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Zusammenfassung

Die Dichtematrix–Renormierungsgruppe (DMRG), die 1992 von White
entwickelt wurde, ist eine numerische Methode, sehr genaue Näherungen
für Grundzustand und tiefliegende Anregungszustände eindimensionaler
Quantensysteme zu finden. Wegen des exponentiellen Wachstums der An-
zahl der Zustände mit der Systemgröße, gerät man in Schwierigkeiten bei
der numerischen Berechnung endlicher Systeme. Zwar kann man für kleine
Systeme den Hamiltonoperator noch exakt diagonalisieren, aber wenn man
größere Systeme berechnen will, müssen andere Methoden wie das Monte–
Carlo–Verfahren benutzt werden. Wegen statistischer Fehler ist jedoch die
Genauigkeit der Quanten–Monte–Carlo Methode beschränkt. Dagegen ist
die DMRG nicht auf kleine Systeme eingeschränkt, und ihre Genauigkeit
kann für eindimensionale Systeme extrem hoch sein. Ein günstiges Beispiel
ist die Grundzustandsenergie für eine Spin–1–Kette: für ein System mit
hundert Spins kann eine Genauigkeit von 10−10 erreicht werden. Mit der
DMRG lassen sich nicht nur Energien, sondern auch Korrelationsfunktio-
nen bestimmen, die nur sehr schwierig mit anderen Methoden berechen-
bar wären. Man kann die DMRG–Methode erweitern und auf Trans-
fermatrizen, die zu zweidimensionalen klassischen Systemen gehören, und
auf eindimensionale Quantensysteme bei endlicher Temperatur anwenden.
Wegen aller dieser Möglichkeiten ist die DMRG auf die verschiedensten
eindimensionalen Systeme und Probleme angewandt worden.

Die DMRG verfolgt die Hauptidee von Wilsons Renormierungsgruppen-
Verfahren, wie sie für das Verunreinigungsproblem enwickelt worden war.
Sie ist konzipiert, um die im Eindimensionalen auftretenden Probleme zu
überwinden, wenn Wilsons RG–Prozedur auch im Ortsraum angewendet
werden soll. Die Idee der Ortsraum-RG ist, daß man das System Schritt
für Schritt vergrößert und mit einer festen Zahl von wichtigen Zuständen
statt allen Zuständen auszukommen versucht. In Wilsons RG benutzt man
Eigenzustände niedrigster Energien. Trotz des Erfolgs für Kondos und An-
dersons Verunreinigungsprobleme gab das Verfahren schlechte Ergebnisse
für wechselwirkende eindimensionale Systeme. White erkannte, daß die
Fehler aus der Auswahl von Eigenzustände des Hamiltonoperators kom-
men, die Knoten haben, die nicht im vergrößerten System erscheinen.
Er schlug vor, daß man die Umgebung berücksichtigen muß, um diesen
Fehler zu vermeiden, und bei der Auswahl die Eigenwerte der reduzier-
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ten Dichtematrizen zu benutzen. Für ein besseres Verständnis wird der
DMRG-Algorithmus in Kaptel 2 vorgestellt.

Der Erfolg der DMRG bei eindimensionalen Systemen hängt von den
Eigenschaften der Dichtematrizen ab. Bei der DMRG-Prozedur konstru-
iert man zuerst ein System der Größe L, aus dem man die reduzierte
Dichtematrix für eine Blockgröße L/2 bekommt. Als optimale Basis wählt
man dann nur Eigenfunktionen mit den größten Eigenwerten der reduziert-
en Dichtematrix aus. Diese Basis wird verwendet, um ein weiteres größeres
System aufzubauen. Deswegen hängt die Genauigkeit der DMRG–Berech-
nungen von den Dichtematrix-Spektren ab. Wenn das Spektrum schnell
abfällt, wird das DMRG–Verfahren sehr gut funktionieren, weil die Eigen-
funktionen mit kleinen Eigenwerten, die man fortläßt, das Resultat nicht
sehr viel beeinflussen können.

Die Eigenschaft der Dichtematrix–Spektren sind von zentraler Bedeu-
tung für die numerische Berechnungen. Ein Hauptziel meiner Arbeit ist,
eine Theorie für die DMRG durch die Betrachtung der Dichtematrix–
Spektren zu entwickeln. Denn mit Hilfe dieser Spektren kann man das
Verhalten dieser Methode und den Grund verstehen, weswegen es in einem
Fall besser als in einem anderen funktioniert. Am überzeugendsten sind
diese Betrachtungen bei exakt lösbaren Modelle und ihren Spektren der
reduzierten Dichtematrix.

In Kapitel 3 habe ich den Grundzustand von gekoppelten Oszilla-
toren in der Ortsraumdarstellung untersucht. Die reduzierte Dichtematrix
ist ein Exponential von nichtwechselwirkenden Oszillatoren, so daß die
Dichtematrizen für einen Gitterplatz oder für die Hälfte des Systems di-
rekt berechnet werden können. Der Einfluß der verschiedenen Randbe-
dingungen auf die reduzierten Dichtematrix wird auch untersucht. Der
thermodynamische Grenzfall wird durch Eckentransfer–Matrizen erreicht
wie im Falle der integrablen Spin-Ketten und die erhaltenen Spektren sind
sehr ähnlich. Die gequetschten Oszillatorzustände, die durch die Dichte-
matrix für einen Platz erzeugt werden, wurden in numerischen Berechnun-
gen benutzt und gaben sehr gute Übereinstimmung mit den analytischen
Resultaten.

In den Kapiteln 4 and 5 habe ich kohärente Zustände benutzt, um die
lösbaren bosonischen und fermionischen Systeme zu behandeln. Der Aus-
gangspunkt der Berechnungen ist eine einfache exponentielle Darstellung
des Grundzustands. Es ergibt sich eine allgemeine Form der reduzierten
Dichtematrizen – eine exponentielle Boltzmannartige Form. Beide Fälle
sind sehr ähnlich. Trotz der verschieden Statistiken haben die bosonischen
und fermionischen Systeme die selben Gleichungen für die Einteilchen-
eigenwerte der Dichtematrizen.

Auf diese Weise werden die reduzierten Dichtematrizen für die folgen-
den Spinmodelle in einer Dimension gewonnen: die tranversale Isingkette,
die XX-Spinkette und die XY-Spinkette in einem äußeren Feld. Für die
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transversale Isingkette werden die Dichtematrizen sowohl für den geord-
neten und den ungeordneten Bereich konstruiert als auch für den kriti-
schen Punkt. Ich habe auch die Dichtematrizen für den ersten Anregungs-
zustand untersucht. Die Dichtematrix-Spektren sind sehr ähnlich wie beim
Grundzustand. Die Methode kann auch auf die Transfermatrix des zweidi-
mensionalen Isingmodell angewandt werden. Die Spektren dafür sind sehr
ähnlich zu denen für das transversale Isingmodell. Dies ist sehr plausibel,
da die Transfermatrix in engem Zusammenhang mit dem Hamiltonopera-
tor der transversalen Isingkette steht. Die Dichtematrix–Spektren für die
XX–Spinkette zeigen die Eigenschaften für ein kritisches Modell. Für die
XY–Kette wird die Unordnungslinie, wo der Grundzustand zweifach ent-
artet ist, durch das Dichtematrix-Spektrum betrachtet. Wenn man sich
der Linie nähert, fällt das ganze Spektrum zusammen.

Das wichtigste Ergebnis bezieht sich auf die Dichtematrizen für zwei-
dimensionale Systeme. In den Kapiteln 3 und 5 habe ich zweidimension-
ale gekoppelte Oszillatoren und Tight-Binding-Modelle untersucht. Die
resultierenden Spektren haben beide die gleiche Eigenschaft: sie fallen
sehr langsam ab. Das Gleiche gilt auch für die Abschneidefehler. Für
die Oszillatoren wird die Abhängigkeit der Dichtematrix-Spektren von
der Breite des Systems besprochen. Anhand der Spektren sieht man
die zunehmenden Schwierigkeiten bei der Berechnung des Eigenwertes
für den Grundzustand, wenn das System immer zweidimensionaler wird.
Diese Beobachtung stimmt mit aktuellen DMRG-Berechnungen für zwei-
dimensionale Systeme überein. Zum Beispiel wurden bei einer vor kurzem
von White und Scalapino publizierten Untersuchung des t–J–Modells auf
einem 12 × 12 Gitter 4000 Zustände verwendet. Im Falle des zweidimen-
sionalen Tight–Binding–Modells wird die Abhängigkeit der Dichtematrix–
Spektren von verschiedenen Arten der Zerlegungen des Gitters studiert.
Es zeigt sich, daß der langsame Abfall im Zusammenhang mit der Existenz
von langen Grenzen zwischen den zwei Teilen der Systeme steht.

Außer der Grundbetrachtung der DMRG–Methode habe ich in Kapitel
6 diese Methodik auch für ein Problem der statistischen Physik verwen-
det, nämlich für die Isingebene mit linieförmigen Defekten. In diesem Fall
benutzt man die Tranfermatrix und deren Eigenfunktionen statt eines
Hamiltonoperators. Um die lokale spontane Magnetisierung genau zu
berechnen, braucht man zunehmend größere Systeme, wenn man sich
dem kritischen Punkt annähert. Wegen der günstigen Eigenschaft des
Dichtematrix–Spektrums ist das in diesem Fall mit einer mäßigen Anzahl
von Zuständen möglich. Auf diese Weise wurde der nicht–universelle mag-
netische Exponent βl als Funktion der lokalen Kopplungen für mehrere
Arten von Defekten bestimmt.
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Chapter 1

Introduction

The Density Matrix Renormalization Group (DMRG) [1, 2, 3], developed
by S. R. White in 1992, provides a numerical method for finding accu-
rate approximations to the ground state and low-lying excited states of
one-dimensional quantum systems. In treating such systems, the most im-
portant limitation for numerical calculations in finite systems is that the
number of states grows exponentially with the system size. For small sys-
tems, one can still diagonalize the Hamiltonian exactly, while for reaching
larger systems, other methods must be introduced such as Monte Carlo
methods [4, 5, 6]. The disadvantage of the Monte-Carlo is that the ac-
curacy is limited because of the statistical error. By contrast, DMRG
is not limited to small sizes and is remarkable in the accuracy that can
be reached for one-dimensional systems. A good example is the ground-
state energy of the spin-one Heisenberg chain: for a system of hundreds
of sites a precision of 10−10 can be achieved [1, 2]. Using DMRG, one
can calculate not only energies of the ground state and low-lying excited
states but also correlation functions, which are difficult to obtain from
other methods. One can also extend the method to transfer matrices for
two-dimensional classical systems [7], and to one-dimensional quantum
systems at finite temperature [9, 8, 10]. Because of these features of the
DMRG, it has been applied to various one-dimensional systems and prob-
lems, for example, spin chains, disordered models, fermionic and bosonic
systems, impurities, phonons, the calculation of dynamical properties, etc
[3].

DMRG follows the main idea of Wilson’s RG treatment of impurity
problems [11] and was originally developed to overcome the problems that
arose in one dimension when real-space RG procedures were applied to
interacting systems. The basic idea of real-space RG procedures is that
one enlarges a system step by step from a small one by using a constant
number of important states instead of all states, so that the computational
effort required for each step stays the same. Now the question arises, which
states one has to choose to represent the most important information for
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CHAPTER 1. INTRODUCTION

a system. In Wilson’s RG procedure one uses the m eigenstates of lowest
energy. In spite of its success for Kondo and Anderson impurity problems,
this procedure gave poor results when it was applied to several interacting
quantum systems [12, 13, 14, 15]. White perceived that the main source of
error comes from the selection of eigenstates via the Hamiltonian, because
these eigenstates will have nodes at the boundaries, which would not be
present in the enlarged system. He suggested that one should take the
environment into account and use the eigenstates of the reduced density
matrix as basis states.

The success of the DMRG in treating one-dimensional quantum sys-
tems is closely related to the properties of the density matrices. This can
be seen as follows. In DMRG, one first constructs a system of size L, from
which one obtains the reduced density matrix for a block of size L/2. Now
only the eigenfunctions of the largest eigenvalues wn of the reduced den-
sity matrix are selected as the optimal basis. Using this basis, one builds
a system of size L+ 2. (I will discuss the details in chapter 2.) Therefore
the accuracy of the DMRG calculation depends on the reduced density-
matrix spectra. If the eigenvalue spectrum drops rapidly, the DMRG will
essentially work well, because most eigenfunctions with small eigenvalue
will not influence the result much. For the quantum chains this is indeed
the case. The numerical calculations show a roughly exponential decrease
of the eigenvalues [2, 16].

Since the character of the density matrix spectra is the important in-
gredient for the numerical calculations, the question arises whether such
spectra can be obtained explicitly for some solvable models. For non-
critical systems this is possible by using the relation between the density
matrices of quantum chains and the corner transfer matrices (CTMs) [17]
of the associated two-dimensional classical problems. In this way, the
spectra for the transverse Ising chain [18] and the XXZ Heisenberg chain
[18] could be determined in the thermodynamic limit and compared with
DMRG calculations. In these cases, the density matrices have simple an-
alytic expressions and the spectra are strictly exponential functions apart
from degeneracies. This does not hold for the chiral three-state Potts
chain [19], or for nonintegrable models [20, 21], but qualitatively the spec-
tra are similar. The CTM approach is limited to large noncritical systems
and cannot be used for finite or critical systems. Therefore an alternative
approach is necessary by which one can treat solvable systems of arbitrary
size.

First I will consider bosons. Compared with the case of spins and
fermions, relatively few DMRG studies have dealt with bosons [22]-[32].
The Hilbert space for bosons on one site has already infinite dimension,
which differs from the case of fermion or spin systems. Therefore, any
numerical treatment has to start with a truncation. As pointed out by
White et al. [25], one can do this analogously to the DMRG procedure

10



by selecting optimal states through the density matrix for a single site.
It is interesting to find this quantity in a solvable case due to the infinite
number of eigenstates in a full treatment. The same holds, of course, for
the more complicated density matrix of a half-chain which is used in the
DMRG algorithm.

There are some advantages in studying coupled harmonic oscillators
as an example for bosons. The model is integrable and solvable in any
number of dimensions, and the ground state can be written down easily
as a Gaussian form of the coordinates. Therefore the reduced density
matrix for any partition of the system can be found, as will be seen, by
integrating out some of the coordinates. Consequently, arbitrary reduced
density matrices for coupled oscillators have the general form exp (−H).
The operator H describes a collection of noninteracting oscillators with
single-particle eigenvalues εl. One can obtain εl from the eigenvalues of
an M ×M matrix, where M is the number of oscillators in the chosen
subsystem. In general, the εl have to be calculated numerically.

Since the density-matrix spectra for the oscillators can be obtained
explicitly, one can study the physical content related directly to the spectra
and numerics. The optimal basis for one site, obtained numerically in the
case of an electron-phonon system by Jeckelmann and White [25], can be
analyzed analytically for oscillators. In addition, one can even use these
analytically obtained bases in the numerics. In particular, one can find
the density matrices for a half system because in the DMRG algorithm
they are used.

As for the transverse Ising chain, the thermodynamic limit of the re-
duced density matrices for coupled oscillators can be obtained from a cor-
ner transfer matrix (CTM). The related classical model in this case is the
Gaussian model in two dimensions. Those results can also be compared
with the single-particle eigenvalues extracted from the M ×M matrices
and they show very good agreement.

Other interesting features for oscillators will be discussed in this con-
text. One of them is the problem of boundary conditions. Although peri-
odic and open boundary conditions are both utilized in the DMRG calcu-
lation, one normally works with open boundary conditions. This is due to
the fact that the reduced density-matrix spectra for open boundaries drop
much more rapidly than for periodic boundary conditions and thereby
give a faster convergence. With the explicit single-particle eigenvalues of
the density matrices for the oscillators, one can obtain the density-matrix
spectra for the OBC and PBC analytically. One interesting feature is that
one can understand the physics from the single-particle eigenvalues very
well. For example, the almost two-fold degeneracies in the single-particles
eigenvalues for periodic boundary conditions represent the two interfaces
between the subsystem and environment. This leads to the logarithmically
two-fold slower drop of the density-matrix spectra compared to those for
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CHAPTER 1. INTRODUCTION

the open boundaries. This is the reason why periodic boundary conditions
are less advantageous than open boundaries. In addition, one can investi-
gate different kinds of couplings for the oscillators, especially long-range
interactions. Specifically next-nearest-neighbor couplings and exponential
couplings will be studied. Again, the single-particle eigenvalues give an
impression on the physics for such systems.

However, the oscillators are only one example of a solvable bosonic
system. In general, such a model is described by a Hamiltonian which
can be written as a quadratic form of creation and annihilation operators.
Then the question arises if one can also treat such a problem. This is
indeed possible with a different approach which uses coherent states. As
will be seen, the ground state for such bosonic systems can be written as
an exponential function of creation operators acting on the vacuum. As a
result, the reduced density matrices can be obtained by using the coherent
states to integrate out the other variables. The single-particle eigenvalues
εl can again be obtained from the eigenvalues of an M ×M matrix. For
the oscillators this matrix differs from the previous one, but the resulting
εl are the same as before.

The advantage of this method is that one can generalize it to the anal-
ogous fermionic systems. Using the coherent states for fermions connected
via Grassmann variables and fermionic creation operators, arbitrary re-
duced density matrices can be calculated exactly and also have the general
form exp (−H) as for bosons. In contrast to the bosonic case, the operator
H describes now a collective of noninteracting fermions with single-particle
eigenvalues εl. The εl, which determine the properties of the spectrum,
also follow from the eigenvalue of an M ×M matrix. Using this method,
the reduced density matrices for the transverse Ising chain, which can be
viewed as a fermionic model, can be found for all sizes and parameters.
The gradual change of the reduced density matrices as one approaches
the critical point can be analyzed via the single-particle eigenvalues. Also
the properties of the spectra at the critical point can be studied. Another
one-dimensional fermion problem, namely the spin one-half XY chain in
a field, is interesting because it has a disorder point where the ground
state simplifies and the spectrum collapses. This is seen directly in the
single-particle spectra.

So far, the DMRG method has been applied to some two-dimensional
systems [33, 34], but the results are not convincing, because only small
sizes can be reached (for t − J model 12 × 12 lattice has been reached
[33]). The situation has been discussed in some detail for free fermions
[35] and for the transverse Ising model [36]. It is found that, if one couples
one-dimensional chains to form ladders, the number m of states one needs
to maintain a certain accuracy grows exponentially with the width of the
system. This was derived either from the limit of noninteracting chains, or
from numerical calculations. The spectra themselves, however, have not
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been discussed so far, although they are the essential of the problem. In
one dimension one can obtain very accurate results because the density-
matrix spectra usually drop rapidly. In two dimensions, on the other
hand, they decrease very slowly. To see this, one can apply our methods
to some solvable two-dimensional models. This is possible because the
dimensionality of the system plays no essential role in the treatment. The
coupled oscillators and the tight-binding model are good examples for
bosonic and fermionic systems. These systems can serve as test cases
to see if one can put the DMRG into practice for the two-dimensional
systems. It will be shown that the spectra for these examples drop slowly,
and one needs many more states to obtain a good accuracy.

On can also apply the DMRG to problems from statistical physics, for
example two-dimensional classical systems. In this case one has to work
with transfer matrices and their eigenfunctions instead of a Hamiltonian.
Because transfer matrices here are one-dimensional operators, one can
use the DMRG to calculate them [7]. We will do this for the planar Ising
model with line-like defects. This system is unusual because its magnetic
exponent βl is non-universal. Bariev has obtained βl for the Ising plane
with chain and ladder defects analytically [37] because such systems are
integrable and solvable free fermion problems. For the nonintegrable case,
for example the Ising plane with one or two additional lines of spins, one
can use transfer-matrix DMRG to obtain the spontaneous magnetizations.
From that, the non-universal magnetic exponent βl can be determined as
a function of the local couplings of the defect. In our calculation, it could
be determined with an accuracy of 10−4. This demonstrates that DMRG
is a good method to calculate the critical properties.

I begin, in chapter 2, by discussing the DMRG algorithms. The
infinite-system algorithm and finite-system algorithm will be introduced.
In chapter 3, coupled oscillators in one and two dimensions will be dis-
cussed in detail. At the beginning I will show how one can obtain the
reduced density matrices using the coordinate representation. The result-
ing spectra will be presented in a number of figures. The spectra in the
thermodynamic limit and for various boundaries will also be considered.
At the end of this chapter I will discuss the difficulties of the DMRG if the
systems become more two-dimensional. As a bridge between bosonic and
fermionic systems, I will consider the coherent-state treatment for solv-
able bosons in chapter 4. In chapter 5 the solvable fermionic systems in
one and two dimension will be the subject. I will first consider transverse
Ising chains. The spectra for XX spin chains and XY spin chains in a
transversal field will be shown in section 5.2. In section 5.3 I will intro-
duce the density matrices for the two-dimensional tight-binding model.
As an application, in chapter 6, the Ising plane with line-like defects will
be treated using the transfer-matrix DMRG. The transfer-matrix DMRG
will be introduced briefly and the physical quantities calculated from the
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method will be shown. Chapter 7, finally, contains a summary of the main
results. Some technical details can be found in the appendices.
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Chapter 2

Density-Matrix

Renormalization Group

In this chapter, I will briefly introduce the DMRG algorithms. More
details can be found in the reference [3].

2.1 Density Matrices

The main difficulty in finding accurate expressions for the ground states
and the low-lying exited states results from the fact that the number of the
states grows exponentially with sizes. To diagonalize a system of L spinless
fermions, one needs 2L states. Such calculations can be accomplished for
small L, nevertheless, the calculation will rapidly exceed the capacity of
the computer. The situation is even worse for bosonic systems, due to the
fact that the Hilbert space on a site is infinite. In order to overcome the
difficulty, the renormalization-group algorithm in the coordinate space
to solve the Kondo problem was proposed by Wilson [Wilson]. In this
treatment an isolated block with size l is chosen that the Hamiltonian can
be diagonalized exactly. Using the m low-energy eigenstates obtained for
a system of size l, one adds a site to that and builds a block of size l + 1.
In this way one can enlarge a system. Typically, the number of states m is
kept constant, so the time and memory required for each diagonalization is
held the same. One does not have to face the problem of the exponentially
increasing number of states.

Except for the Kondo and Anderson impurity problems, which include
an intrinsic separation of energy scales, Wilson’s RG procedure worked
poorly when applied to other systems such as the one-dimensional Heisen-
berg or Hubbard models [12, 13]. The main source of error come from the
boundaries. In Wilson’s treatment one chooses eigenstates of the Hamil-
tonian of size l as representative states of a superblock. Since this Hamil-
tonian has no connection to the added site, its eigenstates may have un-
wanted features (like nodes) at the end of the block and this cannot be
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| i > | j >

superblock

system environment

Figure 2.1: A superblock divided into a system block and an environment block

improved by increasing the number of kept states. Therefore an another
RG procedure, where in the selected eigenfunctions the boundaries are
considered, is needed.

White proposed a new algorithm - density-matrix renormalization group
(DMRG) to solve such chain problems. Different from the Wilson’s treat-
ment, a system is only divided into two parts and the eigenfunctions of the
reduced density matrices are used instead of those of the Hamiltonian. In
this procedure the boundary effect is automatically included and therefore
it gives good accuracies in the calculations.

To see the method clearly, I will introduce the principle of DMRG.
The question is as follows: How can one find the best kept states used to
enlarge the system? To construct these states, the entire system labelled
the superblock is divided into a system block and an environment block
(see Fig. 2.1). Let | i〉 label the states of the system block, and | j〉 label
the states of the environment block. If ψ is a state of the superblock,

| ψ〉 =
∑

ij

ψij | i〉 | j〉. (2.1)

The density matrix is then

ρ =| ψ〉〈ψ | . (2.2)

The reduced density matrix for the system is defined as

ρ1 = Trjρ =
∑

j

ψ∗
ijψi′j | i〉〈i′ | . (2.3)

If ρ is chosen to be normalized, ρ1 is automatically normalized. The matrix
elements of reduced density matrix thus have the form

[ρ1]ii′ =
∑

j

ψ∗
ijψi′j. (2.4)

16



2.2. DMRG ALGORITHMS

The reduced density matrix has all the information needed from the wave-
function ψ to calculate any properties restricted to the system block. For
example, if operator A acts only on the system block, its expectation value
is given by

〈A〉 = Trρ1A =
∑

ii′

Aii′ [ρ1]i′i. (2.5)

Now one is searching for the best representative eigenstates for ρ1,
that can be reached by diagonalizing ρ1. Let ρ1 have eigenstates | uα〉 and
eigenvalues wα ≥ 0 with the descending arrangement. The normalization
of ρ1 means

∑

α wα = 1. Hence for any system block operator A,

〈A〉 =
∑

α

wα〈uα | A | uα〉. (2.6)

Choosing only the m eigenstates with the largest eigenvalues wα, the ex-
pectation value of A becomes

〈A〉t =
m
∑

α=1

wα〈uα | A | uα〉. (2.7)

Thus the error of the expectation value is given as

δ〈A〉 = 〈A〉 − 〈A〉t =
∑

α>m

wα〈uα | A | uα〉. (2.8)

By defining the largest value of |〈uα | A|uα〉 | to be Al, then δ〈A〉 corre-
sponds to the relation

|δ〈A〉| ≤ Al(1 −
m
∑

α=1

wα). (2.9)

Therefore the error depends on the quantity

P = 1 −
m
∑

α=1

wα (2.10)

defined as the truncation error. Throwing away states with small eigen-
values wα, we make little errors in 〈A〉 as long as P is small. Thus those
states {| uα〉, α ≤ m} give the best representative ones for the system
block.

2.2 DMRG Algorithms

In the last section, I described how to use reduced density matrices to
construct the kept states. In this section, I will consider how to enlarge
systems by adding degrees of freedom to the system.
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H l
L

H l
R

H l+1
L

Figure 2.2: The superblock configuration for the infinite-system algorithm

One usually starts the DMRG algorithm with L = 4, then increases
the its size (to L+ 2, L+ 4, . . .) until the desired length is reached. There
are two algorithms to enlarge the systems: the infinite-system algorithm
and finite-system one, depending on how the environment block is chosen.
I will discuss these algorithm in details below.

Using DMRG, one can find the properties for ground states and for
the first few excited states. The superblock state or states used to form
the reduced density matrix for the system block are called target states.
If only ground state properties are desired, one uses the ground state as a
target, otherwise more states are used. For simplicity, I will assume that
only the ground state is targeted in the following.

2.2.1 The Infinite-System Algorithm

The straightforward way to extend the Wilson procedure is the infinite
system algorithm. By tracing out the environment block or the system
block and using m states for the superblock of size l, one forms the Hamil-
tonian H̃L

l for the system block in the reduced basis and the one H̃R
l for

the environment block. These two Hamiltonians are used to form the
superblock of size l + 2. This superblock configuration is shown in Fig.
2.2, where the solid dots represent single sites. Note that in the homo-
geneous and hermitian systems the H̃R

l is a reflection of the H̃L
l , which

can be formed by relabeling the sites in the system block so that they are
reflected onto the right part of the lattice.

The infinite-system algorithm then proceeds as follows:

1. Form a small superblock of size L which is small enough to be exactly
diagonalized. For the beginning, L = 4 is preferable.

2. Diagonalize the superblock Hamiltonian Hsuper
L numerically, giving

the ground state | Φ0〉.

3. Form the reduced density matrix ρ1 using (2.3).

4. Diagonalize ρ1 to obtain the m eigenvectors with the largest eigen-
values.

5. Construct HL
l+1 and other operators in the new system block.
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6. Transform the HL
l+1 and the operators to the reduced density matrix

eigenbasis using

H̃L
l+1 = Õ†

LH
L
l+1ÕL

ÃL
l+1 = Õ†

LA
L
l+1ÕL (2.11)

etc., where ÕL only contains the m highest eigenvectors of ρ1, and
Al+1 is an operator in the system block with size l + 1.

7. Repeat steps 3-6 for the environment block to form H̃R
l+1 and related

operators for the environment block.

8. Form a superblock of size L+2 with H̃L
l+1, H̃

R
l+1 and two single sites.

9. Repeat starting with step 2, substituting Hsuper
L+2 for Hsuper

L .

The measurement in the reduced eigenbasis should be mentioned here.
Measurements are made using the superblock wavefunction | ψ〉 to eval-
uate expectation values. To measure an on-site operator Al on the l-th
site, for example, the expectation value of Al is given as

〈ψ | Al | ψ〉 =
∑

i,i′,j

ψ∗
ij[Al]ii′ψi′j. (2.12)

For a correlation function such as 〈ψ | AlAm | ψ〉, the evaluation depends
on whether l and m are on the same block or not. If they are on the
different blocks, the correlation value can be expressed as

〈ψ | AlAm | ψ〉 =
∑

i,i′,j,j′

ψ∗
ij[Al]ii′[Am]jj′ψi′j′. (2.13)

If l and m are not on the same block, one should not only have kept track
of [Al]ii′ and [Am]i′i′′ as in (2.13), but needs to have kept track of [AlAm]ii′
throughout the calculation, and one has

〈ψ | AlAm | ψ〉 =
∑

i,i′,j′

ψ∗
ij[AlAm]ii′ψi′j′. (2.14)

The reason is that if one would like to evaluate the correlation value of two
operators from the two independent measurements of them, it is needed
to separate them with a complete basis. Since an incomplete reduced
eigenbasis has been chosen in the algorithm, the Eqn. (2.14) is needed to
obtain the correlation function.

In the infinite-system algorithm, one makes an approximation that the
reduced density matrix for the system block of size L offers a good basis for
the construction of the superblock with the size L+2. This assumption is
true for the homogeneous systems with the size much larger than the cor-
relation length, but for some other systems one needs a sweeping process
to improve the accuracy, this is so-called the finite-system algorithm.
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H l+1
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(b)

Figure 2.3: The superblock configuration for the finite-system algorithm, (a)a left to
right sweeping process (b) a right to left sweeping process.

2.2.2 The Finite-System Algorithm

To improve the accuracy for the systems with finite sizes, the finite sys-
tem algorithm is used. The difference between the infinite-system and
finite-system algorithm is how to choose the environment block to form a
superblock. In the finite-system algorithm, it is chosen so that the size of
the superblock is maintained fixed at each step. Having run the infinite-
system algorithm until the superblock reaches size L and having stored all
the H̃L

l and H̃R
l′ for l, l′ = 1, . . . , L/2 − 2 as well as the all the additional

operators needed to connect the block at each steps, one can continue to
build up the system block, but keep L = l + l′ + 2 fixed by using the
appropriate previously stored H̃R

l′ . The finite-system algorithm then is
described below (see also Fig. 2.3):

1. Carry out the infinite-system algorithm until the superblock reaches
size L, storing H̃L

l , H̃R
l′ and the operators needed to connect the

blocks at each step.

2. Carry out step 3-6 of the infinite-system algorithm to obtain H̃L
l+1.

Store it.

3. Using H̃L
l+1, two single sites and H̃R

l′−1 (l′ = l), form a superblock of

size L. Store H̃L
l+2 and needed operators.

4. Repeat steps 2-3 until l = L − 3 (l′ = 1). This is the left to right
sweeping of the algorithm.

5. Form a superblock of size L using H̃L
L−l′−2, two single sites and H̃R

l′ .
Start with l′ = 1.

6. Interchanging the role of H̃L
l and H̃R

l′ , carry out 5-6 of the infinite-
system algorithm to obtain H̃R

l′+1. Store it.

7. Repeat steps 5-6 until l = 1. This is the right to left sweeping of the
algorithm.

20



2.3. DENSITY-MATRIX SPECTRA

8. Repeat starting with step 2 and l = 1.

If reflection symmetry is present, one only needs to run the left to right
sweeping. The right to left sweeping is identical to the left to right.

Now the question is: How much can the sweeping procedure improve
the accuracy? White and Noack [38] investigated the ground-state energy
of the one-dimensional Hubbard model, compared with the exact solution
obtained from the Bethe Ansatz. They showed that the improvement of
the accuracy depends not only on the iteration, but also on the number
m of states one uses. With more kept states, the sweeping procedure can
increase the precision more easily through the iteration. For some other
systems such as inhomogeneous chains and the two-dimensional lattices,
the sweeping is absolutely needed. The sweeping can lower the inaccuracy
caused by the unsymmetry of the systems in the infinite-system algorithm.

2.3 Density-Matrix Spectra

In this section I would like to emphasize the importance of the density-
matrix spectra. From Eqn. (2.9), one can see that the problem whether
DMRG can give a good accuracy depends on the reduced density-matrix
spectra. The spectra determine how many states one can leave out in the
calculation. For example, if the spectrum for a system drops rapidly, one
can use relatively few states to achieve a good accuracy in the calculation.
The reason is that then most states have relative small eigenvalues and
influence the calculation barely. On the other hand, for a slowly decreasing
spectrum, many more states have to be used. Such systems will cause
computational problems.

Using the spectra, one can explain some aspects of DMRG. For ex-
ample, the calculations for critical systems are more difficult than those
for systems far from the critical points. Computing the density-matrix
spectra, those for critical systems fall more slowly than the systems not in
the critical point. Another example is the periodic boundary condition.
The reason why in the DMRG calculation open boundary conditions are
used more than periodic ones is that one needs to use almost quadratically
more states in the calculations for the PBC than for the OBC to reach the
same precision. Though this is known that in the PBC one has two cuts
with the environment instead of one cut in the OBC [39], but the corre-
sponding density-matrix spectra were not shown. With these spectra, one
can easily explain such phenomena.

Some authors have tried to use DMRG to calculate the two-dimensional
systems [33, 34, 36, 35] but by now only small systems can be reached.
The most difficult problem one has met is that a very large number of
kept states have to be used. For example, for a t− J models with 12× 12
lattice, White used 4000 states to obtain better results [33]. This difficulty
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will be reflected in the density-matrix spectra. The spectra will decrease
much more slowly than one-dimensional systems. We can conclude that
if one tries to check the density-matrix spectra in the calculation one can
obtain an impression on how difficult the calculation will be.

For some solvable models, the density-matrix spectra can be calculated
not only numerically but also analytically. In the next three chapters I
would like to show the analytical density-matrix spectra of solvable mod-
els in the different situations mentioned above. The most important is
that one can also obtain the spectra for two-dimensional systems such as
coupled oscillators and tight-binding models. Those spectra will give us
some hints for computing the two-dimensional quantum systems. I will
discuss these aspects in detail in the next chapters.
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Chapter 3

Coupled Oscillators

Boson systems are a challenge for the DMRG because they differ from
spin and fermion systems in that the full Hilbert space is infinite, even for
a single site. Therefore, it is necessary to start with a truncation, which is
analogous to the DMRG procedure by choosing infinite local bases via the
density matrix for one site [25]. Nevertheless, a nontrivial quantity with
an infinite number of eigenstates must be treated. It is thus interesting
to find the desired properties in a solvable case. In this chapter, I will
consider interacting oscillators [40, 41].

The Hamiltonian of interacting oscillators can be written as

H =
∑

i

(

−1

2

∂2

∂u2
i

+
1

2
ω2

0u
2
i

)

+
∑

i,j

1

2
kij(ui − uj)

2, (3.1)

where ui is the coordinate of the i-th oscillator and ω0 its frequency. The
masses are all equal to unity and the oscillators are coupled by springs
of strength kij. One can diagonalize H with two methods: The first one
is using normal coordinates, with which one can immediately write down
the ground-state function. The second one is using the bosonic operators
and the Bogoliubov transformation. In this chapter I will concentrate on
the coordinate representation and on the ground-state properties. In the
next chapter, I will consider more general results for the excited states
using the bosonic operators.

In section 3.1 the density matrix ρsg for one oscillator is first considered.
As will be seen, ρsg can be written as the exponential of the Hamiltonian of
a (new) harmonic oscillator. In section 3.2 I consider the reduced density
matrix ρ1 for an arbitrary division of subsystem block and environment
block. This is shown to have an exponential form consisting of the same
number of bosonic operators as the system block.

In the first four sections I discuss an important example,namely open
chains of nearest-neighbor coupled oscillators. In this case we will use
the form ω0 = 1 − k, so that for k = 0 there is no dispersion, while for
k → 1 the system becomes acoustic and has infinite correlation length,
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that means, the system is critical. In section 3.2 the density matrix ρh

for one half chain is obtained. I discuss here also the difference between
periodic and open boundaries. The result in the thermodynamic limit is
derived in section 3.3 by relating the chain to a massive two-dimensional
Gaussian model and its corner transfer matrices (CTMs). The result is
similar to the spin chains, considered by Peschel et al. in [42], which gives
an exponential form consisting of fermionic operators instead of bosonic
ones. In section 3.4 I first discuss the squeezed states which are related to
the eigenstates of ρsg and use them in the numerical calculations to obtain
the spectra of ρh. We can see in this section, how the squeezed(optimal)
states emerge in the spectra.

Since the method discussed here can be applied to harmonic oscilla-
tors with any kind of interaction and in an arbitrary dimension , we can
extend it to various physically interesting phonon systems. In section 3.5
I discuss oscillators with next-nearest-neighbor couplings and exponential
ones. DMRG calculations in two dimensions have been discussed in several
papers [33, 34, 36, 35]. It is found that one has to keep many more states
to obtain a certain accuracy. Section 3.6 contains the two-dimensional
density-matrix spectra and a discussion of the reason for the difficulties
in the two-dimensional systems.

3.1 Density Matrix for One Oscillator

3.1.1 Density Matrix for Ground State

At the beginning we consider the case where one oscillator is singled out
and all others form the environment. The previous authors have numer-
ically determined the corresponding density matrix in the study of an
electron-phonon system [25], however, here it can be obtained analyti-
cally.

We consider now a system with L oscillators. The coordinate repre-
sentation of the ground state of H in (1) can be written as

Ψ(u) = 〈u | Ψ〉

= C · exp (−1

2

∑

ij

Ag
ijuiuj), (3.2)

where ui is the coordinate of the ith oscillator and u = (u1, u2, · · · , uL).
The matrix

Ag
ij =

∑

q

ωqφq(i)φq(j) (3.3)

is determined by the frequencies ωq and the eigenvectors φq(i) of the nor-
mal modes. From the definition of the total density matrix

ρ =| Ψ〉〈Ψ |, (3.4)
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one can form matrix elements in the coordinate space

ρ(u,u
�

) = 〈u | ρ | u
� 〉

= Ψ(u)Ψ(u
�

). (3.5)

Then the reduced density matrix for oscillator l can be found by integrat-
ing over all other coordinates ui = u′i. This can be done explicitly since
(3.2) is a quadratic form in the ui and leads to

ρsg(ul, u
′
l) = Csg exp

(

−1

2
(a− b)u2

l

)

exp

(

− b
4
(ul − u′l)

2

)

× exp

(

−1

2
(a− b)u′l

2

)

(3.6)

with the constants

a = Ag
ll

b =
∑

i,j 6=l

Ag
li [Ag

(l)]
−1
ij Ag

jl, (3.7)

where Ag
(l) is the matrix obtained from Ag by deleting the l-th row and

column.
The operator form of the reduced density matrix ρsg can be constructed

in the following way. The left and right parts of the Eqn. (3.6) are merely
the same exponential form with coordinate operator ul because the ma-
trix elements are formed between two coordinate eigenstates. On the
other hand, the second exponential can be transformed into a differential
operator using the relation

√

b

2
exp

(

− b
4
(ul − u′l)

2

)

= 〈ul | exp

(

1

b

∂2

∂u2
l

)

| u′l〉 (3.8)

which can be obtained by differentiating the δ function 〈ul | u′l〉 of Eqn.
(3.8) in the Fourier space and integrate it out (for the details and some
other aspects see the appendix A). Thus ρsg can be found as

ρsg = C2 · exp

(

−1

4
ω2y2

)

exp

(

1

2

∂2

∂y2

)

exp

(

−1

4
ω2y2

)

(3.9)

where y2 = bu2
l /2 and ω2/4 = (a/b− 1). In terms of the Bose operator

α =

√

ω

2
y +

1√
2ω

∂

∂y
, α† =

√

ω

2
y − 1√

2ω

∂

∂y
, (3.10)

ρsg reads

ρsg = C3 · exp
(

−ω
8

(α + α†)2
)

exp
(ω

4
(α− α†)2

)

exp
(

−ω
8

(α + α†)2
)

. (3.11)
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One can diagonalize ρsg with a proper Bogoliubov transformation

β = cosh θ · α + sinh θ · α†, (3.12)

where the parameter θ is obtained by the equation

eθ =

(

1 +
ω2

4

)1/4

. (3.13)

Finally, ρsg has the diagonal form

ρsg = Ksg · exp (−H ), (3.14)

where
H = ε β† β (3.15)

is the Hamiltonian of a harmonic oscillator with energy

ε = 2 sinh−1(
ω

2
) = 2 sinh−1

(

√

a/b− 1
)

. (3.16)

ε will be called the single-particle eigenvalue for the reduced density-
matrix ρsg. The eigenvalues of ρsg are then wj = Ksge

−εj, j ≥ 0, where
the constant Ksg can be found from the sum rule Tr(ρsg) =

∑

j wj = 1.
The density-matrix spectrum for one oscillator at a certain site de-

pends only on the ratio a/b, which contains all of the information about
the system and can be obtained from the equations (3.7). It is completely
general, whatever the system is. For example, we can deal with inhomoge-
neous oscillating systems as well as homogeneous ones, or oscillators with
long-range interactions.

3.1.2 Open Chain

In this subsection, we consider an open chain of next neighbor coupled
oscillators with the same coupling k. The Hamiltonian has the form

H1 =
L
∑

i=1

(

−1

2

∂2

∂x2
i

+
1

2
ω2

0 x
2
i

)

+
L−1
∑

i=1

1

2
k (xi+1 − xi)

2. (3.17)

The simplest case is one for the two couple oscillators, where single-particle
eigenvalue reads

ε = 2 sinh−1
(

√

4ω1ω2/(ω1 − ω2)2
)

, (3.18)

or, equivalently,

ε = ln
(

coth2(
η

2
)
)

, (3.19)
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Figure 3.1: Eigenvalue ε in the density matrix for an oscillator at the end of a chain,
as a function of k for different lengths L and ω0 = 1 − k

where ω1 = ω0 , ω2 =
√

ω2
0 + 2k are the two eigenfrequencies and e2η =

ω2/ω1. This is the result obtained in [43] in a different way.

In Fig. 3.1, ε calculated at the end of a chain with size L is plotted
as a function of k, putting ω0 = (1 − k). Displayed are the calculated
curves with different sizes L. The two limits k → 0 and k → 1 are
physically interesting. In the case of k → 0, ε diverges logarithmically
and all eigenvalues of ρsg except one go to zero, which represents the fact
that the oscillators decouple from each other. In this limit, | Ψ〉 becomes
a product state composed of only one-oscillator state with the frequency
ω0 at different sites. Integrating out the variables at the other sites, which
gives only a constant, a one-oscillator state is left and it has only one
non-zero eigenvalue w0 = 1. On the other hand, if k → 1, ε goes to zero
as

√
1 − k and the eigenvalues wn decrease very slowly, which corresponds

to the systems with strong couplings. At this critical point, the ground-
state eigenfunction is independent of the center of mass motion, and this
is a synchronized mode, thereby giving an unnormalized eigenfunction.
The density matrix therefore is also unnormalized. This singularity gives
ε = 0. For the cases L = 2 and L = 3, one can obtain the features
analytically, however, all other cases also own the same features. In Fig.
3.1, two addition cases, L = 10 and L = 100 are shown. One should
note that the difference between L = 10 and L = 100 is very small in
the beginning, but it becomes larger as k exceed 0.8. This results from
the relative larger correlation length compared with the size L as k → 1.
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Figure 3.2: Eigenvalue ε as a function of the position of the oscillator, for a chain of
L = 30 sites and three different values of k.

However, the limit L → ∞, which is approached exponentially in L with
the correlation function, is indistinguishable from L = 100 on the given
scale.

The relation between ε and the position along the chains is investi-
gated in Fig. 3.2, where different curves with various k are plotted. ε is
relatively larger at the end, which reflects the fact that the influence of
the surrounding here is smaller. It drops at the second site but rises to
the bulk values. How fast it rises depends on the value of k. If k is small,
it raises rapidly to the expected values, on the other hand, if k becomes
larger, the approach slows down owing to the increased correlation length.
The overall differences in the ε-values are not very large, though, as seen
in Fig. 3.2.

The result which we obtain here can be used to construct the optimal
bases for the numerical calculation. What we should do is to squeeze the
uncoupled states in order that one can efficiently carry out the DMRG
calculation only with the first few states. The details will be discussed in
section 3.4.
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3.2 Density Matrix for Arbitrary Partitions

3.2.1 Diagonalization of the Density Matrix

In the last section, we have considered the density-matrix spectrum for one
oscillator under the influence of the other oscillators. In this section, we
will describe how to calculate the density-matrix spectra for an arbitrary
division subsystem.

Separating the oscillators into two parts, the system part 1 and the
environment part 2, and integrating out the environment part of coordi-
nate of the total density matrix ρ in (3.5), one obtains the reduced density
matrix

ρ1(u1,u
�

1) = C4 · exp

(

−1

2
uT

1 (A − B)u1

)

exp

(

1

4
(u1 − u

�

1)
T B(u1 − u

�

1)

)

exp

(

−1

2
u

� T
1 (A − B)u

�

1

)

, (3.20)

where the vectors u1 = (u1, u1, · · · ) and u′
1 = (u′1, u

′
2, · · · ) are composed

only of the coordinate ui of the system part 1 and the matrices A, B can
be determined by the equations

A = ag
11

B = ag
12(a

g
22)

−1ag
21 (3.21)

with the four submatrices ag
11, a

g
12, a

g
21, a

g
22 of Ag in (3.2). The submatrices

ag
αβ, α, β = 1, 2 contain the matrix elements of matrix Ag

ij which i belongs
to the part α and j belongs to the part β. In other words, one divides
the matrix Ag into four submatrices ag

αβ, according to whether sites i
and j belong to the system part 1 or environment part 2. Keeping M
system sites in L oscillators, the dimension of the submatrices ag

αβ are
following: ag

11 is M ×M , ag
12 M × (L −M), ag

21 (L −M) ×M and ag
22

(L−M)× (L−M). Owing to the symmetry of the real matrix Ag in the
case of coupling oscillators, A and B are all real and symmetric Matrices.

Comparing the Eqn. (3.21) with the Eqn. (3.7), one finds that they
are very similar except that the matrices A and B appear rather than
the real numbers a, b. Rotating the coordinate twice and transforming the
matrix-element representation into an operator form, one can express the
reduced density matrix as

ρ1 =C1 · exp

(

∑

l

−1

2
(λl − 1)v2

l

)

exp

(

∑

l

∂2

∂v2
l

)

exp

(

∑

l

−1

2
(λl − 1)v2

l

)

, (3.22)

29



CHAPTER 3. COUPLED OSCILLATORS

where λl are the eigenvalues of the matrix

B−1A =
(

ag
12(a

g
22)

−1ag
21

)−1
ag

11, (3.23)

and v = (v1, v2, · · · ) is found as

v = P T Bu1 (3.24)

with the eigenvector matrix P of the matrix B−1A. ρ1 is merely a product
of operators with uncoupled coordinates, therefore one can diagonalize it
with the Bogoliubov transformation used in the last section. The diago-
nalized form of ρ1 reads

ρ1 = K1 · exp

(

−
∑

l

εlB†
l Bl

)

(3.25)

with Bose operators Bl and B†
l . The single-particle eigenvalues εl can be

found as
εl = 2 · cosh−1

√

λl, (3.26)

or equivalently,

λl = cosh2 (
εl

2
). (3.27)

As a consequence, the eigenvalues of ρ1 read

wn = K1 · exp

(

−
∑

l

εlml

)

, ml = 0, 1, 2, . . . , (3.28)

where n is determined by ordering such exponential eigenvalues according
to their magnitude. The constant K1 is obtained from the normalization
of ρ1, namely, Tr(ρ1) = 1.

The result is valid not only for coupled harmonic oscillators with arbi-
trary kinds of couplings but also for any kind of partition. For example,
the density matrix for one oscillator discussed in the last section can be
viewed as a special case of the result. The ground-state matrix Ag contains
all the information about the oscillators while the submatrices ag

αβ include
the details of the partition. The εl can be found from the M eigenvalues
of (ag

12(a
g
22)

−1ag
21)

−1ag
11 using the relations (3.26) if M oscillators are kept

in the system part 1.

3.2.2 Density Matrix for a Half-Chain

Density matrices for a half-chain are of particular interest, because they
are used in the infinite-size version of the DMRG. The spectra decide
how many truncated states one should take. Therefore, such density-
matrix spectra can give us some physical aspects relating to the numerical
calculations.
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Here we consider again an open chains of coupled oscillators with the
Hamiltonian (3.17). Given system of even size L = 2M , the single-particle
eigenvalues εl of the density-matrix can be found from Eqn. (3.23) and
Eqn. (3.26), which can be approximated as εl ∼ 2 ln

√
λl, if λl is much

larger than 1. In our calculation fourfold precision is applied. That means,
one can obtain precise λl not larger than 1032. We can thus calculate εl

only accurate if they are smaller than ln(1032) ∼ 75. Sometimes this is not
enough for the calculations, especially in the case of systems with large
sizes or with smaller couplings.

To improve the range of the calculation, we can use the reflection
symmetry of the homogeneous system. With this symmetry the odd and
even eigenfunctions of the Hamiltonian with respect to the reflection point
in the middle read

φq1
(i) = +φq1

(2M + 1 − i)

φq2
(i) = −φq2

(2M + 1 − i), (3.29)

where q1, q2 are the quantum number in the momentum space referring to
the even and odd eigenfunctions. Using (3.29) one can define two M ×M
matrices only in the system block 1

Eγδ =
∑

q1

ωq1
φq1

(γ)φq1
(δ)

Oγδ =
∑

q2

ωq2
φq2

(γ)φq2
(δ), (3.30)

where
1 ≤ γ, δ ≤M. (3.31)

In this way the four matrices ag
αβ can be rewritten in terms of the matrices

E, O and a reflection matrix U , is discussed in the Appendix, and the
matrix B−1A can be expressed as

B−1A =
(

(E − O)−1(E + O)
)2
. (3.32)

Thus B−1A is the square of the matrix (E−O)−1(E +O), we can double
the precision by calculating the eigenvalues of the latter matrix, or equiva-
lently, the eigenvalues of the matrix O−1E. One finds that the eigenvalues
εl can be obtained from the equation

(O−1E)ϕl = tanh2(εl/4)ϕl (3.33)

with the eigenfunctions ϕl. Therefore, the εl are accurate to 150 and the
eigenvalues wn to 10−64 with the quartic precision in the calculation.

In Fig. 3.3 the single-particle eigenvalues εl are plotted for L = 20 and
different coupling constants k. For k = 0.1 they all lie on a straight line,
which shows approximately the relation

εl = (2l − 1)ε1, (3.34)
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Figure 3.3: Single-particle eigenvalues εl for one-half of an oscillator chain, the system
is in the ground state, L = 20.

which corresponds to the situation one finds in the thermodynamic limit.
The phenomenon can be understood if the one-dimensional oscillators
are connected to the Gauss model in two dimension and corner transfer
matrices , which will be discussed in next section. In the case of k � 1 i.e.
far away from the critical point, the correlation length is much less than L
and hence the boundary condition should not influence the spectra much.
For next larger coupling, k = 0.2, they lie almost on a line except the last
εl, which shows the boundary effect. Increasing k, the curves bend more
and more with increasing correlation lengths. Finally, very close to the
critical point (k = 0.999), the whole graph is curved. Approaching the
critical point, the first eigenvalue ε1 goes to zero, which tends to 0.2361
in the case of k = 0.999.

From the εl the actual eigenvalues wn of ρh can be obtained by Eqn.
(3.28). The resulting spectra are shown in Fig. 3.4. For relative small k
(k ≤ 0.5) , which correlation lengths are small, some step-like degeneracies
appear. It results from the relation (3.34) which leads to approximate
degeneracies (1, 1, 1, 2, 2, 3, 4) for the first seven levels. In the case of
k = 0.9, some degeneracies can be seen at the first levels but they stretch
out somehow. The reason is that ε2 is also almost three times of ε1 but
the other εl don’t obey the rule (3.34) any more. For k = 0.999, wn lie
almost on a line because of the small ε1. In fact, ε2

∼= 19ε1, the first 19 wn

are on a line and the twentieth interrupts the linearity of the spectrum.

We can also obtain the εl directly at the critical point. Fig. 3.5 shows
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Figure 3.4: Density-matrix eigenvalues wn, arranged in decreasing order, obtained
from the εl in Fig. 3.3 and for the same parameters.
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Figure 3.5: Single-particle eigenvalues εl for a chain of oscillators at the critical point
k = 1.0.
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Figure 3.6: The first single-particle eigenvalue for free and fixed boundaries and L =
16.

the single-particle spectra for various sizes of the system. Increasing the
size L, the curves become flatter, but the curvature remains. In the tails
they differ from each other, which shows finite size effects. On the other
hand, the other non-critical curves (not shown) converge, as L increases.
In these four examples, ε1 is always zero. We can see the character in Fig
3.1 with L = 2, where ε = 0 if k → 1. Therefore, the wn are very small
and approach zero, because they are infinitely degenerate with ε1 = 0. I
will discuss the reason for this in the next subsection. We do not even
know how to normalize them. At the critical point, only ε1 dominates the
spectrum, the other single-particle eigenvalues do not play any role. This
causes a catastrophe in the DMRG calculation because we have to use all
the Hilbert space, which is infinite, and we cannot truncate the states.
Therefore, The situation must be avoided in the numerics. In chapter 4,
we will discuss the similar single-particle spectra in the fermionic systems,
however, the density-matrix eigenvalues wn are totally different.

3.2.3 Fixed Boundaries

As mentioned in last subsection, the reduced density matrices at the criti-
cal point are unnormalizable. The reason is that due to translation invari-
ance, the system has a zero frequency associated with the center of mass
motion. Then the eigenfunction of the ground state is independent of the
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Figure 3.7: The first eigenvalue of the function of the system length L for fixed bound-
aries and k = 1.

center of mass coordinate, and therefore unnormalizable. The reduced
density matrices are also unnormalizable.

One can avoid this problem by fixing the ends of the chain. This
was done in the study of the DMRG for acoustic phonons by Caron and
Moukouri [23]. The fixed boundaries break the translation invariance, and
the eigenfunctions are normalizable even for k = 1. In Fig. 3.6 the first
single-particle eigenvalues for free and fixed boundaries are plotted as a
function of k. For small k, where ξ/L� 1, the two curves coincide, due to
the fact that the boundaries do not play any role with a small correlation
length. On the contrary, in the region k > 0.8, they differ from each other,
because the boundaries are much more important with larger correlation
lengths. At the critical point, ε1 = 2.30 for fixed boundaries, whereas
ε = 0 for open ones. Fig. 3.7 shows the dependence of ε1 on the system
size L. One can see that ε1 drops to zero slowly. Unfortunately I cannot
calculate ε1 for larger systems due to numerical limitations, but one can
extrapolate it. For L = 100 ε1 is still larger than 1. This explains why
Caron and Moukouri could obtain the ground-state energy for L = 99
with sufficient accuracy.

The benefit of using fixed boundaries near the critical point is shown
in Fig. 3.8. In this figure εl and wn of one-half of a chain with open
and fixed boundaries are shown for k = 0.999. The fixed boundaries are
larger by a factor of 2 than those for open ones, and ε1 = 2.19 for the
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Figure 3.8: Single-particle eigenvalues εl of one-half of an oscillator chain with open
and fixed boundaries. The system is in the ground state, k = 0.999 and L = 20;
the wn obtained from them are plotted in the inset.

fixed boundaries and ε1 = 0.26 for the open chain. Therefore, the wn for
fixed boundaries plotted in the inset drop twice as fast as those of the
open chain. In the DMRG calculations, in this case, one needs only half
as many kept states to reach the same precision.

3.2.4 Open vs. Periodic Conditions

In DMRG calculations one prefers open boundary conditions over periodic
ones, as mentioned already in early papers on the method [3]. The reason
is, roughly speaking, that for periodic boundary condition each block has
two ends which interact with the rest of the lattice. Therefore one needs
twice as many truncation bases as for open boundaries for the same accu-
racy. Using our model, this origin of the different DMRG performance for
open chains and rings can be seen very clearly. Fig 3.9 shows the εl and wn

for open and periodic boundaries. In the case of periodic boundary condi-
tions, the lower εl have the same values as for the open chain, but each of
them is approximately two-fold degenerate. Therefore the wn, which are
plotted in the inset of the figure, are much flatter in the ring than in the
chain. This results in the difficulties for calculating the systems with the
periodic boundaries.

The reason for the degeneracies in the εl spectra of rings can be under-
stood with Fig. 3.10. The eigenvectors which are obtained by Eqn. (3.24)
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Figure 3.9: Single-particle eigenvalues εl of one-half of an oscillator chain with open
and periodic boundary condition. The system is in the ground state, k = 0.5 and
L = 32; the wn obtained from them are plotted in the inset.
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Figure 3.10: Density-matrix eigenstates for the half part of a open chain (lower figure)
and a ring (upper figure). Shown are the amplitudes as a function of the position
for the lowest three εl values for ω0 = k = 0.5.
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are plotted for a ring and an open chain. For the chain, the amplitudes
concentrate near the boundary of the end which interacts with the envi-
ronment part, whereas for the ring, they concentrate at both ends, which
causes a symmetric and an antisymmetric eigenvector. Both eigenvectors
give the same eigenvalues, as one sees in Fig. 3.9. In other words, the
ring, which is cut twice in the DMRG calculation, can be seen as two
open chains which interact weakly with each other and then are cut in the
middle.

3.3 Thermodynamic Limit

In the calculation for a half open chain, the single-particle spectra in the
thermodynamic limit (L/ξ � 1) are almost linear. Unfortunately we
can not find them analytically from our formulae. However, the relation
between one-dimensional integrable quantum models and two-dimensional
classical models will offer us a different point of view. In fact, in the
thermodynamic limit the density matrix for one half chain of the integrable
quantum models can be approximated by four corner transfer matrices
(CTMs) of classical models. Here we will at first discuss the relation
between one oscillator chain and the two-dimensional Gaussian model. In
the second subsection we will discuss the corner transfer matrix of the
Gaussian model and then give the analytical expression for εl, which can
be compared with our results from section 3.2.

3.3.1 Relation to the Gauss Model

As a transverse Ising chain is related to the two-dimensional Ising model
[18], the Hamiltonian H1 in (3.17) has a close relation to the transfer
matrix of a two-dimensional Gaussian Model (GM). In this model, one
has a classical variable x at each lattice site, which takes values between
−∞ and ∞. Variables at neighboring sites are coupled by an energy
1/2K(x− x′)2 (in units of kBT ). In order to make the system noncritical,
one adds on-site terms 1/2∆x2. Then the transfer matrix T for a diagonal
lattice involves the piece shown in the diagram below:
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Therefore, T reads1

T =
∑

{yi}

(

exp
∑

i

1

2
∆(x2

i + x′
2
i + y2

i ) +
1

2
K(xi−1 − yi)

2 +
1

2
K(xi − yi)

2

× exp
∑

i

1

2
K(x′i−1 − yi)

2 +
1

2
K(x′i − yi)

2

)

.

(3.35)

By a direct calculation one can show that, for PBC,

[H , T ] = 0, (3.36)

provided that k = K2 and ω0 = ∆(∆ + 4K). This means that T and
H have the same eigenfunctions. Moreover the ground state Ψ in (3.2)
gives the maximal eigenvalue for T . As a result, one can also obtain Ψ
and ρh from the partition function for two dimensional classical systems
[18, 44]. For open boundaries condition, one has to modify H at the end
to preserve (3.36). However, this boundary term can be neglected, if one
considers systems with L � ξ, where ξ is the correlation length given by
ξ = 2/ ln(1/k).

An alternative approach, due to Babudjan and Tetelman [45], is to
treat a GM with anisotropic couplings for periodic boundary conditions
with the Yang-Baxter equations. They show that the T for different
anisotropies commute and obtain H from a proper derivative of T . For
this, one parameterizes the two couplings with an Jacobi function sn of
module k, for example,

K1 = −i / sn(iu, k), K2 = i k sn(iu, k). (3.37)

Using the Yang-Baxter equation, the parameter determines also the on-
site energy ∆ as well as the correlation length. The parameter u, which
specifies the ratio K1/K2, varies between 0 and I(k′), where I is the com-
plete elliptic integral of the first kind and k′ =

√
1 − k2. In the isotropic

case u is equal to I(k′)/2. The derivative ∂ lnT/∂u at u = 0 gives 3.17
with ω0 = (1−k). This is the reason why we choose this parameterization
throughout the thesis.

3.3.2 Corner Transfer Matrix

As discussed in [42], the density matrix ρh for a half chain reads

ρh = ABCD, (3.38)

1through private communication with Professor Peschel

39



CHAPTER 3. COUPLED OSCILLATORS

A B

CD

A B

CD

(a) (b) 

Figure 3.11: The geometry of the CTMs A, B, C, D. (a) four rectangular ones (b)
they are approximately four triangular ones in the thermodynamic limit.

where A,B,C,D are four rectangular corner transfer matrices of Ramond
type, i.e. without a common central site. They are shown in Fig. 3.11(a).
In the case of the thermodynamic limit, where L � ξ, one can simplify
the transfer matrices with triangular ones, as seen in Fig. 3.11(b), by
neglecting the marginal effect from the outer triangular for a system away
from critical point. Therefore, the products AB and CD are square matri-
ces, and due to the integrability of the Gauss model, i.e. the Yang-Baxter
equations, the matrices have the exponential form

A = e−uHCTM (3.39)

and similar for B,C,D, with HCTM given by

HCTM =
∑

n≥1

{

−1

2
(2n− 1)

∂2

∂x2
n

+

1

2
(2n− 1)(1 − k)2x2

n +
1

2
2nk(xn+1 − xn)2

}

. (3.40)

This operator was studied in [46] in the Hamiltonian limit u → 0 of
A. It can be diagonalized with the help of Carlitz polynomials and then
becomes the sum of uncoupled harmonic oscillators with eigenvalues (2l−
1)π/2I(k′). Multiplying the four similar operators, ABCD, or A4 in the
isotropic model, both give a factor 2I(k′), so that ρh is expressed as

ρh = Kh · exp

(

−
∑

l≥1

(2l − 1)εB†
lBl

)

, (3.41)
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Figure 3.12: Lowest single-particle eigenvalues in the density matrix of a half-chain.
Plotted are ε for L = 2 and ε1 for L = 4 and L = ∞.

where

ε = π
I(k′)

I(k)
. (3.42)

One sees that ρh has exactly the same form as in (3.25) with εl = (2l−1)ε,
i.e. the εl increase linearly with l.

The parameter ε ≡ ε1 is shown in Fig. 3.12 together with the cor-
responding eigenvalues for short chains. In the case of k → 0, ε is very
close to the ε of L = 2 and ε1 of L = 4. This corresponds to the fact that
the systems with those k have small correlation lengths. For k → 1, the
correlation length vanishes only logarithmically, i.e. more slowly than the
quantities for finite L.

3.4 Numerics

3.4.1 Optimal States

In order to understand the relation between the density-matrix spectra
and DMRG, we will discuss some numerical results of one-dimensional
open chains. Since we discuss here a boson system, the most difficult
problem one has to face is how many states one must take at one site for
a certain precision. Therefore an optimal basis is required to reduce the
number of states in one sites. In our case, the best optimal bases are the
eigenstates of ρsg discussed in section 3.1. These are standard oscillator
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functions of coordinate z

z =
1√
2ε

(β + β†), (3.43)

where z is related to xl by a scale factor

z =

√

γ

ε
xl (3.44)

and γ =
√

a(a− b).
One should note that the scale factor hardly changes throughout the

chain if the system is not at the critical point (see Fig 3.2). Therefore, we
can use the ε and γ for the middle of the chain to rewrite the Hamiltonian
3.17

H1 =
∑

i

C1(β
†
i βi +1/2)+C2(β

2
i +β†

i

2
)+C3(βi +β†

i )(βi+1 +β†
i+1), (3.45)

where C1, C2, C3 read

C1 =
1

2
(γ + ω2

0/γ + k/γ),

C2 = −1

4
(γ − ω2

0/γ + k/γ),

C3 = −1

2
(k/γ) (3.46)

and βi, β
†
i are the creation(annihilation) operators of the eigenstates of ρsg

for each site. We will call such states squeezed states or optimal states. For
small k, γ approaches ω0 and the optimal states coincide with the original
ones. Hence the Hamiltonian (3.45) reduces to that with the local basis.
Increasing k, the amount of squeezing increases, and it is the advantage
one to choose the squeezed states as a local basis.

3.4.2 Numerical Spectra

It is instructive to see how these squeezed states enter the density-matrix
spectra in a numerical treatment using a truncated Hilbert space. In
Fig.3.13 the analytical density-matrix spectrum for L = 4 and k = 0.5 is
shown. From the Eqn. (3.25) the density matrix ρh for the two oscillators
in the system part 1 can be expressed as

ρh = Kh exp
{

−
(

ε1B†
1B1 + ε2B†

2B2

)}

. (3.47)

One can see that the spectrum has a step structure. This is due to the rela-
tion ε2

∼= 3ε1. The first degeneracy is caused by 4ε1 and ε2+ε1. The other
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Figure 3.13: The analytical density-matrix spectrum for L = 4 and k = 0.5.

plateaus can be obtained in the same way, which explains the approximate
degeneracies (1,1,1,2,2,2,3). One notes that the steps are not perfect for
small wn because ε2 is somewhat larger than 3ε1. Fig.3.14 shows the nu-
merical density-matrix spectra for L = 4, k = 0.5 and ω0 = 0.5 with differ-
ent numbers of squeezed states from the exact diagonalization. Choosing
r states, the error in the ground-state energy E0/L is of order 10−r. The
spectra look very similar but they have characteristic differences, which
concern the degeneracies. If r states are kept, the first r levels (counted
from the top) of wn are the same as for the analytical spectrum. At the
next level, states with energy rε1 are missing and the corresponding step
is absent. In other words, one needs r+1 squeezed states to construct the
r level degeneracies. For small wn, however, the numerical error reduces
the precision of the calculation and the spectrum becomes irregular. The
tails of the approximate spectra always lie below the exact one.

Carrying out the DMRG calculations, results for L > 4 can be ob-
tained as well. Here we used seven squeezed states at each site, a γ which
corresponds to L = 30 and kept m = 7 truncation states per block. In the
calculations the error in E0/L was about 3 × 10−7 for k = 0.5. Fig.3.15
shows the corresponding spectra for L = 6 and L = 14, together with
the thermodynamic limit according to (3.41), (3.42). The numerical cal-
culation agrees well with the analytical results. The relative deviations
δεl/εl for the lowest three levels ε1 = 3.973, ε2 = 11.537 and ε3 = 19.990
are 6 × 10−6 7 × 10−5 and 4 × 10−4. One notices that due to the dif-
ferent εl the two curves are similar but not identical. The εl for L = 6

43



CHAPTER 3. COUPLED OSCILLATORS

2 4 6 8 10 12 14 16
n

wn

4 states

5 states

6 states

10
0

10
−5

10
−10

10
−15

10
0

10
0

10
−5

10
−5

10
−10

10
−10

10
−15

10
−15

Figure 3.14: Density-matrix spectrum for L = 4 and k = 0.5, calculated with different
numbers of oscillator states.

are smaller than those for L = 14. The degeneracies here have changed
to (1, 1, 1, 2, 2, 3, 4), which differs from L = 4 in the last two eigenvalues.
The difference stems from the third eigenvalue ε3

∼= 5ε of ρ1, which first
appears for L = 6.

The first two steps of the spectrum for L = 14 are almost flat, which
indicates that ε2 = 3ε1 as for the infinite system. Indeed, the εl from
the numerical (DMRG) and analytical (section 3.2 ) calculations are very
close to the large-L limit. For example, ε1 agrees with the exact result
ε = 4.0189 up to three decimal places. This can be understood to be a
consequence of the short correlation length ξ/L ∼ 0.11(ξ ∼ 3) for k = 0.5,
which makes size effects small.
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Figure 3.15: Density-matrix spectrum for k = 0.5 and two sizes L, calculated with
DMRG using 7 states and m = 7. Also shown is the analytical result for L → ∞.

3.5 Different Types of Interaction for a Chain

So far we have discussed the density-matrix spectra only for a homo-
geneous chain the nearest-neighbor coupling. However, using the method
described in the section 3.2, the density-matrix spectra for oscillators with
arbitrary types of couplings can be determined. The εl reveal the nature
of the couplings and the properties in the DMRG calculations. It is thus
interesting to consider the oscillators with different types of couplings to
give us some insight into those systems.

3.5.1 Next-Nearest-Neighbor Couplings

The first example is oscillators not only with nearest-neighbor couplings
but also with next-nearest-neighbor ones. The Hamiltonian has the form

Hnn =

L
∑

i=1

(

−1

2

∂2

∂x2
i

+
1

2
ω2

0x
2
i

)

+

L−1
∑

i=1

1

2
k1(xi+1 − xi)

2 +
L−2
∑

i=1

1

2
k2(xi+2 − xi)

2. (3.48)

Fig. 3.16 shows the εl of the systems with different next-nearest-neighbor
couplings k2 for L = 20, ω0 = 0.1 and k1 = 0.1. The single-particle
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Figure 3.16: The single-particle eigenvalues of oscillators with nearest-neighbor and
next-nearest-neighbor coupling. Plotted are εl for different k2 for L = 20, ω0 = 1.0
and k1 = 0.1 .

spectra show the competition between the nearest-neighbor interactions
and next-nearest-neighbor ones. In the limit k2 → 0, the system comes
back to a system only with the nearest-neighbor couplings, where the εl

are linear. In the opposite limit, if k2 � k1, the system approach to a chain
only with the next-nearest-neighbor couplings, which is made up of two
independent chains with size L/2. The εl are thus two-fold degenerate and
the wn will be flat. Therefore the single-particle spectra become flatter
with the increasing k2 and the zig-zag structure in the spectra shows the
competition between the two kinds of interactions.

3.5.2 Exponential Couplings

Oscillators with exponential couplings are interesting to us because so
far we have not yet treated systems with long-range interactions. The
Hamiltonian for such a system with open boundaries reads

He =

L
∑

i=1

(

−1

2

∂2

∂x2
i

+
1

2
ω2

0x
2
i

)

+
∑

i<j

1

2
ke−λ|i−j|(xi − xj)

2. (3.49)

The single-particle eigenvalues for different relatively short range of the
interaction (λ < 1), ω0 = 1 and k = 1 are plotted in Fig. 3.17. One should
note that the flat curves above 150 are due to the limit of our calculations
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Figure 3.17: The single-particle eigenvalues of oscillators with exponential couplings.
Plotted are εl with different λ > 1 for L = 20, ω0 = 1.0 and k = 1.0.

discussed in section 3.1. However, we can see the characteristic behavior
from the first smaller eigenvalues. For λ = 1, the first εl lie still on a
line, but they bend over somewhat. The curve is similar to the spectra
for the systems with the nearest-neighbor coupling near the critical point.
With increasing λ, the εl become larger and straighter, just like the curves
for the nearest-neighbor coupled oscillators in the thermodynamic limit.
This is due to the fact that the range of the interaction decreases and
one approaches the case of nearest-couplings. In the limit λ → ∞, the
oscillators are completely decoupled which leads to εl → ∞.

In Fig. 3.18, on the other hand, the case of λ > 1 is shown, where
the couplings between the oscillators decay slowly. With decreasing λ, the
long-range couplings become more important and the εl grow except ε1,
which goes down to a finite limit. The phenomenon can be understood
from the limiting case λ → 0, where the couplings are all equal among
the oscillators. The oscillators have now only two normal frequencies,
namely ω0 and ω1 =

√

ω2
0 + Lk. One can say that the system has one

natural frequency ω0 and one bulk frequency ω1 because the oscillators
are tied together strongly through the couplings. From Eqn. (3.33), one
finds the eigenvalues of the matrix O−1E are all equal to unity except
one. Therefore, every single-particle eigenvalue goes to infinity except
ε1 = 4 tanh−1(

√

ω0/ω1), which is equal to 2.026 in the case of ω0 = 1, k = 1
and L = 20. Examining the εl in the calculation λ = 0.001, ε1 = 2.031,
which is very close to the limiting value.
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Figure 3.18: The single-particle eigenvalues of oscillators with exponential couplings.
Plotted are εl with different λ < 1 for L = 20, ω0 = 1.0 and k = 1.0.

3.6 Two-Dimensional Boson Systems

The application of DMRG to some two-dimensional systems, for example,
free fermions [35] and the transverse Ising model [36], has been discussed
in some detail. From the limit of noninteracting chains, or from numerical
calculations, it was derived that the number m of states one needs to keep
a certain accuracy grows exponentially with the width Md of the system.
However the spectra themselves have not been observed although they
are most essential for the problem. In this section, I will determine the
density-matrix spectra of two-dimensional arrays of oscillators and then
discuss the exponential growing number of truncation states and their
origin.

3.6.1 Spectra

In this last part of the section, we consider a two-dimensional square lat-
tice of oscillators with nearest-neighbor couplings kx and ky in the two
directions. The oscillators are described by one coordinate as in the pre-
vious subsections. The shape of the system is a rectangle with L = N×Md

sites, where N is even. We will treat it with two different methods, which
give the same results.

The first treatment method is to numerate the oscillators from 1 to L in
such a way that the desired sites of system part 1 come first. For example,
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if we want to separate the system into two equal half rectangles, we should
count the sites from left up to right down. But if the density matrix for
the half triangle is desired, we should diagonally numerate them. In this
section we consider only the rectangular partition, whereas we will treat
the other kinds of division in the fermionic case (Section 5.3). After the
problem is set up in this way, we can use the general formulae (3.23) and
(3.26) to obtain the spectrum.

On the other hand, the two-dimensional lattice can be reduced to a one-
dimensional problem by introducing normal coordinates in the y-direction.
The Hamiltonian now reads

H2b =
∑

q

(

∑

i

−1

2

∂2

∂φi(q)
2 +

1

2
ω(q)2φi(q)

2 +
1

2
kx(φi+1(q) − φi(q))

2

)

, (3.50)

where the φi(q) are normal coordinates in i-th the column and the normal
frequencies are

ω(q)2 = ω2
0 + 2ky(1 − cosq). (3.51)

The vertical momenta q depend on the boundary condition. For open
boundaries, as used in the DMRG, they are

q =
m

Md

π, m = 0, 1, 2, . . . , (Md − 1). (3.52)

Eqn. (3.50) shows that if we couple the columns via kx, the different
momenta do not mix. Therefore one can separate the system into Md

uncoupled chains which have natural frequencies ω(q) and coupling kx.
For each momentum q, one obtains N/2 single-particle eigenvalues

εj(q) according to Eqn. (3.25). Alternatively one may say that, for fixed
j, one has a band of Md eigenvalues. This band reflects the fact that
one now has Md points of contact between the two halves of the system,
instead of only one in the one-dimensional case. In the thermodynamic
limit, the εj(q) can be determined by Eqn.(3.41) and (3.42), with the
parameter k = k(q) determined from the equation kx/ω(q) = k/(1 − k),
or, equivalently,

k = kx/[kx + ω(q)]. (3.53)

With each q, one finds εj(q) as in the case of one-dimensional systems. Col-
lecting the single-particle eigenvalues for different k and arranging them
in an ascending order, the band structure is found again.

Such single-particle spectra, calculated numerically for a 10×10 lattice
are shown in Fig. 3.19. Plotted are εl for the different transverse coupling
ky. If there are no interactions between chains, one obtains five plateaus,
which have the linear relation according to the Eqn. (3.34). Turning
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Figure 3.19: Bosonic single-particle eigenvalues εl(q), c.f. Eqn.(3.25), for half of a
10× 10 system, arranged in ascending order, for ω0 = kx = 1.0 and four values of
the coupling ky.

on ky(> 0), the eigenvalues increase except q = 0 and form real bands.
For small ky, the stair-like structure persists till the end of the spectra,
while with large ky the bands smear out for larger eigenvalues of j due
to the factor (2j − 1), and eventually overlap. We can see that for larger
ky, a certain continuous curve develops, which can be approximated by a
straight line

εl
∼= κl (3.54)

with integer l, and κ ∼= 2ε(q = 0)/Md inversely proportional to the width
Md.

Specifying the occupation numbers of the bosonic single-particle levels
εl in (3.28), one can obtain the eigenvalues wn of ρ1. Due to the low band
of single-particle eigenvalues εl, shown in Fig. 3.20, the spectra decrease
slowly and are totally different from those in one dimension. Using the
same parameters, these curves are plotted with the εl in Fig 3.19. For
small kx, the spectra have also a stair-like structure as the εl but with
a far larger plateaus, which are caused by combinatorial factors. With
increasing ky, the curves become smoother and the discontinuities in the
curves disappear for larger ky. In all cases, the spectra decay much more
rapidly at the beginning, followed by a slower decay for larger n. One can
derive an asymptotic formula from Eqn. (3.54), following Ref. [47] which
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Figure 3.20: Density-matrix eigenvalues wn, arranged in decreasing order, obtained
from the εl in Fig.3.19 and for the same parameters

reads

wn ∼ exp{−(κ/(2 π2/3)) ln2 n} (3.55)

and which fits reasonable well to the curves. We can calculate also the
truncation error, which is much larger than in one dimension due to the
slow decay. After n = 10, 500, and 1000, it is approximately 10−5, 10−7

and 10−8, respectively, if kx = ky = ω0 = 1.0.

3.6.2 Difficulties in Two-Dimensional Systems

We have discussed the truncation error in the two-dimensional lattice, and
found that many more truncation states are needed to obtain a certain
good accuracy for 10 × 10 lattice. In this subsection we will discuss the
difficulties for the DMRG calculation of two-dimensional systems.

At this stage, one can do an experiment to see the change of the
curves, as the systems become more two-dimensional. By changing the
width Md from 1 to N , we can calculate the wn of the 10×Md oscillators
as before and the corresponding spectra are shown in Fig. 3.21 for the
case kx = ky = ω0 = 1. As can be seen, the curves drop more and more
slowly with increasing M . This can be explained with Eqn. (3.54) and
(3.55). The parameter κ decreases with increasing M and this leads to
the flatter structure of wn.

The result confirms that the situation worsens as the systems become
more two-dimensional. At the beginning of the spectra, wn decay much
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Figure 3.21: Density-matrix eigenvalues wn for systems of different width Md and
ω0 = kx = ky = 1.0

more rapidly, which helps in numerical calculations. The faster initial
decay before the onset of the combinatorial effects helps in numerical cal-
culations. Also the interaction helps here to some extent since the ε-values
increase with ky, but this does not remove the basic 1/M dependence in
the exponent.

One should mention that we have not treated critical models here,
but only systems with a gap. In the critical cases, As discussed in the
section 3.2.3, one always obtains a vanishing ε1 due to the transformation
invariance. In order to avoid the zero, one can fix the boundaries as Caron
did in Ref. [23]. However one cannot avoid the appearance of a small ε1.
That will be even worse in the two-dimensional critical model due to the
band structure of εl, because small εl will appear M times, causing very
flat wn-spectra.

The difficulties with DMRG calculations for two-dimensional systems
are clear here. The problem arises from small εl, which result from the
intersection between the system part 1 and the environment part 2. There-
fore, one should reduce such an interface in the consideration of the par-
tition. Furthermore, one should apply as many symmetries as possible.
Whether the momentum-space approach of Ref. [34, 48] can help here is
not yet clear. Similar results will be found in the case of fermion systems
in section 5.3.
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Chapter 4

Coupled Oscillators -

Coherent-State Treatment

In the last Chapter I have treated the coupled oscillators with the x-
representation wave functions and found the reduced density matrices with
many facets for the ground state. On the other hand, one can rewrite
the coupled oscillators with Bose operators and directly diagonalize the
Hamiltonian, using the method introduced by Bogoliubov [49], which was
originally applied to the superfluid. In this approach, coherent states are
needed to obtain the reduced density matrices. The advantage of the
coherent-state approach is that one can apply the same procedure to the
solvable fermion systems, which will be discussed in the next chapter. The
main aim of this chapter is to serve as a bridge between the boson and
fermion systems.

In this chapter, I will describe the coherent-state treatment of boson
systems. In section 4.1 I will introduce the exact diagonalization of solv-
able Bose systems and the corresponding ground state. In section 4.2,
the reduced density matrices will be obtained using the coherent states.
In section 4.3 I will treat the coupled oscillators with this approach, the
density matrices of ground state and first excited state will be discussed.

4.1 Solvable Bosonic Systems and their

Ground State

We consider now the general form of Hamiltonians which are quadratic in
Bose operators

Hb =
L
∑

ij=1

{

b†iAijbj +
1

2
(b†iBijb

†
j + h.c.)

}

, (4.1)

where the bj and b†j are Bose annihilation and creation operators. Due to
the Hermicity of Hb, the matrices A and B are both Hermitian. In the
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following we consider only real matrices. One can diagonalize H through
the canonical transformation [49]

ηk =
∑

i

(gkibi + hkib
†
i ), (4.2)

which leads to
Hb =

∑

k

Λkη
†
kηk + constant. (4.3)

The quantities Λ2
k are obtained from the eigenvalues equations

(A + B)(A − B) φk = Λ2
k φk,

(A − B)(A + B) ψk = Λ2
k ψk (4.4)

by introducing the two vectors φki = gki + hki and ψki = gki − hki. Due
to the fact that the ηk and η†k are canonical Bose operators that have to

satisfy the commutation relation [ηk, η
†
k′] = δkk′, one has

∑

i

ψkiφik′ = δkk′. (4.5)

The φk and ψk are both orthogonal, but not necessarily orthonormal.
Consider now the ground state | Φ0〉 of the Hamiltonian (4.1) for an

even number of sites L. Due to the form of Hb, an eigenstate will in
general be a superposition of contributions with an even or an odd number
of particles. Therefore one can make an Ansatz that the ground state has
an exponential form

| Φ0〉 = C exp {1

2

∑

ij

Gijb
†
ib

†
j} | 0〉, (4.6)

where | 0〉 is the vacuum of the bi, i.e.

bi | 0〉 = 0. (4.7)

In the next chapter I will use this Ansatz for fermion systems, where
in the exponent Fermi creation operators are used. Such an exponential
form is known from superconductivity, where the BCS wave function (in
momentum space) can be written in this way [50].

In the case of all Λk > 0, the ground state must fulfill the condition

ηk | Φ0〉 = 0 for all k (4.8)

which leads to (see Appendix)

∑

m

gkmGmn + hkn = 0 for all k, n. (4.9)
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Thus G relates the two matrices g and h of the transformation (4.2). If
g is invertible and h 6= 0, one obtains Gij from the relation

G = −g−1h. (4.10)

That means that the Ansatz (4.6) has been proved.
If g is not invertible or h = 0, Gij has no solution or is equal to zero, the

situation is more tricky. Assume that the system does not have isolated
sites which do not interact with the other ones. Not being able to obtain
a reasonable Gij in this case, the Ansatz (4.6) fails. Nevertheless, one

can use the symmetry between bi and b†i to generate another exponential
ground state. By interchanging creation and annihilation operators of
some sites, for example bi ↔ b†i , one constructs a new set of creation and
annihilation operators, provided g in this new bases is invertible or h 6= 0.
With this new set of operators, Gij may be found and the Ansatz (4.6)
holds again.

Having a look at the exponential form with the old set of the operators,
the ground state does not only consist of creation operators, but also the
annihilation at the i-th operator-interchanged sites, where the vacuum
| 0′〉 reads

bj | 0′〉 = 0, for j 6= i,

b†i | 0′〉 = 0. (4.11)

This vacuum has infinite number of bosons for the operator-interchanged
sites but no bosons in the other sites. In the case of fermions, the inter-
change c ↔ c† is known as particle-hole transformation, because one has
only two states for every site.

4.2 Density Matrix and Coherent States

Using Eqn. (4.6) the total density-matrix ρ0 =| Φ0〉〈Φ0 | can be explicitly
obtained in an exponential form

ρ0 = |C|2 exp

(

1

2

∑

ij

Gijb
†
ib

†
j

)

| 0〉〈0 | exp

(

1

2

∑

ij

Gijbibj

)

. (4.12)

Dividing the total system into two parts (system and environment), one is
searching for the reduced density-matrix in subsystem 1. This is obtained
by taking the trace over subsystem 2

ρ1 = Tr2 (ρ0). (4.13)

Different from the approach in the last chapter, one does not have the co-
ordinate representation for the density matrix but an operator form (4.12).
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Therefore an another set of variables used to integrate out the degree of
freedom in part 2 is needed. To accomplish this, one should introduce co-
herent states. Coherent states are eigenstates of the annihilation operator
bi, which satisfies the eigenvalue equations [51]

bi | φ1 · · ·φL〉 = φi | φ1 · · ·φL〉. (4.14)

Such states can be built from the vacuum with the operators b†j and com-
plex numbers φi

| φ1 · · ·φL〉 = exp (
∑

i

φib
†
i ) | 0〉. (4.15)

Using this, one can write the trace of an operator O as

Tr O =

∫

∏

α

dφ∗
αdφα

2πi
e−

�
α φ∗

i φi〈φ | O | φ〉. (4.16)

After forming a general matrix element of ρ0 with such states and
taking the trace over the environment with (4.16), one obtains, if part 1
consists of M sites

〈φ1 · · ·φM | ρ1 | φ′
1 · · ·φ′

M〉

= C1

∫ L
∏

i=M+1

dφ∗
idφie

−
�

i φ∗
i φi〈φ1 · · ·φM

φM+1 · · ·φL | ρ0 | φ′
1 · · ·φ′

MφM+1 · · ·φL〉. (4.17)

Inserting Eqn. (4.12) leads to an integrand which contains only quadratic
forms of complex numbers in the exponents. By rotating and displacing
the variables, the matrix element (4.17) can be expressed as

〈φ1 · · ·φM | ρ1 | φ′
1 · · ·φ′

M〉

=C2 exp

(

1

2

∑

ij

αijφ
∗
iφ

∗
j

)

exp

(

∑

ij

βijφ
∗
iφ

′
j

)

× exp

(

1

2

∑

ij

αijφ
′
iφ

′
j

)

, i, j ≤M. (4.18)

The M ×M matrices α and β appearing here are defined as follows. One
divides G into four submatrices a11, a12, a21 and a22, according to whether
the sites i, j belong to part 1 or part 2. In terms of these

α = a11 + a12(1 − a22)−1a22(1 + a22)−1a21,

β = a12(1 − a22)−1(1 + a22)−1a21. (4.19)
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As shown in the Appendix one can reconstruct the operator form of ρ1

from the matrix elements (4.18). This gives

ρ1 = C2 exp

(

1

2

∑

ij

αijb
†
ib

†
j

)

exp

(

∑

ij

[ln β]ijb
†
ibj

)

× exp

(

1

2

∑

ij

αijbibj

)

, i, j ≤M. (4.20)

In the end, since the Bose operators appear quadratic in the exponents, ρ1

can be diagonalized by calculating the Heisenberg operators ρ1bjρ
−1
1 and

ρ1b
†
jρ

−1
1 . Due to the form of ρ1, they are linear combinations of the b and

b†. Inserting a Bogoliubov transformation, one arrives at the form,

ρ1 = K exp (−
M
∑

l=1

εlB†
l Bl) (4.21)

with new Bose operators B†
l ,Bl. The single-particle eigenvalues εl can be

obtained from the equation

(β + β−1 + β−1α− αβ−1 − αβ−1α) χl = 2 cosh εl χl. (4.22)

Typically, the matrix has elements varying exponentially over a large
range. The normalization factor K is fixed by the sum rule Tr(ρ1) = 1.
In this way, one can calculate the density-matrix spectra numerically for
an arbitrary part of a finite system with Hamiltonian (4.1).

In practice, there are some difficulties in using (4.22) to obtain the εl.
The matrix on the left has a symmetric part (β + β−1 − αβ−1α) and an
antisymmetric one (β−1α − αβ−1). Therefore one cannot use the usual
routines for symmetric matrices. I have used programs from the NAG
library, but these work at most with double precision which limits the
ε-values one can calculate to εl ≤ 40. Therefore one cannot treat systems
which are too large or with rapidly increasing εl. From a numerical point
of view, the real space method discussed in the last chapter is much better.
Nevertheless, I have introduced this method because one can obtain the
reduced density matrices for fermion systems only with the coherent states
and the ground states of such solvable models have given more insight with
the pairing as in the superconductivity.

4.3 Ground State of Coupled Oscillators -

Coherent-State Treatment

In the preceding sections I have described the general method to obtain
the reduced density matrices for solvable boson systems. Since the Hamil-
tonian (3.1) for coupled oscillators can be rewritten into one in quadratic
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Bose Operators, one can treat them in the same way. Due to the fact that
(A − B)(A + B) and (A + B)(A − B) both equal the potential matrix
in Eqn. (3.1), the eigenvalues Λk are, as expected, equal to the normal
frequencies ωk and φk are the eigenvectors of normal modes. In addition,
the ψk are linearly related to the φk

ψk =
ω0

ωk
φk. (4.23)

This follows from the general relation

(A − B) φk = ωkψk, (4.24)

and the fact that (A − B)= ω01 for the coupled oscillators. Due to the
condition (4.5), which implies that the φk are not normalized, one can
introduce a new set of vectors φ′

k which are the orthonormal eigenvectors
of (A + B)(A − B) and are related to φk by

φk =

√

ωk

ω0
φ′

k. (4.25)

Thus ψk can be expressed as

ψk =

√

ω0

ωk
φ′

k (4.26)

Therefore, the canonical transformation (4.2) reads

ηk =
1

2
(

√

ωk

ω0
+

√

ω0

ωk
)Bk +

1

2
(

√

ωk

ω0
−
√

ω0

ωk
)B†

k, (4.27)

where
Bk =

∑

i

φ′
kibi. (4.28)

Since Bk (B†
k) are obtained by an orthonormal transformation from bi (b†i ),

they are also Bose annihilation(creation) operators.
Consider now the ground state of the coupled oscillators. As shown in

the last section, it has an exponential form in the creation operators b†j,

and therefore also in the B†
k. Following the condition (4.8), it reads

1

2
(

√

ωk

ω0
+

√

ω0

ωk
)Bk +

1

2
(

√

ωk

ω0
−
√

ω0

ωk
)B†

k | Ψ0〉 = 0. (4.29)

As discussed in appendix B, the operator Bk play a role as ∂/∂B†
k, thereby

the ground state has the form as

| Ψ0〉 = C1 exp

(

−1

2

∑

k

ω0 − ωk

ω0 + ωk
B†

k

2

)

| 0〉. (4.30)
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How can one understand Eqn. (4.30)? Let us consider one oscillator
with a frequency ω0. I denote |ω0〉 and B†(B) as the ground state and
the creation (annihilation) operator for the oscillator. Now I change the
frequency ω0 to ω, thereby the ground state changes to | ω〉. According
to the reference [52], | ω〉 is given by

| ω〉 = C exp

{

−1

2

(ω0 − ω)

(ω0 + ω)
B†2
}

| ω0〉. (4.31)

The state | ω〉 is called a squeezed state of | ω0〉. Back to our Eqn. (4.30),
since coupled oscillators can be treated as L independent oscillators with
frequencies ωk in the normal modes and | 0〉 is the ground state of the L
oscillator with frequencies all equal to ω0 in these normal modes, |Ψ0〉 is
then a squeezed state of |0〉. According to (4.31), |Ψ0〉 is given by Eqn.
(4.30).

Transforming the Bose operators B†
k into b†j with Eqn. (4.28), Gij can

be expressed as

Gij = −
∑

k

φik

(

ω0 − ωk

ω0 + ωk

)

φkj. (4.32)

Instead of using Eqn. (4.10), one obtains Gij directly from the frequencies
and the eigenvectors of normal modes. According to the discussion of
last section, the reduced density-matrix spectra can be calculated from
the submatrices of G. I have calculated coupled oscillators with L = 6,
k = 0.5 and ω0 = 0.5 and found that the εl are identical with those in the
last chapter. This indicates that the method in this chapter is equivalent
to that in the last chapter, though I cannot yet give a rigorous proof.
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Chapter 5

Solvable Fermionic Systems

In the last chapters I have emphasized the importance of the density-
matrix spectra for the bosonic systems. One should ask whether the spec-
tra can be obtained explicitly for some solvable fermionic models. For
some non-critical systems this is possible by using the relation between
the density matrices of quantum chains and the corner transfer matrices
(CTM’s) [17] of the corresponding two-dimensional classical problems (see
Ref.[44]). In this way, the spectra for the transverse Ising chain [18] and
the XXZ Heisenberg chain [18] could be determined in the thermodynamic
limit and compared with DMRG calculations. In all these cases, one finds
simple analytic expressions and, apart from degeneracies, a strict expo-
nential behavior. But the CTM approach is limited to large noncritical
systems, therefore an alternative approach is necessary by which one can
treat solvable fermion systems of arbitrary size. In the last chapter I de-
scribed how boson systems can be treated with coherent states. A similar
approach can be used for fermions [53].

The solvable fermionic models I want to consider have a general Hamil-
tonian

Hf =
L
∑

ij=1

{

c†iAijcj +
1

2
(c†iBijc

†
j + h.c.)

}

, (5.1)

where the ci’s and c†i ’s are Fermi annihilation and creation operators. Due
to the Hermiticity of Hf , the matrix A is Hermitian and B is antisym-
metric. In the following I consider only real matrices. One can diagonalize
H through a canonical transformation [54], analogously to the procedure
in the chapter 4. The sole difference is that the ηk and η†k are Fermi
operators, leading to

1

2

∑

i

φkiφik′ + ψkiψik′ = δk,k′, (5.2)

instead of (4.5). Therefore one can choose φk and ψk as orthonormal bases
[54].
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The way to find the eigenvalues wn of the reduced density matrices is
also similar to the bosonic case, therefore I will not describe the details
here, but in appendix C. One should use here coherent states of fermions
composed of fermionic operators and Grassmann variables. However, α
and β are the same as in the Eqn (4.19) and reduced density matrices ρ1

has the form

ρ1 = K exp (−
M
∑

l=1

εlf
†
l fl), (5.3)

where fl and f †
l are here Fermi operators and εl are still the eigenvalues

of the Eqn. (4.22). The normalization factor K is fixed by the sum
rule Tr(ρ1) = 1. In this way, one can calculate the density-matrix spectra
numerically for an arbitrary part of a finite system with Hamiltonian (5.1).

In the following section 5.1 I apply the method to the transverse Ising
chain and discuss the resulting spectra for a number of situations, includ-
ing the critical case, the first excited state and related row transfer matri-
ces. Section 5.2 deals with the other one-dimensional problems, namely
the spin one-half XX and XY chain. The XX spin chain can be trans-
formed into the tight-binding model in one dimension and gives us a good
example for treating the two-dimensional TB model. The spin one-half
chain in a field is interesting because it has a disorder point where the
density-matrix spectrum collapses. In section 5.3 we turn to the physi-
cally most important case of a tight-binding model which we discuss in two
dimensions. We present spectra for systems of various sizes and shapes,
as well as truncation errors showing the difficulties in this case. Section
5.4, finally, contains a summary and some additional remarks.

5.1 Transverse Ising Chain

As a first example, we consider in this section the transverse Ising chain
with open boundaries described by

H = −
L
∑

i=1

σz
i − λ

L−1
∑

i=1

σx
i σ

x
i+1, (5.4)

where the σα are Pauli spin matrices and the transverse field has been
set equal to one. In the thermodynamic limit, this system has a quantum
critical point at λ = 1 and long-range order in σx for λ > 1. In terms of
spinless fermions H reads

H = −2

L
∑

i=1

(c†ici − 1/2) − λ

L−1
∑

i=1

(c†i − ci)(c
†
i+1 + ci+1) (5.5)

and thus has the form (5.1). In the following we discuss the reduced
density matrix ρ1 for one half of the chain, i.e. M = L/2.
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Figure 5.1: Single-particle eigenvalues εl for one-half of a transverse Ising chain, ar-
ranged in ascending order. The system is in the ground state, L = 20 and λ < 1.

5.1.1 Density-Matrix Spectra for One Half Chain

We first consider the ground state. Before discussing the density-matrix
spectra of different λ, those of the thermodynamic limit should briefly
be mentioned in order that one can compare the results. Namely, the
transverse Ising chain can be related to the two-dimensional Ising model.
Using the CTM, the reduced density matrix ρh for one-half chain reads
[18]

ρh = K exp

{

−
∑

l

εlf
†
l fl

}

, (5.6)

where f †
j and fj are Fermi operators and the single particle energies

εl =

{

(2l + 1)ε, for λ < 1
2lε, for λ > 1

(5.7)

where l = 0, 1, 2, . . . and ε is given by

ε = π
I(k′)

I(k)
. (5.8)

Here I(k) denotes the complete elliptic integral of the first kind, k′ =√
1 − k2 and the parameter k with 0 ≤ k ≤ 1 is related to λ by

k =

{

λ, for λ < 1
1/λ, for λ > 1.

(5.9)
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Figure 5.2: Density-matrix eigenvalues wn, arranged in decreasing order, obtained
from the εl in Fig. 5.1 and for the same parameters.

In the case λ > 1, one always obtains ε0 = 0, which generates twofold
degeneracies in the density-matrix spectra due to the long-rang order.
One can find the details in the paper by Peschel et al. [18].

We now turn to our results and first discuss the disordered phase. In
Fig. 5.1, the single-particle eigenvalues εl are plotted for L = 20 and
different coupling constants λ. For λ = 0.1 they all lie on a straight
line, which corresponds to Eqn. (5.7) in the thermodynamic limit. This
is what one expects since the correlation length is much less than L and
hence boundary and finite-size effects should be small. One can also check
the values are exactly those obtained by Eqn. (5.7) and (5.8). It seems
that difficult, however, to derive this formula directly from our equations.
For larger coupling, λ = 0.5, only the first εl follow a linear law, and the
curve bends upwards. This is similar to the behavior one finds in the
finite-size CTMs [55], though the geometry there is different. At the same
time, the initial slope decreases. Finally, at the critical point, the whole
graph is curved.

One can derive wn of ρ1 from the εl by specifying the occupation
numbers f †

l fl equal to zero or one in Eqn. (5.3). The resulting spectra are
shown in Fig. (5.2) in a semi-logarithmic plot. Note that not all wn are
shown (the total number is 2M), however they are correctly normalized
to one. Similar results, but for a smaller number of wn, were obtained in
Ref. [18] via DMRG calculations. For λ = 0.1, where εl = ε, 3ε, 5ε, . . ., the
wn take all values proportional to e−nε except e−2ε. The first degeneracy
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Figure 5.3: Single-particle eigenvalues εl for one-half of a transverse Ising chain, ar-
ranged in ascending order. The system is in the ground state, L = 20 and λ > 1.
Notice that the εl for λ = 10 are obtained by the Eqn. (5.7).

occurs for the eigenvalue e−8ε because it can be obtained from 3ε+ 5ε or
ε + 7ε. The other degeneracies follow in the same way. The spectrum
for λ = 0.5 has a similar structure, except that in the smaller wn the
degeneracies are lifted due to the fact that the bigger εl do not lie on
the same straight line any more. For the critical point (λ = 1), the
degeneracies disappear, stemming from the curved spectrum. Due to the
relatively large values of the εl there is a rather rapid decay (note the
vertical scale) so that the system can be treated very well by DMRG
[56, 57]. This holds even at the critical point, where the decay is slowest.

Spectra for the ordered phase (λ > 1) are shown in Fig. 5.3. The
two lowest curves are numerical results. However, for λ > 2.5, ε0 is very
small (almost 0) and εL−1 is large. This difference caused the compu-
tational problem because any small inaccuracy compared with εL−1 will
cause large inaccuracy compared with ε0. Therefore I used the analytical
result (5.7) for the case λ = 10. One sees that if one moves away from the
critical point, the εl straighten out again and ε0 decreases to 0. For λ = 2
(k = 0.5), one has ε1/2 = 4.01895, whereas ε = 4.01892 from the elliptic
function (5.8). Therefore the numerical and analytical results coincide.
However, the higher other eigenvalues differ more and more from the ana-
lytical result due to boundary effects. The analytical εl obeying the linear
rule (5.7) show us the thermodynamic limit in the ordered phase.

The wn for λ > 1 obtained from the εl are shown in Fig. 5.4. In
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Figure 5.4: Density-matrix eigenvalues wn, arranged in decreasing order, obtained
from the εl in Fig. 5.3 and for the same parameters.

contrast to those in the case of disordered region, the wn are at least
doubly degenerate, due to the small ε0. Therefore they are flatter than
those for λ < 1 with the same k. However, they also drop so rapidly that
one can also treat the system very well by DMRG.

The situation at the critical point λ = 1 is presented in more detail
in the next figures. Fig. 5.5 shows the ε-spectra for various sizes of the
system. As L increases, the number of ε increases, the curves become
flatter, but the curvature remains. There is no sign of a linear region
related to conformal invariance on this scale (compare Ref. [55]). The
wn spectra are plotted in Fig. 5.6. Because of the form of the ε, there
are few degeneracies and the curves have the typical, relatively smooth
shape found also for other critical systems [2, 16]. As can be seen, the
wn decrease more slowly with increasing size, and they do not converge at
this stage. The fan-shaped tails essentially show finite-size effects.

Comparing the εl of ρh for λ ≤ 1(k ≤ 1) with those for the coupled os-
cillators in the section 3.2, one sees that they are very similar, but not the
same. Moreover, the single-particle spectra for fermions and for bosons go
to the same thermodynamics limits. However, the wn for fermions (5.3)
and bosons in Eqn. (3.25) differ from each other because of the differ-
ent statistics. In the case of bosons, the wn decrease more slowly than
fermions. Furthermore, the reduced density matrices for bosons are un-
normalizable in the critical point k = 1.0, while for fermions (λ = 1.0)
they are normalizable. The reason is that one state can be occupied by
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Figure 5.5: Single-particle eigenvalues εl for critical transverse Ising chains in the
ground state.
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Figure 5.6: Density-matrix eigenvalues wn for transverse Ising chains at the critical
point obtained from the εl in Fig. 5.5.
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Figure 5.7: Single-particle eigenvalues εl for critical transverse Ising chains in the
ground state.

an arbitrary number of bosons, but only by one fermion. If some single-
particle eigenvalues are small, the spectra wn for bosons will be rather flat
and one zero single-particle eigenvalue makes the density unrenormaliz-
able. For fermions, on the contrary, the situation is much less dramatic.

5.1.2 First Excited State

So far, we have treated the ground state, but one can also determine the
density matrices for the first excited state | Φ1 >. This state contains an
odd number of fermions. To apply the formalism here, one can perform
a particle-hole transformation at one site, e.g. c†1 ↔ c1. Then | Φ1 >
appears in the even subspace and can be written in the form (4.6). With
the help of the relations

η†1 | Φ1 > = 0

ηk | Φ1 > = 0 for k ≥ 2, (5.10)

one can then derive the corresponding equation for the matrix Gij. This
procedure to obtain Gij has been addressed in the last chapter in the
bosonic case. Before particle-hole transformation, one can find gij and hij

from Eqn. (5.10). Unfortunately, gij is not invertible, which reflects the
fact that the first excited state has an other particle configuration than
ground state, i.e. it has only odd number of fermions. Therefore, one has
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Figure 5.8: Single-particle eigenvalues ε of the two different row-to-row matrices V
and W .

to make a particle-hole transformation on one site. One obtains the same
results, on whichever site one makes it.

In this way, the single-particle eigenvalues εl shown in Fig. 5.7 were
obtained. In contrast to the case of the ground state, the first eigenvalue
is zero here. This reflects the fact that, in the original representation,
the fermion number is odd, while the number of sites is even. The other
eigenvalues are very similar to those for the ground state. In particular,
one has a linear spectrum away from λ = 1 and a curved one at the critical
point. The vanishing of ε1 causes all eigenvalues wn of ρ1 to be at least
doubly degenerate.

5.1.3 Two-Dimensional Ising Model

The closely related problem of the row-to-row transfer matrices for the
two-dimensional Ising model can be studied in the same way. For a square
lattice with the couplings K1(K2) in the vertical (horizontal) direction
one can consider two symmetrized version (see Fig. 6.2 without defects),
namely

V = V2
1/2V1V2

1/2; W = V1
1/2V2V1

1/2 (5.11)

where, for open boundaries

V1 = exp

[

K∗
1

L
∑

i=1

σz
i

]

, (5.12)
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V2 = exp

[

K2

L−1
∑

i=1

σx
i σ

x
i+1

]

. (5.13)

The σα
i are Pauli matrices and K∗

1 denotes dual coupling of K1, tanhK∗
1 =

exp (−2K1). In terms of Fermi operators ci, c
†
i via the Jordan-Wigner

transformation they read

V1 = exp

[

K∗
1

L
∑

i=1

(2c†ici − 1)

]

, (5.14)

V2 = exp

[

K2

L−1
∑

i=1

(c†i − ci)(c
†
i+1 + ci+1)

]

. (5.15)

Both represent fermionic quantum chains and can be diagonalized [58,
59] with the Bogoliubov transformation. DMRG calculations using the
operator V have already been done [60]. In the last chapter, I will discuss
the two-dimensional Ising plane with various defects, where the DMRG
calculations for the pure Ising plane are needed.

Following Ref. [59] one can find the gij and hij for the eigenvector
with maximal eigenvalue, which is needed for the thermodynamics. From
gij and hij, Gij is obtained using Eqn. (4.10) and the εl follow. The
spectrum of the εl in the isotropic case K1 = K2 is very similar to that
found above in Fig. 5.1. This also holds for the magnitude of the εl and
the problem can therefore be treated equally well by DMRG. An example
for K1 = K2 = 0.3 is shown in Fig. 5.8. For W , the ε-spectrum is strictly
linear at the lower end and described by a formula containing elliptic
integrals as in Eqn. (5.7), while for V the values are somewhat smaller
and there is a deviation from linearity for the first εl. This reflects the
different of the geometrical representation of the two transfer matrices: W
can directly be related to two multiplied CTMs, while in order to form V
one has to multiply a row-to-row TM between two CTMs.

5.2 XX- and XY-Spin Chain

In this section I will consider XX and transverse XY spin chains. The
two spin chains have some interesting properties, the most important is
that they have different ground-state structure than the transverse Ising
chains. I want to discuss these ground states and thereby to generalize
the ansatz (4.6).
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Figure 5.9: The single-particle eigenvalues εl for one half of an XX spin chain with
two different lengths compared with a critical transverse Ising chain.

5.2.1 XX-Spin Chain

The XX-spin chain with open boundaries reads

HXX = −J/2
L−1
∑

i=1

(

σx
i σ

x
i+1 + σy

i σ
y
i+1

)

. (5.16)

Through the Jordan-Wigner transformation, the Hamiltonian (5.16) can
be expressed in term of fermions as

HXX = −J
L−1
∑

i=1

(

c†ici+1 + c†i+1ci

)

. (5.17)

This shows that the XX spin chain with open boundaries is identical with
the tight-binding (TB) model in one dimension. Therefore I want to treat
it as an introduction of two-dimensional TB model in the next section.

After a Fourier transformation, Eqn. (5.17) can be expressed as

HXX = −J
∑

k

2 cos k c†kck, k =
π

L + 1
n, n = 1, 2, . . . , L, (5.18)

where ck(c
†
k) are the annihilation (creation) operator in momentum space.

Compared with Eqn. (C.3), Λk = −2 cos k. For even L, i.e. L = 2M , one
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has M negative single-particle Energies if n = 1, . . . ,M . Thus the ground
state contains M = L/2 single particles with negative Λk. For odd L, i.e.
L = 2M + 1, one has M negative single-particle energies if n = 1, . . . ,M
and Λk = 0 if n = M+1. This zero energy will not affect the total energy,
thus the ground states are two-fold degenerate, containing M or M + 1
particles, respectively. Because of the algorithm of DMRG, I will only
consider even L.

The ground state here is different from that in the transverse Ising
models. One can see from Eqn. (C.4) that our Ansatz for the ground
state is not particle conserved, while the ground state for the tight-binding
model has conserved particles. One can consider this mathematically. Be-
cause H only contains hopping, B = 0 in Eqn. (5.1), the fermion number
is fixed and the ground state does not have the form (C.4). Formally, this
manifests itself in the fact that hij = 0 so that the matrix Gij cannot
be found. However, as discussed in the last chapter, one has to perform
enough particle-hole transformations to obtain Gij. In the present case,
one exchanges the creation and annihilation operators on L/2 sites, for
example on every second one, by which the effective gij is invertible and
hij 6= 0. One should notice that the results are the same, on whichever
L/2 sites one performs the transformation due to the fact that the ground
state is unique for an open XX spin chain if L is even. In terms of new
operators, | Φo〉, which originally contains L/2 particles, becomes a su-
perposition of terms with particle numbers ranging from 0 to L and can
again be written in form (4.6). If one transforms the ground state back
into the original operators, it gives

| Φ0〉 = Cf exp {1

2

∑

ij

Gijc
†
icj} | 0, 1, 0, 1, · · · 〉, (5.19)

where | 0, 1, 0, 1, · · · 〉 denotes the state without particles on the sites i =
1, 3, 5, · · · and with one particle on the sites i = 2, 4, 6, · · · . Gij 6= 0 only
if i(j) takes even (odd) number. The exponential operator in the ground
state (5.19) annihilates a particle and creates another particle at the same
time, thereby conserving the particles. In the same way, an arbitrary
n-particle eigenstate of H could be handled by exchanging particles and
holes at n sites. The density-matrix spectrum is not affected by such local
transformations.

In Fig. 5.9, I show the single-particle eigenvalues ε for L = 20 and
L = 22. Because the XX model is critical, one can compare the results
with those for the critical transverse Ising chain. As can be seen, the
eigenvalues ε for XX chain and L = 20 are all two-fold degenerated, while
those for L = 22 are two-fold degenerate, except when ε1 = 0. Because
of these degeneracies, the single-particle spectrum for XX chain increases
more slowly than that in the critical transverse Ising chain with the same
size. The density-matrix spectra wn obtained from the εl in Fig. 5.9 are
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Figure 5.10: Density-matrix eigenvalues wn, arranged in decreasing order, obtained
from εl in Fig. 5.9.

shown in Fig. 5.10. Due to the flatter ε spectra, the wn for the XX model
drop much more slowly than for the transverse Ising chain. Their step-like
structure for the XX chains is a consequence of the degeneracies of the ε.

For L = 22, the wn are always two-fold degenerate due to the fact
that ε1 = 0, while for L = 20 this is not the case. We can understand
the phenomenon using the particle-hole symmetry. The ground state for
L = 2M can be separated into two states

| Φ0〉 =| P 〉+ | H〉, (5.20)

where the state | P 〉 contains M,M − 1, . . . , [M/2] particles in the system
part 1 ([x] is equal to the integer part of x) and | H〉 is its particle-hole
symmetric state. For odd M , where [M/2] = (M − 1)/2, one finds that

Tr2 | P 〉〈H |= Tr2 | H〉〈P |= 0 (5.21)

because | P 〉 always contains less particles in the environment than | H〉
and hence they are orthogonal with respect to the bases of the environ-
ment. Thereby the reduced density matrix ρh = Tr2 | Φ0〉〈Φ0 | for the
one-half chain reads

ρh =Tr2 (| P 〉+ | H〉) (〈P | +〈H |)
=Tr2 (| P 〉〈P |) + Tr2 (| H〉〈H |) . (5.22)

Since | H〉 is merely the particle-hole symmetric state, the density matrix
spectra for this state are the same with them from the state | P 〉, therefore
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Figure 5.11: The first single-particle eigenvalue Λ1 of the Hamiltonian 5.23 for the
XY chain in a transverse field. The anisotropy is γ = 0.5, the length L = 8.

the density-matrix spectra for ρh are at least two-fold degenerate. On the
contrary, for even M , where [M/2] = M/2, | P 〉 is not orthogonal with
| H〉 because they both contain the state composed of M/2 particles in
the surrounding. The density matrices are not always degenerate.

In spite of the difference of degeneracies the two wn-curves for odd
and even M are very similar. Though they drop much slowly than those
in the critical transverse Ising chain, they do not create any difficulties
in the DMRG calculation. With 60 truncated states one can obtain the
truncation error less than 10−10.

5.2.2 Transverse XY-Spin Chain

In this subsection I consider an anisotropic XY chain with a transverse
magnetic field described by the Hamiltonian

HXY = − J/2

L−1
∑

i=1

{

(1 + γ)σx
i σ

x
i+1 + (1 − γ)σy

i σ
y
i+1+

h(σz
i + σz

i+1)
}

(5.23)

which reads in terms of fermions

HXY = − J
L−1
∑

i=1

{

(c†ici+1 + γc†ic
†
i+1 + h.c.)

+h(c†ici + c†i+1ci+1 − 1)
}

. (5.24)
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Figure 5.12: The four lowest single-particle eigenvalues ε for an XY spin chain in
a field h. The anisotropy is γ = 0.5, the length L = 8. Lines result from the
analytical method, solid circles from a DMRG calculation.

Although similar to the transverse Ising chain, this system has a special
feature. For

γ2 + h2 = 1 (5.25)

the ground state simplifies and also becomes two-fold degenerate. In the
spin language, one has two simple product states [61]. Moreover, the be-
havior of correlation functions changes from monotonic to oscillatory [62]
and thus (5.25) represents a ”disorder line” [63]. On this line, H describes
also a stochastic reaction-diffusion model [64] equivalent to Glauber’s ki-
netic spin model.

The appearance of a simple ground state can be observed in the density-
matrix spectrum, namely in this disorder line there are only two nonzero
eigenvalues for the reduced density matrices. This phenomenon has been
seen in DMRG calculations for certain other models (see Sec. 3.1 in Ref.
[3]). That means, one will find only one non-infinite eigenvalue ε in the
single-particle spectrum along this line. For the XY chain, this can be
investigated very well in the fermionic approach.

So far I have studied the ground states of the transverse Ising model,
which always had an even number of particles. However this is not the
case for all models. It is known that HXY commutes with the transverse
Ising model for γ2 + h2 > 1. Thereby the ground states in this region also
have an even number of particles. On the contrary, in the order oscillating
phase γ2 + h2 < 1, the situation is quite different. Fig (5.11) shows the
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first single-particle energy Λ1 of HXY as a function of the parameter h
in the region 0.7 ≤ h ≤ 0.9 for fixed anisotropy γ = 0.5 and L = 8.
One can see that they oscillate and cross zero twice, once at the disorder
line h0 = 0.866, once at the point h1 = 0.78. At h0 and h1, Λ1 = 0 the
ground states are two-fold degenerate, because |Φ0〉 and η†1|Φ0〉 have the
same energy. These two ground states correspond to an even and an odd
number of particles in the state. Therefore the configuration of the ground
state must change from evenness to oddness, or vice versa, provided the
system crosses a point with zero Λ1. For h > h0, since the ground state
has the same configuration as the transverse Ising model, one can directly
treat it, while for h1 < h < h0, where the ground state contains an odd
number of particles, one has to perform a particle-hole transformation at
one site as for the excited states in the subsection 5.1.2. Crossing h1,
the system change again the configuration. A detailed discussion for the
periodic boundaries can be seen in Ref. [65].

Fig. 5.12 shows the lowest εl values as a function of h for γ = 0.5. One
can see that, coming from larger values of h, all εl except the lowest one
diverge as one approaches h0 due to the fact that HXY has a simplified
ground state at h0. For h < h0 they become finite again. Note that in
the region h1 < h < h0 ε1 is always zero, which reflects the fact that
an odd number of particles is on the even sites, as discussed in the last
subsection. One can check the curves in the figure by performing direct
DMRG calculations. The dots in the figure representing the DMRG results
agree completely with the curves. At the next crossing h1, however, as
seen from the figure, the higher εl do not show such effects, indicating that
the ground state of HXY does not simplify there. At h0, the divergence of
the εl for l ≥ 2 together with the value ε1 = 0 lead to the density-matrix
eigenvalues w1 = w2 = 1/2, while all other wn are zero, i.e. the spectrum
collapses at this point. For larger systems, there are further crossings at
smaller values of h. This effect could be a tool in the search for simple
ground states by DMRG.

5.3 Two-Dimensional Tight-Binding Model

As the last, but most important example we consider a tight-binding model
with open boundaries described by

HTB = −
∑

<i,j>

(

c†i cj + c†jci

)

, (5.26)

where the brackets < i, j > denote nearest-neighbor sites. This model is
critical and solvable in all dimensions. We treat it here for the case of
a square lattice and we assume that the system also has the shape of a
square with L = N 2 sites where N is even. This problem has has served
as a DMRG test case some time ago [35].
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5.3.1 Ground States of the TB Model

The ground states of the two-dimensional TB model is not as simple as
that of the one-dimensional because it is multiply degenerate. To see this,
one transforms the Hamiltonian (5.26) into the Fourier space, which leads
to the form

HTB = −
∑

kx,ky

2 cos

(

kx − ky

2

)

cos

(

kx + ky

2

)

c†(kx, ky)c(kx, ky), (5.27)

and where

kα = 2πnα/Nα, nα = 0, . . . , N − 1 (α = x, y) (5.28)

due to the open boundaries. c†(kx, ky) and c(kx, ky) are the representative
fermionic creation and annihilation operators for the momentum space.
Therefore the single-particle energies have the form

Λk = −2 cos

(

kx − ky

2

)

cos

(

kx + ky

2

)

. (5.29)

They are zero in case nx +ny = 0 or N . In this case, one has N solutions,
giving 2N degeneracies in the 2N2

states. The degenerate states have
different number of particles. In the most interesting half-filled ground
states, they are also

(

N
N/2

)

-fold degenerate. Therefore one should choose
one representative state to demonstrate the character of ground states of
the tight-binding model.

I have mentioned in the section 5.2.1 that one can make particle-hole
transformations on arbitrary L/2 sites in the Hamiltonian and obtains the
same results due to the uniqueness of the ground state. But the situation
in the two-dimensional TB model is different because of the degeneracies.
A certain configuration of the particle-hole transformation will decide a
ground state differing from those from the other configurations. One can
already see it from a 2× 2 lattice. Exchanging the creation and annihila-
tion operators on every second site with some chosen φ and ψ (usually by
computer), the vacuum state of ηk for the transformed Hamiltonian cor-
responds to a half-full ground state of the TB model. On the other hand,
one can totally inverse the particles and holes on the lattice to obtain
the other vacuum, which corresponds to another half-full ground state.
Both states are orthonormal and give the same density-matrix spectra for
the half plane. The density-matrix spectra in the next two subsections
will be obtained with the same method. Namely, I made particle-hole
transformations for the Hamiltonian on every two sites and calculated the
corresponding vacuum. The ground states will have a form similar to Eqn.
(5.19).
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Figure 5.13: Single-particle eigenvalues εl for two-dimensional tight-binding models
of different sizes. The εl are for one half of the system.
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Figure 5.14: Density-matrix eigenvalues wn of two-dimensional tight-binding models,
obtained from the εl in Fig. 5.13. The inset shows the truncation error (see text).
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5.3.2 Density Matrices for One Half Plane

In this subsection I will consider the density matrices for one half plane of
the square N×N lattice, providingN is even. To carry out the calculation,
one makes the problem formally one-dimensional by numbering the sites
from 1 to L (in this case L = N 2.) in such a way that the desired partition
into two parts arises naturally. For example, a meander-like numbering
as in [35] permits a division of the square into two halves.

In figure 5.13, the single-particle eigenvalues εl for such a half-system
and three different sizes are shown. One notices two features which are
in contrast to the one-dimensional results: a ”foot” of low-lying εl and a
much smaller slope of the curves (note the scales). Both are strongly size-
dependent. The number of εl in the foot is equal to N , which indicates
that these states are closely connected with the interface between system
and environment.

Fig. 5.14 shows the first 2000 eigenvalues wn which result. Due to
the small εl, they decrease very slowly and the situation worsens as the
system is enlarged. The tails of the curves can be described qualitatively
by ln(wn) ∼ − ln2(n) as in [21, 41]. The effect of these tails shows up even
more in the truncation error fn, which is defined as the sum of all w’s
beyond n. This quantity is given in the inset of the figure. With n = 2000
it is approximately 5 × 10−2, 5 × 10−1 and 10−1, respectively. Thus the
situation is not only much worse than for one-dimensional systems, but
also worse than for the two-dimensional system with a gap as discussed
in section 3.6 and in Ref. [41]. Standard DMRG calculations using, say,
2000 states would be limited to sizes below 12 × 12, and even then the
accuracy would be much less than the one obtained in quantum chains.

Let me mention that one can also include spin in H and thereby treat
the Hubbard model in the U = 0 limit. Then the operators fl, f

†
l in

ρ1 acquire a spin label, too, and all single-particle levels become doubly
degenerate. Fig. 5.15 shows the first 3000 eigenvalues wn for the model
compared with the TB model with the same size. One sees at the tails of
the wn-curves even flatter than in the spinless case due to the degeneracies.
However, the curves are also pulled down by smaller normalization factors
which leads to a faster initial decay.

5.3.3 Density Matrices for A Quarter

One can also calculate the density-matrix spectra for other shapes of the
selected subsystem. As an illustration, we show in Fig. 5.16 results for
one quarter of a quadratic system (for example the upper right one). Note
that the sizes indicated there refer to the whole system. One sees again
some small eigenvalues, but fewer than for the half-system, while there
are further higher-lying plateaus and additional short steps. Obviously
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Figure 5.15: Density-matrix eigenvalues wn for Hubbard model with U = 0 and two-
dimensional tight-binding models. The wn are for one half of the system, the
width N = 20.
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Figure 5.16: Single-particle eigenvalues εl of two-dimensional tight-binding models.
The εl are for a quarter of the system, the wn obtained from them are plotted in
the inset.
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Figure 5.17: Single-particle eigenvalues εl of two-dimensional tight-binding models.
The εl are for a triangle and for a half plane, the width N = 12.

this reflects the particular interface with a corner. For the 10×10 system,
for example, the two lowest plateaus contain 9 states which is just the
number of sites along the interface. The eigenvalues wn are plotted in the
inset of the figure. They are similar to those for the half-system but some
more steps persist for small n. In the same way, one can investigate cases
where one cuts the square diagonally at various positions. Such partitions
appear in a recent new DMRG algorithm [66]. I will discuss the resulting
spectra in the next subsection.

5.3.4 Density Matrices for A Triangle

Finally, I will consider density matrices for a half diagonal triangle. This
kind of partition is interesting because in Ref. [66]. Xiang et al. used these
density matrices to study the two-dimensional Heisenberg model. To treat
the problem, one can numerate the lattice along the diagonal direction as
made in this Ref. In Fig. 5.17 the single-particle spectra εl for a 12 × 12
lattice of such a partition are shown, compared with those for the one-half
plane. As can been seen, the εl have some steps and are flatter. One should
be cautioned that they are actually only two-fold degenerate, though in
the figure they seem to have more degeneracies. These small values of εl

can be understood from the cut between the system and the environment.
In the case of one-half plane, the sites along the cut only lose the couplings
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Figure 5.18: Density-matrix eigenvalues wn of two-dimensional tight-binding models,
obtained from the εl in Fig. 5.17

of the x-direction by dividing the lattice into two parts, whereas in the
case of the triangle, most sites along the cut lose the couplings of the both
x- and y-directions. These loss of coupling constants results in the small
values of εl.

Fig. 5.18 shows the wn derived from those εl. As expected, the small
step-like structure generates the flat density-matrix spectrum. Compared
with the eigenvalues for one-half plane, they drop faster at the beginning
due to a larger normalization factor, then decrease much more slowly and
form some plateaus. In fact, the spectra are related to DMRG calculations.
In Ref. [66], the authors enlarge (N − 1) × (N − 1) lattice to N ×N one
using the triangular density matrices, therefore there should exist some
problems with larger systems.

5.4 Brief Summary

I have studied the reduced density matrices for non-interacting fermions
on a lattice. The key ingredient for the calculation was a simple represen-
tation of the (ground) state. This led rather directly to the exponential
Boltzmann-like form of the density matrices. The only really numerical
step involved was the calculation of the single-fermion eigenvalues appear-
ing in the exponent. With these, we discussed a number of cases in one and
two dimensions with characteristic differences. We focused on the eigen-
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values, but one can also investigate the single- fermion eigenfunctions.
One then sees that they are concentrated near the interface between the
two parts of the system. This explains the decisive role of the connectivity
for the spectra.

One should mention that fermionic density matrices have been studied
before, e.g. in quantum chemistry [67, 68]. However, in this case the
systems are continuous and the Hilbert space is infinite. Then already
the single-particle density matrices have infinitely many eigenstates [69].
Our systems are discrete, but we are interested in density matrices for
arbitrarily large subsystems. These are non-trivial even for non-interacting
fermions. From the experience with other models, one can expect that the
results are roughly representative also for more complicated systems.

For this reason, the two-dimensional case is particularly important.
With our formulae, we could treat the tight-binding model for arbitrary
partitions of the system. This allows to make much more detailed state-
ments than a previous, purely numerical investigation of this system [35].
In particular, one can see the very slow decay of the spectra and of the
truncation errors directly. Basically, it is connected with the existence
of long boundaries between the two parts of the system. In the current
DMRG procedures, these appear necessarily at some point of the calcu-
lation. Therefore it is not yet clear whether a recent new algorithm [66]
can really overcome this problem.
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Chapter 6

Ising Plane with Defects

In the previous chapters, I have presented the theory of DMRG and com-
pared some results with the numerical calculations. In this chapter I want
to introduce a precise application of DMRG, namely the transfer-matrix
DMRG (TDMRG), for the planar Ising model with linear defects [70].

The planar Ising model with line-like defects is a peculiar system, be-
cause it shows non-universal magnetic exponents. This is connected with
the values ν = 1 and xs = 1/2 of the exponents for the correlation length
and the surface magnetization of the pure system, respectively. A one-
dimensional, energy-like perturbation then is marginal and can change the
critical behavior continuously. For this reason, the system has been the
topic of various studies [71], with the focus most recently on a conformal
treatment [72] and on random systems [73]. While the simple chain and
ladder defects considered by Bariev are solvable free-fermion problems,
the other cases we study are not integrable and one has to use numeri-
cal methods. Since with the transfer matrices (TMs) the Ising plane is
an one-dimensional problem, DMRG is a good method to solve them, as
pointed out by Nishino [7, 44]. In the following I will use the TDMRG to
obtain the quantity of direct physical interest, the local magnetization at
or near the defect lines.

In section 6.1 I will follow reference [44] and introduce the principle of
TDMRG and the infinite algorithm. In section 6.2 the correlation func-
tions and the magnetization of the Ising plane with different defects will
be discussed. From these, the local critical exponents βl will be obtained.

6.1 Transfer-Matrix DMRG

6.1.1 Transfer Matrix and Density Matrices

I consider now the transfer matrix of the square anisotropic homogeneous
Ising model on a cylinder, i.e. with periodic boundary conditions in the y-
direction and open boundaries in the x-direction. The lattice is assumed to
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Figure 6.1: Division of the transfer matrix T (M) into the half-row transfer matrices
TL and TR, and a Boltzmann weight W .

consist ofM×N sites (M denotes the width in the x-direction andN in the
y-direction.) I label the spins in a row from left to right as s1, s2, . . . , sM ,
and occasionally use the vector notation s= (s1, s2, . . . , sM) for simplicity.
The vertical (horizontal) couplings between the nearest neighbors will be
denoted by K1(K2). The partition function has the form

Z = Tr
{

T (M)(s′ | s)N
}

, (6.1)

where

T (M)(s′ | s) = exp

{

K2

2

M−1
∑

i=1

(s′is
′
i+1 + sisi+1) +K1

M
∑

i=1

s′is
′
i+1

}

(6.2)

is the symmetrized transfer matrix which corresponds to quantity V in
(5.11) in the last chapter. One can define an elementary building block

W (s′is
′
i+1 | sisi+1) = exp

{

K1

2
(si+1s

′
i+1 + s′i+1si) +

K2

2
(sisi+1 + s′is

′
i)

}

,

(6.3)
which contains the Boltzmann weights of one square (actually half of them
since the blocks have common edges). In terms of the W s, the transfer
matrix for a strip can be expressed as

T (M)(s′ | s) = exp

(

K1

2
s1s

′
1

)

{

M−1
∏

i=1

W (s′is
′
i+1 | sisi+1)

}

exp

(

K1

2
sMs

′
M

)

,

(6.4)
where the additional two terms complete the Boltzmann weights at the
boundaries. Following the convention of the quantum DMRG, one can
divide the spin row into left and right parts (see Fig. 6.1). Decompose
T (M) into three factors

T (M)(s′ | s) = TL(s′
L | sL)W (s′is

′
i+1 | sisi+1)TR(s′

R | sR), (6.5)
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where TL(s′
L | sL) and TR(s′

R | sR) are the half-row TMs

TL(s′
L | sL) = exp

(

K1

2
s1s

′
1

)

,

M/2−1
∏

i=1

W (s′is
′
i+1 | sisi+1)

TR(s′
R | sR) =

M
∏

i=M/2

W (s′is
′
i+1 | sisi+1) exp

(

K1

2
sMs

′
M

)

, (6.6)

where the total spin tensor indices are expressed as s= (sLsR), where
sL = (s1 . . . sM/2) and (sR = (sM/2+1 . . . sM)

For quantum chains, one is usually interested in the ground state.
Here, the eigenstate of the transfer matrix with the largest eigenvalue
is relevant since it determines the thermodynamic behavior. I denote
this state by Φ

(M)
0 (s) and its eigenvalue by λ

(M)
0 , i.e. T (M)Φ

(M)
0 (s) =

λ
(M)
0 Φ

(M)
0 (s). Therefore the reduced density matrices for the left and right

halves of systems are defined as

ρL(s′
L | sL) =

∑

sR

Φ
(M)
0 (s′

LsR)Φ
(M)
0 (sLsR),

ρR(s′
R | s′

R) =
∑

sL

Φ
(M)
0 (sLs′

R)Φ
(M)
0 (sLsR). (6.7)

They have the diagonal form

ρL(s′
L | sL) =

∑

ξ

VL(s′
L | ξ) ω2

ξ VL(sL | ξ),

ρR(s′
R | sR) =

∑

ζ

VR(s′
R | ζ) µ2

ζ VR(sR | ζ) (6.8)

with the descending eigenvalues (ω2
1 ≥ ω2

2 ≥ · · · ≥ 0 and µ2
1 ≥ µ2

2 ≥ · · · ≥
0) and matrices of eigenvectors VL, VR.

As described in the last chapter, the eigenvalues of density matrices
decay exponentially, therefore one can choose the m ≤ 2M the important
eigenstates, corresponding to the m largest eigenvalues, to simplify the
calculations. I choose the same symbols VL and VR to denote the trun-
cated eigenvectors matrices, which only contain the m eigenvectors, Due
to the truncation they are rectangular with dimension (2M/2×mt). An op-
erator OL(s′

L, sL) in the left part can be expressed under such a truncated
transformation as

ÕL(ξ′, ξ) =
∑

s′
LsL

VL(s′
L | ξ′)OL(s′

L, sL)VL(sL | ξ). (6.9)

Therefore Õ is an m×m matrix. The situation for operators on the right
side is similar. The transformation for transfer matrices will be discussed
in the next subsection.
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6.1.2 Infinite-System Algorithm

The infinite-system algorithm begins with the smallest size. i.e. M =
4, and constructs renormalized transfer matrices T̃ (6), T̃ (8), . . . , T̃ (M) for
arbitrary M . For the four-site system, the transfer matrix is

T (4)(s′1s
′
2s

′
3s

′
4 | s1s2s3s4) = TL(s′1s

′
2 | s1s2)W (s′2s

′
3 | s2s3)TR(s′3s

′
4 | s3s4).

(6.10)
Following the procedure described in the last subsection, one diagonalizes
T (4) and finds the eigenstate Φ

(4)
0 for the largest eigenvalue. From the

eigenvectors of the reduced density matrices ρL(s′1s
′
2 | s1s2) and ρR(s′1s

′
2 |

s1s2) one can find the matrices VL(s1s2 | ξ) and VR(s3s4 | ζ).
To enlarge the system from M = 4 to M = 6, one should find the new

T̃L and T̃R under the RG transformation

T̃L(ξ′s′3 | ξs3) =
∑

s′
1
s′
2
s1s2

VL(s′1s
′
2 | ξ′)TL(s′1s

′
2 | s1s2)

W (s′2s
′
3 | s2s3)VL(s1s2 | ξ),

T̃R(s′4ζ
′ | s4ζ) =

∑

s′
5
s′
6
s5s6

VR(s′5s
′
6 | ζ ′)W (s′4s

′
5 | s4s5)

TL(s′5s
′
6 | s5s6)VL(s5s6 | ζ). (6.11)

Here s′5, s
′
6s5s6 are used because they correspond to the system M = 6.

The Greek indices ξ and ζ take at most m values. One notices that
the largest eigenvalue increases exponentially if one enlarges the system,
i.e. ln(λ

(M)
0 ) ∼M which causes computational problems. To avoid that, I

divide the T̃L and T̃R by the largest eigenvalue

√

λ′
(M)
0 of the renormalized

TMs T̃ (M) after the RG transformation

T̂L =
T̃L

√

λ′
(M)
0

, T̂R =
T̃R

√

λ′
(M)
0

. (6.12)

At this step one has to divide them by λ′(4)
0 (= λ

(4)
0 ). Carrying TMs in

(6.11) to the next iteration, the renormalized transfer matrix for M = 6
is given by

T̃ (6)(ξ′s′3s
′
4ζ

′ | ξs3s4ζ) = T̂L(ξ′s′3 | ξs3)W (s′3s
′
4 | s3s4)T̂R(s′4ζ

′ | s4ζ).
(6.13)

Using the DMRG algorithm and iteration, one obtains all renormalized
TMs T̃ (M).

The eigenstates of the transfer matrices are not influenced by the di-
vision but the eigenvalues are. One finds that the largest eigenvalue λ

(M)
0

of TM is related to all λ′
0
(2i), i ≤M/2

λ(M)
o =

M/2
∏

i=2

λ′0
(2i)
. (6.14)
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From this relation, one can find the true eigenvalue and hence the free
energy of the Ising plane.

In order to improve the result further, one could carry out the sweep-
ing process of the finite-system algorithm. Because our results from the
infinite-system algorithm had very good accuracy compared with the an-
alytical results, however, I did not use it in the following calculations and
therefore will not describe the procedure. One can find the details in
reference [44, 3].

6.2 Planar Ising Model with Line-like De-

fects

In this section I will discuss some line-like defects (see Fig. 6.2 and Fig.
6.4) on the Ising surface. In next subsections I will introduce the defects
in detail, here I want to follow the discussion by Iglói, Peschel and Turban
[71] to consider how the dimensionality of systems and defects and the
surface scaling dimensions affect the local critical behavior.

One can first consider the line-like defects as perturbation on a ho-
mogeneous Ising plane. For convenience I denote dimension of the Ising
plane as d(= 2) and that of the defects as d∗(= 1). The line-like coupling
perturbation reads

δHε = δK

∫

dd∗r ε(r), (6.15)

where ε(r) denotes the bulk density energy and equals 〈σM/2(r)σM/2+1(r)〉
for the ladder defect and 〈σM/2(r)σM/2(r)〉 for the chain defect. δK =
K ′−K denotes the difference of couplings between Ising plane and defects.
Under a scaling transformation r′ → r/b (b > 1), the perturbation (6.15)
can be expressed as

δHε = δKbd
∗−xε

∫

dd∗r′ ε(r′). (6.16)

Therefore the coupling perturbation has a scaling dimension d∗ − xε. If
d∗ − xε > 0, the coupling increases under rescaling and the defect is
relevant. On the contrary, if d∗−xε < 0, the defect is irrelevant. A defect
is marginal if d∗ = xε. From the scaling analysis of correlation length, on
the other hand, xε has the form

xε = d− 1/ν. (6.17)

In the case of the two-dimensional Ising model, d = 2 and ν = 1, there-
fore the line-like defects are marginal, which gives the non-universal local
critical behavior.
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Figure 6.2: Ising square lattice with two kind of defect lines; (a)chain defect, (b)ladder
defect

One can also start with two independent Ising planes and couple them
with K ′. The perturbation reads now

δHK′ = K ′

∫

dd∗r 〈σ1(r)〉〈σ2(r)〉, (6.18)

where σ1 and σ2 are the surface spins, which belong individually to the left
and right Ising planes. Under a scaling transformation, the perturbation
(6.18) is given by

δHK′ = K ′bd
∗−2xs

∫

dd∗r′ 〈σ1(r
′)〉〈σ2(r

′)〉 (6.19)

with the surface exponent xs. In this case, the scaling dimension is d∗−2xs.
If d∗ − 2xs > 0, the defect is relevant. The defect is irrelevant provided
d∗ − 2xs < 0. Non-universal local critical behavior is expected when
the perturbation is marginal i.e. when d∗ = 2xs. In the case of Ising
model, xs = βs/ν = 1/2 because βs = 1/2 and ν = 1. Therefore the
line-like defects on the Ising plane, in accordance with the analysis of the
bulk perturbation, are marginal and expected to give the local varying
exponents at or near the defects.

6.2.1 Analytic results - Bariev’s Treatment

According to the scaling arguments a defect line in the two dimensional
Ising model, is expected to lead to continuously varying local exponents.
This problem was first investigated by Bariev [37] who deduced the local
magnetization, as a function of the perturbation strength and distance
to the defect, from the asymptotic behavior of the two-spin correlation
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function below the critical temperature. This was followed by a detailed
study of the two-spin correlation function by McCoy and Perk [74]. These
calculations used the fact that even with such a defect the model is a
solvable free-fermion problem.

Bariev studied the two kinds of perturbation shown in Fig. 6.2. The
chain defect has modified couplings K ′

1 parallel to the defect line, whereas,
for the ladder defect, perturbed couplings K ′

2 are in the perpendicular
direction. The local magnetization has the form

〈σ(x)〉 ∼ tβlxβl−β, (6.20)

where t =| 1 − T/Tc | and when the distance x to the defect line is much
smaller than the bulk correlation length ξ. In the Ising plane β = 1/8 is
the bulk magnetization exponent and the local magnetization exponents
βl vary continuously with K ′

1 or K ′
2. They can be expressed as

βl = 2
π2 arctan2 κ1, κ1 =

tanhK ′
1
∗

tanhK1
∗ chain defect, (6.21)

βl = 2
π2 arctan2 κ−1

2 , κ2 =
tanhK ′

2

tanhK2

ladder defect, (6.22)

where the bulk couplings take their critical values related by

sinh 2K1 sinh 2K2 = 1 (6.23)

and the asterisk denotes dual variables (for example, tanhK∗
1 = exp (−2K1)).

Fig. 6.3 shows the resulting local exponents. The chain defect expo-
nent decreases continuously from βl = 1/2 when K ′

1 → −∞ to βl = 0
when K ′

1 → ∞. In the case of K ′
1 → −∞, the spins along the defects are

forced into antiparallel configurations. Nearby spins decouple the defects
and the total spins vanish near the defects. The local exponents then
takes the free surface value. In the other limit the magnetization does
not vanish even if t → 0 owing to the infinity couplings. When K ′

1 = 0,
the inner spins along the vanishing defect line decouple in the y-direction.
Thereby one can sum out the inner spin and the chain defect becomes a
ladder with strength given by tanhK ′

2 = tanh2K2. Then (6.21) and (6.22)
give identical results since sinh 2K1 sinh 2K2 = 1 on the critical line.

For a ladder defect the local exponent is invariant under the change
K ′

2 → −K ′
2 because one can invert signs of the spins for one half of the

system to restore the original defect coupling. When K ′
2 = 0, the plane is

separated into two parts and βl takes the free surface value i.e. βl = 1/2.
If K ′

2 → ±∞, the couplings force the spins along the defects to be pulled
together and form a chain defect with K ′

1 = 2K1. With the appropriate
values of the perturbed couplings, the two formulae give identical results.
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Figure 6.3: Local magnetization exponent βl against defect strength in the Bariev
model for (a)chain defect, (b)ladder defect
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Figure 6.4: Geometry and interactions of Ising models with two different line-like
imperfections (a) one additional line of spins, (b)pair of adjacent line of spins.
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6.2.2 Numerics - TDMRG Treatment

In the last subsection I have discussed the chain and ladder defects, for
which the magnetization critical exponents can be obtained analytically.
On the other hand, one can use the TDMRG to determine them numer-
ically. The benefit of using TDMRG is that one can obtain βl also for
other kinds of defects which do not belong to the free fermionic models
and therefore cannot be determined analytically. For example, one can
consider an additional chain or two neighboring chains on the Ising plane
as shown in Fig. 6.4. Such lines of adatoms can be produced artificially
and have been the topic of various studies in recent years [71]. In this
subsection I only consider three kinds of perturbations.

• one additional line, varying vertical couplings Ja, Fig. 6.4a

• one additional line, varying horizontal couplings Jl, Fig. 6.4a

• two neighboring lines, varying vertical couplings Ja, Fig. 6.4b

The other couplings are kept equal to Js. These Ising model are also
expected to have non-universal behavior i.e. continuously varying critical
exponents.

One can use TDMRG to obtain the local magnetization at or near the
defects lines and thereby determine the non-universal critical exponent βl.
To achieve this, I used the transfer matrix running along the direction of
the defect. In this way one is treating an infinitely long strip of width
M with the defect located in the middle. After enlarging the system step
by step until a certain desired size is reached, one can insert different
defects. This makes the calculations very convenient. Here the infinite
algorithm was used, no further sweeps to optimize were made, since tests
on the ladder defects gave very good coincidence with the analytical results
(6.22), which I will discuss below. Most calculations were done with 64
truncated states and a truncation error around 10−15.

To find the local magnetization, one can study the Ising plane with or
without boundaries. For the free boundary, the magnetization is normally
zero for finite sizes, while, for T < Tc, the spontaneous magnetization
will occur for large systems (L � ξ) due to symmetry breaking by some
fluctuation appearing in the calculation. Therefore one can calculate it
from the spin operator on the defect sites

md = 〈Φ0 | σd | Φ0〉, (6.24)

where | Φ0〉 is the eigenfunction of the transfer matrix with the largest
eigenvalue obtained from TDMRG and σd denotes the spin operator near
or at the defects. This method has been used by some authors [75, 76]
however, it seems not to be reliable because the fluctuation appears ran-
domly. A more reliable method to obtain the magnetization is to calculate
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Figure 6.5: Spin correlation function C(i) for a strip of width M = 150 with ladder
defects (below the plateau) or one additional line of spins (above the plateau) on
an isotropic Ising plane (K1 = K2 = Js), as obtained from DMRG calculations at
the reduced temperature t = 0.072. The defect strengths K ′

2/K2 and Ja/Js are
indicated. Upper part: total view, lower part: central region.

the correlation function C(i) = 〈σ1σi〉 for free boundaries. Since in this
case one has to obtain all the information on the local spins and the spin
correlations, it costs a lot of time to obtain the data. Since one has to
reach large systems and calculate a lot of data for magnetization, therefore
it is not favorable to calculate the βl in this way.

A direct and simple way to overcome the problem is to add boundary
magnetic fields, or equivalently, to fix the boundary spins in order to break
the symmetry. Using (6.24) the magnetization can always be found for an
arbitrary size. The width was always larger than the correlation length and
varied between M = 100 and M = 5000 for the temperature range studied
(0.001 < t < 0.1, where t = 1 − T/Tc is the reduced temperature). The
(absolute) error in md, determined by compared with analytical results
most 10−4 for a system at t = 0.001, cut in the middle by a ladder defect.
For less severe modifications and larger values of t it was even smaller.

In figure 6.5 the correlation function C(i) across the strip for a ladder
defect (Fig. 6.2b) and for an additional line using TDMRG (Fig. 6.4a) is
shown. The upper part gives an overall picture, while the lower one shows
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Figure 6.6: Local magnetization md of the spins below one or two additional lines
as a function of temperature, for three values of the coupling ratio Ja/Js. The
lowest curve is the Onsager result for the perfect Ising model.

the defect region in more detail. For ladder defects the strength K ′
2 of the

defect bonds was varied, whereas for an additional line it was the coupling
Ja between the line spins and the substrate.

Since C(i) here is obtained for large distances, one can use the relations

C(M/2) = msmd,

C(M) = m2
s (6.25)

to obtain the magnetization at the defect (md) and at the boundary
(ms) One can see how md increases or decreases near the defect, de-
pending on the sign of the perturbation. (similar curves were obtained
in [Szalma,Igloi] for a random system). For the ladder defects and when
K ′

2 < K2, the magnetization is smaller than the bulk one due to the weak
interaction between the spins along the defects. Cutting the ladder bonds
with K ′

2 = 0, one obtains the boundary magnetization (m2
s) of the homo-

geneous model in the middle of the strip. Compared with the analytical
result by McCoy and Wu [77]

ms =

[

cosh 2K1 − coth 2K2

cosh 2K1 − 1

]1/2

, (6.26)

the error of the numerical calculation is about 10−6, when the size is
larger than the correlation length and 32 kept states are used. For t =
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0.01, the surface magnetization is reached to the error 10−6 with the size
L ∼ 700, using kept 64 states. One can see that in this extreme case,
the TDMRG achieved good results without sweeps compared with the
analytical magnetization (6.26). Therefore one can trust the method to
calculate the other defects. For line defects, md being always larger than
that in the homogeneous system, characterizes the additional spin effects.
The possible increase of md depends on the details of the defect. Letting
Ja go to infinity, the effect is equivalent to a chain defect in the plane with
merely doubled bond strength. Therefore md is limited in this case.

The temperature dependence of md is shown in Fig. 6.2.2 for the
spins in the plane situated below one or two additional lines. One can
see how it is increased over the Onsager value by increasing the coupling
Ja. As expected, the effect is even stronger for two additional lines. In
this case, md has already twice the undisturbed value for the smallest
shown t. Quantitatively, this enhancement is described by a decrease of
the exponent βl, the local critical exponent which describes the vanishing
of the magnetization near the additional line of magnetic adatoms.

To obtain βl, one can analyze the temperature behavior of md in terms
of an effective (critical) exponent βeff , defined by [78, 79, 80]

βeff(t) = ln(md(ti)/md(ti+1))/ ln(ti/ti+1) (6.27)

with t = (ti +ti+1)/2 (alternatively, one could choose t to be the geometric
mean t =

√
titi+1). As one approaches the critical point, t → 0, this

quantity converges to the true local exponent βl. It is also a very sensitive
indicator for the numerical accuracy of a calculation.

I give here some typical results in figure 6.7 for one additional line and
four values of the ratio Jl/Js of the couplings in the line. For Jl = 0,
one is treating a homogeneous plane with an independent chain, and the
Onsager result β = 1/8 is recovered with high accuracy. In the other
cases, to achieve better results, the exponents both for the spin in the
line and the one below it are analyzed. One see that the two curves have
different slopes, but approach the same limit for t → 0. The limit can
determine the values βl accurately to at least three digits. For the case
Ja/Jl � 1 which, as mentioned, is equivalent to a line defect in the plane,
it was checked explicitly by comparing with the analytical result (6.21).
In the figure, also a negative Jl is shown, which leads to a reduction of
md and an increase of βl over the Onsager value . In this case, a limiting
value 0.142 is approached rapidly for Jl/Js < −1. This is the same effect
as for a chain defect in the plane with strong antiferromagnetic couplings
Igl93. In that case, the exponent is increased up to the value 0.5 of the
free surface. The sign of Ja, on the other hand, has no influence on the
exponent.

The results for βl are collected in Table 1 and in figure 6.8, where
the exponent is plotted as a function of the varied couplings (keeping the
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Figure 6.7: Effective exponent βeff as function of the reduced temperature t for one
additional line and three different coupling ratios Jl/Js. Full: Spins located below
the line, dotted: spins in the line.

Table 6.1: Numerical values for the local exponent βl of an Ising plane with one and
two additional lines of spins.

lines 1 1 2
λ Ja/Js Jl/Js Ja/Js

0.0 0.125 0.125 0.125
0.25 0.121 0.118 0.098
0.5 0.111 0.109 0.056
1.0 0.084 0.084 0.018
2.0 0.051 0.031 0.005
4.0 0.034 0.002 0.001
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Figure 6.8: Local exponent βl as a function of the ratio of the coupling strength λ,
as defined in the figure for five different situations. For chain and ladder defects
the analytical results are shown, otherwise the DMRG results are depicted.

other couplings fixed and equal to Js). Here λ denotes the ratio of the
couplings. For comparison also the analytical results [37, 71], for simple
chain and ladder defects are shown in figure 6.8. To keep the character of
the additional defects and to lead to the perfect Ising model when λ = 0,
λ is assigned to (K ′

i/Ki − 1) with respect to the chain (i = 1) and ladder
(i = 2) defects, providing K1 = K2 = Js. For a single line, the results of
small Ja/Js and Jl/Js are similar, while a large Jl/Js has much pronounced
effect than Ja/Js, since it corresponds to additional spins which are almost
rigidly locked together. One notices that for Ja/Js � 1 it goes to the limit
for a ladder effect, due to the fact that the two systems have the same
asymptotic behavior, namely they approach a plane with simple chain
possessing doubled bond strength between spins. For the double line, the
exponent drops much faster, reaching 10−2 already around Ja/Js ∼ 1. For
more additional lines, i.e. for a terrace on the surface, this effect would
be even stronger. In this case, the magnetization would practically jump
as in a first-order transition.
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6.3 Brief Summary

Using the transfer-matrix DMRG (TDMRG), I have studied critical prop-
erties of magnetic Ising plane with various line-like defects. Since the
critical exponents of the magnetization at or near these defects are non-
universal, the dependence of its varying values on the local couplings was
obtained and found to follow the trends observed for the exactly solvable
cases of ladder and chain defects. One should mention that the local non-
universal critical exponents exist not only on a plane but also on a surface
of Ising films [70], which Pleimling and Selke have studied with Monte
Carlo simulation. With increasing thickness of the films, the crossover of
the effect exponent βeff for the spins beneath the defects from the bulk crit-
ical exponents to the local varying exponents appears more obviously. For
larger t, the βeff inclines towards the bulk magnetic exponent. For small t,
however, the βeff turns back to the local varying βl. The local exponents
will not disappear until the system becomes truly three-dimensional, i.e.
the thickness becomes infinity.

In this chapter some results from TDMRG have been compared with
the analytical ones and they gave high accuracies. Therefore TDMRG is a
well-suited method to study classical planar models. It can even be used to
study thin films, for example two or three layers of Ising planes, provided
the numerical calculations do not exceed the capacity of computers. In
some papers [81, 82, 83] the authors have tried to use it to solve the three
dimensional classical problems, which are equivalent to two-dimensional
quantum models. The main unsolved puzzle one has to encounter in such
two-dimensional problems is how to avoid the slowly decreasing density-
matrix spectra described in the last chapters. Till now, it is not yet clear
if one will be able to use DMRG to solve the two-dimensional quantum
problems with large size.
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Chapter 7

Summary and Outlook

DMRG is a powerful method to calculate properties of one-dimensional
quantum systems, for example, the ground-state energy or correlation
functions. For two-dimensional systems, however, the situation appears
to be much less favorable. A main goal of my thesis was to develop a
kind of theory for the DMRG method by looking at the density-matrix
spectra. With the help of these spectra one can understand the features
of the method and the reason why it works better in one case than in
another. Therefore I looked at a number of exactly solvable models and
tried to calculate their reduced density matrices.

In chapter 3, I studied the ground state of coupled oscillators in the
coordinate representation. The reduced density matrix for an arbitrary
subsystem then is an exponential of noninteracting oscillators, so that the
density matrices for one site or for half of the system can be calculated
explicitly. The reduced density matrix for one site has a simple exponen-
tial spectrum. The spectra for a half-chain also show exponentially rapid
decay and are connected with certain normal modes concentrated near
the middle of the system. Open, fixed and periodic boundary conditions
were considered. Fixed boundaries were used to overcome the unnormal-
izability of the density matrix for acoustic phonons for open and periodic
boundary conditions. For periodic boundary conditions it was seen that
the eigenstates of the reduced density matrices are concentrated between
system and environment. This leads to a symmetric eigenfunction and
an antisymmetric one and explains the degeneracies of the single-particle
eigenvalues. These degeneracies give rise to the slow decay of the spectra
and explains why periodic boundary conditions are unfavorable in DMRG
calculations. The thermodynamic limit was obtained via corner transfer
matrices as for the integrable spin chains treated previously, and the re-
sulting spectra are very similar. The squeezed oscillator states obtained
from the density matrix for one site were used in numerical DMRG cal-
culations and gave good agreement with the analytical results.

In chapters 4 and 5, I used coherent states to treat the solvable bosonic
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and fermionic systems. The key ingredient for the calculation was a simple
exponential representation of the ground state. This led to a general form
of the reduced density matrices - the exponential Boltzmann-like form.
The two cases turned out to be very similar. In spite of the different
statistics, the bosonic and fermionic systems share the same equations for
the single-particle eigenvalues in the density matrices.

In this way, the reduced density matrices for some spin models in one
dimension, namely the transverse Ising chain, the XX spin chain and the
XY spin chain in a field, were found. For the transverse Ising chain,
the density matrices for the ordered and the disordered region as well
as for the critical point were obtained. The spectra at the critical point
drop much more slowly than those in the noncritical regions, where the
first few εl already correspond to those of the thermodynamics limit. I
have also studied the reduced density matrices for the first excited state,
which give a similar behavior as for the ground state. The treatment can
be generalized to the transfer-matrix of the two-dimensional Ising model.
The spectra in this case are also similar to those for the transverse Ising
model. This is very plausible because the transfer matrix is closely related
to the Hamiltonian of the transverse Ising chain.

The results for the XX model showed again that in critical models, the
density-matrix spectra decrease much more slowly than those in noncrit-
ical systems. For the XY chain in a field, the density-matrix spectrum
allowed to observe the disorder line, where the ground state simplifies
and becomes two-fold degenerate. As one approaches this line, the whole
spectrum collapses.

The most important results concerned the density matrices for the two-
dimensional systems. In chapter 3 and 5 I treated the two-dimensional
coupled oscillators and tight-binding model. The resulting spectra have
the common feature that they decay slowly. The same holds for the trun-
cation errors. In the case of oscillators, I discussed the dependence of
the density-matrix spectra and the width. These spectra showed the in-
creasing difficulties in calculating the quantities for the ground state if
the systems become more two-dimensional. This is consistent with actual
DMRG calculations for two-dimensional systems. For example, in a recent
study of the t− J model on a 12 × 12 lattice, 4000 states had to be used
[33]. In the case of the two-dimensional TB model, also the dependence of
the density-matrix spectra on the different kinds of partitions was studied.
Basically, the slow decay is connected with the existence of long bound-
aries between the two parts of the system. Therefore the wn for diagonal
partitions decay more slowly than those for a half system of rectangular
shape. In a recent treatment of two-dimensional quantum systems, the
authors tried to divide the lattice diagonally [84, 66]. Unfortunately they
only treated small systems and did not compare with exact results. From
our results it is unclear if this approach can overcome the problems.
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In addition to the basic investigation of the DMRG, I also applied
the method to a problem from statistical physics, namely the Ising plane
with line-like defects. In this case one is dealing with the transfer-matrix
and its eigenfunctions instead of a Hamiltonian. In order to calculate the
local spontaneous magnetization accurately, one needs increasing larger
systems as one approaches the critical point. Because of the favorable
feature of the density-matrix spectrum, which was discussed in section
5.1.3, this was possible with a still moderate number of states kept. The
main numerical effort was connected with the iterations needed to increase
the size of the systems. In this way, the non-universal magnetic exponent
βl could be determined as a function of the local parameters for several
different defects. This investigation was part of a larger study where such
defect line were added to Ising films of variable thickness. For more than
one layer, Monte-Carlo calculations were used, although one would have
been able to treat at least two layers by DMRG.

In summary, I have presented results for solvable quantum systems
which illuminate the theoretical background of the DMRG and help to
understand its performance. Of course, there are still open questions. For
example, one could ask if one can also obtain the reduced density matrices
for the more complicated quantum chains solvable by the Bethe Ansatz.
There are also a few attempts to use the DMRG in momentum space
[34, 48]. In this case, the corresponding density-matrix spectra would
again be interesting. On the applied side, one can ask if analytical reduced
density matrices could be used to obtain optimized states for numerical
calculations. Finally, the exponential forms for the ground states used
here might also be useful in other contexts.
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Appendix A

Some Mathematical Details

for Chapter 3

(A) To derive (3.8), one can transform the 〈ul | u′l〉 in the Fourier space

〈ul | exp (
1

b

∂2

∂u2
l

) | u′l〉 =e
( 1

b
∂2

∂u2
l

)
∫

dk√
2π
e−ik(ul−u′

l
)

=

∫

dk√
2π
e−

1

b
k2

e−ik(ul−u′
l
). (A.1)

Eqn. (A.1) is a Gaussian integral which can be integrated, thereby giving
(3.8).

(B) The way from (3.20) to (3.22) is as follows. One can first diago-
nalize the symmetric matrix B as

B = P � D � P �
T , (A.2)

where P � denotes the eigenvector matrix and D � is the diagonalized matrix
composed of the eigenvalues of B. After transforming the coordinates
according to

w = D �
1/2P �

T u1 (A.3)

and using Eqn. (3.8) for the coordinates w, Eqn. (3.20) can be expressed
as

ρ1 = C5 exp

(

−1

2
wT P �

T (B−1/2AB−1/2 − 1)P � w

)

× exp

(

∑

l

∂2

∂w2
l

)

exp

(

−1

2
wT P �

T (B−1/2AB−1/2 − 1)P � w

)

. (A.4)

Diagonalize now the matrix D = P �
T B−1/2AB−1/2P � . Note that this

matrix has the same eigenvalues as B−1A. Using the eigenfunctions of D

to rotate the coordinates one then obtains Eqn. (3.22), (3.23) and (3.24).
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3

(C) To derive (3.32), one rewrites Ag
ij explicitly as

Ag
ij =

∑

q1

ωq1
φq1

(i)φq1
(j) +

∑

q2

ωq2
φq2

(i)φq2
(j) (A.5)

with odd and even eigenfunctions. ag
11 therefore can be directly obtained

as
[ag

11]γδ = [E +O]γδ. (A.6)

Using (3.29), ag
12 can be expressed as

[ag
12]γδ =

∑

q1

ωq1
φq1

(γ)φq1
(M + δ) +

∑

q2

ωq2
φq2

(γ)φq2
(M + δ)

=Eγ,M+1−δ − Oγ,M+1−δ. (A.7)

By defining a reflection M ×M -matrix R as

Ri,j = δi,M+1−j, (A.8)

Eqn. (A.7) is given as

[ag
12]γ,δ = [(E − O)R]γ,δ. (A.9)

Using similar arguments one can obtain the other with E, O and R:

[ag
21]γ,δ = [R(E −O)]γ,δ, (A.10)

[ag
22]γ,δ = [R(E +O)R]γ,δ. (A.11)

Using (3.23), (A.6), (A.10), (A.11) and the identity RR = 1, (3.32) can
be found.
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Some Mathematical Details

for Chapter 4

(A) To derive 4.9, one writes the Eqn. 4.8 explicitly as

∑

n

(gknbn + hknb
†
n)eF | 0〉 = 0, (B.1)

where F = 1/2
∑

ij Gijb
†
ib

†
j. Due to the fact that F is only composed of

creation operators, one can use the relation

[bi, e
F ] =

∂

∂b†i
eF (B.2)

to bring the exponential factor to the left. This gives

eF
∑

n

{
∑

m

gkmGmn + hkn}b†n | 0 >= 0. (B.3)

Since this must hold for all k, the only possibility is that the term in the
bracket vanishes which gives the desired result.

(B) The explicit form of the integrand in (4.17) is

exp
{

−φ∗
2
Tφ2 + 1/2(φ∗

2
Ta22φ∗

2 + φ2
Ta22φ2) + (φ∗

1
Ta12φ∗

2 + φ2
Ta21φ′

1)
}

× exp
{

1/2(φ∗
1
Ta11φ∗

1 + φ′
1
T
a11φ′

1)
}

,

(B.4)

where φ∗
1, φ

′
1(φ

∗
2, φ2) are vectors composed of the variables of part 1 (part

2), respectively. One uses the rotation

φa = 1/
√

2(φ2 + φ∗
2)

φb = 1/(
√

2i)(φ2 − φ∗
2), (B.5)
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thereby giving (B.4) the form

exp
∑

α=a,b

{

−φα
TBαφα + ϕα

Tφα + φα
Tϕα

}

+ K̂, (B.6)

where the Bα are (L − M) × (L − M) matrices containing a22, ϕα are
(L − M) dimensional vectors constructed from a12, a21, φ∗

1, φ
′
1 and K̂ is

the last term in (B.4). (B.6) is an explicit Gaussian form which can be
integrated whereby (4.18) is obtained.

(C) To derive the operator form for ρ1 from Eqn. (4.18), one first
diagonalizes the matrix β. This transforms (4.18) into a similar form with
modified matrix α. Using the relations

〈φiφj | b†ib†j = 〈φiφj | φ∗
iφ

∗
j

bibj | φ′
i, φ

′
j〉 = φ′

iφ
′
j | φ′

iφ
′
j〉, (B.7)

one can replace φ∗
iφ

∗
j with b†ib

†
j and φ′

iφ
′
j in the left and right exponentials.

The cross terms eλiφ∗
i φ′

i, where λi is one of the eigenvalues of β, can be
treated as follows. With a normal-ordered operator f(b†, b), the relation
holds [51]

〈φi | f(b†, b) | φ′
i〉 = eφ∗

i φ′
if(φ∗

i , φ
′
i). (B.8)

In our case the left-hand side equals eλiφ∗
i φi , which gives f(φ∗

i , φi) =
e(λ−1)φ∗

i φi. Hence the normal-ordered operator has the form

f(b†i , bi) =
∞
∑

n=1

(λi − 1)n

n!
(b†i )

nbni . (B.9)

However, one would like to have a closed exponential form for f(b†i , bi).
Using the relation

[b†i , f(b†i , bi)] = (1 − λi)b
†
if(b†i , bi), (B.10)

one has an commutation rule between f(b†i , bi) and b†i of the form

f(b†i , bi)b
†
i = λib

†
if(b†i , bi). (B.11)

This can be iterated to give

f(b†i , bi)(b
†)ni = λni

i (b†)nif(b†i , bi). (B.12)

Applying this to the ground state |0〉 and using f(b†i , bi)|0〉 = |0〉 (c.f.
(B.9) gives

f(b†i , bi)(b
†)ni|0〉 = λni

i (b†)ni |0〉 (B.13)

or
f(b†i , bi)|ni〉 = λni

i |ni〉, (B.14)

where |ni〉 is the ni-th oscillator level. From this one can calculate that

f(b†i , bi) = λ
b†i bi

i = eln λib
†
i bi . (B.15)

Transforming back to the original representation leads to (4.20).
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Appendix C

Way to Fermionic Systems

In chapter 5, it was pointed out that the way to obtain the reduced den-
sity matrices for fermionic systems is very similar to that for bosonic ones,
however, it is somehow different. In this appendix, I would like to intro-
duce the difference.

I consider Hamiltonians which are quadratic in Fermi operators and
thus have the general form

H =

L
∑

ij=1

{

c†iAijcj +
1

2
(c†iBijc

†
j + h.c.)

}

, (C.1)

where the ci’s and c†i ’s are Fermi annihilation and creation operators.
Because of the Hermiticity of H, the matrix A is Hermitian and B is
antisymmetric. In the following we consider only real matrices. One can
diagonalize H through the canonical transformation [54]

ηk =
∑

i

(gkici + hkic
†
i) (C.2)

which leads to
H =

∑

k

Λkη
†
kηk + constant. (C.3)

Being the same as the bosonic systems, the quantities Λ2
k are the eigen-

values of the matrices (A−B)(A+B) and (A+B)(A−B), the corre-
sponding eigenvectors being φki = gki+hki and ψki = gki−hki,respectively.

Consider now the ground state | Φ0〉 of the Hamiltonian (C.1) for an
even number of sites L. With the same thought for the bosons: Due to
the structure of H, it is a superposition of configurations with either an
even or an odd number of fermions. This suggests to write it (for the even
case) in the form

| Φ0〉 = Cf exp {1

2

∑

ij

Gijc
†
ic

†
j} | 0〉, (C.4)
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where | 0〉 is the vacuum of the ci, i.e.

ci | 0〉 = 0. (C.5)

Such an exponential form is known from superconductivity, where the
BCS wave function (in momentum space) can be written in this way [50].

One can obtain Gij with (4.9) using the same arguments as for bosons
in Appendix B. Using Eqn. (C.4), one obtain the total density matrix
ρ0 =| Φ0〉〈Φ0 | explicitly in an exponential form

ρ0 = |Cf |2 exp (
1

2

∑

ij

Gijc
†
ic

†
j) | 0〉〈0 | exp (−1

2

∑

ij

Gijcicj). (C.6)

The minus sign is obtained from the interchange of ci, cj.
The reduced density matrix for the system part 1 can be obtained by

taking the trace over part 2:

ρ1 = Tr2 (ρ0). (C.7)

In order to calculate ρ1, one uses the fermionic coherent states defined by
[51]

ci | ξ1 · · · ξL〉 = ξi | ξ1 · · · ξL〉. (C.8)

Such states can be built from the vacuum with operators c†i and Grass-

mann variables ξi

| ξ1 · · · ξL〉 = exp (−
∑

i

ξic
†
i) | 0〉. (C.9)

Using this, one can write the trace of an operator O as

Tr O =

∫

∏

α

dξ∗αdξαe
−

�
α ξ∗i ξi〈−ξ | O | ξ〉. (C.10)

The minus sign is obtained from the interchange between a fermion oper-
ator and a Grassmann variable.

After forming a general matrix element of ρ0 with such states and
taking the trace over the environment with Eqn. (C.10),

〈ξ1 · · ·ξM | ρ1 | ξ′1 · · · ξ′M〉

=|Cf |2
∫ L

∏

i=M+1

dξ∗i dξie
−

�
i ξ∗i ξi〈ξ1 · · · ξM

− ξM+1 · · · − ξL | ρ0 | ξ′1 · · · ξ′MξM+1 · · · ξL〉. (C.11)

The integrand of (C.11) has an explicit form

exp
{

−ξ∗2T ξ2 + 1/2(ξ∗2
Ta22ξ∗2 − ξ2

Ta22ξ2) − (ξ∗1
Ta12ξ∗2 + ξ2

Ta21ξ′1)
}

× exp
{

1/2(ξ∗1
Ta11ξ∗1 − ξ′1

T
a11ξ′1)

}

,

(C.12)
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where ξ∗1 , ξ
′
1(ξ

∗
2 , ξ2) are vectors composed of the variables of part 1 (part

2), respectively. To prevent from discussing the real Grassmann variables
(as Majorana fermions), I would not like to use the definition (B.5) and
prefer defining a new vector ξ ≡ (ξ2, ξ

∗
2) to integrate out the variables in

part 2. Using that, the integrand can be rewritten as

exp {−ξ†B̂ξ + ζ†ξ + ξ†η + K̂}, (C.13)

where B̂ is a 2(L −M) × 2(L −M) matrix containing a22, ζ, η are both
2(L−M) dimensional vectors constructed from a12, a21, ξ∗1 and ξ′1 and K̂
is the last term in (C.12). (C.13) is an explicit Gaussian form which can
be integrated and it gives

〈ξ1 · · ·ξM | ρ1 | ξ′1 · · · ξ′M〉
=|C ′

f |2 exp (
∑

ij

αij

2
ξ∗i ξ

∗
j ) exp (

∑

ij

βijξ
∗
i ξ

′
j)

× exp (
∑

ij

−αij

2
ξ′iξ

′
j) ; i, j ≤M. (C.14)

The M × M matrices α and β are composed of the submatrices aij of
Gij and give the same relation as (4.19) in the bosonic case. Due to the

fermionic operator which has the interchange rule a†ia
†
j = −a†ja†i , one can

use the relation [a12]T = −a21 to rewrite (4.19) as

α = a11 + ca22cT

β = ccT , (C.15)

where c = a12(1 − a22)−1 and cT denotes its transpose.
As in the bosonic case one can construct the operator form of ρ1 from

the matrix elements (C.14). One can replace ξ∗i ξ
∗
j with c†ic

†
j and ξ′iξ

′
j with

cicj using in the left and right exponentials using the same arguments as
for bosons. The cross terms eλiξ

∗
i ξ′i can be replaced more simply in the

fermionic case because for any fermionic operator one has

〈ξi|f(c†i , ci)|ξ′i〉 = eξ∗i ξ′if(ξ∗i , ξ
′
i). (C.16)

In our case the left-hand side equals eλiξ∗i ξ′i = 1 + λiξ
∗
i ξ

′
i so that

f(c†i , ci) = (1 + (λi − 1)c†ici) = eln λic
†
i ci. (C.17)

Transforming back to the original representation leads to

ρ1 =|C ′
f |2 exp (

∑

ij

αij

2
c†ic

†
j) exp (

∑

ij

(ln β)ijc
†
icj)

× exp (
∑

ij

−αij

2
cicj) ; i, j ≤M. (C.18)
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The operator ρ1 in (4.20) can be diagonalized by calculating the Heisen-
berg operators ρ1cjρ

−1
1 and ρ1c

†
jρ

−1
1 as in [59]. Due to the form of ρ1, they

are linear combinations of the c and c†. Inserting the Bogoliubov trans-
formation and following [59] one finds that ρ1 gives a diagonalized form
as (5.3), where the eigenvalues εl can be obtained from the Eqn. (4.22).
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Abbreviations

BC boundary condition

CTM corner transfer matrix

DMRG density-matrix renormalization group

OBC open boundary condition

PBC periodic boundary condition

TB tight-binding

TDMRG transfer-matrix DMRG

TM transfer matrix
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[18] I. Peschel, M. Kaulke and Ö. Legeza, Ann. Physik (Leipzig), 8, 153
(1999)

[19] C. Ritter and G. von Gehlen, cond-mat/0009255

[20] C. Ritter, Ph.D.thesis, Universität Bonn (1999) , unpublished

[21] K. Okunishi, Y. Hieida and Y. Akutsu, Phys. Rev. E. 59, R6227
(1999)

[22] L.G. Caron, S. Moukouri, Phys. Rev. Lett. 76, 4050 (1996)

[23] L.G. Caron, S. Moukouri, Phys. Rev. B 56, R8471 (1997)

[24] R.V. Pai, R. Pandit, H.R. Krishnamurthy and S. Ramasesha, Phys.
Rev. Lett. 76, 2937 (1996)

[25] E. Jeckelmann, S.R. White, Phys. Rev. B 57, 6376 (1998)

[26] C. Zhang, E. Jeckelmann and S.R. White, Phys. Rev. Lett. 80 ,
2661 (1998), see also Ref. [3]

[27] T. Kühner, H. Monien, Phys. Rev. B 58, R14741 (1998)

[28] R.J. Bursill, R.H. McKenzie and C.J. Hamer, Phys. Rev. Lett. 80,
5607 (1998)

[29] R.J. Bursill, Phys. Rev. B 60, 1643, (1999)
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mich bei Frau R. Eberlein, meiner zuständigen Referentin, bedanken, die
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