5. Summary

A number of gold fluor compounds have been synthesized and its structures determined. Some structural principles of the octafluorometalates of Re and U have been elucidated.

1. Octafluororhenate(VII) and Octafluorouranate(VI)

Re and U form high oxidation states. Even then their ionic radii are fairly large. That is why Re and U are capable of forming stable eight coordinated fluorocomplexes.

The following compounds were prepared and their crystal structures determined.

$$CsReF_8$$
 (NO)₂UF₈

The following Octafluororhenates(VII) and Octafluorouranates(VI) were prepared and characterized by Raman spectroscopy:

$$(NO)ReF_8$$
 $(NO_2)ReF_8$ $(CH_3)_4NReF_8$

$$Cs_2UF_8$$
 $(NO_2)_2UF_8$ K_2UF_8

The spectra appear similar for all compounds.

All attempts to prepare simple crystals of octafluorouranate(V) failed.

Thus far the following structural principles seem valid for eight coordinated fluorocomplexes:

- 1. The geometry of the anion is a fairly regular square antiprism, regardless of the cation involved.
- 2. The averaged angle α as a measure for the distortion of the square antiprism depends somewhat on the electronic configuration of the central atom:

$$4d^{10}: 57.6^{\circ}$$
 $4d^{10} 5s^2: 57.9^{\circ}$

$$5d^0: 57.5^{\circ}$$
 $5f^0: 57.0^{\circ}$

Compare $\alpha = 57.1^{\circ}$ for an ideal square antiprism.

3. The M-F bonding distances are affected by cation-anion interactions. For UF_8^{2-} distances reaming from 207 pm to 215 pm are observed.

The compounds $Cs(Re_2N_2F_9)$ and $Ca(H_4)(U_4O_8F_{14})$ were obtained by accident. Their crystal structures have been solved.

The crystal structures of ReF₆ has been redetermined from single crystal data.

2. Gold fluorides

The following gold fluor compounds were prepared and their crystal structures determined.

 O_2AuF_6 (AuF₅)₂

 $(Au_3F_7)(SbF_5)_3$ $(Au_3F_8)(SbF_5)_2$ $[Au(HF)_2][(SbF_6)_2]\cdot 2(HF)$

A new modification was obtained for **Dioxygenylhexafluoroaurat(V)** comprising an ordering variant of the known (disordered) structure.

Gold pentafluoride is the only pentafluoride with a dimeric structure in the solid state. It is an extreme stronger Lewis-acid, even stronger than SbF₅. This is suggested by Ab-initio calculations.

(Au₃F₇)(SbF₅)₃ is a mixed valence gold(II/III) fluor compound. The structure comprises ribbons extending into infinity in one dimension.

 $(Au_3F_8)(SbF_5)_2$ comprises a layer structure. It may be written more appropriately as $[Au^{II}(Au^{III}F_4)_2](SbF_5)_2$. Comparison of the fluor-bridging distances in the (Au-F-Sb)-unit suggests that AuF_3 is a stronger F acceptor than the SbF_5 molecule in the solid state.

[Au(HF)₂][(SbF₆)₂]·2(HF) is the first know Au-HF-coordination compound.