7ER, (d) 10 ER, (e) 13 ER, (f) 14 ER, (g) 16 ER, (h) 20 ER where
ER = π2~2/(2ma2) is the recoil energy (m is the mass of a single atom and a is the lattice
constant) [66].

study also various phenomena of spinor Bose gases loaded in an optical lattice. For instance, they

offer the possibility of studying strongly correlated states, for example the coherent collisional spin

dynamics in an optical lattice was measured in Ref. [77] and the 87Rb scattering lengths for F = 1 and

F = 2 were determined in Ref. [78]. In particular, combining the spin degree of freedom with various

types of interactions and with different lattice geometries offers the prospect to realize a plethora of

superfluid phases with magnetic properties. A first tentative step in this direction was the loading of
87Rb in a frustrated triangular lattice [79]. Despite these initial promising investigations, spinor Bose

gases in optical lattice seem experimentally to be so challenging that no further detailed experiments

have been performed.

On the other hand, the properties of spin-1 Bose gases in an optical lattice were investigated in

detail some time ago theoretically in Refs. [80,81]. Several unique MI and SF phases for spin-1 bosons

were determined without external magnetic field at zero temperature in case of an anti-ferromagnetic

interaction in an optical lattice [80]. For instance, the MI phase with an even number of atoms is

more strongly stabilized than that with an odd number because of the formation of singlet pairs [81].

Moreover, the SF phase represents a polar spin-0 state with zero spin expectation value [80, 81]. On

the other side, the influence of the linear Zeeman effect with a non-vanishing external magnetic field

upon the MI-SF phase boundary was determined within a mean-field approximation in Refs. [82, 83].

In addition, it was also shown in Ref. [82, 83] that the superfluid transition occurs into either a polar

spin-1 or a polar spin-(-1) state, but it was not investigated, which magnetic phases may emerge deeper

in the superfluid.
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1.5. Outline of Thesis

In this thesis, we follow Refs. [84,85] and study the effect of an external magnetic field on the emergence

of superfluid phases for anti-ferromagnetic spin-1 bosons in a three-dimensional cubic optical lattice at

zero temperature. To this end, we extend the Ginzburg-Landau theory developed in Refs. [86,87] from

the spin-0 to the spin-1 Bose-Hubbard model. Thus, we calculate the effective action which allows

us to obtain the different superfluid phases and to determine the respective order of the transitions

between them. To this end, we organize the thesis as follows:

In Chapter 2, bosons in a cubic optical lattice are considered with spin degrees of freedom. In ad-

dition, we focus on particles with effective spin F = 1. We describe theoretically the behavior of the

spin-1 Bose-Hubbard model at zero temperature. Furthermore, at zero temperature and no hopping,

we explain the properties of a spin-1 system without or with magnetization. In addition, we show the

effect of the critical external magnetic field on the ground state in the Mott insulator phase for a fixed

spin-dependent interaction.

We discuss in Chapter 3 the classification of phase transitions and the properties of a second-order

phase transition and the underlying symmetry-breaking mechanism. Furthermore, the principle role

of the order parameter is explained. Additionally, at zero temperature, we calculate the superfluid-

Mott insulator quantum phase transition without and with magnetization in case of ferromagnetic and

anti-ferromagnetic interactions by generalizing the mean-field approximation which is used to describe

spinless bosons. To this end, it is necessary to calculate various matrix elements which is done recur-

sively in Appendix A.

In Chapter 4, we determine the partition function of the system in the Dirac interaction picture.

Within the Ginzburg-Landau theory the additional source currents are added to the Bose-Hubbard

model in order to break the global U(1) symmetry. Furthermore, a strong-coupling perturbation theory

will be developed by taking into account diagrammatic rules which treat the bosons in a cubic optical

lattice. Thus, we get a diagrammatic expansion of the grand-canonical free energy in the first order of

the hopping parameter and in the fourth order of the symmetry-breaking currents. We reproduce the

mean-field free energy in order to estimate the accuracy of our calculation and investigate the range

of validity.

The corresponding spin-dependent order parameters in Chapter 5 are introduced via a Legendre

transformation with respect to the currents and calculate the resulting hopping expansion of the effec-

tive action up to first order. With this we study the quantum phase transition between the superfluid

phase and the Mott insulator. In addition, we determine the range of validity of the Ginzburg-Landau

theory, which turns out to be limited due to a sharp increase of the condensate density in the super-

fluid phase and is larger than that of mean-field theory. By extremising the effective Ginzburg-Landau

action we show that, in particular at zero temperature, our theory can distinguish between various

ferromagnetic and anti-ferromagnetic superfluid phases for an anti-ferromagnetic interaction and a

non-vanishing external magnetic field. Furthermore, we show for a vanishing external magnetic field

that the superfluid phase is a polar state, where all the atoms condense in the spin-0 state [81]. More-

over, we study whether the superfluid-Mott insulator phase transition and the transitions between the

various superfluid phases for a non-vanishing external magnetic field are of first or second order.

In Chapter 6, finally, we summarize our thesis and present the outlook.
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2. Spinor Bose Gases in Optical Lattice

After having discussed general properties of optical lattices in the previous chapter, we start this chapter

with introducing the spinor interaction potential between atoms of spinor Bose gases. Subsequently,

the Bose-Hubbard model for spin-1 atoms in a cubic optical lattice is derived by using a tight-binding

approximation. Additionally, the properties of Mott insulator phases are investigated in the atomic

limit, i.e. with zero hopping between the nearest neighbor sites, without and with magnetization. To

this end we observe how the ground-state energy changes both with the external magnetic field and

the chemical potential.

2.1. Spinor Interaction Potential

The interactions between two atoms are the workhorse for ultracold quantum gases in optical lattices.

In the scalar case, the ultracold atomic interactions are characterized by a single parameter as, the

three-dimensional s-wave scattering length [88,89]. Therefore, this interaction can be described by the

pseudopotential [90] which is defined as

Vint(r, r
′) = gδ(r − r

′), (2.1)

where

g =
4π~2as
M

(2.2)

is the interaction strength and M is the particle mass.

In the spinor case, we note that the knowledge of the interaction potential between two atoms with

spin degree of freedom is more difficult than that of the spinless case. In order to determine the spinor

interaction potential we generalize the pseudopotential (2.1) to a system of of two identical bosons of

spin f yielding the total spin F [32, 33]:

Vint(r, r
′) = δ(r− r

′)
2f
∑

F=0

gFPF . (2.3)

The respective coupling strengths gF are given by

gF =
4π~2aF
M

, (2.4)

where aF denotes the s-wave scattering length for two colliding atoms with total hyperfine spin F .
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2. Spinor Bose Gases in Optical Lattice

The corresponding projection operator PF is defined according to

PF =

F
∑

mF=−F

|F,mF 〉 〈F,mF | . (2.5)

Note that Eq. (2.3) is valid for low energies when all other relevant length scales of the system, i.e.

the de Broglie wavelength of the atoms and the average interatomic spacing, are much larger than the

range of the two-body scattering potential.

For identical bosons, the allowed total spins F must be even [81, 91], and the normalization condition

of projection operators reads

1 =

2f
∑

F=0

PF . (2.6)

However, the spin-spin coupling of two spin-f bosons can be found from using the identity

f1 · f2 =
F
2 − f

2
1 − f

2
2

2
=
F (F + 1)− 2f(f + 1)

2
. (2.7)

Combining Eqs. (2.6) and (2.7) we get

f1 · f2 = (f1 · f2)1 =

2f
∑

F=0

f1 · f2PF =

2f
∑

F=0

λFPF , (2.8)

with the abbreviation

λF =
F (F + 1)− 2f(f + 1)

2
.

For spin-1 condensates, for instance, we have from (2.6)

1 = P0 +P2, (2.9)

and from (2.8)

f1 · f2 = P2 − 2P0, (2.10)

so we yield for the projection operators

P0 =
1− f1 · f2

3
, P2 =

2 + f1 · f2
3

. (2.11)

From Eqs. (2.3) and (2.11), we then get

Vint(r, r
′) = δ(r− r

′)(c0 + c2f1 · f2), (2.12)

with

c0 =
g0 + 2g2

3
, c2 =

g2 − g0
3

(2.13)

representing the spin-independent and spin-dependent interaction coefficients, respectively.
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2.2. Spin-1 Bose-Hubbard Hamiltonian

The spinor Bose Hubbard model describes the low-energy spin-1 bosons loaded in a deep optical lattice.

In order to derive this model, we start from the second quantized Hamiltonian for a spin-1 Bose gas in

the grand-canonical ensemble [32,33,80,81,92–95] by neglecting the effect of any additional harmonic

trapping potential which is given by

Ĥ =
∑

α

∫

d3xΨ̂†
α(x)

[

− ~
2

2M
∇2 + V (x)− µ

]

Ψ̂α(x)− η
∑

α,β

∫

d3xΨ̂†
α(x)F

z
αβΨ̂β(x)

+
c0
2

∑

α,β

∫

d3xΨ̂†
α(x)Ψ

†
β(x)Ψ̂β(x)Ψ̂α(x) +

c2
2

∑

α,β,γ,δ

∫

d3xΨ̂†
α(x)Ψ

†
γ(x)Fαβ · FγδΨ̂δ(x)Ψ̂β(x). (2.14)

Here µ is the chemical potential and η stands for the external magnetic field. Furthermore, V (x) =

V0
3
∑

ν=1
sin2(kLxν) is the periodic potential of a 3-dimensional cubic optical lattice with a lattice period

a = λL/2, where the lattice depth is measured in units of the recoil energy ER = ~
2k2L/2M , where

kL = 2π/λL. We note that the potential decomposes in three one-dimensional parts, which is a

special property of the cubic lattice. In addition, Ψ̂α(x) is a field operator that annihilates a particle

in a hyperfine state |F = 1,mF = −1, 0, 1〉. Because of the bosonic nature of the particles, the field

operators fullfill the standard commutator relations:

[

Ψ̂α(x), Ψ̂β(x
′)
]

= 0 ,
[

Ψ̂†
α(x), Ψ̂

†
β(x

′)
]

= 0 ,
[

Ψ̂α(x), Ψ̂
†
β(x

′)
]

= δα,βδ(x − x
′). (2.15)

Here Fαβ are the spin-1 matrices

Fx =
1√
2







0 1 0

1 0 1

0 1 0






, Fy =

i√
2







0 −1 0

1 0 −1

0 1 0






, Fz =







1 0 0

0 0 0

0 0 −1






, (2.16)

which fullfill the commutator relations
[

Fα, Fβ

]

= i
∑

γ ǫαβγFγ of an angular momentum algebra. The

first term in (2.14) results from the one-particle Hamiltonian, the second one denotes the Zeeman

energy in the external magnetic field, the third one describes the spin-independent interaction, and

the last one the spin-dependent interaction. The spin-dependent interaction is ferromagnetic (anti-

ferromagnetic) when c2 < 0, i.e., a2 < a0 (c2 > 0, i.e., a2 > a0) where aF is the s-wave scattering

length with total spin F for F = 0, 2. We remark that the scattering of total spin F = 1 is forbidden

due to the bosonic parity [81]. In the case of 23Na atoms the interaction is anti-ferromagnetic where

its scattering lengths are a0 = (46± 5)aB and a2 = (52± 5)aB , where aB is the Bohr radius [96]. For
87Rb, we have instead a0 = (110± 4)aB and a2 = (107± 4)aB , so the interaction is ferromagnetic [32].

It is important to show that in a periodic potential Bloch wave functions are the energy eigenstates

of a single atom. These states can be written as a set of Wannier functions which are localized on the

lattice sites through the tight-binding limit [97]. Thus, we can expand a field operator by the Wannier

functions of the lowest energy band for low enough temperatures as then the energy gap between the
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2. Spinor Bose Gases in Optical Lattice

first and the second band Egap is much larger than kBT :

Ψ̂α(x) =
∑

i

âiαw(x− xi) , Ψ̂†
α(x) =

∑

i

â†iαw
∗(x− xi), (2.17)

where â†iα (âiα) is the creation (annihilation) operator for an atom at site i with hyperfine spin mF = α.

Using orthonormality conditions, we obtain the commutation relations for the lattice operator

[

âiα, âjβ

]

= 0 ,
[

â†iα, â
†
jβ

]

= 0 ,
[

âiα, â
†
jβ

]

= δα,βδi,j. (2.18)

Inserting Eq. (1.2) into (2.14), and using the approximation that the overlap of Wannier functions at

different sites can be neglected for a deep enough lattice potential, the Bose-Hubbard model for spin-1

bosons in a cubic optical lattice becomes

Ĥ =
∑

i

[

U0

2

∑

α,β

â†iαâ
†
iβ âiαâiβ +

U2

2

∑

α,β,γ,δ

â†iαâ
†
iγFαβ · Fγδâiδâiβ

−µ
∑

α

â†iαâiα − η
∑

α,β

â†iαF
z
αβ âiβ

]

− J
∑

<i,j>

∑

α

â†iαâjα. (2.19)

Here < i, j > describes a summation over all sets of nearest neighbor sites. The hopping matrix

element is

J = Jij = −
∫

d3xw∗(x− xi)

[

− ~
2

2M
∇2 + V (x)

]

w(x− xj). (2.20)

We can drop the site indices since all J ij are equal in the case of the nearest-neighbor hopping due

to translational invariance. Furthermore, U0 and U2 represent the on-site spin-independent and spin-

dependent interaction, respectively, where UF is defined by

UF = cF

∫

d3x
∣

∣w(x− xi)
∣

∣

4
, (2.21)

which is proportional to the parameter cF defined in (2.13). Therefore, we have a ferromagnetic (anti-

ferromagnetic) when U2 < 0 (U2 > 0). Note that we have neglected in (2.19) a physically irrelevant

energy shift, which is of the form (2.20) with i = j.

We can rearrange the spin dependent term in (2.19) by using this identity

∑

α,β,γ,δ

â†iαâ
†
iγFαβ · Fγδâiδâiβ =

∑

α,β,γ,δ,ν

(

â†iαF
ν
αβ âiβ

)(

â†iγF
ν
γδâiδ

)

−
∑

α,β,δ,ν

F ν
αβF

ν
βδâ

†
iαâiδ. (2.22)

Here, we define the spin operator Ŝi =
∑

α,β

â†iα Fαβ âiβ, the number operator for each spin component
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n̂iα = â†iαâiα, and n̂i =
∑

α n̂iα is the total atom number operator. Therefore, Eq. (2.19) becomes

Ĥ =
∑

i

[

U0

2
n̂i(n̂i − 1) +

U2

2
(Ŝ2

i − 2n̂i)− µn̂i − ηŜiz

]

− J
∑

<i,j>

∑

α

â†iαâjα. (2.23)

In order to derive that the operator Ŝ behaves like an angular momentum or spin operator, we write

down explicitly each component of the spin operator

Ŝix =
1√
2
(â†i1âi0 + â†i0âi1 + â†i0âi−1 + â†i−1âi0), (2.24)

Ŝiy =
i√
2
(−â†i1âi0 + â†i0âi1 − â†i0âi−1 + â†i−1âi0), (2.25)

Ŝiz = n̂i1 − n̂i−1. (2.26)

With this one can show that the operators Ŝiσwith σ = x, y, z obey the usual angular momentum

commutation relation
[

Ŝi, Ŝj

]

= i
∑

k ǫijkŜk. Using Eqs. (2.24)–(2.26), we get furthermore

Ŝ
2
i = 2n̂i1n̂i0 + 2n̂i0n̂i−1 + n̂i1 + 2n̂i0 + n̂i−1 + n̂2i1 − 2n̂i1n̂i−1 + n̂2i−1 + 2â†i1â

†
i−1â

2
i0 + 2â†i0â

†
i0âi1âi−1.

(2.27)

The spin-1 Bose-Hubbard Hamiltonian (2.23) represents the starting point for the following analysis.

2.3. Thermodynamic Properties

In this section, we provide a brief introduction into thermodynamic quantities which are needed

throughout the thesis. Here, we use the grand-canonical ensemble by assuming that both energy

and particles can be exchanged between the considered system and its environment. Therefore, the

grand-canonical free energy for a magnetic system is the underlying thermodynamic potential, which

is given by [90,99]:

F(T, V, µ, η) = − 1

β
lnZ(T, V, µ, η), (2.28)

where the grand-canonical partition function Z reads

Z = Tr
[

e−β(Ĥ−µN̂−ηM̂)
]

. (2.29)

Here V is the volume, µ refers to the chemical potential which is defined as the change in energy per

particle added to the system [98] and β = 1/(kBT ) corresponds to the reciprocal of system temperature

T and kB labels the Boltzmann constant. In addition, η denotes the external magnetic field [99] which

corresponds to the Zeeman splitting between two states differing by ∆mF = 1 under the effect of an
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external magnetic field [32, 82, 83, 100,101]. Both µ and η should be adjusted in order to fix the total

number of particles and the total magnetization, respectively.

In quantum statistics, the thermal average of an arbitrary operator Ô can be obtained by

< Ô >=
1

ZTr
[

Ô e−β(Ĥ−µN̂−ηM̂)
]

. (2.30)

Thus, the total particle number is given by

N =
〈

N̂
〉

= −∂F
∂µ

, (2.31)

and the magnetization of the system follows from

M =
〈

M̂
〉

= −∂F
∂η

. (2.32)

2.4. System Properties With Zero Hopping

In this section, we study the properties of the system with no hopping, i.e. J = 0. In this atomic limit,

the Bose-Hubbard Hamiltonian (2.23) reduces to a sum of single-site Hamiltonians

Ĥ =
∑

i

Ĥ
(0)
i , (2.33)

where

Ĥ
(0)
i = −µn̂i +

U0

2
n̂i(n̂i − 1) +

U2

2
(Ŝ2

i − 2n̂i)− ηŜiz . (2.34)

We are able to drop site index i in the following since all sites are equivalent and, therefore, use the

remaining part of this chapter only the local Hamiltonian

Ĥ(0) = −µn̂+
U0

2
n̂(n̂− 1) +

U2

2
(Ŝ2 − 2n̂)− ηŜz . (2.35)

We remark that the eigenstates of the Hamiltonian (2.35) can be determined by the three quantum

numbers S, m, n as the operators Ŝ2, Ŝz and n̂ commute with each other [81]. The eigenvalue problems

of these operators therefore read

Ŝ
2 |S ,m, n〉 = S (S + 1) |S,m, n〉 , (2.36)

Ŝz |S,m, n〉 = m |S,m, n〉 , (2.37)

n̂ |S,m, n〉 = n |S,m, n〉 . (2.38)

We find that S+n is even because S is even (odd) when n is even (odd) due to the Bose statistics [32].

Correspondingly, the eigenvalue problem of the local Hamiltonian (2.35) is given by
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Ĥ(0) |S,m, n〉 = E
(0)
S,m,n |S,m, n〉 , (2.39)

where, the states |S,m, n〉 are orthonormal, i.e.

〈

S ,m, n
∣

∣S′,m′, n′
〉

= δS,S′δm,m′δn,n′ . (2.40)

With the help of Eqs. (2.36)–(2.38), the energy eigenvalues are defined as

E
(0)
S,m,n = −µn+

U0

2
n(n− 1) +

U2

2

[

S(S + 1)− 2n
]

− ηm. (2.41)

In the following we investigate in detail how the resulting ground state changes with the chemical

potential µ and the external magnetic field η.

2.4.1. Non-Magnetized System

In this subsection, we follow Refs. [102, 103] for an unmagnetized system η = 0 at zero temperature.

Then, the magnetic quantum number m disappears from the eigenenergies (2.41):

E
(0)
S,n = −µn+

U0

2
n(n− 1) +

U2

2

[

S(S + 1)− 2n
]

. (2.42)

Thus, the eigenstates are (2S + 1)-fold degenerated. In this case, the U2 sign influences the ground

state as follows [102,103]:

• When U2 < 0, the interaction is ferromagnetic. Thus, in order to minimize the energy, the spin

should be maximum, i.e. S = n. Thus, the neighboring Mott lobes are characterized by the

following condition

E
(0)
n−1,n−1 < E(0)

n,n < E
(0)
n+1,n+1 (2.43)

so we obtain from Eq. (2.42)

(

1 +
U2

U0

)

(n− 1) <
µ

U0
< n

(

1 +
U2

U0

)

. (2.44)

• When U2 > 0, the interaction is anti-ferromagnetic. Therefore, the minimization of the energy is

obtained by the minimal spin S. This value of spin S depends on the number of atoms per site

n:

– For an even n the ground state is |0, 0, n〉 with S = 0. This ground state is called the

“spin-singlet insulator” [80]. In this case we have to distinguish two situations. The first

one is U2/U0 < 0.5 and the second one is U2/U0 > 0.5 as shown in Fig. 2.1 [102,103].
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Figure 2.1.: Phase diagram of spinor F = 1 Bose-Hubbard model for unmagnetized system with no
hopping at zero temperature. The system is ferromagnetic (anti-ferromagnetic) when
U2/U0 < 0 (U2/U0 > 0) [102,103].

∗ For U2/U0 < 0.5, we have

E
(0)
1,n−1 < E

(0)
0,n < E

(0)
1,n+1, (2.45)

which reduces with Eq. (2.41) to

(n− 1)− 2
U2

U0
<

µ

U0
< n . (2.46)

∗ For U2/U0 > 0.5 we have

E
(0)
0,n−2 < E

(0)
0,n < E

(0)
0,n+2, (2.47)

which yields accordingly

(

n− 1

2

)

− U2

U0
<

µ

U0
<

(

n+
1

2

)

− U2

U0
. (2.48)

– For an odd n the ground state is |1,m, n〉 where m = 0,±1. The difference between the

odd and even n case is that the odd lobes disappear when U2/U0 > 0.5. This means that

the odd lobes exist only for the inequality U2/U0 < 0.5. This leads to

E
(0)
0,n−1 < E

(0)
1,n < E

(0)
0,n+1, (2.49)
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which is equivalent to

(n− 1) <
µ

U0
< n− 2

U2

U0
. (2.50)

Figure 2.1 shows the resulting phase diagram in the plane spanned by the control parameters U2/U0 and

µ/U0 for vanishing hopping J = 0. In the case of anti-ferromagnetic interaction, for 0 < U2/U0 < 0.5

the right boundary of even lobes does not change with the spin-dependent interaction U2. On the

other hand, when U2/U0 is larger than 0.5, the odd lobes disappear while even lobes continue. For

ferromagnetic interaction, the even and odd lobes decrease when |U2| increases and vanish when U2/U0

is less than -1 [102,103].

2.4.2. Magnetized System

In this subsection, we go beyond Refs. [82, 102, 103] for a system with external magnetic field η > 0

at zero temperature T = 0 and no hopping J = 0. Therefore, the degeneracy is lifted and the ground

state of the Hamiltonian (2.35) depends on the respective value of the spin-independent interaction

U0, the spin-dependent interaction U2, the chemical potential µ, and the external magnetic field η. In

addition, the lowest energy state for given n and S is |S, S, n〉 .
For the following discussion it turns out to be important to determine the degeneracy when two

states have the same energy with equal particle number but with total spin differing by 2 [82, 104].

Thus, this degeneracy point describes the situation when it becomes energetically favorable to break

or to form a spin-singlet pair. In order to define these degeneracy points we put

E
(0)
S,S,n = E

(0)
S+2,S+2,n, (2.51)

and substituting (2.41) into (2.51) we get

ηcrit =U2

(

S +
3

2

)

. (2.52)

Note that this relation, which characterizes the critical values of η and U2 for both even and odd lobes

either to break or to form a spin-singlet pair, does not depend on the particle number n [82,101,104].

Now we aim at determining for a given even and odd particle number n, which spin S yields a

minimal energy. To this end we investigate in detail the energy difference, which yields with (2.41),

for an even n

∆E
(0)
S,S,n =E

(0)
S,S,n −E

(0)
0,0,n

=− Sη +
U2

2
S (S + 1) , (2.53)

and for an odd n

∆E
(0)
S,S,n =E

(0)
S,S,n − E

(0)
1,1,n

=− η (S − 1) +
U2

2

[

S (S + 1)− 2
]

. (2.54)
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Figure 2.2.: Dependence of energy difference (2.53) and (2.54) on the external magnetic field for fixed
spin-dependent interaction U2 = 0.04U0. The solid lines represent the minimal energy
difference.
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Let us first of all depict this energy difference (2.53) and (2.54) in Fig. 2.2 as a function of the external

magnetic field η for a fixed spin-dependent interaction U2. We observe that the spin S with minimal

energy changes by 2 at the critical external magnetic field (2.52). For the case of even n, Fig. 2.2a

shows three critical η values. At the first critical value the spin S and the magnetic quantum number

m change from 0 to 2. Thus, the ground state becomes |2, 2, n〉. Similarly, at the second critical value

the ground state yields a change from |2, 2, n〉 to |4, 4, n〉. In the same way, the ground state is |6, 6, n〉
emerges from |4, 4, n〉 at the third critical value. On the other hand, for the case of odd n, Fig. 2.2b

also shows three critical values of η. At the first critical η, the quantum numbers S and m change from

1 to 3. Correspondingly, the ground state changes from |3, 3, n〉 to |5, 5, n〉 at the second critical value.

Beyond the third critical value, the ground state is given by |7, 7, n〉. Thus, we observe that spin and

magnetic quantum number of the ground state increase with increasing external magnetic field η for

a fixed spin-dependent interaction U2, as then the spin-singlet pairs are broken for both even and odd

lobes, so all spins tend to align in the direction of the magnetic field as shown in Fig. 2.2.

On the contrary, Fig. 2.3 shows how the energy difference (2.53) and (2.54) depends on the spin-

dependent interaction U2 for a fixed external magnetic field η. The corresponding critical spin-

dependent interaction values for even and odd n, where the spin S of the minimal energy changes

by 2 follow from (2.52)

U crit
2 =

η

S + 3
2

, (2.55)

and can be read off from Fig. 2.3a and 2.3b, respectively. Figure 2.3a shows three critical U2 for even

lobes. Within the first critical U2, the quantum numbers S and m changes from 6 to 4. Similarly, the

ground state changes from |4, 4, n〉 to |2, 2, n〉 at the second critical U2. After the third critical value

the ground state becomes |0, 0, n〉. Furthermore, Fig. 2.3b illustrates three critical U2 for odd lobes.

By the same way, S and m change from 7 to 5 through the first critical U2. Similarly, the ground

state changes to |3, 3, n〉 and |1, 1, n〉 through the second and third critical U2, respectively. Thus, we

conclude that the spin and magnetic quantum number decrease with increasing the spin-dependent

interaction U2 for a fixed external magnetic field η, Thus, the spin-singlet pairs will be formed for both

even and odd lobes because this field is not able to align the spins as shown in Fig. 2.3.

After having determined the critical external magnetic field η and spin-dependent interaction U2,

where degeneracies occur, the calculation of the respective ground state yields the following results:

• In the case of the ferromagnetic interaction, i.e. U2 < 0, there is no difference between the

ground state with and without magnetization because all spins are aligned. Thus, the ground

state is given by |n, n, n〉. In addition, the particle number n is then defined from the condition

E
(0)
n−1,n−1,n−1 < E(0)

n,n,n < E
(0)
n+1,,n+1n+1 (2.56)

using (2.41), we get
(

1 +
U2

U0

)

(n− 1) <
µ+ η

U0
< n

(

1 +
U2

U0

)

. (2.57)

29



2. Spinor Bose Gases in Optical Lattice

S=0 U 2 even
H3LU 2 even

H1L

È2,2,n\�È0,0,n\

È6,6,n\�È4,4,n\

È4,4,n\�È2,2,n\

U 2 even
H2L

S=4

S=6

0 0.05 0.1 0.15

0

0.4

0.8

-0.4

-0.8

U2�U0

D
E

S
,S

,n
�U

0

(a) For an even n.

S=1 U 2 odd
H3LU 2 odd

H1L

È3,3,n\�È1,1,n\

È7,7,n\�È5,5,n\

È5,5,n\�È3,3,n\

U 2 odd
H2L

S=5

S=3

S=7

0 0.05 0.1 0.15

0

0.4

0.8

-0.4

-0.8

U2�U0

D
E

S
,S

,n
�U

0

(b) For an odd n.

Figure 2.3.: Dependence of energy difference (2.53) and (2.54) on spin-dependent interaction U2 for
fixed external magnetic field η = 0.2U0. The solid lines represent the minimal energy
difference.
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By rewriting the chemical potential as

µ+ η → µ (2.58)

Eq. (2.57) reduces to

(n− 1)
(

1 +
U2

U0

)

<
µ

U0
< n

(

1 +
U2

U0

)

(2.59)

which coincides with the unmagnetized result in (2.44).

• For an anti-ferromagnetic system, i.e. U2 > 0, the situation becomes quite complicated. It

turns out that, we have the following four cases for the ground state.

– The first case is

E
(0)
S−1,S−1,n−1 < E

(0)
S,S,n < E

(0)
S+1,S+1,n+1, (2.60)

which yields with (2.41)

n− 1 + (S − 1)
U2

U0
− η

U0
<

µ

U0
< n+ S

U2

U0
− η

U0
. (2.61)

– The second case is

E
(0)
S−1,S−1,n−1 < E

(0)
S,S,n < E

(0)
S−1,S−1,n+1, (2.62)

which becomes

n− 1 + (S − 1)
U2

U0
− η

U0
<

µ

U0
< n− (S + 1)

U2

U0
+

η

U0
. (2.63)

– The third case is

E
(0)
S+1,S+1,n−1 < E

(0)
S,S,n < E

(0)
S+1,S+1,n+1, (2.64)

which reduces to

1− n+ (S + 2)
U2

U0
− η

U0
<

µ

U0
< n+ S

U2

U0
− η

U0
. (2.65)

– The fourth case

E
(0)
S,S,n−2 < E

(0)
S,S,n < E

(0)
S,S,n+2, (2.66)

yields with (2.41)

1

2

(

2n − 3− 2
U2

U0

)

<
µ

U0
<

1

2

(

1 + 2n− 2
U2

U0

)

. (2.67)
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Figure 2.4.: Phase diagram of spinor F = 1 Bose-Hubbard model for a magnetized system with η =
0.2U0 with no hopping at zero temperature. The x-axis in the anti-ferromagnetic case
(U2 > 0) is the chemical potential, whereas in the ferromagnetic case (U2 < 0) the chemical
potential is shifted according to (2.58).

Figure 2.4 shows the resulting zero hopping phase diagram of the spin F = 1 Bose-Hubbard model

for a magnetized system at zero temperature for a fixed external magnetic field η. Note that in the

anti-ferromagnetic case (U2 > 0) the x-axis is the chemical potential µ, whereas in the ferromagnetic

case (U2 < 0) it is shifted by the external magnetic field η according to (2.58) for illustrative purposes.

In the case of anti-ferromagnetic interaction with 0 < U2/U0 < 0.5 + η/U0 only the first three cases

can occur. At first, we remark that the right boundary of the even lobes occurs for a fixed chemical

potential µ = 3.8U0 when U2 > U
(3)
2even = 2η/3, where the ground state for the even lobes is |0, 0, n〉

which is known as the spin-singlet insulator [80]. When U2 ≤ 2η/3 both the spin S and the magnetic

quantum number m of the odd and the even lobes increase step by step by 2. For instance, the ground

state for the fourth lobe successively changes from |0, 0, 4〉 to |4, 4, 4〉 due to the respective critical

values of U (2)
2even = 2η/3 and U

(3)
2even = 2η/7, where the ground state changes from |0, 0, 4〉 via |2, 2, 4〉

to |4, 4, 4〉 according to the second case (2.63) as discussed above. Another one is the critical value
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2.4. System Properties With Zero Hopping

U
(2)
2odd = 2η/5, where the ground state changes from |1, 1, n〉 to |3, 3, n〉 which satisfies Eq. (2.65) for

odd lobes. The critical value U (2)
2even = 2η/9 is finally a value for which the ground state for the odd

lobes becomes |5, 5, n〉 which satisfies the first case (2.61).

On the other hand, for U2/U0 > 0.5 + η/U0, the odd lobes vanish while the even lobes continue.

Furthermore, the boundaries for the even lobes occur for a fixed chemical potential µ = 1.8U0 and

µ = 3.8U0. The reason is that the external magnetic field can not align the spins, so then the fourth

case occurs. Finally, we remark that the even and odd lobes shrink when U2 = 0 as shown in Fig. 2.4.

For ferromagnetic interaction, the even and odd lobes decrease with increasing |U2| and vanish when

U2/U0 < −1. Therefore, there occurs no difference between the ferromagnetic case with or without

magnetization which coincides with the results of [82, 102, 103], because all spins are aligned in the

same direction.
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3. Mean-Field Theory for Spin-1 BH Model

As an introduction to the physics of phase transitions and critical phenomena, we explain a number

of basic ideas such as the classical and quantum phase transitions. In particular, we describe the

properties of a second-order phase transition and the underlying symmetry breakdown mechanism.

In detail we discuss the principle role of the order parameter. As a special case we refer then to the

Bose-Hubbard model for a spin-1 Bose gas at zero-temperature in a cubic optical lattice. Finally, we

calculate the superfluid-Mott insulator quantum phase transition without and with magnetization in

case of ferromagnetic and anti-ferromagnetic interactions within the realm of the mean-field theory.

3.1. Second-Order Quantum Phase Transition

No one can deny that phase transitions play a principal role in the materials of nature by a change

of thermodynamic variables, e. g., the temperature, the pressure or the magnetic field. These phase

transitions are classified as first- or second-order transitions. They depend on the behavior of the

order parameter which was introduced by Landau. It is non-zero in the ordered phase and zero in the

disordered phase [105]. Examples for classical phase transitions are the gas-liquid transition at the

critical point, the ferromagnetic transition, and the superconducting transition.

In a first-order phase transition, the order parameter jumps at the phase boundary where the phases

coexist at the transition point. In addition, the phase transition is accompanied by latent heat because

of the discontinuous change in the density. It is characterized by a finite correlation length. The ice to

water phase transition is an example for such a first-order phase transition, where the order parameter

is the density difference. Fig. 3.1 shows the three phases solid, liquid and gaseous of water and the

phase boundaries as a function of pressure and temperature. On the other hand, a second-order phase

transition occurs when the transition does not involve any latent heat. Therefore, the order parameter

changes continuously and the correlation length will be infinite. A prominent example of a continuous

phase transition is the ferromagnetic-paramagnetic phase transition.

In contrast to classical phase transitions, quantum phase transitions are induced by varying a non-

thermal parameter such as the magnetic field or the pressure at zero temperature [106]. Therefore, such

transitions are driven by quantum fluctuations and the quantum phase transitions can be explained

in terms of the energy spectrum of a many-body quantum system. In this spectrum there is a gap

between the ground state and the first excited state, which characterizes the disorder phase [106]. The

value of the physical parameter P used to induce the transition relates to this gap. As P is changed,

there is a level crossing between the lowest two states at a quantum critical point (QCP) where the

gap has the smallest value. In a thermodynamic system, the gap will disappear and we get a phase

transition. Since the order parameter of the transition is zero on one side and non-zero on the other,

the properties of the many-body ground state are different on the two sides of the transition. At
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Figure 3.1.: Schematic phase diagram in pressure–temperature plane. The green dotted line refers to
the anomalous behavior of water. The green and blue lines show the variation of the
freezing point and the boiling point with pressure, respectively. The red line shows the
boundary in which sublimation or deposition occur [105].

T = 0, we have a quantum critical point between the quantum disordered phase and the ordered phase

as shown in Fig. 3.2. At high temperature, the ordered phase will undergo a classical phase transition

to a disordered phase at a critical temperature Tc. Thus, the system is governed by classical thermal

fluctuations (light blue area) as shown in Fig. 3.2. In addition, when the temperature is decreased,

this region becomes narrower and turns towards the QCP [106–108]. A prominent example for such a

quantum phase transition is the Mott insulator-superfluid transition in a system consisting of bosonic

particles with repulsive interactions hopping through a lattice potential [65].

Landau developed a simple mean-field theory to describe thermal phase transitions by using a spa-

tially and temporally constant order parameter. Ginzburg generalized this approach by allowing for

both a spatially and temporally varying order parameter to describe the impact of thermal fluctuations.

Thus, the Ginzburg-Landau theory is a general phenomenological description of the onset (or not) of

different kinds of order in many-body systems [109, 110]. Within this framework it is also possible to

study the effects of dimensionality on ordering. However, it is questionable whether the Ginzburg-

Landau concept also applies to the Mott insulator-superfluid quantum phase transition which would

have to describe the possible onset of superfluidity as a second-order phase transition. To this end,

we need an effective theory involving only long-range collective fluctuations of the system in order to

describe the properties near the critical point because of the infinite correlation length.

The Bose-Hubbard Hamiltonian is the simplest model which describes interacting bosons on an

optical lattice in a periodic potential. Using a mean field theory the quantum phase transition from

a Mott-insulator to superfluid state was theoretically predicted in 1989 by M. P. A. Fisher et al. [65].

Additionally, it underestimates by about 16% the position of the first lobe tip for three-dimensional
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Figure 3.2.: Generic phase diagram around a quantum critical point at T = 0 and P = QCP [106–108].

cubic lattices in comparison with recent high-precision quantum Monte-Carlo data [111]. This phase

boundary at zero temperature was also calculated on the basis of a strong-coupling expansion, which

overestimates the phase boundary [112]. Santos and Pelster [87] showed that the Ginzburg-Landau

theory concept can also be used for describing the quantum phase transition of spinless bosons in three-

dimensional optical lattices. In a three-dimensional cubic optical lattice the first-order hopping order

reproduces the mean-field result, whereas the second-order hopping order improves this such that the

relative error for the quantum phase boundary is less than 3 %. The research group of Martin Holthaus

in Oldenburg showed that the coefficients in the expansion of the effective action method with respect

to the order parameter can be computed perturbatively with the help of the process-chain approach,

which allows to obtain numerically even higher hopping orders [113]. With this, the quantum phase

boundary between superfluid and Mott insulator can be determined with such an accuracy, that it

becomes indistinguishable from the above mentioned quantum Monte-Carlo data and even allows the

calculation of critical exponents [114].

3.2. Mean-Field Theory

Here we follow Refs. [81,104] and generalize the mean-field theory concept to spin-1 bosons in a cubic

optical lattice. This will allow us to calculate the phase boundary for the transition between a Mott

insulator and a superfluid phases at zero temperature with and without magnetization for ferromagnetic

and anti-ferromagnetic interactions. To this end we proceed as follows. As discussed in Chapter 2,

the physics of spin-1 bosons loaded in a cubic optical lattice can be described by the Bose-Hubbard

Hamiltonian

ĤBH = −J
∑

<i,j>

∑

α

â†iαâjα +
∑

i

[

U0

2
n̂i(n̂i − 1) +

U2

2
(Ŝ2

i − 2n̂i)− µn̂i − ηŜiz

]

. (3.1)

In contrast to a scalar Bose gas, a spin-1 Bose gas has three order parameters which are defined by
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the expectation value of annihilation and creation operators

Ψα = 〈âiα〉 , Ψ∗
α =

〈

â†iα

〉

, (3.2)

with α = −1, 0, 1 denoting the spin index. Note that these order parameters do not depend on the

site index i due to homogenity. In the case of the Mott insulator-superfluid phase transition we will

be examining, the relevant symmetry is the breaking of the global U(1) phase symmetry

âiα → âiαe
iθ , â†iα → â†iαe

−iθ , (3.3)

in the superfluid ground state [110]. Due to (3.2) the expectation value of the creation and annihilation

operators must not depend on the phase angle θ, which is only possible when

〈âiα〉 =
〈

â†iα

〉

= 0 . (3.4)

Clearly, from Eq. (3.1), this represents the symmetry of the underlying Hamiltonian, so that the

breaking of it by the ground state of the system is referred to as spontaneous symmetry breaking.

Here we review the mean-field theory for the Bose-Hubbard model of spin-1 bosons with which

we can describe the superfluid-Mott insulator quantum phase transition [81, 104]. To study this, we

consider the Bose-Hubbard model in the strong-coupling limit. The unperturbed Hamiltonian

Ĥ(0) =
∑

i

[

−µn̂i +
U0

2
n̂i(n̂i − 1) +

U2

2
(Ŝ2

i − 2n̂i)− ηŜz
i

]

(3.5)

is then local, while the perturbation

Ĥ(1) = −J
∑

〈i,j〉

∑

α

â†iαâjα (3.6)

is bilocal as it couples different lattice sites. In mean field theory, the idea is to rewrite the field

operators as a sum of their mean values, and their fluctuations, i.e,

âjα = 〈âjα〉+ δâjα , â†iα =
〈

â†iα

〉

+ δâ†iα. (3.7)

Thus we obtain for the square of fluctuations

δâ†iαδâjα = â†iαâjα − 〈âjα〉 â†iα −
〈

â†iα

〉

âjα +
〈

â†iα

〉

〈âjα〉 . (3.8)

The mean-field approximation is achieved by neglecting products of such fluctuations, i.e., neglecting

the term δâ†iαδâjα in Eq. (3.8), which results in the mean-field approximation

â†iαâjα ≈ 〈âjα〉 â†iα +
〈

â†iα

〉

âjα −
〈

â†iα

〉

〈âjα〉 . (3.9)

Since our system is translationally invariant, the expectation value of the operators must not depend

on the site index i. Therefore, introducing the order parameters according to (3.2), Eq. (3.9) reduces
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to

â†iαâjα ≈ Ψαâ
†
iα +Ψ∗

αâjα −Ψ∗
αΨα. (3.10)

Using this approximation in (3.1), the Bose-Hubbard mean-field Hamiltonian becomes local

ĤMF =
∑

i

[

Ĥ
(0)
i + Ĥ

(1)
iMF

]

, (3.11)

where the localized hopping term reads

Ĥ
(1)
iMF = −zJ

∑

α

(

Ψαâ
†
iα +Ψ∗

αâiα − |Ψα|2
)

. (3.12)

Note that the original summation 〈i, j〉 in (3.6) reduced here to z
∑

i, where z denotes the number

of nearest-neighbor sites. This coordination number in a three-dimensional cubic lattice is given by

z = 6.

Now we show that the order parameter (3.2) is determined from extremising the free energy

FMF = − 1

β
lnZMF, (3.13)

where the grand-canonical partition function is defined by

ZMF = Tr
[

e−βĤMF

]

. (3.14)

This yields at first

∂FMF

∂Ψα
= − 1

β

1

ZMF
Tr

[

∂

∂Ψα
e−βĤMF

]

= 0 (3.15)

with the three different hyperfine states α = 0,±1. Therefore, we get

∂FMF

∂Ψα
=

1

ZMF
Tr

[

∂ĤMF

∂Ψα
e−βĤMF

]

=
−zJ
ZMF

∑

i

∑

α

Tr
[(

a†iα −Ψ∗
α

)

e−βĤMF

]

= 0. (3.16)

Here condition (3.16) reduces to

∑

i

(〈

a†iα

〉

−Ψ∗
α

)

= 0 (3.17)

because of the thermal expectation value

〈•〉 = 1

ZMF
Tr
[

•e−βĤMF

]

. (3.18)

Since the thermal expectation value
〈

a†iα

〉

does not depend on the site i due to the translational
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invariance, Eq. (3.17) becomes

Ns

(〈

a†iα

〉

−Ψ∗
α

)

= 0, (3.19)

where Ns denotes the number of lattice sites. Therefore, (3.19) coincides with the self-consistency

condition (3.2).

Thus, the free energy of the mean-field system represents a function of the order parameter which

can be calculated perturbatively in the vicinity of the phase transition. This means that, near the

quantum phase boundary, the free energy can be expanded in a power series of the order parameter

Ψα. Due to the above mentioned U (1)-symmetry the lowest order term must be a function of |Ψα|2:

FMF

NS
= a0 +

∑

α

a2α |Ψα|2 + · · · , (3.20)

where the Landau coefficients a2α will now be calculated. At zero temperature the zeroth-order Landau

coefficient a0 coincides with the lowest eigenvalue (2.41) of the unperturbed Hamiltonian (3.5):

a0 = E
(0)
S,m,n = −µn+

U0

2
n(n− 1) +

U2

2

[

S(S + 1)− 2n
]

− ηm. (3.21)

For fixed parameter values of U0, U2, µ, η the minimization of (3.21) yields the quantum numbers S,

m, n, which characterize the ground state, as discussed in detail in Section 2.4.

3.3. Mean-Field Perturbation Theory

In order to determine the Landau coefficient a2α, we use the on-site mean-field perturbation theory

which was developed in Refs. [81, 104] for the Bose-Hubbard model of spin-1 bosons. The on-site

mean-field perturbation Hamiltonian

Ĥ
(1)
MF = −zJ

∑

α

(

Ψαâ
†
α +Ψ∗

αâα − |Ψα|2
)

(3.22)

acts on an eigenstate |S,m, n〉 of the unperturbed Hamiltonian (3.5). Thus, we need to calculate

â†α | S,m, n 〉 and âα | S,m, n 〉 as the order parameters Ψα and Ψ∗
α are not operators. It is possible

to show that a spin-1 particle with its spin orientation specified by α can be produced by the creation

operator â†α. We find that â†α | S,m, n 〉 is directly proportional to |S ± 1,m+ α, n + 1〉 due to the

conservation of the z-component of the magnetic moment and of the spin. As a result of adding one

spin-1 particle, the quantum number of the total spin will be changed by ±1. Similarly, âα | S,m, n 〉 is

directly proportional to |S ± 1,m− α, n − 1〉 since a spin-1 particle is annihilated. Thus, these results

can be written in the following form [81,104]:

â†α |S,m, n〉 =Mα,S,m,n |S + 1,m+ α, n + 1〉+Nα,S,m,n |S − 1,m+ α, n + 1〉 , (3.23)

âα |S,m, n〉 = Oα,S,m,n |S + 1,m− α, n − 1〉+ Pα,S,m,n |S − 1,m− α, n − 1〉 , (3.24)
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where Mα,S,m,n and Nα,S,m,n are the matrix elements of creation and correspondingly, Oα,S,m,n and

Pα,S,m,n are the matrix elements of annihilation. These matrix elements are calculated recursively in

Appendix A.

As discussed in Subsection 2.4.2, with finite external magnetic field all ground states turn out to

be of the form |S, S, n〉 with 0 ≤ S ≤ n. To calculate the first-order correction in Ĥ
(1)
MF, we treat the

mean-field hopping term (3.22) as a perturbation. From Eqs. (2.40), and (3.22)–(3.24), we obtain

E
(1)
S,S,n =

∣

∣

∣

〈

S, S, n
∣

∣

∣
Ĥ

(1)
MF

∣

∣

∣
S, S, n

〉∣

∣

∣
= zJ

∑

α

|Ψα|2 . (3.25)

Correspondingly, the second-order correction to the ground-state energy reads

E
(2)
S,S,n =

∑

S′,m′,n′ 6=S,S,n

∣

∣

∣

〈

S′,m′, n′
∣

∣

∣Ĥ
(1)
MF

∣

∣

∣S, S, n
〉∣

∣

∣

2

ES′,m′,n′ − ES,S,n
. (3.26)

Inserting Eqs. (3.22)–(3.24) into (3.26), we get

E
(2)
S,S,n = (zJ)2

∑

α

|Ψα|2




M2
α,S,S,n

E
(0)
S+1,S+α,n+1 − E

(0)
S,S,n

+
N2

α,S,S,n

E
(0)
S−1,S+α,n+1 − E

(0)
S,S,n

+
O2

α,S,S,n

E
(0)
S+1,S−α,n−1 − E

(0)
S,S,n

+
P 2
α,S,S,n

E
(0)
S−1,S−α,n−1 −E

(0)
S,S,n



 . (3.27)

From a comparison with Eq. (3.20), we then obtain the Landau coefficients:

a2α = (zJ)2





M2
α,S,S,n

E
(0)
S+1,S+α,n+1 − E

(0)
S,S,n

+
N2

α,S,S,n

E
(0)
S−1,S+α,n+1 − E

(0)
S,S,n

+
O2

α,S,S,n

E
(0)
S+1,S−α,n−1 − E

(0)
S,S,n

+
P 2
α,S,S,n

E
(0)
S−1,S−α,n−1 − E

(0)
S,S,n



+ zJ. (3.28)

In the next section, we plot the resulting Mott insulator-superfluid phase boundary without and with

magnetization by using these Landau coefficients.

3.4. Phase Boundary at Zero Temperature

In this section, we calculate the Mott insulator-superfluid phase transition. To do this, we know that

extremising of the free energy (3.20) yields the value of the order parameter

Ψ = (Ψ1,Ψ0,Ψ−1) , (3.29)
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3. Mean-Field Theory for Spin-1 BH Model

where the Mott insulator phase is the ground state with Ψ = 0 and the superfluid phase corresponds

to Ψ 6= 0. In order to be able to determine this quantum phase boundary, we set

a2α = 0 . (3.30)

In Chapter 4 we will calculate a4 and only then we will be able to determine that the quantum phase

transition is of a second-order phase transition, which leads to the condition (3.30). For the transition

from the Mott insulator to the superfluid phase the critical hopping parameter with a spin index α

follows from (3.28) and (3.30):

zJc,α =





M2
α,S,S,n

E
(0)
S+1,S+α,n+1 − E

(0)
S,S,n

+
N2

α,S,S,n

E
(0)
S−1,S+α,n+1 − E

(0)
S,S,n

+
O2

α,S,S,n

E
(0)
S+1,S−α,n−1 − E

(0)
S,S,n

+
P 2
α,S,m,n

E
(0)
S−1,S−α,n−1 − E

(0)
S,S,n





−1

. (3.31)

In order to obtain the location of the quantum phase transition, we have to take the minimum of

Eq. (3.31) with respect to the spin index α [81, 104]:

zJc =
min
α
Jc,α. (3.32)

3.4.1. No Magnetization

At first we discuss the quantum phase boundary in the case of ferromagnetic interaction U2 < 0

with vanishing magnetization, i.e. η = 0. In this situation, all states with the same total spin quantum

number S are degenerated with respect to their magnetic quantum number m, thus we can use here

the short-hand notation E
(0)
S,n = E

(0)
S,m,n for the unperturbed energy eigenvalues. In addition, the

ferromagnetic interaction yields a minimal energy when the spin is maximal, i.e. S = n. Therefore,

the ground state becomes |n, n, n〉 [31, 81]. From Appendix A, we obtain the required coefficients as

follows:

M1,n,n,n =
√
n+ 1, M−1,n,n,n =

√

1

2n+ 1
, (3.33)

M0,n,n,n = 1, N1,n,n,n = 0, (3.34)

N−1,n,n,n = −
√

2n

2n + 1
, N0,n,n,n = 0, (3.35)

P1,n,n,n =
√
n, P0,n,n,n = P−1,n,n,n = 0, (3.36)

Oα,n,n,n = 0, α = 0,±1. (3.37)
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Figure 3.3.: Quantum phase boundary between a Mott insulator and a superfluid phase for ferromag-
netic interaction U2 < 0 with η = 0.

In order to simplify the notation we also define the effective interaction strength U = U0+U2. Inserting

Eqs. (3.33)–(3.37) into (3.31), we get

zJc,1
U

=

(

n+ 1

n− µ/U
+

n

1− n+ µ/U

)−1

. (3.38)

When we calculate zJc,0 and zJc,−1, we find that both are larger than zJc,1. Therefore, due to(3.32),

the resulting quantum phase boundary is exactly the mean-field result of the scalar Bose-Hubbard

model in Ref. [65] as shown in Fig. 3.3.

On the other side, for anti-ferromagnetic interaction U2 > 0 with η = 0, the minimization of

the energy implies a minimum of the spin value which depends on the number of atoms per site. The

ground state of the nonperturbative Hamiltonian is |0, 0, n〉 for even n [80] and |1,m, n〉 for odd particle

number n [31, 81] as was already discussed in Section 2.4. In the latter case we have to determine the

value of m to get the minimum of the critical hopping. This means that we have to find this minimum

with respect to both α and m in order to determine the phase boundary. The result is that the

component with m = 0 forms the superfluid, i.e. Ψ0 6= 0, so the SF phase is a polar state with

Ψ1 = Ψ−1 = 0 in agreement with previous results in the literature [80, 81]. Thus, using the matrix

elements from Appendix A and Eq. (2.41), Eq. (3.31) reduces to

• Mott insulator with an even number of atoms

zJc,0 =

(

M2
0,0,0,n

E
(0)
1,n+1 − E

(0)
0,n

+
O2

0,0,0,n

E
(0)
1,n−1 − E

(0)
0,n

)−1

, (3.39)
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Figure 3.4.: Quantum phase boundary between a Mott insulator and a superfluid phase for anti-
ferromagnetic interaction U2 > 0 with U2/U0 = 0.04 and η = 0 [81, 104].

where the non-vanishing matrix elements are given by

M0,0,0,n =

√

n+ 1

3
, O0,0,0,n =

√

n

3
. (3.40)

• Mott insulator with an odd number of atoms

zJc,0 =

(

M2
0,1,0,n

E
(0)
2,n+1 − E

(0)
1,n

+
N2

0,1,0,n

E
(0)
0,n+1 − E

(0)
1,n

+
O2

0,1,0,n

E
(0)
2,n−1 − E

(0)
1,n

+
P 2
0,1,0,n

E
(0)
0,n−1 −E

(0)
1,n

)−1

, (3.41)

where the non-vanishing matrix elements read

M0,1,0,n = 2

√

n+ 4

15
, N0,1,0,n =

√

n+ 1

3
, (3.42)

O0,1,0,n = 2

√

n− 1

15
, P0,1,0,n =

√

n+ 2

3
. (3.43)

There are several aspects of the spin-1 Bose-Hubbard model which already appear at J = 0. The

ground-state energy for an odd and even number is E(0)
1,n = −µn + U0

2 n(n − 1) + U2 (1− n) and

E
(0)
0,n = −µn + U0

2 n(n − 1) − U2n, respectively. If the system goes from the nth to the (n + 1)th

Mott lobe, the chemical potential results from the conditions △E(0) [nodd → (nodd + 1)] = 0 and

△E(0) [neven → (neven + 1)] = 0, respectively [115]. Thus, the values µ [nodd → (nodd + 1)] = noddU0−
2U2 and µ [neven → (neven + 1)] = nevenU0 become the lobe boundaries. Therefore, in the anti-

ferromagnetic case, i.e. U2 > 0, the even Mott lobes expand and the odd Mott lobes shrink as

shown in Fig. 3.4.

We remark that the even Mott lobes are strongly stabilized against the superfluid phase in comparison

with the odd Mott lobes as shown in Fig. 3.4 [81]. The reason is that all atoms in an even Mott lobe,
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3.4. Phase Boundary at Zero Temperature

which have total spin 0, form singlet pairs at each lattice site. Therefore, the bosons are not able to

hop to the nearest neighbor sites. On the other hand, one single atom in an odd Mott lobes can not

make a singlet pair on each site. Thus, it has the total spin 1 and can hop easier to neighboring site.

3.4.2. With magnetization

In this section, we will study the effect of the external magnetic field η on the phase boundary. To

this end we assume without loss of generality that η > 0. In Subsection 2.4.2, we found many different

ground states for the even and odd lobes and discussed how they depend on η. To this end we note

that the general ground state can be taken as |S, S, n〉.
For a ferromagnetic interaction, there is no change as the minimization of the energy implies the

maximum of spin value as it is in the case without η except the degeneracy with respect to m is lifted,

so the ground state becomes |n, n, n〉. Thus, the quantum phase boundary with η is the same as that

without it as shown in Fig. 3.3.

For an anti-ferromagnetic interaction, the situation is more complicated. If η is large compared

with U2, all spins will be aligned in the z-direction, so the ground state will be a high spin state |n, n, n〉
as seen in Fig. 3.5f. In the opposite limit that η is small in comparison with U2, the ground state will

be |0, 0, n〉 for even n and |1, 1, n〉 for odd n as seen in Fig. 3.5a. In between the ground state can be

|S, S, n〉 with 0 ≤ S ≤ n as discussed in detail in Subsection 2.4.2. Using the matrix elements from

Appendix A and Eqs. (2.41) and (3.32), we get

• Mott insulator with an even number of atoms

zJc,α =

(

M2
α,0,0,n

E
(0)
1,α,n+1 − E

(0)
0,0,n

+
O2

α,0,0,n

E
(0)
1,−α,n−1 − E

(0)
0,0,n

)−1

, (3.44)

where

Mα,0,0,n =

√

n+ 1

3
, Oα,0,0,n =

√

n

3
, (3.45)

• Mott insulator with an odd number of atoms

zJc,α =

[

M2
α,1,1,n

E
(0)
2,1+α,n+1 − E

(0)
1,1,n

+
N2

α,1,1,n

E
(0)
0,1+α,n+1 − E

(0)
1,1,n

+
O2

α,1,1,n

E
(0)
2,1−α,n−1 − E

(0)
1,1,n

+
P 2
α,1,1,n

E
(0)
0,1−α,n−1 − E

(0)
1,1,n

]−1

, (3.46)

where the matrix elements are determined by Appendix A. Both for an even and odd number of

atoms it still remains to determine the minimum of (3.44) and (3.46) with respect to α.

In the next two sections, we show in more detail how η and U2 affect the quantum phase boundary.
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(a) η/U0 = 0.05 [104].
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(b) η/U0 = 0.07.
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(c) η/U0 = 0.125.
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(d) η/U0 = 0.15.
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(e) η/U0 = 0.2.
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(f) η/U0 = 0.3.

Figure 3.5.: Quantum phase boundary between Mott insulator and superfluid phase for anti-
ferromagnetic interaction with U2/U0 = 0.04. The blue and red line correspond to an
instability of the spin-1 and spin-(-1) component, respectively.
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3.5. Effect of Magnetization on Quantum Phase Boundary

In this subsection we explain the effect of the external magnetic field η on the phase boundary between

superfluid phase and Mott insulator phases with the fixed value U2 = 0.04 U0, which corresponds to
23Na atoms, as shown in Fig. 3.5:

• As discussed above, when the external magnetic field η is small in comparison with U2, the ground

state is |0, 0, n〉 (|1, 1, n〉) for even (odd) n. The minimization of (3.44) and (3.46) for spin index α

yields that the components of spin-1 and spin-(-1) lead to the quantum phase boundary, whereas

the spin-0 component has no effect [82, 104] as shown in Fig. 3.5a.

• When the external magnetic field η is increased above the critical η(1)even = 0.06U0, which has

been determined discussed in Subsection 2.4.2, the ground states change from |0, 0, n〉 to |2, 2, n〉
for even lobes as shown in Fig. 3.5b. Thus, the Mott insulator phases for the even lobes are

decreased. The components of spin-1 and spin-(-1) still lead to the phase boundary for all lobes

except for the first lobe, where the phase boundary is only determined by the spin-1 component.

• When η is increased further beyond the critical value η(1)odd = 0.1U0, the quantum number S and

m for the odd lobes change from |1, 1, n〉 to |3, 3, n〉 as shown in Fig. 3.5c. The phase boundary

for the first and second lobe is only determined by the spin-1 component, but all other lobes

stem from the spin-1 and spin-(-1) component.

• When η increases beyond η
(2)
even = 0.14U0, S and m for the even lobes change from |2, 2, n〉

to |4, 4, n〉 as shown in Fig. 3.5d. Similarly, the phase boundary for the first three lobes are

only determined by spin-1 component, but the other lobes stem from the spin-1 and spin-(-1)

components.

• Beyond the critical value η(2)odd = 0.18U0, S and m for the even lobes change from |3, 3, n〉 to

|5, 5, n〉 as shown in Fig. 3.5e. The component of spin-1 affects the phase boundary for the first

four lobes but the spin-1 and spin-(-1) component determine the other lobes.

• When η increases to 0.3 U0 beyond the critical values η(3)even = 0.22U0 and η(3)odd = 0.26U0, S and

m changes from |4, 4, n〉 to |6, 6, n〉 for the even lobes and from |5, 5, n〉 to |7, 7, n〉 for the odd

lobes as shown in Fig. 3.5f, so all seven lobes have now S = m = n. Therefore, the ground state

corresponds to one of a ferromagnetic interaction and only the spin-1 component determines the

phase boundary.

3.6. Effect of Spin-Dependent Interaction on Quantum Phase

Boundary

In this subsection we explain the effect of spin-dependent interaction U2 on the phase boundary between

superfluid phase and Mott insulator phases for a fixed external magnetic field η = 0.2U0 as shown in

Fig. 3.6.
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(b) U2/U0 = 0.04.
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(e) U2/U0 = 0.1.
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(f) U2/U0 = 0.15.

Figure 3.6.: Quantum phase boundary between Mott insulator and superfluid phase for anti-
ferromagnetic interaction with η = 0.2. The blue and red line correspond to an instability
of the spin-1 and spin-(-1) component, respectively.
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• If U2 is 0.02 U0, the phase boundary is only determined by spin-1 component. Therefore, the

ground state |n, n, n〉 is ferromagnetic with maximum spin for all six lobes as shown in Fig. 3.6a.

So, the phase boundaries for all lobes are only determined by the spin-1 component.

• When U2 is increased above the critical values U (1)
2odd = 0.0308U0 and U

(1)
2even = 0.036U0 as

discussed in Subsection 2.4.2, both the spin S and the magnetic quantum numbers m change

from |7, 7, n〉 to |5, 5, n〉 for odd lobes and from |7, 7, n〉 to |5, 5, n〉 for even lobes, respectively as

shown in Fig. 3.6b. When spin-dependent interaction is increased, the effect of magnetic field

is decreased. Therefore, the Mott lobes will be increased and the phase boundary for the fifth,

sixth and seventh lobe is determined by spin-1 and spin-(-1) components but that of the other

lobes is still determined by the spin-1 component.

• Beyond the critical value U (2)
2odd = 0.044U0, the S and m for the odd lobes change from |5, 5, n〉

to |3, 3, n〉 as shown in Fig. 3.6c. The spin-1 and spin-(-1) components determine the phase

boundary for the last four lobes. However, the phase boundary for the other lobes stem from the

spin-1 component.

• After the critical value U (2)
2even = 0.05714U0, the quantum numbers S and m change from |4, 4, n〉

to |2, 2, n〉 for the even lobes as shown in Fig. 3.6d and the Mott lobes continue to increase. The

phase boundary for the last five lobes stem from spin-1 and spin-(-1) components, but the phase

boundary for the first and second lobe is only effected by the spin-1 component.

• Beyond the critical value U (3)
2odd = 0.08U0, the quantum numbers S and m change from |3, 3, n〉

to |1, 1, n〉 for the odd lobes as shown in Fig. 3.6e. Similarly, the phase boundary for all lobes

except the first lobe is determined by spin-1 and spin-(-1) component.

• If U2 reaches to 0.15 U0 beyond the critical value U (3)
2even = 0.133U0, the quantum numbers S and

m change from |2, 2, n〉 to |0, 0, n〉 for the even lobes as shown in Fig. 3.6f. When the value of

η is close to U2, the effect of the magnetic field becomes negligible. Therefore, the ground state

becomes anti-ferromagnetic with |0, 0, n〉 for an even n and |1, 1, n〉 for an odd n. Therefore, the

phase boundary for all lobes is now determined by both the spin-1 and the spin-(-1) component.
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4. Free Energy

In the previous chapter, we calculated the Mott insulator-superfluid phase boundary by working out a

mean-field theory for the spin-1 Bose-Hubbard model at zero-temperature. In this chapter we follow

Refs. [84, 85] and develop an alternative field-theoretic approach to determine the quantum phase

boundary in terms of a Ginzburg-Landau theory, where additional source currents are added to the

spin-1 Bose-Hubbard model in order to break the global U(1) symmetry. To this end a strong-coupling

perturbation theory will be developed by taking into account diagrammatic rules which treat the bosons

in a cubic optical lattices. Thus, we get a diagrammatic expansion of the grand-canonical free energy

in the first order of the hopping parameter and in the fourth order of the symmetry-breaking currents.

As a cross-check we demonstrate that the resulting grand-canonical free energy allows to recover the

mean-field theory. Furthermore, we determine the validity range of the mean-field theory for the spin-1

Bose-Hubbard model.

4.1. Ginzburg-Landau Theory

We introduce site, imaginary-time and spin-dependent sources to deal with the spin-dependent order

parameters of systems which exhibit spontaneous symmetry breaking [116,117]. With this, the general

Hamiltonian reads as follows:

ĤBH(τ) = ĤBH +
∑

i

∑

α

[

j∗iα(τ)âiα + jiα(τ)â
†
iα

]

. (4.1)

The imaginary-time evolution operator with τ = it is defined with ~ = 1 by the differential equation

−∂Û(τ, τ0)

∂τ
= ĤBH(τ)Û (τ, τ0). (4.2)

Its solution with the initial condition

Û(τ0, τ0) = 1 (4.3)

can be written as

Û(τ, τ0) = T̂ e
−

∫ τ

τ0
dτ ′ĤBH(τ ′)

, (4.4)

where T̂ denotes the imaginary-time ordering operator which is defined as

T̂
[

Â(τ1)Â(τ2)
]

= Θ(τ1 − τ2) Â(τ1)Â(τ2) + Θ (τ2 − τ1) Â(τ2)Â(τ1), (4.5)
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with Θ being the Heaviside step function. The partition function

Z [j, j∗] = Tr Û(β, 0) (4.6)

can then be written as

Z [j, j∗] = ZBH

〈

Û(β, 0)
〉

BH
, (4.7)

where the expectation value is defined according to

〈•〉 = 1

ZBH
Tr

[

• exp
{

−βĤBH

}

]

(4.8)

with the partition function of the unperturbed system being given by

ZBH = Tr

[

exp
{

−βĤBH

}

]

. (4.9)

Successive functional derivatives with respect to the currents yield Green functions of the Bose-Hubbard

system. Here we do not work out further this source formalism, but consider instead the free energy

which also becomes a generating functional

F [j, j∗] = − 1

β
lnZ [j, j∗] . (4.10)

We investigate the expectation value of the creation and annihilation operator

ψ∗
iα(τ) =

〈

â†iα(τ)
〉

, ψiα(τ) = 〈âiα(τ)〉 , (4.11)

which may turn out to be non-zero in the thermodynamic limit and follows from

ψiα(τ) = β
δF

δj∗iα(τ)
, ψ∗

iα(τ) = β
δF

δjiα(τ)
. (4.12)

We consider Eq. (4.12) as a motivation to perform a functional Legendre transformation and define

the effective action according to

Γ [Ψiα,Ψ
∗
iα] = F [j, j∗]− 1

β

∑

i

∑

α

∫ β

0
dτ [Ψiα(τ)j

∗
iα(τ) + Ψ∗

iα(τ)jiα(τ)] . (4.13)

The Legendre identities complementary to Eq. (4.12) read

jiα(τ) = −β δΓ [Ψiα,Ψ
∗
iα]

δΨ∗
iα(τ)

, j∗iα(τ) = −β δΓ [Ψiα,Ψ
∗
iα]

δΨiα(τ)
. (4.14)

To obtain the physical value of the order parameter, we put the currents in Eq. (4.14) to zero

δΓ [Ψiα,Ψ
∗
iα]

δΨ∗
iα(τ)

∣

∣

∣

∣

j∗iα=0

jiα=0

= 0,
δΓ [Ψiα,Ψ

∗
iα]

δΨiα(τ)

∣

∣

∣

∣

j∗iα=0

jiα=0

= 0. (4.15)
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4.2. Dirac Interaction Picture

Therefore, the order parameter is determined from extremising the effective action. Furthermore, we

read off from (4.13) that evaluating the effective action for the equilibrium field Ψeq yields the physical

grand-canonical free energy:

Γ

∣

∣

∣

∣

∣

Ψ∗
iα=Ψ∗

eq

Ψiα=Ψeq

= F
∣

∣

∣

∣

∣

j∗iα=0

jiα=0

. (4.16)

4.2. Dirac Interaction Picture

In order to split the Hamiltonian into an unperturbed part and a perturbed part we switch to the

imaginary-time Dirac interaction picture. Thus, the partition function will be expressed as a pertur-

bation series. The Schrödinger picture, the Heisenberg picture, and the Dirac picture are the pictures

which are most popular in quantum mechanics. Each picture has a different way to treat the time

evolution of the system which is divided between the states and the operators. In the Schrödinger

picture, the state vectors are time-dependent and the operators are constant in time. On the contrary,

in the Heisenberg picture, the operators depend on time and the state vectors are independent of time.

In the Dirac picture, however, both states and operators carry a time-dependence where the dynamics

of the operators is determined the unperturbed part of the Hamiltonian and the states follow the

perturbed part. This means that we split the Hamiltonian into a free part Ĥ(0), which can be solved,

and a perturbative term Ĥ(1) according to Ĥ(τ) = Ĥ(0)(τ)+ Ĥ(1)(τ). In this picture, we use the Wick

rotation [118, 119] t → −iτ to determine the time evolution of both operators and states. The time

evolution of the states and the operators in the interaction picture in imaginary time τ with ~ = 1 are

defined by

|ΨI(τ)〉 = ÛI(τ, τ
′)
∣

∣ΨI(τ
′)
〉

(4.17)

and

AI(τ) = Û (0)−1(τ, τ0)A Û (0)(τ, τ0), (4.18)

where the imaginary-time evolution operator in the Dirac interaction picture is given by

ÛI(τ, τ
′) = Û (0)−1(τ, τ0)Û(τ, τ ′)Û (0)(τ ′, τ0), (4.19)

with the unperturbed imaginary-time evolution operator

Û (0)(τ, τ0) = e−Ĥ(0)(τ−τ0). (4.20)

The equation of motion for the state vector is

∂ |Ψ(τ)〉I
∂τ

= −ĤI(τ) |Ψ(τ)〉I , (4.21)

where

ĤI(τ) = Û (0)−1(τ, 0)Ĥ(1)(τ)Û (0)(τ, 0). (4.22)
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4. Free Energy

Substituting (4.17) into (4.21), we get

∂

∂τ
ÛI(τ, τ0) = −ĤI(τ)ÛI(τ, τ0). (4.23)

Using the initial condition

ÛI(τ0, τ0) = 1 (4.24)

Eq. (4.23) is formally solved by

ÛI(τ, τ0) = 1−
∫ τ

τ0

dτ ′ĤI(τ
′)ÛI(τ

′, τ0). (4.25)

By solving this integral equation iteratively we obtain the Dyson series as follows:

ÛI(τ, τ0) = 1 +

∞
∑

n=1

(−1)n
∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2 · · ·
∫ τn−1

τ0

dτn ĤI(τ1)ĤI(τ2) · · · ĤI(τn). (4.26)

Thus, taking into account the imaginary-time ordering operator (4.5), Eq. (4.26) becomes

ÛI(τ, τ0) = 1 +

∞
∑

n=1

(−1)n
1

n!

∫ τ

τ0

dτ1

∫ τ

τ0

dτ2 · · ·
∫ τ

τ0

dτn T̂
[

ĤI(τ1)ĤI(τ2) · · · ĤI(τn)
]

. (4.27)

Note that we haver added the factor 1/n! due to all the possible imaginary-time variable permutations

generated by the time ordering operator. We remark that Eq. (4.27) can be transformed to

ÛI(τ, τ0) = T̂ exp

[

−
∫ τ

τ0

dτ ′ĤI(τ
′)

]

. (4.28)

The partition function (4.6) in the imaginary Dirac picture can be derived by the following manipulation

Z = Tr

[

exp
{

−βĤ(0)
}

exp
{

βĤ(0)
}

Û(β, 0) exp
{

−Ĥ(0) · 0
}

]

, (4.29)

which can be written due to (4.19) and (4.20) as

Z = Tr

[

exp
{

−βĤ(0)
}

ÛI(β, 0)

]

. (4.30)

This equation allows to determine the partition function perturbatively in terms of the Dyson series

(4.27). To this end, using the thermal average definition with respect to the unperturbed system

〈•〉(0) = 1

Z(0)
Tr

[

• exp
{

−βĤ(0)
}

]

, (4.31)

we get the grand-canonical partition function

Z = Z(0)
〈

ÛI(β, 0)
〉(0)

, (4.32)

54



4.3. Perturbation Theory

where

Z(0) = Tr

[

exp
{

−βĤ(0)
}

]

. (4.33)

The resulting expression of the partition function is

Z = Z(0)

[

1 +
∞
∑

n=1

(−1)n
1

n!

∫ β

0
dτ1

∫ β

0
dτ2 · · ·

∫ β

0
dτn

〈

T̂
[

ĤI(τ1)ĤI(τ2) · · · ĤI(τn)
]〉(0)

]

. (4.34)

Thus, the grand-canonical partition function can be determined by the unperturbed system partition

function Z(0) and a thermal average with respect to the unperturbed system over a power series of the

perturbative Hamiltonian in the Dirac interaction picture.

4.3. Perturbation Theory

We have introduced in Eq. (4.1) additional source currents jiα(τ), j∗iα(τ) in the Bose-Hubbard Hamil-

tonian to break the global U (1) symmetry [116, 117]. Therefore, this approach leads to a Ginzburg-

Landau theory, where the order parameter depends on space and the imaginary time. To this end, we

first decompose the generalized Bose-Hubbard Hamiltonian (4.1) as follows:

ĤBH(τ) = Ĥ(0) + Ĥ(1)(τ), (4.35)

where we assume that Ĥ(0) is the unperturbed Hamiltonian (2.34). The perturbative Hamiltonian in

the imaginary-time Dirac interaction picture is then

Ĥ
(1)
I (τ) [j, j∗] = −

∑

ij

∑

α

Jij â
†
iα(τ)âiα(τ) +

∑

i

∑

α

[

j∗iα(τ)âiα(τ) + jiα(τ)â
†
iα(τ)

]

. (4.36)

We rewrite the hopping constant in the form

Jij =







J, if i ; j are next neigbors

0, otherwise
. (4.37)

Inserting (4.36) into (4.34) yields the partition function Z [j, j∗] as a functional of the currents jiα(τ),

j∗iα(τ). It can be expressed as

Z [j, j∗] = Z(0) + Z(0)
∞
∑

n=1

Z(n) [j, j∗] , (4.38)

where the respective perturbative terms read

Z(n) [j, j∗] = (−1)n
1

n!

∫ β

0
dτ1

∫ β

0
dτ2 · · ·

∫ β

0
dτn

〈

T̂
[

Ĥ
(1)
I (τ1) [j, j

∗] · · · Ĥ(1)
I (τn) [j, j

∗]
]〉(0)

. (4.39)
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The grand-canonical free energy (4.10) is then given by

F [j, j∗] = F0 −
1

β
ln

{

1 +

∞
∑

n=1

Z(n) [j, j∗]

}

, (4.40)

where the unperturbed term reads

F0 = − 1

β
lnZ(0). (4.41)

Using the Taylor series of the logarithm

ln(1 + x) =

∞
∑

n=1

(−1)n+1

n
xn, (4.42)

Eq. (4.40) becomes

F [j, j∗] = F0 −
1

β

{ ∞
∑

n=1

Z(n) [j, j∗] + · · ·
}

. (4.43)

The respective perturbative contributions in (4.43) contain different orders of the hopping matrix

element J and the currents j and j∗. As we aim at working out a Ginzburg-Landau theory, we restrict

ourselves to the fourth order in the currents. Furthermore, we focus on the leading non-trivial order

in the hopping which is of first order. Therefore, we only need the terms

5
∑

n=1

Z(n) [j, j∗] = −
∫ β

0
dτ1
〈

Ĥ
(1)
I (τ1)

〉(0)
+

1

2

∫ β

0
dτ1

∫ β

0
dτ2

{

〈

T̂
[

Ĥ
(1)
I (τ1)Ĥ

(1)
I (τ2)

]〉(0)

− 1

6

∫ β

0
dτ3

〈

T̂
[

Ĥ
(1)
I (τ1)Ĥ

(1)
I (τ2)Ĥ

(1)
I (τ3)

]〉(0)

+
1

24

∫ β

0
dτ3

∫ β

0
dτ4

〈

T̂
[

Ĥ
(1)
I (τ1)Ĥ

(1)
I (τ2)Ĥ

(1)
I (τ3)Ĥ

(1)
I (τ4)

]〉(0)

− 1

120

∫ β

0
dτ3

∫ β

0
dτ4

∫ β

0
dτ5

〈

T̂
[

Ĥ
(1)
I (τ1)Ĥ

(1)
I (τ2)Ĥ

(1)
I (τ3)Ĥ

(1)
I (τ4)Ĥ

(1)
I (τ5)

]〉(0)
}

. (4.44)

Inserting the perturbative Hamiltonian (4.36) in Eq. (4.44), we get up to fourth order in the currents

and the first order in the hopping

5
∑

n=1

Z(n) [j, j∗] =
∑

i1,i2

∑

α1,α2

∫ β

0
dτ1

∫ β

0
dτ2

{

ji1α1(τ1)j
∗
i2α2

(τ2)
〈

T̂
[

â†i1α1
(τ1)âi2α2(τ2)

]〉(0)

+
∑

i3,j3

∑

α3

Ji3j3

∫ β

0
dτ3ji1α1(τ1)j

∗
i2α2

(τ2)
〈

T̂
[

â†i1α1
(τ1)âi2α2(τ2)â

†
i3α3

(τ3)âj3α3(τ3)
]〉(0)

+
1

4

∑

i3,i4

∑

α3,α4

×
∫ β

0
dτ3

∫ β

0
dτ4ji1α1(τ1)ji2α2(τ2)j

∗
i3α3

(τ3)j
∗
i4α4

(τ4)
〈

T̂
[

â†i1α1
(τ1)âi3α3(τ3)â

†
i2α2

(τ2)âi4α4(τ4)
]〉(0)

+
1

4

∑

i3,i4

∑

i5,j5

∑

α3,α4

∑

α5

Ji5j5

∫ β

0
dτ3

∫ β

0
dτ4

∫ β

0
dτ5ji1α1(τ1)ji2α2(τ2)j

∗
i3α3

(τ3)j
∗
i4α4

(τ4)

×
〈

T̂
[

â†i1α1
(τ1)âi3α3(τ3)â

†
i2α2

(τ2)âi4α4(τ4)â
†
i5α5

(τ5)âj5α5(τ5)
]〉(0)

}

. (4.45)
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We see that the thermal averages in Eq. (4.45) can be expressed in terms of n-particle Green functions

of the unperturbed system

G(0)
n (i′1α

′
1, τ

′
1; . . . ; i

′
nα

′
n, τ

′
n|i1α1, τ1; . . . ; inαn, τn) =

〈

T̂
[

â†
i′1α

′
1
(τ ′1)âi1α1(τ1) . . . â

†
i′nα

′
n
(τ ′n)âinαn(τn)

]〉(0)
.

(4.46)

Substituting (4.45) in (4.43), we thus get the free energy

F [j, j∗] = F0 −
1

β

∑

i1,i2

∑

α1,α2

∫ β

0
dτ1

∫ β

0
dτ2

{

ji1α1(τ1)j
∗
i2α2

(τ2)

[

a
(0)
2 (i1α1, τ1|i2α2, τ2) (4.47)

+
∑

i3,j3

Ji3j3a
(1)
2 (i1α1, τ1; i3|i2α2, τ2; j3)

]

+
1

4

∑

i3,i4

∑

α3,α4

∫ β

0
dτ3

∫ β

0
dτ4

[

ji1α1(τ1)ji2α2(τ2)j
∗
i3α3

(τ3)j
∗
i4α4

(τ4)

× a
(0)
4 (i1α1, τ1; i2α2, τ2|i3α3, τ3; i4α4, τ4) +

∑

i5,j5

Ji5j5a
(1)
4 (i1α1, τ1; i2α2, τ2; i5|i3α3, τ3; i4α4; j5)

]

}

,

where we have introduced the abbreviations

a
(0)
2 (i1α1, τ1|i2α2, τ2) =G

(0)
1 (i1α1, τ1|i2α2, τ2), (4.48)

a
(1)
2 (i1α1, τ1; i3|i2α2, τ2; j3) =

∑

α3

∫ β

0
dτ3G

(0)
2 (i1α1, τ1; i3α3, τ3|i2α2, τ2; j3α3, τ3), (4.49)

a
(0)
4 (i1α1, τ1; i2α2, τ2|i3α3, τ3; i4α4, τ4) = G

(0)
2 (i1α1, τ1; i2α2, τ2|i3α3, τ3; i4α4, τ4)

−G
(0)
1 (i1α1, τ1|i3α3, τ3)G

(0)
1 (i2α2, τ2|i4α4, τ4)−G

(0)
1 (i1α1, τ1|i4α4, τ4)G

(0)
1 (i2α2, τ2|i3α3, τ3), (4.50)

a
(1)
4 (i1α1, τ1; i2α2, τ2; i5|i3α3, τ3; i4α4; j5) =

∑

α5

∫ β

0
dτ5

[

G
(0)
3 (i1α1, τ1; i2α2, τ2; i5α5, τ5|i3α3, τ3; i4α4; j5α5, τ5)−G

(0)
2 (i1α1, τ1; i5α5, τ5|i3α3, τ3; j5α5, τ5)

×G
(0)
1 (i2α2, τ2|i4α4, τ4)−G

(0)
2 (i2α2, τ2; i5α5, τ5|i4α4, τ4; j5α5, τ5)G

(0)
1 (i1α1, τ1|i3α3, τ3)

]

. (4.51)

Note that the upper (lower) index of these abbreviations refers to the order in the hopping parameter

(the symmetry-breaking currents). If the order of the thermal Green function increases, the calculation

will be more complex because the number of space- and time-index permutations increases. Thus, in

order to simplify this calculation, we decompose the thermal Green functions in the next section into

cumulants.
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4.4. Cumulant Expansion

In this section, we use the approach proposed in Refs. [86, 87] to expand the thermal Green functions

of the unperturbed system diagrammatically in terms of cumulants. To this end we show that each

Green function consists of a sum of products of cumulants which can be defined in terms of Feynman

diagrams. Therefore, by formulating certain diagrammatic rules, every Green function can be expressed

in terms of cumulants without any calculation. In order to define a generating functional for them

we couple the creation and annihilation operators to external currents [117,121,122] and consider the

Hamiltonian

Ĥ(τ) [j, j∗] = Ĥ(0) +
∑

i

∑

α

[

j∗iα(τ)âiα + jiα(τ)â
†
iα

]

, (4.52)

where the unperturbed Hamiltonian (2.35) is local according to

Ĥ(0) =
∑

i

Ĥ
(0)
i . (4.53)

We remark that, since the functional depends on the current fields jiα(τ) and j∗iα(τ) on each lattice site,

the Hamiltonian (4.52) is time dependent. Therefore, in the Dirac picture the perturbed Hamiltonian

in Eq. (4.52) becomes

Ĥ
(1)
I (τ) =

∑

i

∑

α

[

j∗iα(τ)âiα(τ) + jiα(τ)â
†
iα(τ)

]

. (4.54)

Substituting Eq. (4.54) into (4.28), yields

ÛI [j, j
∗] (τ, τ0) = T̂ exp

{

−
∫ τ

τ0

dτ ′
∑

i

∑

α

[

jiα(τ
′)â†iα(τ

′) + j∗iα(τ
′)âiα(τ

′)
]

}

. (4.55)

Then, the partition function (4.32) is

Z(0) [j, j∗] = Z(0)

〈

T̂ exp

[

−
∫ β

0
dτ
∑

i

∑

α

[

jiα(τ)â
†
iα(τ) + j∗iα(τ)âiα(τ)

]

]〉(0)

. (4.56)

Using functional derivatives of the above equation with respect to the currents, we get

1

Z(0)

δ2Z(0) [j, j∗]
δjn′α′(τ ′)δj∗nα(τ)

∣

∣

∣

∣

∣

j=j∗=0

=

〈

T̂

{

â†n′α′(τ
′)ânα(τ)

× exp

[

−
∫ β

0
dτ ′′

∑

i

∑

α′′

[

jiα′′(τ ′′)â†iα′′(τ
′′) + j∗iα′′(τ ′′)âiα′′(τ ′′)

]

]}〉(0)

. (4.57)

In the case of vanishing currents we obtain the one-point thermal Green function of the unperturbed

system

1

Z(0)

δ2Z(0) [j, j∗]
δjn′α′(τ ′)δj∗nα(τ)

∣

∣

∣

∣

∣

j=j∗=0

=
〈

T̂
[

â†n′α′(τ
′)ânα(τ)

]〉(0)
. (4.58)
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Therefore, in view of higher Green functions, we do the same procedure and find that a general

thermal n-point Green functions can be obtained from (4.56) by performing 2n functional derivatives

with respect to the source currents. Thus, the thermal Green functions can be expressed by

G(0)
n (τ ′1, i

′
1α

′
1; . . . ; τ

′
n, i

′
nα

′
n|τ1, i1α1; . . . ; τn, inαn)

=
1

Z(0)

δ2nZ(0) [j, j∗]
δji′1α′

1
(τ ′1)δj

∗
i1α1

(τ1) . . . δji′nα′
n
(τ ′n)δj

∗
inαn

(τn)

∣

∣

∣

∣

∣

j=j∗=0

. (4.59)

Now, in order to calculate the correlation functions in many-body theory, we usually use the Wick

theorem which allows to decompose the n-point correlation function (4.59) into sums of products of

one-point correlation functions [118, 119]. This theorem is not valid for the considered system here

because the unperturbed Bose-Hubbard Hamiltonian (2.35) contains parts which are of fourth order

in the creation and annihilation operators. Therefore, instead, we use the linked cluster theorem [120],

which states that the sum of all connected Green functions is defined by the logarithm of the partition

function, whereas Eq. (4.59) represents the decomposition into connected and disconnected diagrams.

Thus, in order to remove these disconnected diagrams we use the generating functional of the cumulants

C
(0)
0 [j, j∗] = ln

Z(0) [j, j∗]

Z(0)
, (4.60)

which yields with (4.56)

C
(0)
0 [j, j∗] = ln

〈

T̂ exp

[

−
∫ β

0
dτ
∑

i

∑

α

[

jiα(τ)â
†
iα(τ) + j∗iα(τ)âiα(τ)

]

]〉(0)

. (4.61)

We note that according to (4.53) the unperturbed Hamiltonian (2.35) decomposes into a sum over

local contributions. For this reason, the generating functional decomposes into a sum over local terms

as

C
(0)
0 [j, j∗] =

∑

i

iC
(0)
0 [j, j∗] , (4.62)

where

iC
(0)
0 [j, j∗] = ln

〈

T̂ exp

[

−
∫ β

0
dτ
∑

α

[

jiα(τ)â
†
iα(τ) + j∗iα(τ)âiα(τ)

]

]〉(0)

. (4.63)

In order to obtain higher order cumulants, we calculate the functional derivatives with respect to the

symmetry breaking currents jiα(τ):

C(0)
n (τ ′1, i

′
1α

′
1; . . . ; τ

′
n, i

′
nα

′
n|τ1, i1α1; . . . ; τn, inαn) =

δ2nC
(0)
0 [j, j∗]

δji′1α′(τ ′)δj∗i1α1
(τ) . . . δji′nα′

n
(τ ′n)δj

∗
inαn

(τn)

∣

∣

∣

∣

∣

j=j∗=0

.

(4.64)
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From (4.62) and (4.64) we read off that the cumulants are local quantities i.e., the n-th order cumulant

is given by

C(0)
n (τ ′1, i

′
1α

′
1; . . . ; τ

′
n, i

′
nα

′
n|τ1, i1α1; . . . ; τn, inαn) = i1C

(0)
n (τ ′1, α

′
1; . . . ; τ

′
n, α

′
n|τ1, α1; . . . ; τn, αn)

× δi1,i2 · · · δin−1,inδi′1,in δi′1,i′2 · · · δi′n−1,i
′
n
. (4.65)

It is important to know that the cumulants represent the keystone for constructing the Green functions.

To see this, we calculate the unperturbed one- and the two-point Green functions with the above

formulas and obtain:

G
(0)
1 (i1α1, τ1|i2α2, τ2) = δi1,i2 i1C

(0)
1 (τ1, α1|τ2, α2), (4.66)

and

G
(0)
2 (i1α1, τ1; i2α2, τ2|i3α3, τ3; i4α4, τ4) = δi1,i3δi2,i4δi3,i4 i1C

(0)
1 (τ1, α1; τ2, α2|τ3, α3; τ4, α4)

+δi1,i3δi2,i4 i1C
(0)
1 (τ1, α1|τ3, α3) i2C

(0)
1 (τ2, α2|τ4, α4)

+δi1,i4δi2,i3 i1C
(0)
1 (τ1, α1|τ4, α4) i2C

(0)
1 (τ2, α2|τ3, α3). (4.67)

In principle, one would also need the 3-point Green function G(0)
3 as it appears in Eq. (4.51). However,

we do not mention it explicitly because it turns out during the following calculation that a(1)4 is not

needed in the end.

Now the expansion of the free energy (4.47) and the abbreviations (4.48)–(4.51) can be expressed

in terms of these cumulants. Thus, the grand-canonical free energy is a sum over cumulants which

represent only the connected Green functions because the disconnected diagrams of the thermal Green

functions would be cancelled due to the expansion of the logarithm. In the next section, we introduce

a graphical notation which shows the basic diagrammatic rules for this expansion.

4.5. Basic Diagrammatic Calculations

In this section, we define the diagrammatic rules which yield a much simpler calculation for the

perturbative contributions of the free energy. These rules show the representation of the partition

function with the cumulant decomposition of Green functions.

4.5.1. Diagrammatic Rules

We obtain the diagrammatic expansion according to the following rules [86, 104,123]:

1. At a lattice site a n-point cumulant is represented by a vertex with n entering and n leaving

lines.

2. Each line is labelled with both an imaginary-time and a spin index.

3. The currents j∗iα(τ) (jiα(τ)) are described by entering (leaving) lines.
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4. Each line, which connects two vertices, is associated with a factor of the hopping matrix element

J .

5. For a connected Green function of a given order draw all inequivalent connected diagrams.

6. Sum over all site and spin indices and integrate over all time variables.

4.5.2. Diagram Weights

The diagrammatic rules stated in Subsection 4.5.1 are not sufficient for the diagrammatic expansion

of the grand-canonical free energy. The goal of this subsection is to calculate the weights of the

emerging diagrams in order to find the correct decomposition. Therefore, we need to introduce the

symmetry factor which allows us to calculate these weights. For a given diagram the weight has two

contributions. The first contribution is that there are n! possible permutations of equal imaginary-time

and spin variables, where the Green function G
(0)
n consists of a sum of products of cumulants. The

second contribution is that not all of these permutations describe the cumulant decomposition in the

higher hopping orders. Therefore, we keep in mind the symmetry factor. This factor gives the possible

permutations of the imaginary-time, the spin variables, and the vertex indices. So, the weight of a

diagram is given by

weight =
1

n!

n!

symmetry factor
, (4.68)

where 1/n! is the prefactor from the Taylor expansion in (4.39).

With this, we can express the expansion coefficients of the free energy defined in (4.48)–(4.51)

graphically as follows:

a
(0)
2 (i1α1, τ1|i2α2, τ2) = δi1,i2 τ1, α1

i1
τ2, α2

= δi1,i2 i1C
(0)
1 (τ1, α1|τ2, α2), (4.69)

Ji3j3a
(1)
2 (i1α1, τ1; i3|i2α2, τ2; j3) = δi1,i3δi2,j3 τ1, α1

i3 j3
τ2, α2

=
∑

α3

δi1,i3δi2,j3Ji3j3

∫ β

0
dτ3 i3C

(0)
1 (τ1, α1|τ3, α3)j3C

(0)
1 (τ3, α3|τ2, α2), (4.70)

a
(0)
4 (i1α1, τ1; i2α2, τ2|i3α3, τ3; i4α4, τ4) = δi1,i2δi2,i3δi3,i4

i1

τ2, α2

τ1, α1

τ3, α3

τ4, α4

= δi1,i2δi2,i3δi3,i4 i1C
(0)
2 (τ1, α1; τ2, α2|τ3, α3; τ4, α4), (4.71)
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a
(1)
4 (i1α1, τ1; i2α2, τ2; i5|i3α3, τ3; i4α4, τ4; j5)

= δi3,j5δi1,i2δi2,i5δi4,i5

i5
j5

τ2, α2

τ1, α1

τ3, α3

τ4, α4

+ δi2,j5δi1,i5δi3,i5δi3,i4
i5

j5
τ2, α2

τ1, α1

τ3, α3

τ4, α4

=
∑

α5

Ji5j5

[

δi3,j5δi1,i2δi2,i5δi4,i5

∫ β

0
dτ5 i5C

(0)
2 (τ1, α1; τ2, α2|τ5, α5; τ4, α4)j5C

(0)
1 (τ5, α5|τ3, α3)

+ δi2,j5δi1,i5δi3,i5δi3,i4

∫ β

0
dτ5 i5C

(0)
2 (τ1, α1; τ5, α5|τ3, α3; τ4, α4)j5C

(0)
1 (τ2, α2|τ5, α5)

]

. (4.72)

4.5.3. Diagrammatic Series for Free energy

Using the weights discussed in the previous subsection, the diagrammatic expansion of the grand-

canonical free energy up to first order in the hopping parameter and the fourth order in the symmetry-

breaking currents is given by

F [j, j∗] = F (0) + + + 1
4

+1
2



 +



 . (4.73)

We remark that all imaginary time, spin and vertex indices can be dropped in order to show that all

variables have been integrated out as is demanded by rule 6 in Subsection 4.5.1. As discussed in the

Subsection 4.5.2, the pre-factors show the symmetry factors of the respective diagrams. Converting

the Feynman diagrams into explicit expressions, the grand-canonical free energy (4.73) reads

F [j, j∗] = F0 −
1

β

∑

i1,i2

∑

α1,α2

∫ β

0
dτ1

∫ β

0
dτ2

{

ji1α1(τ1)j
∗
i2α2

(τ2)W2(i1α1, τ1|i2α2, τ2)

+
1

4

∑

i3,i4

∑

α3,α4

∫ β

0
dτ3

∫ β

0
dτ4ji1α1(τ1)ji2α2(τ2)j

∗
i3α3

(τ3)j
∗
i4α4

(τ4)

×W4(i1α1, τ1; i2α2, τ2|i3α3, τ3; i4α4, τ4)

}

. (4.74)

Here we have introduced the abbreviations

W2(i1α1, τ1|i2α2, τ2) = a
(0)
2 (i1α1, τ1|i2α2, τ2) +

∑

i3,j3

Ji3j3a
(1)
2 (i1α1, τ1; i3|i2α2, τ2; j3), (4.75)

and
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W4(i1α1, τ1; i2α2, τ2|i3α3, τ3; i4α4, τ4) = a
(0)
4 (i1α1, τ1; i2α2, τ2|i3α3, τ3; i4α4, τ4)

+
∑

i5,j5

Ji5j5a
(1)
4 (i1α1, τ1; i2α2, τ2; i5|i3α3, τ3; i4α4; j5), (4.76)

which are determined by respective cumulants. From (4.66) and (4.67) as well as (4.46), we get for the

relevant cumulants the following explicit expressions

iC
(0)
1 (τ1, α1|τ2, α2) =

〈

T̂
[

â†iα1
(τ1)âiα2(τ2)

]〉(0)

=
1

Z(0)
Tr

{

e−βĤ0 T̂
[

â†iα1
(τ1)âiα2(τ2)

]

}

, (4.77)

iC
(0)
2 (τ1, α1; τ2, α2|τ3, α3; τ4, α4) =

〈

T̂
[

â†iα1
(τ1)â

†
iα2

(τ2)âiα3(τ3)âiα4(τ4)
]〉(0)

− iC
(0)
1 (τ1, α1|τ3, α3)

×iC
(0)
1 (τ2, α2|τ4, α4)− iC

(0)
1 (τ1, α1|τ4, α4)iC

(0)
1 (τ2, α2|τ3, α3). (4.78)

We can simplify the calculation of these expressions by converting them into frequency space. There-

fore, we need the Matsubara transformation which is defined in the next subsection.

4.5.4. Matsubara Transformation

Here we go into the frequency space instead of using the imaginary-time in order to simplify our

calculations. Thus, we use the Matsubara transformation where the imaginary-time variable runs from

0 to β. The Matsubara transformation is given by

f(ωm) =
1√
β

∫ β

0
dτeiωmτf(τ). (4.79)

where the Matsubara frequencies are defined according to

ωm =
2πm

β
, m ∈ Z (4.80)

The inverse Matsubara transformation yields

f(τ) =
1√
β

∞
∑

m=−∞
e−iωmτf(ωm). (4.81)

Now we can express the bosonic annihilation and creation operators in Matsubara space

â†α(ωm) =
1√
β

∫ β

0
dτe−iωmτ â†α(τ), (4.82)
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and

âα(ωm) =
1√
β

∫ β

0
dτeiωmτ âα(τ). (4.83)

Using Eqs. (4.82) and (4.83) in the further considerations the cumulants in the free energy expansion

(4.77) and (4.78) can be calculated in Matsubara space.

4.6. Second Order in Currents

In this section, we calculate a(0)2 (i1α1, ωm1|i2α2, ωm2) in Matsubara space. Because of the locality of

the cumulants and the conservation of frequency, we can use Eqs. (4.69) and (4.77) by applying the

Matsubara transformation according to Eqs. (4.82) and (4.83) and get the following relation

a
(0)
2 (i1α1, ωm1|i2α2, ωm2) = a

(0)
2 (i1α1, ωm1)δi1,i2δα1,α2δωm1,ωm2 . (4.84)

With this, we obtain at first

a
(0)
2 (i1α1, ωm1) =

1

β

∫ β

0
dτ1

∫ β

0
dτ2a

(0)
2 (i1α1, τ1|i1α1, τ2)e

−iωm1(τ1−τ2) (4.85)

=
1

β

∫ β

0
dτ1

∫ β

0
dτ2

〈

T̂
[

â†α1
(τ1)âα1(τ2)

]〉(0)
e−iωm1(τ1−τ2)

=
1

Z(0)

1

β

∫ β

0
dτ1

∫ β

0
dτ2Tr

{

e−βĤ0T̂
[

â†α1
(τ1)âα1(τ2)

]

}

e−iωm1(τ1−τ2)

=
∑

Si1
,mi1

,ni1

e
−βE

(0)
Si1

,mi1
,ni1

∫ β

0
dτ1

∫ β

0
dτ2

e−iωm1(τ1−τ2)

βZ(0)

〈

Si1 ,mi1 , ni1 |Θ(τ1 − τ2)

× e(τ1−τ2)Ĥ(0)
â†α1

e(τ2−τ1)Ĥ0 âα1 +Θ(τ2 − τ1)e
(τ2−τ1)Ĥ0 âα1e

(τ1−τ2)Ĥ0 â†α1
|Si1 ,mi1 , ni1

〉

.

With the help of Eqs. (3.23) and (3.24), we get

a
(0)
2 (i1α1, ωm1) =

1

βZ(0)

∑

Si1
,mi1

,ni1

e
−βE

(0)
Si1

,mi1
,ni1

∫ β

0
dτ1

∫ β

0
dτ2

{

e
(τ1−τ2)E

(0)
Si1

,mi1
,ni1Θ(τ1 − τ2)

×
[

O2
α1,Si1

,mi1
,ni1

e
−(τ1−τ2)E

(0)
Si1

+1,mi1
−α1,ni1

−1 + P 2
α1,Si1

,mi1
,ni1

e
−(τ1−τ2)E

(0)
Si1

−1,mi1
−α1,ni1

−1

]

+ e
(τ2−τ1)E

(0)
Si1

,mi1
,ni1Θ(τ2 − τ1)

[

M2
α1,Si1

,mi1
,ni1

e
−(τ2−τ1)E

(0)
Si1

+1,mi1
+α1,ni1

+1

+ N2
α1,Si1

,mi1
,ni1

e
−(τ2−τ1)E

(0)
Si1

−1,mi1
+α1,ni1

+1

]}

e−iωm1(τ1−τ2). (4.86)

Note that the Heaviside step function changes the integration limits. With this Eq. (4.86) becomes

a
(0)
2 (i1α1, ωm1) =

1

βZ(0)

∑

Si1
,mi1

,ni1

e
−βE

(0)
Si1

,mi1
,ni1

{∫ β

0
dτ1

∫ τ1

0
dτ2e

(τ1−τ2)E
(0)
Si1

,mi1
,ni1
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×
[

O2
α1,Si1

,mi1
,ni1

e
−(τ1−τ2)E

(0)
Si1

+1,mi1
−α1,ni1

−1 + P 2
α1,Si1

,mi1
,ni1

e
−(τ1−τ2)E

(0)
Si1

−1,mi1
−α1,ni1

−1

]

+

∫ β

0
dτ2

∫ τ2

0
dτ1e

(τ2−τ1)E
(0)
Si1

,mi1
,ni1

[

M2
α1,Si1

,mi1
,ni1

e
−(τ2−τ1)E

(0)
Si1

+1,mi1
+α1,ni1

+1

+ N2
α1,Si1

,mi1
,ni1

e
−(τ2−τ1)E

(0)
Si1

−1,mi1
+α1,ni1

+1

]}

e−iωm1(τ1−τ2). (4.87)

This expression contains integrals of the form

I =

∫ β

0
dτ1

∫ τ1

0
dτ2e

aτ1ebτ2 =
1− eaβ

ab
+
e(a+b)β − 1

(a+ b)b
, (4.88)

whose special case a+ b→ 0 needs to apply the L’Hospital rule:

lim
a+b→0

e(a+b)β−1
(a+b)b =

β

b
. (4.89)

Therefore, we get

I
a†α1

aα1
= O2

α1,Si1
,mi1

,ni1





−1 + e
(E

(0)
Si1

,mi1
,ni1

−E
(0)
Si1

+1,mi1
−α1,ni1

−1−iωm1)β

(E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

+1,mi1
−α1,ni1

−1 − iωm1)2

− β

E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

+1,mi1
−α1,ni1

−1 − iωm1



+ P 2
α1,Si1

,mi1
,ni1

×





−1 + e
(E

(0)
Si1

,mi1
,ni1

−E
(0)
Si1

−1,mi1
−α1,ni1

−1−iωm1)β

(E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

−1,mi1
−α1,ni1

−1 − iωm1)2
− β

E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

−1,mi1
−α1,ni1

−1 − iωm1



 ,

(4.90)

and correspondingly

I
aα1a

†
α1

=M2
α1,Si1

,mi1
,ni1





−1 + e
(E

(0)
Si1

,mi1
,ni1

−E
(0)
Si1

+1,mi1
+α1,ni1

+1+iωm1)β

(E
(0)
Si1

+1,mi1
+α1,ni1

+1 − E
(0)
Si1

,mi1
,ni1

− iωm1)2

− β

E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

+1,mi1
+α1,ni1

+1 + iωm1





+N2
α1,Si1

,mi1
,ni1





−1 + e
(E

(0)
Si1

,mi1
,ni1

−E
(0)
Si1

−1,mi1
−α1,ni1

−1+iωm1)β

(E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

−1,mi1
−α1,ni1

−1 − iωm1)2

− β

E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

−1,mi1
+α1,ni1

+1 + iωm1



 . (4.91)

Thus, Eq. (4.87) reduces to

a
(0)
2 (i1α1, ωm1) =

1

βZ(0)

∑

Si1
,mi1

,ni1

e
−βE

(0)
Si1

,mi1
,ni1

(

I
a†α1

aα1
+ I

aα1a
†
α1

)

. (4.92)
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The terms in Eq. (4.92) without β-factor can be summarized as:

∞
∑

Si1
=0

∞
∑

ni1
=1

S
∑

mi1
=−S

O2
α1,Si1

,mi1
,ni1

−e−βE
(0)
Si1

,mi1
,ni1 + e

−βE
(0)
Si1

+1,mi1
−α1,ni1

−1

(E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

+1,mi1
−α1,ni1

−1 − iωm1)2

+
∞
∑

Si1
=1

∞
∑

ni1
=1

S
∑

mi1
=−S

P 2
α1,Si1

,mi1
,ni1

−e−βE
(0)
Si1

,mi1
,ni1 + e

−βE
(0)
Si1

−1,mi1
−α1,ni1

−1

(E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

−1,mi1
−α1,ni1

−1 − iωm1)2

+

∞
∑

Si1
=0

∞
∑

ni1
=0

S
∑

mi1
=−S

M2
α1,Si1

,mi1
,ni1

−e−βE
(0)
Si1

,mi1
,ni1 + e

−βE
(0)
Si1

+1,mi1
+α1,ni1

+1

(E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

+1,mi1
+α1,ni1

+1 + iωm1)2

+

∞
∑

Si1
=1

∞
∑

ni1
=0

S
∑

mi1
=−S

N2
α1,Si1

,mi1
,ni1

−e−βE
(0)
Si1

,mi1
,ni1 + e

−βE
(0)
Si1

−1,mi1
+α1,ni1

+1

(E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

−1,mi1
+α1,ni1

+1 + iωm1)2
, (4.93)

By shifting the summation index, we obtain:

∞
∑

Si1
=1

∞
∑

ni1
=0

S
∑

mi1
=−S

O2
α1,Si1

−1,mi1
+α1,ni1

+1

−e−βE
(0)
Si1

−1,mi1
+α1,ni1

+1 + e
−βE

(0)
Si1

,mi1
,ni1

(E
(0)
Si1

−1,mi1
+α1,ni1

+1 − E
(0)
Si1

,mi1
,ni1

− iωm1)2

+

∞
∑

Si1
=0

∞
∑

ni1
=0

S
∑

mi1
=−S

P 2
α1,Si1

+1,mi1
+α1,ni1

+1

−e−βE
(0)
Si1

+1,mi1
+α1,ni1

+1 + e
−βE

(0)
Si1

,mi1
,ni1

(E
(0)
Si1

+1,mi1
+α1,ni1

+1 − E
(0)
Si1

,mi1
,ni1

− iωm1)2

+
∞
∑

Si1
=0

∞
∑

ni1
=0

S
∑

mi1
=−S

M2
α1,Si1

,mi1
,ni1

−e−βE
(0)
Si1

,mi1
,ni1 + e

−βE
(0)
Si1

+1,mi1
+α1,ni1

+1

(E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

+1,mi1
+α1,ni1

+1 + iωm1)2

+
∞
∑

Si1
=1

∞
∑

ni1
=0

S
∑

mi1
=−S

N2
α1,Si1

,mi1
,ni1

−e−βE
(0)
Si1

,mi1
,ni1 + e

−βE
(0)
Si1

−1,mi1
+α1,ni1

+1

(E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

−1,mi1
+α1,ni1

+1 + iωm1)2
= 0, (4.94)

where we have used the identity e−iβωm = 1 following from (4.80) and the fact P 2
α1,Si1

+1,mi1
+α1,ni1

+1 =

M2
α1,Si1

,mi1
,ni1

and O2
α1,Si1

−1,mi1
+α1,ni1

+1 = N2
α1,Si1

,mi1
,ni1

as is shown in Eqs. (A.27) and (A.29).

Therefore Eq. (4.92) reduces to

a
(0)
2 (i1α1, ωm1) =

1

Z(0)

∑

Si1
,mi1

,ni1

e
−βE

(0)
Si1

,mi1
,ni1





M2
α1,Si1

,mi1
,ni1

E
(0)
Si1

+1,mi1
+α1,ni1

+1 − E
(0)
Si1

,mi1
,ni1

− iωm1

+
N2

α1,Si1
,mi1

,ni1

E
(0)
Si1

−1,mi1
+α1,ni1

+1 − E
(0)
Si1

,mi1
,ni1

− iωm1

−
O2

α1,Si1
,mi1

,ni1

E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

+1,mi1
−α1,ni1

−1 − iωm1

−
P 2
α1,Si1

,mi1
,ni1

E
(0)
Si1

,mi1
,ni1

− E
(0)
Si1

−1,mi1
−α1,ni1

−1 − iωm1



 . (4.95)

In view of (4.70), we use the cumulant multiplicity properties in frequency space and frequency con-
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servation, which leads to the relation

a
(1)
2 (i1α1, ωm1; i3|i2α2, ωm2; j3) = a

(0)
2 (i1α1, ωm1)a

(0)
2 (j3α2, ωm2)

× δi1,i3δj3,i2δωm1,ωm2δα1,α2 , (4.96)

we find that the expansion coefficient correction (4.70) under consideration takes on the form

a
(1)
2 (i1α1, ωm1; i3|i2α2, ωm2; j3) =

1

(Z(0))2

∑

Si1
,mi1

,ni1

e
−βE

(0)
Si1

,mi1
,ni1 δi2,i3δj3,i1δωm1,ωm2δα1,α2

×





M2
α1,Si,mi,ni

E
(0)
Si1

+1,mi1
+α1,ni1

+1 − E
(0)
Si1

,mi1
,ni1

− iωm1

+
N2

α1,Si,mi,ni

E
(0)
Si−1,mi+α1,ni+1 − E

(0)
Si,mi,ni

− iωm1

−
O2

α1,Si,mi,ni

E
(0)
Si,mi,ni

− E
(0)
Si+1,mi−α1,ni−1 − iωm1

−
P 2
α1,Si,mi,ni

E
(0)
Si,mi,ni

− E
(0)
Si−1,mi−α1,ni−1 − iωm1





×





M2
α2,Sj3

,mj3
,nj3

E
(0)
Sj3

+1,mj3
+α2,nj3

+1 − E
(0)
Sj3

,mj3
,nj3

− iωm2

+
N2

α2,Sj3
,mj3

,nj3

E
(0)
Sj3

−1,mj3
+α2,nj3

+1 − E
(0)
Sj3

,mj3
,nj3

− iωm2

−
O2

α2,Sj3
,mj3

,nj3

E
(0)
Sj3

,mj3
,nj3

− E
(0)
Sj3

+1,mj3
−α2,nj3

−1 − iωm2

−
P 2
α2,Sj3

,mj3
,nj3

E
(0)
Sj3

,mj3
,nj3

− E
(0)
Sj3

−1,mj3
−α2,nj3

−1 − iωm2



 . (4.97)

Thus with (4.95) and (4.97), we obtain the full expression for Eq. (4.75) in Matsubara frequency space

which has the form

W2(i1α1, ωm1|i2α2, ωm2) =
[

a
(0)
2 (i1α1, ωm1)δi1,i2 +

∑

i3,j3

Ji3j3a
(0)
2 (i3α1, ωm1)

× a
(0)
2 (j3α2, ωm2)δi3,i1δj3,i2

]

δωm1,ωm2δα1,α2 . (4.98)

4.7. Fourth Order in Currents

In this section we derive the coefficient of fourth order in the currents (4.76) in Matsubara frequency.

To do this, we need to consider at first the zeroth order hopping term, which we do in frequency space

a
(0)
4 (i1α1, ωm1; i2α2, ωm2|i3α3, ωm3; i4α4, ωm4) =

1

β2
δi1,i2δi3,i4δi1,i3

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

∫ β

0
dτ4

×i1C
(0)
2 (α1, τ1;α2, τ2|α3, τ3;α4, τ4)e

−i(ωm1τ1+ωm2τ2−ωm3τ3−ωm4τ4). (4.99)

Thus, this coefficients is of the form

a
(0)
4 (i1α1, ωm1; i2α2, ωm2|i3α3, ωm3; i4α4, ωm4)

= a
(0)
4 (α1, ωm1;α2, ωm2|α3, ωm3;α4, ωm4; i1)δi1,i2δi3,i4δi1,i3 . (4.100)

Substituting Eq. (4.78) into (4.99), leads to
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a
(0)
4 (α1, ωm1;α2, ωm2|α3, ωm3;α4, ωm4; i1) =

1

β2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

∫ β

0
dτ4

×
[

〈

T̂
[

â†i1α1
(τ1)â

†
i1α2

(τ2)âi1α3(τ3)âi1α4(τ4)
]〉(0)

− i1C
(0)
1 (τ1, α1|τ3, α3) i1C

(0)
1 (τ2, α2|τ4, α4)

− i1C
(0)
1 (τ1, α1|τ4, α4)i1C

(0)
1 (τ2, α2|τ3, α3)

]

e−i(ωm1τ1+ωm2τ2−ωm3τ3−ωm4τ4). (4.101)

Using the conservation of frequency and spin index leads to the expression

a
(0)
4 (α1, ωm1;α2, ωm2|α3, ωm3;α4, ωm4; i1) =

1

β2
δωm1+ωm2,ωm3+ωm4

{

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

∫ β

0
dτ4

〈

T̂
[

â†i1α1
(τ1)â

†
i1α2

(τ2)âi1α3(τ3)âi1α4(τ4)
]〉

e−i(ωm1τ1+ωm2τ2−ωm3τ3−ωm4τ4)

− a
(0)
2 (i1α1, ωm1|i1α3, ωm3)a

(0)
2 (i1α2, ωm2|i1α4, ωm4) [δα1,α3δα2,α4δωm1,ωm3δωm2,ωm4

+δα1,α4δα2,α3δωm1,ωm4δωm2,ωm3 ]

}

δα1+α2,α3+α4 . (4.102)

Now we calculate the integral over the time-ordered thermal average in the above expression be-

cause the last two terms have already been calculated in Eq (4.95). Note that there are six distinct

permutations leading to different expectation values for the time-ordered product of the annihilation

and creation operators. Each order has four time and four spin variable permutations corresponding

to τ1 ↔ τ2 , τ3 ↔ τ4 , α1 ↔ α2 and α3 ↔ α4. Thus, we have 24 terms for the above expectation value.

Fortunately, we need to determine only six different thermal averages for one specific time-ordering

because, due to symmetry reasons, there are some integrals over different time-variable permutations

which yield the same result. Furthermore, as these expectation values are local, we drop the site indices

in the following calculations and calculate the following expressions:

Θ(τ4 − τ3)Θ(τ3 − τ1)Θ(τ1 − τ2)
〈

âα4(τ4)âα3(τ3)â
†
α1
(τ1)â

†
α2
(τ2)

〉(0)
, (4.103)

Θ(τ1 − τ2)Θ(τ2 − τ3)Θ(τ3 − τ4)
〈

â†α1
(τ1)â

†
α2
(τ2)âα3(τ3)âα4(τ4)

〉(0)
, (4.104)

Θ(τ4 − τ1)Θ(τ1 − τ3)Θ(τ3 − τ2)
〈

âα4(τ4)â
†
α1
(τ1)âα3(τ3)â

†
α2
(τ2)

〉(0)
, (4.105)

Θ(τ1 − τ4)Θ(τ4 − τ3)Θ(τ3 − τ2)
〈

â†α1
(τ1)âα4(τ4)âα3(τ3)â

†
α2
(τ2)

〉(0)
, (4.106)

Θ(τ4 − τ1)Θ(τ1 − τ2)Θ(τ2 − τ3)
〈

âα4(τ4)â
†
α1
(τ1)â

†
α2
(τ2)âα3(τ3)

〉(0)
, (4.107)

Θ(τ1 − τ3)Θ(τ3 − τ2)Θ(τ2 − τ4)
〈

â†α1
(τ1)âα3(τ3)â

†
α2
(τ2)âα4(τ4)

〉(0)
. (4.108)

First, we will define all the above expressions individually in Appendix B in Eqs. (B.1)–(B.6) without

Heaviside step function before the integration. Following the same method as for the second-order

expansion coefficient, we perform a Matsubara transformation according to equations (4.82) and (4.83).

The details of the calculation are given in Appendix B in Eqs. (B.7)–(B.10) so that Eq. (4.102) finally
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becomes

a
(0)
4 (α1, ωm1;α2, ωm2|α3, ωm3;α4, ωm4) =

1

β

1

Z(0)

∑

S,m,n

e−βE
(0)
S,m,nδα1+α2,α3+α4δωm1+ωm2,ωm3+ωm4

×







Mα2,S,m,nMα4,S,m,nMα3,S+1,m+α4,n+1Mα1,S+1,m+α2,n+1
(

△E(0)
S+1,m+α4,n+1 + iωm3 − iωm1 − iωm2

)(

△E(0)
S+2,m+α2+α1,n+2 − iωm1 − iωm2

)

× 1
(

△E(0)
S+1,m+α2,n+1 − iωm2

) +
Nα2,S,m,nNα4,S,m,nNα3,S−1,m+α4,n+1Nα1,S−1,m+α2,n+1

(

△E(0)
S−2,m+α2+α1,n+2 − iωm1 − iωm2

)(

△E(0)
S−1,m+α2,n+1 − iωm2

)

× 1
(

△E(0)
S−1,m+α4,n+1 + iωm3 − iωm1 − iωm2

) +
Oα1,S,m,nOα4,S,m,nOα2,S+1,m−α1,n−1Oα3,S+1,m−α4,n−1

(

△E(0)
S+1,m−α1,n−1 + iωm3 + iωm4 − iωm2

)

× 1
(

△E(0)
S+2,m−α2−α1,n−2 + iωm3 + iωm4

)(

△E(0)
S+1,m−α4,n−1 + iωm4

) +
1

(

△E(0)
S−1,m−α4,n−1 + iωm4

)

× Pα1,S,m,nPα4,S,m,nPα2,S+1,m−α1,n−1Pα3,S+1,m−α4,n−1
(

△E(0)
S−1,m−α1,n−1 + iωm3 + iωm4 − iωm2

)(

△E(0)
S−2,m−α2−α1,n−2 + iωm3 + iωm4

)

+
1

(

△E(0)
S,m+α3+α4,n+2 − iωm1 − iωm2

)





Mα4,S,m,nNα3,S+1,m+α4,n+1

△E(0)
S+1,m+α4,n+1 + iωm3 − iωm1 − iωm2

+
Nα4,S,m,nMα3,S−1,m+α4,n+1

△E(0)
S−1,m+α4,n+1 + iωm3 − iωm1 − iωm2









Mα2,S,m,nNα1,S+1,m+α2,n+1

△E(0)
S+1,m+α2,n+1 − iωm2

+
Nα2,S,m,nMα1,S−1,m+α2,n+1

△E(0)
S−1,m+α2,n+1 − iωm2



+
1

△E(0)
S,m−α1−α2,n−2 + iωm3 + iωm4

×





Oα1,S,m,nPα2,S+1,m−α1,n−1

△E(0)
S+1,m−α1,n−1 + iωm3 + iωm4 − iωm2

+
Pα1,S,m,nOα2,S−1,m−α1,n−1

△E(0)
S−1,m−α1,n−1 + iωm3 + iωm4 − iωm2





×





Oα4,S,m,nPα3,S+1,m−α4,n−1

△E(0)
S+1,m−α4,n−1 + iωm4

+
Pα4,S,m,nOα3,S−1,m−α4,n−1

△E(0)
S−1,m−α4,n−1 + iωm4



+
1

△E(0)
S+2,m+α4−α1,n

− iωm2 + iωm3

×





Mα4,S,m,nOα1,S+1,m+α4,n+1

△E(0)
S+1,m+α4,n+1 + iωm3 − iωm1 − iωm2

+
Oα1,S,m,nMα4,S+1,m−α1,n−1

△E(0)
S+1,m−α1,n−1 + iωm3 + iωm4 − iωm2





×





Mα2,S,m,nOα3,S+1,m+α2,n+1

△E(0)
S+1,m+α2,n+1 − iωm2

+
Oα3,S,m,nMα2,S+1,m−α3,n−1

△E(0)
S+1,m−α3,n−1 + iωm3



+
1

△E(0)
S−2,m+α4−α1,n

− iωm2 + iωm3

×





Nα4,S,m,nPα1,S−1,m+α4,n+1

△E(0)
S−1,m+α4,n+1 + iωm3 − iωm1 − iωm2

+
Pα1,S,m,nNα4,S+1,m−α1,n−1

△E(0)
S−1,m−α1,n−1 + iωm3 + iωm4 − iωm2





×





Nα2,S,m,nPα3,S−1,m+α2,n+1

△E(0)
S−1,m+α2,n+1 − iωm2

+
Pα3,S,m,nNα2,S−1,m−α3,n−1

△E(0)
S−1,m−α3,n−1 + iωm3





+ δα1,α4δωm1,ωm4





Mα4,S,m,nMα1,S,m,n

△E(0)
S+1,m+α4,n+1 − iωm1

+
Nα4,S,m,nNα1,S,m,n

△E(0)
S−1,m+α4,n+1 − iωm1

+
Oα4,S,m,nOα1,S,m,n

△E(0)
S+1,m−α1,n−1 − iωm4
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+
Pα4,S,m,nPα1,S,m,n

△E(0)
S−1,m−α1,n−1 − iωm4









Mα3,S,m,nMα2,S,m,n

△E(0)
S+1,m+α2,n+1 − iωm2





β

2
− 1

△E(0)
S+1,m+α2,n+1 − iωm3





+
Nα3,S,m,nNα2,S,m,n

△E(0)
S−1,m+α2,n+1 − iωm2





β

2
− 1

△E(0)
S−1,m+α2,n+1 − iωm3





+
Oα3,S,m,nOα2,S,m,n

△E(0)
S+1,m−α3,n−1 − iωm3





β

2
− 1

△E(0)
S+1,m−α3,n−1 − iωm2





+
Pα3,S,m,nPα2,S,m,n

△E(0)
S+1,m−α3,n−1 − iωm3





β

2
− 1

△E(0)
S+1,m−α3,n−1 − iωm2















α1↔α2
α3↔α4

ωm1↔ωm2
ωm3↔ωm4

− 2 δα1,α3δα2,α4δωm1,ωm3δωm2,ωm4a
(0)
2 (α1, ωm1|α3, ωm3)a

(0)
2 (α2, ωm2|α4, ωm4)

− 2 δα1,α4δα2,α3δωm1,ωm4δωm2,ωm3a
(0)
2 (α1, ωm1|α4, ωm4)a

(0)
2 (α2, ωm2|α3, ωm3), (4.109)

where △E(0)
S′,m′,n′ = E

(0)
S′,m′,n′ − E

(0)
S,m,n and ωm1 ↔ ωm2 and α1 ↔ α2 refer to a symmetrization with

respect to the Matsubara frequencies and spin indices. Eq. (4.109) shows the expression for the fourth-

order coefficient of the free energy, which we can cross-check in different ways. At first we consider the

zero-temperature limit, i.e. β → ∞, and observe that all β-divergent terms in Eq. (4.109) are cancelled

by the (a
(0)
2 )2-terms. In the next section, we show that Eq. (4.109) allows to recover the mean-field

approach from Chapter 3 at zero-temperature.

The next quantity, which would have to be calculated, is a(1)4 being defined in Eq. (4.72). However,

in Section 4.8 it turns out that a(1)4 is not needed for the mean-field theory and it will be proven in

Chapter 5 that a(1)4 will also not appear in the effective action. Therefore, we do not have to calculate

it explicitly.

4.8. Mean-Field Theory

We start with comparing the mean-field Hamiltonian (3.11) with the source Hamiltonian (4.1), which

yields with (4.37) the identification

jiα(τ) = −zJΨα. (4.110)

Inserting (4.110) into (4.74), we obtain an expansion of the mean-field free energy FMF in powers of

the order parameter which reads up to fourth order as follows:

FMF = F0 −Ns

(

∑

α

aMF
2 (α, 0) |Ψα|2 +

∑

α1

∑

α2

∑

α3

∑

α4

aMF
4 (α1, 0;α2, 0|α3, 0;α4, 0)Ψ

∗
α1
Ψ∗

α2
Ψα3Ψα4

)

,

(4.111)

where the respective mean-field Landau coefficients are only calculated up to the fourth hopping order.

Thus, we get for them

aMF
2 (α, 0) = a

(0)
2 (α, 0)(zJ)2 − zJ, (4.112)
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aMF
4 (α1, 0;α2, 0|α3, 0;α4, 0) =

β

4
a
(0)
4 (α1, 0;α2, 0|α3, 0;α4, 0)(zJ)

4. (4.113)

We note that here a(1)4 does not appear as it is of fifth order in the hopping.

4.8.1. Ferromagnetic Interaction

Hence, in order to check the result (4.109), we first calculate a(0)4 for vanishing Matsubara frequencies

ωm1 = ωm2 = ωm3 = ωm4 = 0 in the case of ferromagnetic interaction at zero temperature with

spin-1 which should yield the mean-field result. As discussed in Subsection 3.4.2, for a ferromagnetic

interaction there is no difference between this interaction with and without η except that the degeneracy

with respect to the magnetic quantum number m is lifted. Hence, the ground state becomes |n, n, n〉.
Therefore, the coefficients a(0)2 and a(0)4 are defined as

a
(0)
2 (1, 0) =

1

Z(0)

∞
∑

n=0

e−βE
(0)
n,n,n

(

n+ 1

△E(0)
n+1,n+1,n+1

+
n

△E(0)
n−1,n−1,n−1

)

, (4.114)

a
(0)
4 (1, 0; 1, 0|1, 0; 1, 0) = 2

βZ(0)

∞
∑

n=0

e−βE
(0)
n,n,n

{

2n (n− 1)

(△E(0)
n−1,n−1,n−1)

2△E(0)
n−2,n−2,n−2

+ n2

[

− 2

(△E(0)
n−1,n−1,n−1)

3
+

β

(△E(0)
n−1,n−1,n−1)

2

]

+
2 (n+ 1) (n+ 2)

(△E(0)
n+1,n+1,n+1)

2△E(0)
n+2,n+2,n+2

− n (n+ 1)







2
(

△E(0)
n+1,n+1,n+1 +△E(0)

n−1,n−1,n−1

)

(

△E(0)
n−1,n−1,n−1

)2 (

△E(0)
n+1,n+1,n+1

)2 − 2β

△E(0)
n−1,n−1,n−1△E

(0)
n+1,n+1,n+1







− (n+ 1)2
[

2

(△E(0)
n+1,n+1,n+1)

3
− β

(△E(0)
n+1,n+1,n+1)

2

]}

− 2
[

a
(0)
2 (1, 0)

]2
, (4.115)

where △E(0)
S′,m′,n′ = E

(0)
S′,m′,n′ − E

(0)
n,n,n. This result coincides with the finite-temperature finding in

Ref. [64]. Note that another cross check is possible for ferromagnetic interaction at zero-temperature

as then (4.114) and (4.115) reduce to the result which is obtained by Refs. [86, 123,124].

The condensate density is obtained by minimizing the mean-field energy with the help of Eq. (3.16),

we get

∣

∣ΨMF
1

∣

∣

2
= − 2aMF

2 (1, 0)

aMF
4 (1, 0; 1, 0|1, 0; 1, 0) . (4.116)

We remark that, when the chemical potential µ is fixed, the mean-field condensate density
∣

∣ΨMF
1

∣

∣

2

with spin-1 is not monotonically increasing with the hopping J as shown in Fig. 4.1, see also Ref. [86].

Thus, the mean-field prediction for the condensate density is not physical provided that the hopping

is too large. We use this circumstance to our advantage and define a validity range of the mean-field

theory as follows. For a fixed chemical potential point we determine the hopping value at which the

condensate density has its maximal value. Until this hopping value the condensate density increases
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Figure 4.1.: The mean-field condensate density as a function of the tunneling parameter J/U for fixed
µ/U = 0.5.
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Figure 4.2.: The validity range of mean-field theory for the Bose-Hubbard model in the ferromagnetic
case at zero temperature is depicted by blue dots.

with increasing hopping, so that this point defines the validity limit for a fixed µ. Beyond this hopping

value, we can not use the prediction of the mean-field theory because the condensate density decreases

with increasing the hopping parameter as shown in Fig. 4.1. Thus, we can expect a range of validity

until a critical hopping J as shown in Fig. 4.2. Similarly, we could apply the same procedure for the

anti-ferromagnetic interaction without and with magnetization.

4.8.2. Anti-ferromagnetic Interaction Without Zeeman Effect

In the previous subsection we did check the result derived for a(0)4 in the case of ferromagnetic in-

teraction. Now we make another check for a(0)4 in the case of anti-ferromagnetic interaction with an

even and an odd number of atoms at zero-temperature. To do this, we will calculate the ground state
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energy of the superfluid phase by using perturbation theory at the zero-temperature limit. In order to

do this, we assume that the hopping matrix element J is small. The ground state of the nonperturba-

tive Hamiltonian H
(0)
i is |0, 0, ni〉 for even ni and |1,m, ni〉 for odd ni. Since the effective Hamiltonian

(2.41) is diagonal with respect to the site, we drop the site index in the following. We introduce three

complex order parameters Ψα, which can be combined to a vector

Ψ = (Ψ1,Ψ0,Ψ−1). (4.117)

We note that the order parameter has three components due to the three different hyperfine states

α = 0,±1. Thus, the energy of the system is a function of the order parameter and has to be

minimized. We calculate the fourth-order perturbation correction for an even and odd numbers of

atoms to determine the symmetry of the order parameter.

• Superfluid state with an even number of atoms

Here, we define the fourth-order perturbation correction for an even number of atoms with no magne-

tization. Thus, the ground state will be |0, 0, n〉 for even n as discussed in Subsection 3.4.1. To this

end, inserting Eqs. (4.109) and (4.113) into (4.111) by using the matrix elements in Appendix A, yields

E
(4)
G (Ψ) = A(n,U0, U2, µ)

∣

∣

∣|Ψ0|2 − 2 |Ψ1| |Ψ−1|
∣

∣

∣

2
+B(n,U0, U2, µ)(Ψ

† ·Ψ)2, (4.118)

where (Ψ† ·Ψ) is symmetric under the rotation in spin space. Here the coefficients A(n,U0, U2, µ) and

B(n,U0, U2, µ) are given by

A(n,U0, U2, µ) =(zJ)4

[

− 2n(n+ 3)

15△ E
(0)
2,n △ E

(0)
1,n−1 △ E

(0)
1,n+1

− 1

15
(

△E(0)
1,n−1

)2
△ E

(0)
2,n−2 △ E

(0)
0,n−2 △ E

(0)
2,n

×
[

6n(n+ 3)U2 △ E
(0)
0,n−2 + 15n(n+ 1)U2

2 + n(n+ 3)
(

△E(0)
0,n−2

)2
]

−
6n(n+ 3)U2 △ E

(0)
0,n+2 + 15 (n+ 2) (n+ 3)U2

2 + n(n+ 3)
(

△E(0)
0,n+2

)2

15
(

△E(0)
1,n+1

)2
△ E

(0)
2,n+2 △ E

(0)
0,n+2 △ E

(0)
2,n

]

, (4.119)

B(n,U0, U2, µ) = (zJ)4

[

1

9

(

n

△E(0)
1,n−1

+
n+ 3

△E(0)
1,n+1

)







n
(

△E(0)
1,n−1

)2 +
n+ 3

(

△E(0)
1,n+1

)2







− n (n+ 3)

45△ E
(0)
2,n

(

1

△E(0)
1,n−1

+
1

△E(0)
1,n+1

)2

− 2

15







n (n− 2)
(

△E(0)
1,n−1

)2
△ E

(0)
2,n−2

+
(n+ 3) (n+ 5)

(

△E(0)
1,n+1

)2
△ E

(0)
2,n+2












.

(4.120)
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where △E(0)
S′,n′ = E

(0)
S′,n′ − E

(0)
0,n. The result (4.118) coincides with Ref. [81], which represents another

check for Eq. (4.109). The spin average in the SF phase is defined as

〈F〉 ≡
∑

α,β

Ψ∗
αFαβΨβ (α, β = x, y, z) , (4.121)

thus we have
∣

∣

∣|Ψ0|2 − 2 |Ψ1| |Ψ−1|
∣

∣

∣

2
= 1− 〈F〉2 . (4.122)

We remark that the coefficient A(n,U0, U2, µ) is negative. Therefore, 〈F〉 = 0 because 〈F〉2 has the

minimum value in the ground state. Thus, we obtain the polar superfluid phase [81].

• Superfluid State with an Odd Number of Atoms

The mean-field result for an odd number number of atoms has not been found in the literature. For

the sake of completeness we derive it here within our approach. Thus, the ground state becomes

|1,m, n〉 for odd n where m = 0,±1 as discussed in Subsection 3.4.1. By the same way, inserting

Eqs. (4.109) and (4.113) into (4.111) by using the matrix elements in Appendix A, we get the fourth

order perturbation energy at zero-temperature as follows:

E
(4)
G (Ψ) =C(n,U0, U2, µ)

∣

∣

∣
|Ψ0|2 − 2 |Ψ1| |Ψ−1|

∣

∣

∣

2
+D(n,U0, U2, µ)(Ψ

† ·Ψ)2

+ E(n,U0, U2, µ)
[

|Ψ1|2 − |Ψ−1|2
]2

+H(n,U0, U2, µ)
[

(Ψ∗
0Ψ0)

2 + 2 (Ψ∗
1Ψ−1)

2
]

, (4.123)

where the coefficients of C(n,U0, U2, µ), D(n,U0, U2, µ), E(n,U0, U2, µ) and H(n,U0, U2, µ) are rele-

gated to Appendix C in Eqs. (C.2)–(C.5). It turns out that C(n,U0, U2, µ) is negative. Therefore, we

have again 〈F〉 = 0 because 〈F〉2 has then its minimal value in the ground state. Thus, we obtain

again a polar superfluid phase.

4.8.3. Anti-ferromagnetic Interaction With Zeeman effect

In this subsection we calculate the fourth order perturbation energy at the zero-temperature limit for

η 6= 0. As discussed in Subsections 2.4.2 and 3.4.2, the ground states for the even and odd lobes depend

on the value of η and U2. In addition, the general form of the ground state is |S, S, n〉. However, the

rotational symmetry will be broken at the presence of magnetic field, e.g. SO(3) will be reduced to

SO(2) symmetry. Therefore, magnetization will be induced in the minimization process [125].

• Superfluid state with an even number of atoms

Therefore, the fourth order perturbation energy for an even number of atoms follows as

E
(4)
G (Ψ) = F (S, S, n, U0, U2, µ, η) |Ψ1|4 +G(S, S, n, U0, U2, µ, η) |Ψ−1|4 + I(S, S, n, U0, U2, µ, η) |Ψ0|4

+4L(S, S, n, U0, U2, µ, η) |Ψ1|2 |Ψ−1|2 + 4R(S, S, n, U0, U2, µ, η) |Ψ1|2 |Ψ0|2 + 4Q(S, S, n, U0, U2, µ, η)

× |Ψ−1|2 |Ψ0|2 + 2T (S, S, n, U0, U2, µ, η)
(

Ψ∗
0Ψ

∗
0Ψ1Ψ−1 +Ψ∗

1Ψ
∗
−1Ψ0Ψ0

)

, (4.124)
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where

F (S, S, n, U0, U2, µ, η) = aMF
4 (1, 0; 1, 0|1, 0; 1, 0), (4.125)

G(S, S, n, U0, U2, µ, η) = aMF
4 (−1, 0;−1, 0| − 1, 0;−1, 0), (4.126)

I(S, S, n, U0, U2, µ, η) = aMF
4 (0, 0; 0, 0|0, 0; 0, 0), (4.127)

L(S, S, n, U0, U2, µ, η) = aMF
4 (1, 0;−1, 0|1, 0;−1, 0)

= aMF
4 (1, 0;−1, 0| − 1, 0; 1, 0)

= aMF
4 (−1, 0; 1, 0|1, 0;−1, 0)

= aMF
4 (−1, 0; 1, 0| − 1, 0; 1, 0), (4.128)

R(S, S, n, U0, U2, µ, η) = aMF
4 (1, 0; 0, 0|1, 0; 0, 0)

= aMF
4 (1, 0; 0, 0|0, 0; 1, 0)

= aMF
4 (0, 0; 1, 0|1, 0; 0, 0)

= aMF
4 (0, 0; 1, 0|0, 0; 1, 0), (4.129)

Q(S, S, n, U0, U2, µ, η) = aMF
4 (−1, 0; 0, 0| − 1, 0; 0, 0)

= aMF
4 (−1, 0; 0, 0|0, 0;−1, 0)

= aMF
4 (0, 0;−1, 0| − 1, 0; 0, 0)

= aMF
4 (0, 0;−1, 0|0, 0;−1, 0), (4.130)

T (S, S, n, U0, U2, µ, η) = aMF
4 (0, 0; 0, 0|1, 0;−1, 0)

= aMF
4 (0, 0; 0, 0| − 1, 0; 1, 0)

= aMF
4 (−1, 0; 1, 0|0, 0; 0, 0)

= aMF
4 (1, 0;−1, 0|0, 0; 0, 0). (4.131)

The relations between the coefficients with and without magnetization are given by

A(n,U0, U2, µ) = −T (0, 0, n, U0, U2, µ, 0), (4.132)

B(n,U0, U2, µ) = F (0, 0, n, U0, U2, µ, 0)

= G(0, 0, n, U0, U2, µ, 0),
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= 2R(0, 0, n, U0, U2, µ, 0)

= 2Q(0, 0, n, U0, U2, µ, 0). (4.133)

• Superfluid state with an odd number of atoms

Similarly, the fourth order perturbation energy for an odd number of atoms

E
(4)
G (Ψ) = K(S, S, n, U0, U2, µ, η) |Ψ1|4 +Q(S, S, n, U0, U2, µ, η) |Ψ−1|4 + V (S, S, n, U0, U2, µ, η) |Ψ0|4

+ 4W (S, S, n, U0, U2, µ, η) |Ψ1|2 |Ψ−1|2 + 4X(S, S, n, U0, U2, µ, η) |Ψ1|2 |Ψ0|2

+ 4Y (S, S, n, U0, U2, µ, η) |Ψ−1|2 |Ψ0|2 + 2Z(S, S, n, U0, U2, µ, η)
(

Ψ∗
0Ψ

∗
0Ψ1Ψ−1 +Ψ∗

1Ψ
∗
−1Ψ0Ψ0

)

,

(4.134)

where the coefficients read

K(S, S, n, U0, U2, µ, η) = aMF
4 (1, 0; 1, 0|1, 0; 1, 0), (4.135)

Q(S, S, n, U0, U2, µ, η) = aMF
4 (−1, 0;−1, 0| − 1, 0;−1, 0), (4.136)

V (S, S, n, U0, U2, µ, η) = aMF
4 (0, 0; 0, 0|0, 0; 0, 0), (4.137)

W (S, S, n, U0, U2, µ, η) = aMF
4 (1, 0;−1, 0|1, 0;−1, 0)

= aMF
4 (1, 0;−1, 0| − 1, 0; 1, 0)

= aMF
4 (−1, 0; 1, 0|1, 0;−1, 0)

= aMF
4 (−1, 0; 1, 0| − 1, 0; 1, 0), (4.138)

X(S, S, n, U0, U2, µ, η) = aMF
4 (1, 0; 0, 0|1, 0; 0, 0)

= aMF
4 (1, 0; 0, 0|0, 0; 1, 0)

= aMF
4 (0, 0; 1, 0|1, 0; 0, 0)

= aMF
4 (0, 0; 1, 0|0, 0; 1, 0), (4.139)

Y (S, S, n, U0, U2, µ, η) = aMF
4 (−1, 0; 0, 0| − 1, 0; 0, 0)

= aMF
4 (−1, 0; 0, 0|0, 0;−1, 0)

= aMF
4 (0, 0;−1, 0| − 1, 0; 0, 0)

= aMF
4 (0, 0;−1, 0|0, 0;−1, 0), (4.140)

Z(S, S, n, U0, U2, µ, η) = aMF
4 (0, 0; 0, 0|1, 0;−1, 0)

= aMF
4 (0, 0; 0, 0| − 1, 0; 1, 0)
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= aMF
4 (−1, 0; 1, 0|0, 0; 0, 0)

= aMF
4 (1, 0;−1, 0|0, 0; 0, 0). (4.141)

Similarly, the relations between the coefficients with and without magnetization are given by

C(n,U0, U2, µ) = −Z(1, 1, n, U0, U2, µ, 0), (4.142)

D(n,U0, U2, µ) = 2X(1, 1, n, U0, U2, µ, 0) = 2Y (1, 1, n, U0, U2, µ, 0), (4.143)

E(n,U0, U2, µ) = V (1, 1, n, U0, U2, µ, 0) − Z(1, 1, n, U0, U2, µ, 0) − 2W (1, 1, n, U0, U2, µ, 0), (4.144)

H(n,U0, U2, µ) = V (1, 1, n, U0, U2, µ, 0) + Z(1, 1, n, U0, U2, µ, 0) − 2X(1, 1, n, U0, U2, µ, 0). (4.145)

In principle, we could now find the different superfluid phases by using all the coefficients in Subsection

4.8.3. But we will not do this as we will find out in the next chapter that the range of validity of the

mean-field theory is smaller than that of the Ginzburg-Landau theory. Therefore, we expect that

the effective action approach gives better results for the superfluid phases and, thus, we perform the

extremization procedure explicitly only for the Ginzburg-Landau theory.
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In the previous chapter we have calculated the grand-canonical free energy up to the first order in the

tunneling parameter by using the diagrammatic representation. With this we determine in this chapter

the Ginzburg-Landau expansion of the effective action up to first order in the hopping term. Afterwards

we show that, in particular at zero temperature, our Ginzburg-Landau theory can distinguish within

its range of validity between various ferromagnetic and anti-ferromagnetic superfluid phases for an

anti-ferromagnetic interaction and a non-vanishing external magnetic field [84, 85]. Furthermore, we

show for a vanishing external magnetic field that the superfluid phase is a polar state, where all the

atoms condense in the spin-0 state [81]. In addition, we study whether the superfluid-Mott insulator

phase transition and the transitions between the various superfluid phases for a non-vanishing external

magnetic field are of first or second order.

5.1. Ginzburg-Landau Action

In this section, we deduce the Ginzburg-Landau action for the spin-1 Bose-Hubbard model. To this end,

we use a Legendre transformation to convert the artificially introduced symmetry-breaking currents j, j∗

into the order parameter fields. In order to implement this Legendre transformation in an uncluttered

way, the grand-canonical free energy (4.74) can be written in Matsubara space as follows:

F [j, j∗] = F0 −
1

β

∑

i1,i2

∑

α1,α2

∑

ωm1,ωm2

{

Mi1α1,i2α2(ωm1|ωm2)ji1α1(ωm1)j
∗
i2α2

(ωm2) (5.1)

+
∑

i3,i4

∑

α3,α4

∑

ωm3,ωm4

Ni1α1,i2α2,i3α3,i4α4(ωm1;ωm2|ωm3;ωm4)ji1α1,(ωm1)ji2α2(ωm2)j
∗
i3α3

(ωm3)j
∗
i4α4

(ωm4)

}

,

where the respective coefficients are given by

Mi1α1,i2α2(ωm1|ωm2) =
[

a
(0)
2 (i1α1, ωm1)δi1,i2 + Ji1i2a

(0)
2 (i1α1, ωm1)a

(0)
2 (i2α2, ωm2)

]

× δωm1,ωm2δα1,α2 (5.2)

and

Ni1α1,i2α2,i3α3,i4α4(ωm1;ωm2|ωm3;ωm4) =
1

4
δα1+α2,α3+α4δωm1+ωm2,ωm3+ωm4

× a
(0)
4 (i1α1, ωm1; i1α2, ωm2|i1α3, ωm3; i1α4, ωm4)

{

δi1,i2δi2,i3δi3,i4

+ 2δi1,i4

[

Ji1i2a
(0)
2 (i2α2, ωm2)δi1,i3 + Ji1i3 a

(0)
2 (i3α3, ωm3)δi1,i2

]

}

. (5.3)
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For this purpose, the order parameter field ψiα(ωm) is defined according to Refs. [116,117] as

Ψiα(ωm) = 〈âiα(ωm)〉 = β
δF

δj∗iα(ωm)
, Ψ∗

iα(ωm) =
〈

â†iα(ωm)
〉

= β
δF

δjiα(ωm)
. (5.4)

Equation (5.4) motivates to perform a Legendre transformation up to first order in the tunneling

parameter J . At first, we insert (5.1) in (5.4) and find that the order parameter field is given by

Ψiα(ωm) = −
∑

p

∑

α1

∑

ωm1

[

Mpα,iα1(ωm1|ωm)jpα(ωm1)

− 2
∑

i2,i3

∑

ωm2,ωm3

∑

α2,α3

Npα,i2α2,i3α3,i1α1(ωm1;ωm2|ωm3;ωm)jpα(ωm1)ji2α2(ωm2)j
∗
i3α3

(ωm3)

]

. (5.5)

Using Eq. (5.4) the Ginzburg-Landau action Γ has the following form

Γ [Ψiα(ωm),Ψ∗
iα(ωm)] = F [j, j∗]− 1

β

∑

i

∑

ωm

∑

α

[Ψiα(ωm)j∗iα(ωm) + Ψ∗
iα(ωm)jiα(ωm)] , (5.6)

where Ψ, Ψ∗and j∗, j are conjugate variables which satisfy the Legendre relations

jiα(ωm) = −β δΓ

δΨ∗
iα(ωm)

, j∗iα(ωm) = −β δΓ

δΨiα(ωm)
. (5.7)

In order to recover the interesting physical situation the artificially currents j∗, j should vanish. There-

fore, we obtain from (5.7) the equations of motion as follows

δΓ

δΨ∗
iα(ωm)

∣

∣

∣

∣

Ψ∗=Ψeq

= 0,
δΓ

δΨiα(ωm)

∣

∣

∣

∣

Ψ=Ψeq

= 0. (5.8)

Hence, the effective action is stationary with respect to fluctuations around the equilibrium order

parameter field Ψeq. Additionally, we read off from Eq. (5.6) that the physical grand-canonical free

energy in the case of the vanishing currents j∗, j is equal to evaluating the effective action at the

equilibrium order parameter field Ψeq:

Γ [Ψ = Ψeq,Ψ
∗ = Ψeq] = F [j∗ = 0, j = 0] = F . (5.9)

To determine the explicit form of the effective action as a functional of the order parameter, we have

to calculate the currents as a functionals of the Ginzburg-Landau order parameter field. To do this,

we invert relation (5.5) up to first order in the tunneling parameter J and calculate the inverse matrix

of Mpα,iα1(ωm1|ωm). At first we calculate the inverse of Eq. (5.2) by the ansatz

M−1
i1α1,i2α2

(ωm1|ωm2) = m
(0)
i1α1,i2α2

(ωm1|ωm2) + Ji1i2 m
(1)
i1α1,i2α2

(ωm1|ωm2), (5.10)
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and require that the following relation has to be satisfied

∑

ωm3

∑

α3

∑

i3

Mi1α1,i3α3(ωm1|ωm3)M
−1
i3α3,i2α2

(ωm3|ωm2) = δi1,i2δα1,α2δωm1,ωm2 . (5.11)

Inserting Eqs. (5.2) and (5.10) in (5.11), we obtain the following two conditions

m
(0)
i1α1,i2α2

(ωm1|ωm2) =
δi1,i2δα1,α2δωm1,ωm2

a
(0)
2 (i1α1, ωm1)

(5.12)

and

m
(1)
i1α1,i2α2

(ωm1|ωm2) = −a
(0)
2 (i2α2, ωm2)

a
(0)
2 (i1α1, ωm1)

δωm1,ωm2δα1,α2 . (5.13)

Substituting Eq. (5.12) and (5.13) into (5.10), yields

M−1
i1α1,i2α2

(ωm1|ωm2) =
δα1,α2δωm1,ωm2

a
(0)
2 (i1α1, ωm1)

[

δi1,i2 − Ji1i2 a
(0)
2 (i2α2, ωm2)

]

. (5.14)

Multiplying Eq. (5.5) by the inverse matrix M−1, then leads to

jiα(ωm) = −
∑

p

∑

α1

∑

ωm1

M−1
i1α1,pα

(ωm|ωm1)

{

Ψpα(ωm1)

− 2
∑

q,i2,i3

∑

ωm2,ωm3

∑

α2,α3

Nqα1,i2α2,i3α3,pα(ωm1;ωm2|ωm3;ωm)tqα1(ωm1)ti2α2(ωm2)t
∗
i3α3

(ωm3)

}

, (5.15)

with the abbreviation

tiα(ωm) = −
∑

α1

∑

p,ωm1

M−1
pα1,iα

(ωm1|ωm)Ψpα(ωm1). (5.16)

Inserting Eqs. (5.15) and (5.1) into Eq. (5.6) up to the first order in the tunneling parameter, we get

Γ [Ψiα(ωm),Ψ∗
iα(ωm)] = F0 +

1

β

∑

i

{

∑

α

∑

ωm





|Ψiα(ωm)|2

a
(0)
2 (iα, ωm)

−
∑

j

JijΨiα(ωm)Ψ∗
jα(ωm)





−
∑

α1,α2,α3,α4

∑

ωm1,ωm2,ωm3,ωm4

1

4a
(0)
2 (iα1, ωm1)a

(0)
2 (iα2, ωm2)a

(0)
2 (iα3, ωm3)a

(0)
2 (iα4, ωm4)

× a
(0)
4 (iα1, ωm1; iα2, ωm2|iα3, ωm3; iα4, ωm4)Ψiα1(ωm1)Ψiα2(ωm2)Ψ

∗
iα3

(ωm3)Ψ
∗
iα4

(ωm4)

}

. (5.17)

We note that the coefficient a(1)4 of the free energy (5.1), (5.3) is no longer present in the Ginzburg-

Landau action (5.17). The reason is that the free energy, which represents a sum over all connected

diagrams, yields via the Legendre transformation an effective action which represents a sum over all

one-particle irreducible diagrams [86, 123]. For obtaining physical results from Eq. (5.17), we insert
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Eq. (5.17) into the equations of motion (5.8) as follows:

0 =





1

a
(0)
2 (iα, ωm)

−
∑

j

Jij



Ψeq
jα(ωm) (5.18)

−
∑

α1,α2,α3

∑

ωm1,ωm2,ωm3

a
(0)
4 (iα1, ωm1; iα2, ωm2|iα3, ωm3; iα, ωm)Ψeq

iα1
(ωm1)Ψ

eq
iα2

(ωm2)Ψ
eq∗
iα3

(ωm3)

2a
(0)
2 (iα1, ωm1)a

(0)
2 (iα2, ωm2)a

(0)
2 (iα3, ωm3)a

(0)
2 (iα, ωm)

}

.

From these equations of motions we will determine in the following the quantum phase transition and

the possible superfluid phases of the considered system

5.2. Ginzburg-Landau Phase Boundary

In this section, we calculate the phase boundary between the Mott insulator and the superfluid phase

at zero temperature. To do this, we specialize the effective action (5.17) for a stationary equilibrium

which is site-independent due to homogeneity:

Ψiα(ωm) = Ψα

√

β δm,0 , Ψ∗
iα(ωm) = Ψ∗

α

√

β δm,0. (5.19)

Therefore, the effective action (5.17) reduces with (4.37) to the effective potential

Γ =F0 +Ns

{

∑

α

[

|Ψα|2

a
(0)
2 (α, 0)

− zJ |Ψα|2
]

−
∑

α1,α2,α3,α4

βa
(0)
4 (α1, 0;α2, 0|α3, 0;α4, 0)Ψα1Ψα2Ψ

∗
α3
Ψ∗

α4

4a
(0)
2 (α1, 0)a

(0)
2 (α2, 0)a

(0)
2 (α3, 0)a

(0)
2 (α4, 0)

}

, (5.20)

where Ns is the total number of lattices sites and z = 2D denotes the coordination number of a D

dimensional hypercubic lattice. Note that we neglect from now on the site dependence of the coefficients

a
(0)
2 and a(0)4 due to Eqs. (4.95) and (4.109). In order to obtain the quantum phase transition according

to the Landau theory, the equilibrium order parameter should vanish. To this end, we read off from

Eq. (5.20)

0 =
1

a
(0)
2 (α, 0)

− zJ, (5.21)

which yields with Eq. (4.95)

zJc,α =





M2
α,S,m,n

E
(0)
S,m,n − E

(0)
S+1,m+α,n+1

+
N2

α,S,m,n

E
(0)
S,m,n − E

(0)
S−1,m+α,n+1

+
O2

α,S,m,n

E
(0)
S,m,n − E

(0)
S+1,m−α,n−1

+
P 2
α,S,m,n

E
(0)
S,m,n − E

(0)
S−1,m−α,n−1





−1

. (5.22)
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We find that the Ginzburg-Landau phase boundary (5.22) is identical to the mean-field phase boundary

which is given by Eq. (3.31). The corresponding same result was obtained for the scalar Bose-Hubbard

model in Ref. [86].

5.3. Possible Superfluid Phases

In order to determine the respective superfluid phases, we rewrite the on-site effective potential (5.20)

according to

Γ (Ψα,Ψ
∗
α) = F0 +

∑

α

Bα |Ψα|2 +
∑

α1,α2,α3,α4

Aα1α2α3α4Ψ
∗
α1
Ψ∗

α2
Ψα3Ψα4 , (5.23)

where we have introduced the coefficients

Bα =
1

a
(0)
2 (α, 0)

− zJ (5.24)

Aα1α2α3α4 = − βa
(0)
4 (α1, 0;α2, 0|α3, 0;α4, 0)

4a
(0)
2 (α1, 0)a

(0)
2 (α2, 0)a

(0)
2 (α3, 0)a

(0)
2 (α4, 0)

, (5.25)

where the symmetries

Aα1α2α3α4 = Aα2α1α3α4 = Aα1α2α4α3 = Aα2α1α4α3 (5.26)

follow from (4.95) and (5.25). Using (5.26), Eq. (5.23) reads explicitly

Γ (Ψα,Ψ
∗
α) =B1 |Ψ1|2 +B0 |Ψ0|2 +B−1 |Ψ−1|2 +A1111 |Ψ1|4 +A0000 |Ψ0|4

+A−1−1−1−1 |Ψ−1|4 + 4A1001 |Ψ1|2 |Ψ0|2 + 4A−100−1 |Ψ−1|2 |Ψ0|2

+ 4A1−11−1 |Ψ−1|2 |Ψ1|2 + 2A001−1Ψ
∗
0Ψ

∗
0Ψ1Ψ−1 + 2A1−100Ψ

∗
1Ψ

∗
−1Ψ0Ψ0. (5.27)

As the effective potential Γ must be extremized with respect to the order parameter Ψα, we obtain the

following self-consistency equations

(

B1 + 2A1111 |Ψ1|2 + 4A1001 |Ψ0|2 + 4A1−11−1 |Ψ−1|2
)

Ψ1 + 2A1−100 |Ψ0|2Ψ∗
−1 = 0, (5.28)

(

B−1 + 2A−1−1−1−1 |Ψ−1|2 + 4A−100−1 |Ψ0|2 + 4A1−11−1 |Ψ1|2
)

Ψ−1 + 2A1−100 |Ψ0|2Ψ∗
1 = 0, (5.29)

(

B0 + 2A0000 |Ψ0|2 + 4A1001 |Ψ1|2 + 4A−100−1 |Ψ−1|2
)

Ψ0 + 2A001−1Ψ1Ψ−1Ψ
∗
0 = 0. (5.30)

If there is more than one solution, we must take the one which minimizes the effective potential for

some system parameter. In this way we are able to find the different superfluid phases above both the

even and the odd Mott lobes.

Now we list all possible superfluid phases which could follow from solving Eqs. (5.28)–(5.30) without

or with magnetization. To this end, we calculate the condensate densities for all these cases:
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1. Ψ1 6= 0, Ψ−1 = Ψ0 = 0 yields with Eq. (5.28)

|Ψ1|2 = − B1

2A1111
. (5.31)

Substituting into (5.27), the corresponding effective potential is

Γ = − B2
1

4A1111
. (5.32)

2. Ψ−1 6= 0, Ψ1 = Ψ0 = 0 yields from Eq. (5.29)

|Ψ−1|2 = − B−1

2A−1−1−1−1
, (5.33)

so Eq. (5.27) becomes

Γ = − B2
−1

4A−1−1−1−1
. (5.34)

3. Ψ0 6= 0, Ψ1 = Ψ1 = 0 reduces Eq. (5.30) to

|Ψ0|2 = − B0

2A0000
(5.35)

and the corresponding effective potential (5.27) is

Γ = − B2
0

4A0000
. (5.36)

4. Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 yields from (5.28) and (5.29)

|Ψ1|2 =
4A1−11−1B−1 − 2A−1−1−1−1B1

4A1111A−1−1−1−1 − 16A2
1−11−1

, (5.37)

|Ψ−1|2 =
4A1−11−1B1 − 2A1111B−1

4A1111A−1−1−1−1 − 16A2
1−11−1

. (5.38)

Here, Eq. (5.27) reduces to

Γ =
1

4A1111A−1−1−1−1 − 16A2
1−11−1

{

B1 (4A1−11−1B−1 − 2A−1−1−1−1B1)

+B−1 (4A1−11−1B1 − 2A1111B−1) +
1

4A1111A−1−1−1−1 − 16A2
1−11−1

×
[

A1111 (4A1−11−1B−1 − 2A−1−1−1−1B1)
2 +A−1−1−1−1 (4A1−11−1B1 − 2A1111B−1)

2

+ 4A1−11−1 (4A1−11−1B−1 − 2A−1−1−1−1B1)
2 (4A1−11−1B1 − 2A1111B−1)

2

]}

. (5.39)
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5. Ψ1 6= 0, Ψ0 6= 0, Ψ−1 = 0 yields from (5.28) and (5.30)

|Ψ1|2 =
4A1001B0 − 2A0000B1

4A1111A0000 − 16A2
1001

, (5.40)

|Ψ0|2 =
4A1001B1 − 2A1111B0

4A1111A0000 − 16A2
1001

. (5.41)

So, Eq. (5.27) reads

Γ =
1

4A1111A0000 − 16A2
1001

{

B1 (4A1001B0 − 2A0000B1)

+B0 (4A1001B1 − 2A1111B0) +
1

4A1111A0000 − 16A2
1001

×
[

A1111

(

4A1001B0 − 2A0000B1

)2
+A0000

(

4A1001B1 − 2A1111B0

)2

+ 4A1001

(

4A1001B0 − 2A0000B1

)2(

4A1001B1 − 2A1111B0

)2
]}

. (5.42)

6. Ψ−1 6= 0, Ψ0 6= 0, Ψ1 = 0 yields from (5.29) and (5.30)

|Ψ−1|2 =
4A−100−1B0 − 2A0000B−1

4A−1−1−1−1A0000 − 16A2
−100−1

, (5.43)

|Ψ0|2 =
4A−100−1B−1 − 2A−1−1−1−1B0

4A−1−1−1−1A0000 − 16A2
−100−1

, (5.44)

so here, Eq. (5.27) is

Γ =
1

4A−1−1−1−1A0000 − 16A2
−100−1

{

B−1 (4A−100−1B0 − 2A0000B−1)

+B0 (4A−100−1B−1 − 2A−1−1−1−1B0) +
1

4A−1−1−1−1A0000 − 16A2
−100−1

×
[

A−1−1−1−1

(

4A−100−1B0 − 2A0000B−1

)2
+A0000

(

4A−100−1B−1 − 2A−1−1−1−1B0

)2

+ 4A−100−1

(

4A−100−1B0 − 2A0000B−1

)2(

4A−100−1B−1 − 2A−1−1−1−1B0

)2
]}

. (5.45)

7. In the general case Ψ1 6= 0, Ψ−1 6= 0, Ψ0 6= 0 it is not possible to solve (5.28)–(5.30) analytically,

so this has to be done numerically. From a numerical evaluation we find that approximately the

solution is given by either Ψ1 6= 0, Ψ0 6= 0, Ψ−1 = 0 with a small Ψ−1 in comparison with Ψ1

and Ψ0 or by Ψ−1 6= 0, Ψ0 6= 0, Ψ1 = 0 when Ψ1 is small in comparison with Ψ−1 and Ψ0, which

coincides with the above cases 5 and 6, respectively.
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Figure 5.1.: The condensate density as a function of the tunneling parameter J/U in the ferromagnetic
case for both the effective action theory (left) and the mean-field theory (right) with
µ/U = 0.92 at zero temperature.

5.4. Validity Range of Ginzburg-Landau Theory

Calculating the condensate density in the superfluid phase reveals that it increases quite fast and that

it even diverges between the even and odd lobes. This means physically that the Ginzburg-Landau

theory has a limited range of validity in the superfluid phase. In order to investigate this delicate issue

in more detail, we focus in this section on the scalar Bose-Hubbard model, which is recovered from

our spin-1 theory in the ferromagnetic case, i.e. Ψ1 6= 0, Ψ−1 = Ψ0 = 0, where we have η = 0 and

S = m = n as well as perform the identification U2 + U0 = U . Thus, we can specialize the matrix

elements according to (3.33)–(3.37). The Landau coefficients Eq. (4.95) and Eq (4.109) reduce at zero

temperature to

a
(0)
2 (1, 0) =

n+ 1

E
(0)
n+1,n+1,n+1 − E

(0)
n,n,n

− n

E
(0)
n,n,n − E

(0)
n−1,n−1,n−1

, (5.46)

and

βa
(0)
4 (1, 0; 1, 0|1, 0; 1, 0) =2

{

2n (n− 1)

(△E(0)
n−1,n−1,n−1)

2△E(0)
n−2,n−2,n−2

+
2 (n+ 1) (n+ 2)

(△E(0)
n+1,n+1,n+1)

2△E(0)
n+2,n+2,n+2

+ n2

[

− 2

(△E(0)
n−1,n−1,n−1)

3

]

− (n+ 1)2
[

2

(△E(0)
n+1,n+1,n+1)

3

]

−n (n+ 1)







2
(

△E(0)
n+1,n+1,n+1 +△E(0)

n−1,n−1,n−1

)

(

△E(0)
n−1,n−1,n−1

)2 (

△E(0)
n+1,n+1,n+1

)2

















. (5.47)

Similarly, the condensate density (5.31) becomes together with (5.24), (5.25)
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Figure 5.2.: Validity range of Ginzburg-Landau theory and mean-field theory for scalar Bose-Hubbard
model in ferromagnetic case at zero temperature. (a) Range of validity of our theory where
the black line depicts the condition that the average particle number equals the condensate
density, i.e. 〈n〉 = |Ψ1|2 and the dashed orange line corresponds to the situation that the
condensate density is given by n + 1. (b) Comparison of the validity ranges of Ginzburg-
Landau theory (orange line) and mean-field theory (blue dots).

|Ψ1|2 =
2(a

(0)
2 (1, 0))3

(

1− zJa
(0)
2 (1, 0)

)

βa4(1, 0; 1, 0|1, 0; 1, 0)
, (5.48)

and the particle density is given by

〈n〉 = − 1

Ns

∂Γ

∂µ

∣

∣

∣

∣

Ψ=Ψeq

. (5.49)

Calculating the condensate in the superfluid phase above the first Mott lobe shows, indeed, a sharp

increase, see Fig. 5.1 and Ref. [86]. Thus, the condensate density (5.48) can not be valid deep in the

superfluid phase. In order to determine the corresponding range of validity of the Ginzburg-Landau

theory, we remark that we can not have more particles in the condensate than we have in the lattice.

This leads to the condition

|Ψ1|2 = 〈n〉 , (5.50)

which is shown in Fig. 5.2 as a black line. For Mott lobes with n ≥ 4 this condition is completely

sufficient to characterize the range of validity. But we read off from Fig. 5.2 that condition (5.50)

breaks down at the end of the Mott lobes n = 1, 2, 3. There we have to use an additional criterion to

obtain a finite range of validity. To this end we complement condition (5.50) by the additional ad-hoc

restriction that above n Mott lobe the condensate density can not be larger than n + 1, yielding the

boundary

|Ψ1|2 = n+ 1, (5.51)
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Figure 5.3.: Lines of average particle number 〈n〉 in the superfluid phase for the scalar Bose-Hubbard
model for the first lobe in the ferromagnetic case at zero temperature within the range
of validity of the Ginzburg-Landau theory. The predictions of the effective action theory
are determined by the purple, brown (dashed), magneto (dashed), black (dashed) red
(dashed), and blue (dashed) lines which are defined by 〈n〉 =1, 0.95 (1.02), 0.93 (1.05),
0.9 (1.1), 0.85 (1.15), 0.8 (1.2), respectively. The dashed orange line corresponds to the
ad-hoe restriction (5.51) that the condensate density is given by n+ 1.

which is depicted in Fig. 5.2 as a dashed orange line. When we compare the range of validity of

Ginzburg-Landau with the corresponding one of mean-field theory from Section 4.8, we find that the

Ginzburg-Landau theory has a larger range of validity than that of mean-field theory as shown in

Fig. 5.2. In Fig. 5.3 we show for the zero temperature ferromagnetic case the lines of the average

particle number 〈n〉 with both 〈n〉 < 1 and 〈n〉 > 1. Furthermore, we observe that the average particle

number 〈n〉 increases with increasing chemical potential µ in the superfluid phase. In the following,

we determine in an analogous way the range of validity of the Ginzburg-Landau theory for the spin-1

Bose-Hubbard model. In the next sections, we will discuss the resulting superfluid phases without and

with magnetization only within this range of validity.

5.5. Ferromagnetic and Anti-ferromagnetic Superfluid Phases

In this section, we show that in particular at zero temperature, our Ginzburg-Landau theory distin-

guishes between various ferromagnetic and anti-ferromagnetic superfluid phases for a ferromagnetic

and anti-ferromagnetic interaction without and with magnetization [84, 85].

5.5.1. Without Zeeman Effect

In this subsection we check the mean-field result which states that the superfluid phase is a polar state

for zero-magnetic field, i.e. η = 0 [81]. According to Subsection 5.3 such a vanishing magnetization

could occur in the third, fourth, and seventh case. However, a detailed analysis shows that only the

third case is physically realized irrespective of the value of the chemical potential because it always
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turns out to have the minimal energy. This means that the superfluid phase is a polar state which is

characterized by Ψ0 6= 0, Ψ−1 = Ψ1 = 0. On the other hand, for ferromagnetic case the superfluid

phase is a ferromagnetic state which is determined by Ψ1 6= 0, Ψ−1 = Ψ0 = 0 because the ground state

|n, n, n〉 is the state with maximum spin for a given n.

5.5.2. With Zeeman Effect

For ferromagnetic interaction the superfluid phase becomes Ψ1 6= 0, Ψ−1 = Ψ0 = 0 where the ground

state |n, n, n〉 is the state with maximum spin for a given n. For an anti-ferromagnetic interaction

the situation is more complicated for a non-vanishing magnetic field due to the appearance of different

superfluid phases. Furthermore, we can not put Ψ1 = Ψ−1 because of a non-vanishing η. Unfortunately,

the Ginzburg-Landau theory is only valid partially in the superfluid phase since the condensate density

increases there quite fast. Thus, we calculate the different SF phases only within the parameter range

where the theory is valid. All these SF phases are treated both analytically and numerically by solving

the self-consistency equations (5.28)–(5.30). These phases correspond to the first, second, fourth, and

seventh cases which are shown in Subsection 5.3.

5.5.3. With Fixed Spin-Dependent Interaction and Varying Magnetic Field

In this subsection, we study the predictions of the Ginzburg-Landau theory in view of an effect of the

magnetic field upon the superfluid phases in the case of an anti-ferromagnetic interaction, i.e. U2 > 0

as in 23Na. To this end we show the resulting phase diagrams before and after the external magnetic

field η reaches one of the critical values which have been discussed in Subsection 3.4.2 as shown in

Fig. 5.4. If η is small compared to U2, spin pairs are produced to get the minimal energy. Therefore,

the Mott ground state becomes |0, 0, n〉 for an even n and |1, 1, n〉 for an odd n as shown in Fig. 5.4a.

Thus, the magnetic field is not able to align all spins. Therefore, both spin-1 and spin-(-1) affect the

phase boundary between Mott insulator and superfluid phases. The phases Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0;

Ψ−1 6= 0, Ψ1 = Ψ0 = 0 and Ψ1 6= 0, Ψ−1 = Ψ0 = 0 appear in the SF phase for the odd lobes with

n ≥ 3 and the phases Ψ1 6= 0, Ψ−1 6= 0, Ψ0 6= 0; Ψ−1 6= 0, Ψ1 = Ψ0 = 0; Ψ0 6= 0, Ψ1 = Ψ−1 = 0

and Ψ1 6= 0, Ψ−1 = Ψ0 = 0 for the even lobes. When η is increased above the first critical value

η
(1)
even = 0.06U0 from 0.05 U0 to 0.07 U0, both the spin S and the magnetic quantum number m change

from |0, 0, n〉 to |2, 2, n〉 for even Mott lobes as shown in Fig. 5.4b. Correspondingly, the MI phases for

the even lobes are decreased. The phases Ψ−1 6= 0, Ψ1 = Ψ0 = 0 and Ψ1 6= 0, Ψ−1 = Ψ0 = 0 appear

in the SF phase for the even lobes and the phase Ψ−1 6= 0, Ψ1 = Ψ0 = 0 is seen in the SF phase at the

beginning of the odd lobes. We note that the phase Ψ−1 6= 0, Ψ1 6= 0, Ψ0 6= 0 no longer appears as a

stronger magnetic field leads to a preferred alignment of spins in z-direction.

Beyond the critical value η(1)odd = 0.1U0 the quantum number S and m for the odd lobes change from

|1, 1, n〉 to |3, 3, n〉 as shown in Fig. 5.4c. The left phase Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 in the odd lobes

n ≥ 3 has disappeared because increasing the magnetic field η results in a stronger alignment of the

spins, but it is still not enough to align all the spins. The increase of η is enough to align all the spins

for the second Mott lobe and its SF phase is Ψ1 6= 0, Ψ−1 = Ψ0 = 0, but the SF phases for the fourth

Mott lobe are Ψ1 6= 0, Ψ−1 = Ψ0 = 0; Ψ−1 6= 0, Ψ1 = Ψ0 = 0 and Ψ1 6= 0, Ψ−1 6= 0,Ψ0 = 0. The

phase Ψ−1 6= 0, Ψ1 = Ψ0 = 0 appears now only at the end of the odd lobes. After η(2)even = 0.14U0 the
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(c) η/U0 = 0.125.
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(d) η/U0 = 0.15.
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(e) η/U0 = 0.2.
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(f) η/U0 = 0.3.

Figure 5.4.: Superfluid phases with different external magnetic field with U2/U0 = 0.04. Ψ1 6= 0, Ψ0 =
Ψ−1 = 0 (blue); Ψ0 6= 0, Ψ1 6= 0, Ψ−1 6= 0 (red); Ψ−1 6= 0, Ψ0 = Ψ1 = 0 (cyan);
Ψ0 6= 0, Ψ1 = Ψ−1 = 0 (magenta); and Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 (green), whereas, the
solid black and dashed orange lines correspond to the validity ranges (5.50) and (5.51),
respectively. Moreover, Mott lobes are characterized by gray color.
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quantum numbers S and m for the even lobes change from |2, 2, n〉 to |4, 4, n〉 as shown in Fig. 5.4d.

This increase of the magnetic field is not enough to align all the spins of the fourth Mott lobe, but it

is enough to align them for the third Mott lobe. Similarly, the phase Ψ−1 6= 0, Ψ1 = Ψ0 = 0 appears

in the SF phase at the contact point between the fourth and the fifth Mott lobe.

Beyond the critical value η(2)odd = 0.18U0 the quantum numbers S and m for the even lobes change

from |3, 3, n〉 to |5, 5, n〉 as shown in Fig. 5.4e. This increase in the magnetic field is not enough to

align all the spins for the fifth Mott lobe, but it is enough to align them for the fourth Mott lobe.

Similarly, the phase Ψ−1 6= 0, Ψ1 = Ψ0 = 0 appears in the SF phase at the end of the fifth Mott lobe.

As happened in the third Mott lobe, the left phase Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 appears once in the fifth

Mott lobe. If η increases to 0.3 U0 after the critical value η(3)even = 0.22U0 and η
(3)
odd = 0.26U0, S and

m change from |4, 4, n〉 to |6, 6, n〉 for the even lobes and from |5, 5, n〉 to |7, 7, n〉 for the odd lobes as

shown in Fig. 5.4e, So all seven lobes have S = m = n. Therefore, we have now a full spin alignment

in the shown quantum phase diagram, where only the phase Ψ1 6= 0, Ψ−1 = Ψ0 = 0 exists in the SF

phase.

5.5.4. With Fixed Magnetic Field and Varying Spin-Dependent Interaction

In this subsection, we study the predictions of the Ginzburg-Landau theory in view of an effect of the

spin-dependent interaction on the superfluid phases with a fixed magnetic field. Similarly, we show

the phase diagrams which result before and after the spin-dependent interaction U2 reaches one of the

critical values which have been explained in Subsection 3.4.2 as shown in Fig. 5.5.

When U2/U0 is 0.02, the superfluid phase becomes Ψ1 6= 0, Ψ−1 = Ψ0 = 0 where the ground state

|n, n, n〉 is the state with maximum spin for all six lobes as shown in Fig. 5.5a. Above the first critical

value U (1)
2even/U0 = 0.036 both the spin S and the magnetic m quantum numbers change from |6, 6, n〉

to |4, 4, n〉 for even lobes as shown in Fig. 5.5b. We remark that if the spin-dependent interaction

increases, the effect of the external magnetic field decreases, so the Mott lobes increase. The phases

Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 and Ψ−1 6= 0, Ψ1 = Ψ0 = 0 appear in the SF phase for the fifth and sixth

lobes. We note that the phase Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 appears twice in the sixth lobe. The right

phase in the sixth lobe results from the change of S and m for the seventh lobe from |7, 7, 7〉 to |5, 5, 7〉,
which happens at the critical value U (1)

2odd/U0 = 0.0308.

Beyond the critical value U (2)
2odd/U0 = 0.044 the values of S and m for the odd lobes change from

|5, 5, n〉 to |3, 3, n〉 as shown in Fig. 5.5c. Similarly, the phases Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 and

Ψ−1 6= 0, Ψ1 = Ψ0 = 0 appear in the SF phase for the fourth and fifth lobe and the phase Ψ1 6=
0, Ψ−1 6= 0, Ψ0 = 0 increases in the sixth lobe. After the critical value U (2)

2even/U0 = 0.05714, the

ground states for the even lobes change from |4, 4, n〉 to |2, 2, n〉 as shown in Fig. 5.5d. By the same

way the phases Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 and Ψ−1 6= 0, Ψ1 = Ψ0 = 0 are seen in the SF phase for the

third and fourth lobe.

When U2 increases beyond the critical value U (3)
2odd/U0 = 0.08, the ground states for the odd lobes

change from |3, 3, n〉 to |1, 1, n〉 as shown in Fig. 5.5e. The phases Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 and

Ψ−1 6= 0, Ψ1 = Ψ0 = 0 appear in the SF phase for the even and odd lobes. After the critical value

U
(3)
2even/U0 = 0.133, S and m change from |2, 2, n〉 to |0, 0, n〉 for the even lobes as shown in Fig. 5.5f.

Furthermore, the effect of magnetic field becomes quite weak because the value of η is close to U2.
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(a) U2/U0 = 0.02.

È4,4,6\È1,1,1\ È4,4,4\È2,2,2\ È3,3,3\ È5,5,5\

4.9 5
0

0.005

5.8 5.95
0

0.007

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.02

0.04

0.06

Μ�U0

J�
U

0

(b) U2/U0 = 0.04.
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(c) U2/U0 = 0.05.
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(d) U2/U0 = 0.07.
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(e) U2/U0 = 0.1.
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(f) U2/U0 = 0.15.

Figure 5.5.: Superfluid phases with different spin-dependent interactions strengths with η/U0 = 0.2.
Ψ1 6= 0, Ψ0 = Ψ−1 = 0 (blue); Ψ0 6= 0, Ψ1 6= 0, Ψ−1 6= 0 (red); Ψ−1 6= 0, Ψ0 = Ψ1 = 0
(cyan); Ψ1 6= 0, Ψ0 6= 0, Ψ−1 6= 0 (pink); and Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 (green). The
validity ranges (5.50) and (5.51) correspond to the solid black and dashed orange lines,
respectively. Moreover, Mott lobes are characterized by gray color.
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Figure 5.6.: Third Mott lobe with η = 0.2U0 and U2 = 0.1U0.
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Figure 5.7.: Condensate density for the phases Ψ−1 6= 0, Ψ0 = Ψ1 = 0 and Ψ1 6= 0, Ψ−1 = Ψ0 = 0
as a function of the tunneling parameter J/U0 of spin-1 Bose-Hubbard model in the anti-
ferromagnetic case with η = 0.2U0 and U2 = 0.1U0 at zero temperature.

Additionally, spin pairs are produced to get the minimal energy and, thus, the ground state becomes

|0, 0, n〉 for an even n, and |1, 1, n〉 for an odd n and we find the new phase Ψ1 6= 0, Ψ−1 6= 0, Ψ0 6= 0

in the even lobes.

5.6. Order of Phase Transition

In this section, we study which kind of order occurs for the quantum phase transition from the Mott

insulator to the superfluid phase and for the transitions between the respective superfluid phases of

spin-1 bosons in a three-dimensional cubic optical lattice under the effect of the external magnetic field

at zero temperature.

5.6.1. Quantum Phase Transition

It is known that for spinless bosons the superfluid-Mott insulator phase transition of the Bose-Hubbard

model in three dimensions is of second order [65]. In order to determine the kind of the order of the

quantum phase transition for the spin-1 Bose-Hubbard model, we focus at first on the transition from

the Mott insulator to a superfluid phase at a fixed chemical potential µ around an external magnetic

field η and spin-dependent interaction U2 as shown in Fig. 5.6. In Fig. 5.7 the corresponding condensate
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Figure 5.8.: Third Mott lobe with η = 0.2U0 and U2 = 0.1U0.
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Figure 5.9.: Condensate density for two spin components as a function of the tunneling parameter
J/U0 of the spin-1 Bose-Hubbard model in the anti-ferromagnetic case with η = 0.2U0,
U2 = 0.1U0 and µ = 2.718U0 at zero temperature. Solid (dashed) lines correspond to
solutions of minimal (not minimal) energy, compare with Fig. 5.10.

density is shown as a function of the hopping parameter J at fixed chemical and external magnetic field

values for the third lobe. We note that the condensate density for the two phases Ψ−1 6= 0,Ψ0 = Ψ1 = 0

and Ψ1 6= 0,Ψ−1 = Ψ0 = 0 increases linearly with J until the validity range of Ginzburg-Landau theory

is reached where the critical J values, calculated from (5.33) and (5.31), are 0.00244 U0 and 0.02042

U0, respectively. From this we read off that the superfluid-Mott insulator phase transition is of second

order.

5.6.2. Transitions between Superfluid Phases

The effect of the external magnetic field on spin-1 bosons with anti-ferromagnetic interaction leads to

the appearance of different phases in the superfluid phase as discussed in detail in Section 5.5.2. In

order to determine the order of the transitions between the phases in the superfluid region, we focus

on the transition from the Ψ1 6= 0, Ψ0 = Ψ−1 = 0 to the Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 phase at a fixed

chemical potential µ = 2.718U0 around an external magnetic field η and spin-dependent interaction

U2 for the third lobe as shown in Fig. 5.8. We find that the condensate density |Ψ1|2 continuously

increases from the Ψ1 6= 0, Ψ0 = Ψ−1 = 0 to the Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 phase as shown in Fig. 5.9a.

Fig. 5.9b shows that the condensate density |Ψ−1|2 continuously increases with increasing the hopping
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Figure 5.10.: Effective potential for the phases Ψ1 6= 0, Ψ−1 = 0, Ψ0 = 0 and Ψ1 6= 0, Ψ−1 = Ψ0 = 0

phases as a function of the tunneling parameter J/U0 of spin-1 Bose-Hubbard model
in the anti-ferromagnetic case with η = 0.2U0, U2 = 0.1U0 and µ = 2.718U0 at zero
temperature.
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Figure 5.11.: (a) Condensate density and (b) effective potential for the phases as a function of the
tunneling parameter J/U0 of spin-1 Bose-Hubbard model in the anti-ferromagnetic case
with η = 0.2U0, U2 = 0.15U0 and µ = 1.095U0 at zero temperature.

parameter J . Furthermore, this condensate density starts at the critical hopping point J which marks

the boundary between the phases Ψ1 6= 0, Ψ0 = Ψ−1 = 0 to Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0. In addition, this

point is the same point where the two solutions for Ψ1 intersect in Fig. 5.10. Therefore, the transition

between these two phases is of second order.

Similarly, the transition at µ = 1.095U0 from Ψ1 6= 0, Ψ0 = Ψ−1 = 0 or Ψ−1 6= 0, Ψ0 = Ψ1 = 0 to

Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 or Ψ1 6= 0, Ψ−1 6= 0, Ψ0 6= 0 will be of second order as shown in Fig. 5.11.

A different situation occurs when we study the transition from Ψ1 6= 0, Ψ0 = Ψ−1 = 0 to Ψ−1 6=
0, Ψ1 = Ψ0 = 0 or vice versa. To this end, we focus on the transition from the Ψ−1 6= 0, Ψ0 = Ψ1 = 0

to the Ψ1 6= 0, Ψ−1 = Ψ0 = 0 phase at a fixed µ = 1.95U0 with η = 0.2U0 and U2 = 0.1U0 for the

third lobe as seen in Fig. 5.12a. We note that the Ψ1 6= 0, Ψ−1 = Ψ0 = 0 phase jumps at the intersect

point which is 0.01585 U0 according to Fig. 5.12b. Furthermore, the dashed line in Fig. 5.12b means

that we can not take this phase due to the minimal energy. Therefore, the transition between the

Ψ−1 6= 0, Ψ0 = Ψ1 = 0 and Ψ1 6= 0, Ψ−1 = Ψ0 = 0 phases is of first order.

Finally, we conclude that the transition between the phases Ψ1 6= 0, Ψ0 = Ψ−1 = 0 to Ψ1 6=
0, Ψ−1 6= 0, Ψ0 = 0 is of second order and the transition between the phases Ψ−1 6= 0, Ψ0 = Ψ1 = 0
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Figure 5.12.: (a) Condensate density and (b) effective potential for the phases Ψ−1 6= 0, Ψ0 = Ψ1 = 0
and Ψ1 6= 0, Ψ−1 = Ψ0 = 0 as a function of the tunneling parameter J/U0 of spin-1
Bose-Hubbard model in the anti-ferromagnetic case with η = 0.2U0 and U2 = 0.1U0 and
µ = 1.95U0 at zero temperature.

and Ψ1 6= 0, Ψ−1 = Ψ0 = 0 is of first order at a fixed value of chemical potential µ = 1.95U0 around

an external magnetic field η = 0.2U0 and spin-dependent interaction U2 = 0.1U0 in the third lobe,

see Fig. 5.8. Therefore, it is very interesting to observe that both the first- and second-order phase

transition occurs above the same Mott lobe in the superfluid phase.
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6. Summary and Outlook

Spin-1 bosons in a three-dimensional cubic optical lattice represent a challenging quantum many-body

system. A first theoretical investigation was performed in Refs. [80, 81], where, in case of the anti-

ferromagnetic interaction of 23Na, the location of the SF-MI transition and several properties for SF

and MI phases for spin-1 bosons were determined without external magnetic field at zero temperature.

In particular, it was found that the superfluid transition occurs into a polar spin-0 state [81], i.e. the

SF phase represents a polar state with zero spin expectation value. The effect of a non-vanishing

external magnetic field upon the SF-MI transition was determined within a mean-field approximation

in Ref. [82,83]. In addition, it was also shown in Ref. [82,83] that the superfluid transition occurs into

a polar spin-1 or spin-(-1) state, but it was not investigated which magnetic properties emerge deep in

the superfluid phase.

In our thesis, we followed Refs. [84,85] and showed that new magnetic superfluid phases can emerge

due to the delicate interplay of the anti-ferromagnetic interaction of spin-1 bosons and the linear

Zeemann effect in a three-dimensional cubic optical lattice at zero temperature. To this end, our thesis

begun with Chapter 1, where we briefly discussed the experimental and theoretical description of

Bose-Einstein condensation in general and the physics of lattice systems in particular.

In Chapter 2 we discussed at first the spinor interaction potential between two atoms. Then, we

derived a generalization of the Bose-Hubbard model for spin-1 atoms in a cubic optical lattice by using

a tight-binding approximation, where the resulting Hamiltonian was given in Eq. (2.23). Whereas in

the literature the discussion of Mott insulator phases for the spin-1 Bose-Hubbard model had been

restricted to a vanishing external magnetic field [102,103], we studied the impact of the linear Zeeman

effect on these Mott phases. To this end we used the degeneracy (2.52), where two states have the

same energy with equal particle number but different total spin [82, 104], and obtained the phase

diagram for both ferromagnetic and anti-ferromagnetic interactions as shown in Fig. 2.4 and explained

in Subsection 2.4.2.

Chapter 3 provided a general introduction to critical phenomena as well as first- and second-order

phase transitions. In particular, the symmetry breaking mechanism and the role of the order parameter

were discussed. Special attention was made in the context of spin-1 Bose gas in a cubic optical lattice

in order to discuss the quantum phase transition between Mott insulator and superfluid phases by

using the perturbative mean-field theory with the main result (3.31), which applies recursion relations

for the matrix elements of particle creation and annihilation operators in Appendix A. Within the

framework of Refs. [82, 83, 100, 101, 104] we studied then the effect of an external magnetic field on

the quantum MI-SF phase transition by taking into account the degeneracy (2.52) with a fixed spin-

dependent interaction strength as shown in Fig. 3.5 and explained in Section 3.5. In addition, we

studied the effect of spin-dependent interaction strength and linear Zeeman effect on the quantum

phase transition, which is shown in Fig. 3.6 and explained in Section 3.6. Our work agreed with
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Refs. [82, 83, 100, 101, 104] where the superfluid transition occurs from the Mott insulating phase into

either a spin-1 or spin-(-1) state.

In Chapter 4 we developed an alternative field-theoretic approach to determine the quantum phase

boundary in terms of a Ginzburg-Landau theory. To this end we extended the Ginzburg-Landau

theory developed in Refs. [86,87] from the spin-0 to the spin-1 Bose-Hubbard model. At first we added

additional source currents to the Bose-Hubbard model in order to break the global U(1) symmetry.

Using the linked-cluster theorem [120] we obtained then a diagrammatic expansion of the grand-

canonical free energy in first order of the hopping parameter and in fourth order of the symmetry-

breaking currents. Thus, the grand-canonical free energy is a sum over cumulants which are only

represented by the connected Green functions because the disconnected diagrams of the thermal Green

functions are cancelled due to the expansion of the logarithm of the partition function. We used

diagrammatic rules as they yield a much simpler calculation for the perturbative contributions of the

free energy. In order to simplify our calculation the Matsubara transformation was introduced, where

similar diagrammatic rules could be applied for imaginary time by using the transformations (4.79)

and (4.81). Additionally, we started to investigate the implications of this theoretical approach by

evaluating the resulting physical stability conditions for a static equilibrium order parameter field. We

found up to the calculated level of accuracy that the mean-field free energy is reproduced. Afterwards,

we found that, when the chemical potential µ is fixed, the mean-field condensate density with spin-1 is

not monotonically increasing with the hopping as is shown in Fig. 4.1 and also in Ref. [86]. Thus, the

mean-field prediction for the condensate density is not physical provided that the hopping is too large.

We used this circumstance to our advantage and defined a validity range of the mean-field theory as

shown in in Fig. 4.2. In order to check our calculation we determined the fourth-order perturbation

correction for an even number of atoms with no magnetization in the anti-ferromagnetic case. Our

finding (4.118) agreed with Ref. [81] and then we calculated this perturbation for both an even and

odd number of atoms with external magnetic field in the anti-ferromagnetic case.

In Chapter 5 we applied a Legendre transformation to the free energy by mapping the unphysical

symmetry-breaking currents onto physical time-, space-, and spin-dependent order parameter fields,

thus the effective Ginzburg-Landau action was obtained. Then, we calculated the condensate in the

superfluid phase above the Mott lobes and found a sharp increase, see Fig. 5.7 and Ref. [86]. Thus,

the condensate density (5.48) could not be valid deep in the superfluid phase. Therefore, the range

of validity of the Ginzburg-Landau theory was obtained in Fig. 5.2 and explained in Section 5.4.

From this we found that the Ginzburg-Landau theory has a larger range of validity than that of

mean-field theory. In particular at zero temperature, our theory can distinguish between different

magnetic superfluid phases for a ferromagnetic and anti-ferromagnetic interaction with and without

magnetization. Then, depending on the particle number, the spin-dependent interaction and the

value of the magnetic field we found superfluid phases with a macroscopic occupation of the two

spin states ±1 or even of all three spin states 0,±1. This is qualitatively different from the mean-

field approximation, which only predicted two superfluid phases with spin-1 or spin-(-1) with external

magnetic field [70, 101]. Furthermore, inspecting the energies of the respective phases in the vicinity

of their boundaries allowed to determine the respective order of the quantum phase transition. We

found that this quantum phase transition from the Mott insulator to a superfluid phase is always
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of second order at fixed chemical potential. Thus, our finding disagrees with Kimura et al. [100],

where a first-order SF-MI phase transition was found at a part of the phase boundary by using the

Gutzwiller variational approach. Finally, we observed that the transitions between different superfluid

phases can be of both first and second order above the same Mott lobe. For instance, the transition

from Ψ1 6= 0, Ψ0 = Ψ−1 = 0 to Ψ−1 6= 0, Ψ1 = Ψ0 = 0 or vice versa is of first order as shown in

Fig. 5.12a and explained in Subsection 5.6.2, whereas the transition from Ψ1 6= 0, Ψ0 = Ψ−1 = 0 to

Ψ1 6= 0, Ψ−1 6= 0, Ψ0 = 0 or Ψ1 6= 0, Ψ−1 6= 0, Ψ0 6= 0 phases or vice versa is of second order as shown

in Figs. 5.9–5.11.

In conclusion, we worked out a Ginzburg-Landau theory for spin-1 bosons in a cubic optical lattice

within its range of validity and investigated at zero temperature the resulting different superfluid

phases for an anti-ferromagnetic interaction in the presence of an external magnetic field. Inspecting

the energies of the respective phases in the vicinity of their boundaries allowed to determine the order

of the quantum phase transition. With this we found that the quantum phase transition from the

Mott insulator to the superfluid phase is of second order for spin-1 bosons in a cubic optical lattice

under the effect of the magnetic field. Furthermore, depending on the particle number, the spin-

dependent interaction and the value of the magnetic field, we found new magnetic superfluid phases

with a macroscopic occupation of the two spin states ±1 or even of all three spin states 0,±1. This

is different from the mean-field approximation, which only predicts two superfluid phases with spins

aligned or opposite to the field direction [82,83]. Finally, we found that both a first- and a second-order

phase transition can occur above the same Mott lobe in the superfluid phase depending on whether the

respective macroscopic occupation of hyperfine spin states changes discontinuously or continuously.

In this thesis we restricted ourselves to apply the Ginzburg-Landau theory for studying the emergence

of different magnetic Mott insulator and superfluid phases. However, we note that this theory would

also allow, in principle, to study the effect of a finite temperature on the quantum phase transition

and superfluid phases and to investigate time-of-flight absorption pictures as well as the collective

excitations of all these different phases. In Ref. [126] already the corresponding spin-0 case was treated,

where particle- and hole excitations characterize the Mott insulator phase, whereas the superfluid phase

yields both a Goldstone and a Higgs mode [127–129].

Certainly, it would be interesting to study also in detail how all these results would change for more

general spinor Bose gas systems, for instance, in a superlattice [130, 131]. One example is provided

by the competition between the linear Zeeman effect, considered here, and its quadratic counterpart

(see, for instance, Refs. [132, 133]), another one would be substituting the nonfrustrated cubic by a

frustrated triangular optical lattice [79]. Finally, one can expect even more complex magnetic Mott

insulator and superfluid phases for spin-2 or spin-3 bosons, which could be realized with 87Rb [78] and
52Cr atoms [134].
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A. Matrix Elements

The Matrix elements M , N , O and P from Eqs. (3.23), (3.24) represent mathematical backbone for

analyzing spin-1 bosons in a lattice. Initially, they were calculated individually in a stepwise procedure

in Refs. [81, 83]. In this appendix, however, we follow Ref. [104] and determine these matrix elements

by a recursive procedure. In particular at finite temperature, when many of these matrix elements

have to be evaluated in (4.95) and (4.109), this recursive approach turns out to be more efficient than

the original stepwise procedure.

We start with characterizing the ground state of the on-site Hamiltonian (2.23) via [93]

|S, S, n〉 = 1
√

f(n, S)
â†S1

(

Θ̂†
)(n−S)/2

|0〉 , (A.1)

where the normalization factor is given by

f(n, S) = S!

(

n− S

2

)

! 2(n−S)/2 (n+ S + 1)!!

(2S + 1)!!
, (A.2)

and Θ̂† = â†20 − 2â†1â
†
−1 represents the creation operator of a spin singlet pair. By applying the ladder

operators Ŝ+ =
√
2(â†1â0 + â†0â−1) and Ŝ− =

√
2(â†0â1 + â†−1â0) on the ground state |S, S, n〉, we get

the excited states |S,m, n〉 with m < S.

Now, we turn to calculate the matrix elements M , N , O and P in Eqs. (3.23), (3.24). The first

substantial consideration declares that no state |S,m, n〉 with m > S does exist, so we have

N1,S,S,n = N0,S,S,n = P0,S,S,n = P−1,S,S,n = 0, (A.3)

and

â†1 |S, S, n〉 =M1,S,S,n |S + 1, S + 1, n + 1〉 . (A.4)

On the other hand we conclude from (A.1) and (A.2)

â†1 |S, S, n〉 =
√

(S + 1)(n + S + 3)

2S + 3
|S + 1, S + 1, n + 1〉 , (A.5)

so, comparing (A.4) and (A.5) yields

M1,S,S,n =

√

(S + 1)(n + S + 3)

2S + 3
. (A.6)

In this manner, we put our hands on the first matrix element with m = S. In order to calculate
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recursively M1,S,m,n with m < S, we apply Ŝ+on Eq. (3.23) and obtain

M1,S,m,n =

√

S(S + 1)−m(m+ 1)

(S + 1)(S + 2)− (m+ 1)(m+ 2)
M1,S,m+1,n. (A.7)

This recursion relation is useful to calculate M1,S,m−1,n from M1,S,m,n. We can use the same procedure

to calculate the matrix element with α = 0

M0,S,m,n =

√

S(S + 1)−m(m+ 1)

(S + 1)(S + 2)−m(m+ 1)
M0,S,m+1,n

+

√

2

(S + 1)(S + 2)−m(m+ 1)
M1,S,m,n. (A.8)

and also with α = −1

M−1,S,m,n =

√

S(S + 1)−m(m+ 1)

(S + 1)(S + 2)−m(m− 1)
M−1,S,m+1,n

+

√

2

(S + 1)(S + 2)−m(m− 1)
M0,S,m,n. (A.9)

Specializing m = S yields finally

M−1,S,S,n =

√

n+ S + 3

(2S + 3)(2S + 1)
. (A.10)

Now we come to the evaluation of the Matrix elements Nα,S,m,n. The particle number can be written

as

n = 〈S, S, n | n̂ | S, S, n〉
=
∑

α

〈

S, S, n | âαâ+α | S, S, n
〉

− 3, (A.11)

thus, we obtain with (3.23) and (3.24)

N−1,S,S,n = −
√

3 + n−
∑

α

M2
α,S,S,n. (A.12)

Matrix elements Nα,S,m,n with m < S can be derived as above, yielding

N−1,S,m,n =

√

S(S + 1)−m(m− 1)

S(S − 1)− (m− 1)(m− 2)
N−1,S,m−1,n. (A.13)
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N0,S,m,n =

√

S(S + 1)−m(m− 1)

S(S − 1)−m(m− 1)
N0,S,m−1,n

+

√

2

S(S − 1)−m(m− 1)
N−1,S,m,n. (A.14)

and also

N1,S,m,n =

√

S(S + 1)−m(m− 1)

S(S − 1)−m(m+ 1)
N1,S,m−1,n

+

√

2

S(S + 1)−m(m− 1)
N0,S,m,n, (A.15)

Thus, with this all matrix element of the creation operators â+α in (3.23) can be calculated. Therefore,

we turn now to the calculation of the matrix element of the annihilation operators âα in (3.24) by the

identical method. In order to calculate O−1,S,m,n. We apply the operator â−1 to (A.1), yielding

O−1,S,S,n = −
√

(n− S)(S + 1)

2S + 3
. (A.16)

Applying Ŝ+ on (3.24) , we get

O−1,S,m,n =

√

S(S + 1)−m(m+ 1)

(S + 1)(S + 2)− (m+ 1)(m+ 2)
O−1,S,m+1,n. (A.17)

Similarly, we obtain the recursion relations

O0,S,m,n =

√

S(S + 1)−m(m+ 1)

(S + 1)(S + 2)−m(m+ 1)
O0,S,m+1,n

−
√

2

(S + 1)(S + 2)−m(m+ 1)
O−1,S,m,n, (A.18)

and

O1,S,m,n =

√

S(S + 1)−m(m+ 1)

(S + 1)(S + 2)−m(m− 1)
O1,S,m+1,n

−
√

2

(S + 1)(S + 2)−m(m− 1)
O0,S,m,n. (A.19)

In order to determine P1,S,S,n, the particle number n =
∑

α

〈

S, S, n | â+α âα | S, S, n
〉

operator reduces

with ((3.24)) to

P1,S,S,n =

√

n−
∑

α

O2
α,S,S,n. (A.20)
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Applying Ŝ− on (3.24) we get

P1,S,m,n =

√

S(S + 1)−m(m− 1)

S(S − 1)− (m− 1)(m− 2)
P1,S,m−1,n, (A.21)

P0,S,m,n =

√

S(S + 1)−m(m− 1)

S(S − 1)−m(m− 1)
P0,S,m−1,n

−
√

2

S(S − 1)−m(m− 1)
P1,S,m,n, (A.22)

and

P−1,S,m,n =

√

S(S + 1)−m(m− 1)

S(S − 1)−m(m+ 1)
P−1,S,m−1,n

−
√

2

S(S − 1)−m(m+ 1)
P0,S,m,n. (A.23)

Finally, we drive useful relations between these creation and annihilation matrix elements. Using

(1.2) we get

〈

S,m, n | â+α | S − 1,m− α, n − 1
〉

=Mα,S−1,m−α,n−1. (A.24)

Taking into account (3.24) we obtain

〈

S,m, n | â+α | S − 1,m− α, n − 1
〉

= Pα,S,m,n. (A.25)

Thus, we conclude

Mα,S−1,m−α,n−1 = Pα,S,m,n. (A.26)

In a similar way we also obtain

Pα,S+1,m+α,n+1 =Mα,S,m,n, (A.27)

Nα,S+1,m−α,n−1 = Oα,S,m,n, (A.28)

and

Oα,S−1,m+α,n+1 = Nα,S,m,n. (A.29)

Note that we have used the minus sign in (A.12) and the positive sign in (A.20) in order to satisfy the
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Table A.1.: Matrix element of creation operators

S m M1,S,m,n M0,S,m,n M−1,S,m,n N1,S,m,n N0,S,m,n N−1,S,m,n

0 0
√

n+3
3

√

n+3
3

√

n+3
3 0 0 0

1 1
√

2(n+4)
5

√

n+4
5

√

n+4
15 0 0 -

√

n+1
3

1 0
√

n+4
5 2

√

n+4
15

√

n+4
5 0

√

n+1
3 0

1 -1
√

n+4
15

√

n+4
5

√

2(n+4)
5 -

√

n+1
3 0 0

2 2
√

3(n+5)
7

√

n+5
7

√

3(n+5)
105 0 0 -

√

2n
5

2 1
√

2(n+5)
7 2

√

6(n+5)
105 3

√

n+5
105 0

√

n
5 -

√

n
5

2 0 3
√

2(n+5)
105 3

√

3(n+5)
105 3

√

2(n+5)
105 -

√

n
15 2

√

n
15 −

√

n
15

2 -1 3
√

n+5
105 2

√

6(n+5)
105

√

2(n+5)
7 -

√

n
5

√

n
5 0

2 -2
√

3(n+5)
105

√

n+5
7

√

3(n+5)
7 -

√

2n
5 0 0

3 3 2
3

√
n+ 6

√

n+6
9

√

n+6
63 0 0 -

√

3(n−1)
7

3 2
√

n+6
3 2

√

n+6
21

√

n+6
21 0

√

n−1
7 -

√

2(n−1)
7

3 1
√

5(n+6)
21

√

5(n+6)
21

√

2(n+6)
21 -

√

n−1
35 2

√

2(n−1)
35 -

√

6(n−1)
35

3 0
√

10(n+6)
63

4
3

√

n+6
7

√

10(n+6)
63 -

√

3(n−1)
35 3

√

n−1
35 -

√

3(n−1)
35

3 -1
√

2(n+6)
21

√

5(n+6)
21

√

5(n+6)
21 -

√

6(n−1)
35 2

√

2(n−1)
35 -

√

n−1
35

3 -2
√

n+6
21 2

√

n+6
21

√

n+6
3 -

√

2(n−1)
7

√

n−1
7 0

3 -3
√

n+6
63

√

n+6
9

2
3

√
n+ 6 -

√

3(n−1)
7 0 0

relations (A.26)–(A.29). The resulting matrix elements of the creation and annihilation operators for

the states with lowest spin quantum numbers are listed in Table A.1 and Table A.2, respectively, and

coincide with the findings in Refs. [81, 83, 104].
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Table A.2.: Matrix element of annihilation operators

S m O1,S,m,n O0,S,m,n O−1,S,m,n P1,S,m,n P0,S,m,n P−1,S,m,n

0 0 −
√

n
3

√

n
3 -

√

n
3 0 0 0

1 1 -
√

n−1
15

√

n−1
5 -

√

2(n−1)
5

√

n+2
3 0 0

1 0 −
√

n−1
5 2

√

n−1
15 −

√

n−1
5 0

√

n+2
3 0

1 -1 -
√

2(n−1)
5

√

n−1
5 −

√

n−1
15 0 0

√

n+2
3

2 2 -
√

3(n−2)
105

√

n−2
7 -

√

3(n−2)
7

√

2(n+3)
5 0 0

2 1 -3
√

n−2
105 2

√

6(n−2)
105 -

√

2(n−2)
7

√

n+3
5

√

n+3
5 0

2 0 -3
√

2(n−2)
105 3

√

3(n−2)
105 -3

√

2(n−2)
105

√

n+3
15 2

√

n+3
15

√

n+3
15

2 -1 -
√

2(n−2)
7 2

√

6(n−2)
105 -3

√

n−2
105 0

√

n+3
5

√

n+3
5

2 -2 -
√

3(n−2)
7

√

n−2
7 -

√

3(n−2)
105 0 0

√

2(n+3)
5

3 3 −
√

n−3
63

√
n−3
3 -23

√
n− 3

√

3(n+4)
7 0 0

3 2 -
√

n−3
21 2

√

n−3
21 -

√

n−3
3

√

2(n+4)
7

√

n+4
7 0

3 1 −
√

2(n−3)
21

√

5(n−3)
21 −

√

5(n−3)
21

√

6(n+4)
35 2

√

2(n+4)
35

√

n+4
35

3 0 −
√

10(n−3)
63

4
3

√

n−3
7 −

√

10(n−3)
63

√

3(n+4)
35 3

√

n+4
35

√

3(n+4)
35

3 -1 −
√

5(n−3)
21

√

5(n−3)
21 −

√

2(n−3)
21

√

n+4
35 2

√

2(n+4)
35

√

6(n+4)
35

3 -2 -
√

n−3
3 2

√

n−3
21 -

√

n−3
21 0

√

n+4
7

√

2(n+4)
7

3 -3 -23
√
n− 3

√
n−3
3 −

√

n−3
63 0 0

√

3(n+4)
7
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This appendix contains the definition of the formulas used in Chapter 4 to simplify the calculation of

fourth order in the currents. First, using Eqs. (3.23), (3.24) and (4.8), we can calculate the thermal

averages (4.103)–(4.108) which yields:

〈

âα4(τ4)âα3(τ3)â
†
α1
(τ1)â

†
α2
(τ2)

〉(0)
=

1

Z(0)

∑

S,m,n

e−βE
(0)
S,m,n

×
〈

S,m, n

∣

∣

∣

∣

âα4(τ4)âα3(τ3)â
†
α1
(τ1)â

†
α2
(τ2)

∣

∣

∣

∣

S,m, n

〉

=
1

Z(0)

∑

S,m,n

e−βE
(0)
S,m,n

×
〈

S,m, n

∣

∣

∣

∣

[e(τ4−τ2)Ĥ(0)
âα4e

(τ3−τ4)Ĥ(0)
âα3e

(τ1−τ3)Ĥ(0)
â†α1

e(τ2−τ1)Ĥ(0)
â†α2

∣

∣

∣

∣

S,m, n

〉

=
δα1+α2,α3+α4

Z(0)

∑

S,m,n

e−βE
(0)
S,m,ne(τ4−τ2)E

(0)
S,m,n

[

Mα4,S,m,nMα3,S,m,nMα1,S,m,nMα2,S,m,n

× e
(τ2−τ1)E

(0)
S+1,m+α2,n+1e

(τ1−τ3)E
(0)
S+2,m+α2+α1,n+2e

(τ3−τ4)E
(0)
S+1,m+α4,n+1 +Mα4,S,m,nMα2,S,m,n

×Nα3,S+1,m+α4,n+1Nα1,S+1,m+α2,n+1e
(τ2−τ1)E

(0)
S+1,m+α2,n+1e

(τ1−τ3)E
(0)
S,m+α3+α4,n+2e

(τ3−τ4)E
(0)
S+1,m+α4,n+1

+Mα4,S,m,nNα2,S,m,nNα3,S+1,m+α4,n+1Mα1,S−1,m+α2,n+1e
(τ2−τ1)E

(0)
S−1,m+α2,n+1e

(τ1−τ3)E
(0)
S,m+α3+α4,n+2

× e
(τ3−τ4)E

(0)
S+1,m+α4,n+1 +Nα4,S,m,nMα2,S,m,nMα3,S−1,m+α4,n+1Nα1,S+1,m+α2,n+1e

(τ2−τ1)E
(0)
S+1,m+α2,n+1

× e
(τ1−τ3)E

(0)
S,m+α3+α4,n+2e

(τ3−τ4)E
(0)
S−1,m+α4,n+1 +Nα4,S,m,nNα2,S,m,nMα3,S−1,m+α4,n+1Mα1,S−1,m+α2,n+1

× e
(τ2−τ1)E

(0)
S−1,m+α2,n+1e

(τ1−τ3)E
(0)
S,m+α3+α4,n+2e

(τ3−τ4)E
(0)
S−1,m+α4,n+1 +Nα3,S−1,m+α4,n+1Nα4,S,m,n

×Nα1,S−1,m+α2,n+1Nα2,S,m,ne
(τ2−τ1)E

(0)
S−1,m+α2,n+1e

(τ1−τ3)E
(0)
S−2,m+α3+α4,n+2e

(τ3−τ4)E
(0)
S−1,m+α4,n+1

]

.

(B.1)

Similarly

〈

âα4(τ4)â
†
α1
(τ1)âα3(τ3)â

†
α2
(τ2)

〉(0)
=
δα1+α2,α3+α4

Z(0)

∑

S,m,n

e−βE
(0)
S,m,ne(τ4−τ2)E

(0)
S,m,n

[

Mα4,S,m,nMα2,S,m,n

×Oα3,S+1,m+α2,n+1Oα1,S+1,m+α4,n+1 e
(τ2−τ3)E

(0)
S+1,m+α2,n+1e

(τ3−τ1)E
(0)
S+2,m+α4−α1,n+2e

(τ1−τ4)E
(0)
S+1,m+α4,n+1

+Mα4,S,m,nMα2,S,m,nPα1,S+1,m+α4,n+1Pα3,S+1,m+α2,n+1e
(τ2−τ3)E

(0)
S+1,m+α2,n+1e

(τ3−τ1)E
(0)
S,m+α4−α1,n

× e
(τ1−τ4)E

(0)
S+1,m+α4,n+1 +Mα4,S,m,nNα2,S,m,nOα3,S−1,m+α2,n+1Pα1,S+1,m+α4,n+1e

(τ2−τ3)E
(0)
S−1,m+α2,n+1

× e
(τ3−τ1)E

(0)
S,m+α4−α1,ne

(τ1−τ4)E
(0)
S+1,m+α4,n+1 +Nα4,S,m,nMα2,S,m,nPα3,S+1,m+α2,n+1Oα1,S−1,m+α4,n+1
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× e
(τ2−τ3)E

(0)
S+1,m+α1,n+1e

(τ3−τ1)E
(0)
S,m+α4−α1,ne

(τ1−τ4)E
(0)
S−1,m+α4,n+1 +Nα4,S,m,nNα2,S,m,nOα3,S−1,m+α2,n+1

×Oα1,S−1,m+α4,n+1e
(τ2−τ3)E

(0)
S−1,m+α2,n+1e

(τ3−τ1)E
(0)
S,m+α4−α1,n e

(τ1−τ4)E
(0)
S−1,m+α4,n+1 +Nα4,S,m,nNα2,S,m,n

× Pα3,S−1,m+α1,n+1Pα1,S−1,m+α4,n+1e
(τ2−τ3)E

(0)
S−1,m+α2,n+1e

(τ3−τ1)E
(0)
S−2,m+α4−α1,ne

(τ1−τ4)E
(0)
S−1,m+α4,n+1

]

,

(B.2)

〈

âα4(τ4)â
†
α1
(τ1)â

†
α2
(τ2)âα3(τ3)

〉(0)
=
δα1+α2,α3+α4

Z(0)

∑

S,m,n

e−βE
(0)
S,m,ne(τ4−τ3)E

(0)
S,m,n

[

Mα4,S,m,nOα3,S,m,n

×Oα1,S+1,m+α4,n+1Mα2,S+1,m−α3,n+1 e
(τ3−τ2)E

(0)
S+1,m−α3,n−1e

(τ2−τ1)E
(0)
S+2,m+α4−α1,ne

(τ1−τ4)E
(0)
S+1,m+α4,n+1

+Mα4,S,m,nOα3,S,m,nPα1,S+1,m+α4,n+1Nα2,S+1,m−α3,n−1e
(τ3−τ2)E

(0)
S+1,m−α3,n−1e

(τ2−τ1)E
(0)
S,m+α4−α1,n

× e
(τ1−τ4)E

(0)
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(B.6)

Following the same procedure as for the second-order expansion coefficient and using Matsubara

transformation (4.79) yields the following integral of the form

I = κ

∫ β
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aτ1

∫ τ1

0
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∫ τ2
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∫ τ1

0
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0
dτ3e
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]
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]
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− e(a+b+c)β − 1

(a+ b+ c) (b+ c) cd
+

eaβ − 1

ab (c+ d) d
+
e(a+b)β − 1

(a+ b) bcd
− eaβ − 1

abcd
+

eaβ − 1

a (b+ c) cd

]

. (B.7)

In the case of a+ b+ c+ d = 0, we need

lim
a+b+c+d→0

e(a+b+c+d)β − 1

(a+ b+ c+ d) (b+ c+ d) (c+ d) d
=

β
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. (B.8)

If b+ c = 0, so

lim
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. (B.9)

Similarly, when c+ d→ 0 and a+ b→ 0, we get

lim
c+d→0
a+b→0

(
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(a+ b+ c+ d) (b+ c+ d) (c+ d) d
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)

. (B.10)

= − β

b2d
− aβ2

2(b2d)
. (B.11)
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C. Coefficients of Mean-Field Theory

In this appendix, we show the coefficients of the fourth order perturbation energy (4.123) at zero-

temperature in the case of anti-ferromagnetic interaction with an odd number of atoms without Zeeman

Effect

E
(4)
G (Ψ) = C(n,U0, U2, µ)

∣

∣

∣
|Ψ0|2 − 2 |Ψ1| |Ψ−1|

∣

∣

∣

2
+D(n,U0, U2, µ)(Ψ

† ·Ψ)2

+ E(n,U0, U2, µ)
[

|Ψ1|2 − |Ψ−1|2
]2

+H(n,U0, U2, µ)
[

(Ψ∗
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2 + 2 (Ψ∗
1Ψ−1)

2
]

, (C.1)

where
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where △E(0)
S′,n′ = E

(0)
S′,n′ − E

(0)
1,n
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