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Introduction 
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1. INTRODUCTION 

Animals belonging to the suborder Ruminantia possess a uniquely developed digestive 

tract. The forestomachs, which are an enlargement of the front part of the stomach, 

represent a large fermentation chamber where the microbial degradation of food takes place. 

It is actually through this activity of the microorganisms which colonize the forestomachs that 

these animals utilize the low digestible energy in plants. The forestomachs consist of the 

rumen, the reticulum and the omasum. 

The omasum is the third and smallest compartment of the forestomach. Initially, the earliest 

studies suggested that its main functions are mechanical, namely that its laminae serve as a 

grinding mill for the food particles (Ellenberger, 1881). It has been, since then, accepted, that 

the main functions of the organ are a) transport of food particles from the rumen to the 

abomasum, b) prevention of larger particles from leaving the reticulo-rumen and c) 

absorption of water and electrolytes. 

A net absorption of various electrolytes (Na+, K+, Mg2+, NH4
+, short chain fatty acids - SCFA 

and HCO3
-) and water in the omasum of sheep has been established. Furthermore, 

previously conducted in vitro studies (Tiling, 1997; Wegeler, 2008) have shown that this 

epithelium has the unique capability to absorb parallel a base (HCO3
-; pK = 6.1) and an acid 

(undissociated short chain fatty acid = HSCFA; pK = 4.8). In addition, given the normal in 

vivo transepithelial concentration gradients of HCO3
- (mucosal to serosal) and Cl- (serosal to 

mucosal), a net secretion of Cl- was observed (Hauffe and von Engelhardt, 1975; Tiling, 

1997). As a result, an exchange of HCO3
- and Cl- through anion exchangers in series in the 

apical and basolateral membrane was proposed as a transport mechanism for these two 

anions: HCO  absorption and Cl  secretion (Tiling, 1997; Niebuhr, 2003; Wegeler, 2008).  3
- -

The parallel luminal uptake of HCO3
- via HCO3

-/ Cl- exchange and of HSCFA by lipid diffusion 

requires on the one hand the availability of Cl- in the subapical compartment of the 

multilayered omasal epithelium for HCO3
-/Cl- exchange and on the other hand potent 

mechanism(s) of intracellular pH (pHi) regulation to ensure that transcellular HCO3
- transport 

can proceed without formation of gas (H+ + HCO3
- = H2O + CO2) despite the acidic challenge 

resulting from the uptake of HCSFA and the release of H+. 

The intracellular release of protons from luminal HSCFA uptake induces an increase of 

Na+/H+ exchange (NHE) activity and it is assumed that the activity of this exchanger is the 

first line of defence of pHi (Ali et al., 2006). Consequently, the luminal Na+ concentrations, 

with Na+ providing the driving force for the activity of the NHE, is of major importance as a 

protective mechanism on the one side and the luminal presence and absorption as HSCFA 

can be considered as an acidifying challenge on the other side for pHi.   
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2. LITERATURE REVIEW  

2.1. Anatomical and histological aspects of the omasum in sheep 

The omasum is located on the floor of the intrathoracic part of the abdominal cavity, at the 

level of the 8th and 10th ribs. It is an almost spherical organ, slightly flattened on the sides. 

The right face (Facies parietalis) of the omasum touches the diaphragm, the gall bladder and 

the liver, while the left face (Facies ventralis) touches the rumen. It is connected to the 

reticulum through the reticulo-omasal opening (Ostium reticulo-omasicum) and to the 

abomasum through the omaso-abomasal opening (Ostium omaso-abomasicum). Its mucosal 

side is covered by non-glandular cornified stratified squamous epithelium and its thickness 

measures approximately 77 micron (Lubis and Oshea, 1978). The epithelia form leave-like, 

concave free borders structures of four different sizes called omasal laminae. The surface of 

the laminae is covered by very small papillae of different structure, size and shape, 

depending on their site. 

Different numbers of laminae in sheep omasum are reported, varying from 35 (McSweeney, 

1988) to 64-88 (Chandrasekar, 1992). The laminae have three thin smooth muscle layers 

which consist of an intermediate layer and two lateral layers. The intermediate layer 

penetrates into the underneath connective tissues until it attaches to the inner and outer 

layers of the tunica muscularis, while the lateral layers run parallel to the free border of the 

laminae (Yamamoto et al., 1991a). 

Although the weight of the omasum is considered to be only 10% of the total weight of the 

forestomachs of sheep (Warner and Flatt, 1965), this organ has a very efficient absorptive 

capacity, calculated to be up to 30% of the total absorptive capacity of the reticulo-ruminal 

epithelia (Hauffe and von Engelhardt, 1975), due to the presence of the laminae and hence, 

enlargement of the surface area.  

It has also been observed that the epithelium covering the laminae and particularly the 

interpapillary space is very thin, with a very rich network of blood vessels underneath in the 

subepithelial layers (Flavilli, 1937; Yamamoto et al., 1991b, 1994).  

 

2.2. Physiological functions of the omasum 

Being the last part of the non-secretory forestomach of ruminants, the omasum mainly 

assists in a) transport of ingesta from the forestomach into the abomasum, b) prevention of 

outflow of larger particles from the reticulo-rumen and c) absorption of water and various 

electrolytes. 
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2.2.1. Passage of ingesta 

Due to its contracting capacity, the omasum functions as a two-stage pump, aspirating 

initially reticular contents into the omasal canal and pumping the more fluid contents into the 

omasal body, and finally expressing the omasal body contents into the abomasum (Stevens 

et al., 1960). The passage of the main part of ingesta from reticulum to omasum is thought to 

be attributed mainly to the negative pressure in the omasal canal and less from the relaxation 

of the omasal body, during the peak of the second reticular contraction. A second, minor 

passage of ingesta occurs after the contraction of the omasal canal (Ehrlein and Hill, 1969; 

Ehrlein, 1979). This cycle of contractions is linked to the motility of the reticulo-rumen and 

occurs 2 – 3 times in two minutes (Ehrlein and Hill, 1969). 

2.2.2. Prevention of outflow 

The prevention of outflow of larger particles from the reticulo-rumen into the omasum relies 

on the particle density of the reticulum contents, where the larger and less-dense ones are 

returned into the rumen during the reticular contraction and the smaller and dense particles 

are aspirated into the omasum (Kaske et al., 1987, 1991). This sieving mechanism increases 

the retention time of particles in the reticul-ruminal compartment and hence the time for 

microbial fermentation and rumination until the size of the particles is small enough for 

passage (Kaske et al., 1987, 1991).  

2.2.3. Absorptive properties  

A feature shared by epithelia, beside their protective function, is their ability to transport 

water and solutes (Powell et al., 1985; Martens, 1995). The transepithelial transport has two 

possible routes: the transcellular route (across the plasma membrane of the epithelial cells) 

and/or the paracellular route (across tight junctions between epithelial cells). Transcellular 

transport involves the passage of substances through the apical and basolateral membrane. 

These membranes act as two resistances (Ra+Rb), which together form the cell resistance 

(Rc) (Powell, 1981). This type of transport across membranes can be passive, driven by 

chemical or electrical gradients (downhill), as is the case with the transport of undissociated 

short chain fatty acids (HSCFA). Furthermore, passive transport can be mediated via carriers 

as Na/H exchanger or ion channels. Active transport requires pumps as Na/K-ATPase, which 

hydrolyses ATP and permits uphill transport against chemical and/or electrical gradients. 

Paracellular transport on the other hand, consists in the movement of solutes through the 

tight junctions between the cells and is in all cases passive and hence depends on electrical 

or chemical gradients. Paracellular resistance (Rs) is determined by tight junctions, and, 

along with the cell resistance constitutes the tissue resistance (Rt).  
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Depending on their resistance, epithelial tissues can be classified into leaky (when Rt is 

<1000 Ω•cm2) or tight epithelia, when the resistance is higher than that value (Powell, 1981). 

Tissue conductance (Gt), which represents the reciprocal of the resistance, can be increased 

through the activation of channels or pumps in the cell membrane. 

The omasum epithelium, according to its paracellular resistance, is considered to be 

moderately tight (Schultheiss and Martens, 1999). 

2.2.4. Transport across the omasal epithelium 

Early studies have shown that the omasum has the capability to absorb various electrolytes 

as Na+, K+, ammonia, SCFA and water (Engelhardt and Hauffe, 1974; Edrise and Smith, 

1979). These in vivo data clearly show the absorptive capacity of the omasum which is 

remarkably high in calves. Furthermore, the net secretion of Cl- must be considered as a 

surprising observation. This secretion is linked to HCO3
- absorption which is a particular 

transport mechanism of the omasum (Engelhardt and Hauffe, 1975b).The transport capacity 

of the major ions of the omasum is summarized in Table 1.  

 

Table 1: In- and outflow, including absorption/secretion of water, Na+, K+, SCFA 
and Cl- in omasum of sheep, goat and calves.  

 
Substance 

 
Inflow 

 
Outflow 

Absorption 
(% of inflow) 

Sheep and Goats (ENGELHARD und HAUFFE, 1976) 

Water [l/d] 5.37 4.66 13.1 

Na [mmol/d] 397 294 26 

SCFA [mmol/d] ca. 500 ca. 250 ~50 

Cl [mmol/d] 95 186 -196 

Bull Calves (EDRISE et. al., 1986) 

Water [l/d] 22.4 12.8 43 

Na [Mol/d] 2.5 1.14 54 

K [Mol/d] 0.55 0.47 15 

Cl [Mol/d] 0.22 0.62 -282 

 

2.2.4.1. Cl- and HCO3
- transport in sheep omasum 

Earlier research has shown a net secretion of Cl- in the omasum of sheep, by examining the 

contents of different segments of the forestomach (Pfeffer et al., 1966). Studies conducted in 

cows delivered similar findings, consisting at the same time of a decrease in the HCO3
- 
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concentration (Ekman and Sperber, 1953). All these studies, including those in vivo, found a 

correlation between Cl- secretion and HCO3
- absorption (Engehardt und Hauffe, 1975b; 

Edrise and Smith, 1979; Edrise and al. 1986; Oyaert and Bouckaert, 1961). However, most 

of the in vitro studies have found a net absorption of Cl- under Ussing chamber conditions 

with a high concentration of Cl- in the buffer solution on both sides of the tissue (Harrison, 

1971; Höfelmeier, 1991; Martens and Gäbel, 1988). In contrast, in an in vitro Ussing 

chamber study, carried out by Tilling under physiological concentrations of Cl  (high  at the -

serosal side) and HCO3
- (high at the mucosal side), a chloride secretion was observed. 

Studies centered directly on bicarbonate transport in the omasum have been very limited. 

Research conducted by Engelhardt and Hauffe (1975a) in sheep with fitted sleeves in the 

omasal-obamasal orifice revealed high transport rates of HCO3
-, at 3,9 mM•h-1, which were 

the highest rates along with those of SCFA absorption. The first direct proof of HCO3
- 

absorption came from in vitro research by Niebuhr (2003), using a combination of the 

conventional Ussing-chamber technique (Ussing, 1949) and the pH-Stat method.  

Cl-/HCO3
- exchangers 

Intracellular pH, pHi, in mammalian tissues is regulated through the activity of a range of 

acid-base transporters. Bicarbonate transporters, among others transport proteins, are 

involved in this process in epithelia. To date, the known bicarbonate transporters belonging 

to a superfamily of proteins have been classified into three functional groups (McMurtrie et 

al., 2004, Cordat, Casey, 2009; Romero et al., 2013,): 

1) Na  independent Cl /HCO3 exchangers (AE), gene family SLC4  + -

2) Na+-coupled Cl-/HCO3 exchangers and co-transporters (NDCBE, NBC), gene family SLC4 

3) Anion exchangers of the gene family SLC26 

Na+ independent Cl-/HCO3
- exchangers (AE) 

These exchangers belong to the SLC4 gene family and mediate electroneutral exchange of 

monovalent anions, the preferred substrates being Cl-, HCO3
-, although they can transport 

OH- too (Jennings ML, 1976). The physiologically relevant transport in living cells is the 

exchange of Cl- for HCO3
-, and the transmembrane chemical gradients for these two ions 

determine the direction of net transport (Romero, Fulton et al., 2004).  

Three isoforms belong to this functional group (AE1, AE2 and AE3). 

AE1 mediates Na+ independent anion exchange in red blood cells and the renal collecting 

duct, AE2 is widely expressed in non-excitable tissues, where it has been proposed to be a 

housekeeping Cl /HCO , and AE3 splice variants have been found in different organs and -
3
-

tissues including the heart and brain (Pushkin and Kurtz, 2006). The AE2 mRNA, in fact, has 

been already detected in sheep omasum (Wegeler, 2008). 
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Na+-coupled Cl-/HCO3
- exchangers and cotransporters (NDCBE, NBC) 

This group of exchangers belongs likewise to the SLC4 family. There are two Na+/HCO3
- 

electrogenic cotransporters (NBCe1 and NBCe2), an electroneutral Na+/HCO3
- cotransporter 

(NBCn1), and the Na+- driven Cl-/HCO3
- exchanger – NDCBE (Romero, Fulton et al., 2004). 

Members of this functional group have been found in various organs. In omasum, the 

direction of exchange for HCO3
- and Cl- seems to be chemical gradient dependent, therefore 

a presence of a Na+/HCO3
- cotransporter seems less probable. The observed interaction 

between the electroneutral Na+ transport (Na+/H+ exchanger) (Schultheiss, 1995; Schultheiss 

and Martens, 1999) and CO2/HCO3
- is presumably due to availability of H+ supplied by 

activity of carbonic anhydrase.  

Anion exchangers of the gene family SLC26 

This functional group includes 11 members, with SLC26A10 likely being a pseudogene 

(Dorwart et al., 2008). Based on their functional similarities, SLC26 transporters have been 

grouped into three groups. Group 1 (SLC26A1 and SLC26A2) are selective sulphate 

transporters, group 2 (SLC26A3, SLC26A4, and SLC26A6) are coupled Cl-/HCO3
- 

exchangers, and group 3 members function as ion channels and include SLC26A7 and 

SLC26A9 (Dorwart et al., 2008). The transport modes of SLC26A8 and SLC26A11 are not 

known, and SLC26A5 does not appear to function as anion exchanger in mammals 

(Schaechinger TJ, Oliver D., 2007). Group 2 Cl-/HCO3
- exchangers are distributed in the 

luminal membrane of secretory epithelia and mediate Cl- absorption and HCO3
- secretion. 

SLC26A3 (DRA = Down Regulated Adenoma) is an electroneutral exchanger predominantly 

found in the digestive system. A dysfunctional SLC26A3 plays an important role in congenital 

chloride diarrhea (CLD), a disease with a high Cl- content and low pH as its main clinical 

feature (Höglund P, 2006). SLC26A4 is an exchanger with a poorly understood mode of 

transport, expressed in the kidney, cochlea, thyroid and salivary gland and its mutations are 

related to Pendred syndrome and non-syndromic hearing loss, while SLC26A6 is found in 

the intestines and pancreatic duct, with a role in the overall epithelial fluid and electrolyte 

secretion (Dorwart et al., 2008). 

2.2.4.2. Na+/H+ exchanger (NHE) 

NHE, sodium proton exchangers, is a family of proteins known for their vital role in cellular 

physiology and pathophysiology. Their most important functions include regulation of 

intracellular pH and cell volume as well as functions in transepithelial transport. They 

accomplish these functions by extruding proton from, and taking up Na+ ion into the cell. 

Response to pharmacological compounds exhibits variations and supports the notion of an 

extended family of NHE molecules. Following the pivotal work of Murer et al. (1976), where 
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the first isoform has been described, at least nine isoforms of this protein have been 

identified in mammalian cells. Each isoform is designated with a numeric suffix (1, 2, 3, etc.) 

reflecting the chronological order of its cloning. The first NHE is designated NHE1 and the 

most recent one is designated NHE9 (Yun et al., 1995; Noel and Pouysségur, 1995; 

Masereel et al., 2003; Goyal et. al., 2003; de Silva et al., 2003). The isoforms differ in tissue 

localization, sensitivity towards inhibitors and mode of transcriptional and posttranscriptional 

regulation. Accordingly, they participate in a wide range of physiological processes taking 

place in the cell. NHE1 is ubiquitously expressed and plays a central housekeeping role in 

intracellular pH (pHi) and cell volume homeostasis (Orlowski and Grinstein, 1997; Counillon 

and Pouysségur, 2000). In contrast, the isoforms 2-5 have a more limited distribution and are 

more specialized in functions. NHE8 and 9 are the most recently discovered members of this 

extended family of proteins (Goyal et al., 2003; de Silva et al., 2003).  

The NHE’s can be divided into plasma membrane and intracellular, organellar isoforms 

(Zachos et al., 2005). The established plasma membrane isoforms include NHE1-5 (Sardet 

et al., 1989; Tse et al., 1991, 1992 and 1993; Orlowski et al., 1992; Klanke et al., 1995; 

Baired et al., 1999). The plasma membrane isoforms are further divided into those having the 

ability to cycle and recycle between intracellular endosomes and plasma membrane, such as 

NHE3 (Janecki et al., 1998) and NHE5 (Szaszi et al., 2002) and those that permanently 

reside on the plasma membrane including NHE1, 2, and 4 (Pizzonia et al., 1998; Cavet et al., 

2001). The organellar isoforms include NHE6 and 7 which have been localized in the 

recycling endosomes and trans-Golgi network, respectively (Numata and Orlowski et al., 

2001; Brett et al., 2002). NHE8 and 9 are considered to be organellar isoforms although their 

intracellular localisation has not yet been established (Zachos et al., 2005). Interestingly, a 

role for NHE1, NHE2 and NHE3 has been proposed in mediating HCO3
- uptake in the kidney 

of mouse models. 

Electroneutral Na+ transport via NHE has been demonstrated very early in in vitro studies in 

bovine, goat (Chien and Stevens, 1971) and sheep rumen epithelium (Martens et al., 1991). 

In a recent study, Graham et al. (15) have demonstrated the expression of mRNA of NHE1-3 

and NHE8 by reverse transcription with the polymerase chain reaction (RT-PCR) in bovine 

rumen epithelium. The authors showed with immunostaining that NHE1 is apically localized 

in the stratum granulosum of the multilayered squamous rumen epithelium and discussed 

that NHE1 mediates electroneutral Na+ uptake across the apical membrane. These findings 

were not confirmed by a study of Rabbani et al. (2011) which provided conclusive evidence 

on the crucial role of NHE3 in mediating transepithelial transport of Na+ across the rumen 

epithelium of sheep and bovine (Rabbani et al., 2011) and in sheep omasum too (Dölle, 

2008). 
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Structure of NHE  

All mammalian NHE share a common structure with some 400 amino acids in the N-terminal 

half of the protein spanning the plasma membrane 12 times. The transmembrane domain is 

responsible for amiloride-sensitive Na+/H+ exchange function. A further region of 

approximately 400 amino acids in the carboxy-terminal half of the protein constitutes the 

cytoplasmatic domain with regulatory functions (Wakabayashi et al., 1992; Weinman et al., 

2005). 

Regulation of NHE  

The NHE1 and NHE3 have been studied in more detail and the mRNA of these isoforms has 

been detected in omasal epithelium of sheep (Etschmann, unpublished). Hence, the 

following short summary will be restricted to important aspects of the regulation of NHE1 and 

NHE3.  

Acute regulation 

a. Modifier site: The activation of Na+/H+ exchange by pHi is considerably steeper than can 

be explained by simple Michaelis-Menten kinetics. Aronson et al. (1982) suggested an 

additional cytoplasmatic binding side for protons known as the H+ modifier site. Truncation 

studies of the cytoplasmatic domain have shown that Na+/H+ exchange activity and the 

function of the modifier site are preserved until almost complete removal of the cytoplasmatic 

domain (Wakabayashi et al., 1992). These functions (NHE and modifier site) are located in 

the N-terminal half of the protein. 

b. Set point: The cytoplasmatic domain is the target of protein kinases and binds various 

regulatory factors. Deletion of the cytopasmatic domain shifts the NHE1 activity to an acidic 

range (Wakabayashi et al., 1992) and mutation of histidine in the cytoplasmatic domain of 

NHE3 lowers the set point by 0.3 – 0.6 pH units (Cha et al., 2003). In addition, NHE activity is 

regulated by interactions with other proteins such as NHE regulatory factor 1 (NHERF-1). 

Phosphorylation is not required (NHE 1; Wakabayashi et al. 1994).  

c. NHE trafficking: NHE3 is not only located in the apical membrane, but substantial amounts 

are located in subapical vesicles which can be inserted in the luminal membrane and hence, 

increasing transport capacity (Vmax; see review Zachos et al. 2005). There is evidence that PI 

3-kinase is involved in vesicle trafficking (Cheyron et al., 2003; Blazer-Yost and Nofziger, 

2005) as well as NHERF-2 (Lee-Kwon et al., 2003).  

d. Regulation by NHERF-1: There is compelling evidence that NHE3, the PDZ protein 

NHERF and ezrin-PKa form a multi-protein complex, which is linked to actin (Weinman et al., 

2005). The acute regulation of NHE by phosphorylation is mediated via NHERF (Weinman et 

al., 2005b; Donowitz et al., 2005).     
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Chronic regulation 

a. Intestine: Chronic exposure of epithelial cells to low pH increased NHE3 mRNA and 

protein abundance. Musch et al. (2001) exposed human colonic monolayers (C2/bbe) to 

SCFA and observed a time and concentration dependent increase of NHE3 activity, of NHE3 

protein and mRNA. The results were confirmed in the colon of rats fed a pectin rich diet.  

b. Kidney: It has been known for decades that the kidney has the potential to respond in a 

precise manner to minor changes of acid-base-metabolism. The cascade of regulation has 

been studied in more detail in kidney cell lines. In a recent study of Li et al. (2004), the 

proline rich tyrosine kinase (PyK2) was shown to function as an intracellular “acid sensor”. 

The signalling cascade involved binding of PyK2 to c-Src kinase, with phosphorylation and 

activation of this enzyme, followed by activation of the MAPK (mitogen-activated protein 

kinase) and the JNK signalling pathway. Ultimately, the pathway leads to an increase of 

transcription of NHE3. Hence, kidney epithelial cells exhibit an “acid sensor” and a cascade 

of regulation (Li et al., 2004). 

2.2.4.3. Short chain fatty acids (SCFA) transport 

SCFA provide 70-80 % of the energy requirements in ruminants (Siciliano-Jones and 

Murphey, 1989; Bergman, 1990). They are one of the main fermentation products that cover 

the energy demand for maintenance and production activities. The rumen is recognized as 

being the main compartment for SCFA production and absorption (85% of SCFA are 

absorbed in the rumen, according to Engelhardt and Hauffe, 1975). It is well established that 

SCFA in the rumen are transported via a carrier-mediated transport mechanism across the 

apical (Gäbel et al. 2002) and basolateral (Tyagi et al. 2002) membrane, and a similar 

mechanism was proposed for the omasum. However, recent in vitro studies with the omasum 

support the idea that SCFA are taken up predominantly in a protonated form (Ali et al., 2005) 

and there is no evidence that SCFA are taken up by the anion exchanger in the apical 

membrane (Tiling, 1997). The uptake of the protonated form of SCFA transport requires 

automatically a mechanism for proton extrusion and recycling, which is proposed to be 

provided by NHE (Ali et al., 2005). The basolateral exit of SCFA as an anion is mediated by a 

large anion conductance (Georgi et al., 2013).     

2.3.  Putative Transport Model of HCO3
-   

The omasum represents an important site for the absorption of ions and water in the 

ruminant’s forestomach. This capacity is enhanced by its enlarged surface area in the leaves 

(laminae) and the histological structure of the epithelium. The absorptive properties of this 
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organ have been conclusively confirmed and demonstrated for H2O, SCFA, as well as for 

electrolytes such as Na+,K+, HCO3
- and Cl- secretion (Figure 1). 

The scheme of the proposed model presented in Figure 1, which has been established from 

previous studies (Tiling, 1997; Wegeler, 2008; Beisele, 2008), describes the significant 

transport mechanisms and pathways on which the current study is based. 

 

Figure 1: Tentative model of ion transport in sheep omasal epithelium. C = carrier; P = pump 
(Na/K-ATPase); CA = carbonic anhydrase. The cylindrical scheme represents a channel. For 
details see text. 

In this model, HCO3
- is exchanged apically and basolaterally with Cl- via a HCO3

-/Cl- 

exchanger. The proposed direction of HCO3
- flux (absorption) and Cl- flux (secretion) via 

anion exchange occurs with corresponding gradients of the both anions.  

The apical Cl-/HCO3
- exchange requires for the proposed exchange Cl- in the subapical 

compartment. The apical NaCl cotransporter mediates apical Na+ and Cl- uptake and Cl- is 

recycled via Cl-/HCO3
- exchanger. The parallel transcellular transport of HCO3

- and HSCFA 

underlines the necessity of a constant pHi. It is proposed that the luminal NHE represents the 

first and probably most important mechanisms of pHi regulation.  
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2.4. Objectives 

According to the transport model of ions depicted in Figure 1 the present study has the 

intention to study the transport of HCO3
- which requires as the underlying working hypothesis 

a constant regulation of pHi. The regulation of pHi is challenged by three factors and changes 

of pHi are very likely caused by: 

 

 Decrease of luminal Na concentration and hence reduced NHE3 activity and 

 Absorption of SCFA which are predominantly taken up across the apical membrane in 

the undissociated form and release intracellular H+. 

 Activity of carbonic anhydrase. 

 

Corresponding in-vitro experiments were designed for the measurement of HCO3
- transport 

and for testing the significance of these factors (Na+, HSCFA, activity of carbonic anhydrase) 

in tissues of sheep fed a conventional hay diet (see Material and Method). 

Adaptation to diet is a known phenomenon of forestomachs epithelia (Bannink et al., 2012; 

Martens et al., 2012). In a first approach the effect of SCFA was achieved with tissues from 

concentrate fed animals (see Material and Methods). 
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3. MATERIAL AND METHODS 

3.1. Experimental animals and feeding regime 

German dairy sheep of different sex were used. Animals were 9–10 months old at the time of 

the experiment, and their weight ranged between 33 and 40 kg at the beginning of the 

experiment. Experiments were conducted in accordance with German law for the care and 

use of experimental animals, as attested by the Animal Welfare and Ethics Representative of 

the Veterinary Faculty/FU Berlin. No procedures were conducted with live animals. The 

sheep were slaughtered according to German slaughter regulations (after stunning; permit 

no. T0064/99 from the Landesamt für Gesundheit, Berlin), and the material used for scientific 

purposes was taken from the omasum of the dead animals. 

Before the beginning of experimentation the sheep were fed hay ad libitum for at least 8 

weeks, in group housing arrangement, in order to adapt them to a low-energy feeding 

regime. During this period the daily hay intake was about 1-1.5 kg. A full description of the 

experimental procedures and feeding regime has recently been described in detail 

(Etschmann et al., 2009).  

Briefly, prior to implementation of the experimental protocol, all animals were fed pure hay 

which contained per kg dry matter (DM) 88 g crude protein, 28 g fat, 293 g crude fiber, 89 g 

ash, 14.5 g potassium, 0.32 g sodium and 9.3 MJ metabolizable energy (ME).  

At the beginning of the experimental period, hay intake was 1000 g per animal and day (93.5 

% dry matter) and was offered in two portions at 7.00 a.m. and 3.00 p.m. equaling an intake 

of 7.5 MJ ME, which is slightly above the requirement for the maintenance of sheep (40 kg 

body weight) according to the Gesellschaft für Ernährungsphysiologie (GfE) (40).  

The animals were then fed on two different experimental diets for at least 3 weeks: (A) hay 

ad libitum (hay-fed sheep) or (B) hay ad libitum + 780 g concentrate per day in two equal 

portions at 7:00 a.m. and 3:00 p.m. (concentrate-fed sheep). In order to have a better control 

over hay intake, animals for concentrate feed experiments were separated into individual 

boxes two weeks before the concentrate feeding regime, and were given 1.5 kg of hay daily. 

At the beginning of concentrate feeding regime, the animals were given increasing amounts 

of concentrates (day 1. 2 x 100 g, day 2. 2 x 200 g, day 3. 2 x 300 g) and from the fourth day 

on, a constant amount of 390 g, twice a day (7.00 a.m. and 15.00 p.m.) and once 1 kg of hay 

at 07:00 a.m. (see Table 2 and Table 3 for feed composition). The animals had free access 

to a lick stone and tap water. 
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Table 2: Composition of concentrate  

Feed ingredients % 

Moisture 10.9 

Dry matter 89.1 

Crude ash 6.42 

Crude protein     18.03 

Crude fiber 9.65 

Calcium 0.65 

Phosphorus    0.59 

Magnesium 0.27 

Potassium 1.35 

Sodium     0.42 

Chloride 0.46 

Sulphur 0.21 

ADF (Acid detergent fibre)  13.28 

NDF (Neutral detergent fibre) 25.46 

ADL (Acid detergent Lignin) 3.99 

Vitamin A     7200 IE* 

Vitamin D3 1800 IE* 

Selenium 0.5 mg* 

Copper 10 mg* 

*Information from the producer   

 

DCAB (Dietary Cation/Anion Balance)             + 299 meq/kg TS 

 

Table 3: Composition of hay 

Feed ingredients % 

Moisture 6.5 

Dry matter 93.5 

Crude ash 4.9 

Crude protein  8.8 

Crude fiber 29.3 

Calcium 0.65 

Potassium 1.44 

Sodium  0.032 

ADF (Acid detergent fibre) 34 

NDF (Neutral detergent fibre) 56.5 

ADL (Acid detergent Lignin) 4 

Metabolized energy (ME)  9.3 MJ/kg 

Net energy content for lactation 
(NEL)  

5.5 

Undegraded feed protein (nXP) 120.3 g/kg 

Undegradable protein (UDP)  17.6 g/kg 

Ruminal nitrogen balance (RNB) -5.2 g/kg 

Non fiber carbohydrates (NFC) 22.5 
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3.2. Isolation, preparation and handling of epithelial tissues 

Preparation and incubation of the omasal epithelium have been described in detail by 

Martens et al. (2004). Animals were stunned by captive bolt and killed by exsanguination 

before tissues were removed for experiments (permit: T0064/99). All experiments were 

performed according to German laws for the protection of animals. Two to three minutes 

after stunning and exsanguinations of sheep, the forestomachs and the abomasum were 

removed from the abdominal cavity of the animal. The omasum was separated from the 

reticulum and the abomasum and was opened with a longitudinal cut along the omasal canal, 

then everted and carefully cleaned with warm buffer solution. Six to eight large leaves were 

removed from the wall of the omasum with a pair of scissors, carefully cleaned by immersion 

in a buffer solution until the solution remained clean. While they were immersed in buffer 

solution, mucosal sheets on the two surfaces of the leaves were cautiously separated by 

blunt dissection and cut into pieces ready to be used in Ussing chambers. Then they were 

transferred to a buffer solution, continuously gassed with 95% O2 + 5% Cl-/ and kept at 38°C 

and taken to the laboratory. The time course necessary for the preparation, transportation 

and mounting of the epithelia in this study was around 30-45 minutes.  

 

3.3. In-vitro assays 

The experiments were carried out with isolated epithelial tissues using the conventional 

Ussing-chamber technique (Ussing, 1949) and pH-Stat method (Figure 2). 

 

3.3.1. Ussing-chamber technique 

This method was modified many times to fit the forestomachs epithelial tissues (Ferreira et 

al., 1966; Stevens, 1964). The chamber consist of two equal halves, between them the 

epithelia are mounted dividing it into two equal half chambers (luminal = apical = mucosal, 

and the blood side = basolateral = serosal).The exposed area of the epithelium was 3.14 

cm2. To minimize the edge damage, silicon rings are used on both sides between the 

epithelium and the chamber. The chamber is connected to two glass cylinders by rubber 

tubes. Each of the cylinders contains 16 ml buffer solution. The Ussing-chamber conditions 

provide the means of controlling the tissue vitality through parameters such as short-circuit 

current (Isc) and tissue conductance (Gt). Typically, the ion composition of the buffers is the 

same in both sides of the epithelium (Ussing and Zerahn, 1951; Stevens, 1964; Ferreira, 

Harrison et al., 1966). In our arrangement nevertheless, this principle was changed. The 

purpose of the chosen design was the measurement of HCO3
- transport under in vivo ion 
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gradients. The solution on the mucosal side contained HCO3
- and was continuously gassed 

with 90% O2 + 10% CO2, whereas the solution on the serosal side was HCO3
- free and was 

continuously gassed with 100% O2. Warm water (38°C) was circulated between the walls of 

the glass cylinder by the aid of a pump from a water bath. In this manner, the temperature of 

the buffers remained always around 38°C (for buffer composition see appendix). 

3.3.2. Electrical measurements 

The electrical measurements, Isc, PDt and Gt, were continuously obtained with the aid of a 

computer-controlled voltage-clamp device. Agar bridges were positioned near each surface 

of the tissue and connected to AgCl electrodes for the measurement of the transepithelial 

potential difference. Others bridges were inserted into the chambers approximately 3 cm 

from the surface of the tissue so that a uniform density of current flow can be assumed. In all 

experiments the tissues were incubated for 10-15 minutes from the mounting point under 

open circuit condition (in this technique the potential difference remained unchanged) and 

then under short circuit conditions (the transepithelial potential difference was clamped to 0 

mV) until the end of the experiment. Under these conditions the short-circuit current (Isc) is 

equivalent to the sum of all electrogenic ions movement across the epithelial tissue. The 

tissue conductance (Gt) and the transepitheilal resistance (Rt) were determined by changes 

in PDt according to Ohm’s law. The short-circuit current (Isc) can be calculated from the 

resistance (Rt) and potential difference (PDt) values according to Ohm’s law (Isc = PDt / Rt). 

3.3.3. pH-Stat 

The combination of pH-stat method with Ussing-chamber method was done with the purpose 

of measuring HCO3
- transport directly, which is impossible with the standard Ussing-chamber 

arrangement. The pH-Stat method carries out continuous measurement of the pH and 

automatic titration on the serosal side glass cylinder. This way, by titrating acid the pH is kept 

at the same value (7.4 in this study). A solution of 0.01 M H2SO4 was used for titration. The 
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electrolyte composition of the titration solution corresponds to that of the serosal side buffer. 

 

 

Figure 2: Scheme of the experimental design. The epithelium is mounted between the two 
halves of the Ussing chamber. The electrodes close to the epithelium are sensing the 
transepithelial potential difference, PDt, and the two electrodes at the end of the chambers are 
used for applying the short circuit current, Isc. H2SO4 is titrated to the serosal side according 
the change of pH = HCO3

-
 transport. 

3.3.4. Calculation of transport rates 

As a consequence of HCO3
- transport from the mucosal side to the serosal side of the 

epithelium, there is a continuous alkalization of the solution in the serosal side. The pH was 

measured by a pH electrode and the corresponding amount of acid (H2SO4) was titrated.  

The calculation of the amount of the titrating substance and the corresponding transport 

rates is derived from the following expressions: 

 

  2

442 2 SOHSOH  

 

Formula 1: Titrating substance 

 

 

22323 22222 COH OH COHCOH  

 

Formula 2: Neutralization reaction             
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 H2SO4 : HCO3
- 

1    :   2 

 

Formula 3: Ratio 

 

The actual volume of the substance used for titration over time is given by the titration 

program and this can be used to calculate the amount of substance spent, according to: 
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 Formula 4: Calculation of the amount of the titration substance 

 

Where: 

n1 = amount mol of the titration substance 

V1 = 1000 ml 

n2 = sought amount of substance mol  

V2 = volume of the spent titration substance 

 

The values were recorded in 1 minute intervals and the corresponding amount of acid was 

titrated. 

The principle for this process is the Henderson–Hasselbalch equation: 

 

pH = pK + log (c[Base] / c[Acid])  

 

Formula 5: Henderson–Hasselbalch equation 

 

c = concentration of the substance in the brackets 
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3.4. Experimental design 

All the experiments were maintained under the short-circuit conditions and were started after 

an equilibration period of not less than 30 minutes, so that all the electrophysiological 

parameters became relatively stable. After this incubation period, only the epithelial tissues 

with conductance (Gt) not more than 6.0 mS•cm-2 and short circuit current (Isc) not less than 

1.0 µeq•c-2•h-1 were used in all experiments. Under these conditions the experimental 

omasum epithelial tissues remain stable a relatively long period of time (Martens and Gäbel, 

1988). Another equilibration phase of around 10 minutes followed before the pH meters and 

titrators were inserted into the serosal side glass cylinders. Finally, after another 2-3 minutes, 

titrators were turned on and the measurement of HCO3
- transport and titration began (Table 

4). 

 

Table 4: Time course of the experiment 

Trial period Description Explanation 

0. - 30. Minute Forerun 1 
Time from the beginning of the measurement up to 
achieving a steady state, mainly relatively high 
transport rates. Not included in the calculations. 

31. - 90. Minute Flux 1 
First measurement period, all epithelia incubated 
under standard conditions.  
Data (1 measurement/minute) are transmitted. 

90. Minute Treatment 
Depending on experimental design: Addition of an 
Inhibitor, respectively buffer change in the mucosal 
side. 

91. - 120. Minute Forerun 2 
Time between treatment and the new steady state. 
Not included in the calculations. Mainly a fall of 
transport rates. 

121. - 180. Minute Flux 2 
Second measurement period.  
Data (1 measurement/minute) are transmitted. 

181. - 240. Minute Flux 3 
Third measurement period.  
Data (1 measurement/minute) are transmitted. 

 

3.5. Buffer solutions 

Chemicals used for the preparation of the buffer solution in this study were of analytic grade. 

The different experimental buffer solutions used in this study are summarised in tables in the 

appendix (chapter 8). The osmolarity of all the buffer solutions was adjusted to 300 ± 10 

mOsmol/l using mannitol and the pH was adjusted to 7.4 ± 0.1 using TRISMA. Bicarbonate-

containing buffer solutions were continuously gassed with carbogen (90% O2 + 10% CO2), 

meanwhile those without HCO3
- (bicarbonate free buffer solutions) were gassed with pure O2. 

All chemicals were of analytical grade and purchased from Sigma (including the inhibitors). 
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3.6. Inhibitors 

3.6.1. Amiloride 

Amiloride is a non-specific NHE inhibitor (Benos, 1982). Its inhibitory effects were reported 

on the ruminal as well as on the omasal epithelia (Martens and Gäbel, 1988). It was 

prepared immediately before the experiments by using Dimethylsulfoxid (DMSO) as a 

dissolving agent. The inhibitor was added to the mucosal side (1 mmol∙l-1) in an attempt to 

challenge the pHi and HCO3
- by blocking the NHE. 

3.6.2. Ethoxyzolamide 

Ethoxyzolamide is a carbonic anhydrase inhibitor. It was added to the mucosal side in a 

concentration of 0.1 mmol∙l-1 in order to investigate the effect of endogenously produced 

HCO3
- on HCO3

- transport in the omasum. 

3.6.3. Levetiracetam 

Levetiracetam is a Na+ independent Cl-/HCO3
- co-transport inhibitor (Leniger et al., 2004). It 

was added to the mucosal side of the epithelium to investigate the possible role of a Na+ 

independent Cl-/HCO3
-
 in HCO3

-
 transport. 

 

3.7. Statistics 

Omasal epithelial tissues were available from each animal. A total number of 6 Ussing 

chambers combined with the pH Stat method were used. The tissues were mounted in the 

Ussing chambers and then divided between control and treatments per experiment: Six 

tissues were used in parallel and control (3) and treatment (3) were performed in tissues 

from the same animal for compensation of the variation between the animals.  

 “N” refers to the number of experimental animals, for most experiments at least 3 animals 

per each treatment, while “n” refers to the number of epithelial tissues per treatment groups 

and are considered as independent observations.  

All evaluations were carried out by using SPSS program, version 12.0 for Windows. Results 

are given as means ± SE. Significance testing was performed between paired values from 

the same experiment by using Friedman repeated measures analysis of rank, with the 

Student-Newman-Keuls (SNK) method used for pairwise multiple comparisons. Where only 

two columns of values were tested, the data were tested for normality and compared by 

using the paired Student t-test. P values of < 0.05 were considered significant.  
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4. RESULTS 

4.1. Control of parameters of the methods 

4.1.1. Ussing chamber 

The electrophysiological parameters of the Ussing chamber method have low relevance for 

measurement of HCO3
- transport, but Isc and Gt were used as control for viability of the 

tissue. 

As explained in Material and Methods we used asymmetric solutions between serosal and 

mucosal side, with chemical gradients from the mucosal to serosal side and vice versa. This 

could create a challenge for the tissue so as means of control we used electrophysiology to 

observe the vitality and stability of the tissues during the course of the experiments. The 

electrophysiological parameters used for this purpose are short-circuit current (Isc), tissue 

conductance (Gt) and the transepithelial potential difference (PDt). 

The short-circuit current is equivalent to the sum of all electrogenic ions movement across 

the epithelial tissue. Due to the gradients in the solutions we used, it is not possible to define 

the whole ionic background of the observed current. Both HCO3
- and Cl- with their gradients 

contribute to this current and of course the electrogenic Na transport. It is important to notice 

that the current is high at the start of the experiment and declines very rapidly for some 60 

min after mounting the tissue. As observed with almost all tissues in Ussing chamber 

experiments Isc decreased with time (Figure 3). The negative current represents under the 

experimental condition a cation transport from mucosal to serosal side or an anion secretion 

in the opposite direction. As mentioned above the ionic background of Isc is not known. 
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Figure 3: Original trace of Isc of three tissues from one sheep during the time course of an 
experiment. The experiment was finished at 250 minutes  
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The time course of tissue conductance is shown in Figure 4. Gt decreased after mounting 

and remained relatively stable during the rest of the experiment. 

 

 

 

 

 

Figure 4: Tissue conductance (Gt) measured in [mS/cm
2
], in three separate omasal epithelia of 

one sheep during the time course of the experiment. 
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Figure 5 exhibits the potential difference of the tissue. The PDt is a virtual parameter, 

because it is calculated from Isc and Gt. The PDt would have this magnitude under open 

circuit conditions. Because the Gt was relatively constant (see Figure 4), PDt mirrors the Isc. 

 

 

 

 

Figure 5: Transepithelial potential difference (PDt) measured in [mV], in three separate omasal 
epithelia of one sheep during the time course of the experiment. 

 

The electrophysiological parameter values for short-circuit current (Isc), tissue conductance 

(Gt) and the transepithelial potential difference (PDt) (figures 3 – 5) were typical for this type 

of experiment and simply considered as control parameter. The most relevant observation is 

the stable tissue conductance (Figure 4) during the time course of the experiment (240 

minutes), which indicates stability of integrity of the tissue. Hence, Gt was used as internal 

control, but not included in the data set. 

4.1.2. pH – Stat 

The principle of pH-Stat method is to keep the pH constant in the studied compartment. 

Transport of HCO3
- causes an increase of pH of the unbuffered solution in the serosal 

compartment. This deviation was kept constant by continuous titration with acid 0.01 M 

H2SO4 during the measurements. Figure 6 shows that the pH was constant and it is very 

important that the amount of titrated H2SO4 per time unit was almost constant which clearly 

indicates steady state transport of HCO3
-. 
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Figure 6: The pH of the serosal compartment (free of HCO3
-
) was kept constant by continuous 

titration with H2SO4. The amount of added H2SO4 represents the transport of HCO3
-
. 
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4.2. Transport of HCO3
-: Unidirectional transport rates 

In this experimental setup the epithelial tissues were allocated in two groups. The control 

group was exposed to our standard buffers [HCO3
- on the mucosal side, no HCO3

- on the 

serosal side (buffer 1 and 2)] and the second group was exposed to experimental condition 

[no HCO3
- on the mucosal side and HCO3

- on the serosal side (buffer 1 and 2, in this case 

though in opposite order)]. As expected, the physiological transport rates (absorption) were 

significantly higher in the mucosal-serosal direction and accounted for 4.04 ± 1.30 µeq·cm-

2·h-1. The opposed flux rate of 2.68 ± 0.72 µeq·cm-2·h-1 was significant lower (p = 0.046), with 

a difference of 1.36 µeq•cm-2• h-1 (Table 5). 

 

Table 5: Unidirectional transport rates of HCO3
-
 across the isolated omasal epithelium 

Treatment HCO3
- (µeq·cm-2·h-1) Number of sheep/ tissue 

Absorption (Jms) 4.04 ± 1.30 3/7 

Secretion (Jsm) 2.68 ± 0.72 3/8 

P 0.046  

 

4.3. HCO3
- transport and intracellular pH 

HCO3
- transport through the epithelium requires a constant pHi. In different experiment 

setups, by using a NHE blocker (amiloride), different feeding regimes as well as different 

SCFA concentrations, we studied the effect of perturbation of pHi on HCO3
- transport. 

4.3.1. Effect of SCFA and Amiloride on HCO3
- transport 

4.3.1.1. Effect of SCFA 

SCFA uptake in the omasum occurs mainly in the undissociated form (HSCFA) and it 

induces the activity of NHE (Ali et al., 2006). Accordingly, it is presumed the intracellular 

release of protons from luminal HSCFA uptake is an acidifying challenge for pHi and could 

affect HCO3
- transport. Based on the model (Figure 1), it was  assumed that an increase in 

SCFA concentration should reduce HCO3
- absorption in the omasal epithelium, as it has 

been shown in recent experiments by Beisele (2008) where HCO3
- fluxes between control 

(no SCFA) and 25 mmol∙l-1 SCFA was compared. The uptake of the undissociated SCFA 

reduced HCO3
- transport significantly.  

In a new experimental setup, the two groups of epithelial tissues were incubated with two 

different solutions on the mucosal side (64 mmol∙ l-1 SCFA and 100 mmol∙ l-1 SCFA). The 

HCO3
- transport rates under these treatments are summarized in Table 6.  
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An increase in SCFA concentration reduced HCO3
- transport from 5.67 ± 0.94 µeq·cm-2·h-1 by 

24.6 % to 4.28 ± 1.52 µeq·cm-2·h-1, although this effect was not significant. 

 

Table 6: Effect of mucosal SCFA concentration on HCO3
-
 transport (hay-fed sheep) 

Treatment Jms HCO3
- (µeq·cm-2·h-1) Number of sheep/ tissue 

64 mmol∙l-1 SCFA 5.67 ± 0.94 3/9 

100 mmol∙l-1 SCFA 4.28±1.52 4/12 

P 0.50  

 

4.3.1.2. Effect of Amiloride 

Amiloride is described as a NHE non-specific inhibitor. Its inhibitory effect was reported on 

the ruminal as well as omasal epithelia (Martens and Gäbel, 1988). According to the model 

(Figure 1), NHE plays an important role in pHi regulation by recycling H+ taken up with the 

undissociated form of SCFA. By blocking this exchanger cells lack this pH regulation 

mechanism, thereby, a decrease of pHi and hence, a change in the transport rate of HCO3
- is 

expected. Table 7 shows that amiloride (1 mmol∙l-1) reduced Jms HCO3
- significantly (p < 

0.015), from 5.67 ± 0.94 µeq·cm-2·h-1 in control tissue to 2.32 ± 0.87 µeq·cm-2·h-1 in tissues 

treated with amiloride. 

 

Table 7: Effect of 1 mmol∙ l
-1

 amiloride added to the mucosal side on HCO3
-
 transport across the 

omasal epithelia of sheep (hay-fed; 64 mmol∙ l
-1

 SCFA). 

Treatment Jms HCO3
- (µeq·cm-2·h-1) Number of sheep/ tissue 

Control 5.67 ± 0.94 3/9 

Amiloride 2.32 ± 0.87 3/6 

P 0.015  

 

In a further experiment the tissues were challenged with a higher concentration of SCFA [100  

instead of 64 mmol∙l-1 (Table 8)]. The addition of amiloride induced a significant reduction of 

HCO3
- transport rates (p = 0.047) from 4.28 ± 1.52 µeq·cm-2·h-1 to 2.72 ± 1.96 µeq·cm-2·h-1 

upon this challenge of mucosal SCFA, which supports our assumption on the effect of SCFA 

on HCO3
- transport. It is worth to mention that the transport rates of HCO3

- under control 

conditions (mucosal SCFA 100 mmol∙l-1) is numerically lower than the rates of the control 
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tissues with 64 mmol∙l-1 (see table 7 and 8). It is worth to mention that amiloride decreased 

the HCO3
- transport in both sets of experiments (see table 7 + 8) to the same magnitude. 

 

Table 8: Effect of amiloride (1 mmol∙ l
-1

) added to the mucosal side on HCO3
-
 transport across 

the omasal epithelia of sheep (hay-fed; 100 mmol∙l
-1

 SCFA). 

Treatment Jms HCO3
- (µeq·cm-2·h-1) Number of sheep/ tissue 

Control 4.28±1.52 4/12 

Amiloride 2.72±1.96 4/12 

P 0.047  

 

4.3.2. Effect of feeding regimen on HCO3
- transport 

In a similar set, in order to evaluate the possible impact of the feeding regime on HCO3
- 

absorption capacities of the omasum, we repeated the experiments with tissues from 

concentrate fed animals (Table 9). Surprisingly, amiloride (1 mmol∙l-1) reduced the HCO3
- 

transport rates only by 9.93 % from 7.35 ± 1.91 µeq·cm-2·h-1 to 6.62 ± 2.48 µeq·cm-2·h-1. This 

effect was not significant. 

 

Table 9: Effect of 1 mmol/l amiloride added to the mucosal side on HCO3
-
 transport across the 

omasal epithelia of sheep (concentrate-fed; 64 mmol∙l
-1

 SCFA). 

4.3.3. Inhibition of carbonic anhydrase with ethoxyzolamide 

The previous experiments have shown that inhibition of NHE or challenging the tissue with 

SCFA decreased significantly HCO3
- transport, but this effect was modulated in tissues of 

concentrate fed animals. This lead us to the assumption that there may be other 

mechanisms of pHi regulation involved and one possible mechanism could be the production 

of HCO3
- by carbonic anhydrase, which could contribute to the buffer capacity of the cell. To 

test this hypothesis, a new set of experiments was conducted, in which the effect of 0.1 

mmol∙l-1 ethoxyzolamide added to the mucosal side was investigated. Table 10 shows that 

Treatment Jms HCO3
- (µeq·cm-2·h-1) Number of sheep/ tissue 

Control 7.35 ± 1.91 2/4 

Amiloride 6.62 ± 2.48 2/6 

P 0.219  
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ethoxyzolamide significantly (p = 0.034) decreased Jms HCO3
- (p = 0.034), from 7.33 ± 1.24 

µeq•cm-2• h-1 in the control group to 5.53 ± 1.01 µeq•cm-2• h-1 in the experimental group. 

 

Table 10: Effect of ethoxyzolamide (0.1 mmol∙ l
-1

) added to the mucosal side on HCO3
-
 transport 

across the omasal epithelia of sheep (hay-fed; 64 mmol∙ l
-1

 SCFA). 

Treatment Jms HCO3
- (µeq·cm-2·h-1) Number of sheep/ tissue 

Control 7.33 ± 1.24 3/7 

Ethoxyzolamide 5.53 ± 1.01 4/11 

P 0.034  

 

Furthermore, in our intention to understand the interaction between NHE function and that of 

carbonic anhydrase in relation to HCO3
- transport, in another set of experiments  the tissue 

were exposed to two inhibitors by combining 0.1 mmol∙ l-1 ethoxyzolamide with 1 mmol∙ l-1 

amiloride, added to the mucosal side.  Jms HCO3
- in the experimental group fell by 27.1 % 

compared to the control group. This decrease was significant (p = 0.049), but no additional 

effect of amiloride was observed on HCO3
- transport rates of the experimental group (Table 

11). 

 

Table 11: Effect of ethoxyzolamide (0.1 mmol∙ l
-1

) and amiloride (1 mmol∙ l
-1

) added to the 
mucosal side on HCO3

-
 transport across the omasal epithelia of sheep (hay-fed; 64 mmol∙ l

-1
 

SCFA). 

Treatment Jms HCO3
- (µeq·cm-2·h-1) Number of sheep/ tissue 

Control 6.59 ± 1.35 2/6 

Ethoxyzolamide + 
Amiloride 

4.80 ± 1.57 2/7 

P 0.049  
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4.4. Effect of Na+ concentration on HCO3
- transport 

As it has been shown in the previous experiments with amiloride, there is an interaction 

between Na+ transport via NHE and HCO3
- transport in the omasum.  

The rumen fluid exhibits large variations of Na+ concentrations and hence, it was our 

assumption that this should have an effect on NHE, and consequently on HCO3
- transport. It 

was therefore our intention to demonstrate this effect under different concentrations of Na+. 

For this purpose, we reduced the Na+ concentration on the mucosal solution. Na+ was 

replaced with K+, in order to have a constant osmolarity (300 mmol∙l-1) and at the same time 

simulate the in vivo physiologically reciprocal changes of these two cations. 

All epithelia were incubated under standard conditions in 50 mmol∙l-1 HCO3
- and 145 mmol∙l-1 

Na+ buffer solution The experimental group chambers were filled with a buffer solution with 

50 mmol∙l-1 Na+, while the control group received the standard mucosal buffer (145 mmol∙l-1 

Na+). 

Table 12 displays the effect of reduced Na+ concentration on HCO3
- transport. The transport 

rates fell significantly (p = 0.012), from 7.09 ± 1.30 µeq•cm-2• h-1 in the control group to 3.48 ± 

0.82 µeq•cm-2• h-1 in the experimental group, a reduction of 3.61 µeq•cm-2• h-1. 

 

Table 12: Effect of reduced Na
+
 concentration (50 mmol∙ l

-1
) added to the mucosal side on 

HCO3
-
 transport across the omasal epithelia of sheep (hay-fed). 

Treatment Jms HCO3
- (µeq·cm-2·h-1) Number of sheep/ tissue 

Control 7.09 ± 1.30 4/12 

50 mmol∙l-1 Na+ 3.48 ± 0.82 4/12 

P 0.012  

 

In order to further evaluate the effect of mucosal Na+ on HCO3
- absorption, the experiment 

was repeated with a lowered Na+ concentration compared to the previous experiment. The 

experimental group chambers were filled with a 20 mmol∙l-1 Na+ buffer solution, while the 

control group chambers contained the standard mucosal buffer (145 mmol∙ l-1 Na+). 

The further reduction of Na+ concentration had a significant effect on the HCO3
- transport 

rates (Table 13), namely a significant reduction (p < 0.027) by 48.9% in the experimental 

group from 3.27 ± 1.13 µeq·cm-2·h-1 to the low Na group of 1.67 ± 0.98 µeq·cm-2·h-1. It must 

be must emphasized, that the epithelia used in this experiment generally expressed low 

transport rates. 
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Table 13: Effect of reduced Na
+
 concentration (20 mmol∙ l

-1
) added to the mucosal side on 

HCO3
-
 transport across the omasal epithelia of sheep (hay-fed) 

4.5. Effect of Levetiracetam on HCO3
- transport 

One of the three major functional groups of Cl-/HCO3
- exchangers is the one comprising the 

Na+-coupled Cl-/HCO3
- exchangers (AE), gene family SLC4. Research on a new 

anticonvulsant, Levetiracetam (LEV), have found it to have inhibitory effects on the Na+ 

dependent Cl-/HCO3
- exchangers (Leniger et al., 2004).  

In our last set of experiment, with the aim of examining the possible role of the Na+-coupled 

Cl-/HCO3
- exchangers in HCO3

- absorption in the omasum, we tested the effects of this 

inhibitor on HCO3
- transport in omasal epithelium. The effect of LEV (1 mmol∙ l-1) was 

examined by its addition to the mucosal side of the epithelium. Addition of LEV induced slight 

numerically, but not significant reduction of HCO3
- transport rates (6.65 ± 1.86 µeq·cm-2·h-1 to 

6.23 ± 1.73 µeq·cm-2·h-1; table 14). 

 

Table 14: Effect of LEV (1 mmol∙ l
-1

) added to the mucosal side on HCO3
-
 transport across the 

omasal epithelia of sheep (hay-fed). 

Treatment Jms HCO3
- (µeq·cm-2·h-1) Number of sheep/ tissue 

Control 6.65 ± 1.86 2/5 

LEV 6.23 ± 1.73 2/5 

P 0.311  

  

 

Treatment Jms HCO3
- (µeq·cm-2·h-1) Number of sheep/ tissue 

Control 3.27 ± 1.13 4/12 

20 mmol∙l-1 Na+ 1.67 ± 0.98 4/12 

P 0.027  
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5. DISCUSSION 

5.1. Absorptive properties of the omasum and HCO3
- transport 

Earlier in vivo studies from various research groups, as well as previous in vitro studies from 

our institute have recognized the importance of the omasum as a compartment of water and 

ion absorption, including HCO3
-, within the forestomachs of ruminants (Edrise et al., 1986, 

von Engelhardt and Hauffe, 1975; Oyart and Buckaert, 1961; Martens and Gäbel, 1988; 

Tiling, 1997; Niebuhr, 2003; Wegeler, 2008; Beisele, 2008). The current study aims to further 

clarify and characterize HCO3
- absorption in the omasal epithelium of sheep using the Ussing 

chamber technique in combination with the pH-stat method. In addition, perturbations of pHi 

are induced and their interactions with HCO3
- transport were investigated.  

It should be mentioned that contrary to the traditional Ussing chamber technique setup, 

where the ion composition of the buffers is the same in both sides of the epithelium, we 

worked under ion gradients simulating in vivo conditions. This could present a challenge for 

the tissue, however, as electrophysiology data (particularly Gt) and the relatively constant 

HCO3
- transport rates show (Fig. 5, Fig. 6), this was clearly not the case.  

5.2. Unidirectional HCO3
- transport measurements 

The capacity of the omasal epithelium for an uptake of HCO3
- and secretion of Cl-, and 

therefore the presence of an ion exchanger has been proposed by several earlier studies 

(Tiling, 1997; Niebuhr, 2003; Wegeler, 2008). According to the cell model presented in Figure 

1, the transport of HCO  in both directions should be possible by changing the chemical 3
-

gradient at the corresponding sides of the epithelium. Indeed, the dependence on gradients 

of the substrates has been shown in all known anion exchangers, as well as the possibility to 

experimentally induce transport in this manner (Tiling, 1997). The findings from experiments, 

whereby the gradients were changed, confirmed this assumption. However, the transport 

rates of HCO3
- through the opposed sides of the epithelium were different, namely the 

absorption flux rates (Jms) were significantly higher than the secretion flux rates (Jsm). The 

observed discrepancy is related to the presence of a Na+-Cl- cotransporter on the apical 

membrane (Fig 1). This cotransporter increases the subapical availability of Cl-, which is 

recycled through the HCO3
-/ Cl- exchanger (Fig. 1). 
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5.3. HCO3
- transport and the interaction with intracellular pH 

5.3.1. Effect of SCFA 

As it has been shown from earlier studies SCFA uptake in the omasum occurs mainly in the 

undissociated form (HSCFA) (Ali, 2005, Ali et al., 2006). It is postulated that through the 

intracellular release of protons the pHi is lowered. This acidifying challenge for the pHi 

enhances the activity of Na+/H+ exchanger (Gäbel, Bestmann et al., 1991; Diernas, Sehested 

et al., 1994; Ali et al., 2006).  

These findings encouraged to design an experimental setup to investigate the role of 

different SCFA concentrations on HCO3
- transport in omasum epithelium.  

By using a SCFA concentration of 100 mmol∙l-1 HCO3
- transport across the epithelium 

decreased by 24.5%. Although this fall in transport rates was not significant, these results 

provide further support for our hypothesis. Through a high SCFA concentration a large 

amount of protons enters the epithelial cells. This on the other hand, lowers the pHi, whereby 

HCO3
- acts as a buffer, resulting in this way with its lower transport rate to the serosal side of 

the epithelium. 

5.3.2. Effect of Amiloride 

The presence of an amiloride sensitive Na+/H+ exchanger (NHE) in the apical membrane of 

the omasal epithelial cells has been documented in earlier studies (Martens and Gäbel, 

1988; Ali, 2005), and as concluded by later research, the isoform in question is NHE3 (Dölle, 

2008). 

Mucosal addition of amiloride had the intention to examine the interactions between pHi and 

HCO3
- transport, namely the interdependence of the Na+/H+ exchanger and the HCO3

-/Cl- 

exchanger.  The assumption leading to this investigation was that by inhibiting the Na+/H+ 

exchanger the apical extrusion of protons would be blocked, and therefore cause a fall in the 

pHi. Consequently, HCO3
- absorbed from the apical side should react with the unrecycled 

protons, thereby disturbing HCO3
- transport through the epithelium. For this reason a buffer 

solution with a 64 mmol∙l-1 concentration SCFA was used, which are predominantly taken up 

in the undissociated form and hence stimulate Na+/H+, consequently representing a 

challenge for pHi after inhibition of NHE by amiloride. 

The findings from the current study demonstrated the high importance of pHi in the transport 

of HCO3
- in the omasum and the crucial role of the Na+/H+ exchanger in maintaining a stabile 

pHi. The resulting fluxes for HCO3
- (Jms) after the addition of amiloride displayed a significant 

fall in HCO3
- transport (p < 0.05) compared to the control tissues (Table 9). 
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5.3.3. Effect of feeding regime 

Functional adaptation of the forestomach epithelium due to dietary changes is a well-

recognised process in ruminants. Earlier studies conducted on Na+ transport in the rumen 

epithelium of sheep using Ussing chamber experiments have revealed a significant increase 

in net Na+ transport after a change from hay feeding to a mixed hay/concentrate diet (Uppal 

et al., 2003, Etschmann et al., 2009). Similar observations were made in the omasal 

epithelium of sheep, where Na+ and SCFA transport was significantly enhanced after the 

introduction of a concentrate diet (Ali, 2005). 

Following the findings acquired from our amiloride experiments with hay-fed animals, it was 

our hypothesis that due to functional adaptations, HCO3
- transport capacities of the omasal 

epithelium after a concentrate diet would be enhanced. However, the transport rates of 

HCO3
- were within the range of the hay-fed animals (see for example table 9, 10 or 11). A 

very likely explanation for the missing stimulation of HCO3
- is its concentration (50 mmol∙l-1) in 

both experiments. When the transport capacity of the assumed anion exchanger is not 

saturated in hay-fed animals a possible higher number of exchangers in concentrate-fed 

animals as a consequence of adaptation would not cause a change in transport rates. If this 

hypothesis is correct the activity of the anion exchanger is probably not altered under the 

current conditions (50 mmol∙l-1 HCO3
-). 

A surprising and very important observation was the small effect of amiloride on HCO3
- 

transport in tissues from concentrate-fed sheep. The physiological significance of the NHE as 

a first line of defence of pHi has been emphasized, but obviously other – unknown - 

mechanisms of regulation of pHi are activated and are able to maintain pHi and consequently 

HCO3
- transport. This is from a practical point of view a very important observation because it 

indicates mechanisms of compensation, which could be crucial in vivo for example at high K 

intake and hence low Na concentrations and consequently low NHE activity (see below).  

5.3.4. Inhibition of carbonic anhydrase with ethoxyzolamide 

One of the most important mechanisms regulating pHi in mammalian cells is the carbonic 

anhydrase system. Carbonic anhydrases (CA) are a family of zinc metalloenzymes involved 

in many physiological processes, whereby catalyzing the reversible reaction of CO2 hydration 

to bicarbonate and a proton is one of its most important functions as a buffering system. It 

was our hypothesis that CA could be a possible alternative regarding buffer mechanisms in 

the omasal epithelium. The inhibition of this enzyme should have an effect on pHi and 

consequently influence HCO3
- transport through the epithelium. To date, a variety of 

inhibitors has been described, ethoxyzolamide being one of the common chemotypes 

(Supuran, 2010).  
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The results from the current research suggest a significant effect of the inhibitor on pHi and 

hence, HCO3
- transport. The transport rates for HCO3

- in the experimental group were 

significantly reduced by 24%. 

In a second experimental setup we decided to provide a further acidifying challenge for the 

epithelial cells by combining ethoxyzolamide with amiloride. However, no additional effect 

from the use of amiloride was observed.  

The current findings support the assumption of the importance of CA as a buffer mechanism 

for the pHi and HCO3
- transport in the omasum. It should be mentioned that inhibition of CA 

by ethoxyzolamide is not absolute (Chegwidden and Carter, 2000). The absence of an 

increased effect from the combination of ethoxyzolamide and amiloride suggests that other 

buffer mechanisms most probably play a role in pHi regulation or a decrease of pHi after 

addition by ethoxyzolamide which is not further changed by amiloride. 

5.3.5. Effect of luminal concentration of Na+ 

It has been known that the absorption of Na+ from the rumen is mediated by an active 

transport mechanism (Dobson, 1959). This has been supported by all the subsequent in vitro 

studies (Chien, Stevens, 1972; Harrison et al., 1975; Martens et al., 1991), which have 

further revealed that the flux in net Na+ (JNa
net) is considerably higher than the (Na-

dependent) short-circuit current (Isc). The discrepancy between Isc and JNa
net has led to the 

assumption of two parallel transport mechanisms for Na+, namely electrogenic and 

electroneutral (Chien, Stevens, 1972; Martens et al., 1991). These mechanisms enable the 

rumen epithelium to cope with the wide range of ruminal Na+ concentrations between 21 

mmol/l (Martens et al., 1987) at Na deficiency and 145 mmol/l (Bailey, C. B., 1961). At low 

Na concentrations, Na is mainly transported via the electrogenic pathway, whereas, at higher 

Na concentrations, the electroneutral Na/H exchange mechanism is predominant. 

The luminal concentration of Na+ is important for the normal HCO3
- transport through the 

omasal epithelium. According to our model (Fig. 1), this is due to the indirect coupling of this 

transport with two Na+ transport systems - Na+/H+ exchanger and Na+/Cl- cotransporter. By 

lowering the luminal Na+ concentration to 50 mmol∙l-1 (145 mmol∙l-1 in the control group) the 

NHE activity was reduced and hence, there was an effect on HCO3
- transport, which was 

reduced significantly. This effect is most probably due to the accumulation of intracellular 

protons caused by uptake of undissociated SCFA, which by reacting with HCO3
- disturb its 

normal transport through the epithelium. Furthermore, this shortage of Na+ should reduce the 

activity of the Na+/Cl- cotransporter, which in turn, due to the low intracellular availability of Cl- 

for the HCO3
-/Cl- exchanger perturbs the apical uptake of HCO3

-. The reduction of the luminal 

Na+ concentration to 20 mmol∙l-1 did not result with a further significant fall in the HCO3
- 

transport rates. These findings are in accordance with the previous experiments with 

amiloride. 

http://ajpgi.physiology.org/content/277/3/G609.long#ref-8
http://ajpgi.physiology.org/content/277/3/G609.long#ref-17
http://ajpgi.physiology.org/content/277/3/G609.long#ref-31
http://ajpgi.physiology.org/content/277/3/G609.long#ref-2
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K  is the most abundant mineral in plants and is rapidly dissolved in the forestomach fluid +

(Scott, D., 1967). An increase of K  intake causes an increase of K  and a concomitant + +

decrease of Na+ concentration in the rumen fluid which keeps the sum of both cations almost 

constant (for details see Lang and Martens, 1999). Hence a low Na concentration is very 

often observed and could impair HCO3
- transport in the omasum. 

The data about an impairment of HCO3
- transport relies on the hypothesis that the induced 

decrease of pHi is enhancing the reaction of H+ + HCO3
- = H2O + CO2 and consequently 

impairs HCO3
- transport. The released CO2 will diffuse out of the epithelial cells into the 

serosal and mucosal department of the Ussing chamber method (figure 2) and will be 

eliminated very rapidly into the air by the vigorous gas perfusion of both compartments. This 

fast removal of CO2 is not possible in-vivo. Rather diffusion of CO2 in-vivo into the mucosal 

compartment means into the omasal fluid und further transport with this fluid into the 

abomasum where it is most likely released as gas (see below). Diffusion of CO2 into the 

blood is without severe consequences because the blood passes the liver and is flowing to 

the lungs where it immediately diffuses into the alveolae and is expired. 

5.3.6. Effect of Levetiracetam on HCO3
- transport 

Molecular biology investigation conducted on omasum epithelium has revealed the presence 

of mRNA of two anion exchangers, namely DRA (Down regulated adenoma); AE2 (Anion 

exchanger 2); two isoforms of carboanhydrase CA1 (Carboanhydrase 1); CA2 

(Carboanhydrase 2) and the anion channel of CFTR (Cystic fibrosis transmembrane 

regulator) (Wegeler, 2008). One major functional group of anion exchangers which was not 

included in this investigation is the one consisting of Na+-coupled Cl-/HCO3
--exchangers, 

gene family SLC 4.  

In the current study, the presence of a Na+-coupled Cl-/HCO3
-
 exchanger in the omasum 

epithelium, as a possible mediator of HCO3
- transport was examined by using levetiracetam, 

a Na+-coupled Cl-/HCO3 exchanger inhibitor. The addition of levetiracetam failed to produce a 

reduction of the HCO3
- transport rates.  

It can be concluded that this group of anion exchangers most probably does not play a 

significant role on HCO3
- transport in the omasum. 

5.3.7. Transporters of HCO3
-   

The studies clearly show a transport of HCO3
- across the isolated omasal epithelium. At least 

ten different mechanisms of HCO3
- have been described in two recent reviews (Cordat, 

Casey, 2009; Romero et al., 2013). Electroeneutral, electrogenic and Na-linked HCO3
- 

transport mechanisms have been distinguished. The results of the current study support the 

assumption of an electroneutral anion exchange as has been depicted in Figure 1.  
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The mRNA of two anion exchangers, namely DRA (Down regulated adenoma) and AE2 

(Anion exchanger 2) has been detected so far in the omasal epithelium (Wegeler, 2008). 

Immunostaining of these exchangers is not available and their possible role and location 

(apical or basolateral membrane) for HCO3
- transport are still unknown.  

 

5.4. Conclusions 

One important absorptive function of the omasum is the transport of HCO3
- from lumen to 

blood side. This absorption prevents flow of HCO3
- into the abomasum and hence, 

production of CO2. The parallel absorption of HCO3
- and SCFA in the abomasum requires a 

constant pHi. It was hypothesized that the pHi depends on the activity of Na transport and H+ 

extrusion via NHE3 in the apical membrane. The activity of NHE3 was blocked by amiloride 

or reduced by low luminal Na concentration. The obtained results support the working 

hypothesis. Perturbations of pHi by absorption of SCFA or by inhibition of the carbonic-

anhydrase support the physiological significance of this parameter (pHi). Furthermore, the 

small reducing effect (not significant) of SCFA on HCO3
- transport in tissues of concentrate-

fed sheep hints on the capability of the omasum to adapt to feeding conditions. This 

adaptation appears to be important because outflow of ruminal fluid into and consequently 

the load of the omasum with ingesta are increased with higher intake of concentrate 

(Tamminga et al., 1988) and possibly contribute to CO2 production from HCO3
-
 in the 

abomasum. Concentrate feeding causes an adaptation of the forestomachs epithelia 

(Martens et al., 2012; Bannink et al., 2012) including the omasum (Martens et al., 2004). This 

effect was confirmed, because amiloride reduced HCO3
- transport only to small extend in 

tissues from concentrate-fed animals. It is proposed to include the absorptive function of the 

omasum (HCO3
- and SCFA), its possible impairment and assumed adaptation capability into 

the discussion of the displacement of the abomasum (Martens, 1998).   
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6. SUMMARY 

6.1. Summary 

Transport of HCO3
- in sheep omasum: Effects of Na and SCFA 

 

In-vitro the transport of HCO3
- in the mucosal–serosal direction (absorption), Jms, was studied 

across the isolated epithelium of sheep omasum. The conventional Ussing chamber 

technique was combined with the pH-stat method. The mucosal side of the tissues was 

incubated with a buffer solution of 50 mmol∙l-1 HCO3
- and gassed with 10% CO2. The buffer 

solution of the serosal side was HCO3
- and buffer free. The pH (7.4) of the serosal side was 

kept constant by titration of H2SO4. The amount of titrated H2SO4 was considered as amount 

of transported HCO3
-. 

a) The current model of anion transport across the omasal epithelium with two anion 

exchangers in series in the apical and basolateral membrane was confirmed. The 

omasal epithelium has the capability to transport HCO3
- in both directions according 

the applied ion gradients. However, the flux from mucosal to serosal side was 

significantly larger than the transport in the reversed direction. 

b) The transport of HCO3
- depends on the activity of Na/H exchanger (NHE3) in the 

mucosal Na+ concentrations reduced HCO3
- transport significantly. It is concluded that 

the NHE3 mediated extrusion of H+ is of predominant importance for regulation of the 

intracellular pH, pHi, and hence HCO3
- transport. 

c) The manipulation of pHi by transport of SCFA (uptake of the undissociated SCFA in 

the mucosal-serosal direction) reduced HCO3
- transport. However, this effect was 

only of minor importance in tissues from concentrate-fed sheep. 

d) Inhibition of carbo-anhydrase by carboxyzolamide (0.1 mmol∙l-1) caused a significant 

decrease of HCO3
- transport.  

e) The suggested anion exchanger of HCO3
- transport was examined by using 

levetiracetam, a Na+-coupled Cl-/HCO3 exchanger inhibitor. The addition of 

levetiracetam (1 mmol∙l-1) failed to produce a reduction of the HCO3
- transport rates.  

f) It is concluded that the transport of HCO3
- is mediated by two anion exchangers in 

series and that the regulation of pHi is of paramount importance of undisturbed HCO3
- 

transport. There is evidence for adaptation of the omasal epithelium to diet. 

g) It is proposed that the absorption of HCO3
- should be included in the discussion of the 

pathogenesis of displaced abomasum.    

 

apical membrane. Inhibition of NHE3 by mucosal amiloride (1 mmol∙l-1) or reduction of 
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6.2. Zusammenfassung 

HCO3
- Transport des Blättermagens vom Schaf:  

Effekte  von Natrium und kurzkettigen Fettsäuren (SCFA) 

 

In-vitro wurde der Transport von HCO  in der mucosal3
- –serosalen Richtung, J , (Absorption) ms

durch das Epithel des Blättermagens von Schafen untersucht. Die konventionelle Ussing 

Kammer Methode wurde mit der pH-stat Technik kombiniert. Die mucosale Seite des 

Epithels wurde mit einer Pufferösoung mit 50 mmol∙l-1 HCO3
- inkubiert und 10% CO2 begast. 

Die Pufferlösung der serosalen Seite enthielt kein HCO3
- und keinen Puffer. Der pH (7.4) der 

serosalen Seite wurde konstant gehalten duch die Titration mit H2SO4. Die Menge der 

titrierten H SO  wurde als transportierte Menge HCO ,J , angesehen. 2 4 3
-

ms

 

a. Die erhaltenen Ergebnisse bestätigen das zur Diskussion vorgeschlagene Modell 

des Aniontransports durch das Epithel des Blättermagens vom Schaf: Der 

Transport wird durch zwei Anionenaustauscher in Serie in der apikalen und 

basolaterlaen Membran vermittelt. Das Epithel ermöglicht den Transport von 

HCO3
- in beiden Richtungen entsprechend den vorgegebenen Gradienten. Der 

Transport von Jms ist jedoch signifikant höher als in der entgegengesetzten 

Richtung, Jsm. 

b. Der Transport von HCO3
- wird durch die Aktivität des Na/H Austauschers (NHE3) 

in der apikalen Membran beeinflusst. Eine Hemmung des NHE3 mit Amilorid (1 

mmol∙l-1) oder Verringerung der mukosalen Na Konzentration reduzieren den 

HCO3
- Transport signifikant. Diese Effekte lassen die Schlussfolgerung zu, dass 

der Heraustransport von H+ mit Hilfe des NHE3 von großer Bedeutung für die 

Regulation des intrazellulären pH, pHi, und als Konsequenz auch für den HCO3
- 

Transport ist. 

c. Die Beeinflussung des pH  durch SCFA (Aufnahme der undissoziierten SCFA (J ) i ms

verringert den HCO3
- Transport. Diese Wirkung ist jedoch von geringer Bedeutung 

für den HCO3
- Transport in Geweben von Schafen, die mit Kraftfutter gefüttert 

wurden. 

d. Die Hemmung der Carboanhydrase mit Ethoxyzolamid (0.1 mmol∙l-1) verursacht 

eine signifikante Abnahme des HCO3
- Transports.  

e. Levetiracetam hemmt den Na-gekoppelten Cl /HCO . Die muksoale Zugabe -
3
-

dieses Inhibitors (1 mmol∙l-1) beeinflusste den HCO3
- Transport nicht.  

f. Die Ergebnisse lassen die Schlussfolgerung zu, dass der HCO  Transport durch 3
-

zwei Anionenaustauscher in Serie in der apikalen und basolateralen Membran 

vermittelt wird und maßgeblich vom pHi beeinflusst wird. Es liegen Hinweise vor, 
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dass Adaptationsvorgänge in Abhängigkeit von der Fütterung (Kraftfutter) erfolgen 

und den HCO3
- Transport stabilisieren. 

g. Es wird vorgeschlagen, dass der Transport von HCO3
- und dessen Beeinflussung 

in die Diskussion der Pathogenese der Labmagenverlagerung einbezogen wird.  
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8. APPENDIX 

8.1. Buffer solutions 

8.1.1. Standard buffer solutions 

Substance Mucosal control buffer in 
mmol·l-1 

Sodium Chloride (NaCl) 15,2 

Na-Gluconate (C6H11O7Na) 74,6 

Sodium Bicarbonate (NaHCO3) 50 

Na-dihydrogenphosphate (NaH2PO4 ·H2O) 0,4 

di-Na-hydrogenphosphate  
(Na2HPO4 2 H2O) 

2,4 

Potasium Chloride (KCl) 5 

Glucose (C6H12O6·H2O) 5 

Calcium Chloride (CaCl2 ·2 H2O) 1,2 

Magnesium Chloride (MgCl2 ·6 H2O) 1,2 

 

Substance 
Serosal control buffer 

in mmol·l-1 

Sodium Chloride (NaCl) 90,2 

Sodium Sulfate (Na2SO4) 27,4 

Potasium Chloride (KCl) 5 

Glucose (C6H12O6·H2O) 5 

Calcium Chloride (CaCl2 ·2 H2O) 1,2 

Magnesium Chloride (MgCl2 ·6 H2O) 1,2 

 

8.1.2. Buffer solutions used for Na+ reduction experiments 

Substance 
Buffer 
Na =  

50 mmol·l-1 

Sodium Chloride (NaCl) 15,2 

Na-Gluconate (C6H11O7Na) 0 

Sodium Bicarbonate (NaHCO3) 29,6 

Na-dihydrogenphosphate (NaH2PO4 ·H2O) 0,4 

di-Na-hydrogenphosphate 
(Na2HPO4 2 H2O) 

2,4 

Potasium Chlorid (KCl) 5 

Glucose (C6H12O6·H2O) 5 

Calcium Chloride (CaCl2 ·2 H2O) 1,2 

Magnesium Chloride (MgCl2 ·6 H2O) 1,2 

Potasium Bicarbonate (KHCO3) 20,4 

Potasium Gluconate (C6H11KO7) 74,6 
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Substance 
Buffer 
Na =  

20 mmol·l-1 

Sodium Chloride (NaCl) 14,8 

Na-Gluconate (C6H11O7Na) 0 

Sodium Bicarbonate (NaHCO3) 29,6 

Na-dihydrogenphosphate (NaH2PO4 ·H2O) 0,4 

di-Na-hydrogenphosphate 
(Na2HPO4 2 H2O) 

2,4 

Potasium Chloride (KCl) 5,4 

Glucose (C6H12O6·H2O) 5 

Calcium Chloride (CaCl2 ·2 H2O) 1,2 

Magnesium Chloride (MgCl2 ·6 H2O) 1,2 

Potasium Bicarbonate (KHCO3) 50 

Potasium Gluconate (C6H11KO7) 74,6 

 

 

8.1.3. Buffer solutions used to investigate the role of SCFA concentrations on HCO3- 

transport 

Substance 
SCFA =  

64 mmol·l-1 

Sodium Chloride (NaCl) 11 

Na-Gluconate (C6H11O7Na)  

Potassiumgluconate (C6H11O7K)  

Sodiumhydrogencarbonate (NaHCO3) 50 

Potassiumhydrogencarbonate (KHCO3)  

Na-dihydrogenphosphate (NaH2PO4 ·H2O) 0,4 

di-Na-hydrogenphosphate 
 (Na2HPO4 2 H2O) 

2,4 

Potassiumchloride (KCl) 5 

Glucose (C6H12O6·H2O) 5 

Calciumchloride (CaCl2 ·2 H2O) 1,2 

Magnesiumchloride (MgCl2 ·6 H2O) 1,2 

Sodium acetate (C2H3NaO2 ·3 H2O) 40 

Sodium propionate (C4H7NaO2 3H2O) 16 

Sodium butyrate (C4H7NaO2 3H2O) 8 

Na 130,2 

K 5 

Cl 20,8 

HCO 50 

Gluconat  
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Substance 
SCFA =  

100 mmol·l-1 

Sodium Chloride (NaCl)  

Na-Gluconate (C6H11O7Na)  

Potassiumgluconate (C6H11O7K)  

Sodiumhydrogencarbonate (NaHCO3) 25 

Potassiumhydrogencarbonate (KHCO3) 25 

Na-dihydrogenphosphate (NaH2PO4 ·H2O) 0,4 

di-Na-hydrogenphosphate 
 (Na2HPO4 2 H2O) 

2,4 

Potassiumchloride (KCl) 5 

Glucose (C6H12O6·H2O) 5 

Calciumchloride (CaCl2 ·2 H2O) 1,2 

Magnesiumchloride (MgCl2 ·6 H2O) 1,2 

Sodium acetate (C2H3NaO2 ·3 H2O) 62,5 

Sodium propionate (C4H7NaO2 3H2O) 25 

Sodium butyrate (C4H7NaO2 3H2O) 12,5 

Na 130,2 

K 5 

Cl 20,8 

HCO 50 

Gluconat  
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