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Abstract

Sleeping Beauty (SB) is the most active Tcl/mariner-type transposon in vertebrates. It is a
synthetic transposable element that has been reconstructed from defective copies of an
ancestral Tc1-like element in fish (Ivics at al., 1997). It is a 1.6-kb element that is flanked by
~230-bp terminal inverted repeats (IRs), and encodes a single protein, the transposase, that
catalyzes transposition of the element from one genomic locus to another. SB transposes by a
cut-and-paste mechanism that requires binding of the transposase to its binding sites within
the IRs. Each IR contains two transposase-binding sites (DRs), a feature termed the IR/DR

structure.

SB shows high transpositional activity in a number of vertebrate cell lines in vitro
(Izsvak et al., 2000), and in both somatic and germline tissues of the mouse in vivo (Yant et
al., 2000; Dupuy et al., 2002). Thus, SB is being developed as a gene vector for transgenesis
and insertional mutagenesis in vertebrate model systems as well as for human gene therapy.
However, biological evidences indicate that the maximal activity of the SB transposon system
has not yet been reached. To improve the transpositional activity of the SB transposable
element, I followed three experimental approaches: 1) find the optimum conditions under
which SB can transpose, by investigating the role of host factors which may directly or
indirectly be involved in SB transposition; 2) increase the recombinational activity of the SB

transposase; 3) modify the structure of the SB transposon DNA.

Most transposons do not function (well) without accessory (host) factors (Sherrat,
1995). The involvement of cellular proteins in the regulation of SB transposition was
investigated in this thesis. I show that the DNA-bending high-mobility group protein,
HMGBI, is a host-encoded cofactor of SB transposition. Transposition was severely reduced
in mouse cells deficient in HMGB1. This effect was rescued by transient over-expression of
HMGBI1, and was partially complemented by the closely related HMGB2, but not with the
unrelated HMGAT1 protein. Over-expression of HMGB1 in wild-type mouse cells enhanced
transposition, indicating that HMGB1 can be a limiting factor of transposition. SB transposase
was found to interact with HMGB1 in vivo, suggesting that the transposase may recruit
HMGBI to transposon DNA. HMGBI1 stimulated preferential binding of the transposase to
the DR further from the cleavage site, and promoted bending of DNA fragments containing

the transposon IR. The role of HMGBI is proposed to ensure that transposase-transposon



complexes are first formed at the internal DRs, and to subsequently promote juxtaposition of

functional sites in transposon DNA, thereby assisting the formation of synaptic complexes.

Transposases are not selected for maximal activity in nature, because high
transpositional activity may be detrimental to the host. Indeed, replacements of some of the
acidic (negatively charged) amino acids to basic (positively charged) amino acids in both the
bacterial transposase Tn5 (Zhou and Reznikoff, 1997) and the mariner element Himarl
transposase (Lampe et al., 1999) were found to elevate the recombinational activities of the
transposases. Similar, we hypothesized that the intrinsic activity of the SB transposase can be
increased by amino acid substitutions. Following the lessons of Tn5 and Himarl mutagenesis,
I systematically replaced all aspartic acid (D) and glutamic acid (E) residues (that are not
conserved within the Tcl family) of the SB transposase with lysine (K) or arginine (R)
residues. One such mutant, D260K, consistently increased the jumping efficiency of SB with
about 30%. D260K works synergistically with other hyperactive mutations to elevate the
overall transposition efficiency to about 370% over the wild-type SB transposase. The success
of this limited range of site-directed mutagenesis indicates that large-scale, random
mutagenesis of the SB transposase will likely yield hyperactive versions with as high as

possibly a 100-fold increase in activity.

The other component of the transposon system where modifications might improve
activity is the transposon DNA. Indeed, a combination of four mutations in the IRs was shown
to increase the activity of the SB transposon by about 4-fold (Cui et al., 2002). The efficiency
of SB transposition decreases with increasing the transposon size (Izsvak et al., 2000). We
reasoned that changing the structure of the transposon could increase its ability to mobilize
longer DNA fragments. For example, a composite transposon consisting of two identical
copies of itself flanking a nonrepetitive sequence (longer than 10kb) in an inverted orientation
has been seen to be mobilized in the fly species Drosophila virilis (Petrov et al., 1995). This
transposon is called the Paris element (Petrov et al., 1995). TA target site dinucleotide
duplications flanking the particular composite Paris transposon (Petrov et al., 1995) indicate
that the insertion was generated by transposition. A construct mimicking the structure of the
composite Paris element was made from two identical copies of the SB transposon flanking
relatively large pieces of DNA in an inverted orientation. The inner binding sites of the
transposase were mutated to ensure that the individual SB units cannot transpose. These

mutations were proven to only interfere with the transposition capacity but not with the

xi



binding capability of the transposase. This construct is called the sandwich vector (SA). SA

was able to jump 3 times more efficiently than similar size marker genes.
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