
Chapter 6

Quantum Dot in an External

Magnetic Field

Since their first experimental realization [76] quantum dots have attracted a lot of
attention from experimentalists and theorists alike. From the theoretical perspec-
tive they are ideal systems to study electron dynamics and correlation. A strong
confinement in one direction makes the system quasi two-dimensional. In the re-
maining two spatial dimensions an electron feels a potential which is, in most cases,
described by a parabolic potential [77, 78, 79, 80]. The effects of the host material
can be taken into account using an effective mass m∗, dielectric constant ε∗, and
gyromagnetic ratio g∗. The number of electrons in a quantum dot can be experi-
mentally controlled ranging from one to around 1000 electrons. Therefore, quantum
dots serve as an ideal laboratory for studying a large variety of many-body effects.

In this Chapter we apply the OEP equations in the collinear KLI approximation
Eqs. (5.74)-(5.80) to a quantum dot in a constant external magnetic field B0. We
first introduce the theoretical description of a quantum dot in Section 6.1 where we
also simplify the collinear OEP-KLI equations using all symmetries of the considered
system. We present the numerical results for 2 and 6 electron quantum dots in
Sections 6.2 and 6.3, respectively. Although 2 and 6 electrons are both closed-
shell systems for a parabolic quantum dot at zero magnetic field, the configurations
quickly become open-shell when a magnetic field is applied.

6.1 Theoretical Description

Following Ferconi and Vignale [81], we describe a quantum dot as a system strictly
confined to two dimensions (the x-y plane) with an external parabolic potential

v0 =
1

2
ω2r2, r2 = x2 + y2. (6.1)

The external magnetic field B0 is constant along the z-direction

B0(r) = B0 ez, (6.2)
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i.e. perpendicular to the quantum dot. The corresponding external vector potential
is then (in symmetric gauge) given by

A0(r) =
B0

2
r eθ, (6.3)

where eθ denotes the angular direction in the plane. The whole problem is therefore
cylindrically symmetric.

Since we apply the collinear approximation, we use the spin-dependent scalar
exchange-correlation potentials and the vector potential as basic variables. Un-
der the assumption that the exchange-correlation potentials preserve the cylindrical
symmetry of the problem, i.e.

vxcσ(r) = vxcσ(r), (6.4)

Axc(r) = Axc(r)eθ (6.5)

the KS Hamiltonian (in symmetric gauge) is given by
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where sσ = ±1/2 depending on the spin of the particle. Due to the cylindrical
symmetry of the problem we can use the product ansatz

ϕjlσ(r) = exp(i l θ)Rjlσ(r) (6.7)

for the KS orbitals. Applying the KS Hamiltonian (6.6) to this wave function we
obtain the eigenvalue equation for the radial part Rjlσ(r)
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Rjlσ(r) = εjlσRjlσ(r) (6.8)

with the cyclotron frequency ωc = B0/c and Ω =
√

ω2
0 + ω2

c/4.

For non-interacting particles, where vxcσ = vH = Axc = 0, the eigenvalue problem
reduces to a harmonic oscillator with frequency Ω and eigenvalues shifted by ωcl/2+
gµBsσB0 and can be solved analytically. The resulting eigenfunctions
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where a0 =
√

1/Ω and L
|l|
j denote the associated Laguerre polynomials, are used

as basis functions for expanding the radial part of the Kohn-Sham orbitals. The
eigenvalues εjlσ of the non-interacting problem read

εjlσ = Ω (2j+ | l | +1) +
B0

2

(

l

c
+ 2g µB sz

)

. (6.10)

Using the cylindrical symmetry the numerical implementation only concerns the
radial part and is therefore one-dimensional. All radial functions, KS orbitals as
well as all potentials, are treated on an equally spaced grid. Expanding in the basis
set (6.9) the KS eigenvalue equation reduces to a matrix equation for the expansion
coefficients which can be solved using standard linear algebra libraries. Convergence
tests show that the inclusion of 10 basis functions for each angular momentum is
absolutely sufficient.

The spin densities of the system (5.35) are given by

nσ(r) =
Nσ
∑

jl

R2
jlσ(r) (6.11)

and the paramagnetic current density has only a non-vanishing θ-component

jp(r) =
∑

σ=↑,↓

Nσ
∑

jl

l

r
R2

jlσ(r). (6.12)

Although this term seems to diverge at r = 0 it is well defined. Actually, it is equal
to zero at the origin for all l because of the factor r|l| in Rjlσ. The 3 × 3 matrix N
(5.77) reduces to a scalar quantity given by

N (r) =
∑

σ=↑,↓

Nσ
∑

jl

l2

r2
R2

jlσ(r) (6.13)

approaching a finite value for r → 0. Hence, the cylindrical symmetry causes a
further simplification of the OEP-KLI equation (5.74) to a 3 × 3 matrix equation
again denoted as

D(r)Vxc(r) = R(r), (6.14)

where the potential vector is now given by

Vxc(r) =

(

(vxc↑(r), vxc↓(r),
1

c
Axc(r)

)

. (6.15)

The matrix D reads

D =





n↑(r) 0 jp↑(r)
0 n↓(r) jp↓(r)

jp↑(r) jp↓(r) N (r)



 , (6.16)
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where jpσ denote the spin-components of (6.12). The first two components of R on
the rhs of Eq. (6.14) are still given by

R1(r) =
1

2
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, (6.17)
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, (6.18)

where we have chosen the exact-exchange functional EEXX
xc given in Eq. (5.82) as the

specific approximation for Exc to be used in the numerical implementation. However,
the form of D from (5.76) simplifies to
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− i

2c
Axc(r

′)

[

ϕ∗
jσ(r′)

∂ϕkσ(r′)

∂θ′
− ϕkσ(r′)

∂ϕ∗
jσ(r′)

∂θ′

])

, (6.20)

where we suppressed the indices for angular momenta in both R and D. The third
component of R is given by
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Although it may look as if the components of R acquire some dependence on θ, all
these contributions cancel due to the special form of the wave function (6.7).

6.2 Results for 2 electrons

As a first application we consider a 2-electron quantum dot. All calculations are
performed for GaAs quantum dots. GaAs is described by an effective mass m∗ =
0.067, a dielectric constant ε∗ = 12.4, and a gyromagnetic ratio g∗ = −0.44. For
2 electrons there are only two possible spin configurations, either the two spins are
parallel or anti-parallel. At zero magnetic field, the anti-parallel configuration is
the ground-state. Both electrons occupy the l = 0 orbital and jp = 0. As a result
the exchange vector potential vanishes identically and the calculation reduces to the
spin-DFT case. Increasing the external magnetic field beyond 0.84 T (we use ω0 =
5 meV as external confinement) the parallel configuration becomes energetically
favoured. Then, due to the Pauli-exclusion principle, one of the electrons has to
occupy the l = −1 state, see Eq. (6.10). Hence, the ground-state carries a current
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Figure 6.1: The paramagnetic current density and the exchange vector potential
(left) and the density and the scalar potential (right) for 2 electrons in a quantum
dot with ω0 = 5 meV and an applied magnetic field of 1 T.

and the calculation yields a non-zero exchange vector potential as shown in Fig. 6.1
for an external magnetic field of 1 Tesla. The non-vanishing density at the origin is
due to the occupied l = 0 state. In addition the density has a maximum at around
250 a.u. due to the l = −1 state, see Fig. 6.1.

As one can see in Fig. 6.1, the grid was chosen large enough to reach the asymp-
totic −1/r region of the scalar exchange potential. The density and also the current
density are negligible beyond 700 a.u. As a result the 3 × 3 matrix (6.16) becomes
singular and Eq. (6.14) cannot be inverted to determine vxσ and Ax. While the
asymptotic form of the scalar potential is known and explicitly set to −1/r the
asymptotic behavior of the vector potential is so far unknown. Its determination is
rather involved because the leading order in r in the OEP-KLI equations is always
determined by the scalar potential. From this leading order, we only know that the
vector potential has to converge to zero. Therefore, in the numerical implementa-
tion, we set the scalar potentials to −1/r asymptotically and obtained the vector
potential from the third component of D(r)Vx(r) by adding a small constant to N
to avoid the singularity. As a consequence, the form of the vector potential beyond
700 a.u. in Fig. 6.1 is artificial. However, the specific form of the vector potential
does not influence the results for the total energy because there it is multiplied by
the current density which is practically zero in that region.

For the parallel spin configuration the application of an external magnetic field
has exactly the same effect as changing the external confinement. Hence, LDA cal-
culations for different confinements ω0 at zero external magnetic field have been
employed to mimic the effects of an external magnetic field [78]. The same calcula-
tion in CSDFT using the exact-exchange functional yields the results for the scalar
and the vector exchange potentials shown in Fig. 6.2. The shapes compare very well
with those in Ref. [78]. However, in this reference the plots are given in arbitrary
units which makes a quantitative comparison impossible. The scalar and the vector
exchange potential show the expected trends for different confinements. For larger



80 CHAPTER 6. QUANTUM DOT IN AN EXTERNAL MAGNETIC FIELD

0 500 1000 1500 2000
Radial position [a.u.]

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0

S
ca

la
r 

po
te

nt
ia

l [
a.

u.
]

v
x↑ for 3 meV

v
x↑ for 5 meV

v
x↑ for 7 meV

v
x↑ for 9 meV

0 500 1000 1500 2000
Radial position [a.u.]

-0.002

-0.0015

-0.001

-0.0005

0

V
ec

to
r 

po
te

nt
ia

l [
a.

u.
]

A
 x
 for 3 meV

A
 x
 for 5 meV

A
 x
 for 7 meV

A
 x
 for 9 meV

Figure 6.2: The scalar exchange potential (left) and the exchange vector potential
(right) for 2-electron quantum dots with different confinement ω0 at zero magnetic
field.
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Figure 6.3: The density (left) and the scalar exchange potential (right) for 2-electron
quantum dots with ω0 = 5 meV at B0 = 1 T from CSDFT and SDFT calculations.
The SDFT calculation contains the coupling to A0.

confinement the asymptotic region starts at smaller radial positions. Consequently,
the potentials become stronger around the origin as the confinement increases.

It is also interesting to compare a CSDFT with a corresponding SDFT calcu-
lation. The differences in the calculated densities and scalar exchange potentials,
shown in Fig. 6.3, are very small. However, one should note that the SDFT cal-
culation contains the coupling to the external vector potential A0. This is kind
of artificial since any DFT calculation containing an additional external potential
should also contain the corresponding exchange-correlation potential. Neglecting
the coupling of orbital angular momenta to A0 leads to very different results in
the SDFT calculation. Due to the small difference in the scalar potentials and the
densities and the small size of the exchange vector potential the total energies in
CSDFT and SDFT hardly differ. For our 2 electron quantum dot the total energy
in CSDFT is 6.843 ·10−4 Ha while the SDFT calculation yields 6.844 ·10−4 Ha. The
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Figure 6.4: The energy Etotal − 6Ω of the ground-state as a function of external
magnetic field (left) and the densities at 1.2 T for two different configurations. The
quantum dot contains 6 electrons and the confining strength is 5 meV.

total energy of the CSDFT calculation is lower than the energy in SDFT due to the
additional variational freedom provided by the exchange vector potential. However,
the difference in the energies is of the order of the theoretical error from forcing
the vector potential asymptotically to zero without knowing the correct asymptotic
behavior.

6.3 Results for 6 electrons

Here, we consider 6 electrons forming the next closed-shell system for a 2D parabolic
quantum dot beyond the 2 electron case discussed before. The states (Lz, Sz) are
usually denoted by their total angular momentum Lz and their total spin Sz. At
zero magnetic field, in the ground-state, the l = 0 and the l = ±1 orbitals are
occupied with 2 electrons each, i.e. the ground-state is (0,0). Increasing the magnetic
field, different configurations become energetically more favoured. For a parabolic
confinement of 5 meV the spin-down electron in the l = +1 state is flipped and
occupies the l = −2 state at around 0.5 T. The configuration is hence changed to
(-3,1). Increasing the magnetic field further the spin-down electron in the l = −1
state flips its spin and its angular momentum becomes l = −3 at a magnetic field
of about 1.2 T resulting in (-5,2). At 2.6 T the remaining spin-up electron in the
l = +1 orbital is transferred to the l = −4 state, (-10,2), before the system becomes
completely spin polarized at 3.6 T occupying l = 0 to l = −5 states leading to the
configuration (-15,3). The energy of the system with increasing magnetic field is
shown in Fig. 6.4. The transitions

(0, 0) → (−3, 1) → (−5, 2) → (−10, 2) → (−15, 3) (6.22)

lead to the kinks in the energy, while a given state has a parabolic dependence on
the external magnetic field. Subtraction of 6Ω corrects for the energy gain due to
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Figure 6.5: The paramagnetic current densities for two different configurations at
2.0 T (left) and the corresponding exchange vector potentials (right). The quantum
dot contains 6 electrons and the confining strength is 5 meV.

the increasing confinement. Whenever a new configuration is occupied all densities
change discontinuously. In Fig. 6.4 we plot the densities of the (-3,1) and the (-
5,2) configurations at 1.2 T, where the ground-state configuration changes from the
former to the latter. The spin-up density increases as expected while the spin-
down density is reduced. The changes are quite dramatic while the energy of course
changes continuously over the whole range from 0 to 5 T. We emphasize that there
is no interpolation between different functionals at high and low magnetic fields in
our calculation. One and the same functional is employed for all external magnetic
fields.

Due to the increased angular momenta compared to the 2 electron system, the
current density shows more structure.The larger the angular momentum the more
enhanced is the current density, see Fig. 6.5. Also, the maximum is slightly shifted
to larger radial position, as expected. The corresponding vector potentials are also
shown in Fig. 6.5. Again, the configuration with larger angular momentum yields
a larger exchange vector potential. The minimum close to the origin for the (-5,2)
configuration vanishes and the second minimum is significantly enhanced. Therefore,
the first minimum must be due to the l = +1 state which is no longer occupied in
the (-10,2) configuration. The spin is the same in both configurations and therefore
cannot influence the vector potential.

A comparison of CSDFT and SDFT again reveals very little difference in the
densities and scalar exchange fields. Also the total energies only differ on the order
of the error introduced by the unknown asymptotics of Ax. Again, it should be noted
that the SDFT calculation contains the coupling to the external vector potential.
In other words, we have to conclude that taking or not taking the exchange vector
potential into account makes very little difference, at least for the systems studied
so far.


