Röntgenstrukturanalyse der 5'-Nucleotidase

aus Escherichia coli mit dinuklearem Metallzentrum

Inaugural-Dissertation

zur Erlangung der Doktorwürde

vorgelegt dem Fachbereich Biologie, Chemie und Pharmazie

der Freien Universität Berlin

von

Thomas Knöfel aus Berlin

Berlin, im September 2000

Die vorliegende Arbeit wurde in der Zeit von August 1997 bis Mai 2000 unter Anleitung von Dr. N. Sträter und Prof. Dr. W. Saenger im Institut für Kristallographie der Freien Universität Berlin im Fachbereich Biologie, Chemie und Pharmazie durchgeführt.

1. Gutachter: Prof. Dr. W. Saenger

2. Gutachter: Prof. Dr. J.-H. Fuhrhop

Eingereicht am 14. September 2000 Tag der mündlichen Prüfung: 20. November 2000

Abstract

The crystal structure of 5'-nucleotidase (5'-NT) from *E. coli*, also known as UDP-sugar hydrolase, has been determined using four different crystal forms at 1.7 Å, 2.2 Å, 2.1 Å and 1.9 Å resolution. 5'-NT is monomeric and consists of two domains connected by an α -helix. The major difference between the four crystal structures is a hinge-bending domain movement of 96° which divides the protein structures in an open and closed conformation. Two endogenous zinc ions in the active site of the open conformations are coordinated in a trigonal-bipyramidal way by protein ligands and a metal-bridging water molecule or a (bi)carbonate ion. In the closed conformation two manganese ions in the active site are coordinated octahedral by protein ligands, phosphate or inhibitor molecule, a metal-bridging and a monodentate binding water molecule. The active site shows structural homology to related enzymes of the superfamily of $\beta\alpha\beta\alpha\beta$ -metallophosphoesterases, including Ser/Thr protein phosphatases and purple acid phosphatases, but differs in the metal coordination sphere of the site 1 metal ion and other active site residues. The most prominent difference is the presence of a second domain in 5'-NT that forms part of the active site, located in a cleft between the two domains.

In the open conformation, substrate ATP is bound to the C-terminal domain at a distance of about 20 Å from the catalytic center. In the closed conformation, cocrystal structures of 5'-NT in complex with the products adenosine and phosphate and complexed with the substrate analogue inhibitor α , β -methylene-ADP have been determined in order to study the reaction mechanism.

E. coli 5'-NT exhibits a unique 96° domain motion in which the smaller C-terminal domain rotates approximately around its center such that the residues at the domain interface move predominantly in the direction of the interface. This movement differs from a classical hingebending closure motion which involves an opening of the substrate or ligand binding cleft between two domains such that the residues of the cleft move predominantly perpendicular to the domain interface. Structures of the open and closed forms with substrates and inhibitors show that the substrate moves by 20 Å with the large domain rotation into the catalytic site. Nine independent conformers have been analysed in the four crystal forms. The domain motions derived from a comparison of these conformations show that all conformational changes can be described as domain rotations around axes that are roughly located in one plane. This plane includes the domain centers and the hinge. Two residues, Lys-355 and Gly-356, form the core of the hinge region and undergo a large change of the main-chain torsion angles.

Danksagung

Die Realisierung dieser Arbeit wäre ohne die vielfältige Unterstützung von Fachkollegen innerhalb und außerhalb des Institutes nicht möglich gewesen. Ganz besonders bedanken möchte ich mich bei Herrn Prof. Dr. Wolfram Saenger für die hervorragenden Arbeitsbedingungen in seiner Arbeitsgruppe.

Ganz herzlich möchte ich mich bei Dr. Norbert Sträter für die Überlassung des ergiebigen Forschungsthemas bedanken. Er war für mich stets ein beeindruckender Lehrer, von dessen Gedankenschärfe ich mir hoffentlich etwas abschauen konnte. Gerne denke ich an die vielen Diskussionen zurück, die mich oft auf den richtigen Lösungsweg geführt haben.

Danken möchte ich auch meinen Laborkollegen Ingo Przylas (der an einem Samstag meine Proteinisolierung so gut überwacht hat), Dr. Peter Orth und Clemens Langner deren Freundschaft und Humor mir den Arbeitsalltag verschönert haben.

Carsten Jakob danke ich für seine Hilfe bei dem Entkommen aus allen Problemen unseres verfilzten Computernetzes der Kristallographie und Timm Maier für die vielen Hinweise, welches Computerprogramm ich außerdem noch benutzen könnte.

Claudia Alings danke ich für das stete und schnelle Beschaffen von fehlenden Laborgeräten und Chemikalien und die Einführung in das erfolgreiche kristallisieren von Proteinen.

Dr. Peter Franke danke ich für die Anfertigung der MALDI-Massenspektren.

Des weiteren möchte ich allen nicht genannten Mitarbeitern der Arbeitsgruppe Saenger für die erhaltene Unterstützung und für das gute Arbeitsklima danken.

Vielen lieben Dank an meine Eltern und Großeltern ohne deren Unterstützung es mir nicht so einfach möglich gewesen wäre den gewünschten Lebensweg zu meistern. Hierfür möchte ich mich besonders bei meiner Omi bedanken.

Heide danke ich ganz doll lieb für den Sinn in meinem Leben, der mir die Kraft zur Fertigstellung dieser Arbeit gab.

Abkürzungen

5'-NT	5'-Nucleotidase
Å	0.1 nm
°C	Grad Celsius
ADP	Adenosindiphosphat
AMPCP	α , β -Methylen-ADP
ATP	Adenosintriphosphat
AU	Asymmetrische Einheit (asymmetric unit)
B-Faktor	Temperaturfaktor
C-terminal	Carboxyl-terminal
Da	Dalton, g/mol
DESY	Deutsches Elektronen-Synchrotron
EDTA	Ethylendiamintetraessigsäure
EMBL	Europäisches Molekularbiologisches Labor
EMTS	Ethylquecksilberthiosalicylat
Hepes	N-(2-Hydroxyethyl)piperazin-N'-(2-ethansulfonsäure)
IPTG	Isopropylthiogalactosid
MAD	Multiple anomale Dispersion
MALDI-MS	Matrix assisted laser desorption ionization-Massenspektrometrie
MIRAS	Multiple anomale Dispersion plus anomale Streuung
MIR	Multipler isomorpher Ersatz
MPEGXXX	Monomethylether-Polyethylenglycol mit einer mittleren Molekularmasse von XXX g/mol
N-terminal	Amino-terminal
OD ₆₀₀	Optische Dichte bei einer Wellenlänge von 600 nm
PAGE	Polyacrylamidgelelektrophorese
PDB	Protein-Datenbank
PEGXXX	Polyethylenglykol mit einer mittleren Molmasse von XXX g/mol
PIP	Di-µ-Iodobis(ethylendiamin)-di-platin(II)nitrat
Rmsd	Mittlere quadratische Standard-Abweichung (root mean square devi- ation)
SDS	Natriumdodecylsulfat (sodium dodecyl sulfat)
σ _{rms}	Mittlere quadratische Standard-Abweichung auf eins normiert.
SV	Säulenvolumen
ТАММ	Tertrakis(acetoxymercuri)-methan

Tris	Tris-(hydroxymethyl)-aminomethan
Tris-HCI	Durch Zugabe von Salzsäure auf einen bestimmten pH-Wert eingestellte Lösung von Tris
UpM	Umdrehungen pro Minute
UV ₂₈₀	Ultraviolette Absorption bei 280 nm
v/v	Verhältnis des Volumen einer Substanz zum Gesamtvolumen
w/v	Verhältnis der Masse [kg] einer Substanz zum Gesamtvolumen [l].

Inhaltsverzeichnis

1	EINLE	ITUNG 1	ł
1.1	Meta	alloenzyme1	1
1.2	Pho	sphoesterasen2	2
1.3	Dinu	ikleare Metallophosphoesterasen2	2
1.4	Die	5'-Nucleotidase	3
1.	4.1	Katalytische Eigenschaften4	1
1.	4.2	Verbreitung6	3
1.	4.3	Physiologische Funktionen6	3
1.	4.4	Verwandte Enzyme	3
1.5	Dom	änenbewegung und Proteinfunktion9)
1.6	Aus	gangspunkt und Gliederung dieser Arbeit10)
2	MATE	RIALIEN UND METHODEN 12	2
2.1	Mate	erialien	2
2.	1.1	Bakterieller Stamm	2
2.	1.2	Expressionsvektoren	2
2.	1.3	Lösungen und Puffer	2
2.	1.4	Nährmedien für die Zellanzucht12	2
2.	1.5	Chemikalien und Proteine	2
2.2	Bioc	hemische Methoden	3
2.	2.1	Zellanzucht	3
2.	2.2	Zellaufschluß und Proteinreinigung	3
	2.2.2.1	Proteinisolierung in Anlehnung an Ruiz et al14	1
	2.2.2.2	Vereinfachte Proteinisolierung15	5
2.	2.3	Aktivitätstest16	3
2.	2.4	Konzentrationsbestimmung16	3
2.3	Kris	tallographische Methoden16	5
2.	3.1	Kristallisation	3
2.	3.2	Silikonisierung der Deckgläser17	7

	2.3.3	Messung von Röntgen-Diffraktionsdaten	. 18
	2.3.3.1	Vorbereitung der Kristalle zum Messen bei Raumtemperatur	. 18
	2.3.3.2	Vorbereitung der Kristalle zum Messen bei 100 K	. 18
	2.3.3.3	Datensammlung	. 19
	2.3.3.4	Das Phasenproblem	. 20
	2.3.4	Strukturbestimmung der orthorhombischen Kristallform mit Wolframat	. 21
	2.3.4.1	Kristallisation	. 21
	2.3.4.2	Darstellung der Schweratomderivate	. 22
	2.3.4.3	Bestimmung der Schweratomlagen	. 22
	2.3.4.4	Anomale Dispersion	. 23
	2.3.4.5	Bestimmung der Lagen anomal streuender Schweratome	. 25
	2.3.4.6	Phasenbestimmung mittels MIRAS	. 26
	2.3.4.7	Phasenbestimmung mittels MAD	. 26
	2.3.4.8	Kombination der MIRAS und MAD Phaseninformationen	. 26
	2.3.4.9	Berechnung der Elektronendichte und Phasenverfeinerung	. 26
	2.3.4.10) Modellbau	. 27
	2.3.4.11	Verfeinerung der Struktur	. 28
	2.3.5	Kristallisation und Strukturbestimmung der tetragonalen Kristallstruktur	. 29
	2.3.5.1	Kristallisation	. 29
	2.3.5.2	Molekularer Ersatz	. 29
	2.3.5.3	Bau und Verfeinerung der hochaufgelösten Struktur	. 30
	2.3.6	Darstellung und Strukturbestimmung eines Substratkomplexes der 5'-NT mit ATP	. 30
	2.3.6.1	Darstellung des Substratkomplexes	. 30
	2.3.6.2	Bau und Verfeinerung des Substratkomplexes	. 30
	2.3.7	Kokristallisation und Strukturbestimmung eines Produktkomplexes der 5'-NT mit Adenosir	۱
		und Phosphat	. 30
	2.3.7.1	Kokristallisation des Produktkomplexes	. 30
	2.3.7.2	Molekularer Ersatz	. 31
	2.3.7.3	Bau und Verfeinerung des Produktkomplexes	. 31
	2.3.8	Kokristallisation und Strukturbestimmung eines Inhibitorkomplexes mit α,β -Methylen-ADP	31
	2.3.8.1	Kokristallisation des Inhibitorkomplexes	. 31
	2.3.8.2	Molekularer Ersatz	. 32
	2.3.8.3	Bau und Verfeinerung des Inhibitorkomplexes	. 32
	2.3.9	Koordinatenanalyse und Koordinatenhinterlegung in der Protein-Datenbank	. 32
	2.3.10	Analyse der Domänenrotation mit dem Programm DYNDOM	. 33
3	PROTE	EINREINIGUNG UND KRISTALLISATION	34
	3.1.1	Proteinreinigung	. 34

	3.1.1.1	Charakterisierung der Proteinfraktionen	34
3.′	1.2	Kristallisation	34
4	STRUI	KTURANALYSE DER OFFENEN KONFORMATION	37
4.1	Stru	kturlösung der Kristallform II mit Wolframat	37
4.1	1.1	Messung der MAD-Daten	37
4.1	1.2	Messung der MIRAS-Daten	38
4.1	1.3	Phasenbestimmung	39
	4.1.3.1	Multiple anomale Dispersion	40
	4.1.3.2	Multipler isomorpher Ersatz plus anomale Streuung	44
	4.1.3.3	Phasenverfeinerung	45
4.1	1.4	Modellbau	47
4.′	1.5	Kristallographische Verfeinerung	47
4.2	Stru	kturlösung der tetragonalen Kristallform I	50
4.2	2.1	Molekularer Ersatz	51
4.2	2.2	Modellbau und kristallographische Verfeinerung	52
4.3	Stru	kturbeschreibung der offenen Konformation	54
4.3	3.1	Die Tertiärstruktur der 5'-NT	54
4.3	3.2	Domänenrotation innerhalb der Kristallformen I und II	57
4.3	3.3	Das aktive Zentrum	58
4.4	Stru	kturbeschreibung eines Substratkomplexes der offenen Form der 5'-NT mit ATP	61
4.4	4.1	Datensammlung und Verfeinerung	61
4.4	4.2	Strukturbeschreibung	62
4.5	Disk	ussion	65
4.5	5.1	Ein Vergleich mit anderen 5'-NTs	65
F	отрии		70
5	5180	ATURANALISE DER GESCHLUSSENEN KUNFURMATION	70
5.1	Stru	kturlösung	70
5.1	1.1	Datensammlung	70
5.1	1.2	Inhalt der Elementarzelle und Molekularer Ersatz	70
5.′	1.3	Kristallographische Verfeinerung	73
5.2	Stru	kturbeschreibung der Enzymkomplexe	75
5.2	2.1	Tertiärstruktur	76

5.2.2	Bindung von Adenosin und Phosphat an das katalytische Zentrum	
5.2.3	Bindung von α,β -Methylen-ADP an das Metallzentrum	82
5.3 Disk	kussion	85
5.3.1	Vergleich mit violetten Phosphatasen und Ser/Thr-Proteinphosphatasen	85
5.3.2	Metallionen-unterstützte Katalyse in den Phosphatasen	90
5.3.3	Vorschlag eines Reaktionsmechanismus für die 5'-NT	91

6 ANALYSE DER DOMÄNENROTATION

6.1	Beschreibung der Domänenrotation	
6.1.1	Konformationsvergleich der 5'-NT-Strukturen	
6.1.2	Konformationsänderungen im Krümmungsbereich	100
6.1.3	Interface-Region	
6.2	Domänenflexibilität im Kristallgitter	104
6.3	Diskussion	109
6.3.1	Beschreibung der Domänenrotation	109
6.3.2	Vergleich der Rotationsachsen	112
6.3.3	Vergleich der Gelenkregion mit andern 5'-NTs	113
6.2.4		

7 ZUSAMMENFASSUNG UND AUSBLICK

LITERATUR

ANHANG	130
Abbildungsverzeichnis	130
Tabellenverzeichnis	132
Veröffentlichungen	134
Vorträge	134

94

120

117

Anhang

Abbildungsverzeichnis

Abbildung 1: E. coli 5'-Nucleotidase (UDP-Zucker-Hydrolase)	4
Abbildung 2: Hydrolyse der Uridindiphosphatglucose (α-D-UDP-Glucose)	5
Abbildung 3: Funktion der Ecto-Nucleotidasen im Nervensystem	7
Abbildung 4: Charakteristische Sequenzmotive von Metallophosphoesterasen	8
Abbildung 5: Faltungsdiagramm der violetten sauren Phosphatase aus dem Schwein	9
Abbildung 6: Argand-Diagramm	.25
Abbildung 7: Aufnahmen der fünf erhaltenen Kristallformen	.36
Abbildung 8: Fluoreszenzspektrum eines Kristalls der Kristallform II der 5'-NT	. 38
Abbildung 9: Anomale Pattersonanalyse an der Wolframkante	.41
Abbildung 10: Dispersive Pattersonanalyse	.42
Abbildung 11: Anomale Pattersonanalyse für das SmCl ₃ -Derivat.	.44
Abbildung 12: Vergleich der Elektronendichtekarten.	.46
Abbildung 13: Ramachandran-Diagramm der Konformere IIa und IIb der Kristallform II	.49
Abbildung 14: Ramachandran-Diagramm der Struktur I-NAT-1 der Kristallform I	.53
Abbildung 15: Tertiärstruktur der 5'-NT (stereo)	.55
Abbildung 16: Topographie-Diagramm des 5'-NT-Monomers.	.55
Abbildung 17: Molekulare Oberfläche der offenen Konformation erzeugt mit GRASP	.56
Abbildung 18: Domänenbewegung innerhalb der beiden geschlossenen Kristallformen	.57
Abbildung 19: Das aktive Zentrum der 5'-NT in Kristallform I.	.58
Abbildung 20: Stereodarstellung einer Elektronendichtekarte.	.60
Abbildung 21: Struktur der ATP-Substratkomplexes in der inaktiven Konformation I der 5'-NT.	.64
Abbildung 22: Stereoabbildung der ATP-Bindungstasche	.64
Abbildung 23: Bindungsmodus von ATP in der Bindungstasche der tetragonalen Kristallform I.	. 65
Abbildung 24: Sekundärstruktur-unabhängiger Vergleich von Primärsequenzen	.69
Abbildung 25: Ramachandran-Diagramme der Strukturen III-ADE (a) und IV-AMPCP (b)	.75
Abbildung 26: Überlagerung des 180iger-Schlaufenbereichs	.77
Abbildung 27: Tertiärstruktur und molekulare Oberfläche der aktiven Konformation	.77
Abbildung 28: Region des aktiven Zentrums des Enzymproduktkomplexes	.80
Abbildung 29: Bindungsmodus des Adenosinmoleküls im Enzymproduktkomplex	.81
Abbildung 30: Bindungsmodus des Phosphations im Enzymproduktkomplex.	. 82

Abbildung 31: Struktur des Mn(II)-Mn(II)-Clusters der Struktur IV-AMPCP.	83
Abbildung 32: Region des aktiven Zentrums der Struktur IV-AMPCP.	84
Abbildung 33: Stereoabbildung einer Überlagerung der Bindungstaschen	85
Abbildung 34: Bindungsmodus des Inhibitormoleküls α,β -Methylen-ADP	86
Abbildung 35: Überlagerung der Strukturen der aktiven Zentren	88
Abbildung 36: Aktive Zentren der 5'-NT, Ser/Thr-Proteinphosphatase 1 und der PAP	
Abbildung 37: Vorschlag eines möglichen Reaktionsmechanismus.	92
Abbildung 38: Gelenkartige Domänenrotation.	
Abbildung 39: Klassifizierung der neun Konformere in Bezug auf den Rotationswinkel	100
Abbildung 40: Überlagerung der Krümmungsregion in Helix $lpha$ 8	101
Abbildung 41: Hauptketten-Torsionswinkel Φ und Ψ	102
Abbildung 42: Kristallkontakte des Konformeres IVc	103
Abbildung 43: Intramolekulare Kontakte in der Interface-Region	104
Abbildung 44: Flexibilität im Kristallgitter der Kristallform III	107
Abbildung 45: Verlauf der Temperaturfaktoren für Kristallstruktur III	108
Abbildung 46: Domänenflexibilität der C-terminalen Domäne	109
Abbildung 47: Typen der gelenkartigen Domänenrotation.	110
Abbildung 48: Rotationsachsen zwischen den beiden Domänen.	113

Tabellenverzeichnis

Tabelle 1: Übersicht der strukturell charakterisierten Metallophosphoesterasen	3
Tabelle 2: E. coli 5'-Nucleotidase-Aktivität gegenüber ausgesuchten Nucleotiden (Neu, 1967)	5
Tabelle 3: Reagentien der zusätzlichen Kristallisationsmatrix	17
Tabelle 4: Verwendete Tieftemperaturpuffer für die untersuchten Kristallformen	19
Tabelle 5: Suche nach Schweratomderivaten	22
Tabelle 6: Kristallisationsbedingungen und kristallographische Daten	35
Tabelle 7: Kristallographische Datenstatistik der für die MAD- und MIRAS-Phasen	40
Tabelle 8: Verfeinerte Koordinaten der Wolframatome und Zinkatome	43
Tabelle 9: MAD-Phasenbestimmung mit SHARP. FOM ^a = 0.62 bis 2.8 Å	43
Tabelle 10: MIRAS-Phasenbestimmung	45
Tabelle 11: Kristallographische Verfeinerung des nativen Datensatzes II-NAT	50
Tabelle 12: Kristallographische Datenstatistik	51
Tabelle 13: Kristallographische Verfeinerung des Datensatzes I-NAT-1	52
Tabelle 14: Koordinationsgeometrie des dinuklearen Metallzentrums der 5'-NT	60
Tabelle 15: Kristallographische Datenstatistik des ATP-Substratkomplexes.	62
Tabelle 16: Datenstatistik der Datensätze III-ADE und IV-AMPCP.	71
Tabelle 17: Kristallographische Verfeinerung der Strukturen III-ADE und IV-AMPCP	74
Tabelle 18: Koordinationsgeometrie des dinuklearen Metallzentrums des 5'-NT-Komplex	79
Tabelle 19: Koordinationsgeometrie des dinuklearen Metallzentrums der Struktur IV-AMPCP.	.83
Tabelle 20: Vergleich der Reste der aktiven Zentren	88
Tabelle 21: Standardabweichungen der 5'-NT-Konformere	95
Tabelle 22: Analyse der Domänenrotation mit DYNDOM.	99
Tabelle 23: Kontakte im Kristallgitter der Kristallform III	105
Tabelle 24: Sequenzvergleich verschiedener 5'-NTs im Krümmungsbereich der Helix $\alpha 8$	114

Lebenslauf

Persönliche Daten

Name	Thomas Knöfel
Geburtsort	21. April 1969 in Berlin
Familienstand	Ledig

Schulausbildung

Sep. '75 – Juli '81	Robert-Reinick-Grundschule in Berlin
Sep. '81 – Juni '89	Kant-Gymnasium in Berlin;
	Allgemeine Hochschulreife

Hochschulausbildung

Okt. '89 – April '90	Studium der Physik an der Freien Universität Berlin
April '90 – Okt. '96	Studium der Chemie an der Freien Universität Berlin
April '93	Vordiplom
Okt. '96 – Juni '97	<i>Diplomarbeit</i> an der Freien Universität Berlin mit dem Thema "In vitro Faltungsstudien am Portalprotein Gp6 aus dem Bakteriophagen SPP1" im Labor von Prof. Dr. W. Saenger unter Leitung von Dr. W. Hinrichs im Institut für Kristallographie
Juni '97	Abschluß des Chemiestudiums als <i>Diplom</i> -Chemiker an der Freien Universität Berlin
seit Aug. '97	Arbeit an der vorliegenden Dissertation in der Arbeitsgruppe von Herrn Prof. Dr. W. Saenger unter Anleitung von Herrn Dr. N. Sträter im Institut für Kristallographie (Freie Universität Berlin)

Veröffentlichungen

- Hashmi, A. S. K., Ruppert, T. J., Knöfel, T. & Bats, J. W. (1997). C-C-Bond formation by palladium-catalyzed cycloisomerization/dimerization of terminal allenyl ketons: Selectivity and mechanistic aspects. *J. Org. Chem.* 62, 7295-7304.
- Knöfel, T. & Stäter, N. (1999). X-ray structure of the *Escherichia coli* periplasmic 5'nucleotidase containing a dimetal catalytic site. *Nat. Struct. Biol.* 6, 448-453.
- Knöfel, T. & Sträter, N. (2000). A 95° domain rotation resembling the movement of a balland-socket joint. Structure. eingereicht.
- Knöfel, T. & Sträter, N. (2000). Mechanism of the two-metal ion catalysis of the 5'nucleotidase from *E. coli* based on crystal structures. in Vorbereitung.

Vorträge

Knöfel, T. & Sträter, N. (1999). A 95° domain rotation in *Escherichia coli* 5'-nucleotidase. 2nd
Heart of Europe *bio*-crystallography Meeting, Lübben.