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I N T R O D U C T I O N

Many natural phenomena are governed by forces on multiple spatial and
temporal scales. Yet, it is often not a computationally feasible option to
describe the intrinsically multiscale interactions via a deterministic model.
Consequently, there is a need to go beyond purely deterministic modeling
and to use stochastic processes to describe the unresolved scales of a system
[60, 61, 62].

stochastic processes Stochastic processes are probabilistic exten-
sions of deterministic processes, such as characterized by differential equa-
tions, and are defined as families of random variables indexed by totally
ordered sets (usually associated with time).

The first mathematical descriptions of stochastic processes have been pos-
tulated around the turn of the 19th century in the context of examining
Brownian motion and are attributed to Thorvald N. Thiele and Louis Bache-
lier. Brownian motion is the effect of random movements of particles in a
substance (e.g., a gas or a fluid) caused by the surrounding molecules. Later
contributions by Albert Einstein and Marian Smoluchowski [34] led to a
wider recognition of the phenomenon in the physics community, laying the
groundwork for stochastic differential equations (SDEs). The introduction of
SDEs gave the opportunity to model time-dependent dynamics that have
a deterministic as well as a stochastic component (e.g., white noise). From
a mathematical point of view, the essential breakthrough was achieved by
Kiyoshi Itō who formally developed the theory of SDEs by presenting an
ansatz to integrate stochastic processes [59, 88].

Today, stochastic processes are used for a diverse spectrum of applications
and are particularly relevant in the field of finance [10, 82]. Traditionally,
stochastic processes are categorized according to the cardinality of their
index sets and the cardinality of the corresponding state spaces. In other
words, the processes are divided into the classes of continuous or discrete
processes (e.g., discrete time) according to their index sets. Further, one
distinguishes between processes with countable (also referred to as discrete)
or uncountable (also referred to as continuous) state spaces. An example
of a continuous time stochastic process is the Wiener process, which is a
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2 introduction

mathematical model for Brownian motion. The Wiener process is particularly
relevant as it is commonly used as an important component of the Itō
integral [10, 82]. Typical examples of processes with a discrete time and
a continuous state space are the autoregressive models [14], which are
commonly employed in various application areas such as medicine [85]
and volcanology [70]. In this thesis, the focus lays on stochastic processes
that have a discrete state space. The paradigm of processes with a discrete
state space are the Markov processes (also referred to as Markov chains for
discrete time) [15, 109].

markov processes The probability of a Markov process to be in a
certain state only depends on the time-wise previous state. This dependency
is often referred to as the Markov property. Thus, a Markov process does
not have a long term memory. In fact, the Bernoulli scheme (also referred
to as Bernoulli process for a binary state space), a memory-less model for
time discrete stochastic processes, is a special case of the class of Markov
processes. The stochastic description of a Markov process is given by its
transition matrix, containing the probabilities to go from one state to another.
As the Markov property offers a realistic description of real life systems,
Markov processes are used in many applicational areas to characterize
dynamics of interest, e.g., to model climate phenomena [21].

Yet, the standard Markov model does not allow to incorporate external in-
fluences that drive the considered system. A modeling approach, addressing
this issue, has been proposed by Illia Horenko who suggested a model ansatz
that incorporates available influences [53, 54] and is applicable to identify
time discrete Markov processes with a finite state space. More specifically,
the exterior quantities are taken into account by assuming that the transition
matrix can be expressed by a linear combination of unknown matrices and
observable quantities. Then the unknown model matrices can be identified
by means of an available time-series via parametrization tools such as the
FEM-BV clustering approach [52, 84].

fem-bv clustering ansatz It is a common practice in the context of
data-based analysis to assume stationarity of the model parameters or of
the underlying probabilistic models. Yet, such a priori assumptions might
render a description of the considered dynamical system unrealistic. This
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problem has been addressed via the recently introduced FEM clustering
framework developed by Illia Horenko [52, 84]1.

The conceptual idea is to describe a system of interest with a finite number
of local stationary regimes, which can also be interpreted as clusters, and
an associated explicitly time-dependent weighting process. These clusters
and the corresponding hidden affiliations are determined on the basis of the
given data via variational minimization of an averaged clustering functional.
In general, this method has been shown to be a promising ansatz in the
context of data-based model discrimination and is superior to many standard
parametrization tools (e.g., k-means clustering, fuzzy clustering, hidden
Markov model, artificial neural networks, and support vector machines
[11, 30, 31, 52, 84]) for certain dynamical systems.

In fact, different variants (e.g., other model assumptions or models with
parameters purely dependent on time) of this data-based analysis approach
[84] have already been successfully applied in various application areas, for
example, for the detection of hidden transitions between the stock market
phases using mean daily stock return data [52] and for data-driven sta-
tistical modeling of the modes of low frequency variability of simulated
southern ocean dynamics [86, 87]. In the context of inferring an appropriate
description of a Markov process governed by external factors, the FEM-BV
framework has shown particularly promising results, e.g, for realistic cloud
modeling [53] or for the identification of voter behavior computed on the
basis of weekly voter polls [54].

standard approaches As there are many problems that require to
simulate the behavior of stochastic discrete time processes with a finite
space, a wide range of standardly employed parametrization tools exists.
One of the most commonly used data-based analysis tools is the logistic
model, e.g., in applicational areas such as finance [49] and sociology [76]. It
belongs to the family of generalized linear models [33, 41] and can also be
derived from discrete choice models2 [81]. The underlying principle of the
model is to assume that the state of the process is associated with a utility
function dependent on external factors, unknown model parameters, and
noise. Further assumptions concerning the involved error processes allow
to determine that the corresponding cumulative distribution function is a

1 The abbreviation FEM refers to the fact that the employed numerical technique can be linked
to the fundamental idea of the finite element method (FEM).

2 The derivation by Daniel McFadden was honored with a Nobel Prize in 2000 [81].
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specific logistic function dependent on the unknown model parameters and
available influences.

An alternative classification tool, extensively used in numerous disciplines,
is the family of support vector machines [27, 102]. The modeling strategy
rests upon the idea of geometrical separation of the training data via an
appropriately placed hyperplane that divides the considered vector space
into two segments. New samples can then easily be affiliated with one of
the classes. Note that support vector machines belong to the class of non-
dynamical pattern recognition techniques meaning that any existing time
affiliation of the available data is neglected for the determination of the
hyperplane.

Artificial neural networks represent another commonly employed modeling
option used to understand a discrete dynamical system with a finite state
space [9, 11, 55, 69]. The architecture of an artificial neural network is
motivated by the natural design of a biological synapse. An artificial neural
network is not specifically fixed to have a particular structure but usually
consists of (mostly hidden) layers of artificial neurons which are connected
to each other. Each neuron is associated with weights affiliated with the
input data, an activation function, and a bias. In general, the architecture
of a network can be arbitrarily complex. Yet, it has been shown that two
layers are already sufficient to approximate an arbitrary non-linear function
[55, 68]. Consequently, artificial neural networks are successfully employed
to solve relevant problems such as the diagnosis of certain cancers in the
human body [39, 95].

missing data A central challenge for statistical analyses and prediction
methods is the intrinsically multiscale and multiphysical nature of many
natural phenomena. One of the significant manifestations of this issue is that
such approaches are confronted with the problem of missing information
from unresolved or unmeasured scales. Essentially, in most realistic applica-
tions not all relevant quantities are directly accessible and available in form
of observations. Unfortunately, standard data-based analysis techniques
often lack the option to take these missing factors into account, leading to
biased and distorted results when confronted with this particular problem.
As recently demonstrated by Illia Horenko in the context of modeling dis-
crete processes, such systematically missing or implicit information can be
taken into account via a non-stationary model [53, 54]. The conceptual idea
is that the joint impact of all missing influences is reflected in an explicit
dependency of the model parameters on time. More specifically, a Markov
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model with an explicitly time-dependent transition matrix is considered. In
general, the framework can be applied for the identification of discrete time
processes with a finite state space driven by external quantities and given in
form of ensemble observations (i.e., measurements of the relative frequency
of the considered process to be in a certain state).

application The phenomenon of accelerated melting processes in the
arctic region has become the representative indicator of impending impli-
cations of the current climate change. Due to the undeniable thread posed
by the melting arctic polar cap, a considerable amount of research has been
conducted concentrating on producing realistic simulations of the arctic sea
ice decline. In the context of describing climate phenomena, the modeling
approaches, i.e., global climate models, are typically purely deterministic, i.e.,
a deterministic system that can be described via physical laws is assumed.
Yet, most climate model projections of the future sea ice extent are too con-
servative, leading to inconsistencies with recent observations of rapid ice
loss [78, 89, 108].

Additionally, phenomena such as the stagnation of the temperature rise,
i.e, the rate at which the surface air temperature increases has slowed
(also referred to as the temperature hiatus 2000-2013), raise questions which
currently can not all be answered satisfactorily [36, 67]. Further, the existence
of extreme negative trends concerning the sea ice extent in certain years, not
explainable by natural variability alone, has been noted in [63]. In particular,
the frequency of major negative trends that can not entirely be attributed
to direct natural causes has increased. From a statistical point of view, such
events of extreme ice decline are now expected to occur in intervals of 2 to 8

years (e.g., see ice loss in 2007 and 2012). In order to access these negative
trends of sea ice related to the considerable retreat, a stochastic approach is
suggested in [63, 118].

As elements of the climate system (e.g., ocean-to-atmosphere fluxes, sur-
face albedo, ocean buoyancy or polar bear persistence) are directly effected
by a declining arctic sea ice concentration [5, 18, 100, 104], the arctic polar cap
has been closely monitored in the past decades, resulting in a vast collection
of available observations. This rapid increase of collected measurements
in the context of arctic sea ice variability and the growing quality of the
simulation data products in recent years suggest employment of advanced
data-driven approaches to gain a deeper understanding of the underlying
processes. For instance, standard Markov models have been employed to pre-
dict short-term climate changes in the antarctic [21], quantile regression has
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been used to determine trends in the sea ice extent in the arctic and antarctic
[103, 111], and extrapolation of sea ice volume data is one approach used for
the prediction of future ice concentration values [78, 89, 99]. Summarizing,
parametrization of the discrete component of the arctic sea ice dynamics,
based on the pure data product, might provide an unbiased (with respect
to the underlying physics) insight and is thus a worthwhile attempt to gain
information. On a microscopic level the corresponding dynamics have a
discrete nature and thus fit the requirements for modeling via FEM-BV clus-
tering with an a priori assumed Markov model. Yet, the process underlying
the sea ice dynamics is not only evolving in time but also in space. The urge
to describe natural phenomena that are dependent on time as well as on
location demands that existing advanced modeling tools designed for purely
time-dependent processes are extended for spatio-temporal dynamics.

objective In this thesis, the existing Markov regression framework is
extended for modeling of discrete stochastic processes with an additional
spatial component. In that context, the general problem of modeling discrete
time and discrete location stochastic processes with a finite state space is
contemplated.

Analogous to the purely time-dependent approach, the underlying process
is assumed to have the Markov property (with respect to the time component)
for the spatial enhancement. In particular, the issue of finding an adequate
data-based description of the considered spatio-temporal process in the
absence of relevant information is addressed. In purely time-dependent cases,
unresolved governing quantities lead to a non-stationary model structure.
In this thesis, it is shown that time as well as location-dependent processes
that are driven by unavailable influences can be adequately described via
non-stationary, non-homogenous models. A numerical approach to treat
these new structural properties of the model is proposed and implemented.

In general, the inverse problem formulation corresponding to the FEM-BV
clustering framework is not convex. Consequently, the methodology does
not necessarily allow to compute global solutions to the problem. A Markov
chain Monte Carlo clustering approach that addresses this issue is proposed.
Additionally, this alternative optimization option reduces the run time for
certain high dimensional problems considerably [30]. The corresponding
algorithm and its implementation are given and explained.

Further, the theoretically verified abilities of the proposed non-stationary,
non-homogenous Markov regression are also experimentally confirmed for
an artificial test system. In particular, the characteristic property to recognize
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influences that are not directly accessible is experimentally verified. More-
over, the approximations computed via the proposed model are compared to
the mentioned standard approaches (i.e., logistic regression, support vector
machines, and artificial neural networks).

Furthermore, the proposed framework is used in order to gain a deeper
understanding of the stochastic components of the dynamics underlying
the arctic sea ice extent. More precisely, a diverse range of non-stationary,
non-homogenous Markov models is fitted to the satellite observations of
the arctic sea ice extent. From this family of models one that is as simple
as possible in terms of complexity while having a high data-reproduction
quality is selected by making use of the fundamental ideas of information
theory. Then this optimal model is interpreted to gain information about
recent changes in the arctic sea ice coverage.

The analysis reveals particularly strong spatial correlations and a time-
wise persistency that suggests that slowly evolving external processes, e.g,
ocean bound forces rather than rapidly changing quantities, play a key role
in the context of sea ice variability in the analyzed period (i.e., 1989− 2004).
Moreover, individual statistical impact values of the involved measurable
external factors governing the ice dynamics, such as temperature and CO2,
are computed.

outline The remainder of this thesis is structured as follows: Firstly a
brief overview of three prominent standard approaches, i.e, support vector
machines, artificial neural networks, and logistic regression, that can be used
for modeling of discrete stochastic processes is given in Chapter 1. Then, the
nature of the considered discrete stochastic process and the corresponding
available ensemble data are discussed in Chapter 2. In Chapter 3 the general
inverse problem associated with finding an adequate model with respect
to the data is posed. Afterwards, a numerical scheme that can be used to
compute a solution is presented. Although other model assumptions are
mentioned, the focus is on a Markov model, which is derived in detail.
Different computational options are proposed to numerically access the
problem in the context of improving the quality of the results while reducing
the numerical complexity. The properties of the framework are investigated
by means of artificial dynamical systems in Chapter 4. A strong focus
is placed upon verifying the properties of the model in the presence of
unresolved quantities. Furthermore, the proposed ansatz is compared to
standard approaches with respect to data-reproduction quality and out-of-
sample performance.
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Finally, the considered parameterization tool is employed to characterize
the process underlying the arctic sea ice variability in Chapter 5. The data,
the conversion to geodetic coordinates, and the settings used to identify the
underlying dynamics are discussed first. Then the inferred optimal model
is interpreted with respect to the behavior of the system. Further, an out-
of-sample performance validation of the model and a statistical evaluation
of the influences of the employed external factors are conducted. A final
summary of the key findings concludes this thesis.
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1
S TA N D A R D PA R A M E T R I Z AT I O N A P P R O A C H E S

Let σ be a discrete stochastic process with a finite state space {s1, . . . , sNS},
i.e., a collection of {s1, . . . , sNS}-valued random variables {σ(l) : l ∈ N}
indexed by a countable totally-ordered set. There is a wide range of available
frameworks feasible for the data-based (i.e., observations that can be associ-
ated with the process are given) parameterization of such processes. Three
of the most prominent representatives of this family, namely support vector
machines [27, 102], artificial neural networks [9, 11, 55, 69], and logistic
regression [33, 41, 81], are introduced in this chapter. The conceptual ideas
of the three modeling approaches and their advantages and drawbacks are
presented. References to more detailed discussions and introductions are
given in the text.

Whenever possible, the used notations are already based on the main
terminology used throughout the remainder of this thesis. In general, num-
bers are denoted with a capital N combined with distinguishing sub- and
superscripts.

1.1 support vector machines

Typically characterized as pattern recognition techniques, one of the most
commonly employed classes of data-based analysis methodologies for dis-
crete processes with a finite state space are the support vector machines
(SVMs). In the following, the basic theory of standard SVMs is discussed
and the reader is referred to [27, 102] for a more comprehensive introduction.
The modeling ansatz of SVMs is non-dynamical meaning that the focus lays
purely on geometrical properties of the data. The key idea is to geometrically
separate a set of NL (observable) training vectors u(l) ∈ RNE into differ-
ent categories with respect to the given assignments y(l) ∈ {−1, 1}, where
l ∈ {1, . . . , NL}. During the training phase, a universal classification rule (that
can be associated with the discrete process σ(l)) is determined and can be

11



12 standard parametrization approaches

used to compute the class of a new sample, i.e., a sample that is not in the
set of the NL training vectors.

linear separable data In the most simple case, a linear separation
of the vector space into two segments is possible. Then the aim is to find a
hyperplane that separates the vectors u(l) with maximal margins between
the points of each class (see visualization in Figure 1). In detail, the points
x ∈ RNE on the hyperplane are given via the equation

〈w, x〉+ m = 0, (1.1)

where 〈·, ·〉 denotes the canonical inner product in RNE . The problem is to
determine w ∈ RNE and m ∈ R so that the Euclidean norm ||w||2 is minimal
subject to the constraints

y(l) (〈w, u(l)〉+ m) ≥ 1 ∀ l. (1.2)

Thus, a quadratic optimization problem needs to be solved. The vectors that

Hy
per
pla
ne

M
argin

Figure 1: A 2-dimensional example of linearly separable points in the plane is shown.
The class affiliations given by y(l) are visualized by blue or white coloring of
the hexagons, i.e., −1 is associated with blue and 1 corresponds to white. The
support vectors are marked by red ellipses.
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are on the class boundaries (see hexagons on the dashed lines in Figure 1),
i.e., the vectors contained in the set{

u(l) ∈ RNE

∣∣∣ y(l) (〈w, u(l)〉+ m) = 1 ∧ l ∈ {1, . . . , NL}
}

, (1.3)

are called the support vectors. Instead of the previously considered primal
problem it is more convenient to solve the dual problem

D(λ) =
NL

∑
l=1

λ(l)− 1
2

NL

∑
l=1

NL

∑
j=1

y(l)y(j)λ(l)λ(j)〈u(l), u(j)〉 → max
λ

(1.4)

with the constraints
λ(l) ≥ 0 ∀ l (1.5)

and

∑
l

λ(l)y(l) = 0, (1.6)

where λ(l) are Lagrange multipliers. The dual optimization problem is derived
using the method of Lagrange multipliers and substituting w and m with
terms dependent on the unknown parameters λ(l) [114]. In detail this is
achieved by computing the first partial derivatives of the Lagrange function
of the problem and by finding the corresponding extrema. It is important
to note that λ(l) corresponding to the vector u(l) is equal to zero if u(l) is
not a support vector. Consequently, only the often much smaller subset of
support vectors (see (1.3)) is required to determine the hyperplane which
leads to a considerable reduction of the dimension of the problem. Note that
the dual problem given in (1.4) with linear constraints (1.5) and (1.6) belongs
to the class of Quadratic programming problems and thus can be computed
with one of the many available solvers [42].

non-separable data A clear segregation of the set of vectors into
two groups is not necessarily possible, e.g., due to measurement errors.
Consequently, a soft-margin [25] that only separates most of the vectors is
used, i.e., a slack variable ς(l) ≥ 0 is introduced and the constraint given in
(1.2) is relaxed to

y(l)(〈w, v(l)〉+ m) ≥ 1− ς(l) ∀ l. (1.7)

In order to regulate the number of violations with respect to the partition,
a factor NSVM

boxconstraint is used to intensify or dampen the impact of these
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R2

R3

Kernel trick

Figure 2: Visualization of the kernel trick by means of vectors u(l) with l ∈ {1, . . . , 20}
in the plane that have to be mapped to a three dimensional vector space to be
able to find a hyperplane that divides the considered vector into two classes. Note
that the class assignments are displayed via the colors blue or white.

errors in the corresponding optimization problem. In other words, the dual
minimization problem given in (1.4) is subject to the additional constraint

0 ≤ λ(l) ≤ NSVM
boxconstraint ∀ l. (1.8)

non-linear classification Unfortunately, for many applications a
linear separation of a set of given vectors u(l) is not very realistic. In order
to circumvent this problem, the vectors u(l) ∈ RNE are linked via a function
Υ to vectors in a higher dimensional vector space where a linear separation
of the given points by a hyperplane is possible [1, 13]. In order to avoid the
usually computer intensive (due to the required high dimensional space)
calculations necessary to determine values Υ(u(l)), a kernel function K is used
that simply determines the dot product 〈Υ(u(l)), Υ(u(j))〉 of the projected
vectors u(l), u(j) ∈ RNE , which is often much easier to access numerically.
This procedure is often referred to as the kernel trick (see visualization
in Figure 2). Commonly used kernel function families are for example
polynomials, i.e.,

Kpoly(u(l), u(j)) = 〈u(l), u(j)〉+ 1, (1.9)

or the Gaussian radial basis function (RBF), i. e.,

KRBF(u(l), u(j)) = exp
( ||u(l)− u(j)||22

2υ2

)
(1.10)
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for υ ∈ R and the multilayer perceptrons, i.e.,

KMLP(u(l), u(j)) = tanh (r1〈u(l), u(j)〉+ r2) (1.11)

with r1 > 0 and r2 < 0 [79]. The multilayer perceptron variant of the SVMs is
also a model class that belongs to the family of artificial neural networks (see
introduction in the next section) [24]. Summarizing, the benefits of SVMs
are that they provide a globally optimal classification with a relatively small
computational complexity1. However, as the placement of the hyperplane is
independent of any time (or location) affiliation of the data, it is particularly
prone to provide distorted results in the presence of missing data. Another
drawback is that an SVM can only be directly applied for the classification
of processes with a binary state space. Yet, there are options to interpret
problems with more than two classes as several binary problems [56]. Further,
although the SVM often provides stable assignments, the underlying model
is very abstract, in particular for a non-linear kernel function, and thus not
easy to interpret. Moreover, it remains unclear to what extent the choice of a
kernel function predetermines or distorts the outcomes.

1.2 artificial neural networks

The class of artificial neural networks (ANNs) also belongs to the family
of pattern reconnection techniques and ANNs are successfully employed
to solve relevant problems, e.g., to diagnose several cancers [39, 95]. ANNs
originally emerged in the context of biology and they are motivated by the
natural design of neuronal networks in the brain or in the spinal cord. The
topology of different ANNs can vary a lot but the essential building blocks
are the neurons. The architecture of a single neuron is visualized in Figure
3. A considered input vector u ∈ RNE×1 is subject to three operations going
through the neuron [7]. First, the entries ue of the vector u are weighted
and summed up, i.e., a vector W ∈ R1×NE is multiplied with input vector
u. Theoretically, an alternative weighting procedure can be considered, e.g.,
the function computing the deviations |ue − we| for e ∈ {1, . . . , NE} with
we being the eth entry ofW can be used [7]. Secondly, a bias b is added to
the sum of the weighted input values ue. This bias is often interpreted to
be an additional weight affiliated with an artificial input quantity equal to
one. The sum ofW times u and the bias forms the net input (see graphic in

1 A more detailed consideration of the run time of an examplary SVM can be found in Section
3.5.
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Figure 3). Different variants of the currently considered net input operation
are also possible but are not as common [7]. Thirdly, a transfer function Ψ(·)
(also referred to as activation function) is applied to the net input and the
resulting value is an approximation of the given target y. Commonly used

u1

u2

u3

w11

w12

w13
weights

Σ Ψ

bias

transfer 
function

net input output

  neuron    input  

uNE

b
w1NE

Ψ(Wu + b)

Figure 3: A graphic interpretation of the structure of a single neuron is shown.

transfer functions are the hyperbolic tangent function, i.e.,

Ψtanh(t) =
exp(t)− exp(−t)
exp(t) + exp(−t)

, (1.12)

and the logistic function, i.e.,

Ψsigmoid(t) =
1

1 + exp(−t)
. (1.13)

One of the advantages of these two activation functions (given in (1.12) and
(1.13)) is that they are differentiable. Consequently, it is possible to employ
gradient descent based training methods. Another popular option is the
rectifier activation function

Ψrectifier(t) = max(0, t). (1.14)

A general network consists of several layers of the described neurons (see
exemplary network in Figure 4). Specifically, the output of the neurons in
the first layer (see hidden layer 1 of the exemplary network in Figure 4)
is the input of the neurons in the next layer. The output layer usually has
a very different structure and is designed to produce an output suiting
the particular form of the given targets y(l) where l ∈ {1, . . . , NL}, e.g.,
y(l) ∈ [0, 1]. Consequently, the output layer is treated individually, e.g.,
some transfer functions are typically used in the output layer but not as
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u1

u2

u3

  Input   Layer 1  Layer 2   Output  

 hidden  hidden 

uNE

Figure 4: A visualization of an exemplary fully connected network with two hidden layers
is displayed. In detail, the first hidden layer has 5 neurons, the second hidden
layers has four neurons, and the output layer consist of three neurons. The
architecture of a neuron can be seen in Figure 3.

frequently employed in the hidden layers. The layers between the input2 and
the output layer are referred to as hidden layers [7]. Each layer can have a
different architecture, e.g., with respect to the total number of neurons or
the affiliated activation functions. The exemplary network shown in Figure
4 has two hidden layers (one with five neurons and one with four neurons)
and one output layer with three neurons. Summarizing, the structure of a
network can be arbitrarily complex. In the training phase a network is fitted
according to a set of NL input vectors u(l) and the corresponding targets
y(l) (affiliated with the output). In other words, an appropriate vector of
weights W(l) and a bias b have to be computed for each neuron in each
layer.

One can further distinguish between different processing directions of a
network, i.e., feedforward and feedbackward networks. In this thesis, the
focus is on feedforward networks where the neurons of each layer are fully
connected to the neurons of the neighboring layers. Further, the activation
function of the neurons is chosen to be a non-linear function, e.g., the
hyperbolic tangent function or the logistic function can be used. The class of
networks with these properties is also referred to as multilayer perceptrons
(MLPs) which have already been mentioned in the context of SVMs in
the previous section [24]. As it has been shown3 that these feedforward

2 The input is sometimes also interpreted as a layer.
3 This and related results are often referred to as the universal approximation theorem [68].
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networks with a single hidden layer (with an arbitrary depth, i.e., number
of neurons) are already sufficient to characterize most of the practically
relevant functions [55], MLPs with only one hidden layer are considered
for the computations in this thesis. The notation N (NANN

neurons) is used for
the corresponding network, where NANN

neurons is the total number of neurons
contained in the hidden layer of the considered MLP.

As there is a great variety of different networks in the class of ANNs, it is
usually possible to find a network that produces good approximations of
a considered systems. Yet, the selection of appropriate activation functions
as well as the choice of the general architecture of the employed network is
crucial and often involves a trial and error tuning procedure. Fortunately, it
is possible to exploit that the approximation ability of rather simple (one
hidden layer) MLPs has been verified to be universal [55]. Due to the complex
internal structure of an ANN, a network is even harder to interpret than an
SVM, which at least can be interpreted geometrically. Further, ANNs like
the SVMs have stationary and homogenous model parameters (i.e., weights
and biases). Consequently, a network confronted with systems that can not
be fully described with the available data might produce distorted results.

1.3 logit models

In the following, a member of the class of discrete choice models, namely
a logit model, is introduced. This representative of the generalized linear
model family [33, 41] is a commonly employed data analysis tool in applica-
tional areas ranging from finance [49] to sociology [76]. The derivation of the
logit models via discrete choice models in the context of utility theory has
first been proposed in [81]. The conceptual idea is to associate the discrete
outcome of a regarded dynamical process with a cost function

Ci[u(l), Bi] := bi
0 +

NE

∑
e=1

bi
eue(l) + ξ i(l) with i ∈ {1, . . . , NS} (1.15)

that depends on unknown model parameters

Bi =


bi

0
...

bi
NE

 ∈ R(NE+1)×1, (1.16)
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the measurable vectors u(l) ∈ RNE×1, and on random terms ξ i(l) describing
measurement errors (with l ∈ {1, . . . , NL}) [75, 81]. Essentially that means
that the considered discrete process is assumed to have the following form:

σ(l) =


s1 if C1[u(l), B1] > Ci[u(l), Bi] ∀ i 6= 1,

...

sNS if CNS [u(l), BNS ] > Ci[u(l), Bi] ∀ i 6= NS.

(1.17)

Then the probability for the dynamical process σ(l) to be in state si is 4

P
[
σ(l) = si

]
= P

[
Ci[u(l), Bi] > Ch[u(l), Bh] ∀ h 6= i

]
(1.18)

= P
[
bi

0 +
NE

∑
e=1

bi
eue(l) + ξ i(l)

> bh
0 +

NE

∑
e=1

bh
e ue(l) + ξh(l) ∀ h 6= i

] (1.19)

= P
[
bi

0 − bh
0 +

NE

∑
e=1

[bi
e − bh

e ]ue(l) + ξ i(l)

> ξh(l) ∀ h 6= i
]
.

(1.20)

Under the assumption that each ξ i(l) is independent and identically dis-
tributed (i.i.d.) according to the extreme value distribution (also known as
Gumbel distribution), the state probabilities can be expressed as follows:

P[σ(l) = si] =
exp

(
bi

0 +
NE

∑
e=1

bi
eue(l)

)
NS

∑
h=1

exp
(

bh
0 +

NE

∑
e=1

bh
e ue(l)

) ∀i. (1.21)

This particular model, known as logit model, is one of the most prominent
discrete choice models. For a detailed derivation of the state probabilities
given in (1.21) from the general definition, the reader is referred to [81, 113].
Note that a variety of alternative choice models can be constructed by
assuming different probability distribution functions for the random error
process ξ1(l), . . . , ξNS(l), e.g., to consider the probit models, the errors are
assumed to be multivariate normal distributed.

The introduced multivariate logistic model is applicable for discrete pro-
cesses with a finite state space, yet it is important to be aware of one
restricting attribute of the logit model referred to as the independence of

4 Note that the probability of Ci[u(l), Bi] = Ch[u(l), Bh] is assumed to be zero (see [81]).
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irrelevant alternatives (IIA) property [74]. Essentially, it states that the ratio of
the probabilities of any two alternatives states si and sh is

exp

(
bi

0 − bh
0 +

NE

∑
e=1

(bi
e − bh

e )ue(l)

)
. (1.22)

As this ratio does not depend on any state other than si and sh, the relative
odds of a logistic model remain the same [113]. Unfortunately, this property
of the model may cause interpretation problems in terms of a considered
application. These difficulties are often exemplified by means of an example
first formulated by McFadden in [81]: A binary state space consisting of the
alternative options for an individual to take an auto or a blue bus to reach
a certain destination is considered. In the example the individual chooses
according to the distribution [2/3, 1/3]. After introducing a third alternative
in form of a red bus, the often more ”intuitive” probability distribution
[2/3, 1/6, 1/6] is not equal to the distribution derived by the logistic model,
which is [1/2, 1/4, 1/4]. Consequently, one should avoid to employ a logistic
model for applications where one of the finite number of states is a good
substitute of another state. Summarizing, the considered application has to
be consistent with the IIA attribute of the logistic model. Otherwise it is
prudent to deploy a different, more appropriate, discrete choice model [23].

Further, it is important to mention that the intrinsic transformation, re-
quired to successfully fit a logistic model to the observed data by finding
appropriate model parameters Bi describing the underlying discrete process
σ(l) with continuous regression techniques, is a map going from the closed
interval [0, 1] to the real numbers (−∞, ∞). This internal mapping results
in stability problems on the boundaries of the logistic cumulative density
function.

Yet, being aware of these drawbacks, data analysis via a logistic model
ansatz is a valuable tool for various modeling scenarios of different appli-
cational areas, in particular for dynamical systems that exhibit non-linear
behavior.



2
D I S C R E T E S PAT I O - T E M P O R A L D Y N A M I C A L P R O C E S S

In this thesis, the problem of modeling spatio-temporal discrete processes1

with a finite state space is approached. A basic introduction of the formal
setting is given in the following where the focus lays, in particular, on the
available information in form of observations. Further, exterior influences
driving the dynamical system under consideration are discussed, where the
emphasis of the discussion is on those external quantities that can not be
measured. As the observations are typically on a different scale than the
considered dynamics the issue of relating the spatio-temporal process to the
data is contemplated as well.

For the remainder of this thesis, the discrete countable index set of the
considered collection of random variables is divided and associated with
time (indexed t) and locations2 (indexed j and l), i.e., the discrete stochastic
process is denoted σ(t, j, l). Further, σ(t, j, l) is assumed to take values in the
finite set {s1, . . . , sNS}.

2.1 ensemble data and external factors

Measuring tools allow to take noisy snapshots of such real life dynamical
processes σ(t, j, l), i.e., t ∈ {1, . . . , NT}, l ∈ {1, . . . , Nens}, and j ∈ {1, . . . , NJ},
where the locations are denoted ω(j, l).

Note that the considered locations ω(j, l) are associated with cells on a fine
lattice (see small grid boxes in Figure 5). The index j corresponds to larger
grid cells (see cells of lattice on the left in Figure 5) of the same shape, each
containing Nens cells of the fine grid (see cells of lattice on the right in Figure
5). The considered process, thus, assigns discrete states si ∈ {s1, . . . , sNS} to
each cell ω(j, l) on a microscopic grid for every t. For example, the process

1 In other words, time-discrete and location-discrete stochastic processes with a finite state
space are considered.

2 A distinction is made between different spatial scales, hence two indices are used for the
spatial association.

21
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can describe the characteristic evolution of the aggregate state of water in a
particular location over time t (see blue and white grid cells in Figure 5).

The considered observations provide information about the regarded
system, which can be extracted with data analysis techniques. However, in
most applicational areas, observations of a single realization of the dynamical
process σ(t, j, l) for fixed t, j and l are not available. Nevertheless, the relative
frequency of the regarded process to be in state si observed on a macroscopic
scale (e.g., of the size of the larger grid cells indexed j ∈ {1, . . . , NJ}) is often
accessible via measuring. In other words, it is often possible to observe the
quotient

π̃i(t, j) =
Nsi(t, j)

Nens
(2.1)

with Nsi(t, j) being the total number of cells ω(j, l) in state si, i.e.,

Nsi(t, j) =
Nens

∑
l=1

δsi(σ(t, j, l)), (2.2)

where

δsi(σ(t, j, l)) =

{
1 if σ(t, j, l) = si ,
0 otherwise

(2.3)

is the Kronecker delta for the value si. This particular information on the
considered dynamical process σ(t, j, l) is referred to as ensemble observation.
Therefore, the microscopic cells ω(j, l), corresponding to a fixed coarser grid
box j, are referred to as ensemble members. Note that the total number of
ensemble members for each j ∈ {1, . . . , NJ} is Nens. Due to the usually very
large total number of ensemble members Nens, the relative frequency (see
(2.1)) is a good estimate of the probability of the process σ(t, j, l) to be in
state si, i.e.,

πi(t, j) := P[σ(t, j, l) = si] ≈ π̃i(t, j). (2.4)

For instance, a typical observation in the context of aggregate states of water
in the arctic area are satellite images providing information on the sea ice
concentration. For instance, the size of one larger grid cell, indexed j, may
be 25 km2 or even larger. Consequently, the total number of microscopic
locations ω(j, l) in one grid cell indexed j is indeed large. Thus, the relative
frequency values obtained via satellite are good approximations of the state
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probabilities πi(t, j) for fixed time t and coarse cell j. In the following, it is
assumed that it is possible to directly observe the vector of state probabilities

π(t, j) :=


π1(t, j)

...
πNS(t, j)

 ∈ [0, 1]NS×1. (2.5)

In pursuance of characterizing the dynamics of a regarded process σ(t, j, l),
it is also necessary to consider the vector of all relevant exterior influences

ū(t, j) ∈ RNF×1. (2.6)

Ideally, these exterior quantities ū(t, j) are also observable. However, usually
it is not possible to have access to all external factors having an impact on
the considered dynamical process. The presence of unknown influencing
quantities is one of the key problems of statistical data analysis. Therefore,
it is necessary to distinguish between known and unknown quantities and
to put a special focus on the unresolved factors in the parametrization
procedure.

2.1.1 Implicit external factors

As mentioned above, the considered dynamical process σ(t, j, l) is driven
by exterior quantities comprised in the vector ū(t, j). The vector of external
factors ū(t, j) can be divided into quantities

u(t, j) :=


u1(t, j)

...
uNE(t, j))

 ∈ U ⊂ RNE×1 (2.7)

that are available in form of data (also referred to as resolved or explicit) and
unknown factors

uunres(t, j) =


uunres

1 (t, j)
...

uunres
NI

(t, j))

 ∈ RNI×1, (2.8)
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π(t, j)

cell 1

cell NJ

microscopic lattice

macroscopic lattice

. . .

. . .

ū(t, j)

cell j

ω(j, l)
l ∈ {1, . . . , Nens}

l

Figure 5: A graphical interpretation of the relation between the microscopic locations
ω(j, l) and the macroscopic observation π(t, j) is presented. In order to visualize
the different spatial scales, the time is fixed and a dynamical system with a binary
state space is chosen, i.e., NS = 2. The exemplary microscopic state assignments
are shown for one macroscopic cell in the magnifying glass (see hexagonal lattice
on the right). Note that the microscopic cells ω(j, l) associated with s1 are white
and the ones associated with s2 are colored blue. The macroscopic hexagonal
lattice on the left relates to the scale of the observation. In other words, for each
cell indexed j it is possible to measure the corresponding π(t, j) ensemble data.
Besides showing the linkage between the scales, the images also place the focus
on the additional influences on exterior quantities contained in ū(t, j) which
may originate from very different scales.

which are not available as observations (also referred to as unresolved or
implicit), i.e.,

ū(t, j) =

[
u(t, j)

uunres(t, j)

]
∈ R(NE+NI)×1. (2.9)

It is important to mention that the vector of unresolved external factors
uunres(t, j) may consist of any quantities potentially playing a role in the
dynamics of the considered process σ(t, j, l). This includes stochastic as
well as deterministic processes, in particular, processes interacting on dif-
ferent time-wise or location-wise scales than the ones currently regarded
(i.e., t ∈ {1, . . . , NT} and j ∈ {1, . . . , NJ}). More precisely, uunres(t, j) may
contain elements of influencing quantities associated with a microscopic
scale or components that directly influence the microscopic locations ω(j, l).
Further, the vector of external influences may also include any information
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or quantities that only potentially play a role in the underlying dynamics.
In particular, any information given via measurements can be processed
in some form and then added to the vector of explicit external factors. For
example, in order to identify existing spatial correlations between the neigh-
boring cells j ∈ {1, . . . , NJ}, the corresponding information can be added to
the vector of explicit external factors. This idea will be discussed in more
detail in Section 3.4. Summarizing, there is no limitation with respect to the
nature of the quantities (i.e., the entries of ū(t, j)) influencing the considered
system on some level.

A computation of a qualitative parametrization of a process σ(t, j, l) with
standard data analysis techniques on the basis of observations π(t, j) and
u(t, j) is often hampered by incomplete or missing data. The negative effect
of such lack of information becomes even more pronounced if quantities with
significant impact are not available as measurements, i.e., factors uunres(t, j)
have a strong influence on the dynamics of the regarded system.

In reality, missing information uunres(t, j) is the status quo in most applica-
tion areas due to the fact that observation tools have physical limits and the
size as well as availability of data collections strongly depend on locations
and on time. The arctic sea ice concentration, for example, is influenced
by many quantities that are either not measurable at all or only available
for certain small areas but can not be provided for the entire arctic ocean.
Consequently, any technique employed to identify dynamics of interest
by determining model parameters on the basis of data, missing relevant
information, has to take the lack of information into account.

One way to do so is to reflect any implicit external factors in form of a
joint impact in an explicit dependency on time and location. Put differently,
a non-stationary, non-homogenous setting allows to incorporate dynami-
cal influences not available in form of data. This ansatz is presented and
mathematically justified in Subsection 3.1.1 for a dynamical process that is
assumed to have the Markov property.





3
N O N - S TAT I O N A RY N O N - H O M O G E N O U S AV E R A G E D
C L U S T E R I N G A P P R O A C H

In this chapter, a data analysis tool based on variational minimization of
a regularized clustering functional is introduced [31, 52, 84]. At first, a
general inverse problem is formulated in order to parametrize a discrete
dynamical system, influenced by exterior quantities, given by means of a
spatio-temporal time series. Then an approach to reflect implicit external
factors in an explicit dependency of the model parameters on time and
locations, assuming that the considered dynamical process underlying the
data has the Markov property, is proposed.

Although the considered data analysis technique is also presented in
a general setting, the emphasis is specifically on the non-stationary, non-
homogenous Markov model example, which will be applied to a multi-
dimensional real life time series, i.e, arctic sea ice concentration data, in
Chapter 5.

Further, due to the ill-posedness of the problem formulation, certain
regularization steps have to be taken to address the issue. Two alternative
regularization steps are presented and discussed. Then a numerical scheme
for the presented optimization problem is outlined. In particular, an MCMC
approach is proposed in the context of a specific Tikhonov regularized
variant of the considered functional.

Then the problem of selecting an appropriate model is discussed and
an information criterion is introduced. Concluding, the possibility to make
statements concerning the future evolution of a dynamical process after iden-
tifying the corresponding model parameters is discussed and the associated
theoretical and numerical steps are contemplated.

27
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3.1 model distance function

Let {π(1, 1), π(2, 1), . . . , π(NT, 1), π(2, 1), . . . , π(NT, NJ)} be a spatio-temporal
time series with π(t, j) ∈ [0, 1]NS×1 being the vector of probabilities for the
underlying process σ(t, j, l) to be in a state si ∈ {1, . . . NS}. The unknown
model parameters, identifying the dynamics of the considered system, are
denoted θ(ū(t, j)) ∈ Ω, where Ω is a corresponding appropriate parameter
space. The relation between the parameters and the observations is assumed
to be defined by a model function f (·), which belongs to a certain family of
direct mathematical models, i.e.,

π(t + 1, j) = f (π(t, j), . . . , π(t− NM, j), θ(ū(t, j))), (3.1)

dependent on the current and the previous observations π(t, j), . . . , π(t−
NM, j) up to a memory depth NM and model parameters θ(ū(t, j)). The
model function f (·) can be purely deterministic or include stochastic ele-
ments, e.g.,

f kmeans(θ(t + 1, j)) := θ(t + 1, j) + ε(t + 1, j), (3.2)

where ε(t, j) is an i.i.d. random process with expected value zero for all
t and j. Note that in this example the next state neither depends on the
current one nor on the previous data values. It is also possible to consider
a non-stationary and non-homogenous adaption of the proposed discrete
choice models. In detail that means that the direct mathematical model is
assumed to be

f logit(B(t + 1, j)) = θlogit(B(t + 1, j), u(t + 1, j)) + ζ(t + 1, j), (3.3)

where the model parameter is defined as follows:

θlogit(B(t + 1, j), u(t + 1, j)) =


P[σ(t + 1, j, l) = s1]

...
P[σ(t + 1, j, l) = sNS ]

 ∈ RNS×1 (3.4)

with space- and time-dependent model parameters

B(t, j) =
[

B1(t, j), . . . , BNS(t, j)
]
∈ R(NE+1)×NS . (3.5)

The general problem of finding model parameters θ(ū(t, j)) that explain the
observations π(t, j) ”best” with respect to a priorly chosen model function
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f (·) is referred to as inverse problem. To be able to measure the fitness of a
set of model parameters θ(ū(t, j)) with respect to the data π(t, j), a model
distance function

g : [0, 1]NS × · · · × [0, 1]NS ×Ω→ R≥0 (3.6)

is introduced. The function g is used to determine the ”distance” between
the data π(t, j) and the model approximation of the data, determined with
the parameters θ(ū(t, j)). Hence any metric d(·, ·) induces an appropriate
fitness function

g(π(t + 1, j), . . . , π(t− NM, j), θ(ū(t, j)))

=
(

d(π(t + 1, j), E[ f (π(t, j), . . . , π(t− NM, j), θ(ū(t, j)))])
)2

.
(3.7)

For instance, the model distance function example

g(π(t, j), θ(t, j)) := ‖π(t, j)− θ(t, j)‖2
2 (3.8)

is derived from the Euclidean metric and based on the example model given
in (3.2)1. The general inverse problem is phrased as follows:

L(θ(ū(t, j)))

=
NT

∑
t=1

NJ

∑
j=1

g(π(t + 1, j), . . . , π(t− NM, j), θ(ū(t, j)))→ min
θ(ū(t,j))

.
(3.9)

For the logistic direct mathematical model function in (3.3), the correspond-
ing inverse problem is defined as

L(B(t, j)) =
NT

∑
t=1

NJ

∑
j=1

∥∥∥π(t, j)− θlogit(B(t, j), u(t, j))
∥∥∥2

2
→ min

B(t,j)
. (3.10)

The reader is referred to [31, 84] for a discussion on various other direct
model function examples. The focus in this thesis is on a particular Markov
model function that allows to incorporate all implicit external factors driving
the considered system. The joint impact of these unresolved factors is re-
flected in an explicit dependency on time and location. This Markov model
is presented and discussed in the following subsection and will be used to
identify arctic sea ice dynamics in Chapter 5.

1 Note that a potentially costly computation of the square root function is avoided via using
the square of the Euclidean distance.
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3.1.1 Markov model

Considering the time-wise dynamics of a process σ(t, j, l) with a discrete
state space, a typical approach is to assume that the probability of the
current state depends only on the time-wise previous state. This property is
called the Markov property and a process σ(t, j, l) is referred to as (time-wise)
Markovian if it fulfills the following condition:

P[σ(t, j, l) = si|σ(t− 1, j, l) = sht−1 , . . . , σ(1, j, l) = sh1 ]

= P[σ(t, j, l) = si|σ(t− 1, j, l) = sht−1 ] ∀j, l.
(3.11)

Markov chains in general [15] have been deeply studied and the correspond-
ing theory is employed in various applicational areas, e.g., seasonal forecast
of antarctic sea ice in the context of climatology [21] and for the analysis of
political opinion polls in Germany in the field of computational sociology
[54]. Suppose, a considered dynamical process σ(t, j, l) with discrete state
space driven by external factors ū(t, j) is given by means of ensemble data
π(t, j) and has the Markov property. Then the process can fully be described
with a transition matrix P(ū(t, j)) and the corresponding stochastic master
equation

π(t + 1, j)T = π(t, j)TP(ū(t, j)). (3.12)

The entries of the matrix P(ū(t, j)) contain the transition probabilities:

{P(ū(t, j))}nm = P[σ(t, j, l) = sm|σ(t− 1, j, l) = sn]. (3.13)

As already discussed in Subsection 2.1.1, it is usually not possible to have
access to all external factors ū(t, j). Thus, the aim is to address the prob-
lem by designing a model specifically taking unknown external factors,
i.e., uunres(t, j), into account. Essentially, the unresolved quantities are rep-
resented in form of a joint impact via an explicit dependency on time and
space. Along the lines of [31], this is achieved by assuming a certain structure
for the transition matrix. The details of this approach are discussed in the
following proposition.

Proposition 3.1.1. Let P : RNF → RNS×NS be a twice differentiable function
with bounded second derivatives, then P(ū(t, j)) can be expressed by the following
decomposition

P(ū(t, j)) = P0(t, j) +
NE

∑
e=1

Pe(t, j)ue(t, j) + ε(t, j), (3.14)
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where the expected value of the noise process ε(t, j) is equal to zero, i.e, E[ε(t, j)] = 0,
and Pe(t, j) ∈ RNS×NS ∀t, j denote time- and location-dependent matrices.

Proof. As P is a twice differentiable function with bounded second deriva-
tives, it can be approximated with a Taylor-expansion. More specifically, a
Taylor-expansion around the means

µ(t, j) = [E(ū1(t, j)), . . . , E(ūNE+NI (t, j))] ∈ R(NE+NI)×1 (3.15)

is considered, i.e,

P(ū(t, j)) = P(µ(t, j)) +
NE

∑
e=1

∂P(µ(t, j))
∂ūe(t, j)

(ūe(t, j)− µe(t, j))

+ ∑
|α|=2

Rα(ū(t, j))(ū(t, j)− µ(t, j))α,
(3.16)

where the remainder term is defined as

Rα(ū(t, j)) =
2
α!

∫ 1

0
(1− x)DαP(µ(t, j) + x(ū(t, j)− µ(t, j))) dx (3.17)

with α being a multi-index. It is important to mention that Rα(ū(t, j)) is
bounded as the second derivatives of P(ū(t, j)) are assumed to be bounded.
Further, note that the vector of external factors ū(t, j) is without loss of
generality assumed to be ordered starting with the resolved quantities (see
(2.9)). The structure given in (3.14) is achieved by defining the matrices as
follows:

Pe(t, j) :=
∂P(µ(t, j))

∂ūe(t, j)
for e ∈ {1, . . . , NE}, (3.18)

P0(t, j) := P(µ(t, j))−
NE

∑
e=1

∂P(µ(t, j))
∂ūe(t, j)

µe(t, j)

+ E

[
NE+NI

∑
e=NE+1

∂P(µ(t, j))
∂ūe(t, j)

(ūe(t, j)− µe(t, j))

+ ∑
|α|=2

Rα(ū(t, j))(ū(t, j)− µ(t, j))α

]
.

(3.19)
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The error process is set to be

ε(t, j) :=
NE+NI

∑
e=NE+1

∂P(µ(t, j))
∂ūe(t, j)

(ūe(t, j)− µe(t, j))

+ ∑
|α|=2

Rα(ū(t, j))(ū(t, j)− µ(t, j))α

− E

[
NE+NI

∑
e=NE+1

∂P̄(µ(t, j))
∂ūe(t, j)

(ūe(t, j)− µe(t, j))

+ ∑
|α|=2

Rα(ū(t, j))(ū(t, j)− µ(t, j))α

]
(3.20)

so that E[ε(t, j)] = 0 immediately follows. Finally, resorting of the terms in
(3.16) yields (3.14).

Note that an additional assumption concerning the statistical indepen-
dence of (ūe(t, j) − µe(t, j)) for all e, t, and j, implies that the different
realizations of ε(t, j) are independent of each other in j and t as well2. Due to
E[ε(t, j)] = 0, it is reasonable to assume that ε(t, j) is small, yet its variance
can take any value which might lead to arbitrary error values.

A variation of this proposition can be found in [31]. It states that P(ū(t, j))
can also be decomposed in a similar fashion considering the next order
Taylor-expansion. The main structural difference is that the decomposition
contains an additional and conceptually different (i.e., multiplicative) error
term.

The following linear combination of the matrices P0(t, j) and Pe(t, j) and
the resolved external factors ue(t, j) ∈ R with e ∈ {1, . . . , NE} is denoted

P(t, j, u(t, j)) := P0(t, j) +
NE

∑
e=1

Pe(t, j)ue(t, j). (3.21)

Concluding, assuming the transition matrix P(ū(t, j)) is a twice differen-
tiable function with bounded second derivatives, it is possible to approximate
the observed dynamics of the process σ(t, j, l) with the model parameter
P(t, j, u(t, j)), dependent on explicit external factors u(t, j), time t, and loca-
tion j. The corresponding model function f with output π(t + 1, j) is induced
by the stochastic master equation (see (3.12)), i.e.,

f Markov(π(t, j), P(t, j, u(t, j))) = π(t, j)T(P(t, j, u(t, j)) + ε(t, j)), (3.22)

2 Note that this does not necessarily imply that ε(t, j) is also identically distributed for all j
and t.
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where ε(t, j) is the error term defined in Proposition 3.1.1 with E[ε(t, j)] = 0.
The model distance function is again derived from the Euclidean metric:

g(π(t + 1, j), π(t, j), P(t, j, u(t, j)))

=
∥∥∥π(t + 1, j)T − π(t, j)TP(t, j, u(t, j))

∥∥∥2

2
.

(3.23)

Consequently, the associated inverse problem is defined as

L(P(t, j, u(t, j)))

=
NT

∑
t=1

NJ

∑
j=1

∥∥∥π(t + 1, j)T − π(t, j)TP(t, j, u(t, j))
∥∥∥2

2
→ min

P(t,j,u(t,j))
.

(3.24)

As the total number of unknown parameters is too large in comparison with
the total number of data points (i.e., NT NJ), the inverse problems needs to
be regularized. The details are discussed in the following section.

3.2 interpolation

The current formulation of the underlying inverse problem given in (3.9)
is ill-posed. More specifically, due to the explicit dependency of the model
parameter θ(t, j, ū(t, j)) on time and space, model inference of the considered
inverse problem may result in model overfitting. For instance, this effect is
visible considering the simple model function example given in (3.8). In that
case the global optimum θ∗(t, j) is equivalent to the current state probability
distribution, i.e.,

θkmeans∗(t, j) = π(t, j). (3.25)

Note that existing global optima for a considered optimization problem are
denoted with a superscript asterisk from here on. The trivial solution given
in (3.25) to the general inverse problem (3.9) for the model function given in
(3.2) does not provide any new information. Put differently, the great number
of unknown model parameters relative to the number of observational data
points (i.e., NT NJ) causes the problem to be ill-posed according to the
definition of Hadamard [45] and the results to be meaningless. In order to
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address this issue, local stationarity and homogeneity are assumed. Thus,
the model distance functional is reformulated, i.e.,

g(π(t + 1, j), . . . , π(t− NM, j), θ(ū(t, j)))

=
NK

∑
k=1

γk(t, j)g(π(t + 1, j), . . . , π(t− NM, j), θk(u(t, j))),
(3.26)

where
Θ(u(t, j)) = [θ1(u(t, j)), . . . , θNK(u(t, j))] (3.27)

are local regimes independent of time and space and

Γ(t, j) = [γ1(t, j), . . . , γNK(t, j)] ∈ [0, 1]1×NK (3.28)

is a jump process assigning affiliations to the NK local model parameters
θk(u(t, j)) for all time steps t and locations j. Furthermore, the affiliation
process Γ(t, j) is subject to two convexity constraints:

NK

∑
k=1

γk(t, j) = 1 for j ∈ {1, . . . , NJ}, t ∈ {1, . . . , NT}, (3.29)

γk(t, j) ≥ 0 for j ∈ {1, . . . , NJ}, t ∈ {1, . . . , NT}, k ∈ {1, . . . , NK} (3.30)

and it can also be interpreted as a path switching between different clusters.
Hence the adaptive version

L(Γ, Θ) =
NJ

∑
j=1

Lj(Γ(:, j), Θ(u(t, j)))→ min
Γ(t,j),Θ(u(t,j))

(3.31)

with

Lj(Γ(:, j), Θ)

=
NT

∑
t=1

NK

∑
k=1

γk(t, j)g(π(t + 1, j), . . . , π(t− NM, j), θk(u(t, j)))
(3.32)

of the functional L(Θ(t, j, u(t, j))) is denoted the average clustering functional.
Consequently, the exemplary inverse problem for an a priori assumed logistic
model is changed to

L(Γ, B1, . . . , BNK) =
NT

∑
t=1

NJ

∑
j=1

γk(t, j)
∥∥∥π(t, j)− θlogit(Bk, u(t, j))

∥∥∥2

2

→ min
Γ(t,j),B1,...,BNK

(3.33)
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where the local stationary and homogenous model parameters are given by
the vector Bk =

[
B1

k , . . . , BNS
k

]
for all k ∈ {1, . . . , NK}. The average clustering

functional corresponding to the Markov model function, introduced in
Subsection 3.1.1 (see (3.24)), can be expressed via

L(Γ(t, j), P(u(t, j))) (3.34)

=
NJ

∑
j=1

NT

∑
t=1

NK

∑
k=1

γk(t, j)
∥∥∥π(t + 1, j)> − π(t, j)>Pk(u(t, j))

∥∥∥2

2
→ min

Γ(t,j),P(u(t,j))
.

The model matrices Pk(u(t, j)) characterizing the different regimes are de-
fined as

Pk(u(t, j)) = Pk
0 +

NE

∑
e=1

Pk
e ue(t, j) ∀ k ∈ {1, . . . , NK}. (3.35)

Thus, the matrix structure proposed in Proposition 3.1.1 (see (3.21)) is main-
tained for each of the local model matrices. The corresponding vector of
stationary, homogenous model matrices is denoted

P(u(t, j)) :=
[

P1(u(t, j)), . . . , PNK(u(t, j))
]
∈ RNS×NS NK . (3.36)

In order to ensure the stochasticity of the model transition matrix, the
minimization problem is subject to the following constraints:

Pk
0 1 = 1 ∀ k ∈ {1, . . . , NK}, (3.37)

Pk
e 1 = 0 ∀ e ∈ {1, . . . , NE}, k ∈ {1, . . . , NK}, (3.38)

where 1 ∈ RNS×1 is the column vector with all entries equal to one and
analogously 0 ∈ RNS×1 refers to the corresponding vector with all entries
equal to zero. Moreover, the model matrices Pk(u(t, j)) are required to be
(element-wise) non-negative for all t, j and k, i.e.,{

Pk(u(t, j))
}

n,m
≥ 0 ∀ t, j, k and n, m ∈ {1, . . . , NS}. (3.39)

However, computational difficulties arise in the context of implementing this
additional condition. More specifically, due to the dependency of Pk(u(t, j))
on the vector of explicit external factors u(t, j), the numerical costs to ensure
constraint (3.39) are immense. Consequently, the constraint is computation-
ally unfeasible. Yet, it is possible to ensure{

Pk
0

}
n,m
≥ 0 ∀ k, n, m. (3.40)
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due to the fact that Pk
0 is independent of u(t, j). Further, as demonstrated

in [84], the computational complexity can be reduced, assuming that the
convex hull of the space U containing the vector of explicit external factors
u(t, j) is a NE-dimensional hypercube. Then the non-negativity of the model
matrices (see (3.39)) is fulfilled if

NE

∑
e=1

{
Pk

e

}
n,m

sup
t,j

ue(t, j)

inf
t,j

ue(t, j)

 ≥ 0 ∀ k, n, m. (3.41)

Summarizing, the priorly computationally complex problem can be reduced
to 2NE inequality constraints. Details concerning the implementation of the
considered numerical problem can be found in Appendix A.1.

In order to gain a better understanding of the underlying process σ(t, j, l),
a special case of the considered Markov model is considered in the following
subsection.

3.2.1 Special case: Memory-less process

Suppose, the real life dynamical process σ(t, j, l) under consideration does
in fact not depend on the previous state probabilities π(t − 1, j), i.e, is a
memory-less process. In other words, the regarded system can be approxi-
mated with a model function similar to the one defined in (3.2). Essentially,
such an independent process is a special case of the considered Markov
model. More precisely, it is possible to consider the direct model function
given in (3.22) with the transition matrix structure given in (3.35) subject to
the additional constraint that the columns entries of the matrices Pk

e have to
be equal for all e and k, i.e.,{

Pk
e

}
1,m

=
{

Pk
e

}
2,m

= · · · =
{

Pk
e

}
NS,m

, m ∈ {1, . . . , NS}, ∀ e, k (3.42)

Then, due to the fact that the entries of the state probabilities sum up to
one, future state probabilities π(t + 1, j) can be approximated independently
of the current distribution π(t, j). By distinguishing between the standard
Markov model and this independent special case, it is possible to gain a
deeper insight into the dynamics underlying the considered data. Therefore,
the parametrization of the arctic sea ice dynamics in Chapter 5 is done for a
general Markov model as well as for the independent special case. A model
selection criterion (see Section 3.6) will be used to determine the model
better suited to describe the considered system.
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3.3 spatial and temporal persistence

Unfortunately, the average clustering functional introduced in (3.31) is still
ill-posed in the sense of Hadamard [45]. More specifically, for a fixed vec-
tor Θ(u(t, j)) = [θ1(u(t, j)), . . . , θNK(u(t, j))], the optimal regime assigning
Γ∗(t, j) with respect to the model distance function g is

γ∗k (NT + 1, j) (3.43)

=

 1 if k = argmin
h

g(π(t + 1, j), . . . , π(t− NM, j), θh(u(t, j))),

0 otherwise.

The affiliation γ∗k (NT + 1, j) can exhibit discontinuous behavior, and in those
cases the persistency assumption of the previous section is violated. Thus,
further constraints need to be imposed on Γ(t, j) in order to prevent the
process from rapidly switching between regimes. Two different regulariza-
tion approaches have been proposed [52, 53, 54] to enforce persistency on
Γ(t, j). In the following, each ansatz is briefly summarized, and the reader is
referred to [84] for a detailed discussion.

3.3.1 Tikhonov regularization

To improve the posedness of the minimization problem (formulated in (3.31)),
the function space of Γ is restricted and a Tikhonov regularization [110] is
deployed. Tikhonov regularizations are frequently applied in the context of
image processing [123] and ill-posed interpolation problems [117] and have
recently been proposed for clustering problems of the form given in (3.31)
[52].

The affiliation processes γk(:, j) are assumed to be weakly differentiable,
i.e.,

γk(:, j) ∈W1,2([1, NT]) ∀j, k, (3.44)

where W1,2([1, NT]) is the Sobolev space containing all real functions of
L2([1, NT]) who’s first weak derivative also belongs to L2([1, NT]). The ad-
ditional information concerning the path space of Γ allows to phrase a
modified average clustering functional, namely

Lr(Γ, Θ) =
NJ

∑
j=1

Lr
j(Γ(:, j), Θ)→ min

γk(:,j)∈W1,2([1,NT ]) ∀ k,j,Θ
(3.45)
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with

Lr
j(Γ(:, j), Θ) = Lj(Γ(:, j), Θ) + r2

NK

∑
k=1

∥∥∥∥∂γk

∂t

∥∥∥∥2

L2([1,NT ])
, (3.46)

where the norm
∥∥∥ ∂γk

∂t

∥∥∥2

L2([1,NT ])
, measuring the smoothness of the path γk(·, j),

is defined as ∥∥∥∥∂γk

∂t

∥∥∥∥2

L2([1,NT ])
=

NT∫
1

(
∂γk

∂t

)2

dt ∀j, k. (3.47)

This modified version of the average clustering functional is referred to as
Tikhonov-regularized average clustering functional. An optimal process Γ∗(t, j)
minimizing the Tikhonov-regularized version (3.45) of the average clustering
functional can be smoothed by increasing the value of the regularization
factor r. This effect has been studied for several synthetic as well as real data
sets of different applicational fields in [30, 52].

The advantage of the introduced Tikhonov ansatz is that no additional
constraints are imposed on the affiliation process Γ(t, j) making it possible
to apply Markov chain Monte Carlo techniques (MCMC) to find an optimal
Γ∗(t, j) for Lr(Θ, Γ) for a fixed Θ(u(t, j)). An MCMC-minimization of this
clustering problem is outlined in Subsection 3.5.1.

Although the process Γ∗(t, j) can be smoothed to a certain degree by
carefully tuning the regularization factor r, no direct control over the num-
ber of transitions between the regimes can be gained with the Tikhonov
regularization. An alternative approach addressing this issue via adding a
persistency constraint has been proposed in [53, 54] and is outlined in the
next subsection.

3.3.2 BV-regularization

Following [53, 54], the process γi(:, j) is assumed to be a function with
bounded variation. Note that this includes all the functions contained in
W1,2([1, NT]) as well as functions with discontinuities, e.g., jumps. Conse-
quently, it is possible to gain direct control over the persistency of γi(·, j) by
adding the constraint

|γk(:, j)|BV(1,NT) =
NT−1

∑
t=1
|γk(t + 1, j)− γk(t, j)| ≤ NC (3.48)

for all locations j ∈ {1, . . . , NJ}. Concluding, Condition (3.48) ensures that
the maximal number of transitions has upper bound NC. Due to the fact that
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the constraints for Γ(t, j) are independent for every location, it is possible to
compute each Γ(:, j) separately for fixed Θ(u(t, j)). Thus, finding an optimal
Γ∗(t, j) is a linear minimization problem with linear constraints. The details of
the numerical approach to compute a minimizing affiliation process are
discussed in [84]. Nevertheless, it is important to stress that due to the
additional constraint, a Markov chain Monte Carlo optimization ansatz is
not an option for this regularization.

An analog approach to limit the total number of transitions between the
different regimes along all locations j for a fixed t might be worthwhile to de-
scribe systems under consideration but presents an immense computational
challenge. These big computation costs are a result of a then necessary global
coupling (in j) for different optimization problems Lj. Thus, an additional
constraint restricting the locations remains an aspect of further research.

3.4 spatial relations

As the data has a time as well as a spatial component, it is important to
consider possible correlations or interactions between certain locations. A
lot of effort has been put into the development of parametrization tools that
allow to simultaneously model existing time-wise and spatial relations.

In the context of classical time series analysis, many standard methods that
are able to accurately approximate the system underlying time-dependent
data are not equipped to capture existing spatial correlations. Vice versa,
this holds true for many of the techniques primarily developed for a spatial
component. Consequently, purely time-dependent data is often approached
with regression analysis or other members of the family of generalized linear
models [80] where dynamics underlying observations with primarily spatial
components are described with models such as variograms [26] and Markov
random fields [65].

Summarizing, the research has been focusing on either time- or location-
dependent data sets and, typically, phenomena associated with spatial ex-
pansion (respectively time-evolution) were discarded in order to concentrate
on the main problem at hand.

As computational devices improved and higher dimensional data sets
can be handled, the focus has shifted and both dimensions are considered
simultaneously. Thus, the scientific community is presented with the new
challenge of extending existing methodologies or designing entirely new
frameworks fitting both dimensions.
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The introduced Markov model was first proposed for purely time-dependent
data [53] and later modified to fit time series with a dependency on location
as well. As demonstrated in [31], spatial relations can be included in the cur-
rent non-stationary, non-homogenous Markov model by adding an explicit
external factor

uNE+1(t, j) := average
r∈ neigh(j)

(π(t− 1, r)) (3.49)

to the vector of measurable exterior forces u(t, j), where neigh(j) denotes
the set of all direct neighboring locations of a cell j. Note that the exact
definition of neigh(j) highly depends on the lattice, which should be chosen
in accordance with the application.

Summarizing, the mean of the time-wise previous state probabilities of the
neighboring cells is considered in order to contemplate potentially existing
spatial correlations. The importance of these interactions and influences of
neighboring cells is revisited in Subsection 5.3.3, where the statistical impact
of adjacent location states is evaluated by means of a considered arctic sea ice
application. Note that in order to get an even deeper understanding of the
interactions between neighboring cells one could include further information,
such as the discrete gradients of the previous state probabilities in the vector
of explicit external factors.

3.5 numerical approach and computational complexity

Unfortunately, the inverse problem posed in (3.31) is not convex. Conse-
quently, it can not be anticipated to obtain a global minimum with commonly
deployed techniques such as gradient descent or Newton methods. Nev-
ertheless, following [52], the problem of approximating global minimizers
Γ∗(t, j) and Θ∗(u(t, j)) can be addressed combining a subspace algorithm with
a simulated annealing ansatz [66].

Instead of simultaneously minimizing L(Γ, Θ) for both unknown parame-
ters Γ and Θ, the conceptual idea is to exploit the structure of the average
clustering functional and divide the inverse problem into two minimizations
over just one parameter. In particular, this means to optimize L(Γ, Θ) with
respect to Γ for a fixed Θ and, vice versa, with respect to Θ for a fixed Γ
which can be done with standard optimization techniques (e.g., simplex
method [28, 29, 122])).

Subsequent iterations over the sub optimization problems allow to deter-
mine local minima for the model parameters but there is no guarantee to
compute a global optimum. Thus, the subspace algorithm itself is repeated
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in order to find the global minima. For a large number of repetitions this
standard simulated annealing approach [66, 71] is deployed to avoid cal-
culating local minima that are not global optimal solutions. Although this
form of the simulated annealing concept is well established, there is still no
guarantee that a global minimum is found. The details of the procedure are
explained in Algorithm 1 by means of the optimization problem (3.34) with
constraints.

Before executing the algorithm, it is necessary to choose the values of the
free variables, such as the memory NM ∈ {0, 1} of the process σ(t, j, l), the
number of local stationary and homogenous regimes, and NC the upper
bound for the transitions of the regime assigning process Γ. Note that, for
NM = 1, a Markov process with memory and, for NM = 0, an independent
process is assumed. In detail that means that constraint (3.42) is switched
off or on for the computations of a minimal P(u(t, j)) for a fixed affiliation
process Γ(t, j) (see Step 2 of Algorithm 1).

Moreover, it is important to select the vector u(t, j) of explicit external
factors and the data π(t, j) associated with the considered dynamical process
σ(t, j, l). Further, computational settings such as the number of annealing
steps NFEM

anneal and the numerical tolerance NFEM
τol for the subspace iterations

have to be fixed.
Another important choice concerns the considered data product. Especially

the size of the vector of explicit external factors and the variety of its entries
needs to be considered. Details on the specific aspects of this particular
choice for the considered application of analyzing the dynamics of the arctic
sea ice concentration are discussed in Chapter 5.

The output of the algorithm is a model

M f (NK, NC, NM, u(t, j))) (3.50)

consisting of global optimizers Γ∗(t, j) and P∗(u(t, j)) which depend on NK,
NC, and NM. The terminology P[s](u(t, j)) and Γ[s](t, j) denotes the current
approximations of the optimal P∗(u(t, j)) and Γ∗(t, j).

The optimization of Lj with respect to Γ(:, j) (see Lines 6-8) of the BV-
regularized averaged clustering functional can be approached with standard
methods of linear minimization with linear equality and inequality con-
straints (e.g., simplex method [28, 29, 122]). As the affiliation process Γ is not
subject to any spatial persistency constraints, the problem of optimizing L
with respect to Γ for fixed P(u(t, j)) is equivalent to separate computations
of the individual sub-optimization problems Lj (see (3.32)) with respect to
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Algorithm 1: Subspace algorithm with annealing steps
input :

• Data: π(t, j), u(t, j)

• Model variables: NC, NK, NM

• Numerical settings: NFEM
τol , NFEM

anneal

• Optional: NFEM
basis

output:

• Γ∗(t, j) and P∗(u(t, j))

Lmin = 10000001

for r = 1 : NFEM
anneal do2

Generate random initial Γ[0](t, j) and compute P[0](u(t, j))3

s = 14

while5

|L(Γ[s](t, j), P[s](u(t, j)))− L(Γ[s−1](t, j), P[s−1](u(t, j)))| ≥ NFEM
τol

do
Step 1:6

for j = 1 : NJ do7

Determine Γ[s+1](:, j) = arg min Lj(Γ(:, j), P[s](u(t, j)))8

subject to constraints (3.29),(3.30)
Step 2:9

Compute P[s+1](u(t, j)) = arg min L(Γ[s+1], P(u(t, j))) subject to10

constraints (3.37), (3.38), (3.40), and (3.41) (for NM = 0 condition
(3.42) also needs to be fulfilled)
s := s + 111

if Lmin ≥ L(Γ[s](t, j), P[s](u(t, j))) then12

Lmin = L(Γ[s](t, j), P[s](u(t, j)))13

Γ∗ = Γ[s](t, j)14

P∗(u(t, j)) = P[s](u(t, j))15

Γ(:, j) for all locations j ∈ {1, . . . , NJ}. Details concerning the implementation
are discussed in [84].

In general, the run time of Step 1 scales with the dimension of Γ(:, j) [84].
Thus, time-wise long time series can result in major computation times.
In order to address this problem, a finite element approach was proposed
in [52] to reduce the dimension of Γ(:, j). The key idea is to exploit the
persistency of the affiliation process. As the affiliations remain the same for
a period of time, it is possible to find intervals [i, in] so that Γ(t, j) can be
represented by Γ(ti, j) for all t ∈ [ti, tin ]. Consequently, a discretized version
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of Γ can be used in Step 1 and is enhanced to its original size NT for the
calculations of Step 2. Hence, the computational time of Step 1 only depends
on the number of functions NFEM

basis (i.e, the size of the discretized Γ), which
can be significantly smaller than the actual time dimension NT for a very
persistent path γk(t, j).

In [30] the performance with respect to the total number of finite element
functions NFEM

basis of a optimization via a simplex method was compared to the
results of an MCMC optimization ansatz3. The Metropolis algorithm proved
to be much faster, especially for the parametrization of dynamical systems
that are accessible via data with a high dimensional time component and
that have very persistent behavior. In other words, an MCMC optimization
approach is a good alternative ansatz for dynamical processes that require
a big number of finite element base functions to determine an appropriate
corresponding Γ. However, due to the additional constraint relating to the
BV-regularization, such an MCMC approach is only an option for a Tikhonov-
regularized average clustering functional.

In general, the optimization of Θ for a fixed regime assigning process
Γ(t, j) depends on the previously chosen model function f . Here the focus
is on a Markov model (see (3.22)). Thus, Step 2 of the subspace algorithm
(see Lines 9-10) depicts the computation of P[s+1](u(t, j)) for the current
Γ[s+1](t, j).

The associated optimization problem is subject to constraints (3.37), (3.38),
(3.40), and (3.41). It is possible to apply standard methods of quadratic
optimization with linear equality and inequality constraints to find a minimal
P∗(u(t, j)). Due to the Markov model choice, Algorithm 1 is also referred to
as non-stationary, non-homogenous Markov regression.

In contrast to the separate individual computations that can be executed
to calculate the optimal Γ∗(:, j) for all locations j, the optimal local stationary
and homogenous model parameters Pk(u(t, j)) with k ∈ {1, . . . , NK} have
to be computed simultaneously for all locations j and for all time steps t.
Nevertheless, it is important to mention that the proposed framework can
compete with standard approaches such as SVMs and ANNs regarding the
computational complexity and the quality of the model approximation [30].

In order to fit an SVM model to the data, a quadratic minimization
optimization problem has to be solved. For a gaussian RBF kernel function
(see (1.10)) this can lead to a worst case complexity of O(N2

T NE) for each
location [12]. Yet, the mean computation time is usually much lower. In
particular, tuning the regularization parameter NSVM

boxconstraint or increasing

3 In detail, the run time of Step 1 of Algorithm 1 was compared.
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the size of the training data result in much faster convergence to a globally
optimal solution [101].

In pursuance of calculating an appropriate feedforward network with a
non-linear transfer function on the basis of data, a sequence of quadratic
optimization problems has to be solved. Note that contrary to the unique
robust solution, provided in the context of SVMs, the network is fitted via a
non-convex gradient-based optimization method. Consequently, annealing
steps, which increase the computation time, are necessary. Even for very effi-
cient methods such as the Levenberg-Marquardt backpropagation algorithm
[46] the run time scales badly with the total number of involved parameters.
Here the total number of unknown variables is the sum of the parameters
required for each neuron (considering all layers), where the number of pa-
rameters of a neuron is the sum of the total number of weights (entries of
vectorW) plus one (due to the bias b).

The numerical details of Step 2 for a Markov model as proposed in (3.22)
are discussed in Appendix A. A C++ code of optimization problem (3.34)
for a fixed regime assigning process Γ has been implemented and can be
found on http://www.dewiljes.de/dewiljes/Jana.html. Further, an open
source quadratic programming solver4 is employed for the computations in
Chapter 5.

Note that only the BV-regularized variant was considered in Algorithm 1.
Yet, the subspace algorithm for the minimization of a Tikhonov-regularized
average clustering functional is conceptually analog. As demonstrated in
[52], a Tikhonov-regularized average clustering functional for fixed Θ can be
minimized with respect to Γ with standard quadratic optimization tools [42].
An alternative option is to employ MCMC-optimization via sampling from
an appropriately chosen Boltzmann distribution [22]. One advantage of such
a stochastic optimization approach is that the run time can be improved
considerably. This ansatz is outlined in Subsection 3.5.1 and a detailed
discussion can be found in Appendix B.

3.5.1 MCMC approach

The main computational drawback of the regularized model distance func-
tional Lr(Γ, Θ) as well as L(Γ, Θ) is that they are non-convex. Consequently,
it is not possible to ensure that any results determined with standard opti-
mization techniques, such as simplex methods [28, 29], are global optima.

4 The open source package can be downloaded on http://www.diegm.uniud.it/digaspero/

index.php?page=software, the theory corresponding algorithm is discussed in [42].

http://www.dewiljes.de/dewiljes/Jana.html
http://www.diegm.uniud.it/digaspero/index.php?page=software
http://www.diegm.uniud.it/digaspero/index.php?page=software
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In the subspace algorithm, described in Algorithm 1, simulated annealing
steps in form of subsequent repetitions are executed to approach a global
rather than a local minimum.

As demonstrated in [30, 37], this locality problem can also be directly
addressed for a Tikhonov-regularized average clustering functional by em-
ploying a stochastic optimization technique for each of the individual sub-
optimization problems Lr

j(Γ(:, j)). More specifically, the approach is based
on sampling from an appropriately chosen corresponding Boltzmann distri-
bution (also known as Gibbs measure), i.e.,

FLr
j ,β(Γ(:, j)) =

1
Z(Lr

j)
exp(−βLr

j(Γ(:, j), Θ)) (3.51)

for fixed model parameter Θ and fixed location j. The corresponding nor-
malizing constant is defined as

Z(Lr
j) =

∫
Γ

exp(−βLr(Γ, Θ)). (3.52)

As the Boltzmann distribution has its origin in statistical physics, where
it is used to describe certain phenomena in the field of thermodynamics,
the parameter β is referred to as the inverse temperature and the regarded
functional Lr is referred to as the energy of the considered system. More
specifically, the Gibbs measure can be employed to describe the probability
of a particle’s speed influenced by the external temperature.

In particular, Boltzmann distributed samples Γ have the property to mini-
mize the assigned energy functional Lr(Γ) as β converges to ∞ [47]. Thus,
a Boltzmann distributed sample Γ is a good approximation of the global
optimal Γ∗, minimizing (3.31).

However, it is usually not an option to calculate a normalizing constant
Z(Lr), such as given in Equation (3.52), since the high dimension of the path
space hampers numerical computations. Yet, this problem can be avoided by
employing techniques from the family of MCMC methods. More precisely,
the Metropolis algorithm can be used as it is not necessary to determine
Z(Lr) in order to sample from the given Boltzmann distribution (3.51).

In the next paragraph, a basic introduction of a random walk Metropolis
algorithm is given for the inverse problem phrased in (3.45). Further, the
deployment of this specific MCMC technique to approximate Γ∗ is explained.

metropolis algorithm First introduced in [83], the Metropolis al-
gorithm is still frequently applied in various applicational areas and new
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developments are steadily appearing in the current scientific literature [90].
The main advantage of the algorithm is that it allows to sample from distri-
butions where a direct calculation is not possible as the boundaries of todays
computational limits are reached.

For instance, the normalizing constant in the Boltzmann distribution, de-
fined in (3.51), can not be computed directly, yet it is possible to sample from
the Boltzmann distribution via the Metropolis algorithm. More specifically,
numerical determination of the normalizing constant is not necessary as the
Boltzmann distribution of an argument is only considered as a quotient of
itself in a different argument, i.e.,

FLr,β(Γ′)
FLr,β(Γ)

. (3.53)

The output of the considered Metropolis algorithm is a Markov chain of
random samples, denoted Γ[r] with r ∈

{
1, . . . , NRWM

chain

}
, that has the Gibbs

measure as its unique stationary distribution5. An element Γ[r] of the chain,
representing the current approximation of the global optimum Γ∗, is deter-
mined via an acceptance-rejection procedure, i.e, a potential new candidate
Γ′, generated with a proposal density

q(·, ·), (3.54)

is accepted or rejected depending on the acceptance rate

a(Γ[r−1], Γ′) (3.55)

=

 min
{

1,
FLr ,β(Γ′)q(Γ′,Γ[r−1])
FLr ,β(Γ[r−1])q(Γ[r−1],Γ′)

}
if FLr,β(Γ[r−1])q(Γ[r−1], Γ′) > 0,

1 otherwise,

where Γ[r−1] is the previous chain member. If the acceptance rate is greater
than a realization of a random variable6, the proposed sample Γ′ is accepted
and becomes the new chain element Γ[r].

Different choices and specifications concerning the choice of the proposal
density q(·, ·) lead to different variations of the original Metropolis algorithm.
The original and standard principle, referred to as Random Walk Metropolis

5 Note that the samples can also follow a different target distribution, but in this thesis the
regarded target distribution is the Boltzmann distribution with a Tikhonov-regularized
average clustering functional as its energy function (see (3.51)).

6 The considered random variable follows a uniform distribution and takes values in [0, 1].
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(RWM), is to update the previous chain member Γ[r−1] by adding a random
noise, i.e.,

Γ(:, j)′ = Γ[r−1](:, j) + η(:, j) ∀j, (3.56)

where
η(:, j) ∼ q(Γ, Γ′) (3.57)

[22]. This simple, yet effective, strategy is just one option and there are many
different strategies involving various families of proposal densities [73] to
generate a new proposal sample, e.g., the more general Metropolis-Hastings
algorithm [48], where each new candidate is generated independently of any
previous chain element, or the Metropolis Adjusted Langevin Algorithm
(MALA) [92, 90], where a new proposal depends on gradient information of
the given optimization problem. Each ansatz has its advantages but, depend-
ing on the problem, can also present some challenges, e.g., independent walk
Metropolis performs best when the proposal density is similar to the target
distribution. Thus, it is sensible to choose the sample update considering the
regarded problem.

Here, an RWM ansatz (see (3.56)) is proposed to generate new samples.
More specifically, a new candidate Γ′ is generated by adding a noise η, which
is sampled from a Gaussian proposal density

q
(

Γ[r−1](:, j), Γ(:, j)′
)

=
1

(2π)
NT
2

exp
(
−1

2

(
Γ(:, j)′ − Γ[r−1](:, j)

)> (
Γ(:, j)′ − Γ[r−1](:, j)

))
(3.58)

=
1

(2π)
NT
2

exp
(
−1

2
η(:, j)>η(:, j)

)
, (3.59)

to the previous element Γ[r−1]. This choice is rather basic but an RWM
update has the advantage that no additional a priori information on the
considered Boltzmann distribution is required. Further, using this specific
generation of a new sample Γ′, it is possible to directly control the acceptance
rate a(Γ[r−1], Γ′) which allows to employ an adaptive simulated annealing
scheme used to improve the approximation of Γ∗. Moreover, due to the fact
that the samples Γ[r] are subject to constraints in the regarded optimization
problem, it is prudent not to involve gradient information.

stochastic optimization to determine Γ In the following, a pseu-
docode describing the Metropolis algorithm is deployed to find Γ∗(:, j) min-
imizing Lr

j(Γ(:, j), Θ), given in (3.46), for a fixed Θ. In other words, the Γ
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optimization (see Step 1 of Algorithm 1) for a Tikhonov-regularized averaged
clustering functional is approached with stochastic minimization.

The input of the algorithm includes the total number of different regimes
NK, the regularization factor r, the required maximal length of the Markov
chain r, NRWM

chain , the inverse temperature parameter β, and a fixed approxima-
tion of model parameter Θ.

The aim is to obtain an estimate of a global minimizer Γ∗(:, j). Unfortu-
nately, there is no direct option to include constraints restricting a sample.
Thus, due to the additional constraint (see (3.48)), a BV-regularization can
not be considered. Yet, the model parameter Γ(:, j) has to satisfy conditions
(3.29) and (3.30) for the Tikhonov-regularized inverse problem given in (3.45)
(see Line 4 in Algorithm 2).

Suppose, the regarded process σ(t, j, l) can be described with two regimes,
i.e., NK = 2, then the sampling procedure can be simplified. In particular,
it is only necessary to sample a path γ1(:, j) subject to constraint (3.30), i.e,
γ1(t, j) ∈ [0, 1], instead of sampling Γ with the additional condition (3.29)7.
Since constraint (3.29) has to be fulfilled, the computation of the affiliation
process corresponding to the second regime is straightforward, i.e,

γ2(t, j) = 1− γ1(t, j) ∀ t, j. (3.60)

However, this special case can not be regarded as a general solution to
the problem. Following [30], it is possible to approximate a Boltzmann
distributed and, therefore, optimal sample Γ∗(:, j) satisfying (3.29) and (3.30)
by assuming that the model parameter Γ depends on processes ψk(t, j) and
has the following analytic expression:

γk(ψ(t, j)) =
exp(ψk(t, j))

∑NK
h=1 exp(ψh(t, j))

k ∈ {1, . . . , NK}. (3.61)

Thus, instead of directly sampling affiliations γk(t, j), the RWM algorithm
is used to sample with respect to the process ψ(t, j) = [ψ1(t, j), . . . , ψNK(t, j)].
Note that the acceptance rate a(Γ[r−1](:, j), Γ′(:, j)) is then computed for
Γ(ψ(:, j)), defined in (3.61). Concluding, the new assumption allows to
generate an approximation Γ∗(:, j) that fulfills the required constraints for
an arbitrary number of local regimes (i.e., NK ≥ 3).

7 To fulfill convexity constraint (3.30), which states that the entries of each of the new proposals
Γ′ (see (3.56)) have to be non-negative and to ensure that the entries are not greater than
one the entries of the proposed sample Γ′ are adjusted to suit the boundaries by setting the
entries greater than one to one and the negative values to zero.
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Algorithm 2: Metropolis algorithm
input :

• Data: π(t, j), u(t, j)

• Model variables: NC, NK, r, Θ

• Numerical settings: r, NRWM
chain , β

• Optional: NFEM
basis

output:

• Global optimizer Γ∗(:, j)

Choose or generate an initial value Γ[0] (e.g., uniform initial1

distribution)
for r = 1 : NRWM

chain do2

Generate η ∼ N (0, 1) and [0, 1]-valued random variable X following a3

uniform distribution.
Compute Γ′ = Γ[r−1] + η subject to constraints (3.29),(3.30).4

Determine acceptance rate a(Γ[r−1](:, j), Γ′(:, j)) for β (see (3.55))5

if X ≤ a(Γ[r−1](:, j), Γ′(:, j)) then6

set Γ[r](:, j) := Γ′(:, j)7

else8

set Γ[r](:, j) := Γ[r−1](:, j)9

Return Γ[NRWM
chain ](:, j)10

Due to the fact that the constraints restricting parameter Θ depend on
the arbitrary model f , it is in general not possible to employ the proposed
stochastic optimization for the minimization of L(Γ, ·) or Lr(Γ, ·) with respect
to Θ for fixed Γ, i.e., for Step 2 Algorithm 1. Nevertheless, in cases where
the local model parameters θk have no or only a few restricting conditions
(e.g., for model f kmeans defined in (3.2)), the proposed inverse problem
can be completely solved with a stochastic optimization approach. This
usually has a positive effect on the memory and the computation time and
simultaneously helps to avoid any locality problems. Summarizing, it is
sensible to check for each choice of model whether the MCMC ansatz might
be beneficial.

Further, it is important to mention that the performance of the introduced
framework crucially depends on the chain’s convergence to the considered
distribution. Consequently, a considerable effort has been put into the de-
velopment of convergence diagnostics that can be deployed to improve the
results of the Metropolis algorithm [93].
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In pursuance of obtaining qualitative approximations of Γ∗, a particular
scheme has been proposed for the MCMC-based optimization of a Tikhonov-
regularized average clustering functional [30, 37]. Essentially, this adaptive
scheme is based on a very popular and recently theoretically verified conver-
gence diagnostic [94]. It states that the optimal (with respect to the results)
percentage of accepted samples of the Metropolis algorithm is 23.4% for
a certain family of densities in the class of random walk Metropolis algo-
rithms8. Thus, in order to improve the results, an adaptive tuning procedure
is employed to keep the total number of accepted samples in the mentioned
range. The details are discussed in the following paragraph and in Appendix
B.

adaptive simulated annealing As already mentioned, the prob-
ability of any sample following the considered Boltzmann distribution
FLr,β(Γ) to be a global minimum Γ∗(:, j) of Lr

j(·, Θ) (for fixed Θ and j ∈
{1, . . . , NJ}) is one if the temperature is tending to zero, i.e., the inverse
temperature variable β is approaching infinity. Thus, classically a specific
cooling schedule {

β[1], β[2], . . . , β[NRWM
chain ]

}
(3.62)

is proposed priorly to the Metropolis algorithm run in order to regulate
the decrease of the temperature (respectively the increase of β) during the
RWM run at a certain iteration step, i.e., at a specific length of the already
generated chain.

The constitution of the schedule, especially concerning the pace used to
increase the value of β, is vastly important to obtain a global instead of a
local minimum. It has been shown that it is possible to suffice the general
environment needed to obtain a global minimum if the temperature is cooled
down very slowly (for details see [40]).

However, such cooling schedules induce very long computing times and
are, therefore, often not applicable to real life problems. Moreover, a fixed
schedule does not adapt to random phenomena occurring during the run.
More specifically, wether a proposed sample Γ′(:, j) with minimally smaller
energy value than the previous chain member Γ[r−1](:, j), i.e.,

FLr,β(Γ[r−1](:, j))−FLr,β(Γ′(:, j)) (3.63)

8 Although the importance of these significant three digits is obvious, they should be handled
with care when the density is different from the family of densities proposed in [94], for
more information see [90].
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is small, is going to be accepted, depends on the magnitude of β.
For instance, for a small inverse temperature value the probability for

Γ′(:, j) to be accepted is high. However, due to the exponential nature of
the Boltzmann distribution, bigger β values cause the probability for Γ′(:, j)
to become a member of the chain to approach zero. This property of the
Boltzmann distribution is only desirable in a later state of the generation
procedure.

Yet, in pursuance of finding a global rather than a local optimum, it is
important to traverse the entire sample space. Thus, the temperature has to
be increased slowly or not at all for some time at the beginning of the run in
order to avoid being stuck around a local minimum.

Since the evolution of a run can not be predicted, due to the many random
components, a fixed schedule does not allow enough flexibility to deal with
randomly occurring local optima. This problem is addressed via an adaptive
cooling schedule.

In detail this means that the variable β is changed dependent on the
percentage of accepted samples Γ′(:, j) with a smaller energy value than the
current chain member, i.e.,

FLr,β(Γ′(:, j)) ≤ FLr,β(Γ[r−1](:, j)). (3.64)

Thus, a counter is added to Algorithm 2, and the percentages are considered
in a sensible frequency which might result in a change of the current inverse
temperature value.

The frequency, the percentages, and the magnitude of tuning the present
values should depend on the application itself. Thus, a certain level of
experimental tuning is necessary to find the right setting. A complemen-
tary discussion including a pseudocode of the procedure can be found in
Appendix B.

The proposed adaptive simulated annealing scheme has been tested on
synthetic as well as real data sets in the context of solving clustering problems
similar to the one given in (3.45) and produced promising results [30].
In general, it can be said that a suitable adaptive annealing approach is
preferable to a fixed set of variables as it commonly leads to much better
results.

Note that there are several alternative adaptive simulated annealing ap-
proaches that have been developed in the context of MCMC algorithms in
pursuance of improving the drawbacks of a classical ansatz (see (3.62)), e.g.,
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methodologies like simulated sinstering [72], simulated tempering [77], and
sequential Monte Carlo [32].

Another variable that also needs to be frequently tuned or chosen carefully
is the variance of the proposal density as the results vastly differ for different
values. As a proposed sample Γ′(:, j) is a noisy version of the previous chain
member (see (3.56)), the energy difference only depends on the noise value
η(t, j). Thus, a big variance results in a bigger difference, causing the sample
to be rejected more frequently. On the other hand, greater variance values
allow to ensure that the sample space is explored more widely.

Concluding, it is necessary to have a good balance. In order to tune the
noise directly, a noise factor n is introduced and the original random walk
proposal (see (3.56)) is slightly modified to include the new variable, i.e.,

Γ′(:, j) = Γ[r−1](:, j) + nη(t, j). (3.65)

A detailed examination of the effect of small parameter changes on the
energy value of the samples has been executed in [30, 37]. The experiments
were consistent with popular convergence diagnostics.

The key idea is to try to keep the acceptance-rejection ratio, i.e., the number
of accepted samples relative to the total number of rejected ones, around the
verified optimal value of 23.4%. This can be achieved by regularly tuning
the value of the variance n, which has, as established, a vast influence on the
number of accepted samples.

The adaptive change of the variance factor n is included as an additional
feature of the proposed adaptive simulated annealing scheme. A detailed
discussion on the tuning procedure can be found in Appendix B.

Summarizing, in pursuance of solving a sub optimization of a considered
inverse problem, the presented RWM algorithm approach with adaptive
simulated annealing scheme is a good alternative to standard minimization
techniques. The benefits of the framework become especially pronounced
for data with a long time-wise component and not very persistent behavior.

More specifically, the Metropolis algorithm ansatz for the Tikhonov-
regularized optimization problem of finding an optimal Γ∗(:, j) for fixed Θ
and j ∈ {1, . . . , NJ} has a linear computational complexity, i.e.,

O(NK NFEM
basis NRWM

chain ), (3.66)

where the standard approach with quadratic optimization is NP-complete
[115].
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3.6 model selection

The last step of the parametrization procedure is to select an optimal model
in the set of different candidates

M f (NK, NC, NM, u(t, j)), (3.67)

characterized by the model parameters P(u(t, j)) and Γ(t, j), dependent on
the number of local regimes NK, the maximal allowed number of transitions
NC, the memory-depth NM, and the choice of the vector of explicit external
factors u(t, j).

The goal is to choose a model that has a high accuracy and, at the same
time, the smallest possible number of free parameters. Thus, an optimal
model should have enough explanatory power while being as simple as
possible. This principle is also known as Occam’s razor [2].

In order to determine, which model is optimal in the sense of Occam’s
razor, Akaike’s Information Criterion (AIC) [3] is considered. The conceptual
idea of an information criterion is to rank the different models according to
the balance between their number of free parameters and their approxima-
tion quality with respect to the given data. Thus, the value of AIC can be
considered to be a measurement of the disproportion between the quality
of the considered model M f (NK, NC, NM, u(t, j)) and the total number of
parameters involved in the calculation of the model.

In the context of an information criterion, the quality of a model is gen-
erally given by its likelihood function. Unfortunately, it is usually not
possible to directly link a likelihood function to a model of the consid-
ered nature. Yet, a modified version of AIC, applicable for the consid-
ered model framework, has been proposed in [84]. Essentially, the con-
formity of a modelM f (NK, NC, NM, u(t, j)) is associated with the likelihood
L(NK, NC, NM, u(t, j)) of a set of parametric polynomial (conditional) prob-
ability density functions fitted to the residual processes of the local model
parameters. Thus, it is necessary to assume that the scalar process of model
distances follows an independent set of parametric (conditional) probability
density functions

φk(·, . . . , ·|Nφk). (3.68)
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Then the likelihood, based on the model distance functional, can be defined
as

L(NK, NC, NM, u(t, j)) (3.69)

=
NJ

∏
j=1

NT

∏
t=1

NK

∑
k=1

γk(t, j)φk

(
g(π(t + 1, j), . . . , π(t− NM, j), θk(u(t, j)))|Nφk

)
.

The corresponding modified version of Akaike’s Information Criterion
(mAIC) is defined as

mAIC(NK, NC, NM, u(t, j), f ) (3.70)

:= −2 log(L(NK, NC, NM, u(t, j))) + 2|M f (NK, NC, NM, u(t, j))|,

where
|M f (NK, NC, NM, u(t, j))| (3.71)

denotes the total number of involved parameters. For instance, the total
number of free parameters, considering the Markov model given in (3.22),
sums up to

|MMarkov(NK, NC, NM, u(t, j))| (3.72)

=

|Γ|+ NK NS(NS − 1)(NE + 1) + |Λ| for NM = 1,

|Γ|+ NK(NS − 1)2(NE + 1) + |Λ| for NM = 0,

or, considering the logistic model defined in (3.3), is given by

|Mlogit(NK, NC, NM, u(t, j))| = |Γ|+ NK(NE + 1 + NM) + |Λ|. (3.73)

The required number |Γ| of free variables necessary to reconstruct Γ is
computed as presented in Algorithm 3. Essentially, every time-wise switch
between the local regimes is considered to be a free parameter. The sum over
all locations then results in the considered |Γ|.

Note that |Γ| is less then NT NJ NK and might even be much smaller than
NC NJ NK. In other words, only the required memory, necessary to reconstruct
Γ and not the full size of Γ, is counted in the total number of free parameters.
In particular, this is necessary, as the optimal model with respect to mAIC
would be underfitting the data for an enormous penalty term such as the
one stemming from the full size of Γ.

In fact, although the regime assigning process Γ(t, j) is explicitly depen-
dent on the location j, it is often the case that many locations have similar
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structured affiliations. Consequently, taking these similarities into account,
an even smaller number of free parameters might be necessary to reconstruct
Γ. Summarizing, it is important to be aware that the penalty term has to be
considered with care to avoid overfitting as well as underfitting models.

Algorithm 3: Computation of |Γ|
input : Γ
output: |Γ|
|Γ| = 01

for j = 1 : NJ do2

for j = 1 : NT do3

if |Γ(t− 1, j)− Γ(t, j))| > Machine epsilon then4

|Γ| = |Γ|+ 15

Although the introduced modified information criterion was primarily
introduced to determine the optimal values for variables NK and NC, it has
the additional advantage that it can be deployed to identify the statistical
optimal model with respect to prior assumptions.

For instance, if one Markov model with and one without memory (i.e.,
NM = 1 respectively NM = 0) are fitted to the same observational data, the
mAIC values determined with the proposed model-discrimination procedure
can be compared to find an optimal direct mathematical model f .

In cases where the dimension of the data is relatively small with respect to
the total number of parameters, required to describe the considered process
best, the values computed via the mAIC are biased. In fact, this issue is
a form of overfitting and a problem concerning all standard information
criteria. Different approaches to address this bias have been proposed, e.g,
corrected AIC (AICc) [17] or improved AIC (AICi) [8].

An alternative mechanism, often employed in the context of model valida-
tion, is the so called cross validation [19]. The principle idea is to estimate the
predictive skills of each model by comparing its out-of-sample approxima-
tion to the actual data. Unfortunately, this alternative option is not generally
computationally feasible for the considered non-stationary, non-homogenous
models due to the high number of different necessary combinations required
for the computation of a corresponding Γ∗. Details of this problem will be
discussed by means of the arctic sea ice application considered in Chapter 5.
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Following the idea of AICc, the potential bias of the mAIC is leveled out via
an additional penalty term. Essentially, the conceptual idea is to incorporate
the ratio of the number of data points to the number of parameters, i.e.,

mAICc(NK, NC, NM, u(t, j), f ) (3.74)

:= mAIC(NK, NC, NM, u(t, j), f )

+
2|M f (NK, NC, NM, u(t, j))| · (|M f (NK, NC, NM, u(t, j))|+ 1)

NT NJ − |M f (NK, NC)| − 1
.

After inferring an optimal model with respect to the proposed mAICc, the
aim is to use the model to approximate future state probabilities. The details
of such approximations are discussed in the following section.

3.7 self-containing predictive models

Under the assumption that the global optimal model parameters Γ∗(t, j)
and Θ∗(u(t, j)), minimizing the inverse problem L(Γ(t, j), Θ(u(t, j))) given
in (3.31), can be determined with the subspace algorithm (see Algorithm
1), the observed time series π(t, j) can be approximated using the formal
definition of the direct model function f , i.e.,

π(t + 1, j) ≈ f

(
π(t, j), . . . , π(t− NM, j),

NK

∑
k=1

γ∗k (t, j)θ∗k (u(t, j))

)
. (3.75)

It is important to stress that f needs to be linear in its parameters and the
model distance functional g has to be strictly convex to ensure that the
approximation in (3.75) holds (details are can be found in [84]). Note that
the regarded Markov model, given in (3.22), and the corresponding model
distance function g, induced by the Euclidean norm (see (3.23)), have the
required properties.

In order to make statements about future developments of real life pro-
cesses, the prediction π̂(NT + 1, j) of the probability distribution π(NT + 1, j)
is considered. However, a direct prediction of π(NT + 1, j) is hampered by
the non-stationarity and the non-homogeneity of the model formulation. In
particular, any computation to approximate π(NT + 1, j) involves the affilia-
tion process Γ∗, which is unknown for t greater than NT. Thus, due to its
explicit dependence on time and space, it is necessary to predict Γ∗(NT + 1, j)
before being able to compute the state probabilities outside of the considered
time interval [1, NT].
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Following [84], it is possible to regard the determined optimal parameter
Γ∗(t, j) as a probability distribution of a discrete process taking values in the
finite set {1, . . . , N∗K}.

Then the problem of identifying the underlying dynamics, corresponding
to Γ∗(t, j), can be phrased as a Markov model inverse problem such as
given in (3.34). This self-contained strategy allows to compute a probability
distribution of future affiliations

Γ̂(NT + Npred, j) = Γ∗(NT, j)
Npred−1

∏
τ=0

([
PΓ

0 +
NE

∑
e=1

PΓ
e ue(NT + τ, j)

])
. (3.76)

It is important to note that the model describing Γ∗ is assumed to be sta-
tionary and homogenous (i.e., NΓ

K = 1). This restriction is necessary in order
to evade being confronted with the problem of having to determine future
states of parameters explicitly dependent on time and space again. Never-
theless, it is common to assume stationarity as well as homogeneity in the
field of time series analysis.

Alternatively, the model underlying the distribution of affiliations Γ∗(t, j)
can be characterized employing multivariate logistic regression [80] (see
introduction in Section 1.3). The key strength of such an approach is the
non-linear structure of the associated direct model function.

Both of these stationary, homogenous models allow to estimate the re-
quired affiliations Γ∗(NT + 1, j). The following pseudocode describes the
necessary computation steps to determine a prediction Γ̂(NT + 1, j) of the
regime probabilities of future assignments for a logistic or a Markov model.

Note that the number of different states is equal to the former optimal
number of regimes, i.e., NΓ

S = N∗K and that the number of regimes corre-
sponding to the model characterizing Γ∗ is set to be one, i.e., NΓ

K = 1, due
to the assumed stationarity and homogeneity of the underlying affiliation
process. Consequently, it is possible to approximate π(NT + 1, j) via the for-
mula given in (3.75). The details of the estimation procedure, corresponding
to a Markov model, are discussed in Chapter 4 in Algorithms 6 and 7.
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Algorithm 4: Self-containing prediction scheme
input :

• Γ∗(t, j) for t ∈ {1, . . . , NT}

• u(t, j) for t ∈ {1, . . . , NT + 1}

• Model function f

output:

• Γ̂(NT + 1, j)

if f = Markov then1

Determine2

L(PΓ(u(t, j))) =
NJ

∑
j=1

NT

∑
t=1
‖Γ∗(t + 1, j)− Γ∗(t, j)PΓ(u(t, j))‖2

2 →
3

minPΓ(u(t,j))

via stationary, homogenous Markov regression.4

for j = 1 : NJ do5

Γ̂(NT + 1, j) = Γ∗(NT, j)PΓ(u(NT, j))6

if f = logit then7

Infer8

L(BΓ) =
NT

∑
t=1

NJ

∑
j=1
‖Γ∗(t, j)− θlogit(BΓ, u(t, j))‖2

2 → minBΓ
9

via multivariate logistic regression.10

for j = 1 : NJ do11

Γ̂(NT + 1, j) = θlogit(BΓ, u(NT + 1, j))12



4
T E S T M O D E L S Y S T E M S

Before employing the introduced non-stationary and non-homogenous re-
gression framework to characterize the arctic sea ice dynamics, the capability
of the method is examined on two different artificial data sets. The consid-
ered test model systems include a synthetic dynamical process

σsyn(t, j, l) (4.1)

driven by external forces, which are not made fully available for the parametriza-
tion procedure. Essentially, the ability of the model to compensate missing
information is tested experimentally. In order to access the quality of the ob-
tained model, the results of standard approaches such as ANN [9, 11, 55, 69]
and SVM [27, 102] are presented as a reference.

To be able to distinguish between the various results computed with differ-
ent methodologies (e.g., Markov and logit), labels are added to the inferred
model parameters (e.g., ΓMarkov(t, j)) and the associated approximations (e.g.,
πMarkov(t, j)) of the data π(t, j). Note that some variables, such as the total
number of entries NE in the vector of explicit external factors usyn(t, j), the
finite number of states NS and the number of considered time steps NT, are
universal for all techniques and, thus, are not labeled.

Further, the synthetic parameters used to generate the toy examples are
tagged with the superscript syn (e.g., Γsyn(t, j)). Additionally, a superscripted
asterisk is used for optimal (in the sense that the lowest mAICc value is
attained for the corresponding model) model parameters and variables.

In order to test the out-of-sample performance of the computed model,
the synthetic data set is split into a training sequence

{1, . . . , NTtrain}, (4.2)

59
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used to infer the model parameters, and a test sequence

{NTtrain + 1, . . . , NT}, (4.3)

used to validate the model approximations.
The first toy example is chosen to have ideal experimental settings (any

relevant influencing quantities are provided for the computations, i.e., there
are no unresolved external factors). The aim is to show the general utility of
the proposed parametrization ansatz under good conditions.

In order to explore the characteristic property of the Markov model to
reflect the unavailable influences on a system in an explicit time and space
dependency, most of the external factors used to generate the second example
data set are assigned to be implicit (i.e., NE = 1 and NI = 100). In detail
that means that these factors are not made available for the parametrization
procedure.

The synthetic process σsyn(t, j, l) is chosen to be Markovian for both exem-
plary artificial dynamical systems. In fact, the associated transition matrix

Psyn(t, j, usyn(t, j)) (4.4)

is calculated by means of a weighted sum of Nsyn
K matrices of the particular

structure shown in (3.35).
The weights γ

syn
k (t, j) are randomly generated. Yet, a certain level of

persistency is forced on the random process via the previously chosen
Nsyn

C , restricting the number of transitions between the Nsyn
K regimes in the

considered time interval. The details of the computation of the corresponding
data are explained in the following (see Algorithms 5 and 6).

The required affiliations γ
syn
k (t, j) can be generated for different input val-

ues Nsyn
K , Nsyn

C , NT, and NJ with Algorithm 5. Note that γ
syn
k (t, j) takes values

in the set {0, 1} for reasons of simplicity and is subject to the constraints
(3.29), (3.30), and (3.48). In particular, the required time-wise persistency of
Γsyn(t, j) is enforced in Lines 3-12 of Algorithm 5.

As a consequence of the restriction of γ
syn
k (t, j) to the set {0, 1}, the tran-

sition matrix Psyn(t, j, usyn(t, j)) corresponding to the given local models
Pk syn(usyn(t, j)) can be approximated as follows:

Psyn(t, j, usyn(t, j)) ≈
Nsyn

K

∑
k=1

γ
syn
k (t, j)Pk syn(usyn(t, j)), (4.5)
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where Pk syn(usyn(t, j)) is chosen to have the linear structure given in (3.35).
The requirements for this approximation have already been outlined in
Section 3.7, and a detailed derivation (for purely time-dependent model
parameters) can be found in [84].

Consequently, the artificial ensemble data πsyn(t, j) can be calculated via
randomly (probability given by the transition matrix Psyn(t, j, usyn(t, j)))
generating an ensemble of Nens realizations of the process σsyn(t, j, l) and
determining the relative frequencies (see (2.1)). The computation of the
artificial local models Pk syn(usyn(t, j)), given matrices Pk syn

e , is shown in
Line 4 of Algorithm 6.

Note that the synthetic transition matrix Psyn(t, j, usyn(t, j)), used to gen-
erate the artificial data, has a linear dependency on the implicit external
factors. Essentially, the entries of ū(t, j) (in particular the ones for e > NE)
are treated as explicit external factors for the generation of the data, i.e., a
set of local model matrices

Pk syn
NE+1, . . . , Pk syn

NE+NI
, (4.6)

associated with the implicit external factors in ūsyn(t, j), is chosen for k ∈
{1, . . . , Nsyn

K }. During the parametrization procedure, however, these unre-
solved entries of the vector ūsyn(t, j) are assigned to be unknown/unavail-
able.

Summarizing, a set NF of synthetic model matrices is chosen and the
transition matrix Psyn(t, j, usyn(t, j)) is calculated using the assumed model
structure, given in (3.35), and Equation (4.5) (see Line 4 of Algorithm 6).

To generate the corresponding ensemble data, the relative frequency of
Nens different realizations of the artificial process in each cell j for a fixed t
(see Lines 5-10 of Algorithm 6) is determined.

For the required sampling step in Lines 7-8 of Algorithm 6, it possible to
use standard methodologies such as rejection sampling (also known as the
acceptance-rejection method) [22, 92, 116].

4.1 toy example 1: ideal conditions

Here the focus is on the basic attributes of the proposed framework and
especially on its feasibility under ideal conditions. More specifically, that
means that all the external factors, comprised in the vector ūsyn(t, j), used to
generate the considered artificial dynamical process σsyn(t, j, l) are available
for the model inference. Yet, the underlying model of the process is chosen to
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Algorithm 5: Generate synthetic affiliation Γsyn(t, j)
input :

• Nsyn
K synthetical number of local models

• Nsyn
C synthetical maximal number of transitions

• Spatial and time dimension NT and NJ

output:

• Γsyn(t, j) synthetically generated affiliations

for j = 1 : NJ do1

γ
syn
k (:, j) = [ ] ∀ k ∈ {1, . . . , NK}2

for c = 1 : Nsyn
C do3

Ndummy = round
(

2NT/(Nsyn
C · rand([0, 1]))

)
4

dummy0 = (0, . . . , 0) ∈ R1×Ndummy5

dummy1 = (1, . . . , 1) ∈ R1×Ndummy6

r = rand({1, . . . , Nsyn
K })7

for k = 1 : Nsyn
K do8

if r == k then9

γ
syn
k (:, j) = [γsyn

k (:, j) dummy1]10

else11

γ
syn
k (:, j) = [γsyn

k (:, j) dummy0]12

if length(γ
syn
1 (:, j)) ≥ NT then13

γ
syn
k (:, j) = γ

syn
k (1 : NT, j) ∀ k ∈ {1, . . . , Nsyn

K }14

else15

Ndummy = NT − length(γ
syn
1 (:, j))16

dummy0 = (0, . . . , 0) ∈ R1×Ndummy17

dummy1 = (1, . . . , 1) ∈ R1×Ndummy18

γ
syn
1 (:, j) = [γsyn

1 (:, j) dummy1]19

γ
syn
k (:, j) = [γsyn

k (:, j) dummy0] ∀ k ∈ {2, . . . , Nsyn
K }20

Γsyn(:, j) = [γsyn
1 (:, j), . . . , γ

syn
Nsyn

K
(:, j)]21

be non-stationary and non-homogenous and, consequently, is more complex
than assumed in many standard models of time series analysis.

As the second artificial parametrization problem presented in Section 4.2
is posed under considerably worse conditions (with respect to the available
external influences), the first example also serves as a reference for the
general approximative abilities of the methodology under better conditions.

The synthetic data, associated with σsyn(t, j, l), is generated with Algo-
rithms 5 and 6 for the following input values: Nsyn

C = 10, Nsyn
K = 2, NT = 400,
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Algorithm 6: Generate synthetic data πsyn(t, j)
input :

• Γsyn(t, j) ∀ t and j (see Algorithm 5) with corresponding Nsyn
K , NT,

and NJ

• Ensemble size Nens and finite set of discrete states {s1, . . . , sNS}

• Vector of external factors ūsyn(t, j) ∈ RNF×1

• Model matrices Pk syn
0 , . . . , Pk syn

NE
, Pk syn

NE+1, . . . , Pk syn
NE+NI

with k ∈
{1, . . . , Nsyn

K }

output:

• Synthetic ensemble data πsyn(t, j) associated with artificial process
σsyn(t, j, l)

Initialize σsyn(0, j, l) = rand{s1, . . . , sNS} ∀ j ∈ {1, . . . , NJ},1

l ∈ {1, . . . , Nens}
for t = 1 : NT do2

for j = 1 : NJ do3

Psyn(t, j, ū(t, j)) =
NK

∑
k=1

γk(t, j)
(

Pk syn
0 +

NF

∑
e=1

Pk syn
e ūsyn

e (t, j)
)

4

for l = 1 : Nens do5

h = index(σsyn(t− 1, j, l))6

σsyn(t, j, l) =7 
s1 with probability {Psyn(t, j, ūsyn(t, j))}h1

...
sNS with probability {Psyn(t, j, ūsyn(t, j))}hNS

(see rejection sampling [22, 92, 116])8

for i = 1 : NS do9

π
syn
i (t, j) = counter(σsyn(t, j, l) = si)/Nens10

NJ = 24, NS = 2, NE = 2, and NI = 0. Further, the external influence vector
ūsyn(t, j) consists of entries

ūsyn
1 (t, j) := sin2

(
4πt
360

+
j

20

)
(4.7)

and
ūsyn

2 (t, j) := average
r∈ neigh(j)

(π(t− 1, r)), (4.8)

where the second entry represents existing spatial correlations between direct
neighboring cells. Note that the locations j in this example are associated
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with cells on a honeycomb lattice. This entails that each location j has six
neighbors, all sharing an edge with the respective cell.

The model matrices, used to synthetically generate the data, are defined
as follows:

P1 syn
0 =

[
0.7 0.3
0.7 0.3

]
, P1 syn

1 =

[
0.28 −0.28
0.28 −0.28

]
, P1 syn

2 =

[
−0.01 0.01
−0.01 0.01

]
(4.9)

and

P2 syn
0 =

[
0.3 0.7
0.3 0.7

]
, P2 syn

1 =

[
0.24 −0.24
0.24 −0.24

]
, P2 syn

2 =

[
0.05 −0.05
0.05 −0.05

]
. (4.10)

In order to test whether it is possible to infer a good model description of
the considered synthetical process, the proposed regression framework is
applied to the training set, i.e., π(t, j) with t ∈ {1, . . . , 360} (NTtrain = 360) for
different model assumptions. Essentially, that means to compute a variation
of models

M f (NK, NC, NM, u(t, j)) (4.11)

for NC ∈ {3, 5, 7, 10, 15, 20}, NK ∈ {1, 2, 3}, NM ∈ {0, 1}, and different direct
mathematical model functions, i.e., f logic and f Markov. The required numerical
settings of all runs are: NFEM

anneal = 10 and NFEM
τol = 0.0000000001.

As outlined in Section 3.6, the selection of an appropriate or optimal
model in the respective set of different models is realized via the mAICc.
Figures 6 and 7 show the mAICc values that are attained for each of the
computed models. The values can all be regarded on the same scale, yet, the
significant differences between the results of the Markov and the logistic
models are obvious.

This result is in line with the expectations, as a Markov model was used to
generate the artificial data. The lowest mAICc value is attained for the model
MMarkov(2, 10, 0, ūsyn(t, j)). Concluding, the artificially chosen variables Nsyn

C

and Nsyn
K are correctly identified.

In this artificial setting it is also possible to compare the determined model
matrices to the matrices Pk syn

0 , . . . , Pk syn
NE

with k ∈ {1, . . . , Nsyn
K } (see (4.9)

and (4.10)), used to generate the synthetic data:

P1 Markov
0 =

[
0.6999 0.3001
0.3001 0.6999

]
, P1 Markov

1 =

[
0.2801 −0.2801
0.2801 −0.2801

]
,

P1 Markov
2 =

[
−0.0125 −0.0515
−0.0125 −0.0515

] (4.12)
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and

P2 Markov
0 =

[
0.3003 0.69971
0.3003 0.6997

]
, P2 Markov

1 =

[
0.24 −0.24
0.24 −0.24

]
,

P2 Markov
2 =

[
0.0515 −0.0515
0.0515 −0.0515

]
.

(4.13)

Supplementary to the parametrization with the non-stationary, non-homo-
genous regression, data approximations are determined via trained ANNs
[9, 69, 55, 11] and SVMs [27, 102].

This additional comparison opportunity allows to consider the results of
the proposed regression technique in the context of the model inference qual-
ity of two standardly employed data analysis methods. A brief description of
these two pattern recognition techniques is given in Chapter 1. In the context
of ANNs, transfer functions Ψ(t) as well as a network structure have to be
chosen. As MLPs with one hidden layer and logistic transfer functions (see
(1.13))1 have been shown to be universal approximators [55], this particular
type of networks is used to estimate the distribution πsyn(t, j)2.

Further, different networks

N (NANN
neurons) (4.14)

for various numbers of hidden neurons, i.e.,

NANN
neurons ∈ {5, 10, 15, 20, 25, 30, 40, 50}, (4.15)

are trained. For the training of a network, the Levenberg-Marquardt back-
propagation is employed. Analogous to the additional iterations of the
regression framework, which are deployed to approach a global minimum,
simulated annealing steps are required to determine an optimal network,
i.e., NANN

anneal = 10. A network is considered to be optimal with respect to the
hidden neurons if it produces the smallest residuals, i.e.,

NJ

∑
j=1

NT

∑
t=1

∥∥∥πsyn(t, j)− πN (NANN
neurons)(t, j)

∥∥∥2

2
→ min
N (NANN

neurons)
. (4.16)

1 Note that a different non-linear activation function such as the hyperbolic tangent function,
given in (1.12), can be used as well. Here the logistic function Ψsigmoid(t) is used for every
neuron in the hidden layer.

2 Note that the total number of samples is NL = NT · NJ and that the time-wise (respectively
location-wise) order of the samples is complete irrelevant for the training of the considered
networks.



66 test model systems

4 6 8 10 12 14 16 18 208

7

6

5

4

3

2 x 104
Markov model:  NMarkov

M =0

NC

m
AI

C
c

 

 

NK=1
NK=2
NK=3

ANN

4 6 8 10 12 14 16 18 208

7

6

5

4

3

2 x 104
Markov model:  NMarkov

M =1

NC

m
AI

C
c

 

 

NK=1
NK=2
NK=3

ANN

Figure 6: The mAICc values for different Markov modelsMMarkov(NK, NC, NM, u(t, j))
with NK ∈ {1, 2, 3}, NC ∈ {3, 5, 7, 10, 15, 20}, and NM ∈ {0, 1} are shown.
Additionally, the mAICc value of the optimal (with respect to mAICc) ANN
model is shown.

The smallest residuals can be obtained for a network with 20 hidden
neurons, i.e., NANN∗

neurons = 20. Thus, the corresponding network N (20) is
used to compute approximations πN (20)(t, j) of πsyn(t, j). A comparison of
approximations πMarkov(t, j) and πN (20)(t, j) and the data πsyn(t, j) for two
example locations and t ∈ {1, . . . , 400} is shown in Figure 8.
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Figure 7: The mAICc values for different logit models Mlogit(NK, NC, NM, u(t, j)) for
NK ∈ {1, 2, 3}, NC ∈ {3, 5, 7, 10, 15, 20}, and NM ∈ {0, 1} are displayed.
Additionally, the mAICc value of the optimal (with respect to mAICc) ANN
model is shown.

For the training sequence, πMarkov(t, j) is computed using the optimal
model

MMarkov(2, 10, 0, ūsyn(t, j)), (4.17)
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i.e., the corresponding Γ∗(t, j) and P∗(u(t, j)), and employing Algorithm
6. For the test sequence, i.e., t ∈ {361, . . . , 400}, the self-contained strategy,
outlined in Section 3.7, is used to identify the model of the dynamics of the
regime affiliations Γ∗(t, j).

Different model functions f Markov and f logit are considered to characterize
the process Γ∗(t, j), and the lowest mAICc value is attained for a Markov
model with memory (see Table 2 of mAICc values in Appendix C.1). The
computational details necessary to obtain π̂Markov(t, j), i.e., the out-of-sample
approximations, are given in Algorithm 7.

Algorithm 7: Prediction
input :

• PΓ(usyn(t, j))

• Maximal prediction depth Npred

• usyn(t, j) for t ∈ {1, . . . , NT}

output:

• Prediction error v(j, τ) with τ ∈ {1, . . . , Npred}

• π̂Markov(t, j) with t ∈ {NTtrain + 1, . . . , NT}

for j = 1 : NJ do1

for τ = 1 : Npred do2

Γ̂(NTtrain + τ, j) = Γ∗(NTtrain , j)
τ−1
∏

h=0
PΓ(usyn(NTtrain + h, j)) (see

3

Eq. (3.76))
Generate π̂(NTtrain + τ, j) employing Algorithm 6 (Lines 3 to4

10) using regime probabilites Γ̂(NTtrain + τ, j) to compute the
affiliations
v(j, τ) = ‖πsyn(NTtrain + τ, j)− π̂Markov(NTtrain + τ, j)‖2

25

The graphs of Figure 8 show that the models are capable of qualitatively
estimating the original data set for the considered dynamical system and
indicates a superiority of the Markov models. In particular, the out-of-sample
performance is promising. Yet, it is important to stress that the prediction
error grows when the prediction depth is increased. This can be seen best
considering the relative mean prediction error

vrel(τ) = 100×mean
j

(
v(j, τ)

‖πsyn(NTtrain + τ, j)‖2
2

)
, (4.18)
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which can be computed via Algorithm 7 for the considered data set, i.e.,
Npred = 23. The error vrel(τ) for the considered approximations, computed
with the model MMarkov(2, 10, 0, ūsyn(t, j)) and the network N (NANN

N (20)), is
displayed in the lower panel of Figure 9. Note that the Markov model can
compete with the considered ANN in terms of the relative prediction error
and even performs slightly better.

Further, the considered artificial dynamical process is modeled with SVMs.
In order to infer the best fit, different kernel functions are considered. In de-
tail, linear, quadratic, polynomial (see (1.9)) and radial basis kernel functions
(see (1.10)) are used. As the artificial dynamical system is assumed to be
given only in form of ensemble data and no additional data is available with
respect to the actual state assignments of the process on a microscopic scale,
it is necessary to set a threshold of 0.5 and to round πsyn(t, j) accordingly
so that the data has two categories, i.e., two classes. Consequently, it is
possible to employ SVMs to characterize the dynamics underlying these
state associations.

Analogous to the inference of an optimal network with respect to the
number of neurons, an optimal SVM is selected by means of the residuals.
The smallest values are attained for an SVM with radial basis kernel function.
The results computed with the optimal SVM are shown along with the
rounded approximations πMarkov

1 (t, j) and π
N (20)
1 (t, j) and the artificial data

π
syn
1 (t, j) for a fixed location in the upper panel of Figure 9.
The class affiliations determined via the employed SVM are mostly consis-

tent with the rounded state probabilities. Occasionally wrong assignments
occur due to state probabilities close to the threshold 0.5. As the nature
of the data requires to determine state assignments (by rounding) to be
able to employ SVMs, a different ansatz via ANN or the proposed Markov
regression is more sensible.

Concluding, the proposed framework has been shown to be capable of
inferring a very good approximation of the underlying model. However, it
is important to emphasize that the considered synthetic process is an ideal
example for the proposed framework. Consequently, the promising results
always have to be considered in the context of these good conditions. In
order to provide a contrast to this ideal scenario, the techniques abilities
are also tested for an artificial system, where the relevant exterior factors
influencing the dynamical process are not available.
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Figure 8: Two approximations of the synthetic data π
syn
1 (t, j), one computed by means of

modelMMarkov(2, 10, 0, ūsyn(t, j)) (black) and the other one determined via a
network N (20) (green line) for two different locations j = 5 (see top panel) and
j = 23 (see bottom panel), are shown. The synthetic reference values π

syn
1 (t, j)

are also visualized. The end of the training component of the data, i.e., t = 360,
is marked with a red vertical line.
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Figure 9: The panel on the top shows the resulting SVM state assignments for t ∈
{1, . . . , 400} (in green) and the corresponding rounded data π

syn
1 (t, j) (black).

Further, the dotted approximations of the synthetic data, computed by means
of the network N (20) (in blue), and the modelMMarkov(2, 10, 0, ūsyn(t, j)) (in
pink) are presented. The mean relative error vrel(τ) in % of the approximations
πMarkov

1 (t, j) and π
N (20)
1 (t, j) is considered in the lower panel of the figure. Note

that the error depends on the prediction depth τ ∈ {1, . . . , 39}, i.e., Npred = 39.
The computational details can be found in Algorithm 7.

4.2 toy example 2: strong implicit influences

As the introduced Markov model is considered for the data-based parametriza-
tion of dynamical systems driven by exterior factors, a particular emphasis
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is placed upon the fact that some of the relevant exterior quantities might
not be available. Consequently, the model is designed to entail the possibil-
ity to describe a joint impact of these unknown influences via an explicit
dependency on time and location.

This attribute of the model is numerically tested for an artificial system
σsyn(t, j, l), directly influenced by NF = 101 external factors, where only
approximately 1% of the exterior quantities are given for the inference of
a corresponding model (i.e., NE = 1 and NI = 100). Summarizing, the
conceptual advantage, attributed to the proposed Markov model and the
corresponding non-stationary, non-homogenous regression, is numerically
investigated by means of an ill-posed problem.

As already mentioned above, the artificial dynamical process is defined
to have the proposed Markov structure, given in (3.22), and is binary in the
sense that it takes values in the set {s1, s2} (i.e., NS = 2). As the aim is to
examine the ability of the model to describe unknown influences via the
time- and space-dependent regime affiliation Γ(t, j), the artificial process
σsyn(t, j, l) is defined to be stationary and homogenous. Essentially that
means that it is defined by one regime (Nsyn

K = 1) given by the model
matrices:

P1 syn
0 =

[
0.5 0.5
0.5 0.5

]
, P1 syn

1 =

[
0.05 −0.05
0.05 −0.05

]
, P1 syn

2 =

[
0.42 −0.42
0.42 −0.42

]
(4.19)

and

P1 syn
e+2 =

[
0.0002 −0.0002
0.0002 −0.0002

]
∀ e ∈ {1, . . . NI − 2}. (4.20)

The corresponding external factors are

ūsyn
1 (t, j) := average

r∈ neigh(j)
(π(t− 1, r)) (4.21)

and

ūsyn
e (t, j) =

sin2
(

2πte
360 + j

20

)
rand(e) > 0.5

cos2
(

2πte
360 + j

20

)
otherwise

(4.22)

for e ∈ {2, . . . , NF}, where (4.21) is set to be given for the parametrization,
i.e., is an explicit external factor. Note that the remaining factors, defined
in (4.22), are considered to be unknown quantities, i.e., implicit external
factors. Due to the fact that the entries of the matrix P1 syn

2 are comparatively
large, the first implicit external quantity is the main influencing factor.
Concluding, the data πsyn(t, j) associated with the defined dynamical process
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is generated using Algorithm 6 for a fixed Γsyn(t, j) := ones(1, NT, NJ).
Again, the generated artificial data is divided (time-wise) into a training and
a test sequence, and a set of non-stationary, non-homogenous models3 is
trained on πsyn(t, j) for t ∈ {1, . . . , 360} and for all j. The parametrization
procedure is executed for values NK ∈ {1, 2, 3, 4, 5}, NC ∈ {5, 10, 15, 20, 25},
NM ∈ {0, 1}, and f ∈ {Markov, logit}, resulting in a set of 100 different
modelsM f (NK, NC, NM, usyn(t, j)). In this collection of potential candidates,
an optimal model is selected via the proposed mAICc. The mAICc values,
obtained for models

MMarkov(NK, NC, 0, usyn(t, j)) and Mlogit(NK, NC, 1, usyn(t, j)) (4.23)

for different values for NK and NC, are shown in the panels of Figure 10.
As illustrated, the mAICc results corresponding to different logistic models
with memory have higher values. Consequently, the lowest mAICc value is
attained for

MMarkov(4, 15, 0, usyn(t, j)) (4.24)

(see turquoise line in upper panel of Figure 10). Thus, the originally station-
ary and homogenous synthetic process is fitted to a model with parameters
explicitly dependent on time and location. A comparison of the resulting
approximation and the real data is shown in Figure 11.

Additionally, an approximation of the synthetic data computed via a
network N (10) is shown. In order to find a qualitative network, a set of six
networks, associated with different neurons, i.e.,

NANN
neurons ∈ {5, 10, 15, 20, 25, 30, 40, 50}, (4.25)

is determined by means of the training data π(t, j) ∈ {1, . . . , 360} with the
Levenberg-Marquardt backpropagation and a total number of NANN

anneal = 10
annealing steps. As described in Section 4.1, the different network candidates
are validated by considering the corresponding residuals. These deviations
are particularly small for NANN

neurons = 10. Thus, the associated network N (10)
is used to compute an estimate of πsyn(t, j).

It is apparent that the model is able to accurately estimate the artificial data
associated with the considered dynamical system although essential informa-
tion on the relevant driving forces was not available for the parametrization
procedure.

3 Note that the stationary, homogenous case is considered as well.
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Due to the high number of regimes required to qualitatively describe
the artificial system, any prediction of πsyn(t, j), i.e., t ∈ {361, . . . , 400}, is
particularly complex. Consequently, prediction steps of depth 1 are con-
sidered. Essentially that means that each prediction Γ̂(t, j) of the regime
probabilities for t > 360 is updated for the next prediction step. Under the
assumption that new data π(t + 1, j) can be retrieved, an update, based on
the maximum-likelihood principle, is used (see (3.43)):

γ∗k (NT + 1, j) (4.26)

=

 1 if k = argmin
h

g(π(t + 1, j), . . . , π(t− NM, j), θh(u(t, j))),

0 otherwise.

Note that γ∗k (NT + 1, j) is assumed to be optimal, hence the superscript
asterisk. An alternative update strategy, motivated by Bayes’ theorem, con-
ditioned on the retrieval of new observations, has recently been proposed
and validated in [31]. The resulting out-of-sample approximations (i.e., one-
step predictions), computed with the modelMMarkov(4, 15, 0, usyn(t, j)), are
promising and suggest that it is possible to compensate lack of information
via the proposed non-stationary, non-homogenous parameters.

Further, the two plots of Figure 11 reveal that the feasibility of the con-
sidered network N (10) highly depends on the location. This phenomenon
can be explained with the fact that the implicit external factors uunres

e (t, j)
given in (4.22) are dependent on location, and thus the corresponding effect
differs for different cells j. Essentially that means that the quality of the
estimates of the state probabilities via ANN is considerably reduced without
the additional information on the influencing quantities (see upper panel of
Figure 11). The reason for that is that model classes such as ANN as well as
SVM have time-independent parameters (i.e., the weights and the bias of a
neuron are global parameters) and are thus intrinsically stationary. Yet, it is
possible to calculate good approximations with the considered network (see
lower panel of Figure 11) as long as the dynamics are not effected as much
by the unresolved factors.

As the influence of implicit external factors is taken into account, the ap-
proximations computed by means of the Markov model have a high accuracy
(independent of the location) for the considered data set. Concluding, the
introduced framework can compete with standard data-analysis techniques.
Moreover, for ill-conditioned problems that require to capture the effects of
unobserved external factors, the non-stationary, non-homogenous structure
of the Markov model is a more reliable option.
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Figure 10: The mAICc values for different models M f (NK, NC, NM, usyn(t, j)) for NK
∈ {1, 2, 3, 4, 5} and NC ∈ {5, 10, 15, 20, 25} are visualized. More precisely,
the results for NM = 0 and f = Markov can be seen in the lower panel,
whereas the values corresponding to NM = 1 with f = logit are shown in the
upper panel. Additionally, the mAICc value for the optimal (with respect to
residuals) network N (10) is displayed.
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Figure 11: Two approximations, computed via different modeling approaches, of the
synthetic data π

syn
1 (t, j) for two exemplary locations, i.e., j = 1 (see up-

per panel) and j = 23 (see lower panel), are visualized in this figure.
The data approximation, determined by means of the memory-less model
MMarkov(4, 15, 0, usyn(t, j)), is shown in form of a black line, and the esti-
mation in green is generated according to the network N (10). Moreover, the
corresponding artificial time series π

syn
1 (t, j) is displayed as a dashed blue line.

Note that the begin of the out-of-sample approximations is marked with a red
vertical line at t = NTtrain = 360.



5
A R C T I C S E A I C E A P P L I C AT I O N

In this chapter the proposed methodology is applied to arctic sea ice observa-
tions in order to infer an appropriate data-based model describing the arctic
ice dynamics manifesting in the sea ice extent. This particular application
was chosen due to the fact that, firstly, it is a multidimensional data set in
both components, i.e., in space as well as in time, suiting the theoretical
discrete setting of the model.

Secondly, the underlying physical dynamics and interactions, causing the
de- or increase of sea ice, have a complex nature and are not usually available
in form of measurements. Thus, the functionality of the parametrization
technique can be specifically tested on a complex system with missing
information. Subsequently, the theoretically verified strength of the method
can be practically investigated.

Thirdly, the vast arctic sea ice loss in recent years poses a major thread to
the current global climate, and thus it is particularly important to understand
the associated dynamics.

Before the analysis set-up is described, the arctic data is discussed. In that
context, a framework employed to project the data to a hexagonal lattice is
outlined. After giving information on the computational details, the optimal
model parameters (selection via the proposed information criterion) are
interpreted. Further, the out-of-sample performance of the corresponding
model and the statistical impact of the explicit external factors are considered.

5.1 data

The spatial extent of the arctic sea ice coverage can be measured via satellite.
The resulting data product usually consists of the sea-ice concentration
values, i.e., the percentage of sea ice on the ocean surface in each regarded
grid-box j ∈ {1, . . . , NJ}. The data can be assumed to be the distribution
of state probabilities π(t, j) of a microscopic process σ(t, j, l) describing the

77
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aggregate state of microscopic locations, i.e., switching between two states
s1 = solid and s2 = liquid.

Data availability with respect to the size of the grid cells, the length of the
observed time period, the time-wise frequency of measurements, and the
covered areas of the arctic region varies a lot. In particular, the corresponding
explicit external factor observations might not coincide with respect to time
or space with the considered measurements of the state probabilities π(t, j).
Thus, some compromises are made to be able to work with a consistent data
set.

The observations considered in this manuscript were made publicly avail-
able by the National Snow & Ice Data Center [20]1. The regarded data covers a
period of 16 years (from January 1989 to December 2004) in biweekly time
steps (i.e., NT = 384 time steps in total). It spans over an area starting with
latitude values 45◦ N (southernmost) and going up to 90◦ N (northernmost)
covering the entire circle, i.e., longitude lines from westernmost 180◦ W to
easternmost 180◦ E.

1989 1991 1993 1995 1997 1999 2001 2003 2005
345

350

355

360

365

370

375

380

385
CO2 Data

Arctic Data

Figure 12: The panel on the left displays the CO2 data values in ppmv, considered for the
computations with the non-stationary, non-homogenous Markov regression.
The collection is derived from in situ air measurements at Mauna Loa, Hawaii,
USA. The image on the right shows a rounded excerpt of the satellite data in
EASE-Grid format. More precisely, a visualization of the data, observed in the
first two weeks of January 1989, is displayed. The sea ice concentration values
above and equal to 50 are displayed in white, values below 50 are shown in
blue, and the land cells are colored in black. Note that the additional green cells
correspond to areas not covered with the satellite.

The information can be downloaded in an EASE-Grid North Azimuthal
format2 [16] with 361× 361 grid cells and a resolution of 25 km, i.e., each

1 The arctic sea ice coverage data can be downloaded on http://nsidc.org/data/docs/noaa/

g02172_nic_charts_climo_grid/index.html.
2 A detailed documentation on the family of NSIDC EASE-Grid formats can be found on
http://nsidc.org/data/ease/ease_grid.html

http://nsidc.org/data/docs/noaa/g02172_nic_charts_climo_grid/index.html
http://nsidc.org/data/docs/noaa/g02172_nic_charts_climo_grid/index.html
http://nsidc.org/data/ease/ease_grid.html
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cell covers an area of 25 square km3. The information associated with each
sea cell, i.e, a cell covering an area of the arctic ocean, is the percentage value
of surface sea ice observed on the corresponding 25 square km. The cells
that cover areas on continental land masses are specifically labelled and are
not affiliated with any additional ice information.

An image of the 361× 361 squared lattice (EASE-Grid North Azimuthal
format) displaying the given data info can be seen in the panel on the right
of Figure 12. It shows the arctic ocean with the existing ice cover in the first
weeks of January 1989, part of the surrounding continents (mainly Canada,
the United States and Russia), prominent Bays (e.g., Hudson Bay), and parts
of the adjacent oceans. Additional to the ensemble observation π(t, j), a
set E of measurable external forces is considered for the parametrization
of microscopic sea ice dynamics described by the process σ(t, j, l). In the
following subsection, information on the type and the sources of this set of
explicit external factors is given.

5.1.1 External factors

In some cases it might not be a problem to get access to qualitative ensemble
data, i.e., to obtain π(t, j), but only very little measurements exist of influenc-
ing factors ū(t, j). To some degree, lack of information is already taken into
account via the non-stationary, non-homogenous model parameter Γ(t, j),
i.e., implicit external quantities are reflected in the explicit dependency on
location j and time t. Nevertheless, in order to obtain a qualitative character-
ization of the underlying process σ(t, j, l), it is necessary to collect as much
information as possible in form of observations about possible influencing
quantities. Thus, in this thesis the considered time span is specifically chosen
according to the availability of certain explicit external factors.

Although many of the explicit external factors are available for many time
steps, there is usually a limitation concerning the area of the arctic covered,
e.g., temperature measurements etc. are usually available close to the coast
but are more scarce closer to the pole. Oceanographers also name salinity,
wind, ocean currents, and temperature below the ice among the relevant
factors [107]. Yet, there are no consistent observations of these quantities
available for the considered arctic area, matching the time component of the
regarded coverage data.

3 Though it is important to stress that the number of locations considered for the computations
with the regression framework is much smaller, i.e., 198 locations in total.
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As already mentioned above, the collection of available explicit external
factors is denoted E . The factors in E associated with the considered ice
dynamics are now described.

Firstly, as discussed in Section 3.3, the spatial neighborhood of a cell plays
an important role. Existing correlations have to be taken into account in
the model. Consequently, the states of adjacent cells are included in form
of an exterior force. As a hexagonal lattice is considered, each cell has six
neighboring cells all sharing an edge with the respective cell.

A distinction is made between the influence of adjacent ice concentration
and surrounding land masses. The major importance of land cells has
recently been discussed in [35]. It is suggested that differences in the arctic
and the antarctic ice growth can be affiliated with the surrounding land
masses. Thus, although land cells are not included in the total number of NJ

locations, they should be involved in the parametrization process. The effect
of landmasses on the ice shelfs close to the coast is studied by adding mean
surrounding land percentage values as an explicit external factor. In detail,
neighboring sea ice concentration and adjacent land masses are considered
as a mean of the data of the six neighbor cells, i.e.,

neighice(t, j) := average
r∈ neigh(j)

(π1(t− 1, r)) (5.1)

and
neighland(t, j) :=

1
6 ∑

r∈ neigh(j)
land(r) ∀t, (5.2)

where land(r) equals 1 if r is a land cell and 0 otherwise.
Obviously, the temperature plays an important role in the dynamics of

sea ice. Hence, measurements of temperature values in each location j and
for every time step t, denoted temp(t, j), are considered as an exterior factor,
i.e., temp(t, j) ∈ E . A representative of the data for fixed t (measured in
the summer of 1989) is shown in the graphic on the left of Figure 19. The
continental land masses are added to the graphic in form of black cells in
order to give a better understanding of the considered area.

Note that temperature values assigned to the geographical coordinates
are already projected via a geodesic DGGS onto a hexagonal raster. The
details of this particular transformation and the corresponding software are
discussed in the following section.

Further, one distinguishes between local and global external influences.
Put differently, observable quantities ue(t, j) can explicitly depend on the
location, i.e., be local, or take the same value for all cells, i.e., be global.
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For instance, the fourth quantity contemplated for the computations is the
atmospheric CO2 concentration in the air, measured on a single location that
is not in the arctic region.

The CO2(t, j) observational values are the same for all locations j ∈
{1, . . . , NJ}, and thus CO2 is a global influencing factor. The particular
data set used (see panel on the left in Figure 12) is a collection4 of in situ air
samples that have been measured at Mauna Loa, Hawaii, USA and are given
in parts per million by volume (ppmv)5.

Note that it is also possible for the external factors to be global in a
time-wise sense. For instance, the mean of the surrounding land masses
neighland(t, j) does not change in time but changes for each location j.

Recent research has revealed that the arctic sea ice concentration is influ-
enced by global teleconnections such as northern atlantic oscillation (NAO)
as well as the arctic oscillation (AO) index [4, 91, 57]. Thus, these two climate
phenomena are also considered as resolved external factors, i.e., NAO, AO
∈ E .

The NAO data set6 considered in this manuscript is computed with a
procedure using rotated principal component analysis (RPCA), described in
[6] (see upper panel of Figure 13). The loading pattern of the NAO is defined
as the first leading mode of rotated empirical orthogonal function (REOF)
analysis of monthly mean 500 mb height during the 1950-2000 period.

The used AO data7 is a monthly mean of the daily AO index, which is a
projection of 1000 mb height anomalies occurring north of 20◦ N latitude
onto the considered loading pattern of the AO8 (see lower panel of Figure
13). Summarizing, the set of potentially relevant explicit external factors is
set to be:

E := {neighice, neighland, temp, CO2, NAO, AO}. (5.3)

4 The entire CO2 data set is available on http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.

co2.
5 It is important to stress that ppmv is not officially a unit, but commonly used for greenhouse

gas measurements. It refers to the millionth part (ppm), i.e., 10−6, such as percentage %
values refer to the hundredth part, i.e., 10−2. One further distinguishes between mass fraction
and mole fraction (also described as ”by volume”), which means the ratio of molecules of the
regarded substance with respect to all the molecules in the considered volume. Since (3.35)
and (4.5) are affine-invariant linear transformations, without any loss of generality, all of the
external factors ue(t, j) can be made dimensionless (or unit-less) and can all be transformed
to some uniform interval (e.g., [−1, 1]).

6 The NAO data set is available on http://www.cpc.ncep.noaa.gov/products/precip/

CWlink/pna/norm.nao.monthly.b5001.current.ascii.table.
7 The AO data set considered in this manuscript is available on http://www.cpc.noaa.

gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.

table.
8 The loading pattern is defined as the leading mode of Empirical Orthogonal Function (EOF)

analysis of monthly mean 1000 mb height in the time interval 1979 to 2000.

http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2
http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/norm.nao.monthly.b5001.current.ascii.table
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/norm.nao.monthly.b5001.current.ascii.table
http://www.cpc.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.table
http://www.cpc.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.table
http://www.cpc.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.table
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Figure 13: Considered data set of NAO and AO index in the time interval January 1989
to December 2004.

As mentioned above, a hexagonal lattice is considered for the following
computations. The details of the projection of the data onto a hexagonal
lattice are discussed in the following section.
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5.2 discrete global grids

Modeling or monitoring of global dynamical processes demands partitioning
of the surface of our planet into discrete grid cells. A discrete partition
of the entire Earth’s surface is referred to as Discrete Global Grid System
(DGGS). Ideally a DGGS has certain useful properties helping to improve
analysis and measuring techniques. A suggestion of such properties is listed
in the Goodchild Criteria [64], named after Michael Goodchild [43], who
formulated an earlier version.

The top five of the fourteen items in the list can be summarized as follows:
The chosen discrete grid allows a complete tiling of the globe without
overlaps. Further, the grid cells should have equal surface area, be of the
same shape, and topology (i.e., have the same number of edges and vertices).
Moreover, it is required that the processes comprised by a grid cell have
similar nature, which is referred to as compactness.

Since no existing global grid fully meets these criteria, one usually settles
for the best option for the currently considered environmental phenomenon.
In fact, many standardly employed partitions of the Earth’s surface, induced
by the geographical coordinate system given by latitude and longitude val-
ues, do not have equal-area cell regions. This problem becomes even more
pronounced, i.e., area and shape of the cell are more distorted, when ap-
proaching the North Pole or conversely the South Pole from the equator.
Furthermore, many data sets, especially the ones collected priorly to the
computer era, are associated with latitude and longitude values, thus, DG-
GSs based on geographical coordinates and the corresponding processing
algorithm are well established and popular in a wide range of applicational
areas.

Although in general it is not possible to design a DGGS that is optimal for
all applications, one option is to improve the construction of such a system in
order to meet more or specific criteria on Goodchild’s list for an ideal DGGS.
More specifically, a new class of geospatial data structures, referred to as
geodesic DGGSs, has been proposed as an alternative to existing approaches.

As already discussed in Section 3.4, a honeycomb lattice is considered
in this thesis. Thus, the aim is to project the regarded observation data to
a hexagonal grid. Unfortunately, a tiling of the surface of the Earth with
solely hexagonal cells is not possible [98]. Nevertheless, a raster with mainly
honeycomb cells, associated with points on Earth, can be designed via the
mentioned geodesic DGGSs, which are introduced and surveyed in the
following subsection.
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5.2.1 Geodesic discrete global grid systems

As an alternative to the commonly used planar raster of quadrangles, in-
duced by the latitude-longitude graticule, promising results have been pro-
posed on the basis of regular polyhedra. The conceptual idea is to exploit the
topological equivalence of the regular polyhedra and the 2-sphere (which can
later be related to the Earth’s surface). This matter of fact can be explained
best via Euler’s polyhedron theorem which states that all convex polyhedra
fulfill the following formula

#vertices + #faces− #edges = 2. (5.4)

It is possible to derive from Equation (5.4) that there are exactly 5 platonic
solids, i.e., regular, convex polyhedra [106]. The regular polyhedron with
triangular faces, called the icosahedron, for instance, is one of the platonic
solids and has 20 faces. Note that there is no regular, convex polyhedron
with hexagonal faces.

Considering Euler’s polyhedron formula in a more general context, it
states that the surface of a convex polyhedron has Euler characteristic equal to
2. Subsequently, the surface of a convex polyhedron is homeomorphic to the
surface of the 2-sphere. Due to the fact that a spherical or ellipsoidal surface
is generally regarded to be a good surrogate for the Earth’s surface, this
ansatz allows to construct a variety of different DGGSs, which, following
[98, 120], are referred to as geodesic DGGS9.

A list of five characteristic design choices specifying a considered geodesic
DGGD is given in [98]. The first choice involves to pick a regular base poly-
hedron. The authors of [98] focus on the five platonic solids. Nevertheless,
it is also possible to consider other convex polyhedra as they also fulfill
Euler’s polyhedron formula and are thus also homeomorphic to the surface
of the 2-sphere. For instance, in order to construct a partition of the Earth’s
surface, predominately consisting of hexagonal cells, an alternative option
is to regard the convex truncated icosahedron, which is a polyhedron with
two different types of regular polygons as faces.

The truncated icosahedron has 12 regular pentagonal and 20 regular
hexagonal faces and has a surface homeomorphic to the 2-sphere surface. The
name already hints at the derivation from the icosahedron. The construction
of this particular truncated polyhedron is achieved via cutting off (truncating)

9 The name stems from the fact that many of the systems based on regular polyhedra have
been inspired in some way by the scientific research of Buckminster Fuller, who designed the
geodesic dome.
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12 specific vertices at one third of the corresponding edges, resulting in 12

pentagonal faces, replacing the former vertices and forming 20 regular
hexagonal instead of the triangular faces. Then it is possible to regard the
spherical truncated icosahedron, which is a partition of the surface of the
sphere into spherical polygons using great arcs. This particular spherical
truncated polyhedron is used for most of the modern soccer ball designs,
hence the spherical truncated icosahedron is a commonly known tessellation
of the sphere.

However, since an equivalent partitioning can be constructed using a
regular icosahedron as the base polyhedron of the considered geodesic
DGGS, the focus in this thesis, following the proposed structure in [98],
is exclusively on the platonic solids. More specifically, the icosahedron is
considered. This design choice is sensible with respect to a hexagonal tiling
and has a relative small distortion concerning the spherical transformation
of the polyhedron compared to the other platonic solids with bigger faces,
e.g., the tetrahedron or the cube [120].

The unfolded planar icosahedron is commonly considered in a partition of
10 quadrilaterals, each formed by a pair of triangular faces. In the remainder
of the thesis, the quadrilaterals are indexed as displayed in Figure 14, where
the surroundings of the respective quadrilateral on an unfolded icosahedron
are marked by bold black lines and the former triangles are indicated via
thin dashed lines, also in black.

1
 

2
 

3
 
4

 
7 9

 
 10 

 
5

6 8
 

Figure 14: The graphic on the left shows the planar unfolded Icosahedron, where pairs
of triangles are combined to form ten quadrilaterals. The specific numbering
used in this figure is deployed for the entire projection procedure and the
corresponding discussion. On the right an aperture 4 partition of a triangle is
displayed.

Secondly, a lattice with mostly honeycomb shaped cells is regarded. In
order to obtain a dominantly hexagonal raster, the 20 triangular faces of
the icosahedron (see Figure 14) are subdivided into hexagons by cutting
off each vertex at one third of the edges, leaving small rest areas, which
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together form 12 pentagonal cells. This procedure is demonstrated by means
of one triangular face in Figure 15 (see first triangle from the left). The areas
forming the pentagonal cells are colored in grey.

Thirdly, it is necessary to decide upon the orientation of the icosahedron
relative to the Earth. The orientation is defined by fixing the geographical
coordinates of a vertex of the respective platonic solid and additionally set
the azimuth information of an adjacent vertex. The benefits of a choice are
substantially dependent on the application. For instance, the polyhedron
can be oriented so that a certain continent or country is well placed (e.g., on
one of the faces) [119].

Another approach is to align the edges, vertices, and faces with important
quantities such as the prime meridian, the poles, or the equator [96, 112, 119,
121]. For example, a popular orientation for a icosahedral base polyhedron
is to assign a vertex to each of the poles and to place one of the edges
(connected to the vertex at the North Pole) of the platonic solid so that it is
aligned with the prime meridian [96, 112]. The disadvantage, however, is
that for this common orientation the icosahedron is not symmetrical about
the equator, which is not a desirable property for some applications [50, 51].
In order to change the orientation to be symmetrical about the equator, the
icosahedron is rotated by 36◦.

The considered parametrization of processes in the arctic circle area is
not necessarily affected by the orientation. Yet, it is easier to approach
the corresponding implementation and the visualization of the respective
results for an orientation that places the entire arctic area on a small number
of quadrilaterals. Thus, the orientation defined by one vertex at 11.250E
longitude, 58.282525590N latitude and an adjacent vertex at an azimuth of
0.00 is considered due to the fact that most of the arctic circle area is projected
on only two of the quadrilaterals assembling the spherical icosahedron.

Alternatively, the Dymaxion orientation of R. Buckminster Fuller, i.e.,
one icosahedral vertex at 5.245390W longitude, 2.3008820N latitude with
an adjacent vertex at an azimuth of 7.466580, leads to a similar convenient
placement of the arctic region.

The fourth design choice involves an appropriate hierarchical spatial
partitioning technique that allows to create different grid sizes of the geodesic
DGGS. In that context, the aperture of a DGGS is the factor describing the
area ratio between the current and the next finer resolution [98]. For example,
regarding an equilateral triangular face, it is possible to divide each triangle
into four equilateral triangles, thus the cell area is reduced by a factor four
(see Figure 14), i.e., defining an aperture 4 triangle hierarchy. In cases where
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Figure 15: The figure displays three triangles with a partitioning predominately consisting
of hexagonal cells. The hexagons are divided in the aperture 3 sense. The first
grid resolution is colored in blue and originates from the partitioning of a base
triangular face. The grey areas correspond to parts of the 12 pentagonal cells
existing in each grid resolution. The second resolution is displayed in the center
and in the third triangle from the left and is colored red. The finest grid shown
is associated with resolution 3 and is colored green (see third triangle from the
left).

the underlying polyhedron is divided to have more than one type of polygon
as its faces, the aperture is defined for the dominating cell shape.

As it is not possible to entirely tile a hexagonal cell with smaller hexagons,
any partitioning used to define a hierarchy of finer grid resolution is more
complex and does not allow a straightforward characterization of relations
between cells in different grid sizes. This leads to computational difficulties
concerning sensible hierarchical location coding and run time as well as
memory efficiency. These issues are discussed and addressed in detail in
[97].

In this thesis, aperture 3 hexagonal cells are considered, meaning that the
area of a hexagonal face in the next finer resolution has a third of the area of
the current coarser grid. This particular partitioning of the hexagonal cells
to a smaller honeycomb structured raster is shown in Figure 15. The first
triangle from the left in Figure 15 displays a resolution 1 hexagon in blue
which is divided into a resolution 2 grid (red lines), shown in the center
triangle. Finally, a resolution 3 hexagonal raster (green lines) is displayed in
the third triangle.

The possible sizes of aperture 3 hexagonal cells in the employed DGGRID
version 3.1b ranges from resolution 1 relating to 20 hexagonal cells and 12

regular pentagonal cells to resolution 18 with 3, 874, 204, 880 hexagons and
12 pentagons. Note that the number of pentagons for each resolution is fixed
to be 12. For the computations in this thesis, resolution 6 is considered. In
detail that means that each of the 10 quadrilaterals has 27 times 27 cells
including one pentagonal cell and two additional connecting pentagonal
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cells. The total number of cells in resolution 6, tiling the entire surface of the
Earth, is 7, 292, where each cell has a size of approximately 69, 968 square
kilometers.
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Figure 16: The figure demonstrates the employed address assignment for each location for
a specific quadrilateral q by means of example in resolution 4, i.e., the size of
every quadrilateral is 9× 9. Note that the pentagonal cell (at origin (1, 1)) is
visualized, for structural reasons, as a hexagon as well.

Further, a transformation method projecting the planar base polyhedron
onto the corresponding spherical/ellipsoidal surface needs to be specified.
The focus is on the subdivision of the polygonal faces as the corresponding
spherical counterpart is desired to be similar with respect to the partition.
One distinguishes between two standard approaches [64]. One ansatz is to
employ a projection that directly relates a subdivision of the spherical/el-
lipsoidal surface to the considered partition on the planer polyhedral faces.
Alternatively, it is possible to project a chosen partition on the planar faces
of the polyhedron via an inverse map transformation to the sphere or the
ellipsoid, i.e., to an Earth surrogate.

As discussed in [98], any projection with the property to map straight-
line planar face edges to the great-circle arc edges of the corresponding
spherical face can be used. One example function fulfilling this requirement
is, for instance, the Fuller Dymaxion projection [38, 44]. The quality or
properties of the different transformations usually vary in terms of area and
shape distortion. For the purposes of this thesis, it is sensible to consider
an equal-area projection. Thus, the Icosahedral Snyder Equal Area (ISEA)
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projection [105] is used as an inverse transformation between an appropriate
partitioning of the Earth surrogate and a planar icosahedron.

Summarizing, these five specific design choices result in a grid, called the
Icosahedral Snyder Equal Area aperture 3 Hexagon geodesic DGGS (ISEA3H
geodesic DGGS). A free software package, made available by Kevin Sahr10,
one of the developers of a particular set of geodesic DGGS, was employed
in pursuance of projecting the considered arctic sea ice data associated
with latitude and longitude coordinates onto a lattice in the plane with
dominantly hexagonal cells.

Figure 17: The image shows a projection of the rounded data observed in January 1989
onto a planar icosahedron with a hexagonal tiling in resolution 6. The cells
colored in pink correspond to unknown data points and the black cells are
associated with land. Further, the state assignment of ice (white) or of water
(blue) is determined by means of the rounded observations.

The software allows different address assignment formats for the output,
and the reader is referred to [97] for a detailed description of location coding
and a discussion on the addressing of locations. For example, it is possible
to get information about the index of the quadrilaterals with corresponding
(i, j) coordinates (see output address type Q2DI and exemplary address as-
signment in Figure 16)). Then the hexagonal cells of one quadrilateral are
indexed as shown in Figure 16. For resolution 6, the indices i and j take
values from 1 to 27.

As the locations of the regarded data are geographically placed on the
Northern Hemisphere, not all of the quadrilaterals contain data points. In
fact, the main area considered is projected onto only two quadrilaterals.
A snapshot of the data corresponding to the first two weeks of January
1989, projected onto a planar icosahedron with a hexagonal tiling via the
specified geodesic DGGS, is displayed in Figure 17. Most of the relevant

10 The software, a corresponding handbook, and most of the relevant publications can be
downloaded from http://discreteglobalgrids.sqsp.com/software/.

http://discreteglobalgrids.sqsp.com/software/
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data points are projected to the first and the fifth quadrilateral. This can be
explained with the fact that two of the 12 pentagonal cells are not contained
in the 10 quadrilaterals. Note that the indices of the quadrilaterals in the
software package start with zero and go up to 11. The sea ice coverage
information assigned to the pentagonal cell (i.e., the cell corresponding to
the Northern Hemisphere) is not displayed in Figure 17. The cells colored in
pink correspond to unknown data points, i.e., there is no observation data
available due to the fact that the area on Earth is too far away from the arctic
circle and hence irrelevant.

In order to work with a sensible number of locations, only cells of quadri-
laterals one and five are considered in the following. In fact, 198 cells of the
1458 cells of the two quadrilaterals are regarded. This number is a result of
discarding all the cells without information, i.e. pink ones, all the land cells,
i.e., grey ones, and finally some cells that are assigned a probability to be in
state water for the entire season. To be precise, a small number of cells with
a potential ice state were also not considered due to the fact that the aim is
to regard a lattice of connected grid cells.

As the regarded lattice is finite, it is important to decide what kind of
boundary conditions should be considered. A common approach is to work
with periodic boundaries. Since the number of cells covered by the satellite
is greater than the number of cells considered for the computations, it is
possible to use the existing information of adjacent locations that are not
associated with one of the NJ cells. The key advantage is that neighbor states
do not have to be artificially created but are already available.

5.3 parameter identification and results

In the following, the numerical settings for the parametrization of the con-
sidered arctic sea ice dynamics with the introduced non-stationary, non-
homogenous Markov regression are discussed. Then the selection of optimal
parameters is outlined and the resulting model is interpreted in terms of the
application. This also entails to determine the statistical impacts correspond-
ing to the considered explicit external factors. Afterwards, the performance
of the inferred model is validated by comparing its results with the actual
data.
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5.3.1 Analysis set-up

As the considered explicit external factors ue(t, j) have different scales, it is
prudent to unify the entries of u(t, j), i.e., to rescale them so that

− 1 ≤ ue(t, j) ≤ 1 for all t, j and e. (5.5)

Consequently, the unit of a respective factor is irrelevant for its relative
influence magnitude. Approximately 94% of the data is used for the purpose
of determining a set of model parameters describing the underlying arctic
dynamics. In detail, this training period spans from January 1989 to Decem-
ber 2003 (i.e., t ∈ {1, . . . , 360}). The remaining portion (≈ 6%) of the data is
used to validate the predictive skills of the trained models. Summarizing, the
arctic sea ice coverage observations of 2004 are compared to out-of-sample
approximations computed with the obtained model (i.e., NTtrain = 360).

In order to determine the optimal (with respect to the considered infor-
mation criterion) model parameters on the basis of the data, the Markov
regression runs are executed for different values of local regimes NK and
the maximal number of possible transitions NC of the affiliation process, i.e.,
NK ∈ {1, 2, 3, 4, 5, 6, 7} and NC ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80}. Further, the
model parameters are computed for all subsets of the considered set E , i.e.,
63 runs are completed to determine the best fit for all possible combinations
of the six resolved quantities. Moreover, the memory-less special case, i.e.,
NM = 0, where the state probabilities of the next time step are independent
of the current state probabilities (see (3.42)), is considered additionally to the
standard Markov model (i.e., NM = 1). This results in a total of 7938 Markov
models MMarkov(NK, NC, NM, u(t, j)), which have to be parametrized and
tested for the given data.

Further, the dynamics underlying the affiliation process Γ∗(t, j), associated
with the model that attains the lowest mAICc value, have to be determined
in pursuance of considering the out-of-sample performance of the model.
Following the idea of a self-containing predictive model, Algorithm 4 is
employed to compute different stationary and homogenous models

M f Γ,Γ(NΓ
K, NΓ

C, NΓ
M, uΓ(t, j). (5.6)

Note that f Γ ∈ {Markov, logit} and that the entries uΓ
e (t, j) of the vector

of explicit external factors are elements of the set EΓ. The optimal model
describing the obtained process Γ∗ is again selected via the mAICc.
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As already mentioned in Section 3.6, an alternative ansatz to choose an ap-
propriate candidate in the set of different models is to apply cross validation,
i.e., to compare the respective out-of-sample performance of the different
models. However, for the given model structure this entails to determine
at least 63504 different models (due to the many possible combinations for
the characterization of Γ∗), which then have to be compared in terms of
approximation quality. Summarizing, the cross validation approach for this
example is not computational sensible. Yet, in general, cross validation is an
alternative unbiased model selection option, which can be employed for the
proposed model with less combinations.

Additionally, it is important to mention that the following settings were
used for all runs: number of annealing steps NFEM

anneal = 30 and the optimiza-
tion tolerance value NFEM

τol = 0.0000000001.

5.3.2 Interpretation of optimal model parameters

For the selection of the model that is optimal with respect to quality and
complexity, the introduced mAICc given in Equation (3.70) is deployed. The
corresponding optimal number of regimes is denoted N∗K, analogously the
optimal maximal number of transitions is referred to as N∗C, the optimal
memory depth N∗M of a model, and the optimal choice of explicit external
factors is denoted u∗(t, j). Considering all 7938 models, the lowest mAICc
value corresponds to a memory-less model (i.e., N∗M = 0) with N∗C = 70,
N∗K = 3, and

u∗(t, j) =

neighice

temp
CO2

 . (5.7)

The first model matrices of each of the three regimes are inferred to be

P1∗
0 =

[
0.1795 0.8205
0.1795 0.8205

]
, P2∗

0 =

[
0.6293 0.3707
0.6293 0.3707

]
, P3∗

0 =

[
0.9416 0.0584
0.9416 0.0584

]
. (5.8)

The statistical influence (that is revealed by the model matrices P1∗
e for

e ∈ {1, . . . , NE}) of the explicit external factors is discussed separately in
Subsection 5.3.3, and the corresponding matrices are given in Appendix C.3
(see (C.1), (C.2), and (C.3)).

The corresponding regime affiliation process Γ∗(t, j) is visualized in the
panels of Figure 18. The 3D graph in the upper panel shows the affiliations
for t ∈ {1, . . . , NTtrain}, i.e., starting in January 1989 going to December 2003,
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and for the considered arctic area. For visualization reasons, the Hudson Bay
area is not displayed and the locations are shown on a quadrangle rather
than on a hexagonal grid. The red cells correspond to areas not covered by
the data, e.g., locations predominately on one of the continental land masses.
The other colors are associated with the three regimes. More precisely,
locations j, assigned to local model P1∗(u(t, j)), i.e, γ∗1(t, j) = 1, for fixed t,
are displayed in turquoise. Further, cells associated with regime P2∗(u(t, j)),
i.e, γ∗2(t, j) = 1, are colored yellow, dark blue relates to γ∗3(t, j) = 1, i.e., for
fixed time t, locations j can be described best with the transition matrix
P3∗(u(t, j)).

The three optimal local regimes represented by Pk∗
0 and the corresponding

affiliations assigned for every time step and each location allow to view the
underlying ice dynamics from two different angles. Firstly, it is possible to
relate the local models to the two seasonal extremes (i.e., in the broadest
sense summer and winter) and an interim phase. These periodic time-wise
changes can be seen in both graphs of Figure 18. In the 3D plot in the lower
panel of Figure 18 only a short time interval is shown, i.e., t ∈ {1, . . . , 48},
which corresponds to January 1989 to December 1990. Thus, the seasonal
regime changes can be seen better. Although the time-wise change seems
to effect the regime assignments, the main dependency is related to the
geographical regions (e.g., associated to parallels with a certain latitude). In
other words, the development in time of the corresponding optimal model
parameter Γ∗(t, j) strongly depends on the location.

For instance, as expected, locations in the pole region usually are affiliated
with a probability close to one to be in the state of ice the entire year (i.e.,
P3∗(u(t, j))), whereas locations near the marginal seas of the arctic ocean
(e.g., Barents Sea or Chukchi Sea) do react to seasonal change but have high
probabilities to be in the liquid state (i.e., P1∗(u(t, j))) even in the winter
months.

Concluding, the process Γ∗ also identifies thicker multi-year ice sheets,
which are less prone to decrease due to their internally stronger structure
and their geographical location, which might not permit sea ice loss caused
by shelfs drifting (accelerated by ocean currents or wind) in the open sea.
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Figure 18: The figure shows a 3D visualization of the regime affiliations γk(t, j) for
different locations on two time scales. More precisely, the graph on the upper is
plotted from 1989 to 2004, where the graph on lower depicts a time interval
from 1989 to 1991. The three regimes are associated with the following colors:
turquoise relates to regime 1, i.e, γ∗1(t, j) = 1, yellow corresponds to regime
2, i.e, γ∗2(t, j) = 1, and for γ∗3(t, j) = 1 locations are colored dark blue.
Further, red is associated with empty cells (i.e., no data available), which do not
correspond to any regime and thus have a structure similar to the surrounding
continental land masses. For reasons related to the visualization restraints, the
locations are considered on a rectangular lattice instead of a hexagonal grid.
Note that the affiliations of locations in the Hudson Bay are not displayed.
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5.3.3 Statistical impact

The summer minimum of the ice extent has decreased considerably in the
past decade and an ice free arctic11 is a likely climate scenario to occur
this century [58, 118]. Various factors such as changes in the atmospheric
circulation or the brine structure of the ice are associated with this retreat.
Yet, there is still discordancy among scientists over the influence magnitude
of the different quantities on the diminishing sea ice. Thus, one aim is to
estimate the statistical impact of the used explicit external factors on the
basis of the determined model to understand their influence on the sea ice
dynamics. The individual impact of each explicit external factor ue(t, j) is
considered via the absolute value of the corresponding model matrix entries
of each regime. As the considered model

MMarkov(3, 70, 0, [neighice, temp, CO2]>) (5.9)

is independent of previous state probabilities, the absolute values of the
entries of the model matrices

{
Pk

e
}

mn are equal for all m, n ∈ {1, . . . , NS},
for fixed e ∈ {1, . . . , NE}, and fixed k ∈ {1, . . . , Nk}. Thus, for a fixed regime
k and a specific explicit external factor index e, it is possible to associate
the corresponding statistical impact I(e, k) of the factor on the state of the
underlying process with the absolute value of one matrix entry of

{
Pk

e
}

, i.e.,

I(e, k) =
{

Pk∗
e

}
11

for e ∈ {1, . . . , NE} and k ∈ {1, . . . , Nk}. (5.10)

Further, the relative statistical impact

Irel(e, k) =
I(e, k)

NE

∑
r=1
I(r, k)

∀ e, k (5.11)

is considered. Due to the previous scaling of the explicit external factors to
the [−1, 1] interval, the absolute values are not related to any scales corre-
sponding to the respective quantity and its unit. The results corresponding to
the considered optimal model MMarkov(3, 70, 0, [neighice, temp, CO2]>) are
presented in Table 1.

In general, it can be said that the statistical results show strong existing
spatial correlations. In particular, it is revealed that the neighbors are the
main influencing component in the context of a high probability for σ(t, j, l)

11 Commonly, a sea ice extent of only 1, 000, 000 km2 is defined as an ice free arctic.
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to be in liquid state respectively to change into it (see (5.8)). Furthermore,
the previous state probabilities of the neighbors are predominately relevant
for the local model representing an intermediate phase, i.e., P2∗(u(t, j)).
However, the temperature has the strongest relative impact in areas respec-
tively time intervals affiliated with the optimal model matrix P2∗(u(t, j)).
Concluding, although CO2 does influence the state of microscopic sea ice in
the arctic, an immediate negative trend is procrastinated by the rather small
determined statistical impact. The influence of changing temperature values
on the other hand directly effects existing multiyear ice sheets (which are
mostly characterized by the local model matrix P3∗(u(t, j))).

ue(t, j) Irel(e, 1) I(e, 1) Irel(e, 2) I(e, 2) Irel(e, 3) I(e, 3)
neighice 100% 0.1795 68.52% 0.2002 39.01% 0.0130

temp 0% 0.2 · 10−16 30.3% 0.0887 45.53% 0.0152
CO2 0% 0.1 · 10−16 1.1% 0.0032 15.46% 0.0051

Table 1: Shows the absolute (see (5.10)) and relative statistical impact (see (5.11)) of the
three explicit external factors: neighboring ice, temperature, and CO2.

5.3.4 Out-of-sample-performance

In the following, the out-of-sample performance of the model

MMarkov(3, 70, 0, [neighice, temp, CO2]>) (5.12)

is examined. In pursuance of estimating the affiliations outside of the training
set {1, . . . , 360}, a stationary, homogenous model M f Γ,Γ(1,−, NΓ

M, uΓ(t, j))
for f Γ ∈ {Markov, logit} is fitted to Γ∗. As has been illustrated in Subsection
5.3.2, the affiliations γ∗k (t, j) exhibit periodic behavior for certain locations
j. Due to the fact that the model describing these affiliations is assumed to
be stationary and homogenous, it is sensible to consider external factors
uΓ

e (t, j) with similar periodic oscillations. These additional external factors
are computed by means of Γ∗ (see calculation in Algorithm 8). Subsequently,
the set of explicit external factors considered for the parametrization of Γ∗ is
defined as

EΓ := {neighice, neighland, temp, CO2, NAO, AO, period1, period3}. (5.13)

Note that all explicit external factors contained in E are used for the inference
of the dynamics of the regime assigning process. In other words, not all
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combinations are considered. Yet, different modelsM f Γ,Γ(1,−, NΓ
M, uΓ(t, j))

with uΓ(t, j) ∈ EΓ are computed with respect to the linear dependency on
the additional external factors periodk given in Line 8 of Algorithm 8.

Algorithm 8: Periodic behavior of Γ∗

input : Γ∗

output: periodk for k ∈ {1, . . . , N∗K}
NY = NTrain /241

for k = 1 : N∗K do2

for j = 1 : NJ do3

S = 04

for y = 1 : NY do5

r = (y− 1)24 + 16

s = (y− 1)24 + 247

S = S + γk(r : s, j)8

for y = 1 : NY + 1 do9

r = (y− 1)24 + 110

s = (y− 1)24 + 2411

periodk(r : s, j) = round
( S

15

)
12

The corresponding mAICc values can be found in Table 6 in Appendix
C.3. The lowest value is attained for the model

Mlogit,Γ(1,−, 0, [neighice, neighland, temp, CO2, NAO, AO, period1]). (5.14)

Estimates of the state probabilities π(t, j) for t > NTtrain can thus be com-
puted via Algorithm 7. The resulting approximations for 4 different example
locations (for geographical information on the locations see graphic on the
right in Figure 19) are visualized in Figures 20 and 21. The actual data is
also displayed as a reference and the start of the out-of-sample prediction is
marked with a vertical red line.

Although the ice evolutions of the four example locations are of very
different nature, the approximations have a very high quality. In particular,
the performance of the considered model for t ∈ {NTtrain + 1, . . . , NT} is
promising. In Figure 22 the predictive capability of the model is considered
for all locations j for a fixed time step NTrain + 5 (which corresponds to March
2004). In detail a visualization of the rounded data and the approximation
are displayed. Further, land cells are added to the image in order to show
the continental structure of the arctic circle. Again, the accuracy of the
approximation is very high.
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Figure 19: The image on the shows the rounded data π1(t, j) observed in March 1999 (i.e.,
t = 269). The geographic positions of four example locations are shown.

Concluding, it is possible to characterize the complex dynamics underlying
the arctic sea ice coverage data with the obtained model. Summarizing, again
this result emphasizes the fact that the introduced framework allows to infer
suitable models even though only a small portion of the relevant information
is given. In particular, it is important to note that the considered system
is highly complex and the corresponding data is multidimensional, which
makes the identification of the underlying process even more difficult.
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Figure 20: The graphics show the approximations of π1(t, Loc1) and π1(t, Loc2) (Loc1
and Loc2 are defined in the graphic on the right in Figure 19) for t ∈
[1989, 2005]. In particular, the prediction of 24 time steps (January 2004
to December 2004) is displayed (the start is marked by a vertical red line).
Additionally, the actual data is given as a reference.
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Figure 21: Comparisons of the observed data π1(t, j) for t ∈ {1, . . . NT} and approxima-
tions of it are shown for two different locations: Loc3 and Loc4 (see graphic on
the right in Figure 19). Note that the time step NTtrain is emphasized via a red
vertical line.
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Data Model

Figure 22: The rounded data π1(NTrain + 5, j), i.e., observed in March 2004, is shown for
all j on the upper panel, and on the lower panel the corresponding approxi-
mation determined with the modelMMarkov(3, 70, 0, [neighice, temp, CO2]>)
is displayed.





S U M M A RY

In this thesis, a spatial extension of the existing non-stationary Markov
regression was developed. The aim was to introduce a framework that
allows to characterize spatio-temporal Markov processes with a finite state
space governed by external influences. This was achieved by extending the
available structure of the purely time-dependent model. Concluding, the
presented framework is bridging the gap between the considered state-of
the-art data-based analysis tool and the wide range of dynamical systems
with underlying spatio-temporal processes.

While standard modeling frameworks such as SVMs and ANNs lack the
ability to take unresolved external factors into account, the proposed model
integrates these implicit quantities via explicitly time- and space-dependent
model parameters. More precisely, in the presence of unresolved external
factors the derived Markov model has been theoretically verified to have a
non-stationary, non-homogenous expression similar to the non-stationary
model structure in the purely time-wise case [53]. The numerical approach
to fit a non-stationary (i.e., purely time-dependent) Markov model on the
basis of available data has been realized via gradient-based optimization of
a corresponding regularized inverse problem [84]. Following this idea, an
algorithm to compute a model with an additional spatial dependency was
outlined and implemented.

As optimization via gradient-based approaches, which are standardly
employed in the context of clustering algorithms, does not necessarily pro-
vide global optimal solutions to the posed inverse problem, the theoretical
and numerical aspects of using an alternative minimization approach were
presented. More specifically, a coupling of the considered non-stationary,
non-homogenous Markov regression framework with an MCMC-based min-
imization ansatz was developed for the computation of the optimal model
parameters. In contrast to the standardly employed optimization tools, this
MCMC approach allows with high probability to compute a global mini-
mizer and reduces the computational complexity considerably.

An artificial dynamical systems was used to experimentally verify the
theoretically derived properties of the model. In particular, the capabilities
of the developed model to accurately describe dynamical processes that are
predominately influenced by implicit quantities were successfully demon-
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strated [30, 31, 53]. While data estimates computed with non-dynamical
approaches, e.g., ANN, are distorted for such systems, the approximation
determined with the proposed non-stationary, non-homogenous model is
very good.

Due to the recent rapid decline of sea ice, a lot of research has been focused
on understanding the underlying dynamics. Here a data-based approach
was used to gain a new perspective. In detail, the proposed Markov regres-
sion framework was employed to infer a model describing the evolution of
aggregate states of water molecules in the arctic ocean. This model was inter-
preted to gain more information on the involved interactions. In particular,
it became apparent that there are strong correlations between neighboring
locations. Further, the evolution of the aggregate states could be linked to an
explicitly time- and space-dependent affiliation process. This means that the
underlying system is evidently influenced by unresolved quantities.

In the context of climate applications such as the problem of understanding
the arctic sea ice variability, there are many important open questions, some
of which will be stated now:

• What are the time-lags with respect to the impact of certain explicit
external factors?

• Can the presented model replace a regional model (e.g., a regional ice
model) that is coupled to a global climate model (e.g., an atmospheric
model)? And how can the corresponding interactions between these
models be realized?

• Can the computational complexity of the framework be improved so
that even bigger data sets can be considered? And to what degree can
parallel computing reduce the run time?

• Is an additional upper bound, restricting the number of transitions
of the affiliation process with respect to the locations, beneficial for
the interpretation of the model? And how can such an additional
constraint be made computationally feasible?

• How can the models be used to examine phase transitions? And what
are the limitations in the context of studying certain responses triggered
by tuned explicit external factors with respect to the model and the
vector space of explicit external factors?

The tools presented in this thesis are an essential step in the direction of
answering these questions.



Z U S A M M E N FA S S U N G

Prozesse in natürlichen dynamischen Systemen mit skalenübergreifenden Wechselwirkungen können oft
nicht zufriedenstellend mit rein deterministischen Modellen beschrieben werden. Daher ist eine stochastische
Beschreibung in vielen Fällen eine gute Alternative, um diese Wechselwirkungen zu simulieren. Stochastische
Prozesse werden häufig in vier Klassen unterteilt, abhängig von der Kardinalität ihres Zustandsraums,
abzählbar oder überabzählbar, und ihrer zeitlichen Entwicklung, diskret oder stetig. Das bekannteste
Beispiel für die hier betrachteten zeitdiskreten stochastischen Prozesse sind die Markov-Prozesse. Diese
Prozesse beschreiben eine Dynamik, die nur von ihrem vorherigen Zustand abhängt. In der Realität werden
diese Prozesse häufig von äußeren Faktoren angetrieben. Da ein Standard-Markov-Prozess keine direkte
Modellierung dieser treibenden Einflüsse erlaubt, wurde ein Markov-Modell mit einer speziellen Struktur,
die es erlaubt, diese externen Faktoren linear in die Modellparameter einfließen zu lassen, von Illia Horenko
entwickelt. Zusätzlich wurde von ihm gezeigt, dass Faktoren, zu denen kein direkter Zugang besteht,
durch eine explizite Zeitabhängigkeit der Modellparameter beschrieben werden können. Anhand von
Beobachtungsdaten ist es möglich, diese Modellparameter zu approximieren. Eine zugehörige Methode, die
diese Art von Modellierung von diskreten Prozessen mit nicht-stationären Modellparametern erlaubt, wird
FEM-BV-Clustering-Ansatz genannt und wurde ebenfalls von Illia Horenko entwickelt.

Da die meisten Systeme nicht auf eine rein zeitliche Entwicklung beschränkt sind, sondern auch eine
räumliche Dynamik aufweisen, wurde in dieser Dissertation eine räumliche Erweiterung des Markov-
Modells und der zugehörigen FEM-BV-Clustering-Methode entwickelt und getestet.

Dabei wurde gezeigt, dass, wie schon in der rein zeitlichen Beschreibung, jeglicher Einfluss impliziter
(sprich unaufgelöster) Faktoren durch eine explizit zeitliche und nun auch räumliche Abhängigkeit aus-
gedrückt werden kann. Diese theoretische Eigenschaft des Modells wurde experimentell anhand von
künstlichen Testsystemen überprüft. Hierfür wurde der bestehende FEM-BV-Clustering-Algorithmus erweit-
ert, um auch räumliche Modelle bestimmen zu können.

In diesem Zusammenhang wurde ein MCMC-basierter Optimierungsalgorithmus als Alternative zu
den bisher genutzten Standardverfahren der linearen Optimierung (z.B. Simplex-Verfahren) in den FEM-
BV-Clustering-Algorithmus eingebettet. Die Vorteile dieser MCMC-Methode sind, dass die Laufzeit für
bestimmte Beispiele deutlich reduziert werden kann und dass der Algorithmus ein globales Minimum
liefert.

Um die betrachteten Algorithmen auf künstliche und reale Datensätze anwenden zu können, wurden sie
im Rahmen dieser Dissertation in der Programmiersprache C++ implementiert.

Im direkten Vergleich mit Standardmethoden schneiden die neuen Me-thoden für die gewählten Testsys-
teme sehr gut ab. Insbesondere für den betrachteten Prozess mit vielen unaufgelösten Faktoren, an dem die
benutzten Standardmethoden (d.h. Support Vector Machines und Künstliche neuronale Netze) scheitern, ist
das erweiterte Markov-Modell überlegen.

Weiterhin wurde die räumliche Erweiterung für die Modellierung eines durch Eisbedeckungsdaten der
Arktis gegebenen Raum-Zeit-Prozesses genutzt. Wegen des starken Rückgangs des Meereises im Arktischen
Ozean und der damit verbundenen negativen Konsequenzen ist es besonders wichtig, alle Aspekte dieses
komplexen dynamischen Systems besser zu verstehen. Ein unter physikalischen Gesichtspunkten unvorein-
genommener datenbasierter Ansatz kann zudem neues Licht auf Aspekte werfen, die durch die üblichen
Methoden (z.B. Klimamodelle) nicht zum Vorschein gebracht werden können.

Das in dieser Arbeit entwickelte erweiterte Markov-Modell wurde genutzt, um die räumliche und zeitliche
Entwicklung von Aggregatzuständen von Wassermolekülen in der Arktis zu beschreiben. Mit Hilfe des
errechneten Modells konnten qualitativ hochwertige Simulationen der Daten erzeugt werden. Außerdem
wurden statistische Einflusswerte für alle involvierten expliziten Faktoren bestimmt. Insbesondere sind
sowohl der Einfluss der Nachbarschafts-Konstellation als auch die starke Abhängigkeit des unterliegenden
Prozesses von den unaufgelösten Faktoren deutlich geworden.
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A
S T E P 2 O F S U B S PA C E A L G O R I T H M

The subspace algorithm [31, 52, 84], described in Section 3.5, is an iteration
over two optimization steps. In the following section the numerical details
of optimization Step 2 of Algorithm 1 for the considered Markov model (see
(3.22)) are outlined including a discussion on the necessary implementation
steps. The corresponding commented source code, implemented in C++

can be found on http://www.dewiljes.de/dewiljes/Jana.html. For the
computations in Chapter 5, a C++ code of Step 1, implemented by Philipp
Metzner, was deployed.

a.1 non-stationary non-homogenous markov regression

The problem of minimizing the functional L(Γ(t, j), P(u(t, j))), given in
(3.34), for fixed Γ(t, j) with respect to model parameters P(u(t, j)), subject
to linear constraints (3.37), (3.38), and (3.41) (and optional (3.42)), belongs
to the class of Quadratic programming problems [42]. These mathematical
optimization problems can be expressed as follows:

L(p) = 0.5p>G p + g0>p→ min
p

. (A.1)

Before applying a quadratic programming solver1 it is necessary to bring
the regarded problem (3.34) in the particular form given in (A.1). Due to the
fact that a set of minimal model matrices {Pk

0 , . . . , Pk
NE
} for a fixed affiliation

process Γ(t, j) can be determined independently for each k ∈ {1, . . . , NK},

1 For the computations in Chapter 5 an open source solver, that can be found on http://

www.diegm.uniud.it/digaspero/index.php?page=software, was employed. For a detailed
information on the algorithm the reader is referred to [42].
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the derivation is done for the stationary, homogenous case, i.e., NK = 1.
Consequently, the aim is to determine the model parameter function

P(t, j, u(t, j)) =
NE

∑
e=0

ue(t, j)Pe, (A.2)

i.e., to find model matrices Pe for e ∈ {0, . . . , NE}. Note that u0(t, j) := 1 for
all t and j and is an artificial entry in the vector of external factors which
is used to make the following vector notation more comprehensive. For the
regarded Markov model choice (see (3.22)) the unknown model matrices
can be expressed in vector form by assembling the columns of the NE + 1
matrices Pe, i.e.,

p = (vec(P0), . . . , vec(PNE)) ∈ R(NE+1)N2
S (A.3)

with

vec(Pe) = (Pe(·, 1), . . . , Pe(·, n)) ∈ RN2
S e ∈ {0, . . . , NE}. (A.4)

To define the corresponding symmetric matrix G, the functional is separated
into its quadratic and its linear component:

L(P(u(t, j)))

=
NT

∑
t=1

NJ

∑
j=1
||π(t + 1, j)T − π(t, j)TP(u(t, j))||22 (A.5)

=
NT

∑
t=1

NJ

∑
j=1

〈
π(t + 1, j)T − π(t, j)TP(u(t, j)),

π(t + 1, j)T − π(t, j)TP(u(t, j))
〉 (A.6)

=
NT

∑
t=1

NJ

∑
j=1

(〈
π(t + 1, j)T, π(t + 1, j)T

〉
− 2

〈
π(t + 1, j)T, π(t, j)TP(u(t, j))

〉
+
〈

π(t, j)TP(u(t, j)), π(t, j)TP(u(t, j))
〉)

. (A.7)
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The linear part (second summand) of the first part of (A.7) can easily be
reshaped to be dependent on p, i.e.,〈

π(t + 1, j)T, π(t, j)TP(u(t, j))
〉

=
NE

∑
e=0

ue(t, j)
〈

π(t + 1, j)T, π(t, j)TPe

〉
(A.8)

=
NE

∑
e=0

ue(t, j)
〈

vec(π(t, j)Tπ(t + 1, j)T), vec(Pe)
〉

(A.9)

= 〈g0(t, j), p〉 (A.10)

with

g0(t, j) (A.11)

:=
(

u0(t, j)vec(π(t, j)π(t + 1, j)T), . . . , uNE(t, j)vec(π(t, j)π(t + 1, j)T
)

∈ R(NE+1)N2
S×1.

To match the notation in (A.1), g0 is defined to be equal to the sum over all
locations and time steps multiplied by −2, i.e.,

g0 = −2
NT

∑
t=1

NJ

∑
j=1

g0(t, j). (A.12)

Further, considering the quadratic component of the term (see (A.7))〈
π(t, j)TP(u(t, j)), π(t, j)TP(u(t, j))

〉
=

NE

∑
e1=0

NE

∑
e2=0

ue1(t, j)ue1(t, j)
〈

π(t, j)TPe1 , π(t, j)TPe2)
〉

(A.13)

=
NE

∑
e1=0

NE

∑
e2=0

ue1(t, j)ue1(t, j)
〈

vec(Pe1), diag(π(t, j)π(t, j)T)vec(Pe2))
〉

(A.14)

it is possible to define G(t, j) ∈ R(NE+1)N2
S×(NE+1)N2

S , constituted of blocks

{G(t, j)}r1 :i1,r2 :i2 = ue1(t, j)ue2(t, j)diag(π(t, j)π(t, j)T) ∈ RN2
S×N2

S (A.15)
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with

r1 = e1NS + 1 (A.16)

r2 = e2NS + 1 (A.17)

i1 = e1NS + NS (A.18)

i2 = e2NS + NS (A.19)

for e1, e2 ∈ {0, . . . , NE}. Then the matrix G can be expressed as follows:

G = 2
NT

∑
t=1

NJ

∑
j=1

G(t, j). (A.20)

Note that the remaining first summand in (A.7) is not dependent on p and,
therefore, is not relevant for the optimization and consequently will not be
regarded. Concluding, the original problem given in (3.34) can be written in
the terminology used for mathematical optimization problems (see Eq. (A.1)).
More specifically, as already mentioned above, the quadratic optimization
problem has to be solved independently for each k ∈ {1, . . . , NK} for fixed
regime assignments Γ(t, j), i.e.,

L(pk) = 0.5(pk)>Gkpk + (g0k)>pk → min
pk
∀k, (A.21)

where

Gk = 2
NT

∑
t=1

NJ

∑
j=1

γk(t, j)G(t, j) (A.22)

and

g0k = −2
NT

∑
t=1

NJ

∑
j=1

γk(t, j)g0(t, j). (A.23)

Further, each of the NK quadratic optimizations problems, given in (A.21), is
subject to linear inequality and equality constraints. The details are discussed
in the following.

a.1.1 Constraints

The inequality and equality constraints (3.37), (3.38), and (3.41) are reformu-
lated to be subject to the vector p. The constraints are employed to ensure
that the model parameter P(t, j, u(t, j)) is a stochastic matrix for all t, j
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and u(t, j). The equality constraints (3.37) and (3.38) are combined in the
following equation:

CE(NM)> · p + ce0 = 0 (A.24)

with

CE(1) :=


Q(IdNS) 0 . . . 0

0 Q(IdNS) . . . 0

0 0
. . . 0

0 . . . 0 Q(IdNS)


︸ ︷︷ ︸

∈R
(NE+1)N2

S×(NE+1)NS

(A.25)

and

ce0 :=


−1NS

0
...
0

 ∈ R(NE+1)NS×1, (A.26)

where the auxiliary matrix is defined as follows:

Q(IdNS) =


IdNS

IdNS
...

IdNS

 .

︸ ︷︷ ︸
∈R

N2
S×NS

(A.27)

Additionally to the general model, defined in (3.22), the independent
special case of the Markov model is considered (see discussion in Subsection
3.2.1). Essentially, a memoryless process is assumed (i.e., NM = 0). This
independence of the current state probabilities is realized by ensuring that
the columns of Pk

e have equal entries (see Equation (3.42)). Thus, the matrix
CE has to be enhanced so that this additional constraint is fulfilled:

CE(0) =



Q(IdNS) 0 . . . 0 A 0 . . . 0 0

0
... . . . 0 0 A . . . 0 0

0 Q(IdNS) . . .
... 0

. . . . . . 0 0
... 0

. . . 0 0 . . . 0 A 0
...

... 0 0 . . . 0 0 A
0 0 0 Q(IdNS) 0 . . . 0 0 0


︸ ︷︷ ︸

∈R
(NE+1)N2

S×(NE+1)NS+(NE+1)(NS−1)(NS−1)

(A.28)
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with

ce0 =



−1NS

0
...
...
0


∈ R(NE+1)NS+(NE+1)(NS−1)(NS−1)×1, (A.29)

where the corresponding auxiliary matrix is defined as follows:

A =


1 0 0

−1
. . . 0

0
. . . 1

0 0 −1

 .

︸ ︷︷ ︸
∈RNS×(NS−1)

(A.30)

Note that one can switch between a model with and without memory by
simply choosing the associated matrix CE, i.e., (A.25) for NM = 1 or (A.28)
for N = M = 0, for the optimization procedure. In order to ensure the
required inequality Equation (3.41), the following expression is used with
the formulation:

CI> · p + ci0 ≥ 0. (A.31)

As inequality (3.40) does not depend on the vector of explicit external
factors u(t, j), the formulation is straightforward

(IdN2
S
, 0, . . . , 0)p ≥ 0︸ ︷︷ ︸
∈R

N2
S×(NE+1)N2

S

. (A.32)

As already discussed in Section 3.2, the original non-negativity requirement
of the entries of the model matrices P(u(t, j)) (see (3.39)) mainly depends
on u(t, j) and, therefore, in general is not computationally feasible. Yet, it is
possible to reduce the number of necessary inequalities by assuming that
the convex-hull of the set U , containing vector u(t, j), is a NE-dimensional
hypercube

HCube = [a1, b1]× [a2, b2]× · · · × [am, bm]. (A.33)

As the minima and maxima of a hypercube are its corners, i.e.,

ae = min{ue(t, j) : j = 1, . . . , NJ and t = 1, . . . , NT} (A.34)
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and
be = max{ue(t, j) : j = 1, . . . , NJ and t = 1, . . . , NT}, (A.35)

it is possible to reduce the dimensionality of the original constraint (see
(3.39)) to the simpler numerical feasible inequality given in (3.41). In detail,
all 2NE combinations

{a1, b1} × {a2, b2} × · · · × {aNE , bNE} (A.36)

need to be checked. Thus, leading to the following definition of the matrix
describing the inequalities:

CI =



IdN2
S

. . . IdN2
S

. . . IdN2
S

ucomb(1)
1 IdN2

S
. . . . . . ucomb(2NE )

1 IdN2
S

0

ucomb(1)
2 IdN2

S
. . . . . .

... 0
... . . . . . .

...
...

... . . . . . . ucomb(2NE )
NE−1 IdN2

S

...

ucomb(1)
NE

IdN2
S

. . . . . . ucomb(2NE )
NE

IdN2
S

0


︸ ︷︷ ︸

∈R
(NE+1)N2

S×(2NE +1)NS NS

(A.37)

with ucomb(r)
e taking values in {ae, be} according to the current combination

r ∈ {1, . . . , 2NE}. Note that the matrix component of CI, given in (A.32), is
already included.





B
A D A P T I V E S I M U L AT E D A N N E A L I N G S C H E M E

In Subsection 3.5.1 a stochastic optimization approach for the sub-optimizations
Lr

j(Γ(:, j)) (see (3.46)) of the Tikhonov-regularized inverse problem was pro-
posed. The ansatz is based on generating samples according to a particular
Boltzmann distribution (see (3.51)) employing a RWM algorithm. Addition-
ally, a complementary adaptive tuning method of the inverse temperature
variable β and of the noise factor n during the Metropolis algorithm run has
been proposed [30, 37]. The acceptance/rejection-procedure has already been
considered and specified in Algorithm 2, thus, the subsequent explanations
focus on the simulated annealing scheme. In particular, the corresponding
pseudocode of the methodology is outlined in detail.

The key idea of the presented framework is to increase β at a sensible
pace, ensuring enough flexibility to traverse the sample space and, at the
same time, keeping the rate of accepted samples at an optimal level, which
is theoretically verified to be 23, 4% [90], by adaptively changing the noise
factor n.

The update of the noise factor n in Lines 9-15 is set to take place after 1000

iterations (see Line 9) of the acceptance-procedure (see Lines 3-8). The chosen
frequency allows to give a good statistical overview of the total number
of accepted samples Naccept while giving the regular opportunity to make
necessary changes. Nevertheless, the suitability of the frequency value should
be tested for every application or different energy function. In pursuance
of keeping the ratio of accepted samples and the total number of proposed
samples in the range of the reference value 23, 4%, an interval, going from
18% (see line 10: 0.18 = 90

500 ) to 28% (see line 12: 0.28 = 140
500 ), is considered.

In case the number of accepted samples is outside this considered interval
of percentages, the noise factor is adaptively updated either to be smaller,
i.e, allowing more samples to be accepted, or to be larger, i.e., resulting in
more rejections (see Lines 11 and 13).

115



116 adaptive simulated annealing scheme

Algorithm 9: Adaptive β and n update
input :

• Number of different regimes NK

• Regularization factor r

• Length of the Markov chain NRWM
chain

• Initial values for the noise factor n and inverse temperature β

output:

• Global optimizer Γ∗

Choose or generate an initial Γ[0], β[0] and n[0].1

for r = 1 : NRWM
chain do2

Propose new sample Γ′3

Accept/Reject-procedure4

if accept then5

Naccept = Naccept + 16

if Lr(Γ[r−1]) > Lr(Γ′) then7

Naccept+lowerEnergy = Naccept+lowerEnergy + 18

if mod(r, 1000) = 0 then9

if Naccept < 90 then10

n = n · 0.8511

else if Naccept > 140 then12

n = n · 1.0513

else14

n = n15

Naccept = 016

Naccept+lowerEnergy = 017

if mod(r, 1000) = 500 then18

if Naccept − Naccept+lowerEnergy ≥ Naccept · 0.25 then19

β = β · 1.111;20

Naccept = 021

Naccept+lowerEnergy = 022

Return Γ(NRWM
chain )23

Note that the regarded number of iteration steps, considered before the
dynamical tuning procedure, is reduced from 1000 to 500. This is due to
the additional update of the parameter β (see Lines 18-20), which also takes
place after 1000 chain members have been proposed.
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A simultaneous adaptive update might cause immense changes in the
percentage of accepted samples, potentially leading to a loss of control. Thus,
the tuning of each variable is executed at different lengths of the Markov
chain. In detail, this means that the first update of β is set to take place
after 500 iteration steps and then regularly executed after 1000 iteration
steps, resulting in shifted, by 500 steps, update procedures. As discussed
in Subsection 3.5.1, the inverse temperature β needs to be increased very
slowly in order to circulate in the whole sample space.

This can be achieved by keeping the temperature value relatively big at the
beginning of the sampling process. Nevertheless, it is important to steadily
increase β, causing the accepted samples in general to have lower energy
values than the current chain member and, thus, to converge to a Boltzmann
distributed sample, minimizing the functional Lr(Γ, Θ). In particular, β is
updated if less than 75% of the accepted samples have lower energy, i.e.,

Naccept − Naccept+lowerEnergy

Naccept
≥ 0.25. (B.1)

This adaptive simulated annealing scheme has been numerically investigated
on synthetic as well as real observations for a non-stationary k-means model
(see model example defined in (3.2)) [30]. The results are very promising
and suggest that the proposed Metropolis optimization ansatz is a good
alternative to the FEM clustering approach [52].

An implementation, written in C++, of the subspace optimization of the
model parameter Γ for a purely time-dependent data set for f kmeans (see defi-
nition in (3.2)), with the introduced RWM algorithm including the simulated
annealing scheme, can be found on http://www.dewiljes.de/dewiljes/

Jana.html. The source code is commented and a corresponding example
of synthetic data sets can also be downloaded. The reader is referred to
Subsection 3.5.1 of this thesis, and [30] for further discussion on the theory
of the methodology and the numerical approach. Note that the source code
can easily be generalized to suit other direct model functions f by replacing
the deterministic expression (used for the energy computations in e.cpp)
of a minimal Θ∗ for fixed Γ with the Θ[s], determined via the subspace
optimization.

http://www.dewiljes.de/dewiljes/Jana.html
http://www.dewiljes.de/dewiljes/Jana.html




C
N U M E R I C A L R E S U LT S

Extended information on the numerical results corresponding to the synthet-
ical examples of Chapter 4 and the arctic sea ice application of Chapter 5 are
presented.

c.1 toy example 1

In order to estimate out-of-sample state probabilities it is necessary to select
model parameters that optimally describe the affiliations Γ∗. The mAICc
values computed for different model choices for the first toy example (see
Chapter 4) are given in Table 2. The underlying model is assumed to be
stationary and homogenous, i.e., NK = 1. Note that NC does not have to be
set for the stationary, homogenous case. The definition of ūsyn(t, j) can be
found in Section 4.1.

mAICc(1,−, NΓ
M, ūsyn(t, j), f Γ) f NΓ

M

−35233 Markov (see (3.22)) 1
−29285 Markov (see (3.22)) 0
−33156 logit (see (3.22)) 0

Table 2: The mAICc values attained for different models describing the dynamics of Γ∗

associated with the process underlying the artificial data in Section 4.1 are given.

c.2 toy example 2

An optimal model used to describe the affiliation process Γ∗ (details in
Section 4.2) is selected via mAICc. The resulting values are displayed in the
following table.
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mAICc(1,−, NΓ
M, ūsyn(t, j), f Γ) f NΓ

M

−33814 Markov (see (3.22)) 1
−32644 logit (see (3.22)) 1
−6684.2 Markov (see (3.22)) 0
−6484.3 logit (see (3.22)) 0

Table 3: The mAICc values attained for different models describing the dynamics of Γ∗

associated with the process underlying the artificial data in Section 4.2 are given.

c.3 arctic sea ice application

The matrices Pk∗
e with e ∈ {1, 2, NE} and k ∈ {1, 2, N∗K} corresponding to the

optimal modelMMarkov(3, 70, 0, [neighice, temp, CO2]>) are

P1∗
1 =

[
0.1795 −0.1795
0.1795 −0.1795

]
, P2∗

1 =

[
0.2002 −0.2002
0.2002 −0.2002

]
,

P3∗
1 =

[
0.0130 −0.0130
0.0130 −0.0130

]
.

(C.1)

P1∗
2 =

[
−0.1485 · 10−16 0.9704 · 10−16

−0.3188 · 10−16 −0.1442 · 10−16

]
,

P2∗
2 =

[
−0.0887 0.0887
−0.0887 0.0887

]
, P3∗

2 =

[
−0.0152 0.0152
−0.0152 0.0152

]
.

(C.2)

P1∗
3 =

[
−0.1301 · 10−16 −0.0726 · 10−16

−0.0889 · 10−16 −0.4077 · 10−16

]
,

P2∗
3 =

[
−0.0032 0.0032
−0.0032 0.0032

]
, P3∗

3 =

[
−0.0051 0.0051
−0.0051 0.0051

]
.

(C.3)

Note that matrices P1∗
0 , P2∗

0 and P3∗
0 have already been given in Subsection

5.3.2 (see (5.8)).The entries of the matrices (see (C.1), (C.2) and (C.3)) are
used to determine the statistical impact of the associated external factors
ue(t, j) (for details see Subsection 5.3.3).

The following tables displays all the resulting mAIC values of all 126 exe-
cuted runs, the corresponding information such as the choice of used explicit
external factors ue(t, j) and the resulting optimal number of regimes N∗K as
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well as N∗C) the maximal number of allowed transitions in the considered
time interval are given.

mAICc N∗K N∗C u(t, j)

−569680 3 70 [neighice, temp, CO2]
−568450 3 80 [neighice, neighland, CO2, NAO, AO]
−567270 3 80 [neighice, neighland, CO2]
−566570 3 80 [neighice, neighland, CO2, NAO]
−566340 3 80 [neighice,CO2,NAO,AO]
−565980 3 80 [neighice,temp]
−565660 3 80 [neighice,CO2,AO]
−564470 3 80 [neighice,CO2,NAO]
−564420 3 80 [neighice, neighland, temp, CO2, NAO, AO]
−564220 3 80 [neighice, neighland, temp, CO2, NAO]
−563340 3 80 [neighice,temp,CO2, NAO]
−563130 3 80 [neighice,temp,CO2, NAO, AO]
−563030 3 80 [neighice, neighland, CO2, AO]
−563000 3 80 [neighice, neighland, temp, CO2, AO]
−562940 3 80 [neighice, neighland, temp, CO2]
−562870 3 80 [neighice, NAO, AO]
−561550 3 80 [neighice]
−561350 3 80 [neighice, temp, CO2, AO]
−559430 3 80 [neighice, temp, NAO]
−559180 3 70 [neighice, neighland]
−559130 3 80 [neighice, neighland, AO]
−558820 3 70 [neighice, CO2]
−558780 3 80 [neighice, neighland, NAO]
−558530 3 80 [neighice, neighland, temp, NAO, AO]
−558460 3 80 [neighice, neighland, temp]
−558080 3 80 [neighice, neighland, NAO, AO]
−558030 3 80 [neighice, neighland, temp, NAO]
−557700 3 80 [neighice, neighland, temp, AO]
−555950 3 80 [neighice, NAO]
−553810 3 80 [neighice, AO]
−552720 3 80 [neighice, temp, AO]
−549940 3 80 [neighice, temp, NAO, AO]
−546450 3 80 [neighland, CO2]
−545860 3 80 [neighland, CO2, NAO]
−545620 3 80 [CO2, NAO]
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−544470 3 80 [CO2]
−543700 3 80 [CO2, NAO, AO]
−541660 3 80 [neighland, CO2, NAO, AO]
−540400 3 80 [temp, CO2, NAO]
−539140 3 80 [temp, CO2, NAO, AO]
−539130 3 80 [neighland, temp, CO2, NAO, AO]
−537790 3 80 [neighland, CO2, AO]
−537410 3 80 [temp, CO2, AO]
−537250 3 80 [CO2, AO]
−536650 3 80 [temp, CO2]
−536330 3 80 [neighland, temp, CO2, NAO]
−533940 3 80 [neighland, temp, CO2]
−533480 3 80 [neighland, temp, CO2, AO]
−531880 3 80 [AO]
−531770 3 80 [neighland]
−531230 3 80 [NAO, AO]
−529860 3 80 [neighland, NAO]
−529670 3 80 [neighland, AO]
−529260 3 80 [temp]
−529220 3 80 [neighland, temp]
−529070 3 80 [temp, AO]
−526380 3 80 [NAO]
−524760 3 70 [temp, NAO]
−523880 3 70 [temp, NAO, AO]
−505190 3 80 [neighland, temp, NAO]
−498930 3 80 [neighland, temp, NAO, AO]
−451810 3 80 [neighland, NAO, AO]
−448800 3 60 [neighland, temp, AO]

Table 4: The mAICc(N∗K, N∗C, 0, u(t, j), f Markov) values of modelsM f (N∗K, N∗C, 0, u(t, j))
for different external factor combinations of entries ue(t, j) ∈ E are displayed.

mAICc N∗K N∗C u(t, j)

−533610 2 80 [neighland,CO2, NAO]
−533550 2 80 [neighland,AO]
−533410 2 80 [neighland, temp, CO2, NAO]
−533090 2 80 [neighland, temp, CO2]
−533090 2 80 [neighland,CO2]
−532630 2 70 [neighice, neighland, CO2, NAO]
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−532480 2 70 [neighice, neighland, CO2,AO]
−532330 2 80 [neighland,CO2, AO]
−532230 2 80 [neighice, neighland, CO2]
−532080 2 70 [neighland, temp, CO2, NAO, AO]
−532070 2 80 [neighice, neighland, temp, CO2, NAO, AO]
−532040 2 70 [neighland, temp, CO2, AO]
−532040 2 80 [neighice, neighland, temp, CO2]
−532010 2 80 [neighice, neighland, temp, CO2, NAO]
−531550 2 70 [neighice, neighland, CO2, NAO, AO]
−531320 2 80 [neighice, neighland, temp, CO2, AO]
−531320 2 80 [CO2, NAO]
−531320 2 80 [CO2]
−531090 2 70 [temp, CO2]
−531020 2 80 [neighice, CO2, NAO]
−530930 2 80 [CO2, NAO,AO]
−530890 2 80 [CO2,AO]
−530880 2 70 [neighland, CO2, NAO, AO]
−530850 2 80 [neighice, temp, CO2, AO]
−530830 2 80 [neighice, temp, CO2, NAO, AO]
−530780 2 80 [neighice, [neighland]
−530680 2 80 [neighice,CO2, AO]
−530630 2 80 [ temp, CO2, NAO]
−530420 2 70 [ temp, CO2, NAO, AO]
−530390 2 80 [neighice, CO2]
−530280 2 80 [neighice, temp, CO2, NAO]
−529800 2 80 [neighice,CO2, NAO, AO]
−529750 2 80 [neighice, temp, CO2]
−529710 2 70 [neighice, neighland, AO]
−529540 2 80 [temp, CO2, AO]
−528930 2 80 [ temp, NAO]
−528810 2 80 [neighice, neighland, temp, NAO]
−528070 3 80 [neighland]
−527450 2 80 [ temp]
−527410 2 80 [temp, AO]
−526110 2 80 [AO]
−525960 2 80 [neighice, AO]
−525640 2 80 [neighice, temp, NAO]
−525060 2 80 [neighice, temp, AO]
−522890 2 80 [neighice, temp]



124 numerical results

−521020 2 30 [NAO, AO]
−519780 2 60 [neighice,neighland, temp, AO]
−514100 2 50 [neighice]
−513390 2 30 [neighice,neighland, temp, NAO, AO]
−511720 2 40 [neighice,neighland, temp]
−508370 2 40 [neighice, NAO]
−501700 2 30 [neighice,neighland, NAO]
−501480 2 20 [NAO]
−497870 3 80 [neighland, temp, AO]
−497260 3 80 [neighland, temp, NAO]
−493410 2 30 [neighland, temp]
−491340 2 80 [temp, NAO, AO]
−491230 2 80 [neighland, temp, NAO, AO]
−483250 4 5 [neighice, temp, NAO, AO]
−482530 2 80 [neighland, NAO]
−471320 2 20 [neighice, NAO, AO]
−463620 3 50 [neighland, NAO, AO]
−456820 2 80 [neighice, neighland, NAO, AO]

Table 5: The mAICc(N∗K, N∗C, 1, u(t, j), f Markov) values of modelsM f (N∗K, N∗C, 1, u(t, j))
for different external factor combinations of entries ue(t, j) ∈ E are displayed.

mAICc f Γ NΓ
M uΓ(t, j)

−158560 Markov 1 [neighice, neighland, temp, CO2, NAO, AO, period3]
614.34 Markov 0 [neighice, neighland, temp, CO2, NAO, AO, period3]
−140410 logit 1 [neighice, neighland, temp, CO2, NAO, AO, period3]
−111114 logit 0 [neighice, neighland, temp, CO2, NAO, AO, period3]
−140260 Markov 1 [neighice, neighland, temp, CO2, NAO, AO, period1]
−29285 Markov 0 [neighice, neighland, temp, CO2, NAO, AO, period1]
−135860 logit 1 [neighice, neighland, temp, CO2, NAO, AO, period1]
−163629 logit 0 [neighice, neighland, temp, CO2, NAO, AO, period1]
−152066 Markov 1 [neighice, neighland, temp, CO2, NAO, AO]

7105.2 Markov 0 [neighice, neighland, temp, CO2, NAO, AO]
−117990 logit 1 [neighice, neighland, temp, CO2, NAO, AO]
−65443 logit 0 [neighice, neighland, temp, CO2, NAO, AO]

Table 6: The mAICc(1,−, NΓ
M, uΓ(t, j), f Γ) values attained for different models describing

the dynamics of Γ∗, where NΓ
K = 1, are displayed. Note that a logistic model with

memory has γ1(t− 1, j) and γ3(t− 1, j) as additional external factors.



N O TAT I O N

The notation index is organized as follows: the numbers and sizes are listed separately as their
notation is very similar. The remaining notations are listed in order of appearance in the thesis.
To improve readability, the titles of corresponding chapters or sections are indicated. Moreover,
the abbreviations used in the thesis are listed at the end of the notation index.

Numbers and sizes

NS number of states si (associated index: i, page 11)
NL number of data samples (associated index: i, page 11)
NE number of explicit external factors (associated index: e, page 11)
NSVM

boxconstraint regularization parameter corresponding to an SVM run (page 13)
NANN

neurons number of employed neurons for an ANN run (page 18)
NT length of observed time series π(t, j) for fixed location j (associated

index: t, page 21)
Nens (associated index: l, page 21)
NJ space dimension of observations π(t, j) for all time steps t (associ-

ated index: j, page 21)
Nsi(t, j) number of cells j currently (at time t) in state si (page 22)
NF number external factors (associated index: e, page 23)
NI number of implicit external factors (associated index: e, page 23)
NM memory depth (page 28)
NK number of local stationary homogenous models θk (associated

index: k, page 34)
NC maximal number of allowed transitions of the affiliation processes

γk(t, j) for fixed j (page 38)
NFEM

anneal number of annealing steps used for the FEM framework (page 41)
NFEM

τol (page 41)
NFEM

basis number of finite elements used for the discretization (page 43)
NRWM

chain length of generated Markov chain (page 46)
Nφk degree of a polynomial of φk (page 53)
Npred prediction depth (page 57)
NΓ

K number of regimes for characterization of Γ∗ (page 57)
NΓ

S number of model states for characterization of Γ∗ (page 57)
NTtrain time-wise length of training data (page 59)
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Nsyn
K artificially chosen number of local stationary homogenous models

θ
syn
k (page 60)

Nsyn
C artificially chosen maximal number of transitions of the synthetic

affiliation processes γ
syn
k (t, j) (page 60)

Ndummy auxiliary quantity of Algorithm 5 (page 62)
NANN

anneal number of annealing steps used for an ANN run (page 65)
NΓ

C maximal number of transitions for characterization of Γ∗ (page
91)

NΓ
M memory depth of model for characterization of Γ∗ (page 91)

NY number of years (page 97)
Naccept number of accepted samples (page 115)
Naccept+lowerEnergy number of accepted samples with lower energy (page 116)
N∗K optimal (with respect to the mAICc) maximal number of local

stationary models (page 120)
N∗C optimal (with respect to the mAICc) maximal number of transi-

tions (page 121)

Support vector machines

si discrete state (page 11)
σ(l) discrete process (page 11)
N positive integers (page 11)
R real numbers (page 11)
u(l) data samples (page 11)
y(l) class assignments (page 11)
〈·, ·〉 dot product (page 12)
w vector describing the hyperplane (page 12)
m hyperplane variable (page 12)
|| · ||2 Euclidean norm (page 12)
D(λ) dual problem (page 13)
λ(l) Lagrange multipliers (page 13)
ς(l) slack variable (page 13)
Υ(·) projection function affiliated with kernel function (page 14)
K(·, ·) kernel function (page 14)
Kpoly(·, ·) polynomial kernel function (page 14)
KRBF(·, ·) radial basis kernel function (page 14)
KMLP(·, ·) multilayer perceptron kernel function (page 15)
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Artificial neural networks

W vector of weights corresponding to a neuron (page 15)
b bias of a neuron (page 15)
Ψ(·) transfer function (page 16)
Ψtanh(t) hyperbolic tangent transfer function (page 16)
Ψsigmoid(t) logistic transfer function (page 16)
Ψrectifier(t) rectifier transfer function (page 16)
N (NANN

neurons) MLP with one hidden layer with NANN
neurons (page 18)

Logit models

Ci[u(t, j), Bi] utility measure (page 18)
Bi logistic model parameter (page 18)
bi

e eth entry of vector Bi (page 18)
ξ i(t, j) error process of utility measure (page 19)
P[·] probability function (page 19)

Discrete spatio-temporal dynamical process

σ(t, j, l) spatio-temporal dynamical process (page 21)

Ensemble data and external factors

ω(j, l) microscopic cell (page 21)
π̃i(t, j) empirical state probability (page 22)
δsi(·) Kronecker delta for the value si (page 22)
πi(t, j) state probability in location ω(j, l) at time t (page 22)
π(t, j) vector of states probabilities (page 23)
ū(t, j) all influencing external factors (page 23)

Implicit external factors

u(t, j) vector of explicit external factors (page 23)
ue(t, j) explicit external factor (page 23)
U space of explicit external factors u(t, l) (page 23)
uunres(t, j) vector of implicit external factors (page 23)
uunres

e (t, j) implicit external factor (page 23)

Model distance function

θ(ū(t, j)) unknown model parameter dependent on ū(t, j) (page 28)
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Ω parameter space containing θ(ū(t, j)) (page 28)
f (·) denotes a general direct mathematical model (page 28)
f kmeans kmeans direct mathematical model function (page 28)
ε(t, j) error term of simple model example (page 28)
f logit logistic direct mathematical model function (page 28)
θlogit(B(t, j), u(t, j)) logistic direct mathematical model parameter (page 28)
ζ(t, j) error term of logistic model distance function (page 28)
B(t, j) non-stationary non-homogenous logistic parameter (page 28)
g(·) model distance function (page 29)
d(·, ·) metric (page 29)
E(·) expected value (page 29)
L(·) averaged clustering functional (page 29)

Markov model

P(ū(t, j)) transition matrix dependent on all external factors (page 30)
ε(t, j) error term associated with transition matrix P(ū(t, j)) (page 31)
P0(t, j) matrix used in the linear combination equal to P(ū(t, j)) (page 31)
Pe(t, j) matrix used in the linear combination equal to P(ū(t, j)) (page 31)
µ(t, j) vector of expected values of vector ū(t, l) (page 31)
Rα(ū(t, j)) Taylor expansion error component (page 31)
α multi-index (page 31)
P(t, j, u(t, j)) approximation of P(ū(t, j)) (page 32)
f Markov Markov direct mathematical model function (page 32)

Interpolation

θ(t, j, ū(t, j)) non-stationary, non-homogenous model parameter (page 33)
θkmeans∗(t, j) optimal model parameter for model function f kmeans (page 33)
Θ(u(t, j)) vector of stationary homogenous model parameters (page 34)
θk(u(t, j)) stationary homogenous model parameter (page 34)
Γ(t, j) matrix of affiliations γk(t, j) (page 34)
γk(t, j) affiliations corresponding to local model θk(u(t, j)) (page 34)
L(·, ·) interpolated version of L(·) (page 34)
Lj(·, ·) one summand for a fixed location j of interpolated average clus-

tering functional (page 34)
Bk local logit model parameter (page 35)
Bi

k vector of stationary and homogenous logit model parameter ma-
trix Bk (page 35)

Pk(u(t, j)) local Markov model parameter matrix (page 35)
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Pk
0 , . . . , Pk

NE
matrices used in the linear combination equal to Pk(u(t, l)) (page
35)

P(u(t, j)) vector of model matrices Pk(u(t, j)) (page 35)
1 auxiliary column vector contain entries equal to one (page 35)
0 auxiliary column vector contain entries equal to zero (page 35){

Pk
e
}

n,m entry of matrix Pk
e in nth row and mth column (page 36)

Spatial and temporal persistence

Γ∗(t, j) global optimizer with respect to L(Γ(t, j), Θ(u(t, j))) (page 37)
γ∗k (t, j) global optimizer with respect to L(Γ(t, j), Θ(u(t, j))) for fixed Θ

(page 37)
W1,2([1, NT]) Sobelev space (page 37)
L2([1, NT]) Lebesgue space (page 37)
Lr(Θ, Γ) Tikhonov-regularized averaged clustering functional (page 37)
r regularization factor (page 37)
Lr

j(Θ, Γ) one summand for a fixed location j of Tikhonov-regularized aver-
aged clustering functional (page 38)∥∥∥ ∂γk

∂t

∥∥∥2

L2([1,NT ])
L2-norm (page 38)

| · |BV(1,NT) bounded variation (BV) half-norm (page 38)

Spatial relations

neigh(j) direct neighbor cells of cell j (page 40)

Numerical approach and computational complexity

Θ∗(u(t, j)) global optimizer with respect to L(Γ(t, j), Θ(u(t, j))) (page 40)
M f (NK, NC, NM, u(t, j)) model (page 41)
P[s](u(t, j)) current approximation of optimal P∗(u(t, j)) (page 41)
Γ[s] current approximation of optimal Γ∗ process (page 41)
Lmin auxiliary variable of Algorithm 1 (page 42)
FLr,β(Γ) Boltzmann distribution of regularized averaged clustering func-

tional Lr(Θ, Γ) with fixed Θ (page 45)
Z(Lr

j) normalizing constant of Boltzman distribution (page 45)

β inverse temperature variable of Boltzmann distribution (page 45)
q(·, ·) proposal density (page 46)
a(Γ[r−1], Γ′) acceptance rate (page 46)
Γ′ newly proposed sample of Γ∗ (page 47)
η noise used to generate new sample (page 47)
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ψk(t, j) auxiliary processes for fixed k (page 48)
ψ(t, j) vector of processes ψk(t, j) (page 48)
β[r] currently used inverse temperature parameter (page 50)
n noise factor (page 52)
O(·) Big O notation (page 52)

Model selection

L(NK, NC, NM, u(t, j)) loglikelihood (page 53)

φk

(
·, . . . , ·|Nφk

)
parametric (conditional) probability density function (page 53)

mAIC(·, ·, ·, ·, ·) modified version of AIC (page 54)
|M f (NK, NC, NM, u(t, j))| number of involved parameters of a model (page 54)
|MMarkov(NK, NC, NM, u(t, j))| number of involved parameters for Markov model (page 54)
|Γ| number of free variables required to reconstruct Γ (page 54)
|Mlogit(NK, NC, NM, u(t, j))| number of involved parameters for a logistic model (page 54)
mAICc(·, ·, ·, ·, ·) corrected version of modified AIC (page 56)

Self-containing predictive models

π̂(t, j) prediction of observation π(t, j) (page 56)
Γ̂(t, j) prediction of future affiliations (page 57)
PΓ

0 , . . . , PΓ
NE

model matrices for characterization of Γ∗ (page 57)
BΓ logistic model parameter for characterization of Γ∗ (page 58)

Test model systems

σsyn(t, j, l) synthetic dynamical process (page 59)
πMarkov(t, j) approximation of πsyn(t, j) computed via Markov model (page

59)
usyn(t, j) synthetic explicit external factors (page 59)
Γsyn(t, j) synthetic affiliation process (page 60)
Psyn(t, j, u(t, j)) synthetic transition matrix (page 60)
Pk syn(u(t, j)) synthetic model parameter matrix associated with affiliation

γ
syn
k (t, j) (page 60)

πsyn(t, j) synthetic data (page 61)

Pk syn
NE+1, . . . , Pk syn

NE+NI
synthetic model matrices corresponding to implicit external factors
(page 61)

ūsyn(t, j) vector of all synthetic external factors (page 61)
γ

syn
k (t, j) synthetic affiliation associated with θ

syn
k (page 62)

dummy0 auxiliary vector of Algorithm 5 containing only zeros (page 62)
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dummy1 auxiliary vector of Algorithm 5 containing only ones (page 62)

Pk syn
0 , . . . , Pk syn

NE
synthetic model matrices corresponding to explicit internal factors
(page 63)

π
syn
i (t, j) ith vector entry of synthetic data πsyn(t, j) (page 63)
N (NANN

neurons) network with NANN
neurons neurons (page 65)

πN (NANN
neurons)(t, j) approximation of πsyn(t, j) computed via N (NANN

neurons) (page 65)
vrel(τ) relative mean prediction error (page 68)
v(j, τ) prediction error term dependent (page 68)

External factors

E set of considered explicit external factors (page 79)
neighice(t, j) averaged state probability of all neighbors of cell j (page 80)
neighland(t, j) land percentages surrounding cell j (page 80)

Parameter identification and results

M f Γ,Γ(NΓ
K, NΓ

C, NΓ
M, uΓ(t, j)) model for Γ∗ (page 91)

EΓ set of explicit external factors considered for parametrization of
Γ∗ (page 91)

I(e, k) statistical impact (page 95)
Irel(e, k) relative statistical impact (page 95)

Non-stationary non-homgenous Markov regression

p entries of unknown model matrices in a collumn vector (page 107)
G quadratic part of quadratic programming problem (page 107)
g0 linear part of quadratic programming problem (page 107)
vec(Pe) entires of model matrix Pe in a vector (page 108)
g0(t, j) summand of vector g0 (page 109)
diag(·) matrix containing on smaller matrices along the diagonal (page

109)
G(t, j) summand of matrix G (page 109)
pk entries of unknown model matrices in a column vector for regime

k (page 110)
Gk quadratic part of quadratic programming problem for regime k

(page 110)
g0k linear part of quadratic programming problem for regime k (page

110)
CE(NM) matrix corresponding to equality constraint (page 111)
ce0 vector corresponding to equality constraint (page 111)
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Q(IdNS) auxiliary matrix (page 111)
CI matrix corresponding to inequality constraint (page 112)
ci0 vector corresponding to inequality constraint (page 112)

Abbreviations

SDEs Stochastic Differential Equation
MCMC Markov Chain Monte Carlo
SVMs Support Vector Machines
RBF Radial Basis Function
MLPs Multilayer Perceptrons
ANNs Artificial Neural Networks
AIC Akaike Information Criterion
mAIC modified Akaike Information Criterion
mAICc corrected modified Akaike Information Criterion
PDEs Partial Differential Equations
FEM Finite Elemente Methode
IIA Independence of Irrelevant Alternatives
i.i.d. independent and identically distributed
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