
Chapter 1

Introduction

Many-particle physics is full of surprises. Although the interaction between all par-
ticles is known, and therefore the Hamiltonian given, predictions for experimentally
interesting systems are generally difficult to obtain. Analytically, the Schrödinger
equation can only be solved for a very limited number of systems, for example the
hydrogen atom and the harmonic oscillator. Nevertheless, theoretical many-body
physics aims at an ab-initio description of far more complicated systems. The nec-
essary numerical treatment has made huge progress during the last decades due to
the fast advances in computer technology. For small systems it is now even possible
to expand the wave function in Slater determinants and to obtain an approxima-
tion of the true many-body ground-state wave function which is very close to being
exact. However, with increasing number of particles the computational power and
the available memory still pose severe restrictions. For example, the electron wave
function of the nitrogen atom, having 7 electrons, depends on 21 spatial variables. If
we create a rough table of the electronic wave function of this system at 10 different
positions in each variable, this amounts to 1021 double precision entries. Storing it
on DVDs the stack of discs would easily reach the moon.

From this little example, and nitrogen certainly passes as little, we see that com-
puting and storing the wave function is highly unpractical and will be generally
impossible even in the future. However, for most predictions, we are not even inter-
ested in the wave function at all. For the calculation of expectation values of local
single-particle operators the knowledge of the density of the system is sufficient. In
the case of non-locality only the complete one-body density matrix is required while
for local two-particle operators one needs the diagonal of the two-particle density
matrix. Of course, higher order operators require higher order density matrices for
a direct calculation. However, it was shown by Hohenberg and Kohn [1] that the
ground-state density alone is sufficient to completely determine systems which can
be described by a Hamiltonian containing only a local external potential besides all
the particle-particle interactions. This finding marks the birth of density functional
theory (DFT), where all observables are given as functionals of the particle density.
In practice, of course, the functional dependence of most observables on the ground-
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state density is unknown and needs to be approximated. Computing the energy
of a system one has to approximate the so-called exchange-correlation energy. The
construction of high-quality approximations for the corresponding functional is one
major subject within DFT. The most popular approximations, the local density ap-
proximation (LDA) [1] and generalized gradient approximations (GGA) [2, 3], are
based on the exchange-correlation energy density of the homogeneous electron gas
known from Monte-Carlo calculations [4].

The great success of DFT is largely due to the existence of the Kohn-Sham (KS)
system [5], a system of non-interacting electrons with the same ground-state density
as the interacting system of interest. It allows for an exact calculation of large parts
of the kinetic energy such that the remaining exchange-correlation energy is only a
relatively small contribution to the total energy. The KS system itself yields single-
particle orbitals, the KS wave functions, which can also be used for the construction
of approximate exchange-correlation energy functionals. This introduces a whole
new class of functionals known as orbital functionals.

Since its invention in 1964, DFT has been successfully used to describe a wide
range of systems from atoms and small molecules to quantum dots and solids, total
or ionization energies and band gaps have been calculated. While the calculation
of energies is successful the results for the fundamental gaps are usually poor. The
fundamental gap is defined as the difference between the ionization potential and
the electron affinity. For solids it is identical to what one usually calls the band gap.
However, this more general definition is also valid for finite systems. Improving the
predictions for the fundamental gap is the main topic of the first part of this work.
The fundamental gap can be calculated if the energies of the N , N + 1 and N − 1
electron systems are known. The electron affinity is then given as the difference
Etotal(N) − Etotal(N + 1) and the ionization potential as Etotal(N − 1) − Etotal(N).
However, one frequently encounters the problem that the system does not bind an
additional electron in a DFT calculation due to the approximation used for the
exchange-correlation energy. As shown in Ref. [6, 7, 8], the fundamental gap within
DFT is alternatively given by the sum of the KS gap and the derivative discontinuity
of the exchange-correlation energy, i.e.

∆ = ∆KS + lim
η→0

(

δExc

δn(r)

∣

∣

∣

∣

N+η

− δExc

δn(r)

∣

∣

∣

∣

N−η

)

. (1.1)

To evaluate this expression, DFT had to be extended to describe systems with
fractional number of particles N ± η [9]. The evaluation of δExc/δn(r) at N ± η
ensures that the discontinuity at integer particle number N is captured. Depending
on the approximation used for Exc the results differ strongly. For LDA and all GGAs
Exc does not show a derivative discontinuity. Therefore, the fundamental gap is given
solely by the KS gap. LDA typically underestimates the gap by 30−100%, including
such extreme cases as Germanium which is predicted to be a metal instead of a
semiconductor. If one uses the exact-exchange (EXX) approximation, the KS gap is
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in quite good agreement with the total gap for some systems [10]. Further studies,
however, show that the agreement is due to a fortuitous cancellation of errors in these
systems and does not hold in general [11]. In addition, the derivative discontinuity
is not zero for the exact-exchange functional. Adding it according to (1.1) leads to a
total gap which is of the same order as the Hartree-Fock gap and, therefore, greatly
overestimates the experimental values. There was some hope that the correlation
energy shows a derivative discontinuity of the same absolute size as the exchange
part such that the two discontinuities cancel. Recent calculations, however, show
that including correlation, using an EXX plus random-phase approximation (RPA)
functional [12, 13, 14], not only changes the derivative discontinuity but also affects
the KS gap. The KS gap of an EXX+RPA calculation is of the same order as the
LDA gap. Including the non-zero derivative discontinuity in EXX+RPA, finally,
results in a good agreement with experiment, at least for the few systems calculated
so far [15].

In other words, we need a very accurate approximation for the exchange-correla-
tion energy in order to obtain reasonable results for the gap in DFT. But instead of
improving the functionals one can also extend DFT itself and calculate the funda-
mental gap in the extended theory. Using improved functionals was recently investi-
gated in [15]. Here, we consider reduced-density-matrix-functional theory (RDMFT)
in the first part of this thesis. In RDMFT the basic variable is the one-body reduced
density matrix (1-RDM), instead of the density in DFT. Due to the idempotency
of a non-interacting 1-RDM, a property that is not shared by any interacting 1-
RDM, there exists no KS system in RDMFT. The energy is therefore minimized
directly with respect to the 1-RDM leading to the problem of N -representability.
In the minimization one has to ensure that only 1-RDMs corresponding to properly
anti-symmetrized N -particle wave functions are considered.

We derive a formula in analogy to Eq. (1.1) to calculate the fundamental gap in
RDMFT. As in DFT, the original theory has to be extended to fractional number
of particles. Consequently, the N -representability problem has to be addressed
within the extended theory. We find a set of necessary and sufficient conditions
to ensure N -representability for fractional particle number. The formula for the
fundamental gap was applied to finite as well as periodic systems. The results are in
excellent agreement with other theoretical calculations as well as experimental data.
This is especially noteworthy since only a very limited number of approximations
are available in RDMFT at present and the applications used a first generation
functional [16].

First, we introduce RDMFT and its underlying theorems in Chapter 2. In Chap-
ter 3 we present possible approximations and briefly comment on their quality.
Chapter 4 contains our derivation of the formula for the fundamental gap calculated
within RDMFT. In this context, the N -representability constraints, discussed in
Chapter 2, are extended to fractional particle number. In Chapter 4 we also present
our numerical results for several finite as well as periodic systems.

In the second part of this thesis, the treatment of systems in external magnetic
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fields is discussed. The necessary formal extension of DFT to Current-Spin DFT
(CSDFT) was given by Vignale and Rasolt already in 1987 [17, 18]. Extending
the approximations for Exc from DFT to CSDFT, however, turned out to be a
non-trivial task. The LDA and GGAs all rely on calculations for the homogeneous
electron gas (HEG). Applying an external magnetic field of variable strength to the
HEG, the energy density changes discontinuously whenever a new Landau level
is filled [19]. This is a physical effect but the consequences are quite severe if
properties of the HEG are used as LDA-type approximations for other systems.
The exchange-correlation potential suffers from divergencies at these points because
it results from a functional derivative of the exchange-correlation energy. Hence,
it is impossible to directly implement an LDA or GGA potential in a numerical
calculation. In addition, the discontinuities and respective divergencies appear at
the Landau levels of the HEG not at the ones of the inhomogeneous systems. Thus,
they appear, in general, at the wrong magnetic field strengths. The only solution
to this problem until very recently has been an interpolation between a functional
at zero magnetic field and a different functional at high magnetic field such that
the divergencies could be avoided completely. Since the filling of Landau levels is
apparently an orbital effect, the idea of using orbital functionals seems appealing.
To put this idea into practice, it is necessary to extend the orbital effective potential
(OEP) formalism to CSDFT which was done in my diploma thesis [20]. The OEP
method needs to account for the two additional potentials in the Hamiltonian, the
magnetic field and the corresponding vector potential treated as independent in this
approach. As a consequence, one obtains three coupled OEP equations for the three
corresponding exchange-correlation potentials. Their solution can be simplified by
additional approximations such as collinear magnetism. In this PhD thesis, the OEP
formalism is applied to describe quantum dots in an external magnetic field. The
quantum dot itself is theoretically best described as a two-dimensional system with
a parabolic potential. The constant external field is applied along the symmetry
axis of the system.

Chapter 5 contains our extension of the optimized effective potential method
to current-spin-density-functional theory. Also the resulting equations for several
additional approximations, like collinear magnetism, are given in this chapter. We
present the numerical implementation for quantum dots and the results of the cal-
culation in Chapter 6. The whole thesis is concluded with a summary and outlook
in Chapter 7.

Atomic units (~ = e = m = 1) are used throughout the whole thesis.


