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Zusammenfassung

Wie der deutsche Untertitel dieser Dissertation „Auf der Suche nach dem Sinn 

des Lesens“ verdeutlichen soll, hängt das erfolgreiche Wiedererkennen geschriebener 

Wörter von mentalen Repräsentationen unterschiedlicher Größen und deren 

Zusammenspiel ab (Ziegler & Goswami, 2005). Der Buchstabe „s“ in „Lesens“ kann mit 

einem aus dem Kontext vorhersagbaren Wort wie „Lebens“ im Konflikt stehen. Ziel der 

vorliegenden Dissertation war es diese drei Determinanten der Bedeutung von Wörtern 

in einem einheitlichen Modell der Worterkennung zu fassen: Buchstaben, Wörter und 

Sinnzusammenhänge zwischen Wörtern.

Die theoretische Basis dieser Dissertation bilden „Interactive Activation Models“ 

(IAMs, McClelland & Rumelhart, 1981). Das ursprüngliche Modell kann die zum 

Wiederkennen von Buchstaben notwendigen Prozesse simulieren (z.B. McClelland & 

Rumelhart, 1981). Doch auch das Zusammenfügen solcher sub-lexikalischen 

Repräsentationen zu lexikalischen Repräsentationen ganzer Wörter lässt sich in diesen 

Modellen darstellen, um damit menschliches Verhalten vorherzusagen (z. B. Grainger & 

Jacobs, 1996). Während IAMs sowohl orthographische als auch phonologische 

Prozesse des Lesens bereits abbilden können (z. B. Coltheart, Rastle, Perry, Langdon, 

& Ziegler, 2001; Perry, Ziegler & Zorzi, 2007), ist die Quantifizierung möglicher Einflüsse 

des sprachlichen Kontextes auf das Wiedererkennen von Wörtern noch problematisch. 

Assoziationen zwischen Wörtern, wie z. B. die semantische Relation von „Organ“ zu 

seinem Unterbegriff „Lunge“, wurden zwar verbaltheoretisch postuliert (Coltheart, Curtis, 

Atkins, & Haller, 1993; McClelland & Rumelhart, 1981; Jacobs & Grainger, 1994). Bisher 

wurden sie jedoch noch nicht zur quantitativen Vorhersage von Verhaltensdaten in ein 

solches Modell implementiert.
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Am Anfang dieser Dissertation stand die Frage, ob die Auftretenshäufigkeiten 

von Buchstaben (Grainger & Jacobs, 1993) und anderer sub-lexikalischer Repräsen-

tationen den Prozess der Worterkennung beeinflussen. Studie 1 behandelt diese Frage 

im Überblick über bisherige Artikel. Die darin enthaltenen Korpus-Analysen (Baayen, 

Piepenbrock, & Gullikers, 1995) stellen ferner diverse sub-lexikalische Frequenzen für 

das Deutsche bereit, i.e. type und token Buchstaben- und Phonem-, Bigramm- und 

Biphonem-, sowie orthographische und phonologische Silben-Frequenzen für 

Wortformen und Lemmata.

Studie 2 wendet sich den Eigenschaften ganzer Wörter zu, und „beleuchtet“ 

neuronale Korrelate der Worterkennung mittels funktioneller Nah-Infrarotspektroskopie 

(fNIRS; z. B. Steinbrink, Villringer, Kempf, Haux, Boden & Obrig, 2006). Wie auch in den 

Studien 3 und 4 kommt eine lexikalische Entscheidungsaufgabe zum Einsatz, in der die 

Versuchspersonen entscheiden sollen, ob die dargebotene Buchstabenfolge ein Wort 

ist oder nicht (Nichtwort). Wörter lösten einen höheren Blutsauerstoffverbrauch im 

superioren Frontallappen und im linken inferioren Parietallappen aus als Nichtwörter. 

Die Funktion ersterer Region lässt mit entscheidungsrelevanten Prozessen der 

visuellen Worterkennung beschreiben (Fiebach, Ricker, Friederici, & Jacobs, 2007). Die 

Funktion letzterer Region betrifft wahrscheinlich die Integration orthographischer, 

phonologischer und semantischer Repräsentationen – ein Prozess der so nur für Wörter 

stattfindet (vgl. Binder et al., 2003). Weiterhin wiesen die optischen Bildgebungsbefunde 

auf einen erhöhten Sauerstoffverbrauch im linken inferioren Frontallappen bei seltenen 

im Vergleich zu häufigen Wörtern hin. Dies lässt sich dadurch erklären, dass seltene 

Wörter nicht eindeutig identifiziert werden, was zu Konflikten zwischen gleichzeitig 

aktivierten lexikalisch-semantischen Repräsentationen führt. Die Auflösung dieses 

Konfliktes bei der Auswahl einer Bedeutung aus vielen möglichen Bedeutungen stellt 

gemäß Thompson-Schill und Botvinick (2006) die wesentliche Funktion des linken 

inferioren Frontallappens dar.
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In Studie 3 wird ein anderer lexikalischer Konflikttypus, sowie dessen hirnelek-

trischen Korrelate mit einem IAM simuliert (Jacobs, Rey, Ziegler, & Grainger, 1998). Da 

sich die Aussagen dieser Studie auf Nichtwörter stützen, kommt diese Modellvorstellung 

gänzlich ohne eine Bedeutungsrepräsentation aus. Je mehr orthographisch und 

phonologisch definierte Wortform-Repräsentationen durch ein Nichtwort aktiviert 

werden, und umso stärker deren Aktivierungen sind, desto größer ist der Konflikt 

zwischen diesen lexikalischen Repräsentationen (Botvinick, Braver, Barch, Carter, & 

Cohen, 2001). Wie von der „conflict monitoring theory“ vorhergesagt (Yeung, Botvinick, 

& Cohen, 2004), stieg die zweite Negativierung des ereigniskorrelierten Potentials 

(EKPs) graduell an, wenn die Nichtwörter stärkere lexikalische Konflikte auslösten. 

Diese im Zeitfenster von 400 bis 600 ms nach Reizdarbietung gefundenen 

Negativierungen lassen sich – wie von Botvinick et al. (2001) vorhergesagt (vgl. 

Ridderinkhof, van den Wildenberg, Segalowitz, & Carter, 2004) – auf Quellen im 

anterioren cingulären Cortex und im mittleren Frontallappen zurückführen (Pascual-

Marqui, 2002). Die IAM-Simulationen sagen auf Item-Ebene voraus, welches Nichtwort 

welche mittleren Reaktionszeiten, Fehlerraten, und EKP-Negativierungen auslöst. 

Damit erschließt diese Studie die Item-Ebene – als eines der ambitioniertesten IAM-

Model-Evaluationskriterien -- nun auch für neurophysiologische Variablen (vgl. Rey, 

Dufau, Massol, & Grainger, 2009).

Studie 4 untersucht EKPs und Pupillenerweiterungen bei der Verarbeitung 

affektiver Bedeutungskonnotationen von lexikalischen (i.e. Wort-) Repräsentationen. 

Negativ geladene Wörter lösten bei hohem Erregungspotential (arousal) schnellere und 

bei niedrigem Erregungspotential langsamere Reaktionen aus als neutrale, 

niedererregende Wörter. Hingegen ließ sich bei positiv valenten Wörtern auch ohne ein 

erhöhtes Erregungspotential eine Vereinfachung der Worterkennung beobachten. Die 

pupillometrischen Analysen verliefen ergebnislos. Vergleicht man dieses Ergebnis mit 

anderen Studien (Kuchinke, Võ, Hofmann, & Jacobs, 2007; Võ et al., 2008), lässt sich 
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dieser negative Befund als Hinweis auf eine Rolle der Pupille als Indikator kognitiver 

Anstrengung deuten (Beatty, 1982; Briesemeister, Hofmann, Tamm, Kuchinke, Braun, & 

Jacobs, 2009). Es spricht gegen eine direkte Beteiligung der Pupillendilation bei 

affektiven Prozessen (Hess, 1965). Weiterhin wurden beide antworterleichternden 

Bedingungen – also niedererregend positive und hocherregend negative Wörter – 

schon 80-120 ms nach Reizdarbietung von erhöhten EKP-Negativierungen begleitet. 

Dies weist darauf hin, dass affektive Bedeutungskonnotationen den Zugriff auf ein 

hypothetisches mentales Lexikon erleichtern (Sereno & Rayner, 2003). Die EKP-Effekte 

hocherregend negativer Wörter ließen sich auf Quellen im linken fusiformen Gyrus (vgl. 

Kronbichler, Hutzler, Wimmer, Mair, Staffen, & Ladurner, 2004) und mittleren 

Temporallappen zurückführen. Da letztere Region mit semantischen Prozessen in 

Verbindung gebracht wird (Price, 2000), lässt sich dieses Ergebnis als Hinweis auf eine 

Hypothese von Maratos, Allan und Rugg (2000) deuten. Diese besagt, dass die Effekte 

affektiver Wörter im Wesentlichen durch deren stärkere semantisch-assoziative 

Verknüpftheit zu anderen Wörtern ausgelöst werden.

Studie 5 untersucht den Einfluss von assoziierten Wörtern im Reizmaterial auf 

das Wiedererkennen gelernter und nicht-gelernter Wörter. Schon Hebb (1949) hatte 

postuliert, dass häufig gemeinsam auftretende Reize wahrscheinlich als assoziiert 

gelten können. Deshalb wurden in dieser Studie – basierend auf psycholinguistischen 

Ansätzen – zwei Wörter jeweils als 'assoziativ verknüpft' definiert, wenn sie signifikant 

häufig gemeinsam in den Sätzen eines der größten deutschen Korpora auftreten 

(Quasthoff, Richter, & Biemann, 2006). Gelernte und nicht-gelernte Wörter, die viele 

solcher signifikant ko-okkurrenten Reize im Experiment aufwiesen, erzielten höhere 

Wiedererkennensraten als solche mit wenigen assoziierten Wörtern. Auch im Simulati-

onsmodell wurden signifikante Ko-okkurrenzen von Wortpaaren zur Definition von 

Assoziationen eingesetzt, um die assoziative Aktivierungsausbreitung zwischen den 

Wörtern im Experimentalverlauf, und damit den Einfluss des sprachlichen Kontexts auf 
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die Einzelworterkennung zu simulieren (Anderson, 1983; Collins & Loftus, 1975). 

Gleichzeitig wurde ein signalentdeckungstheoretischer Ansatz in das Modell integriert 

(Jacobs, Graf & Kinder, 2003), und dessen Annahme größerer Gedächtnissignale für 

gelernte Wörter übernommen (z. B. Green & Swets, 1966). Aus der Aktivierung vieler 

aktiver Gedächtnisrepräsentationen im Modell entstand deren starke Kompetition. Dies 

führte dazu, dass jede Wortrepräsentation in der Summe ein inhibitorisches Signal 

erfährt. Eine solche „Netto“-Inhibition wird in einem IAM durch die Aktivierung der 

Repräsentation selbst skaliert, um die Aktivierungsänderung zu bestimmen. So 

resultieren aus den erhöhten Gedächtnissignalen für gelernte Wörter unmittelbar deren 

erhöhte Aktivierungsvarianzen, was der ad-hoc Annahme ungleicher Signalvarianzen 

der klassischen Signalentdeckungstheorie entspricht (Green & Swets, 1966). Dieser 

Ansatz kann daher den in Wiedererkennensaufgaben typischen Befund einer Steigung 

kleiner 1 für z-transformierte „Receiver Operation Characteristics“ erklären (z-ROC; 

Glanzer et al., 1999). Diese Steigung der z-ROC Steigung spiegelt die größere 

Gedächtnissignalvarianz gelernter Reize wider (z.B. Shiffrin & Steyvers, 1997; 

McClelland & Chappel, 1998). Für die Simulation wurden die freien Parameter so 

angepasst, dass das Modell die empirisch erhaltenen z-ROCs vorhersagen kann. Das 

resultierende „Associative Read-Out Model“ (AROM) ist darüber hinaus auf der Ebene 

der konkreten einzelnen Items in der Lage vorherzusagen, welches Wort mit welcher 

Wahrscheinlichkeit erinnert wird. Die Wiedererkennensrate eines Wortes steigt mit der 

Anzahl assoziierter Wörter im Stimulusmaterial an, die als assoziative Hinweisreize 

dienen können. Da viele der am stärksten assoziierten Wörter im Modell eine 

semantische Relation zu dem präsentierten Wort aufwiesen (z.B. Synonymie), kann das 

AROM als das erste IAM gelten, das auch semantische Prozesse abbilden kann.

Mit der Definition der Bedeutung eines Wortes durch dessen gemeinsame 

Auftretensgeschichte mit anderen Wörtern, erschließen sich viele neue Fragestellungen 
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für deterministische Simulationsmodelle der Sprachverarbeitung: Kann das AROM 

menschliches Verhalten genauer vorhersagen, wenn dessen assoziativer Wiederfinden-

sprozess („recollection“) durch die im Modell ohnehin schon enthaltenen (orthogra-

phischen) Vertrautheitsinformationen (familiarity) ergänzt wird (Jacobs et al., 2003; 

Yonelinas, 1994)? Zeichnen sich affektiv geladene Wörter wirklich im Wesentlichen 

dadurch aus, dass diese mehr semantisch-assoziative Verknüpfungen zu anderen 

Wörtern aufweisen? Da die Reihenfolge der präsentierten Wörter für den Sinn, den ein 

Wort auslöst, als kritisch gelten kann, besteht die wesentlichste zukünftige 

Herausforderung in der Fixierung der zeitlichen Struktur der Sprache im Modell (Elman, 

1990, 2004; Rumelhart, 1967). Damit ließe sich das Wiedererkennen von Wörtern im 

Satzkontext modellieren. Ein solches Modell könnte beispielsweise Aufschluss über die 

Frage geben, ob der linke inferiore Frontallappen tatsächlich sensitiv auf Bedeutungs-

konflikte reagiert (Thompson-Schill & Botvinick, 2006), wie sie zum Beispiel durch das 

letzte Wort des Satzes „Auf der Suche nach dem Sinn des Lesens“ ausgelöst werden.
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Summary

The successful recognition of written words crucially depends on mental 

representations of different sizes, and their interplay (Ziegler & Goswami, 2005). Letters 

form words, and words are embedded into context. So, when you read “The road to hell 

is paved with good inventions”, you expected 'intentions' from the context of this famous 

proverb. This expectation is in conflict with what you actually read, i.e. 'inventions'. 

Thus, a letter changes a word, which also changes the whole meaning of the phrase. 

The aim of this thesis was to integrate all of these three representation levels into a 

single computational model of word recognition: letters, words, and language context. 

All of these are necessary for words to generate meaning.

This enterprise is theoretically based on interactive activation models (IAMs, 

McClelland & Rumelhart, 1981). The original model simulated the recognition of letters. 

When putting these sub-lexical units together, words can be formed. The successor 

model predicted performance during word recognition (Grainger & Jacobs, 1996). While 

IAMs can excellently account for the orthographic and phonological processes of 

reading (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Perry, Ziegler & Zorzi, 

2007), quantifying the influence of the context of other words still seems to be an 

unanswered challenge for this type of model. Associations between words like the 

semantic relation of 'organ' to his hypernym 'lung' have been posited in a verbal-

theoretical fashion (Coltheart, Curtis, Atkins, & Haller, 1993; McClelland & Rumelhart, 

1981). However, they were never implemented for the quantitative performance 

predictions that are possible with IAMs (Jacobs & Grainger, 1994).
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Study 1 addressed the influence of the frequencies of sub-lexical units on word 

recognition. It reviews previous empirical work on that issue. Moreover, analyses of the 

CELEX-corpus provided type and toke letter and phoneme, bigram and biphoneme, as 

well as orthographic and phonological syllable frequencies for German word forms and 

lemmata (Baayen, Piepenbrock, & Gullikers, 1995).

Study 2 used functional Near-infrared Spectroscopy (fNIRS) to 'enlighten' the 

brain processes elicited by whole-word, lexical representations. As in the Studies 3 and 

4, participants performed lexical decisions, at which they decide whether the presented 

letter string is a word, or not (nonword). The results indicated a greater oxygen 

consumption to words than to nonwords in the superior frontal and left inferior parietal 

gyri. The first region's function was associated with decision-related processes of word 

recognition (Fiebach, Ricker, Friederici, & Jacobs, 2007). The second region's function 

most likely concerns the integration of orthographic, phonological and semantic 

representations (e.g., Binder et al., 2003), which is a process that only occurs in word 

stimuli. Moreover, the results index a greater oxygen consumption in the left inferior 

frontal gyrus for low frequency in comparison to high frequency words. This can be 

explained by low frequency words being more equivocally recognized, which leads to a 

conflict between concurrently activated lexico-semantic representations. Thompson-

Schill and Botvinick (2006) proposed that the critical function of this region consists of 

resolving this conflict during the selection of an appropriate meaning.

Study 3 relied on an IAM to simulate a different type of conflict between lexical 

representations (Jacobs et al., 1998). These simulations were used to predict 

electrophysiological findings. Because this Study's conclusions are based on nonwords, 

semantic representations likely don't play any role. The idea was that the more 

orthographically and phonologically defined word form representations are activated by 

a nonword, and the stronger the activations of the word representations are, the keener 

is the competition between them (Botvinick, Braver, Barch, Carter, & Cohen, 2001). As 
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predicted by the conflict monitoring theory (Yeung, Botvinick, & Cohen, 2001), the 

second negative deflection of the event-related potential (ERP) increased parametrically 

with the amount of conflict elicited by the nonwords. Source localization attributed these 

ERP effects to the anterior cingulate and the medial frontal gyri (Pascual-Marqui, 2002; 

Ridderinkhof, van den Wildenberg, Segalowitz, & Carter, 2004). The model predicted 

which nonword elicits which RTs, error-rates, and ERP amplitudes on an item-level. 

Thus, the study bridged the gap between fine-grained, quantitative model predictions 

and the actual neural response (cf. Rey, Dufau, Massol, & Grainger, 2009).

Study 4 investigated ERPs and pupil dilation responses during the processing of 

affective connotations of words. High-arousal negative words elicited faster, and low-

arousal negative words elicited slower RTs than (low-arousal) neutral words. In contrast, 

response facilitation to positive words was apparent even when arousal was low. The 

analysis of the pupil data elicited no significant effects. When compared to other studies 

(Kuchinke, Võ, Hofmann, & Jacobs, 2007; Võ et al., 2008), this (zero) finding suggests 

that the pupil dilates in cognitively demanding situations (Beatty, 1982; Briesemeister, 

Hofmann, Tamm, Kuchinke, Braun, & Jacobs, 2009), rather than being driven by 

affective processing itself (Hess, 1965). Moreover, positive and high arousal negative 

words elicited a greater ERP negativity in a time frame from 80 to 120 ms. As both of 

these conditions also facilitated the behavioral responses, the study provides 

converging evidence that affective processes facilitates the access to a hypothetical 

mental lexicon (Sereno & Rayner, 2003). The ERP arousal effects in negative words 

were source-localized in the left fusiform (vgl. Kronbichler, Hutzler, Wimmer, Mair, 

Staffen, & Ladurner, 2004) and middle temporal gyri. Because the latter region was 

associated with semantic processing (Price, 2000), this result points at a hypothesis by 

Maratos, Allan, and Rugg (2000). The effects elicited by affective words may be 

explained by the greater semantic-associative connectivity to other words.
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Study 5 tested whether learned and non-learned words are more often 

recognized, when they have a greater amount of associated items in the stimulus set. 

According to Hebbian learning (Hebb, 1949), two words were defined 'associated' when 

they co-occur significantly often together in the sentences of one of the largest German 

corpora (Quasthoff, Richter, & Biemann, 2006). As expected, a greater amount of 

associated items elicited more 'yes' responses during the recognition of learned and 

non-learned words. Moreover, co-occurrence statistics were used to implement 

associations between words into an IAM. Accordingly, associative spreading activation 

between the word stimuli accounted for the influence of the experimental word context 

on word recognition (Anderson, 1983; Collins & Loftus, 1975). Moreover, a signal 

detection approach was integrated into the model. According to signal detection theory, 

learned items obtained greater memory signals than non-learned words (Green & 

Swets, 1966). To allow for associative interactions between all items, their associative 

representations were initialized in an active state. Therefore, a strong competition 

between them resulted. As a consequence, each word representation obtained an 

inhibitory signal, in sum. Such a 'net' inhibition is scaled by the activation of the 

representation itself in an IAM, to obtain the final activation change. Thus the learned 

items greater activation variability results from their greater initial memory signal, in 

comparison to non-learned representations. This corresponds to the unequal variance 

ad-hoc assumption in classical signal-detection theory (Green & Swets, 1996), which 

explains why the z-transformed Receiver Operation Characteristics (z-ROC) typically 

reveals a slope lower one during recognition memory (Glanzer, Kim, Hilford, & Adams, 

1999). The slope of the z-ROC mirrors a greater signal strength variance for learned 

items (e.g., Shiffrin & Steyvers, 1997; McClelland & Chappel, 1998). When the model 

parameters were optimized to account for the empirical z-ROCs, the obtained 

“Associative Read-Out Model” (AROM) can predict which word is remembered with 

which probability. Recognition rates increase as a function of the amount of associated 
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items in the stimulus set, because the associates cue the retrieval of a word. Many of 

the model's most strongly associated items reflected a semantic relation to the 

presented word, e.g., synonymy. Therefore, the AROM can be considered as the first 

IAM with a fully implemented semantic layer.

By defining the meaning of a word by its co-occurrence history with other words, 

many questions become addressable by deterministic models of language processing: 

Can the AROM better account for human performance, when its associative 

“recollection” process is complemented by the available (orthographic) familiarity 

information (Jacobs et al., 2003; Yonelinas, 1994)? Does the critical feature of 

affectively loaded words indeed consist of their stronger associative-semantic wiredness 

to other words? However, the actual word sequence is critical for the meaning elicited 

by a word (Elman, 1990, 2004; Rumelhart, 1967). Therefore, the essential future 

challenge lies in fixing “the structure of time” (Elman, 1990). By doing so, word 

recognition could be modeled in sentence context. Such a model could prove useful for 

answering the question whether the inferior frontal gyrus indeed responds sensitively to 

conflicts between differential meanings (Thompson-Schill & Botvinick, 2006). Such a 

conflict could be elicited by the last word of the sentence “The road to hell is paved with 

good inventions.”
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  General Introduction 

Word recognition is such a highly automated process that readers may easily 

forget what complex task they perform. To name only a few of the sub-processes 

engaged in reading, it contains perceiving visual features, composing these to letters, 

integrating the letters into words, imagining the sound of the pronounced words, 

decomposing these to syllables and the smallest sound units, imagining the referent on 

which it relates, retrieving this information from long-term memory, and connecting the 

single words’ meaning to the meaning of other words. 

However, such cognitive processes do not yet capture how words can affect the 

human being. When considering that something read can completely change the 

apperception the world, it is hard to believe that one day all processes elicited by written 

words can be fully understood. To put it into Jonathan Ive’s words:

“When something exceeds your ability to understand how it works, it sort of  

becomes magical.” (http://www.youtube.com/watch?v=sYpK6GecpcU&feature=related) 

And the issue of science is to de-mystify this magic, to approximate constantly towards 

a better understanding of how things work.
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Setting letters and words into context: An Associative Read-Out Model

Extending the theoretical base: Interactive Activation Models

Computational models provide one way to bring order into the various processes 

involved in reading. When processes become too complex to be handled in a verbal-

theoretical fashion, programming down how things appear to work favors theoretical 

clarity and falsifiability (Jacobs & Grainger, 1994).

The theoretical base of this thesis consists of the prototype of a so-called localist 

connectionist model: the interactive activation model (IAM, McClelland & Rumelhart, 

1981). However, before turning to the description of this model, the terms localist and 

connectionist require definition.

The basic idea of connectionist models is that there are mental representations. 

These are represented by variables, often called units or nodes. The value of the 

variable is called activation. These variables are connected, which represents cognitive 

processes that act on these representations. These representations can receive 

information from other representations, as well as they transmit it to other units.

Two types of representations can be distinguished in connectionist models: 

distributed and local representations. In a model using distributed representations, a 

single real-world entity is represented by multiple variables (e.g., Seidenberg & 

McClelland, 1989). Local representation variables, in contrast, reflect a single real-world 

entity, e.g. a letter or a word (e.g. Grainger & Jacobs, 1998; Page, 2000).
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General Introduction 

The original interactive activation model and the identification of letters

The IAM contains three layers (McClelland & Rumelhart, 1981; cf. Grainger & 

Jacobs, 1996; Figure 1). Each of these layers contains one type of local representation 

variable. The first layer represents visual features, such as “|” as a straight line at a 

particular position, e.g. in the middle of a letter. The second layer contains letters, which 

are defined by the activation of visual features. For instance, “T” is composed of two 

straight lines, and when both of these become activated, they likely activate the letter 

representation of “T”. The third layer represents orthographic word forms, such as 

“TRIP”, which receive activation from certain letters at particular positions.

The connections between these representation variables can be excitatory, e.g. 

when “I” as visual feature is apparent in the middle of a letter position, it activates the 

letter “T”. Alternatively, connections can be inhibitory: The line “I” in the middle of a letter 

position is evidence against an “N” at this position, because this letter does not contain 

that particular visual feature. Therefore, the visual feature representation “I” inhibits the 

letter representation “N”.

McClelland and Rumelhart (1981; Figure 1) designed this model to explain 

human performance in tasks at which letters have to be recognized. Reicher (1969) and 

Wheeler (1970) had shown that letters are better identified when they are embedded in 

words as compared to meaningless letter strings. McClelland and Rumelhart (1981) 

explained this word superiority effect by excitation from the word to the letter layer. 

When a word is presented, its letter unit receives excitatory activation from the word 

representation. Therefore, the letter activation is higher. This activation can be 

interpreted as evidence for a particular mental representation. The higher activation of a 

letter predicts the perceptual advantage of perceiving letters contained in words.
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Though there are other perceptual identification tasks that were modeled by the 

IAM. For example, Grainger and Jacobs (1996) simulated performance in a progressive 

demasking task, in which words have to be recognized.

Figure 1: Schematic representation of the basic architecture of the Interactive 

Activation Model (taken from McClelland & Rumelhart, 1981). Visual word stimuli are 

presented to the feature layer (lowest representations). The visual features activate 

letter units of the respective letter position at the letter layer (middle). The letter units 

then activate the visual word units at the orthographic word layer (upper). The units are 

connected by excitatory (arrowed line ends) and inhibitory connections (dotted line 

ends). 
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General Introduction 

The Multiple Read-Out Model and the recognition of words

The Multiple Read-Out Model (MROM, Grainger & Jacobs, 1996) contains an 

unchanged IAM. This corresponds to the modeling strategy of “nested incremental 

modeling” (Jacobs & Grainger, 1994). If this strategy is applied, a new model is based 

on its predecessor1. This allows the new model to account for all effects its predecessor 

can. All of the models presented in the following contain an IAM.

The probably most important achievement of the MROM is, that it captured word 

recognition performance in an IAM framework. Whereas the original IAM was primarily 

designed for letter recognition (but cf. Rumelhart & McClelland, 1982), the MROM used 

the same architecture to predict human performance when more than one letter must be 

identified: words.

Typically, the MROM is used to predict performance in the lexical decision task 

(LDT), at which participants decide whether a presented letter string is a word, or not 

(nonword). This model-based theoretical perspective suggests that the critical difference 

between these two types of stimuli is, that words are contained in the word layer, 

whereas nonwords are not. This difference between words and nonwords – i.e. that only 

the former are contained in the hypothetical “mental lexicon” – is often termed lexicality.

To illustrate the major advantages of the MROM, its dynamic perspective can be 

beneficial. Transmitting evidence between the layers – such as from the feature to the 

letter, or from the letter to the orthographic word layer – occurs in time. In the model, 

processing cycles illustrate the dynamics of information transmission during the 

recognition of sub-lexical and lexical stimuli. This dynamic perspective allows the 

MROM to predict human performance during the lexical decision task.

1More exactly, nested modeling is defined as: "a new model should be related to or include, at least, its 
own, direct precursors and be tested against the old data sets that motivated the construction of the old 
model before testing it against new ones" (Jacobs & Grainger, 1994, pp. 1329).
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The novel modeling elements of the MROM consist of decision mechanisms that 

operate on multiple sources of lexical information in time. The activation of an 

orthographic word representation can thus be regarded as lexical activation function (cf. 

Figure 2): If a particular word representation – e.g of the word “blur” – crosses that 

criterion, the model simulates the identification of this particular word.

However, when the word “blur” is presented, not only the representation of this 

word gains activation, but also representations of similar words, like “slur” or “blue”. By 

summing the activation of these word units, a second source of information is simulated 

(Grainger & Jacobs, 1996). It can be termed familiarity (Jacobs, Graf, & Kinder, 2003). 

Performing lexical decisions based on this source of information may phenomenally 

correspond to a global feeling that the stimulus is a word, in absence of its concrete 

identification (cf. Yonelinas, 1994). To make a decision, familiarity is evaluated by a 

variable criterion. If it's crossed, a 'yes' response is executed. The cycle at which one of 

these sources of information crosses the identification threshold or a familiarity criterion, 

a 'yes' response is executed. A third mechanism is used for the 'no' response: When no 

'yes' response is executed within a certain amount of time, the model responds 'no'.
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Figure 2 shows the lexical activation functions in the orthographic word layer of 

the MROM (Figure taken from Grainger & Jacobs, 1996). The word “blur” was 

presented to the model. Apart from the word representation “blur”, also representations 

of orthographically similar words were activated (“blue”, “slur”). There are three decision 

mechanisms, that are applied to the dynamic activation functions of lexical information 

accumulation. The identification criterion ('M') is indicated by the solid horizontal line: 

When “blur” crosses that criterion at cycle 18, a 'yes' response is executed. The cycles 

at which responses are executed served for simulating response times. Alternatively, a 

'yes' response can be executed when the summed activation of the three activated 

representations (dashed curve) reaches the familiarity-criterion (dashed horizontal line, 

'∑'). If no response is executed within a certain amount of time, the temporal deadline 

executes a 'no' response (dashed vertical line, 'T').

7



Setting letters and words into context: An Associative Read-Out Model

The identification information and the familiarity information of the MROM have 

been related to Yonelinas' (1994) famous dual-process measurement model (Jacobs et 

al., 2003). Yonelinas (1994) describes the term “familiarity” by the evidence variable in 

the most simple signal detection model (Green & Swets, 1966; Jacobs et al., 2003, cf. 

Figure 3). Familiarity is defined by two signal strength distributions of equal variance. 

When the MROM's 'yes' response probabilities of differential familiarity criteria are 

plotted for word stimuli on a y-axis, and for nonword stimuli on an x-axis, so-called 

Receiver Operation Characteristics can be simulated (ROC, Jacobs et al., 2003). By 

transforming them to z-space, the z-ROC's slope denotes the relationship of the signal 

strength variances, when they are normally distributed (Green & Swets, 1966).

To be able to address the function of the familiarity mechanism in absence of the 

identification mechanism, Jacobs et al. (2003) introduced a process-purity assumption 

for the lexical decision task (cf. e.g., Wixted, 2007). Using a data-limited variant of this 

task, they assumed that very short stimulus exposures make the identification of the 

stimulus very unlikely. Thus, decisions should be based exclusively on a global feeling 

of familiarity, as implemented by the summed activations of all word representations 

(Grainger & Jacobs, 1996; Jacobs et al., 2003). The process-purity assumption was 

confirmed. The empirical data of the data-limited lexical decision task provided a slope 

of one, just like the MROM's familiarity as the summed lexical activations (Jacobs et al., 

2003). Thus, a critical feature of familiarity was simulated (Jacobs et al., 2003; 

Yonelinas, 1994). An increase in familiarity increases the total (familiarity) signal 

strength level, but not its variability (Yonelinas, 1994, but cf. e.g, Glanzer, Kim, Hilford, & 

Adams, 1999). However, the theoretical perspective of a dual-process model would 

assume recollection as a second source of information, when recognition would not be 

based on familiarity solely. This has not yet been investigated in an IAM, though the 

MROM's word identification mechanism is a likely candidate for a second source of 

information (Jacobs et al., 2003). 
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The MROM was designed to account for a considerable amount of effects during 

lexical decision. For instance, it accounted for high frequency words to elicit faster and 

more accurate responses than low frequency words by McClelland and Rumelhart's 

earlier assumption of a higher lexical base-level activation for high-frequency words 

(Grainger & Jacobs, 1996). Another prominent example is that 'yes' responses are more 

likely when many orthographically similar words exist, e.g. orthographic neighbors which 

differ from the stimulus in exactly one letter. Grainger and Jacobs (1996) also proposed 

to model naming by an IAM, because naming and lexical decision can be assumed to 

recruit a subset of common processes.
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Setting letters and words into context: An Associative Read-Out Model

Figure 3: The upper panel shows the distributions of 'familiarity' of the MROM, 

which were elicited by a set of word and nonword stimuli (Figure taken from Jacobs et 

al., 2003). The 'yes'-response probabilities are simulated by the summed frequencies 

('freq') of the items of which the familiarity values cross the respective criterion ('1' to '6'). 

The lower panel opposes the z-transformed probabilities for words [z(H) for hits] on the 

y-axis, to those to nonwords on the x-axis [z(FA) for false alarms]. These are the 

modeled z-ROCs (mod). The empirical z-ROCs were obtained by a confidence 

judgment: How sure is the presented stimulus a word, ranging from '1' ('sure no') to '6' 

('sure yes'). Empirical z-ROCs are generated by accumulating all '2' to '6' responses as 

'yes' response probability for the most liberal response criterion (most upper right dot) to 

the most conservative criterion (most lower left dot), at which only '6' counts as 'yes'.
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Dual-route models and phonological representations in visual word recogni-

tion and reading aloud

Van Orden's (1987) famous article “a ROWS is a ROSE” showed that the 

recognition of written words is mediated by phonological information, even though this 

information is not necessary to recognize these visual stimuli. Ever since, phonology 

has attracted much research in the field of visual word recognition. Localist 

connectionist models reflected that trend: An MROM extended by phonological units 

(Jacobs, Rey, Ziegler, & Grainger, 1998) can account for the finding that nonwords are 

identified slower, when they trigger the phonological representation of a real word (cf. 

Braun, Hutzler, Ziegler, Dambacher, & Jacobs, 2009; Briesemeister, Hofmann, Tamm, 

Kuchinke, Braun & Jacobs, 2009; Ziegler, Jacobs, & Klueppel, 2001). During naming, 

however, phonological representations can be investigated more naturally, because the 

sound-based phonological representation is necessary to read a word aloud.

To simulate naming, an IAM was implemented in the so-called dual route 

cascaded model (DRC, Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; cf. Figure 4). 

The dual routes consisted of a direct-access lexical route, which basically consists of an 

IAM, and an assembled phonology route, which generates a phonological 

representation by rule-based grapheme-phoneme correspondences (GPC). For a high 

frequency word, the DRC assumes that the orthographic word form is directly matched 

to the lexical whole-word phonology. For a low frequency word, in contrast, the DRC 

posits that GPC rules generate a phonological representation. As the GPC route is 

generally thought to be slower, low frequency words take more time to be named. 

Moreover, this accounts for the finding that irregularly spelled low frequency words are 

more prone to elicit an erroneous regular pronunciation than high-frequency words, at 

which phonological representations are directly retrieved.
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Figure 4 shows the dual route cascaded model (Figure taken from Coltheart et 

al., 2001). The right route is the “slow” GPC route, particularly required for naming low 

frequency words and nonwords: Phonological “assembly” works by rules translating 

graphemes to phonemes. The left route is the so-called direct route. Its visual feature, 

letter and orthographic (input) lexicon basically correspond to an IAM. Each entry in this 

input lexicon has its phonological counterpart. The semantic system is only shown for 

completeness of the theory. It has not yet been implemented.
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However, the DRC has been challenged (Coltheart et al., 2001). Relying always 

on rules cannot explain why reading aloud nonwords sometimes bears pronunciations 

that reflect irregular rather than regular phonology (Perry, Ziegler, & Zorzi, 2007). Zorzi, 

Houghton and Butterworth's (1998) continuous dual-process model (CDP) described a 

solution to that problem. It fully relies on localist representations, but adopts a learning 

mechanism from the literature of distributed representations (Plaut, McClelland, 

Seidenberg, & Patterson, 1996). While the CDP is trained to learn orthography-to-

phonology mapping, it applies a “delta-rule” that adjusts the connection strengths 

between orthographic and phonological representations proportional to the amount of 

error between correct pronunciation and actual pronunciation (cf. Widrow & Hoff, 1960). 

The CDP is trained with a corpus that “knows” which word is spelled in what way, much 

like a child that learns phonology by observing its parents. Thus, the model learns the 

correspondence of graphemes to phonemes, which is not a trivial task, because letters 

can represent a grapheme, or can be part of it. For example, the “C” at an initial position 

of the word “cease” is pronounced /s/. In contrast, when an “H” follows, “CH” is 

pronounced /tS/ like in “chair” (cf. Baayen, Piepenbrock, & Gulikers, 1995, for 

phonological notation, cf. Figure 5).
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Figure 5 shows how the mapping of graphemes to phonemes was learned 

(Figure taken from Zorzi et al., 1998). If a “C” is in the initial position of a word it excites 

the possible phoneme /s/ like in “cease” (excitatory connections correspond to solid 

lines). However, if an “H” follows, this pronunciation receives inhibition (dotted lines), 

and the pronunciation /tS/ like in “chair” becomes activated.
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The generalization of the DRC and the CDP, i.e. the CDP+ model (Perry et al., 

2007), captured an even broader range of empirical phenomena. The probably most 

important breakthrough was the CDP+'s unchallenged capability of predicting item-level 

variance (Spieler & Balota, 1997). By simulating the naming latencies for each letter 

string to be named, this model extends the range of criteria, based on which the 

success of a model can be evaluated. Thus a good IAM does not only account for 

empirical phenomena in a qualitative fashion, but it must also face the challenge to 

predict performance in a fine-grained quantitative fashion.

The CDP+ demonstrates that models of visual word recognition and naming 

should compete with respect to the amount of item-level variance accounted for. When 

this is taken as one of the key criteria a successful computational model of word 

recognition must fulfill, quantitative competition between models can facilitate the 

evaluation of theoretical progress in the evolution of computation models (Balota & 

Spieler, 1998; Hofmann, Tamm, Braun, Dambacher, Hahne, & Jacobs, 2008; Jacobs & 

Grainger, 1994; Perry et al., 2007; Rey, Courrieu, Schmidt-Weigand, & Jacobs, 2009).

All of these models were built on the IAM and discussed meaning and semantics 

as a source of additional variance. However, they did not implement it. Like the original 

IAM, they are aware of “higher level input”, but framing this source of information in an 

IAM was the major challenge of this thesis. It has not yet been taken on by any localist 

connectionist model (cf. Figure 6).
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Figure 6 shows a verbal theoretical version of the IAM (taken from McClelland & 

Rumelhart, 1981). It already sketched the role of “higher level input”, such as semantics 

(Rumelhart & McClelland, 1982). However, semantics was not yet implemented.
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How to model (semantic) associations during word recognition?

Dealing with higher level input in a verbal, but not in a computationally concrete 

fashion, surely was a limitation of the original IAM and its successors (McClelland & 

Rumelhart, 1981; Rumelhart & McClelland, 1982). One might speculate that this 

limitation was one of the reasons why the original IAM “was abandoned by its creators” 

(Coltheart et al., 2001, p. 206). An argument for this speculation can surely be derived 

from their later work (e.g., Seidenberg & McClelland, 1989; Rumelhart & Todd, 1993). 

For instance, Seidenberg and McClelland (1989) define “meaning” as something 

“hidden” from the plain sight on local representation variables. Meaning is defined by 

associations evolving between more or less namable entities (Seidenberg & 

McClelland, 1989). Though it is fascinating that such simple learning principles can 

generate higher order representations (cf. e.g., Elman, 1990, 2004), an aim of this 

thesis was to complement the literature by a fully transparent approach. Therefore, the 

model developed here will exclusively rely on local representation variables. The 

challenge consisted of computationally defining contextual between-word associations 

like the semantic relationship of “lung” to its hypernym “organ”. This approach targeted 

human performance predictions in a fully deterministic fashion. However, before we turn 

to that enterprise, let's consider how other approaches dealt with 'semantics'.

In the earliest days of connectionism, hand-crafted connections demonstrated 

semantic networks (e.g., Quillian, 1967), which already sketched semantic taxonomies 

for verbal-level theories (Collins & Quillian, 1969; Collins & Loftus, 1975). Empirical 

research on these models often relies on subjective performance measures. For 

example, a target word was presented and a group of participants named the first words 

that came to their minds (Roediger & McDermott, 1995). Another group of participants 

learned these freely associated words. As a consequence, they erroneously retrieved 

the target word (e.g., Kimball, Smith, & Kahana, 2010). Although such a definition of 
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“association” can serve well for proof-of-concept studies, it cannot reflect all potential 

associative relations. This is necessary, when human performance predictions on an 

item-level would be one of the key model evaluation criteria (Perry et al., 2007; Spieler 

& Balota, 1997). Consider that each word pair can have a semantic relation. So 

checking for the relationships between 100 words means testing 100 * 100 = 10,000 

potential relations. Moreover, attributing a word to a particular taxonomic category can 

be ambiguous. This can be demonstrated when considering a duckbill (Eco, 2003). 

Different observers may classify it as a fish – because of its gills – or as mammal – 

because it breast-feeds (cf. General Discussion). In addition, it lays eggs that look like 

those of birds! In sum, Eco (2003) would likely propose that it would depend on the 

subjective taxonomy of each individual observer whether two words are semantically 

related, or not.

Associations can be defined more easily in an objective fashion. Hebb (1949) 

suggested that two stimuli that occur often together are likely to be associated. 

Moreover, "Firth suggested that “you shall know a word by the company it keeps” and 

that human beings learn at least part of the meaning of a word from “its habitual  

collocation” with other words (Firth, 1957, p. 11)" (cited from Andrews, Vigliocco, & 

Vinson, 2009, p. 465).

Inspired by other applications – such as 'semantic' technologies that complete 

google search queries from likely co-occurring words – the present thesis will define two 

words as being associated, when they occur significantly often together in the 

sentences of a large corpus (Quasthoff, Richter, & Biemann, 2006). Whether these 

significantly co-occurring words are semantically related or not can be evaluated by 

each observer in a post-hoc fashion. Associatedness simply reflects the likelihood of a 

semantic relation.

The potentially most successful approaches to semantics were based on such 

co-occurrence statistics, as well. Landauer and Dumais (1997) represent the meaning 
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of a word by performing an analysis on the latent factors that determine the co-

occurrences of words in documents. They assume that the meaning of a word is 

represented by its loadings on several hundred latent factors. Alternatively, each of 

these factors can be considered as a dimension in a high-dimensional space. 

Accordingly, semantic similarity can be determined by the distance between two words. 

A more recent approach used a dimensional approach to semantics in a Bayesian 

framework (Griffiths, Steyvers, & Tennenbaum, 2007). For a recognition memory task, 

this so-called topic model predicted the 'yes' rate difference of a learned word in 

comparison to the same word when non-learned. In this regard, the topic model already 

comes close to an item-level of prediction. However, knowing whether the variance 

accounted for results from new or old items, is crucial. The lack of separate predictions 

for old and new items results from the fact that the topic model is a purely 

representational model. It does not make any assumptions about the cognitive 

processes acting on these representations (Steyvers, Griffiths, & Dennis, 2006).

A more recent approach calculates the latent factors that determine both, the co-

occurrence in text corpora and free association performance (Andrews et al., 2009). 

This might provide an even more realistic world knowledge representation (Andrews et 

al., 2009). However, approaches that rely on non-namable abstracted factor loadings 

cannot be used in a fully localist model, because this would require that every 

representation variable refers to a single real-world entity (Grainger & Jacobs, 1998). 

Dimension-reduction, however, distributes the meaning representation of a word across 

several variables, much as connectionist models relying on distributed representations 

(e.g., Harm & Seidenberg, 2004; Seidenberg & McClelland, 1989).

Thus, rather than targeting the “semantics” by latent dimensions that do not refer 

to a single meaningful entity, local representations will provide an epistemically 

transparent approach: During any step in the computations, the observer can evaluate, 

whether the processes that act on the meaning relationships between the words provide 
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face validity. There are no hidden or abstract factor representations that have no 

meaning by themselves. Connected units representing concrete words can be more 

directly related to the embodied nature of semantics (cf. Schrott & Jacobs, 2001): 

Neurons that reflect mental representations are connected in the brain. In contrast, it is 

questionable whether the brain hosts a semantic space of about several hundred 

dimensions (but cf. Landauer & Dumais, 1997).

Moreover, Gamallo and Bordag (2010) called into question whether the reduction 

of the latent dimensions does improve model performance, when compared to using the 

original co-occurrence statistics from which the dimensions were derived (cf. Bullinaria 

& Levy, 2007). Thus, computational resources might be better invested into increasing 

the size of the corpus – which clearly can improve the model performance (Rapp & 

Wettler, 1991) –, rather than into the computationally effortful reduction of the “semantic” 

dimensionality (Gamallo & Bordag, 2010).

On the other hand, dimension-reduction allows for integrating the most reliable 

information from corpus-linguistic and subjective measures (Andrews et al., 2009). 

Therefore, the dispute about dimension-reduction or not seems far away from being 

settled. However, when targeting the optimization of performance predictions, a model 

based on simple co-occurrence statistics should be at least considered as theoretical 

alternative to the existing co-occurrence-based dimension-reduction approaches 

(Andrews et al., 2009; Griffiths et al., 2007; Landauer & Dumais, 1995). A simple co-

occurrence approach is more compatible with the theoretical framework of traditional 

associative spreading activation between local representations (e.g. Collins & Loftus, 

1975; Collins & Quillian, 1969, Figure 1).

In addition to being a representational model of “semantics”, an IAM includes a 

memory processing model. Unifying a processing model of memory and a 

representational model of semantics is a vision Mark Steyvers and colleagues already 
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had (Steyvers et al., 2006). The present thesis will provide one possible answer to that 

vision.
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Overview of the present studies and their methods

The first study made sub-lexical frequency measures available for German 

(Study 1). This allowed for controlling confounding variables at a sub-lexical level in 

other studies of this thesis. Then, three studies were conducted on the lexical, whole-

word representation level: Lexicality and word frequency were investigated by optical 

imaging (Study 2). Competing lexical units in a computational model accounted for 

behavioral and electrophysiological data (Study 3), and affective features of words were 

investigated in Study 4. The results of this study pointed towards the so-called semantic 

cohesiveness hypothesis of affective word processing (Maratos, Allan, & Rugg 2000). It 

suggests that much of the influence, that affective words exert on behavioral or neural 

observables, can actually be accounted for by their greater amount of associative-

semantic relations to other words. Therefore, Study 5 examined associative connections 

between words.

Study 1: Sub-lexical frequency measures provided by corpus analyses

Phonological representations can be assumed to be activated incidentally, even 

though phonological processing is not (psycho-)logically necessary for lexical decision 

(Van Orden, 1987). This is probably the case, because learning to speak is driven by 

phonological representations, which are the fundamental memory representations of 

language. Language and semantics have been learned via phonological 

representations in the first place. Therefore, their influence on the processing of 

orthographic representations remains (Ziegler & Goswami, 2005). The CDP and the 

CDP+ learn GPCs by training (Perry et al., 2007; Zorzi et al., 1998). As the amount of 

occurrences of a grapheme shapes its orthographic-phonological association strength, 
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graphemes of high frequency are probably more stably connected to their phonological 

representation. In German, nearly all graphemes correspond to letters and bigrams. 

Therefore, the CDP would probably predict that words composed of higher frequency 

letters or bigrams can be read faster than those composed of low frequency sub-lexical 

units.

Indeed, as the literature review of this study will show, the frequency of sub-

lexical units considerably affects visual word recognition performance. Because there 

was no openly accessible database of orthographic and phonological sub-lexical 

frequency measures for German, the first step of this thesis involved the calculation of 

letter and phoneme frequencies, bigram and biphoneme frequencies, and orthographic 

and phonological syllable frequencies. The sub-lexical frequency measures were 

derived from the CELEX corpus (Baayen et al., 1995). To extract the relevant pieces of 

information from huge amounts of data, the corpus-analytic methods applied in this 

thesis relied on PERL and UNIX-shell scripts (cf. also Study 5). 

Without the extracted sub-lexical frequency measures, it would have been 

impossible to test whether the behavioral facilitation to high frequency words in Study 2 

would have resulted from the frequency of the whole words, rather than from the 

frequency of its constituents. For instance, high frequency words might be composed of 

high frequency bigrams on average, which might account for the word frequency effect. 

To rule out such confounding effects, the aforementioned sub-lexical measures were 

used as control variables in all of the present studies that assessed word recognition by 

manipulating psycholinguistic variables. Consider that Study 2 will also address the 

hemodynamic word frequency effect in the left inferior frontal gyrus (IFG). The aim of 

controlling for sub-lexical measures was to rule out that the expected word frequency 

effect in the IFG results from confounds at a sub-lexical representation level.
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Study 2: Word frequency, lexicality and optical imaging

Fiebach, Friederici, Müller, and Von Cramon (2002) found low frequency words to 

engage a greater IFG activation than high frequency words. This is probably the best-

replicated effect of functional magnetic resonance (fMRI) studies of word recognition 

(Fiebach, Friederici, Müller, Von Cramon, & Hernandez, 2003; Carreiras, Mechelli, & 

Price, 2006; Ischebeck, Indefrey, Usui, Nose, Hellwig, Taira, 2004; Nakic, Smith, Busis, 

Vythilingham, & Blair, 2006; Prabhakaran, Blumstein, Myers, Hutchison, & Britton, 

2006). Fiebach et al. (2002) functionally associated this region with grapheme-to-

phoneme conversion (Coltheart et al., 2001). However, as the CDP+ learns GPCs by 

the exposure of the words to the model (Perry et al., 2007), this process should be 

affected by the frequency of exposure of the graphemes, usually corresponding to 

letters and bigrams in German (cf. Figure 5). Therefore, the experimental control of sub-

lexical frequencies in this study should constrain the IFG's lexical frequency effect to 

result from whole-word frequency. Thus, Study 2 tested whether low frequency words 

still engage a greater activation in the IFG than high frequency words, when the sub-

lexical letter and bigram frequencies do not differ between conditions. Thus, the IFG 

was the first target region of this study. Second, as the MROM assumed different 

decision mechanisms for words and nonwords, lexicality effects can be expected in 

decision-related brain regions, such as the superior frontal gyrus (SFG, e.g., Fiebach, 

Ricker, Friederici, & Jacobs, 2007). Third, the left inferior parietal gyrus (IPG) can be 

assumed to act as a hub that integrates orthographic, phonological and semantic 

representations (e.g. Price, 2000; Binder et al., 2003). Therefore, word stimuli should 

elicit a larger neural activation than nonwords in both of these regions, which has been 

repeatedly shown in fMRI studies of word recognition (e.g., Binder, Frost, Hammeke, 

Bellgowan, Rao, & Cox, 1999; Ischebeck et al., 2004). The aim of Study 2 was to test 
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the hypotheses with respect to the function of these three target regions, using a 

method novel to the research field of word recognition.

Optical imaging is a relatively young method that uses light in the near-infrared 

wavelength spectrum to measure which brain region consumes oxygen (Villringer & 

Dirnagl, 1995). Therefore, it is also often called Near-Infrared Spectroscopy (NIRS). To 

collect NIRS data, light sources and detectors are arranged side by side on the skull. 

Since near-infrared light is diffuse, some light quants penetrate the cortical tissue on an 

arched path to the neighboring detectors. If the tissue properties would not change, an 

approximately equal amount of quants would arrive at a detector. However, as 

hemoglobin absorbs light, concentration changes can be measured. Because the red, 

oxygenated hemoglobin absorbs a different part of the light spectrum than the blue 

deoxygenated hemoglobin, using two lasers of different wavelengths allows for inferring 

on concentration changes of both, oxygenated [oxy-Hb] and deoxygenated hemoglobin 

[deoxy-Hb] (Villringer & Dirnagl, 1995).

By comparing the neuroimaging data of two experimental conditions, which differ 

only with respect to a single alleged process, it is possible to draw inferences about 

which brain region may respond to which process. Though functional NIRS (fNIRS) has 

its disadvantages in comparison to other methods allowing for similar conclusions – 

such as positron-emission tomography (PET) or fMRI – it also provides some 

advantages. The major benefit is its non-invasiveness: Light in the near-infrared part of 

the spectrum is less invasive than natural sunlight, because the latter contains also a bit 

more ”dangerous” components of the light spectrum such as ultraviolet. Therefore, this 

method can even be used to assess the heartbeat of prenatal fetuses (Kisilevsky et al., 

2009). The method thus appears optimally suitable to assess the hemodynamic 

responses of the brain at all live ages, which is a promising perspective for 

developmental neuroscience (Lloyd-Fox, Blasi, & Elwell, 2010). The major disadvantage 
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is the limited spatial resolution in the range of a few cubic centimeters, and only cortical 

regions close to the skull being investigable.

Another main advantage of NIRS is its quietness. For example, a magnetic 

resonance tomograph typically elicits acoustic noise louder than 110dB sound pressure 

level (Counter, Olofsson, Grahn, & Borg, 2005). In contrast, the optical tomograph used 

in Study 2 elicited a background noise of about 56dB. Because word recognition is 

commonly assumed to rely on sound representations (e.g., Van Orden, 1987), it might 

be particularly prone to interact with the relatively loud fMRI scanner environment. 

Therefore, if the first fNIRS study of word recognition confirms previous fMRI studies, 

the concern can be rejected that the relatively loud scanner environment of fMRI studies 

has led to qualitatively different results than in an environment with an increased 

ecological validity. Corresponding results with both methods would thus allow for testing 

conclusions drawn from fMRI studies using fNIRS.

Optical imaging allows for peeking deep into the mechanics of the hemodynamic 

response by allowing to observe concentration changes of both, oxygenated [oxy-Hb] 

and deoxygenated hemoglobin [deoxy-Hb]. Arteries deliver fresh blood to the region at 

which oxygen is needed to keep metabolic demands stilled. Therefore, a neural 

response should be accompanied by an [oxy-Hb] increase (Buxton, Uludag, Dubowitz, 

& Liu, 2004). Cells that consumed oxygen release exhausted blood into the vasculature. 

This is flushed out by the fresh blood. Therefore, mechanical models of the 

hemodynamic response predict a decrease of [deoxy-Hb], when a hemodynamic 

response was elicited. However, as the vascular system consists of flexible tubes, 

despite the described canonical hemodynamic response, a number of alternative blood 

flow-volume relationships have been proposed (Mandeville et al., 1999). Nevertheless, 

for the present study the “default”-coupling of the canonical hemodynamic response can 

be expected. An experimental condition of greater neural activation than another one 
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should show an [oxy-Hb] increase accompanied by a [deoxy-Hb] decrease (Buxton et 

al., 2004). 

Moreover, theories of the mechanics of the hemodynamic response posit that the 

[deoxy-Hb] decrease as measured by fNIRS and a blood oxygen level dependent 

(BOLD) increase as measured by fMRI are explainable by the same neural mechanisms 

(Buxton et al., 2004, Steinbrink, Villringer, Kempf, Haux, Boden & Obrig, 2006). This 

gains empirical support from concurrent fNIRS-fMRI studies (e.g., Kleinschmidt et al., 

1996). Thus, we expected to observe [deoxy-Hb] decreases accompanied by [oxy-Hb] 

increases to words in comparison to nonwords in the SFG and the IPG, as well as for 

low frequency words in comparison to high frequency words in the IFG.

Unlike fMRI, optical imaging itself does not provide information about which brain 

region was activated. Since this study addressed the neural response of two adjacent 

regions during language processing (SFG and IFG), an anatomic labeling approach was 

required. There are three different methods that allow for localizing the NIRS channels 

(see Dan, Okamoto, Tsuzuki, & Singh, 2007, for an overview):

The first method uses MRI scans of the participants. It is most accurate with 

respect to the localization, because it provides information with respect to the inter-

individual differences of the localizations of the gyri and sulci. This method could not be 

applied, because MRI scans were not available for the present thesis. The second 

approach uses a 3D-digitizer to determine the real-world coordinates of the optodes and 

some reference points. By ”overlaying” this information on standard brains the 

localization of the channels can be obtained. However, a 3D-digitizer was not available, 

either. Therefore, we conducted the study in collaboration with Ippeita Dan, who helped 

us to localize the NIRS channels by using the third method: This virtual registration 

method (Tsuzuki, Jurcak, Singh, Okamoto, Watanabe, & Dan, 2007) attaches a virtual 

probe set on 1000 virtual heads in the same manner as the real probe set is attached to 

the real participants. It estimates inter-individual variability of the gyri and sulci of the 
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participants by using virtually generated heads and brains of an anatomic database. 

Thus, spatial standard deviations (SD) of the localizations of the channels are obtained. 

Once the three-dimensional coordinates of the Montreal Neurological Institute (MNI) are 

available, anatomic labeling allows for estimating the probabilities of the channels to be 

localized in the respective brain region. Moreover, this method allows for illustrating the 

results by using a three-dimensional model of the brain surface, as will be displayed in 

Figure 8.

Once the methodological obstacles were overcome to make fMRI results and 

fNIRS results comparable, it was possible to investigate the IFG’s function during word 

recognition. An alternative explanation for a word frequency effect in the IFG would 

consist of the lexical selection hypothesis. Thompson-Schill, D'Esposito, Aguirre, and 

Farah (1997) proposed that the IFG's function concerns the selection between several, 

hypothetically pre-activated semantic word representations. We hypothesized that this 

process should be elicited by low frequency words, because these are identified more 

equivocally than high frequency words (cf. Grainger & Jacobs, 1996). Therefore, they 

may engage greater selection demands. 

Conflicting representations, however, were also proposed to result in activation of 

the anterior cingulate, which is a relatively deep brain structure and thus un-assessable 

by NIRS (Botvinick, Braver, Barch, Carter, & Cohen, 2001). Therefore, the next model-

based study on conflicting representations applied source localization on ERP data to 

obtain information about the neural regions involved, and the dynamical properties of 

lexical processing.
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Study 3: Modeling electrophysiological responses to conflicting lexical re-

presentations

The conflict monitoring theory (CMT; e.g., Botvinick et al., 2001) posits that the 

anterior cingulate cortex (ACC) and the medial frontal gyrus' function concerns the 

evaluation of conflicting representations (Ridderinkhof, Van den Wildenberg, 

Segalowitz, & Carter, 2004). Botvinick et al. (2001) suggest that the so-called Hopfield 

Energy (Ehopf) is the computational implementation that would predict mediofrontal 

activation best. It is defined as the sum of the products of all possible representation 

pairs activated. For example, when “blur”, “blue” and “flur” are activated by a stimulus 

(cf. Figure 2), Ehopf equals the sum of the products of the activations of “blur” and 

“blue”, “blur” and “slur”, as well as “blue” and “slur”.

To test for the applicability of the CMT to word recognition models, Ehopf was 

implemented into an MROM including phonological representations (Jacobs et al., 

1998). To test whether increased lexical conflict elicits increased RTs and error rates to 

nonwords, it was manipulated in three conditions of low, medium, and high Ehopf. 

Yeung, Botvinick, and Cohen (2004) proposed that the second negative deflection of the 

event-related potential (ERP) – the so-called N2 component – is an electrophysiological 

equivalent of the ACC's conflict response. Therefore, we expected Ehopf to elicit an 

increased second negative deflection in the ERP. 

To track the time-course of neural information processing, ERPs were calculated 

from electric potential differences between scalp-electrodes at standardized positions 

and a so-called reference electrode (Jasper, 1958). The rationale is that there is no 

activation of interest at the latter site (Lehmann, 1987). Therefore, the reference 

electrode's site is chosen at a place which shares the same “background” potential – 

e.g. capturing artifacts resulting from muscle tension – but is shielded from the brain 

potential of interest. Typically, the relatively thick mastoid bone behind the ear is 
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chosen. The scalp-electrodes, in contrast, are assumed to record the summed potential 

changes that result from electric signal transmission in a large amount of neurons (e.g. 

Kutas, Van Petten, & Kluender, 2004). Negative potentials measured at the scalp can 

be assumed to reflect apical dendritic signals transmitted from the interior of the brain to 

the cortex, while cortical potentials transmitted to the interior should elicit a relative 

positivity (cf. e.g., He & Raichle, 2009). The observed potentials are purged from 

artifacts, by applying fourier-transfom-based filters extracting the frequency band, which 

is assumed to contain the event-related activity of interest. Further, the potentials 

elicited by the eye muscles are mathematically excluded by performing an independent 

component analyses extinguishing signals apparent across the whole scalp (Onton, 

Westerfield, Townsend, & Makeig, 2006). These purged potential changes are 

normalized to a baseline period right before the presentation of the stimulus, and 

averaged across all trials of an experimental condition for each time-point relative to 

stimulus presentation. Moreover, for evaluating the model performance in predicting 

human brain potentials, we averaged the event-related changes also across items (cf. 

Dambacher, Kliegl, Hofmann, & Jacobs, 2006; Hutzler, Bergmann, Conrad, Kronbichler, 

Stenneken, & Jacobs, 2004). An sLORETA source localization model served for 

determining which brain regions most likely produce these potentials (Pascual-Marqui, 

2002).

Apart from predicting neural activation in the ACC at a qualitative level of 

analysis, a successful computational model of word recognition should quantitatively 

account for a significant portion of item-level variance (Jacobs & Grainger, 1994; Perry 

et al., 2007, Spieler & Balota, 1997). Therefore, the study tested whether the Ehopf 

values of the stimuli account for the mean response time (RT), error scores, and N2 

amplitudes of the items, when averaged across participants. Additionally, the amount of 

variance explained allows for quantifiable competition between alternative models. 

Previous connectionist models of word recognition applied this logic to behavioral data 
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(cf. Perry et al., 2007, for a review). This study introduced this aspiring model evaluation 

criterion for psychophysiological data (cf. Rey, Dufau, Massol, & Grainger, 2009).

Study 4: Affective connotation of lexical representations, ERPs, and pupillo-

metry

Not all of the processes, that are critical for the recognition of words, are 

addressable by the simulation of the cognitive processes in computational models, or by 

inferring on the processes when examining effects elicited by corpus-analytically 

defined variables, such as word frequency, for example. Subjective rating data 

operationalize the affective connotation of a word (Võ, Conrad, Kuchinke, Urton, 

Hofmann, & Jacobs, 2009). Going back to an early suggestion of Wundt (1896), 

emotion is commonly subdivided into two orthogonal dimension constituting affective 

space (Bradley & Lang, 1999). However, most of the previous studies confounded both 

of these dimensions, emotional valence and arousal. This typical confound was 

disentangled in Study 4.

When previous research compared words of negative valence to neutral words, 

rather inconsistent behavioral results were obtained with respect to its facilitatory or 

inhibitory influence on the word recognition process. Some studies obtained faster RTs 

for negative than for emotionally neutral words (e.g., Williamson, Harpur, & Hare, 1991), 

whereas other studies revealed no effects (e.g., Siegle, Ingram, & Matt, 2002), or even 

a trend towards slower RTs (e.g., Kuchinke, Jacobs, Grubich, Võ, Conrad, & Herrmann, 

2005; Kuchinke, Võ, Hofmann, & Jacobs, 2007). Study 4 was conducted to test the 

hypothesis that arousal determines whether negative words are responded to faster or 

slower (Thomas & LaBar, 2005).

In contrast to negative words, positive words consistently yielded faster RTs than 

neutral words (e.g., Kuchinke et al., 2005). Therefore, positive valence itself may elicit 
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the response facilitation. If so, words should be responded to faster, when arousal is 

controlled for. Since arousal ratings were not available in the original Berlin Affective 

Word List (BAWL, Võ, Jacobs, & Conrad, 2006), it was necessary to collect these for 

this study. However, a larger corpus was required for stimulus selection to be able to 

control for many sub-lexical variables and other potential confounds. Therefore, the 

BAWL was extended (Võ et al., 2009).

Previous studies investigating whether affective words evoke pupil dilations had 

provided mixed results. Kuchinke et al. (2007) showed that pupil dilations are not 

affected by emotional valence during lexical decision. In contrast, Võ et al. (2008) 

showed that learned high-arousal positive and negative words elicit smaller pupil 

dilations than low-arousal neutral words during a recognition memory task. Therefore, 

the experimental manipulation applied in the present study was optimally suitable to 

discriminate between two complementary interpretations for these divergent findings. 

The first explanation proposes that the critical difference between Kuchinke et al.’s 

(2007) and Võ et al.’s (2008) study concerned arousal, which was not considered in 

Kuchinke et al.’s (2007) study, because arousal ratings were not available at this time. 

In contrast, Võ et al. (2008) compared high-arousal emotional words with low-arousal 

neutral words. Thus, low arousal may have been the reason for the absent pupillometric 

effects in Kuchinke et al. (2007). The second interpretation proposed that pupil dilation 

effects of affective words are task-specific and only occur during recognition memory 

tasks. This question also concerned two concurring explanations for the functional locus 

of pupil dilation effects. Either it can be associated directly with affective processing 

(Hess, 1965; Janisse, 1974), or the peak pupil dilation correlates with the amount of 

cognitive load associated with a memory task (Beatty & Kahnemann, 1966; Beatty, 

1982). If the pupil dilations were affected by arousal during the LDT presented in Study 

4, this would confirm that the affective word features itself evoke the pupil dilations. If no 

pupil dilation effects were found, it would be likely that diminished cognitive demands to 
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affective words is the critical process explaining Vo et al.’s (2008) diminished pupil 

dilations: The behavioral facilitation observed for learned affective words was 

accompanied by diminished pupil dilations. Non-learned affective word stimuli elicited 

inhibitory behavioral effects, which were accompanied by greater pupil dilations (Võ et 

al., 2008) during a study-test recognition memory task. Thus, in old and new stimuli 

alike, the behavioral findings indicated lower cognitive demands. The lower the 

cognitive demands were, the smaller was the pupil dilation. The LDT, which only 

requires the recognition but not the remembering of particular words, would not engage 

detectable cognitive demands to elicit pupil dilations, whereas Vo et al.'s (2008) memory 

task would.

Another aim of this study concerned the dynamics of affective word processing. 

At which time after stimulus presentation are the processes initiated that lead to 

behavioral facilitation? For answering this question, ERPs were recorded. Sereno and 

Rayner suggest that the first access to a hypothetical mental lexicon might be underway 

around 100 ms post stimulus presentation (Sereno & Rayner, 2003). Thus, if affective 

word features act already during lexical access, at the ERPs of this time frame should 

respond sensitively to the experimental manipulations of this study. 

To test whether the most likely neural generator of the expected ERP effect is in 

the medial frontal gyrus, source localization was conducted (Pascual-Marqui, 2002). A 

positive finding in this region could be interpreted as an early attention (e.g., Carretié, 

Hinojosa, Martìn-Loeches, Mercado, & Tapia, 2004) or decision-related control process 

(e.g., Botvinick et al., 2001). Alternatively, if the most likely neural generator was the 

fusiform gyrus, this would support the hypothesis that the functional locus of the 

affective word processing advantage resides at a lexical-access processing level 

(Dehaene, Le Clec'H, Poline, Le Bihan, & Cohen, 2002; Kronbichler, Hutzler, Wimmer, 

Mair, Staffen, & Ladurner, 2004). An increased activation of the medial temporal gyrus 

to affective word stimuli would suggest a lexico-semantic locus of the ERP effect (e.g., 
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Price & Devlin, 2003), which may indicate that much of the variance affective word 

features account for may be actually explained by semantic cohesion (Maratos et al., 

2000; LaBar & Phelps, 1998).

Study 5: Modeling associations between lexical representations and Re-

ceiver Operation Characteristics

If semantic representations would indeed account for the variance that was 

previously ascribed to affective word features (cf. e.g. Võ et al., 2009), the question 

would remain how semantic cohesion can be captured empirically, and in a 

computationally concrete theoretical fashion. Maratos and colleagues (2001) explained 

emotional valence effects by semantic cohesion, because of a remarkable similarity of 

their ERP observations to those of false memory effects (cf. Johnson, Nolde, Mather, 

Kounious, Schacter, & Curran, 1997). In false memory experiments, pre-experimentally 

collected free association performance defines the state of being associated (Deese, 

1959; Roediger & McDermott, 1995). A target is presented and participants name the 

first words coming to their minds. When these associates are learned by the participants 

of another experiment, the non-learned target is erroneously remembered. This is 

explainable by associates activating the target's representation (e.g., Kimball et al., 

2007). However, such a free association approach cannot take into account all possible 

associations between all items, because only the strongest associates are considered. 

Therefore, another study relied on meaning relatedness ratings for respectively two 

words (Talmi & Moscovitch, 2004). Semantic cohesiveness and affective word features 

were manipulated separately. The study confirmed the semantic cohesiveness 

hypothesis: Emotional words are remembered better by virtue of their higher semantic 

cohesion to other words.
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However, massive amounts of meaning relatedness ratings would be required 

when aiming to extend a model by a semantic-associative layer. An IAM usually 

contains about 1,000 words (Grainger & Jacobs, 1996; McClelland & Rumelhart, 

1981).The number of potential associations between 1,000 items amounts 1,000 * 

1,000 = 1,000,000. Therefore, a computational model testable with lexica of about 1,000 

words would require ratings for about a million word pairs.

To allow for defining all associations between nearly all words, a word pair can be 

defined 'associated' due to Hebbian learning (Hebb, 1949; Rapp & Wettler, 1991): Items 

being repeatedly presented together are likely to be associated. Accordingly, two words 

were defined 'associated', when they co-occurred significantly often in the sentences of 

a large corpus (Quasthoff et al., 2006). The corpus used is one of the largest German 

corpora available. Only google's German corpus is greater, and there is only one 

another German corpus of comparable size (http://www.ids-

mannheim.de/kl/projekte/korpora/archiv.html). This is derived from probably the largest 

corpus-linguistic project that provides measures comparable across languages. The 

word frequency and co-occurrence measures of the “Wortschatz” project are available 

for a constantly growing amount of languages, i.e. 69 at present (www.corpora.uni-

leipzig.de/). Moreover, simple co-occurrence statistics had already been shown to 

predict the free association performance (Rapp & Wettler, 1991).

Both, Maratos et al. (2001) and Talmi and Moscovitch (2004), had investigated 

“semantic” cohesiveness in tasks at which participants have to explicitly remember 

words. Thus, in Study 5 a recognition memory task served for testing whether 

“semantic” cohesiveness can be implemented by co-occurrence statistics. Participants 

learn words in a study phase. In a test phase, they are required to decide whether a 

word has been learned ('old' item), or not ('new'). For new and old items, the amount of 

associated items in the stimulus set varied in two levels. Low co-occurrence target items 
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had less than 8 associated items in the stimulus set, and high co-occurrence targets at 

least 8.

Thus, each stimulus selected can serve two purposes. On the one hand, it 

functions as a target. On the other, it can serve multiple times as an associate that is 

cueing associated targets, when presented before them.

If associations can be implemented by co-occurrence statistics, more associates 

should drive erroneous 'yes' responses for non-learned items with many associates in 

the stimulus set, similar to Roediger and McDermott (1995). Moreover, the amount of 

associations was hypothesized to drive the correct 'yes' response probabilities for 

learned items with many associates in the stimulus set. This has previously been 

observed for recall, but not yet recognition (Kimball et al., 2007). If both of these findings 

would be observed, this would confirm that co-occurrence statistics can successfully 

implement associations between the items of an experiment. This, in turn would make 

co-occurrence statistics a promising way to implement associations into an IAM.

Moreover, the study aimed to separate associative memory signal strength from 

strategic bias effects, by using a signal detection approach (Green & Swets, 1966). 

Much as for the signal detection approach to word recognition of the MROM (cf. Figure 

3; Jacobs et al., 2003), participants were instructed to judge the confidence with which 

they recognized a word. In a recognition memory task, this question concerns whether 

the word has been recognized as having been learned during the study phase, or not. 

Thus, participants were required to rate their recognition confidence on a six-point scale 

ranging from ‘sure no’ (‘1’) to ‘sure yes’ (‘6’). While simulating the most liberal response 

bias, which is prone to elicit many ‘yes’ responses, only ‘1’ responses count as a ‘no’ 

response. This is referred to by the criterion C(1). The most conservative bias is 

simulated, when only ‘6’ responses count as ‘yes’ response (C(5)). Signal detection 

theory posits that if a criterion C(i) for i – here ranging from 1 to 5 – is surpassed, a ‘yes’ 

response is executed. The obtained criteria C(i) are determined by their empirical ‘yes’ 
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response probabilities on a bimodal Gaussian distribution of (memory) signal strength: 

One Gaussian distribution for the non-learned new items, and another one for the 

learned old items. The distribution of old items provides greater memory signal 

strengths on average, which implements mnemonic traces resulting from study-phase 

presentation. ROCs are generated by opposing the ‘yes’ probabilities for all criteria on 

an x-axis for new items (false alarms) to those for old items on a y-axis (hits). When 

these ROC probabilities are normalized to z-values, the z-ROC typically reveals a slope 

of less than one during recognition memory tasks. One of the most highly accepted 

assumptions, that can account for this typical observation, is that the signal strength 

variance for old items is greater than the variance to new items (Glanzer et al., 1999; 

but cf. Yonelinas, 1999). This was assumed to result from a single process of memory 

signal strength increase due to learning (Squire, Wixted, & Clark, 2007). However even 

when previous signal detection models of memory discuss the memory signal strength 

of the items (e.g., Glanzer et al., 1999; Yonelinas, 1994), none of these models already 

took the challenge of likewise predicting the ‘yes’ response rates of the items by 

attributing them a particular signal strength value.
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Figure 7 sketches the basic architecture of the AROM: The lower three layers 

correspond to previous IAMs (Grainger & Jacobs, 1996; McClelland & Rumelhart, 

1981). Target stimuli are presented to the feature units, which in turn activate the letter 

and (orthographic) word layer. The associative layer’s unit of the target receives the 

word identification signal from the orthographic word layer. Moreover, associated item 

units contained in the stimulus set are activated by the target unit, and activate the 

target in turn. Thus activations to item units with many associated items are greater, 

which predicts their higher probability of ‘yes’ responses. Translations are bracketed.
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General Introduction 

The aim of this study was to develop an IAM that implements associations 

between words by co-occurrence statistics. To evaluate the success of the model, two 

key challenges were set: Predicting z-ROCs and item-level performance.

The MROM accounted for effects resulting from a word's orthographic 

representation, which can be assumed to affect the identification of a word (cf. Figure 

7). Therefore, the MROM was nested into the AROM (Jacobs & Grainger, 1994; 

Grainger & Jacobs, 1996). The MROM's word identification signal was forwarded to the 

associative layer, because recognizing a word as having been learned still requires the 

identification of the word itself. For each word presented in the experiment, an 

orthographic and an associative word representation was used, while the associative 

units obtained activation from their orthographic representation. To account for the 

hypotheses of greater amounts of associates leading to greater amounts of 'yes' 

responses in new and old items, associative connections were added in the associative 

layer. Co-occurrence statistics determined whether or not two words are associated. 

Thus, the orthographic representation of a presented word activates its 

associative representation. The associative representation of the stimulus then triggers 

activation in associated representations, which in turn activate the stimulus 

representation (cf. Nelson, McKinney, Gee, & Janczura, 1998). This model behavior 

reflects the following processes during the time course of the test phase of the 

experiment: When considering that the test phase list is randomized separately for each 

participant, each of the associated items has a probability to be presented before the 

target stimulus. Thus, in the data considered across participants, each associate in the 

stimulus set increases the probability that a target item has been “primed”. Thus, the 

model predicts greater activations for representations with many associates in the 

stimulus set. In an IAM, activations are interpreted as evidence of the representation 

being apparent. Accordingly, greater 'yes' response probabilities for items with more 

associates in the stimulus set can be predicted.
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As this was the first IAM to model explicit memory performance, another 

assumption was required to implement memory traces resulting from study-phase 

presentation. As signal detection approaches to recognition memory assume greater 

signal strengths for learned than for non-learned items (Green & Swets, 1966), old 

items simply obtained a greater resting level.

Questioning how such a model could account for a z-ROC slope lower one 

seemed to be another challenge. However, McClelland and Rumelhart (1981) had 

already implemented a mechanism sufficient for explaining signal detection theory's 

unequal variance assumption: When a representation receives in sum an inhibitory 

signal from other representations in an IAM, it is scaled by multiplying the inhibition with 

the activation of the representation itself. When many memory traces are active, much 

more inhibitory than excitatory signals arrive at each representation. Therefore, each 

representation receives a net inhibitory signal. This net inhibition results from the keen 

competition of many active memory traces being held in memory. As the resting level for 

old items was defined higher than for new items, scaling the inhibition to obtain the 

actual change of a representation necessarily leads to greater activation variances for 

learned old items than for new ones. This increased variance of old items was 

supposed to be the source of the z-ROC slope lower than one (e.g., Shiffrin & Steyvers, 

1997). Thus, the assumption of an increase of memory signal strength by learning may 

account for the z-ROC slope lower than one in an IAM.
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  Study 1: Sub-lexical frequency measures for or-

thographic and phonological units in German 

Markus J. Hofmann, Prisca Stenneken, Markus Conrad, 

& Arthur M. Jacobs2

Abstract 

Many recent studies have demonstrated the influence of sub-lexical frequency 

measures on language processing, or called for controlling sub-lexical measures when 

selecting stimulus material for psycholinguistic studies (Aichert & Ziegler, 2005). The 

present study discusses which measures should be controlled for in what kind of study, 

and presents orthographic and phonological syllable, dual unit (bigram and biphoneme) 

and single unit (letter and phoneme) type and token frequency measures derived from 

the lemma and word form corpora of the CELEX lexical database (Baayen et al., 1995). 

Additionally, we present the SUBLEX software as an adaptive tool for calculating 

sub-lexical frequency measures and discuss possible future applications. The measures 

and the software can be downloaded at http://www.psychonomic.org. 

2Adapted version published as article in 2007: Sub-lexical frequency measures for orthographic and phon-
ological units in German, Behavior Research Methods, 39, 620-629. 
http://dx.doi.org/10.3758/BF03193034.
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Introduction

Recent studies demonstrate the influence of sub-lexical units on language 

processing (Nuerk, Rey, Graf, & Jacobs, 2000; Ziegler & Goswami, 2005). Not only 

behavioral and neurocognitive findings in proficient adult readers, but also findings in 

subjects with acquired or developmental language disorders indicate the relevance of 

sub-lexical measures during language recognition and production. 

However, to our knowledge, in contrast to word frequency measures (Baayen et 

al., 1995; Geyken, 2007; http://www.wortschatz.uni-leipzig.de) sub-lexical unit frequency 

measures are not yet publicly available for the German language. For other languages, 

at least syllable frequency measures are available (Alameda & Cuetos, 1995, and Davis 

& Perea, 2005, for Spanish; Stella, & Job, 2001, for Italian; Goslin & Frauenfelder, 2000, 

New, Pallier, Brysbaert, & Ferrand, 2004, and http://www.lexique.org, for French; and 

Leung, Law, & Fung, 2004, for Chinese). Inspired by the fact that the grain size of sub-

lexical measures is the core topic of a recent developmental theory of skilled reading 

and dyslexia across languages (Goswami & Ziegler, 2006), we found it useful to 

calculate sub-lexical frequency measures with a systematic decrease in grain size. This 

study thus provides orthographic and phonological syllable, dual unit (bigram and 

biphoneme), and single unit (letter and phoneme) type and token frequency measures, 

derived from the lemma and word form databases of the German CELEX lexical 

database (Baayen et al., 1995). 

By providing highly comparable measures that were calculated by the same 

algorithm, we hope to inspire researchers to investigate questions that are difficult to 

address without these measures. Moreover, we provide further independent and control 

variables for researchers that investigate language processing. we start with a short 

overview of the fields of research in which the role of sub-lexical units was recently 
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investigated, and draw particular attention to connectionist models that can account for 

these hypothetical levels of representation. 

For that purpose we outline empirical and theoretical contributions to the 

research fields of word recognition and naming in proficient readers, as well as of 

acquired and developmental language disorders. Since most of the recent studies within 

those fields investigate syllable frequency effects, we focus on these sub-lexical effects. 

Carreiras, Alvarez, and De Vega (1993) showed that syllable frequency plays a 

significant role during visual word recognition. They found that words with high 

frequency initial syllables take more time to be processed than words with low 

frequency syllables. This finding led to the hypothesis that syllables activate competing 

lexical candidates during lexical access. The processing delay due to syllable frequency 

was interpreted as interference of other lexical candidates activated by the target’s 

syllabic units. Perea and Carreiras (1998) provided evidence that higher frequency 

syllabic neighbors are the source of this inhibitory syllable frequency effect. These initial 

findings from the Spanish language were replicated in French (Conrad, Grainger, & 

Jacobs, 2007; Mathey & Zagar, 2002) and German (Conrad & Jacobs, 2004). 

Whereas the effect of syllable frequency was always inhibitory in tasks requiring 

lexical access such as lexical decision or perceptual identification (Conrad & Jacobs, 

2004), it has been described to be either facilitative (Perea & Carreiras, 1998) or 

inhibitory (Carreiras et al., 1993; Conrad, Stenneken, & Jacobs, 2006) in the naming 

task. 

Further evidence for the relevance of syllabic processing in naming and word 

recognition comes from eye movement measures (Carreiras & Perea, 2004; Hutzler, 

Conrad, & Jacobs, 2005) and electrophysiological findings (Barber, Vergara, & 

Carreiras, 2004; Hutzler et al., 2004). 

The electrophysiological findings shed light on the neurocognitive processes 

involved in sub-lexical unit processing in proficient readers. It should be noted that 

43



Setting letters and words into context: An Associative Read-Out Model

behavioral findings are also able to contribute to the knowledge about the 

neuropsychology of sub-lexical word processing. That is, for instance, when acquired 

impairments of written (Stenneken, Conrad, Hutzler, Braun, & Jacobs, 2005) or spoken 

(Aichert & Ziegler, 2004; Laganaro, 2005; Stenneken, Bastiaanse, Huber, & Jacobs, 

2005; Stenneken, Hofmann, & Jacobs, 2005) language are compared to unimpaired 

functioning.

Conrad and Jacobs (2004), as well as Hutzler et al. (2004) pointed out that the 

syllable frequency effect provides a challenge to future computational models of word 

recognition, as no current model is able to account for these findings, because of the 

lack of data on syllabic units (Coltheart et al., 2001; Grainger & Jacobs, 1996; Jacobs et 

al., 2003; Jacobs et al., 1998; Ziegler, Perry, & Coltheart, 2003; Zorzi et al., 1998; but 

see Ans, Carbonnel, & Valdois, 1998). In contrast, the language production literature 

has provided one computational model (Levelt, Roelofs, & Meyer, 1999) that could 

account for syllable frequency effects (Cholin, Levelt, & Schiller, 2006). Levelt et al.’s 

(1999) model proposed that syllabic processing follows lexical selection that can be 

associated with lexical access. Thus, it is not fully applicable to the field of word 

recognition in which sub-lexical processes also precede lexical access (Hutzler et al., 

2004). 

In contrast to the syllabic level of representation, smaller sized unit frequency 

effects have been addressed by connectionist models of word recognition and have 

been discussed as two of the multiple levels of representation (Grainger & Jacobs, 

1993,1996; Jacobs et al., 1998; Massaro & Cohen, 1994; Nuerk et al., 2000).

Much as for syllabic processing in proficient readers, there is also no 

computational model that could provide quantitative predictions concerning impaired 

syllabic processing. However, there is a pre-quantitative theory that allows for 

describing the proficient and impaired development of sub-lexical representations in 

different languages. 
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Ziegler and Goswami’s (2005) grain size theory emphasized the relevance of 

these multiple levels of sub-lexical unit representations for the research and treatment 

of dyslexia. One of the core notions of this theory is the problem of granularity. That is, 

the larger the sub-lexical units are the more of them exist. With regard to reading 

performance, the most economic strategy with the lowest memory effort would therefore 

be to link graphemes to phonemes, because for reading acquisition it is necessary to 

assign a phonological representation to a printed word. In the German language this is 

a suitable reading strategy, since graphemes usually map to only one phoneme3 

(Goswami, Ziegler, Dalton, & Schneider, 2003; Jacobs, 2002; Jacobs & Graf, 2005).

However, in languages with more inconsistent GPCs larger units may be more 

suitable for reading acquisition. In some languages such as English this inconsistency 

consists mainly of the fact that graphemes can be spelled in multiple ways (i.e., 

feedforward inconsistency; Ziegler, Stone, & Jacobs, 1997). In other languages, such as 

French, the main source of inconsistency consists of the fact that phonemes can be 

written in multiple ways (i.e., feedbackward inconsistency; Ziegler, Jacobs, & Stone, 

1996). 

The development of lexical and sub-lexical representations during language 

acquisition can be opposed to the most economic reading acquisition strategy, at which 

the use of the smallest grain size appears to be most suitable. The word level 

representation is learned first, a syllabic representation develops usually at the age of 

four to five, and the representation of graphemes and phonemes develops not until 

reading acquisition (Ziegler & Goswami, 2005). 

The differential development of grain size representations during language and 

reading acquisition, as well as language specific factors that determine the most 

economic grain size usage strategies suggest that the question ”Is there a need to 

3 There are exceptions such as terminal devoicing and the fact that there is often no orthographic differen-
tiation between short or long spoken vowels. 
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control for sub-lexical frequencies?” (Aichert & Ziegler, 2005) has to be answered 

positively. 

The measures of the present study could be used to build models that can make 

quantitative predictions concerning sub-lexical processes during impaired or unimpaired 

language processing. 

Grain sizes, domains, databases, and measures

The multiple grain size theory emphasizes the importance of multiple grain sizes 

when written words have to be mapped to phonology. The next logical step is to provide 

the frequencies at different grain size levels - syllables, dual units, and single units - in 

order to be able to address the question to what degree readers differ with respect to 

the reliance on different grain size units during language processing. 

These three different grain size frequencies can be calculated for different 

domains (orthographic vs. phonological), different basic databases (word form vs. 

lemma), and as type and token measures. Earlier studies either were based on a subset 

of the frequency tables presented in the present study, or provided only incomplete 

information about these different possibilities to calculate frequency measures. 

Moreover, when predictive properties of different similar measures have to be assessed, 

it seems reasonable to calculate all measures in a comparable way by the same 

algorithm. 

The present study demonstrates the diversity of ways to calculate sub-lexical 

frequency measures. However, when a researcher finally has to choose which of the 

proposed frequency measures to use, several issues should be considered concerning 

grain sizes (syllable, dual unit and single unit), processing domains (orthographic or 

phonological), databases (lemma or word form), and type or token measures. 

46



Study 1: Sub-lexical frequency measures for orthographic and phonological units in German 

In the following paragraphs, we describe studies that compared the respective 

influences of different grain sizes on language processing. In addition, we discuss which 

database, domain or measure should be used for what type of study. These sections 

can be used as a guide when decisions for particular frequency tables have to be made. 

Grain sizes: Syllable, dual unit, or single unit

A reliable inhibitory effect of the first syllables’ frequency on lexical decisions was 

found reliable when bigram frequency was held constant (Conrad, Carreiras, Tamm, & 

Jacobs, 2009; Conrad et al., 2007). Given recent evidence that the syllable frequency 

effect in speech production (Cholin et al., 2006) and lexical decision (Conrad et al., 

2007) is based on the phonological syllable, biphoneme frequency might be an 

interesting control variable for further research. In the orthographic domain, there is 

evidence for a facilitatory bigram frequency effect during lexical decision (Massaro & 

Cohen, 1994), even when syllable frequency was controlled for (Conrad et al., 2009). 

Moreover, Grainger and Jacobs (1993) demonstrated that letter and bigram priming 

effects during lexical decision are greater when units occurred at the same position 

within the prime and the target. 

In addition to the question of the frequency of sub-lexical units, a controversy in 

the literature concerns the number of phonemes and syllables, during language 

production tasks (see Martin, 2004; see Nickels & Howard, 2004a; see Nickels & 

Howard, 2004b). Nickels and Howard (2004a) obtained no syllable frequency effect in 

word production accuracy of aphasics that would have been independent of word 

imageability, word frequency, and the number of phonemes and clusters. Instead, they 

found evidence that ”It’s the number of phonemes that counts.” They raised the 

controversial issue that phonemes are the most important units of speech production, 
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and that effects of the phonological syllable could be attributed to confounding 

variables. 

Aichert and Ziegler’s (2004) results neither confirmed nor contradicted this 

interpretation, because their word repetition experiment reporting syllable frequency 

effects in patients with apraxia of speech did not control for phoneme frequency. 

However, they confirmed the prediction of Varley and Whiteside (2001) that at the 

phonetic encoding level (Levelt et al., 1999) motor programs are provided for high 

frequency syllables. 

Stenneken et al. (2005) reported that the phonemic jargon of an aphasic patient 

provided a higher correlation with phoneme frequency than with syllable frequency 

measures. Again, these results neither contradicted nor confirmed Nickels and 

Howard’s (2004a) hypothesis. The grain size theory (Ziegler & Goswami, 2005) 

presumably suggests that the relative influence exerted by particular grain sizes 

depends on individual differences. 

Laganaro (2005) found evidence for this. First, she found that three out of seven 

aphasics showed an effect of syllable frequency on substitution errors. In two of them 

this effect was independent of phoneme frequency. Second, two of the aphasic subjects 

showed more correct responses for nonwords composed of high frequency syllables 

than for nonwords composed of low frequency syllables. Third, she investigated the 

phonemic paraphasias of one aphasic subject and found that syllable frequency 

influenced error rates. 

In accordance with the grain size theory we propose not to neglect any grain size 

measure, at least when assessing language disorders. When word recognition studies 

are conducted, at least syllable frequency and bigram frequency may be controlled for, if 

possible. An independent effect of smaller sub-lexical measures should be evaluated to 

test the predictions of the grain size theory. This can be done during stimulus generation 
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by controlling or manipulating variables, or by applying multiple regression methods in a 

post hoc fashion. 

Processing domains: Orthography or phonology

When choosing between the orthographic and phonological domain one could 

suppose that written language performance can be assessed best by referring to 

orthographic frequency measures, and spoken language performance by phonological 

measures. However, particularly with regard to reading, this might be the most 

interesting and most controversial issue. Whereas Seidenberg (1985) claimed that 

phonology is not necessary for reading, Van Orden’s (1987) article ”a rows is a rose” 

presented strong arguments in favor of the notion that phonological representations are 

automatically and always activated during silent reading. Today, there seems to be a 

broad agreement that multiple codes are activated during reading, in particular 

phonological codes (Ans et al., 1998; Jacobs et al., 1998; Yates, 2005; Ziegler et al., 

1997), at different grain size levels (Goswami & Ziegler, 2006; Ziegler & Goswami, 

2005). Conrad et al. (2007) suggested that, during word recognition, it is the 

phonological syllable, not the orthographic syllable that drives the syllable frequency 

effect. This issue was investigated in a deep orthography with rather inconsistent GPC 

(Liberman, Liberman, Mattingly, & Shankweiler, 1980), because in shallow 

orthographies phonological syllable frequency is confounded with orthographic syllable 

frequency. In this context the question arises whether the primacy of the phonological 

syllable can be generalized to shallow orthographies like German, too. 

This question can be addressed by using regression methods in order to find out 

which type of syllable frequency is most predictive. Experiments using an orthogonal 

design, and thus manipulating orthographic and phonological syllable frequency 

independently, can hardly be realized in a shallow orthography. Today, it is well 
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accepted that a proficient reader in a language having a deep orthography can hardly 

avoid phonological processing when exposed to letter strings (e.g., Sumiya & Healy, 

2004). When investigating spoken language, the question arises whether highly 

overlearned orthographic representations of a letter string are also activated (Ziegler & 

Ferrand, 1998; Ziegler, Ferrand, & Montant, 2004). If one is not interested in addressing 

this particular question, we suggest that the phonological domain’s frequencies are 

used when investigating spoken language. When dealing with questions concerning 

reading, this choice is much more difficult. However, the aforementioned findings 

suggest that using the frequencies of phonological units are as plausible as using the 

frequencies of orthographic units when conducting word recognition experiments. 

Databases: Lemma or word form

CELEX (Baayen et al., 1995) provides a lemma and a word form database. The 

lemma database provides words in its basic form – that is, nouns are presented in 

nominative singulars and verbs are presented in infinitives. In contrast, the inflected 

forms are provided in the word form database. Most psycholinguistic studies use the 

lemma database. Duyck, Desmet, Verbeke, and Brysbaert (2004) provided ”WordGen,” 

a stimulus selection tool for psycholinguistic research. The authors argued (Duyck et al., 

2004, p. 490) that they used the lemma database of CELEX, because extensive manual 

coding and disambiguation made the lemma database more transparent with respect to 

its records than the word form database. Moreover, they argued that word forms partly 

activate its corresponding lemma entry in the mental lexicon (Baayen, Dijkstra, & 

Schreuder, 1997; New et al., 2004). On the one hand, we agree with these arguments, 

in particular because Levelt et al.’s (1999) influential model proposed the fast and 

automatic activation of lemmas during word form processing. On the other hand, we 

suggest that lemma measures systematically over- or underestimate the frequency of 
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sub-lexical units that occur in inflective morphemes, an issue that will be demonstrated 

on the basis of the results of this study. Using word form measures not only allows for 

evaluating language in its natural form, but it is of particular interest when, for example, 

sentence processing tasks are used. Thus, the choice for a certain database should be 

based on the task and the theoretical assumptions of a particular study. 

Measures: Type or token

The type measure indicates the number of words that contain the specific grain 

size. For example, the type frequency of the bigram ”ba” denotes the number of words 

that contain this bigram. The token frequency, in contrast, denotes the summed 

frequencies of the words that contain ”ba”. Conrad, Carreiras, and Jacobs (2008) 

showed that it was the token measure of syllable frequency that appears to be 

responsible for the inhibitory effect of syllable frequency in lexical decision. However, 

the authors argued that the type measure of syllable frequency led to faster RTs 

especially when the number of higher frequency syllabic neighbors was controlled for. 

Novick and Sherman (2004) provided two reasons for using type measures. They 

argued that token frequency is confounded to a large degree with word frequency, and 

found that type bigram frequency was a better predictor for performance in anagram 

resolution. However, Bailey and Hahn (2001) found that wordlikeness judgments are a 

function of the token frequency of lexical neighbors. It should be noted that there is a 

controversial debate about the general impact of type and token measures in the 

current literature. Many of the contributions to this debate describe sub-lexical, but 

neither syllabic, nor dual unit or single unit influences on language processing. De Jong, 

Schreuder, and Baayen (2000) found evidence that it was the type frequency of a 

word’s root morpheme that influences RTs in lexical decision in Dutch. 
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Eddington (2004) found that type frequency is a better predictor than token 

frequency while simulating correct outcomes of Spanish stress assignment and English 

past tense formation. When participants had to produce a past tense ending for 

pseudoverbs and verbs in Dutch they completed the words with endings of a higher 

type frequency (Ernestus & Baayen, 2003). In contrast, there was an effect of token 

frequency in the same paradigm (Ernestus & Baayen, 2001). To resolve the whole 

controversy, Clahsen (1999) proposed a dual route system that explains type-based 

analogical effects by a symbolic rule application mechanism, and token-based effects by 

an associative memory store. Others question the necessity of separate type- and 

token-sensitive mechanisms by use of connectionist models showing that the differential 

effects can be reduced to a single token-based mechanism (Moscoso del Prado Martín, 

Ernestus, & Baayen, 2004; Moscoso del Prado Martín, Kostic, & Baayen, 2004). The 

decision for one of the measures should be based on previous research working with 

comparable paradigms. 

Useful contributions to this controversy would be to conduct a regression 

analysis with type and token measures as predictors, to find out which measure is most 

predictive, or, to manipulate type and token measures independently. In any case, on 

the basis of empirical studies that compared different grain size units systematically the 

choice for particular frequency measures should be made. The measures of the present 

study offer the possibility to unconfound a large amount of variables that potentially 

pose a problem in interpreting results of recent studies. For example, experiments can 

be designed that manipulate phoneme frequency while keeping syllable frequency 

constant. It might help to systematically manipulate the (and only the) variables of 

interest. Even when investigating whole word effects, for example the emotional valence 

of words (e.g., Kuchinke et al., 2005), the sub-lexical measures of the present study can 

be used to rule out the possibility that these effects might be due to the confound 

between sub-lexical measures and emotional valence. 
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When a researcher has to choose which of the frequency measures to use, in 

accordance with the grain size theory (Ziegler & Goswami, 2005) we would suggest 

neither to neglect the syllabic, nor the dual unit nor the single unit grain size level, if 

possible. The phonological domain’s frequency measures can be used, not only during 

the assessment of spoken language, but also while assessing written language, as 

suggested by the multiple code activation hypothesis (Jacobs et al., 1998).

Furthermore, we suggest using word form measures in particular when 

assessing language as it occurs in its natural inflected form (e.g., in sentences or 

connected speech). Levelt et al.’s (1999) hypothesis of the automatic activation of 

lemma entries during word form processing also suggests using frequencies of the 

lemma database. One reason (see Duyck et al., 2004) to use lemma measures in 

particular when assessing noninflected language may be the extensive manual coding 

and disambiguation within the lemma database of the CELEX lexical database (Baayen 

et al., 1995). When deciding whether to use either the type or the token measures, the 

decision should be based on prior research working with the same experimental 

paradigms. 

A better solution might be to contribute to the controversy of type vs. token 

measures by taking into account both of them. This could be helpful, as long as the 

reduction to a token based mechanism (Moscoso del Prado Martín, Ernestus et al., 

2004; Moscoso del Prado Martín, Kostic et al., 2004) has not been broadly accepted. 

Method

All measures were calculated using shell scripts, PERL scripts, and the free 

UNIX programs join, sort and wc. Thus all software used for the present study ran under 

a free licence. A Macintosh G4 computer was used running a free BSD under Mac Os X 
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10.3.9, as the native operating system of the SUBLEX-software4. However, SUBLEX 

should run on every UNIX or LINUX shell running with an ISO Latin 9 character set. 

Each step of calculation can be adapted flexibly, for example to calculate case-

sensitive measures (see README.txt). At this point we will give an overview about all 

processing steps and provide the results when the program is executed without 

modifications. The program and the resulting frequency measures can be downloaded 

at http://www.psychonomic.org. 

The sub-lexical measures were derived from the German orthographic lemmas, 

the German phonological lemmas, the German orthographic word forms, and the 

German phonological word forms of the CELEX lexical database (Baayen et al., 1995). 

Words with acute accents (/#/) were identified as foreign words from the 

orthographic lemma and word form databases, and excluded from analysis. The 

phonological transcription of the CELEX5 was used to exclude words that contained a 

phoneme occurring only in other languages than German. Words that contained a /˜/, 

an /A/, a /Z/, an /O:/, an /3:/, a /w/, or a /V/ were excluded from analyses. All words that 

contained a shortly pronounced /e/ or /&/ were excluded from analyses. Additionally, the 

orthographic and phonological syllable number of each entry was compared. In order to 

exclude foreign words and errors of the phonological transcription, entries with different 

orthographic and phonological syllable numbers were excluded from analysis. 51,207 

words remained in the lemma database for analysis. 

The 363,013 entries of the adjusted word form database consisted of words and 

phrases (e.g., ”bestelltest ab”). Phrases in which the number of words differed in the 

orthographic and phonological notation were excluded from analysis. The words of a 

phrase were processed as separate words, with the respective word frequency of the 

whole phrase. 44,033 phrases consisted of 2 words and 315 phrases consisted of 3 

words. After foreign words have been excluded from analysis, 407,676 words remained 

4 The program is distributed under a free GNU-licence.

5 The syllabified phonological headwords in the CELEX charset.
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in the adjusted word form database. For the calculation of all phonological sub-lexical 

measures long vowels (/a:/, /E:/, /e:/, /i:/, /o:/, /u:/, /y:/, and /&:/) were treated differently  

from short vowels (/a/, /E/, /e/, /i/, /o/, /u/, and /y/). When one wants to neglect this 

distinction, long and short vowel frequencies can be summed post hoc. To calculate the 

phonological syllable frequencies, ambisyllabic consonants were attributed to both 

syllables. All uppercase letters were converted to lowercase, to obtain case insensitive 

frequencies. The resulting type frequency measures indicate the number of times a sub-

lexical unit occurs in the respective CELEX database. The token measures refer to the 

sum of the CELEX’s Mannheim frequency of the lexical entries that contained this 

particular unit. Token frequency measures are given in occurrence per 6 million. 

Results

The complete syllable, dual unit (bigram and biphoneme) and single unit (letter 

and phoneme) type and token frequency measures that were calculated for different 

domains (orthographic vs. phonological) and different basic databases (word form vs. 

lemma) are available at http://www.psychonomic.org     (see README.txt for the 

nomenclature of the files). Here, we will illustrate the findings by providing the most 

frequent sub-lexical units. 

For syllable and dual unit frequencies we will additionally provide the number and 

one example of the most rare sub-lexical units, respectively. For single unit frequencies, 

we describe the rarest letters and phonemes. 
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Syllable frequencies of the lemma database

A total of 6,023 different orthographic and 5,679 different phonological syllables 

were extracted from the 163,099 orthographic and phonological syllables of the lemma 

database. 

The orthographic and phonological syllable with the highest type frequency was 

”ge” and /g@/. It occurred in 3,076 orthographic and 2,561 phonological words. The 

derivative affixes ”ver” (/fEr/) and ”be” (/b@/) were the only other syllables that occurred 

in more than 2,000 orthographic and phonological words. There were 1,529 

orthographic and 1,315 phonological syllables that occurred in only one word (e.g., the 

free morpheme ”auch” or /aux/ was never a syllable of another word than itself). 

The orthographic and phonological syllable with the highest token frequency was 

”der” (/de:r/). The summed frequency of all words that contained this syllable was 

703,722 orthographically and 660,055 phonologically. 

The only syllables with an orthographic and phonological token frequency larger 

than 150,000 was ”und,” while ”ge” exceeded this criterion only orthographically. There 

were 843 orthographic and 724 phonological syllables that occurred only in words with a 

CELEX word frequency of zero (e.g., ”sext” and /zEkst/ occurred only in words like 

Sextakkord, /zEkstakOrt/). 

Syllable frequencies of the word form database

A total of 11,731 orthographic syllables and 10,772 different phonological 

syllables were derived from the 1,285,294 syllables of the word form database. Again, 

”ge” and /g@/ were the syllables with the highest type frequency (orthographic: 35,743, 

phonological: 30,585). The only other phonological syllables that occurred in more than 

20,000 words were /t@n/ and /t@/. 
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Orthographically, ”te” reached this criterion and ”ten” marginally missed it with a 

frequency of 19,691. There were 2,231 orthographic and 1,837 phonological syllables 

that occurred only in one word (e.g., /o:l/ from /Spani:o:l/, Spaniol; ”auch” see above). 

Again, ”der” had the highest orthographic token frequency and /de:r/ had the 

second highest (orthographic: 269,011, phonological: 219,912). The word with the 

highest phonological token frequency and the second highest orthographic token 

frequency was /di:/ (”die”) with a summed frequency of 240,694, orthographically, and 

249,273 phonologically. There were 4,470 orthographic and 3,841 phonological 

syllables that occurred only in words with a frequency of zero (e.g., /E:rst/ from 

/fami:li:E:rst/, familiärst, or ”brückst” from ”überbrückst”). 

Dual unit frequencies of the lemma database

A total of 710 different bigrams and 979 different biphonemes were derived from 

the 453,770 bigrams and 411,358 biphonemes of the lemma database. The bigram with 

the highest type frequency was ”er” (17,315), followed by ”en” and ”ch” as the only 

bigrams that occurred in more than 10,000 words. There were only 27 bigrams that 

occurred in only one word (e.g., ”gc” from ”Spängchen”). The biphoneme that occurred 

in the largest number of words (13,756) was /@n/, followed by /@r/ as the only other 

biphoneme that occurred in more than 9,000 words. There were 47 biphonemes that 

occurred in only one word (e.g., /zv/ from /SErzvaiz@/, scherzweise). 

The bigram with the highest token frequency was ”er,” too (summed frequency of 

1,487,559). ”en” was the only other bigram with a token frequency higher than 

1,000,000. There were 20 bigrams that occurred only in words with a frequency of zero 

(e.g., ”vl” from ”Frevler”). The biphoneme with the highest token frequency (896,914) 

was /@n/. The only other biphoneme that had a higher token frequency than 80,000 
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was /e:r/. There were 29 biphonemes that only occurred in words with a frequency of 

zero (e.g., /E:h/, /zE:hait/, Zäheit). 

Dual unit frequencies of the word form database

A total of 721 different bigrams and 993 different biphonemes were derived from 

the 3,579,388 bigrams and 3,273,332 biphonemes of the word form database. Again, 

the bigram with the highest type frequency (160,582) was ”er.” The bigrams ”ch,” ”st,” 

”en,” and ”te” occurred in more than 100,000 words. Three bigrams occurred only in one 

word (e.g., ”cc” from ”staccato”). The biphoneme that occurred in the largest number of 

words (121,822) was /t@/, followed by /@n/ as the only other biphoneme occurring in 

more than 100,000 words. 13 biphonemes occurred only in one word (e.g., /io:/, see 

above). 

The bigram with the highest token frequency (1,048,911) was ”en.” The only 

other bigram that had a higher token frequency than 1,000,000 was ”er,” 26 bigrams 

occurred only in words with a frequency of zero (e.g., ”cc,” see above). The biphoneme 

with the highest token frequency (841,141) was /@n/. /ai/ was the only other biphoneme 

exceeding the 500,000 token frequency threshold. 35 biphonemes occurred only in 

words with a frequency of zero (e.g., /E:h/, see above). 

Single unit frequencies of the lemma database 

Thirty different letters and 38 different phonemes were derived from the 505,028 

letters and 462,613 phonemes of the lemma database. The letter with the highest type 

frequency was ”e” (69,860). The only other letters that occurred in more words than 

40,000 were ”n” and ”r.” The letters ”q,” ”x,” ”j” and ”y” occurred in less than 1,000 words. 

The phoneme that occurred in the largest amount of words (40,725) was /t/,followed 
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by /r/, /n/, /@/, and /a/ which exceeded the 30,000 words threshold. The only phonemes 

that occurred in less than 1,000 words were /j/ and /Q/. 

The letter with the highest token frequency was ”e” (4,411,788). The only letters 

that exceeded the token frequency threshold of 2,000,000 were ”n” and ”r.” The letters 

”q,” ”x,” and ”y” had a token frequency below 10,000. The phoneme with the highest 

token frequency was /n/ (2,545,874). The only other phoneme that exceeded the 

2,000,000 threshold was /r/. The phonemes with the lowest token frequency were /&:/ 

and /Q/, that had a token frequency below 50,000. 

Single unit frequencies of the word form database

Again, 30 different letters and 38 different phonemes were derived from the 

3,987,164 letters and 3,681,103 phonemes of the word form database. 

The letter with the highest type frequency was ”e” (663,642). The letters ”t,” ”s,” 

and ”r” occurred in more words than 300,000. The only letters that occurred in less 

words than 10,000 were ”q,” ”j,” ”x” and ”y.” The phoneme that occurred in the largest 

amount (431,585) of words was /@/. The only other phoneme occurring in more words 

than 400,000 was /t/. The phonemes /j/, /Q/and /&:/ occurred in less than 10,000 words. 

Again, the letter with the highest token frequency (4,595,079) was ”e.” Letters 

that had a higher token frequency than 2,000,000 were ”n,” ”I,” and ”r.” The only letters 

that had a token frequency lower than 10,000 were ”q,”, ”x,” and ”y.” The phoneme with 

the highest token frequency was /n/ (2,504,247). The only other phonemes with a token 

frequency higher than 2,000,000 were /@/and /t/. The only phonemes with a token 

frequency lower than 100,000 were /Q/, /&:/, /Y/, /E:/, /y/, and /j/. 

In German, most phonemes correspond to one letter. However, there are a few 

two-letter units (e.g., ch, ck). These frequency counts can be derived from the 

respective frequency lists at http://www.psychonomic.org. In order to allow for the 
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assessment of the frequencies of all German graphemes, we also provide the frequency 

of the only three-letter grapheme here: ”sch.” The type frequency of ”sch” was 7,082 in 

the lemma corpus, and 54,270 in the word form corpus. The token frequency was 

228,422 in the lemma corpus and 228,414 in the word form corpus. 

Discussion

Whereas earlier studies assessed sub-lexical frequency effects based on lemma 

corpora (e.g., Conrad & Jacobs, 2004), or did not specify from which corpus the 

measures were derived, the present study provides also sub-lexical frequency 

measures derived from the German word form corpora (Baayen et al., 1995). Hence, 

sentence-level studies can be conducted avoiding the systematic over- or 

underestimation of syllable frequencies that determine the inflection of a word that 

would result from using the lemma database. For example, the word form ”wird” 

contributes to the lemma frequency of the word ”werden,” and thus the frequency 

measures of syllables ”wer” and ”den” are systematically overestimated. On the other 

hand, underestimations can occur, for example, in syllables that correspond to inflective 

morphemes. Thus, the syllables ”ten” (/t@n/) and ”te” (/t@/) that correspond to the 

German past tense inflective morphemes, are much more frequent in the word form 

than in the lemma database. 

All syllabic level analyses provided more orthographic than phonological 

syllables. This pattern of results shows that the German language is more 

feedbackward than feedforward inconsistent (Stone, Vanhoy, & Van Orden, 1997; 

Ziegler et al., 1996; Ziegler et al., 1997). Phonological syllables necessarily must be 

written in different ways to generate this number relation. One source of this 

inconsistency in German is the fact that there is often no orthographic difference 
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between vowels that are pronounced long or short, e.g., the orthographic syllable ”ol” 

corresponds to one phonological syllable when it is pronounced long (/o:l/), and to 17 

words when it is pronounced short (/ol/). The calculation of such inconsistencies is one 

example of additional measures that can be derived from the CELEX lexical database 

by making small modifications to the SUBLEX software. 

When it comes to smaller sub-lexical units, not only the summed positional 

bigram measures can be derived from the data of the present study (see Duyck et al., 

2004), but also the mean bigram frequency of a word which is not confounded with word 

length. Additionally, the present study provides the first online database of biphoneme 

measures. 

Once phoneme and syllable frequency measures are available in this way, every 

study that investigates the processing of word stimuli can, in principle, contribute to 

Nickels and Howard’s (2004a) controversy (see above) that raised the question whether 

syllable frequency has an influence that is independent of phoneme frequency. This can 

be done either by controlling for either of both variables, or by evaluating the 

independence of effects by applying multiple regression methods. All measures are now 

provided by one study, and were calculated by the same algorithm. Thus, it is now 

possible to compare the relative influences of each measure in different tasks. It also 

becomes possible to evaluate which group of subjects is sensitive to what degree to 

which sub-lexical measure in which task. The present study has provided the basic data 

to meet Aichert and Ziegler’s (2005) call for controlling sub-lexical measures. 

Systematic comparisons between syllable, dual unit and single unit measures, between 

the orthographic and the phonological domain, between type and token measures, as 

well as between measures derived from the lemma and word form database are now 

possible. It is well known that the larger the grain size, the more units exist (Ziegler & 

Goswami, 2005). Now, concrete numbers are available for German. The CELEX lexical 

database (Baayen et al., 1995) consists of 10,722 syllables, 979 biphonemes and 38 
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phonemes, derived from the German words of the CELEX word form corpus. According 

to CELEX, German written texts contain 11,731 syllables, 710 bigrams, and 30 letters. 

It should be noted that the present study neglected positional frequency 

measures (in contrast to Massaro & Cohen’s, 1994, approach to bigram frequency, for 

instance), and concentrated on non-positional measures (as e.g. Duyck et al., 2004). 

The grain size units were counted irrespective of the position in a word. The question 

which of both measures reflects the processing of a stimulus best has not yet been 

answered to our knowledge. Position specificity is a matter of debate in the current 

literature that has more than these two solutions (see Dehaene, Cohen, Sigman, & 

Vinkier, 2005; Goswami & Ziegler, 2006; Grainger & Whitney, 2004). For example, 

relative positions within a word might be another suitable concept (Peressotti & 

Grainger, 1999). Thus, we decided to neglect position specificity for the present 

purposes. 

To find out how sub-lexical frequency measures can be applied to the diagnosis 

of language skills, Seidenberg’s (1987) principle of orthographic redundancy can be 

used in a developmental perspective of reading or language abilities in general 

(Seidenberg & McClelland, 1989). Not all orthographic patterns are equally frequent. 

Thus, orthographic patterns that occur very rarely are less likely to be recognized than 

high frequency patterns. we propose that the present studies’ frequency measures can 

be used to determine the relative reliance on particular grain sizes during reading or 

speaking of an individual. By manipulating each grain size and holding the respective 

other grain sizes constant, a certain frequency for each grain size and participant can 

be obtained. Hypothetically, units above these diagnostically relevant frequencies are 

processed correctly, in contrast to units below that frequency. 

By knowing the relative strengths of an impaired reader during the processing of 

a particular grain size, compensational strategies can be taught to generalize from the 
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relatively impaired grain sizes to other grain sizes, if proficient reading is correctly 

characterized by the activation of multiple grain sizes (Ziegler & Goswami, 2005). 

Another therapeutic approach deals with the fact that small units are learned by 

finding the differences between large units (Ziegler & Goswami, 2005). For instance, by 

naming the common phoneme in the words /pa:t@/ and /kOst/ a reader can gain a 

cognitive representation of the phoneme /t/. On the basis of the present analysis 

therapeutic strategies should initially use high frequency phonemes in unskilled readers 

that can be learned easier than lower frequent phonemes. The calculation algorithms 

now being available could be used to calculate these measures for other languages 

provided by the CELEX lexical database (English and Dutch). Such follow-up analyses 

could easily be performed by a slightly modified SUBLEX software. Since the grain size 

theory can also contribute to a cross-linguistic perspective (Ziegler & Goswami, 2005), 

such follow-up studies would allow for comparing the relative influence of different grain 

sizes across languages. Ziegler and Goswami (2005) already predicted that in 

languages with more inconsistent GPC (e.g., English) larger grain size units might be 

more suitable than in languages with more consistent GPC. Such hypotheses can be 

tested by use of the materials provided by such follow-up studies. we hope that the 

SUBLEX software will also be applied to newer corpora of the German language, such 

as the Web-CELEX (see http://www.mpi.nl/world/celex/), the DWDS corpus (Geyken, 

2007), or the German Wortschatz-Project (wortschatz.uni-leipzig.de/).
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Abstract

The present study examined cortical oxygenation changes during lexical decision 

on words and PWs using functional Near-Infrared Spectroscopy (fNIRS). Focal 

hyperoxygenation as an indicator of functional activation was compared over three 

target areas over the left hemisphere. A 52-channel Hitachi ETG-4000 was used 

covering the superior frontal gyrus (SFG), the left inferior parietal gyrus (IPG) and the 

left inferior frontal gyrus (IFG). To allow for anatomical inference a recently developed 

probabilistic mapping method was used to determine the most likely anatomic locations 

of the changes in cortical activation (Tsuzuki et al., 2007). 

Subjects made lexical decisions on 50 low and 50 high frequency words and 100 

PWs. With respect to the lexicality effect, words elicited a larger focal hyperoxygenation 

in comparison to PWs in two regions identified as the SFG and left IPG. The SFG 

6An adapted version of this study was published in 2008: Differential activation of frontal and parietal regi-
ons during visual word recognition: An optical topography study. NeuroImage, 40, 1340-1349. 
http://dx.doi.org/10.1016/j.neuroimage.2007.12.037 
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activation difference was interpreted to reflect decision-related mechanisms according 

to the MROM (Grainger, & Jacobs, 1996). The greater oxygenation response to words 

in the left IPG suggests that this region connects orthographic, phonological and 

semantic representations. A decrease of deoxygenated hemoglobin was observed to 

low frequency in comparison to high frequency words in a region identified as IFG. This 

region’s sensitivity to word frequency suggests its involvement in grapheme-phoneme 

conversion, or its role during the selection of pre-activated semantic candidates. 

66



Study 2: Differential activation of frontal and parietal regions during visual word recognition: An optical topography study

Introduction

During the LDT, participants usually react faster to words than to pseudowords 

(PW). This was termed the lexicality effect. The other effect within the word-category is 

demonstrated when RTs to high frequency words are compared to RTs to low frequency 

words. This word frequency effect indicates a faster processing of common words 

compared to uncommon words and is the probably most robust finding in the word 

recognition literature (Jacobs & Grainger, 1994). These behavioral findings were 

investigated by neuroimaging to identify the different brain areas involved in the task. 

The key areas for the lexicality effect are the SFG including the medial and 

middle frontal gyrus, and the IPG including the angular and supramarginal gyrus. Both 

regions showed a greater response to words than to PWs during a feature detection 

task in a PET study (see Price, 2000, Figure 10, second row, reanalysis of Brunswick, 

McCrory, Price, Frith, & Frith, 1999). Also fMRI studies revealed a larger BOLD contrast 

in SFG and IPG for words compared to PWs. This was demonstrated in visual lexical 

decision (Binder et al., 2003; Kuchinke et al., 2005), silent articulation and phonological 

LDTs (Ischebeck et al., 2004). The latter study made subjects decide on whether or not 

a presented letter string sounds like a word if read aloud. 

Functional-anatomical findings can be interpreted in the light of the MROM 

(Grainger & Jacobs, 1996; Jacobs et al., 1998, 2003), a computational model of word 

recognition. Briefly, intra-lexical decision criteria of lexical activation generate a ”yes”-

response to word stimuli while an extra-lexical temporal threshold mechanism 

generates a ”no”-response to PW stimuli. Fiebach et al. (2007) suggested that the 

putative role of the SFG lies in executive and control functions. More specifically the 

SFG, an area involved in decision-related processes, can be assumed to respond 

differently as a function of which of the two response mechanisms postulated by the 
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MROM is active: Thus it can be postulated that the ”yes” and the ”no” reaction will elicit 

different neural responses in decision-related brain regions such as the SFG (cf. Price, 

2000, p. 353). Generally in line with this model, Ischebeck et al. (2004) argued that SFG 

activation reflects control functions with regard to retrieval of semantic information from 

posterior areas (for a review, see Binder et al., 1999). Thus words containing semantic 

information, elicit larger activations than PWs, because the latter are devoid of semantic 

content. 

IPG, particularly the angular gyrus, has an even longer history as a target area in 

higher order language processing especially at the hinge between reading, writing and 

overt language production. More than a century ago Déjerine (1891) associated lesions 

in the IPG with a syndrome later termed ”alexia with agraphia”. His patient developed an 

inability to read and write after an IPG-lesion and concluded that IPG is critical for the 

’memory’ of the visual word form. Later Geschwind (1965) observed that IPG-lesioned 

patients are not able to understand words when they are spelt. Therefore he concluded 

that ”It is a region which turns written language into spoken language and vice versa” 

(Geschwind, 1965, p. 278; cf. Damasio & Damasio, 1983).

Beyond lesion studies the analysis of developmental disorders of reading and 

writing point at the role of the IPG as a pivot between orthographic and phonological 

representations. Pugh et al. (2000) provided evidence that dyslexia can be conceived 

as a disorder of relating print to sound and vice versa, which corresponds to a disruption 

of the projections between the IPG, and occipital as well as temporal cortical areas 

(Booth, Burman, Meyer, Gitelman, Parrish, & Marsel Mesulam, 2004; Horwitz, Rumsey, 

Donohue, 1998; but see Kronbichler, Hutzler, Staffen, Mair, Ladurner, & Wimmer, 2006).

To sum up, IPG can be conceived as a hub mediating the transfer between 

reading, writing, overt language production and semantic processing. Clinically, Price 

(2000) has pointed out that patients with an IPG lesion not only show impairments in 

reading and writing, but also perform poorly on semantic tasks (Hart & Gordon, 1990). 
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With respect to the word frequency effect the IFG plays a major role since it is 

more activated in response to low than to high frequency words. An early PET study 

revealed a non-significant trend using a naming task (Fiez, Balota, Raichle, & Petersent, 

1999). Consecutive fMRI research rendered the word frequency effect the probably 

best-replicated finding of fMRI studies on word recognition. Larger BOLD contrasts in 

the IFG for low frequency words were reported in a silent articulation (Ischebeck et al., 

2004; Kronbichler et al., 2004), a visual (Fiebach et al., 2002, 2003; Carreiras et al., 

2006), an auditory (Prabhakaran et al., 2006) and a phonological LDT (Carreiras et al., 

2006; Ischebeck et al., 2004; Nakic et al., 2006; Prabhakaran et al., 2006). 

The finding of a lesser activation for high frequency words was interpreted 

according to the dual route model (Coltheart et al., 2001; Fiebach et al., 2002). This 

model assumes that in low frequency words the so-called assembled route generates a 

phonological representation applying grapheme-phoneme correspondence rules: For 

each grapheme the corresponding phoneme is retrieved to generate a phonological 

representation. On the contrary high frequency words will be mainly processed by the 

addressed route generating a phonological representation by matching the whole word 

to the phonological representation. Fiebach et al. (2002) suggested that the 

predominance of generating a phonological representation by computing grapheme-

phoneme correspondences for low frequency words elicits the greater IFG activation. 

The present study introduces fNIRS into the field of word recognition, a method 

assessing changes in cortical oxygenation by applying near-infrared light to measure 

changes in tissue attenuation. The relative transparency of biological tissue to light in 

the near infrared spectrum allows for optical tissue spectroscopy in a depth of some 

centimeters. Applied on the intact skull light-attenuation changes can thus be assessed 

in the cerebral cortex. 

Since oxygenated and deoxygenated hemoglobin have differential absorption 

spectra (i.e., ”colors”), focal cortical hyperoxygenation can be reliably detected. The 
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physiological basis of this measure of cortical activity is the fact that an increase in 

regional cerebral blood flow (rCBF) is closely coupled both spatially and temporally to 

neuronal activity. This so-termed neurovascular coupling is the basis of all modern 

imaging techniques such as BOLD-contrast fMRI and PET (Villringer & Dirnagl, 1995). 

Thus fNIRS results are physiologically comparable to fMRI and PET results. 

However, its spatial resolution is rather coarse (Obrig & Villringer, 2003). Beyond this 

shortcoming fNIRS combines a number of features extremely attractive for language 

research. Being compatible with a natural environment and silent, the method’s 

advantage has been proven in a number of previous studies in language research even 

in earliest infanthood (Fallgatter, Müller, & Strik, 1998; Herrmann, Walter, Ehlis, & 

Fallgatter, 2006; Homae, Watanabe, Nakano, Asakawa, & Taga, 2006; Horovitz & Gore, 

2004; Noguchi, Takeuchi, & Sakai, 2002; Pena et al., 2003; Taga, Asakawa, Hirasawa, 

& Konishi, 2003; Wartenburger, Steinbrink, Telkemeyer, Friedrich, Friederici, & Obrig, 

2007; Watanabe et al., 1998).

Here we challenge the methodology’s potential to explore its versatility and 

reliability to differentiate activation in the three target areas discussed above 

(SFG/IPG/IFG). To frame the challenge in a more than descriptive way, we apply a 

recently developed procedure (Tsuzuki et al., 2007), which projects topographical data 

based on skull landmarks (e.g., 10-20-system) into a 3D reference frame (MNI space). 

Though the resulting MNI-coordinates are subject to inter-individual error the procedure 

allows for a probabilistic reference to cortical areas on the brain’s surface. 

The study is motivated by the perspective to elucidate the neuronal correlates of 

word processing not only in adult healthy volunteers, but also to extend the research to 

patients with neuropsychological deficits, and to link imaging results to developmental 

studies, by allowing to readily examine the emergence of literacy in children. To our 

knowledge this is the first fNIRS study attempting to disentangle the functional 
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specificity of two neighboring areas, i.e., the SFG and the IFG. For this purpose, it was 

necessary to use the probabilistic mapping method. 

Methods

Participants

Twelve right-handed healthy native German speaking subjects participated in the 

experiment (6 female, mean age 26, ranging from 22 to 30). They were neurologically 

healthy and did not suffer from any language or speech impairment. Subjects were 

seated in a comfortable chair in a dimly lit room. The distance from eyes to monitor was 

about 50 cm. 

Materials

The 200 experimental stimuli comprised 100 words and 100 PWs. All stimuli 

were bisyllabic and consisted of 4 to 7 letters. The number of letters was cross-

balanced between words and PWs. The 100 PW stimuli were pronounceable and were 

generated by stringing together legal syllables (taken from Study 1; Hofmann, 

Stenneken, Conrad, & Jacobs, 2007).

The words used included 50 low frequency and 50 high frequency nouns. Mean 

word frequency was 2 per million (SD: 1) for low frequency words (e.g., ”Reling” [railing], 

”Sichel” [sickle]), and 229 per million (SD: 141) for high frequency words (e.g., Vater 

[father], Sache [matter], Baayen et al., 1995). Word frequency differed significantly (t = 

11.4, p ≤ 0.001). The number of letters and number of orthographic neighbors was 
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balanced across categories. The frequency of the highest frequent neighbor did not 

differ (t = 0.1). 

Type and token mean bigram and letter frequencies were taken from the lemma 

database of Hofmann et al. (2007) and did not differ across cells (ts ≤ 0.1). To assure 

that all low frequency words were known to a native German speaker, they were tested 

in a pre-experiment (10 subjects). These participants did not participate in the main 

experiment and were instructed to mark words that were not well known to them. This 

led to the replacement of four words from the initial stimulus list. 

Experimental procedure 

Participants were instructed to decide whether or not a presented letter string 

was a meaningful word and to respond by pressing one of two buttons using the index 

of the respective hand. Since motor responses may contaminate the cerebral 

activations of interest, half of the participants were instructed to press the left button for 

words and the right button for PWs, and the other half responded vice versa. Accuracy 

was emphasized over speed. 

The 200 experimental trials were presented in two blocks each containing 100 

trials, preceded by 10 practice trials. Stimuli were presented in a pseudo-randomized 

fashion. Maximally three words or PWs were allowed to be presented consecutively. At 

the beginning of each trial a fixation cross (”+”) was presented. After a randomly varied 

interval of 500 - 1000 ms the stimulus was presented in white uppercase letters on a 

black background until a response was given. Then five hash marks (”#####”) were 

presented for 3500 ms, followed by a blank screen for 500 ms. There was no feedback 

on the response. 
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Data acquisition

Stimulus presentation and behavioral data acquisition relied on Presentation 

Software (Windows XP). Stimuli were presented on a 17 inch monitor with a screen 

refresh rate of 70 Hz. 

Cerebral oxygenation changes were sampled at 10 Hz by a Hitachi optical 

topograph (ETG-4000, Hitachi Medical. Co., Kashiwa, Japan). The system is a 

continuous wave device which measures changes in attenuation at 2 wavelengths (695 

and 830 nm, ± 20 nm) and hence allows for the differentiation of two dynamic absorbers 

([oxy-Hb] and [deoxy-Hb]). Lock-in technique is used to differentiate between 

wavelengths. Equipped with 16 light emitting and 17 detector probes, 52 channels can 

be measured quasi-simultaneously. Concentration changes in [oxy-Hb] and [deoxy-Hb] 

were calculated based on a modified Beer-Lambert approach (Cope & Delpy, 1988). 

Inter-optode distance was 3 cm. The array of 52 measurement positions (yellow 

circles Figure 8) covered an area of ~6 × 30 cm. As is illustrated in Figure 8 the probe 

array was positioned on the subject’s head with the medial detector of the lowest optode 

row corresponding to T3 of the 10-20 system while the lower edge of the probe set was 

fixed 1 cm above the inion (red circles in Figure 8). For the definition of the 10-20 

system (Jasper, 1958) the onsets of the zygomatic bones were defined as preauricular 

points (cf. Jurcak, Tsuzuki, & Dan, 2007, Figure 9D). 

Data analysis

For outlier correction of the behavioral data, each RT deviating more than 2 

standard deviations from the subject’s mean was excluded from further behavioral 

analysis. 
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Event related oxygenation changes were analyzed by means of the General 

Linear Model (GLM), as proposed by Schroeter et al. (2004). To correct for artifacts due 

to heartbeat, data were low-pass filtered at 0.6 Hz. For each pairwise comparison, a 

three predictor model was used. The first pairwise comparison was conducted to assess 

the lexicality effect. The prediction terms consisted of words, PWs, and behavioral 

errors, respectively. The second pairwise comparison was conducted to assess the 

word frequency effect. The prediction terms were, low frequency words, high frequency 

words, and the third predictor consisted of PWs and behavioral errors. The latter 

predictors were excluded from statistical analyses, respectively. The predictors for the 

GLM were generated by convolving a Gaussian function with each event (Plichta, 

Heinzel, Ehlis, Pauli, & Fallgatter, 2007). To estimate the amplitude of the oxygenation 

response beta-values for each predictor were calculated by a least squares model fitting 

procedure maximizing model-to-data fitting (Bullmore et al., 1996). The first and second 

temporal derivative of each prediction term was included to adapt the onset and 

dispersion of the model functions to the individual’s hemodynamic response. To correct 

for serial autocorrelated errors resulting from baseline drifts, we fitted a first-order 

autoregressive process to the error term by the Cochrane-Orcutt procedure (Cochrane 

& Orcutt, 1949). T-statistics were applied for comparison between response amplitudes. 

Uncorrected t-values were thresholded at t ≥ 2.2 (α = 0.05, two-tailed). we list all 

channels surviving partial Bonferroni correction in Table 1. For that purpose, the 

Dubey/Armitage-Parmar alpha boundary was calculated which includes the mean 

intercorrelation (IC) between the channels (Sankoh, Huque, & Dubey, 1997). The 

rationale is that correlated channels must not be treated as independent samples. 

Beyond the localization of the oxygenation response we examined the time 

courses of the changes in [oxy-Hb] and [deoxy-Hb] by averaging all responses to each 

condition respectively. The second before stimulus presentation was used as baseline. 
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To assess the relative hemodynamic response increase to words in comparison 

to PWs, and to low frequency words in comparison to high frequency words, we simply 

subtracted the responses of the respectively less active conditions (PWs, high 

frequency words) from the activating conditions (words, low frequency words). 

Examples of the resulting time courses are given in Figure 9. The rationale to select the 

examples based on the [deoxy-Hb] changes is largely motivated by the physiological 

link between the changes in [deoxy-Hb] and BOLD contrast. A focal decrease in 

paramagnetic [deoxy-Hb] is the strongest constituent of a BOLD contrast increase (e.g., 

Steinbrink et al., 2006). It was thus our intention to link the present work to the fMRI 

based imaging literature. To estimate correspondence between channels and cortical 

topography, Tsuzuki et al.’s (2007) virtual registration method was applied. This method 

uses structural information from an anatomical database (Jurcak, Okamoto, Singh, & 

Dan, 2005; Okamoto et al., 2004) to provide estimates of the channel positions in a 

standardized stereotaxic 3D brain atlas (MNI space; cf. Tsuzuki et al., 2007). It also 

estimates the spatial uncertainty due to inter-subject variability of the channel locations 

(freeware available under http://brain.job.affrc.go.jp). The estimated locations were 

anatomically labeled by means of a Matlab function using anatomical labels from 

Tzourio-Mazoyer et al.’s (2002) brain atlas. Based on this procedure the following labels 

for the target regions will be used: 

SFG (superior frontal gyrus): left and right medial and middle SFG, and the medial and 

middle frontal gyrus. 

IPG (inferior parietal gyrus): left inferior parietal, angular and the supramarginal gyrus. 

IFG (inferior frontal gyrus): includes the left triangular and orbital parts of the IFG. 
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Channels most probably located in one of those target regions, were indexed 

from top to bottom and from left to right (cf. Figure 8, upper row and Table 1).

Results

Behavioral results

There was a significant lexicality effect in RTs (t = 5.2; P ≤ 0.001) and error rate (t 

= 2.8; P ≤ 0.05) with a mean RT of 737 ms (SD: 257) for words and of 853 ms (SD: 327) 

for PW. The mean average error rate was 6.5 (SD: 5.0) for words, and 2.5 (SD: 2.2) for 

PWs.

A significant effect was also found for word frequency in RTs (t = 4.0, P ≤ 0.001) 

and errors (t = 3.2; P ≤ 0.01). Mean RT was 802 ms (SD: 310) for low frequency words, 

and 682 ms (SD: 216) for high frequency words. Corresponding mean error rates were 

5.2 (SD: 4.1) for low and 1.3 (SD: 2.0) for high frequency words. In sum the behavioral 

results are in line with earlier studies examining behavioral effects of lexicality and word 

frequency (e.g., Fiebach et al., 2002; Jacobs & Grainger, 1994).
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Figure 8: The 

upper row indicates 

the channels 

belonging to the target 

regions and the probe 

set definition. The 

optode between the 

middle channels of 

the lowest optode row 

was positioned at T3. 

The lower edge of the 

probe set was 

positioned 1 cm 

above the inion. Panel 

A shows the t-values 

for all channels in the 

lexicality contrast 

(words > PWs), 

separately for [oxy-

Hb] (upper row) and 

[deoxy-Hb] (lower row). The time course of channels SFG-10 and IPG-4 are given in 

Figures 3.2A and 3.2B, as indicated by the black and green circles, respectively. Panel 

B shows the t-values for all channels in the word frequency contrast (low > high), 

separately for [oxy-Hb] (upper row) and [deoxy-Hb] (lower row). The time course of 

channel IFG-4 is given in Figure 9C, as indicated by the violet circles. Exact t-values of 

the significant channels can be examined in Table 1.
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fNIRS (optical topography)

Changes in [oxy-Hb] and [deoxy-Hb] illustrating the effects of lexicality and word 

frequency, as well as their anatomical location are given in Figure 8 and Table 1. 

Concerning the effect of lexicality, eleven channels overlying SFG revealed larger 

[oxy-Hb] increases to words in comparison to PWs (see Table 1 and Figure 8A). Three 

of these channels survived the partial Bonferroni correction (ts ≥ 3.2, IC = 0.55). 

Significant [deoxy-Hb] decreases to words compared to PWs were found in five SFG 

channels (see Table 1 and Figure 8A).

Four IPG channels revealed a significant [oxy-Hb] increase to words in 

comparison to PWs. One of these survived partial Bonferroni correction (t ≥ 3.2, IC = 

0.55, see Figure 8A and Table 1). Five IPG channels revealed a significant [deoxy-Hb] 

effect. Two of these survived partial Bonferroni correction (ts ≥ 4.0; IC = 0.20). 

Concerning the effect of word frequency, no significant [oxy-Hb] changes were 

obtained (maximal t = 2.1, P = 0.06 at channel IFG-2, see Table 1 and Figure 8B). 

Significant [deoxy-Hb] decreases were found in two IFG channels. One of these 

survived partial Bonferroni correction (t ≥ 4.0, IC = 0.18). Beyond the statistical 

comparison between conditions we also examined the time course of the oxygenation 

responses. Figure 9 provides examples for the cortical target regions. For the selection 

of the example channels we chose those channels in the target regions, which showed 

the most significant decrease in [deoxy-Hb]. The rationale to select these channels 

based on [deoxy-Hb] changes is twofold: (i) the signal of the most widely used 

functional imaging technique, BOLD-contrast fMRI, relies on changes in focal 

susceptibility elicited by decreases in [deoxy-Hb] (Ogawa, Lee, Nayak, & Glynn, 1990). 

Thus we consider [deoxy-Hb] changes the best parameter to link the present data to the 

existing imaging literature (Kleinschmidt et al., 1996; Steinbrink et al., 2006). (ii) The 

fine-tuned regulation of blood flow velocity and blood volume changes (e.g., Buxton, 
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Wong, & Frank, 1998) is specific to the cerebral vasculature. This may explain, why 

[oxy-Hb] changes are more sensitive to extracerebral contamination as has been 

demonstrated in an experiment using a simple motor paradigm (Boden, Obrig, 

Koehnke, Benav, Koch, & Steinbrink, 2007).

The time course of the hemodynamic response of channel SFG-10 anatomically 

corresponding to the left SFG (x/y/z: -23/68/8 in MNI space) is provided by Figure 9A. 

The differential response (i.e., response to words minus response to PW) demonstrates 

that the response pattern is in line with previous publications showing a decrease in 

[deoxy-Hb] accompanied by a larger increase in [oxy-Hb]. A similar difference was seen 

over the IPG for this comparison (words vs. PWs). Figure 9B illustrates the differential 

time course in this region (IPG-4; x/y/z: -47/-52/47 in MNI space). Finally, an example 

for the comparison between low versus high frequency words is given in Figure 9C. 

Here the response to high frequency words was subtracted from that to low frequency 

words. Again a stronger increase in [oxy-Hb] and a more pronounced decrease in 

[deoxy-Hb] is clearly seen to low frequency words in this region corresponding to left 

IFG (IFG-4; x/y/z: 35/-52/-3 in MNI space). The response pattern seen over all three 

channels is explicable by an increase in blood volume and a faster washout of [deoxy-

Hb], the latter corresponding to an increase in BOLD-contrast (Kleinschmidt et al., 

1996). Hence the present findings show greater activations for words (vs. PW) over the 

left SFG and IPG, while a larger activation over the left IFG is found for low frequency 

when compared to high frequency words.
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Table 1: Channel t-values within the regions of interest

Channel numbers, MNI coordinates, estimated inter-subject variability (SD) and 

significant uncorrected t-values (df = 11, Ps ≤ 0.05, two-tailed) are given. Significant 

channels are marked by * (ts ≥ 2.2).  t-values surviving partial Bonferroni correction are 

marked by ** (ts ≥ 3.2 for [oxy-Hb] and ts ≥ 4.0 for [deoxy-Hb] due to channel 

intercorrelations). For shaded channels exemplary time courses are given in Figure 9.
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Figure 9: This figure shows the time courses of the hemodynamic responses 

exemplified on one channel for each target region. Panels A and B show the time 

course of the word activation relative to PW activation in channel SFG-10 and IPG-4. 

The time course of the activation of low frequency words relative to high frequency 

words in channel IFG-4 is given in panel C. Error bars indicate standard errors.
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Discussion

The present study shows that neuronal correlates of visual word recognition can 

be investigated by optical topography. Specifically it was demonstrated that both, 

lexicality and word-frequency yield differential patterns of cortical activation. The major 

findings are: 

(i) Words elicit a statistically larger activation in the SFG and IPG when compared 

to PWs (lexicality effect). This is indicated by an increase in [oxy-Hb] and a decrease in 

[deoxy-Hb]. 

(ii) Low frequency words elicit a greater activation in the IFG when compared to 

high frequency words (word frequency effect), as indicated by a decrease of [deoxy-Hb]. 

Moreover, we demonstrated that more than one target region can be assessed 

by fNIRS within the same effect, and that the functional specificity of neighboring 

regions can be assessed by applying the probabilistic mapping method. These findings 

supply functional neuroimaging support for two models, the MROM (Grainger & Jacobs, 

1996) and the DRC (Coltheart et al., 2001), both of which were originally proposed for 

explaining behavioral data. While the present findings are generally in line with previous 

imaging studies, the discussion will also focus on the novel methodological approach.
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The lexicality effect

We show a statistically larger [oxy-Hb] increase and [deoxy-Hb] decrease to 

words in comparison to PWs for the channels overlying the SFG. This activation 

difference of the SFG during visual word recognition is predicted by the MROM 

(Fiebach et al., 2007; Grainger & Jacobs, 1996; Jacobs et al., 1998) which posits that 

different decision mechanisms for words and PWs will be activated: A ”yes” response is 

generated by intra-lexical activation criteria while the ”no” response is generated by an 

extra-lexical temporal threshold mechanism (cf. Fiebach et al., 2007). Thus the greater 

RT for PWs can be explained by the temporal threshold, and the ’no-response’ relies on 

a lesser SFG activation. Previous neuroimaging studies reported similar findings. In a 

PET study Price (2000) demonstrated an increase in blood volume in the SFG and 

these findings were confirmed by successive fMRI studies reporting on BOLD-contrast 

increases in the SFG (Binder et al., 2003; Ischebeck et al., 2004; Kuchinke et al., 2005).

Finally the SFG’s role in generating a lexical decision is supported by the finding 

that word/PW differentiation during silent articulation without overt judgment on lexicality 

does not activate SFG (Cohen et al., 2003; Kronbichler et al., 2004). 

An alternative explanation of the SFG effect observed in the present and the 

previous imaging studies refers to differences in semantic retrieval. According to this 

hypothesis the increased SFG activation to words results from control functions with 

regard to retrieval of semantic information (Binder et al., 1999; 2003). 

Principally the present findings might indicate that task difficulty accounts for the 

SFG effect. Words not only elicited a greater SFG activation than PWs, but also more 

errors. Error processing has been assumed to rely on the anterior cingulate (Yeung et 

al., 2004), but also on the mediofrontal gyrus (Ridderinkhof et al., 2004), which is part of 

the SFG. Though actual errors were excluded from the analyses, Yeung et al. propose 

that errors may be activated partially, even when a correct response is generated.  Thus 
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items more likely to elicit an error may induce the SFG activation due to partial error 

activation. To test whether partial error processing is the relevant influence for the 

decision-related activation in the SFG, we added a fourth predictor in the present GLMs 

representing the amount of errors per item. If partial error activation was the relevant 

factor for the differential SFG activation we would expect to eliminate the effect seen in 

our analysis reported above. On the contrary the present results did not change 

qualitatively. Still statistically significant differences were obtained in the SFG (cf. 

Appendix). Thus we conclude that the larger SFG activation found in response to words 

in comparison to PWs7 is at least partially independent from error processing. This 

challenges models of visual word recognition based on behavioral measures alone 

(Braun, Jacobs, Hahne, Ricker, Hofmann, & Hutzler, 2006; Grainger & Jacobs, 1996; 

Hofmann et al., 2008).

In the channels overlying the IPG, words also elicited a stronger 

hyperoxygenation when compared to PWs (Figures 8A and 9B; Table 1). 

The role of IPG in lexical decision has been previously reported. A PET study 

reports blood volume increases to words in comparison to PWs (Price, 2000) while 

greater BOLD responses in IPG were obtained in response to similar paradigms, though 

this finding is controversial (Binder et al., 2003; Cohen et al., 2003; Ischebeck et al., 

2004; Kuchinke et al., 2005; but see Fiebach et al., 2002). Conceptually Déjerine (1891) 

was the first to claim this region’s role for ’memories’ of the visual word form. Nowadays 

this concept has been further elaborated in the framework of different theories. 

Apart from whole word form representations, it was proposed that sub-lexical 

representations exist even at the level of the syllable (Goswami & Ziegler, 2006). When 

words are tested against consonant strings (Cohen et al., 2003), an alternate 

explanation for the IPG effect of lexicality can be discussed. In that case syllabic 

7 The other main effects also remained unchanged.  A larger change in [oxy-Hb] and [deoxy-Hb] over the IPG 
was observed to words in comparison to PWs. Low frequency words elicited a larger [deoxy-Hb] response than 
high frequency words. To control for task difficulty, I finally used the RT of each trial to control for activations 
purely due to varying unspecific task effects. Again, the main results described in our original analysis remained 
unchanged and statistically significant (cf. Appendix).
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representation rather than semantic load may explain the difference in IPG activation 

(cf. Owen, Borowsky, & Sarty, 2004). Even though we cannot fully exclude the 

possibility of syllabic representation to drive IPG, we suggest – in line with Binder et al. 

(1999, 2003) – that the critical difference between words and PWs is the semantic 

representation exclusive to words, a difference which dominates the differential IPG 

activation for lexicality. This conclusion receives support from lesion studies of the IPG 

(cf. Price, 2000, for an overview), and is in line with the concept proposed by BOLD-

contrast findings in studies on dyslexia (Booth et al., 2004; Pugh et al., 2000).

In sum the present study provides evidence that the IPG plays a key role in the 

integration not only of orthographic and phonological information, but actively links 

these to semantic information.

The word frequency effect 

While [oxy-Hb] changes only showed a trend, the word frequency effect elicited 

significant differences between low and high frequency words for the decrease in 

[deoxy-Hb] (see Table 1 and Figure 8B). Two channels overlying the IFG showed a 

larger decrease in [deoxy-Hb] in response to the low frequency words. One of these 

survived the Bonferroni correction. Note that a decrease in [deoxy-Hb] corresponds to 

an increase in BOLD-contrast (Kleinschmidt et al., 1996). Hence, the larger decrease in 

[deoxy-Hb] can be interpreted as an indicator of a stronger underlying neuronal 

response in analogy to studies relying on BOLD-contrast fMRI (see Figure 9C, and 

below for the discussion of the NIRS response). The [deoxy-Hb] finding confirms the 

most established BOLD effect in fMRI research on word recognition (Carreiras et al., 

2006; Fiebach et al., 2002, 2003; Ischebeck et al., 2004; Kronbichler et al., 2004; Nakic 

et al., 2006; Prabhakaran et al., 2006). The established interpretation is that grapheme-

phoneme correspondences are being computed in the IFG. An alternative account 
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would propose that identification of low frequency words is more equivocal than that of 

high frequency words. Therefore several semantic candidates are activated, and the left 

IFG’s role is to select between these pre-activated candidates (Thompson-Schill et al., 

1997). Although the present results are in line with previous fMRI studies, it should be 

noted that the present stimulus material was even more rigidly controlled for potentially 

confounding effects. In order to quantify familiarity with the letter strings in terms of an 

aggregation of more or less familiar features, Kronbichler et al. (2004) controlled for 

bigram frequency. The present study used type and token bigram frequencies. Type 

indicates the amount of words in which a specific bigram occurs, while token denotes 

the summed frequencies of these words (cf. Study 1). Type measures can be 

considered to quantify the familiarity of all existing words assuming they are equally 

activated. Token measures, in contrast, consider the actual likelihood to be activated, 

because they reflect word frequencies. Therefore, the alternative explanation of a global 

familiarity with the words as an aggregation of more or less familiar features can be 

ruled out based on the present study. 

Optical topography as a tool to investigate word recognition

Owing to its low constraints on the experimental environment, fNIRS as a silent 

method is an exquisite tool to investigate language and higher cognition, in which an 

MRI environment may induce substantial distortion of behavior and speech perception. 

Like electroencephalography it may also more easily find applications in psychiatric 

(Fallgatter, Ehlis, Wagener, Michel, & Herrmann, 2004) and neuropsychological patients 

(Zabel & Chute, 2002) and has already been established as a tool in studying 

neuropsychological development in neonates and infanthood (Pena et al., 2003; Taga et 

al., 2003; Wartenburger et al., 2007). However, the appraisal of these advantages must 

face the fact that NIRS cannot supply the exquisite and ever increasing spatial 
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resolution of fMRI-based approaches. Like EEG any anatomical inference on the 

cortical areas relies on external bony landmarks and can thus be referenced to the 10-

20 system and its extensions. Recently, a series of publications has addressed this 

issue and supplied a tool to frame the very rough anatomical differentiation into a 

probabilistic mapping (Jurcak et al., 2005, 2007; Okamoto et al., 2004). In brief, cortical 

anatomy was related to landmarks identified by 10-20 system positions (Tsuzuki et al., 

2007) in 1000 simulated brains. 

The tool therefore supplies a measure of the likelihood of a specific position on 

the subject’s skull to correspond to a specific cortical area and can supply the 

corresponding MNI space coordinates. we am fully aware of the limitations of such a 

reference system and its potential source of error, hence without doubt NIRS will always 

have to respect functional anatomical facts assessed with methods of superior spatial 

resolution. Nonetheless the present findings demonstrate that the localization procedure 

yields the very cortical regions previously discussed by functional imaging studies of 

word recognition. By contrasting the lexicality and the word frequency effect it is 

apparent that spatially distinct areas are activated (see Figure 8). This we consider a 

sound basis to address developmental aspects of lexical processing, e.g., in children 

learning to read. 

There is yet another issue which is somewhat controversial concerning the 

interpretation of fNIRS signals. Accepted models of neuro-vascular coupling posit that 

the increase in rCBF is disproportional to the increase in oxygen consumption when a 

cortical area is activated (Buxton et al., 2004; Fox & Raichle, 1986; Huppert, Allen, 

Benav, Jones, & Boas, 2007). The resulting hyperoxygenation can be measured by 

NIRS, assessing changes in [oxy-Hb] and [deoxy-Hb]. It is, however, controversial 

whether an rCBF increase could potentially rely selectively on an increase in blood 

volume due to arterial dilation without an accelerated flow velocity. Moreover a number 

of dynamic flow-volume relationships were discussed to explain non-linearities of the 
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vascular response governing the BOLD contrast (Mandeville et al., 1999). In case of a 

pure volume increase [deoxy-Hb] might either show no change or even a slight increase 

due to its production by oxidative metabolism and the fact that even arterial blood 

contains a quantity of deoxygenated hemoglobin. This may account for the observation, 

that more [oxy-Hb] channels revealed significant changes than [deoxy-Hb] channels. 

The channels showing [oxy-Hb] changes but no [deoxy-Hb] changes may be an 

activation BOLD-contrast fMRI would be ’blind’ to, because the decrease in 

paramagnetic [deoxy-Hb] is the primary source of BOLD-contrast increases (Huppert et 

al., 2007; Kleinschmidt et al., 1996; Ogawa et al., 1990). 

Such observations have regularly led to the additional appraisal as to the 

superiority of NIRS, assessing oxygenation and volume changes, the latter by summing 

the changes in both compounds. In the present study we find increases in [oxy-Hb] and 

decreases in [deoxy-Hb] for the lexicality effect in the SFG and IPG. In contrast, word 

frequency did not elicit a statistically significant [oxy-Hb] increase in any of the channels. 

Interestingly an early PET study relying on blood volume changes yielded also only a 

tendency towards greater blood volume changes for low frequency words (Fiez et al., 

1999), whereas successive fMRI studies reliably and reproducibly demonstrated the 

difference for BOLD-contrast changes. This might be interpreted as an indicator of 

vascular differences between different cortical areas as has been discussed previously 

(Blood, Pouratian, & Toga, 2002). However, we favor the alternative explanation that 

[oxy-Hb] and [deoxy-Hb] changes in NIRS are subject to different signal to noise ratios. 

The fact that extracerebral, i.e., systemic, hemoglobin changes particularly affect [oxy-

Hb] has been stressed recently (Boden et al., 2007). At least for motor tasks increases 

in heart rate were reported to coincide with the stimulation period (Franceschini, Fantini, 

Thompson, Culver, & Boas, 2003). In the present study further evidence for the 

influence of the systemic response specifically on [oxy-Hb] can be derived from the 

observation that for [oxy-Hb] intercorrelations between channels amount to more than 
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twice of that observed for [deoxy-Hb]. Moreover, the largest t-values were obtained for 

[deoxy-Hb]. This may indicate its better signal-to-noise ratio. 

In sum, the changes in oxygenation are well in line with the model of 

neurovascular coupling that is the basis of all vascular based methodologies, most 

prominently BOLD contrast fMRI. 

Though localization of fNIRS is limited, we demonstrate that specific sub-

processes can be reliably differentiated by the topographical approach and can be 

tentatively framed in a common reference system to be compared to fMRI or PET 

studies. Future studies will have to critically evaluate the versatility of such an approach 

in the development of literacy in children and its impairment in neuropsychiatric 

syndromes. Results from work on language perception in adults and language 

development in infanthood based on spoken language are extremely encouraging with 

respect to apply the method for this endeavor. It should be noted also that the present 

study is the first in language research using fNIRS to identify three distinct areas within 

one hemisphere and to reliably differentiate their respective roles during lexical 

decision.
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Appendix

Table 2: Channel t-values for regions of interest when errors or RTs were held 

constant.

Channel numbers and significant uncorrected t-values (df = 11; Ps≤ 0.05. two-

tailed) in the target region channels are given (cf. Table 1).
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  Study 3: Conflict monitoring engages the medi-

ofrontal cortex during nonword processing

Markus J. Hofmann, Sascha Tamm, Mario M. Braun, 

Michael Dambacher, Anja Hahne, 

& Arthur M. Jacobs8

Abstract 

The current study investigated the role played by conflict monitoring in a lexical-

decision task involving competing word representations, using event-related potentials. 

We extended the multiple read-out model (Grainger & Jacobs, 1996), a connectionist 

model of word recognition, to quantify conflict by means of Hopfield Energy, which is 

defined as the sum of the products of all orthographic word node pair activations within 

the artificial mental lexicon of this model. With increasing conflict levels in nonwords, a 

late negativity increased in amplitude (400-600 ms) accompanied by activation of the 

anterior cingulate cortex and the medial frontal gyrus. The simulated conflict predicted 

the amplitudes associated with this mediofrontal conflict-monitoring network on an item 

level, and is consistent with the conflict-monitoring theory.

8Adapted version of this study was published 2008: Conflict monitoring engages the mediofrontal cortex 
during nonword processing. NeuroReport, 19, 25-29. http://dx.doi.org/10.1097/WNR.0b013e3282f3b134 
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Introduction 

Monitoring of conflicting bits of information is an essential human ability, to 

respond flexibly to the environment. Many neuroimaging studies associate conflict 

monitoring with mediofrontal brain areas such as the anterior cingulate cortex (Botvinick 

et al., 2001) and the medial frontal gyrus (Ridderinkhof et al., 2004). The aim of this 

study is to demonstrate the role of conflict monitoring during the processing of letter 

stimuli. we show that a connectionist model of lexical processing can account for 

behavioral and ERP responses that are related to mediofrontal networks. 

The MROM (Grainger & Jacobs, 1996; Jacobs et al., 1998) was used to make 

predictions about human performance in the lexical decision and related letter-string 

processing tasks. It basically contains a feature, a letter, and a word level, with the lower 

levels providing inputs to the higher levels (see Figure 10 and Jacobs et al., 1998, for 

further details). For example, when the letter F is encoded at the feature level, the letter 

node F becomes activated to a larger degree than the letter node B, whereas letter 

nodes that share no feature with F remain inactivated. The same is true for the 

relationship between the letter and the word levels. The nonword FLUR thus activates 

the word node BLUR to a larger degree than the word node BLUE, as it shares more 

letters with this node. 

Botvinick et al. (2001; Botvinick, Cohen, & Carter, 2004) reviewed converging 

evidence that longer RTs, higher error rates, and larger anterior cingulate cortex 

activations were observed in response to partially activated and conflicting response 

alternatives in the Eriksen flanker and Stroop tasks. More importantly, Botvinick et al. 

(2001) used a very similar framework as the MROM (see Figure 10) to make predictions 

about the extent of conflict during a stem completion task in which participants had to 

complete a word stem (e.g., BLU_) to form a whole word (e.g., BLUR or BLUE). The 
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simulated amount of conflict between the word nodes accounted for the finding, such 

that the so-called strength ratio predicts anterior cingulate cortex activity (Thompson-

Schill et al., 1997). This ratio is calculated by dividing the frequency of the most frequent 

completion by the frequency of the second most frequent completion. The larger the 

competition that exists between these completions, the larger will be the conflict itself, 

and thus the anterior cingulate cortex activity. As lexical frequency determines the 

resting levels of the word nodes in the MROM, it should be capable of accounting for 

ratio effects, when a measure of conflict between the word nodes is introduced. This is 

very similar to Grainger and Jacobs’ (1996) lexical inhibition hypothesis predicting 

greater RTs and error rates for nonwords during lexical decision, with an increasing 

number and relative activations of the word nodes partially activated by a nonword. 

Botvinick et al. (2001) predicted larger anterior cingulate cortex activations in response 

to the larger conflict between activated word nodes. The aim of this study was to test 

the hypothesis, that the keener the competition between these word nodes, the larger 

will be the anterior cingulate cortex (Botvinick et al., 2001; Yeung et al., 2004) and 

medial frontal gyrus activity (Ridderinkhof et al., 2004). In ERPs, larger anterior 

cingulate cortex and medial frontal gyrus activities are often associated with the N2 

component being most prominent at frontal sites (Yeung et al., 2004). Therefore, we 

conducted an ERP study using a lexical-decision task, and applied standardized low-

resolution brain electromagnetic tomography (sLORETA) for source localization 

(Pascual-Marqui, 2002). Botvinick et al. (2001) quantified the extent of conflict by means 

of the so-called Hopfield Energy (Ehopf), which is the sum of the products of all possible 

pairs of word node activations. For example (see Figure 10), FLUR activates the word 

node pairs BLUE and BLUR, BLUE and FOUR, and FOUR and BLUR. We implemented 

Ehopf into the MROM without changing parameters (version of Jacobs et al., 1998). It 

includes most of the three-letter to five-letter German monosyllabic words, in all 1025 

words. Ehopf was computed from cycles 2-7 (Jacobs et al., 2003) and log transformed 
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for normal distribution purposes. Two items were excluded from item analyses because 

they revealed an Ehopf of zero, resulting in missing values after log transformation.

Figure 10: Schematic representation of the basic architecture of the MROM. If 

more features of a letter are activated, there is greater activation of the respective letter 

node at the letter level. If more letters of a word node are activated, more activation is 

fed forward to the respective word nodes. The relative activation of the nodes and the 

strength of the feed-forward activations are indicated by line thickness.
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Methods

Participants

Fourteen right-handed German native speakers (mean age 23 years, range 19-

30, seven women) were recruited from the Max-Planck Institute for Human Cognitive 

and Brain Sciences and were paid for their participation. They had normal or corrected-

to-normal vision. 

Materials

Stimuli were four-lettered, and consisted of 300 German words and 300 

nonwords. Nonwords included a large range of generable nonwords from 

nonpronounceable consonant strings (e.g., GKNZ) that activate only one word node 

(GANZ) to pronounceable nonwords (e.g., LUND), which activate many word nodes 

(e.g., RUND, LAND, and MUND). Three categories, were generated by categorizing the 

100 stimuli with the lowest, medium, and the highest Ehopf values into three stimulus 

categories, respectively. 

Procedure

Stimuli were presented as black uppercase letters (courier font, about 4 × 1 cm) 

on a light grey screen of a 17-inch color monitor (1024 × 768 pixels, 75 Hz). Distance 

from eye to monitor was about 70 cm. Stimuli were presented by ERTS software 

(BeriSoft Corp., Frankfurt, Germany) in a pseudorandomized fashion. No more than 

three words or nonwords were allowed to appear consecutively. After presenting 30 
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practice trials, stimuli were presented in six blocks of 100 trials. The participants were 

instructed to respond as fast as possible but not at the expense of accuracy. Half of the 

participants were instructed to press the right button to words and the left button to 

nonwords, the other half vice versa. Each trial began with fixation points (’:’) presented 

for 500 ms, followed by the stimulus for 100 ms. Thereafter, a mask (’#####’) was 

presented for 300 ms, followed by a blank screen that remained until a response was 

given (maximally 4 s). After a 1.2-s pause, participants were instructed to press a button 

to start with the next trial, starting after a 1-sec delay. 

Data acquisition

Electroencephalogram data were recorded using ANT Software (ANT Software, 

B.V., Enschede, The Netherlands), and analyzed by Brain Vision Analyzer software 

(Brain Products GmbH, Gilching, Germany). The participants were seated in an 

acoustically shielded chamber. Twenty-six electrodes were attached to an elastic cap 

(Easy Cap Corp., Herrsching-Breitbrunn, Germany) at 10-20 positions (T7, FT7, FT8, 

F7, C3, FC3, F3, FP1, FZ, FP2, FC4, F4, AFZ, F8, CP5, P3, P7, O1, PZ, CZ, C4, P4,  

O2, CP6, T8, and P8) and referenced to the left mastoid. Bipolar electrodes were 

attached above and below the right eye for the vertical electrooculogram and at the 

outer canthus of each eye for the horizontal electrooculogram. Impedances for the scalp 

and mastoid electrodes were kept below 5 kΩ for reference and active electrodes, and 

below 20 kΩ for eye-movement electrodes. Electroencephalogram data were sampled 

at 250 Hz and band-pass filtered (0.1-30 Hz). 
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Data analysis

Incorrect responses and outliers (RTs faster than 300 or slower than 1600 ms) 

were excluded from the analyses. Muscle artifacts, drifts, amplifier blockings, and eye 

movements were rejected by visual inspection. Blink artifacts were corrected using 

independent-component analysis (Onton et al., 2006). 

For participant analyses, single participant averages were calculated for the three 

Ehopf categories separately using segments from 200 ms before the stimulus to 1 s 

after the stimulus, and baseline corrected (200 ms before stimulus). Grand averages 

were 8 Hz low-pass filtered for presentation purposes. The ERP morphology (Figure 11) 

showed a P1 peak at around 150-200 ms. A negativity followed the peaking at around 

200-300 ms (N1). The P2 peaked around 300-400 ms and was immediately followed by 

a negative deflection peaking from 400 to 600 ms (N2). The N2 was most pronounced 

at the frontal sites, and showed a graded increase in negativity with increasing Ehopf in 

all electrodes. N2 amplitudes (400-600 ms) were averaged across electrodes for each 

condition, submitted to repeated-measures analyses of variance, and Greenhouse-

Geisser corrected when the sphericity assumption was violated. 

Single participant averages of the N2 were subjected to sLORETA (Pascual-

Marqui, 2002), and normalized participant-wise. Paired t-tests were conducted on each 

possible pair of conditions (high vs. low Ehopf, high vs. medium Ehopf, and medium vs. 

low Ehopf). Statistical testing was performed on average source density. The t-tests 

were performed using sLORETA randomization procedure to correct for multiple 

comparisons. Variance smoothing was set to one. Ehopf was used as the predictor for 

RTs, sum of errors per item, and mean amplitudes over all channels. 

Analyses were conducted on all items for which at least 10 observations 

remained after outlier, error, and artifact rejections. This resulted in 204 items remaining 

for item analyses.
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Results

Behavioral

The participant analyses of behavioral data revealed a significant Ehopf effect in 

RTs (F(2,26) = 83.4, P ≤ 0.001) and errors (F(2,26) = 22.1, P ≤ 0.001). High, medium, 

and low Ehopf nonwords revealed a mean RT of 888 (SD: 143), 831 (SD: 136), and 784 

ms (SD: 121), and error rates of 13.9 (SD: 9.7), 8.1 (SD: 7.4), and 5.9 (SD: 5.7), 

respectively. In the item analysis, Ehopf accounted for 28% of the RT and 5% of the 

error variance (Ps < 0.001).

ERPs

The ERP participant analysis revealed a significant Ehopf effect (F(1.4,17.9) = 

5.3, P ≤ 0.05, see Figure 11). High, medium, and low Ehopf nonwords revealed a mean 

amplitude of 3.1 (SD: 1.2), 3.5 (SD: 1.5), and 3.9 mV (SD: 1.6), respectively. On an 

item-level of analysis, Ehopf accounted for 12% of the ERP variance (P < 0.001). 

sLORETA

sLORETA analysis revealed the largest t-value in the high Ehopf vs. low Ehopf 

contrast in a medial frontal gyrus voxel (t = 5.8, P ≤ 0.005; MNI x/y/z = -10/40/30, see 

Figure 12). The significant region extended to the adjacent anterior cingulate cortex (t = 

4.9, P ≤ 0.05; x/y/z = -7/36/30). The largest Ehopf high vs. Ehopf medium contrasts 

were obtained in the medial frontal gyrus (t = 5.4, P ≤ 0.005; x/y/z = -10/40/25) and the 

anterior cingulate cortex (t = 4.8, P ≤ 0.05; x/y/z = -4/35/22). The largest difference 
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between the Ehopf medium and the Ehopf low condition was obtained in the left middle 

frontal gyrus (t = 4.17, P ≤ 0.1; x/y/z = -30/35/45), extending to other nonsignificant 

differences in the medial frontal gyrus (t = 2.86; x/y/z = -11/31/45).

Figure 11: N2 amplitudes increase with increasing levels of Hopfield Energy 

(Ehopf), as a measure of conflict. This conflict-monitoring effect resulting from nonword 

processing is indicated at six representative electrodes, and its time frame (400-600 ms) 

is indicated by the box at the C4 electrode.
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Figure 12: Results of the standardized low-resolution brain electromagnetic 

tomography (sLORETA) analysis comparing the source density of the N2. Hopfield 

energy (Ehopf) levels: (a) high-low, (b) high-medium, and (c) medium-low. The X-Y-Z 

coordinates (MNI space) in each panel correspond to the respective maximum 

activations in the medial frontal gyrus.
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Discussion

The participant analysis of ERP data revealed an ERP effect of Ehopf at all 

electrodes (see Figure 11). This effect was apparent in the N2, and occurred at a 

relatively late time frame (400-600 ms) in comparison with other N2 effects. The error-

related negativity, however was proposed to be another example for a rather late N2. 

This was demonstrated by using Ehopf to predict the amount of conflict, and supported 

by the anterior cingulate cortex being the common source of both effects (Yeung et al., 

2004). The error-related negativity occurs after the response, which is usually later than 

400 ms after the stimulus. To examine whether the N2 in this study is functionally 

equivalent to the earlier N2s, we conducted sLORETA source localization. High Ehopf 

nonwords elicited a larger source density in the anterior cingulate cortex and the medial 

frontal gyrus than medium and low Ehopf nonwords. Botvinick et al.’s (2001) hypothesis 

has, thus, been confirmed: greater anterior cingulate cortex activation was observed 

with increasing levels of conflict. The pivotal role of the medial frontal gyrus was 

demonstrated as well (Ridderinkhof et al., 2004). 

The extent of conflict between lexical representations modeled by Ehopf 

predicted these source-localization findings: thus this study suggests the functional 

equivalence of previous N2 findings and the current one. 

This proposal is corroborated by the item analysis of the N2. Ehopf accounted for 

12% of the ERP variance, which seems to be a good score for item-based ERP 

analyses (Dambacher et al., 2006; Hutzler et al., 2004). The quantifiable model-to-data 

fit allows for competition between different models with respect to the variance 

explained (Jacobs & Grainger, 1994), as previously proposed for behavioral data (Perry 

et al., 2007). Ehopf accounted for a significant portion of response time (R2 = 0.28) and 

error variance (R2 = 0.05), suggesting that competing activated word representations 
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delay the RTs and result in higher error rates. The current N2 time window is largely 

similar to the time window of N400 (Kutas & Federmeier, 2000). It was demonstrated 

that with an increasing number of orthographic neighbors, the N400 increases to 

nonwords (Braun et al., 2006; Holcomb, Grainger, & O'Rourke, 2002). Orthographic 

neighbors are words that are identical to the stimulus with respect to all but one letter 

(e.g., rose is an orthographic neighbor of nose). Holcomb et al. (2002) interpreted 

increased RTs, error rates, and N400s in terms of an increased lexical activation to 

nonwords with many orthographic neighbors. Grainger and Jacobs’ (1996) lexical-

inhibition hypothesis suggests that the competition between activated orthographic 

neighbors can inhibit behavioral responses. To test whether Ehopf can contribute to the 

N400 discussion of orthographic neighborhood, we confirmed the assumption that the 

variance of the number of orthographic neighbors is contained in the Ehopf variance (R2 

= 0.52, P ≤ 0.001). Ehopf, however, accounted for an ERP variance of the N2 (R2 = 

0.12) that was twice the number of orthographic neighbors (R2 = 0.06, P ≤ 0.001); 

therefore, we propose that the competition between activated word representations 

contributes to the N400. As the MROM simulates word frequency effects by setting the 

resting levels of the word nodes accordingly, high-frequency word nodes are more 

strongly activated than low-frequency word nodes. Therefore, Ehopf is larger when 

high-frequency words compete. This is consistent with previous behavioral (Grainger & 

Jacobs, 1996) and neurobiological (Botvinick et al., 2001; Thompson-Schill et al., 1997) 

findings demonstrating the amount of competition to be dependent on the frequency of 

the word representations, and can account for the variance gain of Ehopf in comparison 

with the number of orthographic neighbors alone. The current N2 finding is consistent 

with previous N2 findings in conflict monitoring, and with N400 findings in the 

psycholinguistic literature. This suggested functional overlap seems to confirm Polich’s 

(1985) notion that both are ’a reflection of the system’s overall capability to comprehend 

complex similarities and relationships among stimulus items’ (p. 319). 
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Conclusion

Response times, errors, the N2, and mediofrontal cortex activity were increased 

with the simulated extent of conflict between word nodes of the MROM. This is 

consistent with the conflict-monitoring theory, and might suggest a common functional 

locus of the N2 and the N400 in lexical processing tasks.
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  Study 4: Affective processing within 1/10th of a 

second: High-Arousal is necessary for early facilit-

ative processing of negative but not positive words 

Markus J. Hofmann, Lars Kuchinke, Sascha Tamm, Melissa L.-H. Võ,

& Arthur M. Jacobs9

Abstract 

In the present study, lexical decisions to high- and low-arousal negative words 

and to low-arousal neutral and positive words were examined in an event-related 

potentials (ERP) study. RTs to positive and high-arousal negative words were shorter 

than those to neutral (low-arousal) words, whereas those to low-arousal negative words 

were longer. A similar pattern was observed in an early time window of the ERP 

response: Both positive and high-arousal negative words elicited greater negative 

potentials in a time frame of 80 to 120 ms after stimulus onset. This result suggests that 

arousal has a differential impact on early lexical processing of positive and negative 

words. Source localization in the relevant time frame revealed that the arousal effect in 

negative words is likely to be localized in a left occipito-temporal region including the 

9Adapted version published as article 2009: Affective processing within 1/10th of a second: High arousal 
is necessary for early facilitative processing of negative but not positive words. Cognitive, Affective, & Be-
havioral Neuroscience, 9, 389-397. DOI: http://dx.doi.org/10.3758/9.4.389 
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middle temporal and fusiform gyri. The ERP arousal effect appears to result from early 

lexico-semantic processing in high-arousal negative words.
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Introduction

From an evolutionary perspective, deciding appropriately on emotionally 

significant stimuli is an essential ability that aids survival. Reacting quickly to positive 

stimuli maximizes the probability of attaining an appetitive state. In contrast with this 

”first come, first served” principle, two complementary response tendencies can be 

observed for negative stimuli. Negative arousing stimuli, such as ”earthquake” or 

”alarm,” are best dealt with by initiating a fast response. In contrast with this ”fight or 

flight” mechanism, ”freezing” can be utilized, for example, to help prey to escape 

undetected. LeDoux (1996) suggested that ready-made neural pathways of 

evolutionarily old mechanisms can be activated by newly developed capabilities. Thus, 

it may be advantageous to respond quickly to symbolic stimuli, such as words, if they 

signal appetitive or potentially threatening situations. To address this issue, the present 

study used emotional words in the LDT in which speeded responses were required to 

decide whether a presented letter string was a word or not. 

For words with a negative affective connotation, rather inconsistent behavioral 

results have been obtained.  Some previous studies showed that subjects reacted faster 

to negative than to neutral words (Williamson et al., 1991; Nakic et al., 2006). In 

contrast, most studies revealed no difference (Siegle et al., 2002), or even a trend 

towards slower RTs (Kuchinke et al., 2005; Larsen, Mercer, Balota, & Strube, 2008; 

MacKay, Shafto, Tayler, Marian, Abrams, & Dyer., 2004). An approach that is as old as 

psychology itself may account for this divergence in negative-emotion words. Following 

Wundt’s (1896) suggestion, emotion is now commonly subdivided into at least two 

orthogonal dimensions that constitute the affective space: valence and arousal (Bradley 

& Lang, 1999; Osgood, Suci, & Tannenbaum, 1957). In the present article, we tested 

the prediction that high-arousal negative words decrease RTs (Hackley & Valle-Inclán, 
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1999). We expected no effect or even an RT increase for negative words that were 

matched for arousal to neutral words (Larsen et al., 2008; Siegle et al., 2002). The 

German corpus used for stimulus selection revealed a differential arousal distribution for 

positive and negative words (see Figure 1 in Võ et al., 2009). Therefore, it was 

impossible to generate high- and low-arousal positive and negative conditions that 

would have been matched for arousal, particularly while controlling for the most 

influential variables in word recognition (Graf, Nagler, & Jacobs, 2005). Since positive 

words consistently decreased lexical decision times (Kuchinke et al., 2005, 2007; 

Williamson et al., 1991), we tested whether the effect of positive words was due to 

positive emotional valence independent of arousal. For this purpose, we used a 

condition of low-arousal positive words. For negative words, in contrast, we tested 

whether the inconsistent behavioral findings of previous studies can be attributed to 

arousal by comparing high- and low-arousal negative conditions. Doing this resulted in 

four stimulus categories that were matched for various potentially confounding variables 

(Fs < 1; see Table 3). Positive, neutral, and low-arousal negative words were matched 

for their arousal level. High-arousal negative words were matched with respect to 

valence to the low-arousal negative words, but were maximized with respect to arousal 

(see Table 3; for further details; see the Method section). 

In addition to testing whether the behavioral facilitation for positive words occurs 

when arousal is controlled for, and whether arousal modulates the behavioral facilitation 

in negative words, we targeted the time frame of the processes responsible for the 

behavioral facilitation. This issue also concerns the interpretation of affective effects as 

being of lexical or post-lexical origin. Sereno and Rayner (2003) proposed that lexical 

access is underway already around 100 ms after stimulus presentation (see also 

Dambacher et al., 2006; Hinojosa, Martin-Loeches, & Rubia, 2001; and Sereno & 

Rayner, 2003, for reviews). However, Kissler, Herbert, Peyk, and Junghofer (2007) 

found no ERP correlates of emotional word processing until 200 ms, and concluded that 

108



Study 4: Affective processing within 1/10th of a second: High-Arousal is necessary for early facilitative processing of negative but not positive words 

emotional processing occurs after lexical access (cf. Herbert, Junghofer, & Kissler, 

2008). Kissler et al. (2007) used a rapid serial visual presentation paradigm in which no 

decision was required after word presentation. 

However, if affective information processing provides an evolutionary advantage 

because it allows for making faster decisions, tasks requiring speeded decisions might 

produce different results. We thus used a LDT in order to test whether emotional 

information is still processed after lexical access, even when a fast decision is required. 

Since lexical access is assumed to be underway around 100 ms after stimulus 

presentation (Sereno & Rayner, 2003), and emotional processing has been found to 

affect the ERP time course from 80 to 120 ms (Scott, O'Donnell, Leuthold, & Sereno, 

2009), the present study targeted this time frame. Scott et al.’s results already 

challenged Kissler et al.’s proposal of affective information acting after lexical access. 

This suggests the necessity of specifying conditions for the occurrence of lexical access 

effects. The participants in the present study were put under severe time pressure. 

According to the MROM (Grainger & Jacobs, 1996), speeded instructions put an 

emphasis on an early lexical fast-guess mechanism that might favor early affective 

effects.
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Table 3: Mean Values and Standard Errors of the Control and Manipulation 

Variables for the Four Stimulus Conditions 

The ranges of the rating variables are: valence, -3 to +3; imageability, 1 to 7; and 

arousal, 1 to 5. Word frequency is given as occurrence per 1 million words. Type 

measures denote the number of words in which the sub-lexical unit occurs in a lemma 

corpus of 51,207 words. Token measures indicate the summed word frequencies of 

these words.
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To identify the most likely sources of early electrophysiological responses, we 

conducted sLORETA source localization. We expected the anterior cingulate to emerge 

as the most likely source, if attention processes were the most likely explanation for 

response facilitation effects. Carretié et al. (2004) indeed found that an ERP effect in the 

processing of affective pictures around 100 ms was likely to be localized in the anterior 

cingulate cortex. Furthermore, Geday, Gjedde, Boldsen, and Kupersa (2003) suggested 

that the behavioral facilitation found with affective stimuli might result from attentional 

processes in the medial prefrontal cortex, including the anterior cingulate cortex. 

Another region of interest to which LORETA appears to be sensitive is the 

fusiform gyrus. For example, Pizzagalli, Lehmann, Hendrick, Regard, Pascual-Marqui, 

and Davidson (2002) found emotional faces to engage the fusiform gyrus (cf. Geday et 

al., 2003) in an early time frame starting at 120 ms after stimulus presentation. 

For word processing, the fusiform gyrus was discussed to act at a visual word 

form level of processing (Dehaene et al., 2002), or to act as a hub between orthographic 

and semantic processing (Price & Devlin, 2003). Support for the latter hypothesis would 

result from activation differences in the medial temporal gyrus, which was suggested to 

be involved in semantic processing (Price, 2000).

111



Setting letters and words into context: An Associative Read-Out Model

Method

Participants

Twenty native German participants took part in the experiment (16 female, mean 

age 28 years; 1 was left-handed). They were neurologically healthy and reported no 

language or speech impairment. Participants received course credits or were paid for 

their participation. 

Materials

The stimulus set consisted of 200 words and 200 nonwords. Word stimuli 

consisted of four to eight lettered German nouns. We used four stimulus conditions, 

each comprising 50 stimuli. Positive (e.g., RUHM (fame)), neutral (e.g., BEFUND 

(finding)), and low-arousal negative words (e.g., APATHIE (apathy)) were matched for 

arousal.

High-arousal negative words (e.g., ERDBEBEN (earthquake); see Table 3) were 

matched with respect to valence to the low-arousal negative words, but were maximized 

with respect to arousal. To control for the undesired influences of other variables that 

are known to affect lexical decision performance (Graf et al., 2005), nine further 

variables were matched (all Fs < 1; see Table 3). Estimates for emotional valence and 

imageability were taken from the Berlin Affective Word List in its revised form (BAWL-R; 

Võ et al., 2009). 

Emotional valence ratings ranged from -3 (very negative) to +3 (very positive), 

imageability ratings from 1 (low imageability) to 7 (high imageability), and arousal 

ratings from 1 (low-arousal) to 5 (high-arousal). Word frequency measures are given in 

112



Study 4: Affective processing within 1/10th of a second: High-Arousal is necessary for early facilitative processing of negative but not positive words 

occurrences per million (Baayen et al., 1995). Mean letter and bigram frequencies were 

taken from the lemma corpus of Study 1. One hundred of the 200 nonwords were 

generated by replacing the vowel of a non-target word with either another vowel (e.g., 

erreger->ERREGUR) or a consonant (e.g., mokka->MOKKW). 

Procedure

Participants were seated on a comfortable chair in front of a 17-in. color monitor 

(70 Hz) in a dimly illuminated room. Distance from eye to monitor was about 70 cm. The 

participants were instructed to respond as fast and as accurately as possible. 

Experimental stimuli were presented in two blocks, each comprising 200 stimuli. Both 

blocks contained an equal number of nonwords and words of each stimulus category, 

and did not differ in any of the control or manipulation variables (see Table 3; Fs < 1). 

The participants were briefed to press the left index finger for words and the right index 

finger for nonwords in the first block. This assignment was reversed for the other block. 

The order of blocks was counterbalanced across participants. Each block was preceded 

by 10 practice stimuli. 

Stimuli were presented in black uppercase letters (Times New Roman font, 20 pt) 

on a white screen by Presentation 9.0 software (Neurobehavioral Systems, Inc., Albany, 

Canada) in a pseudorandomized fashion. No more than three words or nonwords were 

allowed to appear consecutively. Each trial began with a fixation cross (+) presented for 

700 ms, followed by the stimulus for 1,000 ms. Participants were instructed to respond 

before the stimulus offset. After a blank screen appeared for 500 ms, a mask (#####) 

was presented for 1,500 ms. Participants were instructed to blink only during the 

masking period. 
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Data acquisition

EEG data were recorded by a 32-channel amplifier (Brainamp; Brain Products, 

Germany) using 28 electrodes attached to an elastic cap (EASYCAP, Germany). These 

recording electrodes were referenced to the right mastoid. Vertical EOG was recorded 

above and below the right eye, and the horizontal EOG on the outer canthus of each 

eye. Impedances for the EOG electrodes were kept below 10 kΩ, and all other 

electrodes were kept below 5 kΩ. EEG data were sampled at 250 Hz. Pupil dilations 

were concurrently recorded using a videobased IView X Hi-Speed eyetracker 

(SensoMotoric Instruments, Germany). Pupillometric data were not the primary scope of 

the present article. Neither emotional valence nor arousal affected the pupillary 

response. These findings confirmed the results of a prior pupillometric study (Kuchinke 

et al., 2007), but are not uncontroversial (Võ et al., 2008)10.

Data analysis

EEG data analysis was conducted using Brain Vision Analyzer software (Brain 

Products, Germany). Data were band-pass filtered (0.1-20 Hz). Muscle artifacts, drifts, 

amplifier blockings, and eye movements were rejected by visual inspection. Blink 

artifacts were corrected using independent component analysis (Onton et al., 2006). 

ERPs were corrected relative to a 200-ms prestimulus baseline and were averaged per 

subject and condition. Reactions prior to 300 ms were excluded from analyses. 

Reactions after a 1-sec poststimulus were not recorded and were counted as errors. 

Behavioral errors were excluded from electrophysiological and RT analyses. More than 

35 trials per subject and condition remained for analyses. In sum, 93% of the trials 

remained for the analyses of the electrophysiological data. 

10 For a discussion of these negative findings, please confer the general introduction and disussion of this 
thesis.
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To test for main effects of the stimulus conditions and their potential interactions 

with topography, we performed a three-factorial ANOVA, comprising the within-subjects 

factors laterality (left-right), anteriocity (anterior-posterior), and stimulus condition (low-

arousal positive, neutral, and negative, and high-arousal negative), followed by planned 

pairwise comparisons. Positive words were contrasted with neutral words. High- and 

low-arousal negative words were compared with neutral words, and high- and low-

arousal negative words were also contrasted. For ERP analyses, electrodes were 

averaged for four regions across the critical time frame of 80 to 120 ms: left anterior 

(FP1, F3, F7, FC5, T7), right anterior (FP2, F3, F8, FC6, T8), left posterior (C3, CP5, 

P3, P7, O1), and right posterior (C4, CP6, P4, P8, O2). 

Apart from the targeted early time frame of 80 to 120 ms, we explored other ERP 

time frames that were investigated by previous studies of affective word processing 

(see, e.g., Kissler et al., 2009): the time frame of 140-190 ms, the early posterior 

negativity (200-250 ms), and the late positive component (450-750 ms).

For estimating the potential neural generators of the early ERP effect, sLORETA 

analyses (Pascual-Marqui, 2002) were conducted. The averaged ERP data of each 

subject and condition within the critical time frame (80-120 ms) were submitted to the 

sLORETA model; thus, images of the electric neuronal activity were derived from the 

extracranial measurements. These estimated current source densities for each of the 

6,430 voxels in MNI space, each representing 5 mm3 of brain tissue, were time-frame-

wise normalized; that is, the average activation of each time frame was normalized to a 

constant value. Data were baseline-corrected and log-transformed. To correct for 

multiple comparisons, α was set to P ≤ 0.005 (two-tailed; t ≥ 3.17). Maximal t values of 

the respective areas are reported.
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Figure 13: Mean RTs and errors for the four stimulus conditions (N = 20). Error 

bars indicate standard errors.
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Results

Behavioral

In the RT analysis, there was a main effect of stimulus condition (F(3,57) = 15.78, 

P ≤ .01). Positive words revealed significantly faster RTs than neutral words (F(1,19) = 

9.09, P ≤ .01). High-arousal negative words elicited significantly faster RTs than low-

arousal negative (F(1,19) = 27.32, P ≤ .01) and neutral (F(1,19) = 4.36, P ≤ .05) words. 

Low-arousal negative words revealed slower RTs than neutral words (F(1,19) = 

10.73, P ≤ .01). For means and standard errors, see Figure 13 and Table 4. In the error 

analysis, there was a main effect of stimulus condition (F(3,57) = 8.82, P ≤ .01). Positive 

words revealed significantly fewer errors than neutral words (F(1,19) = 10.23, P ≤ .01). 

High-arousal negative words revealed significantly less errors than low-arousal negative 

words (F(1,19) = 10.55, P ≤ .01), but did not differ significantly from neutral words 

(F(1,19) = 2.75, P = .11). Low-arousal negative words only showed a nonsignificant 

trend to elicit more errors than neutral words (F(1,19) = 3.23, P = .09). For mean error 

rates and standard errors, see Figure 13 and Table 4. 

ERPs

There was a significant effect of stimulus condition in the early time window of 80 

to 120 ms after the stimulus presentation started (F(3,57) = 4.39, P ≤ .01). Positive 

words revealed a significantly larger negativity than neutral words (F(1,19) = 7.90, P ≤ 

0.01). High-arousal negative words were significantly more negative than were low-

arousal negative (F(1,19) = 6.71, P ≤ .05) and neutral (F(1,19) = 4.40, P ≤ .05) words. 

Low-arousal words did not differ significantly from neutral words (F < 1). In all of these 
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analyses, there were no significant interactions of frontality and/or anteriocity with the 

experimental conditions (all Fs ≤ 1.4). Only in the analysis comparing high versus low-

arousal negative words the interaction with laterality provided a nonsignificant trend 

(F(1,19) = 3.38, P = .07). See Figure 14 for the ERPs of exemplary electrodes. For 

means and standard errors, see Table 4. 

Neither the time frame of 140-190 ms nor the early posterior negativity (200-250 

ms) provided any significant main effects or topography interactions with the 

experimental conditions (Fs ≤ 1.5, Ps ≥ .22). The late positive component (450-750 ms) 

showed a significant three-way interaction of laterality, anteriocity, and experimental 

conditions (F(3,57) = 2.8, P ≤ .05). Paired comparisons revealed that only high-arousal 

negative words provided a significantly greater positivity than neutral words in the left- 

and right-posterior electrode clusters (ts(19) ≥ 2.8, Ps ≤ .01). This in part replicates the 

results of previous studies, which found that high-arousal negative words elicit a greater 

late positivity than do neutral words (see Kissler, Herbert, Winkler, Junghofer, 2009, 

Scott et al., 2009), but this result may also be explained by the saliency of the relatively 

rarely occurring arousing stimuli (Donchin & Coles, 1988).

sLORETA

Positive words did not reveal any significantly greater activation than neutral 

words. High-arousal negative words elicited significantly greater activation than low-

arousal negative words in a left occipito-temporal region, including the left fusiform (t = 

3.46; x, y, z = -46, -54, -17) and middle temporal gyri (t = 4.18; x/y/z = -60/-50/0; see 

Figure 15). Contrasting high-arousal negative words with neutral words confirmed this 

activation difference (left fusiform, t = 4.45; x/y/z = -48/-58/-17; left middle temporal 

gyrus, t = 4.85; x/y/z = -56/-59/-3; see Figure 15).
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Figure 14: The event-related potentials for the four stimulus conditions at eight 

exemplary electrodes
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Table 4: Means and Standard Errors for the Behavioral Measures and the 

Targeted Early Time Frame
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Figure 15: The maximum contrasts of high- and low-arousal negative words 

(upper panels), and high-arousal negative and neutral words (lower panels). Significant 

activation differences were observed in the occipito-temporal gyrus, including the 

fusiform gyrus. The X-Y-Z coordinates (MNI space) in the left panels show the activation 

maxima in the middle temporal gyrus.
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Discussion

Whereas the behavioral facilitation to positive words was observed regardless of 

their arousal level, as was reflected by faster RTs and fewer errors, arousal seems to 

modulate behavioral responses to negative words. Thus, differences in arousal might 

explain the inconsistent findings of previous studies using negative words. These 

studies showed a speed-up (Nakic et al., 2006; Williamson et al., 1991), no influence of 

(Siegle et al., 2002), or even a trend towards slowing during lexical decision (Kuchinke 

et al., 2005; MacKay et al., 2004). Most interestingly, another recent study (Larsen et 

al., 2008) mathematically disentangled the influence of arousal on negative words, while 

canceling out the variance accounted for by various lexical variables. The authors 

observed longer RTs for emotionally negative words when arousal and other lexical 

variables were controlled for. The findings of the present study converge with this result, 

suggesting that emotional information can interfere with a decision that is theoretically 

based on cognitive information only (Siegle et al., 2002). In addition to Larsen et al.’s 

(2008) finding, the present study showed that high-arousal negative words elicited faster 

RTs and fewer errors than neutral or low-arousal negative words. Thus, it appears that 

the inhibitory role of negative valence on word recognition could be overruled by an 

arousal mechanism, which allows for fast and less error-prone reactions. The observed 

shortening of RTs for high-arousal negative words is in line with previous studies’ finding 

of a similar speed-up during lexical decision. Nakic et al. (2006) observed this RT 

decrease for highly negative but not for moderately negative words. The authors, 

however, did not control for arousal. Nevertheless, it is likely that the highly negative 

words were also of high-arousal (Bradley & Lang, 1999; Võ et al., 2009). Moreover, 

Thomas and LaBar (2005) showed that priming effects during lexical decision are 

enhanced for high-arousal taboo words as compared with neutral words, whereas low-
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arousal negative words showed no such enhancement of priming effects. This result 

has already indicated the influential role of arousal on negative words. The present 

study goes beyond this finding by showing that arousal also facilitates unprimed word 

recognition in negative words. 

Apart from Thomas and LaBar’s (2005) study, most other previous experiments 

taking arousal into concern manipulated arousal and emotional valence simultaneously. 

They presented high-arousal positive and negative words, and contrasted them with 

low-arousal neutral words (see Kissler et al., 2007). Although controlling for many 

influential variables in word recognition necessitated less extreme valence 

manipulations than in previous studies, the present study shows that positive emotional 

valence still exerted its facilitatory influence when arousal was controlled for. Moreover, 

arousal determined whether the effect of negative words was facilitatory (high-arousal 

negative words) or inhibitory (low-arousal negative words), in comparison with that of 

neutral words. This indicates that low-arousal positive and negative words are 

processed differently. The experimental conditions revealing the fastest responses -that 

is, positive and high-arousal negative words- elicited a greater ERP negativity than did 

the slower responses to neutral and low-arousal negative words in the time window of 

80 to 120 ms. This may be taken as evidence that the behavioral facilitation observed 

for low-arousal positive and high-arousal negative words stems at least partially from 

early effects. As such, the present results replicate and extend the findings of Scott et 

al. (2009), who found high-arousal negative words to elicit a greater negativity than did 

low-arousal neutral words in the same time frame. However, this result was obtained 

only for high-frequency words. In contrast, the present study found the same early ERP 

arousal effect using low-frequency words (see Table 3). Moreover, Scott et al. (2009) did 

not observe the early ERP effect in positive words. This discrepancy might be due to 

differences in the task and the control variables used in these studies. 
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The participants of the present study were instructed to respond within 1 sec 

after the stimulus presentation. We suggest that this time pressure may have resulted in 

an augmented usage of a lexical fast-guess mechanism, as implemented in the MROM 

(Grainger & Jacobs, 1996), which puts an emphasis on early processing. In addition to 

the control variables of length, word frequency, and valence used by Scott et al. (2009), 

we also controlled for imageability, number of syllables, number of orthographic 

neighbors, and mean type and token letter and bigram frequency (see Table 3). The 

application of these additional control variables may have resulted in a more consistent 

early processing across items, which might have increased the probability to observe 

early ERP effects in low-frequency positive and high-arousal negative words. In sum, 

the present results indicate that for negative words, it is the level of arousal and not the 

negative valence per se that affects the early processing. 

Supporting the idea that lexical access for neutral words can be underway 

around a 100-ms poststimulus (Sereno & Rayner, 2003), the present data suggest that 

lexical access is speeded in positive and in high-arousal negative words. Thus, the time 

frame of the present ERP effects (80-120 ms) might capture the initial moments of 

lexical access in these affective stimuli. Similar to the present findings, those of Ortigue, 

Michel, Murray, Mohr, Carbonnel, & Landis (2004) showed occipital source localization 

differences that were the result of laterally presented emotional words around a 100-ms 

poststimulus (see also Bernat, Bunce, & Shevrin, 2001). Moreover, since Scott et al.’s 

(2009) early effect seemed to be modulated by word frequency, and word frequency 

effects were argued to constitute an upper limit for the time frame of lexical access (e.g., 

Dambacher et al., 2006; Hauk & Pulvermüller, 2004), the notion of an early lexical locus 

of the present ERP effects gains support.

This idea contrasts with Kissler et al.’s (2007) conclusion that emotional 

processing occurs only after lexical access. We suggest that the evolutionary advantage 

of emotional information processing in part results from its attribute to speed up 
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decisions, particularly when fast decisions are important. Since no such decisions were 

required in Kissler et al.’s study, the earliest emotional activation might not have been 

strong enough to be detected in the ERPs. 

Such a lexical interpretation might also imply that semantic information can be 

activated in this early time frame. Since emotional words seem to trigger more 

associations than do neutral words, much of the effects of emotional valence may be 

accounted for by semantic cohesion (Maratos et al., 2000; Talmi & Moscovitch, 2004; 

but see McNeely, Dywan, & Segalowitz, 2004). Another study suggesting a semantic 

and thus lexical locus of the present effect comes from Skrandies (1998). He found that 

the semantic dimensions of words affect word processing as early as 80 ms after the 

stimulus presentation. Slightly later, semantically integrative effects during sentence 

processing have been observed (Penolazzi, Hauk, & Pulvermüller, 2007).

The early ERP time frame showed the same increased negativity to positive and 

high-arousal negative words, which may suggest a similar process in both conditions. 

However, sLORETA could not narrow the most likely neural source for the early ERP 

effect to positive words, which contrasts with a left occipito-temporal region emerging as 

the most likely neural source for the early arousal effects for negative words. This 

divergence points towards the early facilitation processes for low-arousal positive and 

high-arousal negative words to be based on different neural mechanisms. Within the left 

occipito-temporal region’s showing a stronger activation to high-arousal negative than to 

low-arousal negative and neutral words, one subregion was the fusiform gyrus. This 

region was proposed to act as an interface between visual word form and higher order 

stimulus properties (Devlin, Jamison, Gonnermann, & Matthews, 2006; Price & Devlin, 

2003; but see, e.g., Dehaene et al., 2002; McCandliss, Cohen, & Dehaene, 2003). 

Moreover, the largest activation differences were obtained in voxels located in the left 

medial temporal gyrus, which has been associated with semantic processing (Price, 

2000). We thus suggest that the co-activation of the left fusiform and the medial 
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temporal gyrus supports Price and Devlin’s (2003) suggestion of the fusiform gyrus 

operating as a hub mediating between visual word form and higher order stimulus 

properties, such as semantics. It is intriguing that the present ERP effect ascribed to 

arousal in negative words was localized in about the same brain region as was Kissler 

et al.’s (2007) localization of affective word processing. Their finding, however, was 

observed in a slightly later time frame. Like in the present study, Kissler and colleagues 

concluded that this effect reflects semantic processing. We propose that all of the early 

time frames prior to 300 ms contribute to semantic affective processing. This suggestion 

is corroborated by Hinojosa, Carretié, Valcarel, Mendez-Bertolo, and Pozo (2009). 

When the task is likely to be performed without semantic information, by identifying 

letter strings in contrast with nonletter stimuli, none of the early time frames is sensitive 

to the affective features of words. However, which of the early ERP time frames are 

more or less sensitive to semantic processing appears to be modulated by the 

application of a fast-guess mechanism. Computational models of word recognition 

(Grainger & Jacobs, 1996) can account for such differences in the processing dynamics 

by modeling differential task demands. Moreover, a computational model of affective 

word processing proposing that affective features take effect during an initial access to a 

hypothetical mental lexicon would account for the present results (Kuchinke, 2007). 

However, its assumption of arousal affecting positive and negative valence equally 

requires revision in the light of the present findings.
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  Study 5: Remembering words in context as pre-

dicted by an Associative Read-Out Model

Markus J. Hofmann, Lars Kuchinke, Sascha Tamm, Chris Biemann, 

& Arthur M. Jacobs11

Abstract

The present study extends the Multiple Read-Out Model of word recognition 

(MROM, Grainger & Jacobs, 1996) by an associative layer, using co-occurrence 

statistics. The predictions of this Associative Read-Out Model (AROM) were tested in a 

study-test recognition memory task (N = 30). According to Hebbian learning, two words 

were defined as being ‘associated’ if they occurred significantly often together in the 

sentences of a large corpus. The AROM correctly predicted an increased amount of 

‘yes’ responses to both, learned and non-learned target words with more associated 

items in the stimulus set. 

In the AROM, episodic memory traces are implemented in accordance with 

signal detection theory by larger initial activation signal strengths for learned than for 

non-learned words. As a consequence, old target items exhibit greater signal strength 

variance within the Interactive Activation Model (IAM) architecture, because the item’s 

initial activation scales inhibitory activation changes (McClelland & Rumelhart, 1981). 

11Revised version published as article 2011: Remembering words in context as predicted by an associati-
ve read-out model. Frontiers in Language Science, 2, 252. http://dx.doi.org/10.3389/fpsyg.2011.00252 
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This explains the typical recognition memory finding of a slope lower one of the z-

transformed Receiver Operation Characteristics (z-ROCs). When fitting the model to the 

empirical z-ROCs, the AROM predicted item-level performance, i.e. which word is 

recognized with which probability given an experimental context of more or less 

associated items. AROM thus unifies processing models of implicit and explicit memory. 

Since many of the strongest associates reflect semantic relations to a target item (e.g., 

synonymy), this deterministic, localist connectionist model merges form-based aspects 

of meaning representations with meaning relations between words.
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Introduction

IAMs have been used successfully to predict human word recognition 

performance, when the task implicitly requires retrieval of orthographic or phonological 

word forms from memory, such as perceptual identification, naming, lexical decision, or 

word stem completion (e.g., Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981; 

Klonek, Tamm, Hofmann, & Jacobs 2009; Perry et al., 2007). However, IAMs have not 

yet been applied to model performance in explicit memory tasks, such as the 

recognition of a set of studied words. Since Berry, Shanks, and Henson (2008) propose 

that the same signals are detected in implicit and explicit memory, in this paper we 

explored the versatility of IAMs to predict explicit memory performance. This seemed 

like a natural extension, given that in an implicit memory task the MROM; Grainger & 

Jacobs, 1996) already successfully predicted ROCs (Jacobs et al., 2003), which are 

crucial for the development of formal memory theories (cf. Malmberg, 2008, for a recent 

overview).

A distinctive strength of IAMs is that they allow item-level predictions for various 

dependent variables, such as ‘yes’ response rates, mean response times, or mean 

amplitudes in electrophysiological responses (e.g., Hofmann et al., 2008; Perry et al., 

2007; Rey, Dufau, et al., 2009; Spieler & Balota, 1997). IAMs are currently able to 

simulate effects resulting from lexical whole word representations or from smaller, sub-

lexical representations during word recognition (e.g., Conrad et al., 2009; Perry et al., 

2007; cf. Ziegler & Goswami, 2005). So far, however, they neglect the fact that words 

are embedded into an experimental context of other meaningful words that potentially 

share a common learning history with the target word. Contextual between-word 

associations like the semantic relation of ‘lung’ to its hypernym ‘organ’ were discussed 

as extension possibilities for connectionist models (e.g., Coltheart et al., 2001; 
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Rumelhart & McClelland, 1982; Seidenberg & McClelland, 1989), but never used for 

quantitative performance predictions. Such inter-item associations are better 

understood in the explicit memory literature (e.g., Kimball et al., 2007; Nelson et al., 

1998; Roediger & McDermott, 1995), while item-level predictions of recognition memory 

performance are still lacking. Therefore, the present study aimed to keep the IAMs’ 

quantitative strengths of z-ROC and item-level predictions, while seeking to overcome 

an important weakness: predicting the impact of associative relations between words in 

an explicit recognition memory task.

Does associative spreading activate ‘false memories’?

The probably best-known associative memory phenomenon is the so-called 

“false memory effect” (Deese, 1959; Roediger & McDermott, 1995): Learning 

associated items (e.g., “table”, “sit”, “legs”) to a non-learned target item (e.g., “chair”) 

favors its erroneous recall or recognition. Moreover, when learning “chair” in the 

company of such associates, its “veridical recall” is more likely (Kimball et al., 2007). 

These experiments rely on tediously collected free association performance to define 

associations in subjective terms: A target is presented and participants name the first 

associates coming to their minds. Learning all of the most strongly associated items 

increases the target’s retrieval probability in a later memory experiment. However, such 

an experimental design takes only a small subset of the possible associations between 

the items of an experiment into account (Ratcliff & McKoon, 1994). The present study 

tested a simple co-occurrence approach allowing to consider all associations between 

all items (cf. Andrews et al., 2009; Bullinaria & Levy, 2007; Griffiths et al., 2007; 

Landauer & Dumais, 1995): Two words were defined as being 'associated’ when they 

occurred significantly more often together than alone in a sample of 43 million 

sentences (Quasthoff et al., 2006; http://corpora.uni-leipzig.de/). Hebbian learning is the 
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only assumption required for this definition: Stimuli being repeatedly presented together 

are likely to be associated (Hebb, 1949; Rapp & Wettler, 1991).

Roediger and McDermott (1995) compared targets of which all of the most 

strongly associated items were learned, to targets of which no (freely) associated item 

occurred in the experimental context. Here, we hypothesized that the more associates 

occurred to a non-learned (new) target in the stimulus set, the greater is the amount of 

erroneous ‘yes’ responses. Similarly, learning the most strongly associated items of a 

target word should increase the tendency to freely recall it (Kimball et al., 2007). This 

led to the hypothesis that learned (old) targets, which have more associates in the 

stimulus set, produce greater recognition rates. We tested these hypotheses in a study-

test paradigm with the experimental factors old/new and co-occurrence level (low/high): 

low co-occurrence target items had less than 8 significantly co-occurring items in the 

stimulus set, and high co-occurrence words had at least 8.

To implement these hypotheses, we extended the MROM by an associative layer 

(Grainger & Jacobs, 1996). The MROM consists of three layers of interacting 

processing units (Figure 16): The visual features of the target stimuli serve as input 

variables for the model’s feature layer. Feature units activate letter units, which in turn 

excite units of the orthographic word layer (McClelland & Rumelhart, 1981). In the 

Associative Read-Out Model (AROM), an associative unit for each item presented in the 

experiment was added. Since the process of word identification is necessary for 

recognizing it as learned, the association unit obtained an excitatory word identification 

signal from the corresponding orthographic word unit. The co-occurrence statistics 

implemented excitatory associative connections between the units in the associative 

layer. These linkages are assumed to reflect the pre-wired associative structure of 

human long-term memory, which matured by experience with words (Hebb, 1949). 

When the target item is presented to the model, its association unit activates all 

associated item units, which in turn activate the target unit. Thus, the greater the 

131



Setting letters and words into context: An Associative Read-Out Model

amount of associations of a word to the other items of the stimulus set (Anderson, 1983; 

Collins & Loftus, 1975), the greater is the activation ’echo’ from associated units that 

spreads back to the target item’s unit (Nelson et al., 1998). Since greater activation 

signals of IAMs typically predict a greater amount of ‘yes’ responses (e.g., Grainger & 

Jacobs, 1996; Hofmann et al., 2008), the AROM allows the following hypothesis: The 

more associated items a target has, the larger its associative activation. This should 

result in a greater amount of ‘yes’ responses for both, new and old high co-occurrence 

target items. Apart from this qualitative, condition-wise prediction, we fitted the AROM to 

(cross-condition) ROCs, and tested whether the obtained signal strengths accounted for 

item-level variances.
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Figure 16 sketches the basic architecture of the AROM: The lower three layers 

correspond to previous IAMs (Grainger & Jacobs, 1996; McClelland & Rumelhart, 

1981). Target stimuli are presented to the feature units, which in turn activate the letter 

and (orthographic) word layer. The associative layer’s unit of the target receives the 

word identification signal from the orthographic word layer. Moreover, associated item 

units contained in the stimulus set are activated by the target unit, and activate the 

target in turn. Thus activations to item units with many associated items are greater, 

which predicts their higher probability of ‘yes’ responses. Translations are bracketed. 

This Figure corresponds to Figure 7 and is reprinted here for convenience.

133



Setting letters and words into context: An Associative Read-Out Model

Can each item’s signal be detected in an explicit memory task?

To allow for signal detection analyses, participants in the experimental study 

were instructed to rate their recognition confidence on a six-point scale ranging from 

‘sure no’ (‘1’) to ‘sure yes’ (‘6’). For all but the ROC analyses, '4’ (‘unsure yes’) to ‘6’ 

counted as ‘yes’ response. Based on these confidence ratings, the signal detection 

approach (Green & Swets, 1966) allows for simulating performance from the most 

liberal response bias by the criterion C(1) to the most conservative bias: C(5) is prone to 

elicit the fewest ‘yes’ responses by counting all ‘1’ to ‘5’ responses as ‘no’. The criteria 

C(i) are assumed to reflect empirical ‘yes’ response probabilities on a bimodal Gaussian 

distribution of (memory) signal strength of the items: One distribution for the new target 

items, and another one for the old ones (cf. Figure 17, upper panels). Signal detection 

theory describes episodic memory traces resulting from study-phase presentation by 

the ad-hoc assumption of greater mean memory signal strength for old than for new 

items. To generate ROCs, the ‘yes’ probabilities for all criteria (Figure 17, middle panels) 

are plotted for new items on the x-axis, those to old items on the y-axis. When z-

normalizing these ROC probabilities (cf. Figure 18, lower panels), the so-called z-ROCs 

typically reveal a slope of less than one during recognition memory tasks (e.g., Glanzer 

et al., 1999; Ratcliff, Sheu, & Gronlund, 1992). Single-process signal detection models 

describe this by a second ad-hoc assumption: The signal strength variance is greater 

for old than for new items (Green & Swets, 1966). However, such an unequal variance 

model does not provide an answer to the question of why the variances are greater to 

old items (Glanzer et al., 1999). In contrast, Yonelinas’ (1994) dual-process model gives 

a simple account of the z-ROC’s tilt-down: Recollection, i.e. the detailed recognition of a 

particular item, is a memory process only apparent for old items. One aim of the present 

study was to provide an explanation relying on a single signal strength variable: 

(associative memory) signal strength.
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Jacobs et al. (2003) equated model activations with signal strength to predict z-

ROCs from the MROM’s activations. To adopt signal detection theory’s assumption of 

greater signal strengths in old items (Green & Swets, 1966), the initial activation values 

were increased for association units representing learned items, in comparison to non-

learned ones: This resting level represents every memory trace which has been 

potentially activated before the presentation of the present test-phase trial, and will be 

indicated as cycle 0 (Figure 19). Learned item units are given greater pre-activation 

values than non-learned ones, because they have been presented before in any case. 

In randomized stimulus sets, non-learned associates of a target item were exposed 

previous to that target with an average probability of 50%. Therefore, the resting level of 

non-studied item units is defined to be lower than that of learned ones. Both resting 

levels were initialized above the activation threshold (of zero), so that all associative 

units can excite and inhibit each other in cycle 0. Due to excitation, new and old 

associates can take an active role in contextually cueing the present item (Gillund & 

Shiffrin, 1984). Since only about 5% of the possible unit pairs are associatively 

connected in an excitatory fashion (cf. Simulation Methods), the net sum of inhibition is 

greater than the excitation in cycle 0. When the activation change of the target item’s 

association unit is calculated from this net inhibition in an IAM, it is weighted by its 

present activation (McClelland & Rumelhart, 1981). As the resting level was defined to 

be greater for old than for new item units, greater inhibitions result for old item units. 

Therefore, the target unit’s activation variability in cycle 1 is necessarily greater for old 

than for new items. As a consequence, the second ad-hoc assumption of unequal 

variance follows logically from the first assumption, when implementing it into an IAM: a 

greater signal strength variability for old targets items, which monotonically increases 

with the memory signal strength difference between old and new items.

To predict human performance, Jacobs et al. (2003) defined signal strength as 

the mean activation across the first seven cycles (see also Grainger & Jacobs, 1996; 
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Hofmann et al., 2008). Accordingly, in the AROM a target unit’s mean associative 

activation in cycles 1-7 is taken as its signal strength in the associative layer, henceforth 

called Associative Memory Signal Strength (AMSS). For cycle 1, the first assumption of 

signal detection theory of greater old item variances transforms into the prediction of 

larger old items' variances as compared to new items in an IAM. For AMSS, however, 

this prediction has to be tested within the AROM architecture across the whole 

parameter space, i.e. irrespective of the choice of the five free parameters: the scaling 

of excitation from the orthographic identification signal to the association units, the 

scaling of excitation and inhibition in the association layer (Figure 16), and the resting 

levels of old and new item units.

For obtaining signal strength distributions, the resulting AMSS values were 

transformed to functional forms for all four experimental conditions, i.e. the new and old 

low and high co-occurrence conditions. Since AMSS is conceptualized as the signal 

strength of the items, an additional source of variability of the items’ fixed signal 

strengths was required. Therefore, smoothed kernel density functions were applied for 

the transformation to functional forms, and the smoothing kernel factor κ was the only 

free parameter required for z-ROC generation. κ reflects the variability of the 

deterministic AMSS values of the items. The empirically obtained ‘yes’ response 

probabilities were used as C(i) (cf. Figure 17, second row). The parameters were 

optimized by fitting the model-generated z-ROCs to the empirical z-ROCs by minimizing 

the sum of the least squared errors of the slopes and intercepts of the low and high co-

occurrence conditions (cf. Figure 17, third row). We then tested whether the z-ROC 

slopes of the participants deviated from those predicted by the model. These model 

tests were run for low and high co-occurrence conditions, separately. 

Once the parameters were fixed, the AROM was challenged to account for item-

level variance. Previous signal-detection-capable models of recognition memory 

(Malmberg, 2008) targeted the signal strengths of the items, but did not specify which 
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particular word stimulus provides which signal strength (e.g., Glanzer, Adams, Iverson, 

& Kim, 1993; McClelland & Chappell, 1998; Murdock, 1997; Shiffrin & Steyvers, 1997). 

Instead of representing items by random variables, the AROM relies on local 

representation units (Page, 2000). That is, visual features and letters define a particular 

word form (Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981). In contrast to its 

direct precursors, the AROM additionally defines the meaning of a word by the company 

it kept during its learning history, i.e. co-occurrences (Andrews et al., 2009; Firth, 1957; 

Hebb, 1949). Localist representations are particularly suitable for testing whether the 

words associated by the model display intuitively valid associations, and whether the 

AROM can integrate semantic representations into a processing model of recognition 

memory (Steyvers et al., 2006).

Simulation methods: The AROM and its predictions

The feature, letter, and word layers remained largely12 unaltered compared to the 

AROM’s predecessors (Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981). The 

word and associative layer lexica of the model contained one unit for each of the 160 

items presented in the experiment. The added associative layer in general reflects the 

basic architecture of each layer of an IAM architecture, which is described more 

thoroughly elsewhere (Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981). Only 

modifications of these, as well as assumptions critical for the present findings will be 

described in the following.

12 Since the original IAM was designed for four-letter stimuli (McClelland and Rumelhart, 1981), 
and the present stimulus set contained three- to eight-letter stimuli, the  excitatory  activation forwarded 
from the letter to the orthographic word layer was normalized by word length (eanorm = l * ea/4; cf. Conrad, 
Tamm, Carreiras, and Jacobs, 2010). The rationale is that attention is uniformly distributed across all 
letters,  but  remains  the  same as  in  the  original  IAM for  four-letter  stimuli.  Inverted  frequency  class 
measures of the Leipzig Corpus were used for setting the resting levels in the orthographic word layer (cf.  
Corpus). 
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Word identification signals from the orthographic word layer activated the 

associative units (cf. Figure 16). Each Associative word unit x in cycle c obtained input 

activation Ax(c) by excitatory connections from the corresponding Orthographic word 

unit activation of the last cycle [Ox(c-1)]. Please note that only if the activation Ox(c-1) 

crosses the activation threshold (of zero), excitation or inhibition take place, i.e. if (Ox(c-

1) > 0) its logical value is 1, otherwise it is 0. The excitation from the orthographic to the 

associative layer was scaled by the free excitatory parameter αoa [Ax(c) = (Ox(c-1) > 0) * 

Ox(c-1) * αoa]. If a word y was significantly co-occurring to the word x [i.e., x   ̂  y  ], an 

excitatory associative connection was added. It was quantified by log10-transformed χ2 

values of within-sentence co-occurrence statistics crossing the significance threshold of 

χ2 = 6.63 (P < 0.05; Dunning, 1993; Quasthoff et al., 2006), and scaled by a free 

parameter αaa. Thus, the associative excitation function can be written Ax(c)= Ax(c-1) + 

(Ay(c-1) > 0) * Ay(c-1) * log10χ2
x^y * αaa. Moreover, all activated words [e.g., Ay(c-1)] 

inhibited each other word [e.g., Ax(c-1)] by an amount scaled by a free parameter γaa 

[Ax(c) = Ax(c-1) – (Ay(c-1) > 0) * Ay(c-1) * γaa]. According to this architecture, the AROM 

predicts greater activations, and thus a greater amount of ‘yes’ responses for target 

items with a greater amount of associated items in the stimulus set. Thus, the summed 

net change nx(c) of each association unit is a function of the amount of e excitatory units 

(i.e. the number of significantly co-occurring items), and a function of all N neighbor 

units (N = 159) potentially inhibiting the respective unit, i.e. nx(c) = (Ox(c-1) > 0) * Ox(c-1) 

* αoa + Σy=1
e ((Ay(c-1) > 0) * Ay(c-1) * log10χ2

x^y * αaa) - Σy=1
N ((Ay(c-1) > 0) * Ay(c-1) * γaa). 

For simulating episodic memory traces, the resting levels ρ were constrained to 

be larger for old [ρold] than for new items [ρnew, i.e. ρold > ρnew]. Resting levels are 

referred to by cycle c = 0, i.e. Ax(0) = ρold for all old items, and Ax(0) = ρnew for all new 

units. All units cross the activation threshold at resting level, and thus inhibit and excite 

other units. As each unit can be connected to each other unit, but the association of a 

unit to itself is set to zero, 25,440 associations between the units are possible (1602 – 
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160 items). 1,402 of these associations (i.e., significant co-occurrences) were apparent. 

Most of the connections are inhibitory and thus a negative net inhibition nx(0) follows 

from cycle 0. To obtain nonlinear dynamics, with a minimum activation m = -1, a net 

inhibitory change is weighted by the associative activation of the unit Ax(c-1) itself, thus 

finally giving: Ax(c) = Ax(c-1) - nx(c-1) * (Ax(c-1) - m) (cf. McClelland & Rumelhart, 1981, 

p. 381, formula 3 and 4 while decay is zero in this case). Even when the net changes 

would be of equal variance across nold(0) and nnew(0), Aold(1)= ρold
 - nold(0) * (ρold - m) will 

produce a greater variance across all old target item units than Anew(1) = ρnew
 - nnew(0) * 

(ρnew - m), for all new items (see Appendix for a Matlab script providing a logical 

demonstration based on random equal variance net inputs).

Formally, the memory signal strength of the target item’s unit is defined as AMSS 

= (Σc=1
7 (At(c)) / 7 (cf. Introduction). We tested whether the old item units reveal a greater 

variance across these first seven cycles (AMSS) than new item units in the following 

parameter space, using step-sizes of 0.01: αoa from 0.04 to 0.09, αaa from 0.03 to 0.08, 

γaa from 0.03 to 0.08, ρnew from 0.01 to 0.05, and ρold from 0.06 to 0.1. This resulted in 

5400 parameter sets.

To fit the simulated to the empirical z-ROCs, we transformed the AMSSs of the 

four experimental conditions into smoothed kernel density functions (Figure 17, first 

row), using the smoothing kernel factor κ as free parameter. When these functions are 

transformed to cumulative ‘yes’ response probabilities, the empirical ‘yes’ response 

probabilities of new items were used as signal detection criteria C(i) of the model 

(Figure 17, second row). κ was fitted iteratively from 0 to 30 using step sizes of 0.01, 

while minimizing the root mean squared differences between the modeled and the 

empirical z-ROC slopes and intercepts for the low and high co-occurrence conditions 

(Figure 17, third row). Finally, we tested whether the AMSS values of the fixed 

parameter set can account for a significant portion of item-level variance in new and old 

items.
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Experimental methods: Testing the AROM’s predictions 

Participants

The participants were 30 native German speakers (17 female, mean age: 29.5, 

SE: 2.39, range: 16-60) without known reading disorders. They had normal or 

corrected-to-normal sight, and were paid for participation or received course credits.

Corpus

Word frequency and co-occurrence measures were taken from the German 

corpus of the “Wortschatz” project (status: December 2006, http://corpora.informatik.uni-

leipzig.de/; Quasthoff et al., 2006). They are based on 800 million tokens and 43 million 

sentences. The corpus is largely composed of online newspapers (1992-2006). To allow 

the AROM’s testability in 69 languages, corpus-size independent word frequency class 

measures of this cross-linguistic project were used. These relate the frequency of each 

word to the most frequent word, i.e. “der” is 2class more frequent than the given word. 

Thus the lower the frequency class, the higher is the word frequency. Further, two words 

were defined associated if they co-occurred significantly more often within the same 

sentence than predicted from their single frequencies by the log-likelihood test (P ≤ 

0.01, χ2 ≥ 6.63; Dunning, 1993).

Stimuli

Each cell in the 2x2 design (factors: old/new and co-occurrence) contained 40 

nouns. Stimuli of the high co-occurrence conditions had at least 8 significantly co-

occurring neighbors in the stimulus set, and low co-occurrence stimuli less than 8. To 

rule out biased effects due to confounding variables (all Fs < 0.5, cf. Table 5), we 

controlled for emotional valence, arousal, imageability, number of orthographic 
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neighbors and letters (Võ et al., 2009), as well as word frequency, and token bigram 

frequency. Token bigram frequencies were calculated by the SUBLEX software 

(Hofmann et al., 2007), using the frequency counts of the Leipzig Wortschatz project 

cleaned by all word forms not contained in the CELEX lexical database (Baayen et al., 

1995).
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Table 5 displays the means (SDs) of the manipulated and controlled variables of 

the target stimuli in the four experimental conditions. Emotional valence ranges from -3 

to +3. Imageability and arousal range from 0 to 5. 

Factors:

Old/new: New New Old Old

Co-occurrence: Low High Low High

Number of stimuli 40 40 40 40

Number of significantly co-occur-

ring items in the stimulus set

3.85

(1.70)

13.90

(4.73)

3.80

(1.70)

13.85

(4.04)

Emotional valence 0.11

(1.31)

0.03

(1.23)

0.03

(1.09)

0.00

(1.34)

Imageability 3.89

(1.22)

3.96

(1.29)

3.94

(1.20)

4.01

(1.43)

Arousal 2.95

(0.53)

2.90

(0.58)

2.87

(0.54)

2.98

(0.64)

Word frequency class 11.65

(0.70)

11.65

(0.70)

11.68

(0.47)

11.57

(0.71)

Number of orthographic neighbors 1.57

(2.26)

1.32

(1.81)

1.57

(2.14)

1.70

(2.29)

Bigram Frequency 17520

(106001)

17556

(9263)

16489

(9149)

16648

(8546)

Number of Letters 6.08

(1.07)

6.12

(1.14)

6.22

(1.10)

5.97

(1.35)
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Procedure

80 old words were presented in the study phase and all 160 words in the test 

phase. Participants were instructed to judge how confident they are that a presented 

target stimulus was presented in the previous study phase (‘yes’), or not (‘no’). 

Participants were informed that they receive feedback about their error scores after the 

test phase. Performance data were acquired using a computer mouse. Stimuli were 

presented by Presentation 9.9 software (Neurobehavioral Systems Inc., Canada). To 

familiarize the participants with the task, five practice items were presented each before 

the study phase and before the test phase.

Study phase. Each trial began with a fixation cross remaining on the screen for 

500 ms followed by a stimulus presented for 1500 ms. Five hashmarks (‘#####’) 

appeared until a mouse button was pressed. To avoid primacy and recency effects, 

three filler items were presented before and after the critical stimuli. 

Test phase. A fixation cross was presented for 500 ms. Target stimuli were 

presented for 1500 ms, followed by a blank screen of 1500 ms. A rating scale appeared 

on the screen, and the participants judged their recognition-confidence via mouse clicks 

on a 6-point scale ranging from ‘1’ (‚sure no’) to ‘6’ (‚sure yes’). For a random number of 

participants, this assignment was reversed during the experiment, but not for the 

analyses. Participants were instructed to use all confidence judgments approximately 

equally often. A blank screen of 500 ms was presented before the next trial started with 

a new fixation cross. None of the filler and practice items had any significantly co-

occurring item in the critical stimulus set.

143



Setting letters and words into context: An Associative Read-Out Model

Experimental and modeling results

A 2x2 repeated measures ANOVA on the percentage of ‘yes’ responses revealed 

a significant old/new effect (F(1,29) = 167.77, P < 0.001, ηp
2 = 0.85). Old items 

produced more ‘yes’ responses. Moreover, a significant effect of co-occurrence was 

obtained (F(1,29) = 21.91, P < 0.001, ηp
2 = 0.43), but no significant interaction (F < 1). 

The planned comparison revealed that high co-occurrence new stimuli produced a 

greater ‘yes’ response rate (M = 0.2; SE = 0.02) than low co-occurrence new stimuli (M 

= 0.13; SE = 0.02; t(29) = 3.80, P < 0.001). High co-occurrence old stimuli (M = 0.76; 

SE = 0.04) produced more ‘yes’ responses than low co-occurrence old stimuli (M = 

0.69; SE = 0.03; t(29) = 3.02, P < 0.005). Averaged across participants, the z-ROC 

slopes were 0.66 in the low co-occurrence condition and 0.70 in the high co-occurrence 

condition. Figure 17 displays the empirical z-ROCs with slopes smaller than 1.

All 5400 parameter sets used for optimal parameter estimation revealed a 

greater AMSS variance for old than for new target items (Figure 18). The least squared 

differences between the modeled and the empirically obtained z-ROCs for low and high 

co-occurrence items were obtained for the parameters of αoa = 0.09, αaa= 0.03, γaa = 

0.04, ρnew = 0.05, ρold = 0.07, and κ = 10.09. The parameters were fixed at these values. 

Simulated z-ROC slopes were 0.75 and 0.77 for the low and high co-occurrence 

conditions, respectively. For both co-occurrence conditions, the modeled z-scores for 

the five criteria of the new and old items, respectively, were tested for their capability to 

predict the ten z-scores empirically obtained (cf. Jacobs et al., 2003): The model’s z-

scores accounted for 99.61% of the variance of the low co-occurrence data (F(1,9) = 

2044.85; P < 0.001; RMSD = 0.07), and 99.05% of the high co-occurrence z-scores 

(F(1,9) = 834.45, P < 0.001, RMSD = 0.10). The behaviorally obtained z-ROC slopes of 

the low and high co-occurrence conditions for the individual participants did not differ 

significantly from the z-ROC slopes predicted by the model (t(29) = 0.17; t(29) = 1.55; 
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Ps > 0.1)13. The new target items AMSS scores accounted for 14.32% of the variance of 

the ‘yes’ response probabilities (F(1,79) = 13.04), and the old targets for 10.45% 

(F(1,79) = 9.10; Ps < 0.001; RMSDs = 0.08).

13 Zero ‘yes’ responses were treated as one ‘yes’ response, and only ‘yes’ responses were 
treated as all but one ‘yes’ responses, to allow for z-transformation.
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Figure 17 shows the distributions of the associative activations and the resulting 

z-ROCs for the low (left panels) and high co-occurrence (right panels) conditions: The 

first row displays the associative memory signal strength (AMSS) distributions 

transformed to smoothed probability density functions for the four experimental 

conditions. The second row depicts these functions transformed into cumulative ‘yes’-

response probabilities and the five response criteria C(i) for i = 1 to 5. The third row 

shows the empirical and modeled z-ROCs. 
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Figure 18 shows the AMSSs of the word units predicting the ‘yes’ response 

probabilities for new and old items.
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Discussion

 The present study provides two novel IAM features: Relying on Hebb’s (1949) 

notion of stimuli that are repeatedly presented together as being ‘associated’, we 

correctly predicted that a higher amount of associations in the stimulus set lead to 

higher proportions of ‘yes’ responses to non-learned and learned items in recognition 

memory for words. Second, we extended a localist connectionist word recognition 

model by an associative layer, and showed that this AROM predicts recognition memory 

performance from the core cross-condition level of ROCs down to the fine-grained item 

level. 

The effect in non-learned items is related to the false memory effect but goes 

beyond Roediger and McDermott’s (1995) seminal work: ‘False memories’ consisted of 

the comparison of target items from which either all of the most strongly associated, or 

no (freely) associated items were learned. The present study observed similar effects in 

a recognition memory task. However, defining associations by co-occurrence statistics 

allowed for taking all associations between all items of the stimulus set into account. 

Still, when a target item contained more associations in the stimulus set, a significant 

effect of co-occurrence indicated more ‘yes’ responses for new words. 

For learned target items, we discovered that many associations boost recognition 

memory performance, as indicated by a co-occurrence effect for old words. Since the 

present stimulus set was carefully controlled for all kinds of psycholinguistic single-word 

features, we suggest that both, the co-occurrence effects to new and old items, can be 

attributed to the manipulation of the amount of associations of a target item. 

To account for both of these findings, the co-occurrence statistics were 

embedded into an associative activation-spreading network (Collins & Loftus, 1975) that 

was added to an IAM-architecture (cf. McClelland & Rumelhart, 1981; cf. Figure 16): 

148



Study 5: Remembering words in context as predicted by an Associative Read-Out Model

The MROM (Grainger & Jacobs, 1996) can account for human performance in a variety 

of tasks that rely on implicit mnemonic processes. As no top-down modulations from the 

associative to the lower layers were implemented (cf. Figure 16), the AROM in its 

simplest form contains an unchanged MROM. Therefore, the AROM can still account for 

all of its predecessor’s effects and thus has a higher level of generality than the MROM 

(e.g., Grainger & Jacobs, 1996).

For extending the scope of IAM’s to explicit memory processing, we implemented 

memory traces from the study-phase presentation according to signal detection theory 

(Berry et al. 2007). It assumes greater signal strengths for old than for new items 

(Green & Swets, 1966). Thus, the units of learned items obtained greater resting level 

activations in the associative layer than non-learned ones. Unequal variance analysis 

models require a second assumption to describe the z-ROCs tilt-down, i.e. a greater 

signal variance to learned items (Green & Swets, 1996; cf. DeCarlo, 2002). The present 

study shows that implementing the first assumption of the old items’ greater memory 

strength into an IAM makes the second ad-hoc assumption of unequal variances 

redundant. An IAM explains a slope of the z-ROC smaller one based on its antecedent 

conditions (cf. Jacobs & Grainger, 1994): An increased signal variance for old items – 

critical for the z-ROC’s slope smaller than one during recognition memory – can be 

explained by the necessity of nonlinear activation dynamics, which are an element of all 

neurobiologically plausible connectionist models (cf. O’Reilly, 1998; McClelland, 1993): 

A modeling unit – mirroring a neuron or a cluster of neurons in the brain – can receive 

one to nearly an infinite amount of excitatory or inhibitory signals from other neurons. To 

avoid catastrophic cascades of neural activation bursts that could potentially damage 

neurons, this activation is bounded to a maximum. As the firing rate of a neuron cannot 

be negative, a further assumption of minimum activation is required (e.g., Bogacz, 

Usher, Zhang, & McClelland, 2007). Such biological constraints necessitate the 

activation of modeling units to be a nonlinear (sigmoid) function of the amount of net 
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input (Grossberg, 1978; McClelland, 1993). Therefore, the activation change of a unit is 

scaled by its current activation in an IAM (McClelland & Rumelhart, 1981). Resulting 

from the activation-scaling by a unit’s resting level, which is higher for old items, 

incoming inhibitory signals affect the old target item units to a greater degree than units 

representing new items of lower resting level activation. Therefore, the variability of the 

signal is greater in the old items’ units starting from cycle 1. The assumption of greater 

activation variance of old items was also confirmed to be true across the first seven 

cycles. The AMSSs are greater for old than for new items, irrespective of the choice of 

the free parameters explored. Accordingly, the AROM correctly predicted z-ROC slopes 

smaller than one, which are typically observed in the recognition memory task (Glanzer 

et al., 1999; Ratcliff et al., 1992).

Apart from these proof-of-concept explanations, the present study aimed at fitting 

the actual z-ROCs to low and high co-occurrence words by the AROM. Predicting z-

ROCs from the AMSS of the items involves a modeling challenge well-known in 

recognition memory research (Gillund & Shiffrin, 1984, p. 16). The overlap between the 

old and new item signal distributions was too low (cf. AMSS values in Figure 18). A 

previous MROM-based simulation study solved this by adding noise to the criteria 

(Jacobs et al., 2003). In contrast, the present AMSS values were transformed into 

smoothed kernel density functions to obtain an estimate of the (random) signal 

variability of the otherwise deterministic AMSS values. Thus even ‘noise’ was 

conceptualized in a fashion allowing the model to remain fully deterministic. Moreover, 

instead of three free parameters required for z-ROC generation in the MROM (Jacobs 

et al., 2003), the present study cut this number down to one, the Gaussian smoothing 

kernel factor κ.

In addition to the z-ROC parameter, two free parameters were necessary for the 

(old and new item units’) resting levels, and three scaled the excitation from the 

orthographic word to the associative layer, as well as excitation and inhibition within the 
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associative layer. After fitting these free parameters, the empirically obtained z-ROC 

slopes and z-scores did not deviate from those predicted by the model (Figure 17).

The unequal variance signal detection model just begged the answer to the 

question of why the z-ROC slope is smaller than one, by assuming greater signal 

strength variances of old items (Glanzer et al., 1999; Green & Swets, 1966; cf. DeCarlo, 

2002). The dual-process model may, in contrast, provide an answer by conceiving of 

recollection as a phenomenally and neurally distinguishable process (Yonelinas, 1994; 

Yonelinas, Otten, Shaw, & Rugg, 2005; Wixted, 2007; cf. Malmberg, 2008). The 

AROM’s architecture complements previous unequal-variance based models by an 

answer to the question of why the z-ROC slopes are smaller than one during 

recognition memory: These are a logical consequence of the episodic memory traces 

built at study itself. When many traces actively compete in memory, each representation 

unit obtains net inhibitory signals. As the resulting activation changes are scaled in an 

IAM-architecture by the unit’s activation, larger resting levels of old items lead to their 

greater signal strength variances (Squire et al., 2007).

Although the earliest associative activation-spreading models did not discuss 

false and veridical recognition, they would likely predict these effects (Anderson, 1983; 

Collins & Loftus, 1975; Quillian, 1967). A contemporary modeling approach can account 

for the build-up of associations, but not yet for effects of the pre-wired associative paths 

in long-term memory (e.g., Danker, Gunn, & Anderson, 2008). Though Ratcliff and 

McKoon (e.g., 1994) envisioned the predictive power of co-occurrence statistics early, 

Nelson et al. (1998) used free association performance to propose a pre-quantitative 

model, which accounted for effects of the number of associates in a stimulus set during 

recognition memory (cf. Andrews et al., 2009; Thompson-Schill & Botvinick, 2006). 

Kimball et al. (2007) recently proposed a computational model that can quantitatively 

account for false and veridical recall. 
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The AROM is novel in that it provides quantitative associative-spreading 

predictions for recognition memory performance. Neither any spreading-activation 

model, nor any recognition memory model simulates word recognition with the same 

depth as the AROM: It predicts which word is recognized with which probability 

depending on the amount of its associates. The more associated items are in the 

stimulus set for a non-learned or learned target item, the larger is the probability to 

classify it as old. Thereby, the false memory logic is elevated to a level capable of 

making item-level predictions. For veridical memory of old items, the AROM’s item-level 

performance is somewhat lower than for the false memories in new items (see also 

Figure 17, lower right panel). This potentially results from the need to consider a second 

source of information for the prediction of old items (e.g., Yonelinas, 1994; DeCarlo, 

2002). Moreover, we are fully aware that the AROM’s ‘horizontal’ generality is limited 

(Jacobs & Grainger, 1994): Other recognition memory models account for a much 

broader range of explicit memory phenomena (e.g., Glanzer et al., 1993; Malmberg, 

2008; McClelland & Chappell, 1998; Shiffrin & Steyvers, 1997; but cf. Grainger & 

Jacobs, 1996, for implicit memory). In turn, the present approach ‘vertically’ generalizes 

across different instances of the same data, i.e. cross-condition z-ROCs, condition-wise 

associative effects in new and old items, and last but not least, the AROM is the first 

signal-detection model of recognition memory that assigns signal strength to each 

particular word stimulus. This allows for predicting the percentage of participants 

recognizing this particular orthographic word form in the distinct associative context of 

other words, which extends signal detection theory to an item-level.
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Figure 19 presents exemplary association functions for one target of the four 

stimulus conditions. Upper panels represent old target items and the lower depict new 

ones. Left and right panels display low and high co-occurrence stimuli, respectively. The 

y-axes indicate the associative layer activations. The x-axes indicate simulation cycles. 

Cycle 0 activations depict resting levels for learned (ρold = 0.07) and non-learned stimuli 

(ρnew = 0.05), implementing all events before the present trial. When associative 

excitation and inhibition generated the cycle 1 activations, these define the state of the 

cognitive system when a test-trial starts. The target items (and their association 

functions) are shown in (boxed) red (lines), old associates in green (solid lines), and the 

new associates in blue (dashed lines). Though the AMSSs as predictor variable in 

Figures 2 and 3 reflect mean activations across cycles 1-7, the strongest associates at 

cycle 50 are shown for face validity purposes (activations > ρnew).
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The item-level variances were predicted by associative cross-trial excitation from 

the associative context of the experiment to the target items. The more associated items 

are presented before the target, the larger is its unit’s activation in cycle 1. Moreover, 

learned items still have a larger activation than new items at this cycle. Starting at cycle 

4 the visual input of the feature layer reaches the associative layer, and the identification 

of the stimulus begins to cue the associative memory layer (Gillund & Shiffrin, 1984; cf. 

Hofmann, Kuchinke, Tamm, Võ, & Jacobs, 2009). Although we did not deviate from the 

tradition to predict item- and ROC-performance by the mean activation of the cycles 1-7 

(Hofmann et al., 2008; Jacobs et al., 2003), the face validity of the model was 

demonstrated at cycle 50, at which the most strongly associated items emerged.

As is evident from Figure 19, the associates to a target item reflect intuitively 

valid associations. Moreover the AROM can simulate semantic relations in the 

narrowest sense of the term, as e.g. the associate [lung] is a hyponym of the target 

[organ]; [vice] can be considered as a hypernym of [egoism]; [virtue] is the antonym of 

[vice]; and [wedding] and [marriage] are (partial) synonyms. As the associative layer 

receives input from the orthographic layer, the unique identity of a word is not only 

defined by its associations, but also by its orthographic form-properties. As the 

orthographic layer also activates orthographically similar words (Grainger & Jacobs, 

1996), and semantic-relation- and form-properties were both proposed to be crucial for 

morpheme representations (e.g., Devlin et al., 2004), future studies will have to show 

whether the AROM can account for morphemic effects.

Form-constituents of meaning have been modeled using distributed 

representations (e.g., Harm & Seidenberg, 2004; Plaut et al., 1996). Rumelhart and 

Todd (1993) assume that (hidden) units shape associations between words, because of 

the repeated co-exposure of words in sentences like ‘a robin is a bird’ (cf. Collins & 

Quillian, 1969; Rogers & McClelland, 2008). We suggest that the AROM’s associations 

– implemented as two words significantly co-occurring within sentences – correspond to 
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the associations of the (hidden) learning units in a mature cognitive architecture. Thus, 

the AROM can be considered as a first step towards a fully localist connectionist model 

containing an implemented semantic layer. This has been theoretically postulated for 

some time, but it resisted a computational implementation so far (e.g., Coltheart et al., 

2001; Rumelhart & McClelland, 1982). Finally, we suggest that Rumelhart and Todd’s 

model (1993) and the AROM complement each other in a seamless theoretical 

symbiosis. The first accounts for the maturing of associations, and the AROM predicts 

human performance from the outlearned associative structure of human long-term 

memory.

Conclusions

This study introduces the AROM as a model capturing explicit memory 

performance for IAMs. Associative spreading activation inserted into the MROM can 

account for cross-condition z-ROCs, condition-wise effects of associations in new and 

old items, and item-level performance. Given that many words most strongly associated 

by the model reflect semantic relations (e.g., hyponomy), the AROM should be a 

convenient tool for future investigations of semantic effects in word recognition, 

particularly also for the tasks IAMs were originally designed for: implicit memory tasks.
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Appendix

function stdproof

%Copyright by Hofmann, M.J., Kuchinke, L., Biemann, C., Tamm, S., & Jacobs, %A.M. 

(2011). Correspondence to: mhof@zedat.fu-berlin.de

%

%Distribution of random-numbers: negative net input to a unit, which 

%represents a stimulus:

n=-rand(80,1);

% A larger resting-level for old than for new items...

[oldrest,newrest]=oldgreaternew;

%... is scaled like in McClelland & Rumelhart (1981).

oldvals=netscale(n,oldrest);

newvals=netscale(n,newrest);

% This necessarily leads to a lower standard deviation for new than for old

% items:

stdratio=std(newvals)/std(oldvals);

%If n would be normally distributed with equal variance net inputs,

%the nonlinear transformations scaling the net input 

%provides greater variances for old items. 

%The following conditions will never be fulfilled: 

if (oldrest>newrest) && (std(newvals)>std(oldvals))

disp('Impossible!');

else

disp('Quod erat demonstrandum.');

end
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end

function [oldrest,newrest]=oldgreaternew

%Generates random old and new resting levels constrained to be greater for

%old than for new items.

oldrest=rand(1,1);

newrest=rand(1,1);

if newrest >= oldrest

[oldrest,newrest]=oldgreaternew;

end

end

function val=netscale(n,acti)

%The IAM-function that transforms negative net-input into activation-change: 

%Cf. McClelland & Rumelhart (1981, p. 381, formulas 3 and 4). 

%Decay does not apply because there is a change of the node-activation.

m=-1;

val=acti+n*(acti-m);

end
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In sum, IAMs provide a powerful theoretical framework that simulate all basic 

processes of word recognition, and thus account for many effects. As they also predict 

effects resulting from sub-lexical representation levels, experimental control of sub-

lexical frequency measures helped to rule out that the psycholinguistic variables 

investigated in this thesis are explainable by confounds at a sub-lexical representation 

level. Thus, word frequency effects cannot be explained by confounds at a sub-lexical 

representation level. Most likely, the IFG has a role in the selection between competing 

lexico-semantic representations. Moreover, this thesis also shows how conflicts 

between orthographic representations can be modeled. IAM simulations can be used for 

fine-grained quantitative predictions of the brain responses to each particular letter 

string. Whether the affective processes itself boost lexical activation, or whether 

affective words simply engage larger associative networks is an issue for future 

research.
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Sub-lexical frequencies

Sub-lexical frequency measures constrained the interpretation of effects!

By controlling for bigram and letter frequencies with the measures provided in 

Study 1, the behavioral and neurocognitive effects observed in the Studies 2 and 4 were 

constrained to result from the manipulation of the variables investigated, and did not 

result from confounded manipulations on a sub-lexical level.

Previous research showed that RTs can be affected by bigram (Massaro & 

Cohen, 1994; Rice & Robinson, 1997) or letter frequency during lexical decision 

(Grainger & Jacobs, 1993; Lupker, Perea, & Davis, 2008; cf. Stenneken, Hofmann, & 

Jacobs, 2005, 2008). The low and high frequency words in Study 2 did not differ with 

respect to these sub-lexical frequencies. Therefore, the behavioral word frequency 

effects in Study 2 can be assumed to result from whole word frequency, rather than from 

the frequency of its constituents. Moreover, the effects elicited by affective word features 

in Study 4 cannot be accounted for by confounded manipulations of the sub-lexical 

frequency measures. These were controlled.

Moreover, experimental control was also beneficial to constrain the functional loci 

of the brain regions investigated in this thesis. ERPs were recorded in Study 4 to target 

an early time frame of about 100 ms after stimulus presentation. Hauk and colleagues 

found words consisting of higher frequency sub-lexical units to elicit more negative ERP 

deflections in this time window (Hauk, Patterson, Woollams, Watling, Pulvermüller, & 

Rogers, 2006; cf. Hauk, Davis, Ford, Pulvermüller, & Marslen-Wilson, 2006). Therefore, 

if high-arousal negative and low-arousal positive words would have provided higher 

sub-lexical frequencies than low-arousal negative and neutral words, the early ERP 

effects would have been fully explainable by a confounded manipulation of sub-lexical 
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frequencies, but not affective word features. As they were rigidly controlled, this 

potential concern can be rejected.

Moreover, the fusiform gyrus was one of the most likely neural generators of the 

ERP arousal effect. Some researchers attribute this region a function at a pre-lexical 

and thus sub-lexical analysis level (Dehaene et al., 2002; Schurz, Sturm, Richlan, 

Kronbichler, Ladurner, & Wimmer, 2010). Thus, if sub-lexical features would not have 

been controlled, this effect would have been easily interpretable as resulting from a sub-

lexical confound.

As a consequence, the fusiform finding in Study 4 can be interpreted in line with 

Kronbichler et al. (2004). They suggested that the fusiform gyrus acts at a lexical level 

of processing, which potentially interfaces to higher-order representations such as 

semantics (Price & Devlin, 2003). This is supported by co-activation of the middle 

temporal gyrus in this time frame, which was associated with semantic processing 

(Price, 2000).

Can the matching of global features be replaced by specific ones?

Why does the control of sub-lexical frequency measures constrain the 

recognition memory effects observed in Study 5?

Two of the leading models in this research field propose that a critical process of 

recognition memory is the matching of the features of words (McClelland and Chappel, 

1998; Steyvers & Shiffrin, 1997). For instance, they account for the word frequency 

effects in recognition memory by assuming that high frequency words consist of high-

frequency features, and low frequency words are composed of low-frequency features. 

A basic assumption is that rarely occurring word features are more diagnostic in 

determining whether a learned word is correctly recognized (cf. Steyvers et al., 2006). 

Thus, the low frequency features of a learned low frequency word are unlikely to be 
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confused with any learned word features. This accounts for the finding that learned low 

frequency words provide more correct 'yes' responses than high frequency words in a 

recognition memory task. For non-learned items, in contrast, the high frequency 

features of a high frequency word are very likely to be confused with the features of the 

learned words. Therefore, non-learned high frequency words elicit more erroneous 'yes' 

responses (McClelland & Chappel, 1998; Shiffrin & Steyvers, 1997; cf. Malmberg, 

2008). However, these models leave open the question which word features are more 

diagnostic, and thus are critical for the effects. Do they result from sub-lexical word 

features?

Thus, controlling for bigram frequency ruled out that learned words have been 

recognized better, because the more unusual a (low frequency) bigrams is, the more 

likely its resulting saliency would elicit successful recognition (cf. McClelland & Chappel, 

1998). Moreover, a word that consists of high frequency bigrams would be more likely to 

be confused with a learned word, because these are relatively likely to be contained in 

learned words. Therefore, the sub-lexical feature of a bigram is unlikely to contribute to 

the effects obtained in Study 5.

On a more general theory level, the manipulation and control of psycholinguistic 

variables, and their theoretical counterpart of local representation variables can help to 

answer the question which orthographic, phonological, or semantic-associative word 

features are crucial for recognition memory (McClelland & Chappel, 1998; cf. Shiffrin & 

Steyvers, 1997). This may help to identify the most critical features that determine 

successful memory performance.
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Word frequency and optical imaging

Optical  imaging  revealed  greater  “neural  activations”  to  low  frequency 

words!

Low frequency words elicited a greater [deoxy-Hb] response than high frequency 

words in a region identified as the IFG. This can be interpreted as a stronger neural 

activation to low frequency words (Buxton et al., 2004). Therefore, the results confirm 

previous fMRI studies of word recognition (e.g., Fiebach et al., 2002). However, the 

stimulus set was even more rigidly controlled for confounding variables than in previous 

fMRI studies. For instance, this effect was shown to result from whole-word, lexical 

frequency by controlling for bigram and letter frequency. Moreover, greater activation in 

the SFG and the IPG to words in comparison to nonwords demonstrated that fNIRS 

provides comparable results to fMRI studies (cf. Ischebeck et al., 2004). These effects 

were interpreted to follow from decision-related processes in the SFG (e.g., Fiebach et 

al., 2007), and the integration of orthographic, phonological, and semantic 

representations in the IPG (e.g., Binder et al., 1999).

Thus providing cross-validated evidence, these results confirm balloon models of 

the hemodynamic response (Buxton et al., 1998, 2004), that offer a theoretical base for 

making fMRI and fNIRS studies comparable.

Because sound representations influence word recognition (e.g., Coltheart et al., 

2001; Van Orden, 1987), it was questionable whether the relatively loud scanner 

environment affected the word recognition process. As the relatively quiet fNIRS method 

provides results similar to those of fMRI studies, this concern can be rejected. This is 

particularly crucial for a dual route interpretation of the neurocognitive word frequency 

effect on IFG activation (Coltheart et al., 2001; Fiebach et al., 2002; Perry et al., 2007): 
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It explains greater IFG activation to low frequency words by the assembled route, which 

processes sound-based, sub-lexical word features (Fiebach et al., 2002).

However, please note that there is an alternative interpretation for the IFG's 

major function. Its activation may reflect the competition between semantic 

representations (Thompson-Schill et al., 1997). Particular attention will be drawn at this 

theoretical perspective below. Before we turn on the psychological mechanisms that 

determine the competition, scrutinizing how one can infer “neural activation” from the 

measured (de-)oxyhemoglobin changes seems worthwhile.

What is “neural activation” in the IFG?

The ability of NIRS to assess more than one hemodynamic response parameter 

synchronously complements our knowledge by intriguing mechanical features of the 

hemodynamic response (Buxton et al., 2004; Steinbrink et al., 2006). A relatively high 

temporal resolution allows optical imaging to particularly enlighten the dynamic interplay 

between different parameters. The canonical hemodynamic response due to the balloon 

model posits that a neural response triggers the expenditure of oxygen (Buxton et al., 

2004). Usually, enough oxygen is contained in the blood of the adjacent vessels, which 

are then drained from its oxygen. After the blood fulfilled its metabolic “work”, the 

exhausted blood flows back into the vessel (Raichle & Mintun, 2006). This results in a 

temporary increase of [deoxy.Hb], which is called the initial dip (Buxton, 2001). 

According to models of the hemodynamic response (Buxton et al., 1998, 2004), the 

fMRI-BOLD response and [deoxy-Hb] changes as measured by NIRS relate to each 

other in an inverted fashion, and correspond to the same neural process (Buxton et al., 

2004; Kleinschmidt et al., 1996). Both reflect the amount of deoxygenated hemoglobin. 

Another hemodynamic NIRS-parameter closely related to [deoxy-Hb] is cytochrome 

oxidase (Heekeren et al., 1999; Obrig et al., 2000). It allows for inferring on the amount 
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of metabolized oxygen. As soon as the blood is drained from its oxygen, the 

hemodynamic system is fast in its adaptability. The vascular system delivers fresh blood 

to the activation site. Thus, a few seconds later, fresh, un-exhausted oxygenated 

hemoglobin arrives at the region where the neural response occurred. This need is 

suited either due to the redirection from neighboring regions (cf. Pfurtscheller, 

Bauernfeind, Wriessnegger, & Neuper, 2010) or by an increase in heart rate 

(Franceschini et al., 2003). Other observables are blood volume and blood flow, i.e. 

blood volume per time (i.e., rCBF). Both of these parameters usually increase 

synchronously with the increase of oxygenated hemoglobin, because the most part of 

the blood volume consists of oxygenated hemoglobin. As an indicator of these 

processes, some NIRS studies also rely on the total amount of hemoglobin as an 

indicator of blood volume (e.g., Plichta et al., 2006; Steinbrink et al., 2006), i.e. the sum 

of oxygenated and deoxygenated hemoglobin. As soon as the fresh oxygenated blood 

is delivered to the region that was activated, deoxygenated hemoglobin is flushed out. 

Therefore, during neural activation [deoxy-Hb] decreases and the BOLD response 

increases for the largest part of the time of a hemodynamic response. 

The effects of lexicality in the SFG and IPG were generally in line with this default 

coupling mechanism of the hemodynamic response: Words elicited a decrease of 

deoxygenated hemoglobin which was accompanied by an increase of oxygenated 

hemoglobin (Buxton et al., 2004; Steinbrink et al., 2006). 

For the word frequency effect in the IFG, the highly significant [deoxy-Hb] 

decrease was not accompanied by a significant increase of oxygenated hemoglobin. 

This most likely follows from [oxy-Hb] being more prone to be influenced by artifacts, 

which result from extra-cerebral tissue oxygenation (Boden et al., 2007). Proposing 

non-’default’ hemodynamic response mechanics (cf. Mandeville et al., 1999) to account 

for the missing oxygenated hemoglobin finding would be premature, although a PET 

study supported the finding of no increase of oxygenated hemoglobin. Fiez et al. (1999) 
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found no IFG blood flow effect of word frequency. This may cast doubt on the 

explanation of extra-cerebral artifacts, because PET is not influenced by this particular 

artifact source. However, conclusions proposing new couplings of the hemodynamic 

parameters would require a baseline for which no neural response should hypothetically 

occur (Gusnard & Raichle, 2001).

Consider for instance, that participants may think verbally during the resting 

periods (cf. Raichle, MacLeod, Snyder, Powers, Gusnard, & Shulman, 2001). This may 

cause that so much oxygenated blood is delivered to the IFG during the whole 

experiment, that a ceiling effect of blood flow is observed, and thus no increased flush-

out of deoxygenated hemoglobin could occur. Only an extended initial dip would be 

observable, which is consistent with the finding of no increase of oxygenated 

hemoglobin. In this case, the greater BOLD response to low frequency words would 

correspond to a weaker neural response (oxygen demand) than that to high frequency 

words in terms of balloon models (Buxton et al., 2004). Of course, this would be the 

reverse conclusion than the one presented in Study 2, which was based on the default 

coupling assumptions. The author of this thesis suggests, however, that any firm 

conclusion would be premature. Apart from a potential ceiling effect of blood flow or 

extracerebral artifacts, that particularly add noise to oxygenated hemoglobin (Boden et 

al., 2007), there is at least a third possible explanation. In differential sub-portions of the 

IFG, Yamamoto and Kato (2002) found positive and negative correlations between 

deoxygenated hemoglobin as measured by fNIRS and the fMRI-BOLD signal. They 

suggest that BOLD-contrasts are particularly sensitive to measuring deoxygenated 

hemoglobin in the large vessels. If the laser light particularly penetrates large vessels, 

deoxygenated hemoglobin decreases while the BOLD response increases. However, 

when the laser light particularly penetrates tiny capillary vessels, the amount measured 

[deoxy-Hb] may increase during neural activation, because the much more flexible tiny 

vessel can more easily dilate, and a dilated vessel can contain the delivered and 
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consumed oxygen at a time. Thus, a flush-out is not necessary or can be postponed 

(Yamamoto & Kato, 2002).

In sum, if the [deoxy-Hb] IFG finding of Study 2 could indeed be attributed to a 

capillary effect, neural activation would be higher to high frequency words. However, 

though not significant, [oxy-Hb] likewise tended to increase. In Yamamoto and Kato's 

(2002) model, an increase in [oxy-Hb] would indicate an increase in neural activation. 

However, further research is required to gain a deeper understanding of the relationship 

between the physically observable brain processes, and the mental phenomena likely 

eliciting these physical phenomena, and/or vice versa?

To the author's opinion, only computational models integrating physical and 

psychological processes could satisfactorily answer questions about these 

relationships. For both sides of the same coin, i.e. the mind and the brain, 

computational models exist. Not until the integration of these models, one can really 

understand how the brain gives rise to the psyche, and the psyche shapes its material 

counterpart in the brain.

Lexical conflicts

Lexical conflicts predicted behavioral data and ACC activation!

To provide a quantitative definition of a cognitive process resulting from lexical 

activation, Study 3 relied on the MROM (Grainger & Jacobs, 1996; Jacobs et al; 1998). 

Ehopf implemented the amount of conflict between the lexical wordform units of the 

MROM (Botvinick et al., 2001). Consistent with the CMT (Botvinick et al., 2001) and its 

ERP extension (Yeung et al., 2004), this conflict measure predicted RTs, error rates, 

ERP amplitudes, and the neural sites from which the ERPs‘ electric current differences 
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most likely resulted (Pascual-Marqui, 2002). The greater the conflict was, the greater 

were the RTs and error rates. Moreover, keener conflict led to more negative N2 

deflections, that were localized in the ACC and the mediofrontal gyrus (Botvinick et al., 

2001; Ridderinkhof et al., 2004).

Most notably, this was the first study that evaluated an IAM's capability to make 

item-level predictions using neurophysiological data (cf. Perry et al., 2007; Spieler & 

Balota, 1997). Ehopf predicted which particular nonword elicits which mean ERP 

amplitudes (cf. Rey, Dufau et al., 2009). The inhibitory processes – as quantified by the 

conflict monitoring theory (Botvinick et al., 2001; Yeung et al., 2004) – accounted for a 

fine-grained, gradual N2 increases with a frontal maximum. Since the time frame of the 

N2 corresponded to previous N400 findings, speculations about a common functional 

locus of the N400 and the N2 in language tasks were substantiated (cf. Polich, 1985).

Our subsequent research (Briesemeister et al., 2009; Klonek et al., 2009), 

however, either casted doubt on Yeung et al.‘s (2004) N2 prediction in terms of the 

conflict monitoring theory (cf. Masaki et al., 2007). Klonek et al. (2009) used a task in 

which a word's initial three letters had to be completed to a whole word. A larger amount 

of possible completions, i.e. lexical competitors, revealed a lower negativity in an 

N2/N400 time frame. Thus, when taking Yeung et al.‘s (2004) proposal of the N2 to 

indicate the ACC's conflict response for granted, a prediction of Botvinick et al.'s (2001) 

model was falsified. Another study provided evidence for a less negative N2/N400 for 

nonwords that elicit another conflict. If the orthographic representation indicates 

'nonword', but the phonological representation corresponds to a word (e.g. brane), 

phonology may activate a semantic representation. Thus, orthography leads to a 

tendency to respond 'no', and phonology may activate a 'yes' response during lexical 

decision. These incompatible response tendencies did not elicit a greater negativity as 

predictable by the CMT (Yeung et al., 2004). Rather, these so-called pseudomophones 

elicit a lower negativity in the N2/N400 time frame than nonwords that do not elicit this 
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type of conflict (Briesemeister et al., 2009). On the other hand, the obtained error rates, 

RTs, response confidence ratings, and pupil dilation effects can be well explained by the 

conflict monitoring theory (Briesemeister et al., 2009; cf. Braun et al., 2009). Thus, 

Yeung et al.‘s (2004) ERP extension of this theory might be rejected rather than the 

whole conflict monitoring theory itself (Masaki et al., 2007). Alternatively, Study 3 might 

have assessed a particular type of conflict, in which the extended conflict monitory 

theory can be fully applied.

Please note that Study 3 reported no Ehopf effects in word stimuli, because they 

did not elicit any significant effects. Like for pseudohomophones and stem completion 

(Briesemeister et al., 2009; Klonek et al., 2009), words can be assumed to trigger 

activation in semantic representations. In contrast, nonwords do not activate 

'semantics', and the conflict stays at the level of competing lexical wordform 

representations. In nonwords, Ehopf accounts for a significant portion of ERP variance 

(cf. also Braun et al., 2006). Thus, there appears to be a single critical difference 

between the conditions at which lexical conflict effects are predictable, or not. This 

critical difference lies in whether or not a letter string elicits a semantic representation. 

When a model ignores semantic representations, for those stimuli that elicit 'semantics' 

the N2/N400 becomes unpredictable.

When the competition includes 'semantic' representations, the monitoring 

demands associated with ACC activation may have become unpredictable, because 

another competition process came into play. This process is probably also hosted by 

another brain region, that governs the selection between competing semantic 

representations (Thompson-Schill & Botvinick, 2006).
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Does associative-semantic competition predict IFG activation?

Thompson-Schill et al.'s (1997) lexical selection hypothesis suggested that the 

IFG's primary function concerns the selection of an appropriate semantic representation 

from multiple, pre-activated representations. The more representations are active, the 

larger is the selection demand and thus IFG activation. This verbal explanation can 

account for the effect of word frequency in the IFG in Study 2. Low frequency words are 

identified more equivocally. Thus, selection demands would be higher, when many units 

are active and in competition. Study 3 showed that Ehopf can predict behavioral and 

neural responses for nonword stimuli, but not for words, which elicit a semantic 

representation. This led to the suggestion that Ehopf, which predicted neural responses 

to nonword stimuli, might not have worked in word stimuli and any other stimulus that 

elicits 'semantics' (Briesemeister et al., 2009; Klonek et al., 2009), because semantics 

was the critical information missing in these IAMs (Grainger & Jacobs, 1996; Jacobs et 

al., 1998).

However, Thompson-Schill and Botvinick (2006) exemplarily demonstrated how 

semantic competition might be modeled. A presented stimulus triggers activation in 

associated representations, which are in competition (cf. Thompson-Schill & Botvinick, 

2006, Figure 2). The previous lack of an operational definition for “semantic” 

representations and their pre-wired associations so far has prevented full-scale, 

quantitative modeling approaches to semantic competition (but cf. Danker et al., 2008, 

for an approach to experimentally induced associations). As the AROM can represent 

the meaning of a word by the company it keeps (Firth, 1957), calculating Ehopf across 

the associative-semantic layer to predict IFG activation, is a next logical step predictable 

by Thompson-Schill and Botvinick's (2006) proposal. They suggested that only more 

explicit computational approaches could potentially further our understanding of the 

IFG's function.
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Affective word features

Affective lexical features elicited behavioral and ERP, but no pupil dilation 

effects!

Not all the variables that are known to affect word recognition can be defined by 

corpus-analytically defined psycholinguistic variables, or by computational models. 

Affective word features are typically addressed by manipulating subjective rating 

variables. The most frequently investigated affective word features are emotional 

valence and arousal.

Study 4 showed that lexical decisions to high-arousal negative and low-arousal 

positive words were faster than those to low-arousal neutral and negative words. One 

explanation for this result pattern can be provided by LeDoux (1996). As the appropriate 

response to negative arousing stimuli like “earthquake” or “alarm” would be “fight or 

flight”, they elicit fast responses. Positive words like “fame” might be associated with an 

appetitive state, which also facilitates behavioral responses. Moreover, negative low-

arousal words were even responded to slower than neutral words. This may correspond 

to an evolutionarily old “freezing” mechanism, that helps prey to escape undetected 

(LeDoux, 1996).

The manipulation of these affective word features showed no significant effects 

on pupil dilations, however. This confirmed a previous study, which revealed that the 

manipulation of emotional valence did not elicit any effect on pupil dilations during 

lexical decision (Kuchinke et al., 2007). In contrast, a previous recognition memory task 

showed a decrease in pupil dilation due to the conjoined manipulation of arousal and 

emotional valence (Võ et al., 2008). The present replication of Kuchinke et al.'s (2007) 

zero-findings render the explanation unlikely that their zero-finding was due to the 
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failure to control for arousal, because Study 4 carefully controlled and manipulated 

arousal. The occurrence of pupil dilation effects in recognition memory, in the absence 

of such effects during lexical decision, suggests that affective processing does not 

influence pupillary responses per se (Hess, 1965; Janisse, 1974). In contrast, less 

cognitive demands during memory retrieval of affective words may be the better 

explanation (Beatty & Kahneman, 1966). Võ et al.'s (2008) pupil dilations are 

proportional to the error rates in the six experimental conditions, crossing three levels of 

emotional valence (negative, neutral, positive), with study-phase presentation (old/new). 

The greater the error rates, the larger were the pupil dilations. The proposal that 

cognitive demands are the most critical factors driving the pupil response receives 

support from more recent studies (Briesemeister et al., 2009).

The faster RTs to positive and high-arousal negative words were accompanied 

by an increased early ERP negativity between 80 and 120 ms, supporting the notion of 

an impact of affective word features on early lexical processing (Sereno & Rayner, 

2003). This conclusion was corroborated by the source localizations of the early arousal 

effect. It was attributed not only to the left fusiform gyrus' function (Dehaene et al., 2002; 

Kronbichler et al., 2004), but also to the medial temporal lobe (Price, 2000). This 

supports the hypothesis of the fusiform gyrus‘ role as a hub to semantic processing 

(Price & Devlin, 2003). The role of the fusiform gyrus for early lexical processing was 

corroborated by a recent virtual lesion study (Duncan, Pattamadilok, & Devlin, 2010): If 

repetitive transcranial magnetic pulses disrupted the functionality of the occipito-

temporal gyrus including the fusiform gyrus, the time frame of 80-120 ms was the first to 

influence behavioral effects during lexical decision. Since the medial temporal gyrus 

was co-active during this time frame in Study 4, these affective effects could have 

resulted from early semantic processing (Price, 2000).
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Can semantic cohesiveness account for affective effects?

The temporal gyrus finding of Study 4 may be seen as evidence for a semantic 

locus for the influence of affective word features during word recognition. Maratos and 

colleagues (2000, cf. LaBar & Phelps, 1998) proposed that much of the behavioral and 

neurophysiological variance, that affective word features account for, can actually be 

explained by the word's higher semantic-associative cohesion. Therefore, the AROM 

was proposed in Study 5. A word presented to the AROM often elicited the strongest co-

activation in word representations that are in a semantic relationship with the stimulus 

(cf. Figure 19). Therefore, the AROM can be considered as the first localist 

connectionist model of word recognition with an implemented “semantic” layer. Thus, 

semantic cohesiveness is addressable by the AROM. In the author's ongoing work, 

some experiments have already been conducted to explore the role of “semantic 

cohesiveness” during the recognition of affectively loaded words (e.g., Maratos et al., 

2000):

When implementing co-occurrence as in Study 5, and additionally comparing 

words of positive valence to neutral words, our preliminary findings showed that the 

amount of associations, but not positive valence drives the false alarm rate (Hofmann, 

Kuchinke, Biemann, Tamm, & Jacobs, 2008). Thus, the semantic cohesiveness 

hypothesis was straightforwardly confirmed (Maratos et al., 2001; Talmi & Moscovitch, 

2004). The stronger the associative-semantic connectivity to the other words of the 

experiment, the more likely is the erroneous recognition of a word as having been 

learned. The false alarm rate did not further increase as a function of positive emotional 

valence.

Another more recent experiment addressed emotional valence and associative-

semantic connectivity. This time, negative and neutral words were compared. It revealed 

that both, valence and the amount of associated items, affect recognition memory. The 
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preliminary results show that negative valence and “semantics” interact. In old words, 

negative valence reverses the effect of the amount of associates, when compared to 

Study 5. Negative words with less associative connections to the rest of the stimulus set 

elicit more 'yes' responses. These results appear to be puzzling at present. Therefore, 

further evidence would be needed before firm conclusions can be drawn. However, a 

new working hypothesis emerged:

Affective word features may shape the development of the associative wiredness 

of the semantic-associative long-term memory structure. The basic idea of this new 

hypothesis is that affective systems are older than semantic systems in an evolutionary 

sense (cf. Panksepp, 2004). The development of a semantic system is thus based on 

an already established affective system. Thus, if useful from an evolutionary perspective 

(LeDoux, 1996), semantic nets that mean appetitive states 'by tradition' act in a 

facilitatory way, e.g. to increase the probability of attaining the positive outcome. If 

negative non-arousing meaning is activated, however, the semantic activation triggers a 

process inhibiting behavioral responses, because “freezing” is an evolutionary old 

mechanism aiding survival (cf. Bower, 1981). 

This working hypothesis is also testable by recent extensions of the “Berlin 

Affective Word List” databases (Briesemeister, Kuchinke, & Jacobs, 2011; 

Briesemeister, Hofmann, Kuchinke, & Jacobs, 2011). If correct, the recognition of words 

representing the affective states that require 'fight or flight' – i.e. anger and disgust– or 

appetitive emotions – i.e. happiness – may be facilitated by associations to other words. 

In contrast, affective states corresponding to 'freezing' might have shaped 'semantic' 

sub-networks that act in an inhibitory manner, e.g. sadness. Because fear can either 

lead to fighting or freezing, no concrete prediction can be made for words loading high 

on this emotional dimension.

This perspective on affective-semantic sub-nets for each of the five basic 

emotions (Briesemeister, Kuchinke et al., 2011), would be most easily reconciled with 
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one of the most recent computational approaches to semantics (Andrews et al., 2009). 

On the one hand, this approach calculates the 'latent factors' that determine the co-

occurrence of words. On the other hand, the authors calculate the latent factors that 

determine (free) association performance. Finally, they integrate both analyses into 

latent factors that determine both, the experienced subjective-associative and the co-

occurrence variance. These integrated factors account best for performance. Thus, a 

five-dimensional 'semantic' space – with each dimension representing a latent factor – 

that determine both, co-occurrence and the basic-emotion ratings, might be a 

theoretical perspective worthwhile to be investigated in the future (Andrews et al., 

2009).

Given the preliminary findings in recognition memory as well as the results of 

Study 4, it appears that every approach, that is more differentiated than comparing high-

arousal valenced to low arousal neutral words is not fully explainable by the initial 

semantic cohesiveness hypothesis. If low arousal negative words still would provide a 

higher 'semantic' cohesion, it is questionable why only this class of affective words 

should have inhibited behavior in Study 4. The preliminary results comparing negative 

valence with 'semantic cohesion' in recognition memory support the idea that a more 

differentiated semantic cohesiveness hypothesis of emotional word processing is 

required.

Depending on the particular affective quality of a word, its semantic 

cohesiveness might act in an inhibitory or excitatory fashion. Therefore, the a-priori role 

of affect may shape the development of a semantic system rather than affective effects 

being fully explainable by semantic cohesiveness. The semantic system is based on 

evolutionarily old emotional processes, and thus emotion regulates the semantic system 

(cf. Panksepp, 2004).
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Associative-semantic representations

Modeling associations between the word stimuli of an experiment predicted 

false and veridical memories!

Preliminary recognition memory evidence led to the speculations about a more 

differentiated semantic cohesiveness hypothesis of affective word processing. This 

experiment included two experimental manipulations. On the one hand, negative low-

arousal words were compared to neutral words. On the other hand, 'semantic 

cohesiveness' was implemented as in Study 5. The amount of associated items in the 

stimulus set implemented 'semantic cohesion'. How did we come to the hypothesis that 

simple associations can mimic 'semantic' effects?

Roediger and McDermott's (1995) seminal work relied on free associations, in 

which participants freely generate associates to given target word. In a later false 

memory experiment, other participants learned (free) associates to a given non-learned 

target-item. These associates elicited the target's false recognition. A theoretical 

account of these findings would propose that associative activation spreads from the 

learned associates to the target word (e.g., Collins & Loftus, 1975; Kimball, Muntean, & 

Smith, 2010). The false recognition of this target is driven by associations.

Study 5 was theoretically based on Hebbian learning (Hebb,1949). Items 

occurring often together are likely to be associated. Accordingly, co-occurrence statistics 

implemented associations between words. The more associated items a given stimulus 

had in the stimulus set, the larger was the expected associative activation (Collins & 

Loftus, 1975). A greater false alarm rate resulted for the stimuli with a greater amount of 

associated items in the stimulus set. Moreover, associations drove the correct 

recognition of learned words. When many associated items were in the stimulus set, the 
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correct retrieval of learned words was facilitated. This effect has previously been 

observed in a free recall task (Kimball et al., 2007). To the best of the author's 

knowledge, Study 5 provided the first evidence that the effect is also apparent in a 

study-test recognition memory task. This was to be expected, because recall and 

recognition can be assumed to share common retrieval processes (cf. Gillund & Shiffrin, 

1984).

Apart from the increased amount of ‘yes’ responses to new and old stimuli, the 

main effect of co-occurrence in the absence of a significant interaction suggests that 

associations implemented via co-occurrence statistics affected the amount of ‘yes’ 

responses to new and old items likewise. In general, the obtained main effect of co-

occurrence supports the notion that associations can successfully be estimated using 

co-occurrence statistics. This has already been suggested by Rapp and Wettler's (1991) 

early observation that co-occurrence statistics can predict free association performance.

However, apart from staying within a verbal-theoretical framework of associative 

activation (Collins & Loftus, 1975), we aimed at capturing associations in a 

computational model (cf. Anderson, 1983). Therefore, the AROM was developed to 

extend the false memory logic to a novel, more fine-grained level of analysis that takes 

into account all associations between all items in the stimulus set. The increase of ‘yes’ 

responses, which was elicited by the associated items, can be simulated by the AROM. 

Excitatory associative connections from other items of the stimulus set drive the 

activation of the presented target stimulus. Generally in line with the logic of IAMs, the 

target's larger activation predicts an increased amount of ‘yes’ responses (e.g., Grainger 

& Jacobs, 1996). However, the AROM is the first of these models implementing the 

spreading of activation along pre-wired associative connections (cf. Anderson, 1983; 

Collins & Loftus, 1975). This associative structure of human long-term memory can be 

assumed to result from the learning history of the subjects, i.e. words that occurred 

often together in the past are likely to be associated (Hebb, 1949). The activation that 
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spreads along these long-term memory paths can be assumed to represent temporarily 

activated memory traces during the experiment.

To extend an IAM to be able to simulate study-test recognition memory 

performance, only a single new assumption was required. The associative 

representation's resting level activation was assumed to reflect stronger memory traces 

for old items. These stronger traces result from learning during the study-phase 

presentation (cf. Reder, Nhouyvanisvong, Schunn, Ayers, Angstadt, & Kazuo, 2000). 

When modeling the test phase, this ad-hoc assumption describes the old/new effect, i.e. 

the increase of ‘yes’ responses to old items (cf. Võ et al., 2008). Taken together with 

already established architectural features of IAMs, the assumption moreover explained 

why the variances of old items should be higher than those of new items:

For each word presented in the experiment, an associative representation was 

contained in the AROM's associative layer. As stimulus sets are randomized for each 

subject, each associated word has a probability to be presented earlier than the target. 

Therefore, an associate can cue the presented target stimulus. To give each associate 

the chance to cue the target in the model, all associative representations were initialized 

in an active state: These activations greater than zero are necessary for associative 

excitation.

However, many active representations also lead to a great amount of inhibition in 

the associative layer – there is competition between the active memory representations. 

Each learned item “wants” to be remembered. By virtue of the active competition of 

many memory traces for being held in memory, each associative representation obtains 

a net inhibitory signal, in sum. To obtain the activation change of an IAM's 

representation, the net inhibition is scaled by multiplying it with the activation of the 

representation itself. As the activation of an old item was assumed to be greater than 

that for new items, the activation variability for old items necessarily becomes greater 

than that for new items. This is because old items obtained a greater resting level 
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activation. Thereby, the present modeling architecture explained signal detection 

theory's ad-hoc assumption of unequal variances (Green & Swets, 1966). This 

assumption typically accounted for the old items greater signal strength variances and 

the resulting z-ROC slope lower one, which is usually observed during recognition 

memory (e.g., Glanzer et al., 1999; Ratcliff et al., 1992).

Once the five free parameters were adopted to account for the empirically 

obtained z-ROCs, the AROM's associative memory signal strengths also accounted for 

a significant portion of variance of the 'yes' response probability of the items. Thus 

signal detection was elevated to an item-level.

Apart from leveling recognition memory processing models to a quantitative item-

level of predictions, the AROM also provides qualitative face validity (cf. Figure 19). The 

most strongly associated items often reflected a semantic-taxonomic relations to a 

presented target stimulus. Therefore, the AROM can address semantic cohesiveness 

not only during affective word processing, but also in another theoretical framework of 

recognition memory. The available orthographic familiarity processes (Jacobs et al., 

2003) can potentially be complemented by a recollection-processes, which was 

associated with semantics (Yonelinas, 2002).

Going beyond measurement models of familiarity and recollection?

The first signal detection approach in an IAM used the summed lexical 

activations of the orthographic word layer to define (orthographic) familiarity (Jacobs et 

al., 2003; cf. Figure 3). When the participants conducted lexical decisions under limited 

exposure conditions, the decisions can be based on familiarity, solely. Consistent with 

mere familiarity in a dual-process architecture, linear z-ROCs with a slope of one were 

obtained (cf. Jacobs et al. 2003; Yonelinas, 1994). However, Jacobs et al. (2003) 
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predicted more recollection-shaped z-ROC's, when an identification mechanism is 

additionally active.

Study 5 showed IAM mechanisms that can elicit z-ROC slopes lower one. As 

discussed by Jacobs et al. (2003), this 'recollection' mechanism was based on an IAM's 

identification information: The identification signal of the MROM was forwarded to the 

associative layer of the AROM. Thus, the recollection information – here based on the 

AROM's associative activations – can tilt the z-ROC down (Yonelinas, 1994).

It remains to be discussed whether the AROM could be used as model relying on 

two types of information (cf. Yonelinas, 1994), and how it would compare to other dual-

process models. The AROM contains a largely unchanged MROM. Thus, the author 

would propose that (orthographic) familiarity reflects the summed orthographic 

representations (Jacobs et al., 2003). Recollection would reflect the AROM's associative 

identification information.

Such an extended AROM would share some assumptions with even the earliest 

dual process models. Yonelinas (2002) nicely summarizes Atkinson and colleagues's 

earliest dual-process-model as “Familiarity and recollection (…) support memory for 

perceptual and semantic (or meaning-based) information, respectively” (Yonelinas, 

2002; p. 444). This closely reflects the AROM, at which familiarity would be defined in 

an orthographic-perceptual fashion, and recollection would reflect contextual meaning 

properties of the words (cf. Dennis & Humphreys, 2001; p. 452).

When Yonelinas (2002) reviewed later approaches, he noted that “familiarity is 

assumed to support not only recognition memory performance, but also performance on 

implicit memory tasks such as word stem completion. (…) In contrast, recollection is 

assumed to reflect a search process that supports both recognition and recall” 

(Yonelinas, 2002; p. 445). The MROM's recent approaches to lexical decision and word 

stem completion were primarily based on its familiarity mechanism (Braun et al., 2006; 

Jacobs et al., 2003; Klonek et al., 2009). This seems to reflect the notion of familiarity 
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being the main mechanism responsible for implicit memory performance (Grainger & 

Jacobs, 1996). When it comes to tasks at which memory is explicitly required, the 

AROM's associative mechanisms should be able to mirror the effects elicited by an 

extensive search process, which is apparent for recall (Gillund & Shiffrin, 1984; Kimball 

et al., 2007).

Similar to the AROM, the search of associative memory model (Gillund & Shiffrin, 

1984) contains two sources of information that determine memory performance. One 

source reflects the summed activations of the representations – like the MROM's 

familiarity mechanism –, and the other source reflects the single representations' 

activation – like the AROM's associative identification mechanism. The first one was 

termed 'familiarity'. It was introduced to account for recognition. The second 'search'- 

process primarily accounted for recall. However, Gillund and Shiffrin (1984, pp. 55) 

pointed out that it remains an open question whether there is a search component in 

recognition.

Thus, the theoretical perspective of integrating single-representation and 

summed-representation information to predict recognition memory performance would 

follow an old theoretical notion. Study 5 provided a necessary precondition for this 

enterprise. It showed how an IAM's identification mechanism can account for z-ROCs 

(cf. Jacobs et al., 2003; Grainger & Jacobs, 1996). As associations were proposed to 

engage recollection, using the associative representation as recollection seemed 

straightforward (Yonelinas, 1997). Moreover, the recent replications of the behavioral 

findings of Study 5 seems to support that notion. The amount of associated items in the 

stimulus set engages the hippocampus relatively selectively (Fritzemeier, 2010; 

Fritzemeier, Hofmann, Kuchinke, & Jacobs, in prep.). As the latest research seems to 

converge on the idea that the hippocampus hosts recollection (e.g., Wixted & Squire, 

2011), future studies will have to show whether the AROM can quantitatively predict 

brain activations (cf. Jacobs & Hofmann, subm.; cf. Study 3).
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Previous dual-process models were implemented as analytic measurement 

models that evaluate given data in a post-hoc fashion (cf. Malmberg, 2008, Yonelinas, 

1994). If realized at the level of a processing model, they did not allow for quantitative 

item-level predictions or the evaluation of the face validity of semantic-associative 

relations between words (Malmberg, 2008; Reder et al., 2000; Wixted, 2007; cf. Figure 

19).

If the challenge of integrating both sources of information would be taken, the 

AROM could help to decide between the appropriateness of single or dual-process 

approaches to recognition memory. Does an AROM relying on two sources of 

information account for a significantly greater portion of item-level variance than the 

present 'single-process' AROM? Addressing this question will hopefully help to further 

our understanding of the processes engaged in recognition memory.

The rebirth of a mental lexicon: How to answer the challenge of fixing the 

structure of time?

The AROM's long-term memory associations seem to indispensably rely on the 

theoretical notion of a mental lexicon. Jeff Elman (2004) has called into question 

whether such a theoretical treatment of language processing is appropriate. He 

particularly criticized that the 'mental lexicon' cannot be regarded as a dictionary that 

relies on a passive data structure. This structure would reside in long-term memory and 

would contain semantic, syntactic and phonological information. Rather than retrieving a 

presented word from that lexicon, he emphasizes the theoretical perspective that words 

are stimuli that act on mental states. Thus, words don't have a meaning that could be 

retrieved. Rather, words provide “clues to meaning” (Rumelhart, 1979, cited from 

Elman, 2004).
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A passive lexicon does not allow to constrain the meaning of a presented word 

by the clues that were provided by other words in the language context (Elman, 2004). 

Concerning that part of the criticism, I suggest that the AROM's treatment of lexical-

associative interactions between words can in part reject Elman's (2004) concern. 

Clearly, the effects predicted by the AROM's associative layer do not result from single, 

passive entries in a “dictionary”. The activation of a “semantic” representation results 

from the interaction of the context of the other words in the experiment, and the target 

stimulus.

Elman (1990) exemplifies how context can change meaning by two senses of the 

term 'bake'. I will use this example but will apply other meaning-implications of these 

sentences (cf. Elman, 1990, pp. 304). What's the meaning of 'bake' in 'Ray baked a 

potato', vs. in 'Ray baked a cake'. In the first sentence it means 'make hot'. In the 

second sentence 'bake' also includes putting butter, meal, sugar, eggs etc. together, and 

then making it hot. So, 'bake' can either have meaning A (make hot), or meaning A 

(make hot) and B (putting meal, butter etc. together). A passive dictionary could take 

this meaning-differentiation into account by enumerating different meanings, at the 

most. It cannot differentiate between the meanings, when retrieving the meaning of a 

single word from a passive dictionary.

In Elman's so-called simple recurrent networks, meaning-differentiation “happens 

for free”, because meaning is defined by context (Elman, 2004; p. 305). The same is 

true for the AROM. The associated items occurring in the experimental context 

contribute to the definition of the meaning of a word. 'Bake' might be associated with 

'sugar', and 'cake' might be associated with 'sugar'. Therefore, an associate activated in 

this language context could be 'sugar'. Thus, the AROM's association functions would 

likely co-activate 'sugar', when 'bake' is presented, and 'cake' was another contextual 

item (cf. Figure 19). The activation of 'sugar' would point at the activation of meaning B, 

i.e. putting a cake's ingredients together. In contrast, 'potato' is not associated with 
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'sugar'. Therefore, 'sugar' would less likely be co-activated in the context of 'potato' and 

'bake' than in the context of 'cake' and 'bake'. 

In sum, when assuming that 'bake' is presented two times to the AROM, one time 

with 'potato', and another time with 'cake' as a contextual representation, the network 

states of the AROM would differ. The co-activated associates would reflect that meaning 

differentiation. I suggest that meaning differentiation can be reflected by the AROM, 

much like in Elman's simple recurrent networks. The activation triggered by a word 

stimulus is not any more reflecting the retrieval from a passive storage.

What is the AROM's 'associative lexicon' then, if it is no passive dictionary? 

When compared to Elman's definition, this term might be considered as a technical one, 

here. The associative layer contains one representation for every word that was 

activated at least for one time in the experimental context. So, that part of the long-term 

memory, which becomes likely activated by the experiment, is represented in the 

associative layer's 'lexicon'. The common learning history of these words is reflected in 

the associative layer. Thereby the influence of the common past of the words that are 

'old pals' helps to better quantify recognition performance. Therefore, I suggest that the 

term 'mental lexicon' in the sense of 'associative layer' can be usefully employed: In this 

sense, the term misses the passive dictionary-nature, that was criticized by Elman 

(2004).

His criticism was based on so-called simple recurrent networks (Elman, 1990, 

2004). Therefore, let's have a look what a simple recurrent network is, what it does, and 

what the AROM still cannot.

Elman (1990) had 'found the structure of time': He used a (recurrent) 

connectionist network with representations that link back to themselves. Thus, there can 

be representations that only become active when particular sequences of events co-

occur. So, one representation might predominantly mean 'bake' with 'potato'. Another 

representation, might indicate 'bake' in the context of 'cake'. This network expects 
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certain representations to occur in the future by simple mechanisms that learn statistical 

regularities of occurrence. The more often 'bake' and 'potato' has occurred previously, 

the more dominant this meaning would become. Elman (1990) showed also that this 

type of network can account for 'syntactic' effects. When many simple recurrent 

representations expect the occurrence of a noun, statistically shaped structural 

properties of sentences evolve. This might be functionally equivalent to what classical 

linguistics calls 'syntax' (Chomsky, 2002). But rather than being separate from 

semantics, this is simply another feature of the recurrent representations. In contrast to 

Elman's (1990) approach, however, the AROM does not yet consider the actual 

sequence of events.

Network properties that allow to predict which word occurs when, or even which 

word class occurs at which time or position, surely are a limitation of the AROM 

(Dambacher et al., 2006; Friston, 2009). At present, AROM modeling takes a 'blocked' 

perspective to 'semantics' (cf. Abdel Rahman & Melinger, 2007, 2011). It considers 

which words occur in the context, but it does not consider the actual sequence of the 

words. In our ongoing work, we already started to address sequential relations 

empirically (Kuchinke, Hofmann, Jacobs, Früholz, Tamm, & Herrmann, 2011). In a word 

recognition task like lexical decision, this surely also includes decision-related strategic 

processes. Though only these were addressed initially (Kuchinke, et al., 2011), more 

recent work revealed that sequential-associative relations can be easily addressed by 

the co-occurrence statistics used in the AROM. When a word is preceded by an 

associate, it is recognized faster (Brockhaus, Hofmann, Jacobs, & Kuchinke, 2010). 

Neuroimaging will further help to disentangle strategic effects (Kuchinke et al., 2011) 

from associative-mnemonic ones.

In sum, recurrent networks and the AROM share a theoretical notion: Recurrent 

networks learn statistical co-occurrence patterns of language. The AROM uses 
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statistical co-occurrence properties of words to predict performance. Thus, the author 

suggests that both of these models are two different implementations of the same basic 

theoretical notion.

It is questionable, whether all aspects of Elman's (1990) distributed 

representations approach could be 'translated' into a localist, deterministic modeling 

perspective. To generate 'syntactic' expectancies of particular word classes, other co-

occurrence statistics than the ones used in the AROM could prove useful. The AROM 

relied on words occurring together in sentences. Co-occurrence statistics that determine 

whether a word does significantly often occur one, two, or three words later than 

another one might be used to generate more syntax-like expectancies. Such position-

sensitive associations might be capable of pre-activating predictable words to mimic 

'syntactic' predictability effects (cf. Dambacher et al., 2006). It is questionable if and how 

these statistical properties can be used to predict performance. I believe that a 

deterministic modeling perspective could 'fix' the structure of time to predict 

performance quantitatively, even in the sentence context.

Does the mind construct semantic taxonomies from associations?

From a network based on statistical-associative co-occurrence probabilities, 

semantic-taxonomic relations popped out as the most strongly associated words (cf. 

Figure 19). Here, I like to speculate about the reason for this by proposing closer 

definitions of the terms “semantic” and “associative” originating from language 

philosophy. For a Kantian, associations as an implementation of statistical regularities 

would belong to the so-called world itself (“Welt an sich”; Kant, 1993). In contrast, 

assuming taxonomic hierarchies of semantics are an issue of the logic of the human 

mind (“Verstand”). Time, space, and causality – as the principle perspectives the mind 

can take – are necessary to logically subdivide the world, and thereby provide logically 
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definable hierarchies. Thus, I propose that “semantics” is a term belonging to the world 

of the mind, and “associations” as statistical regularities belong to the world itself.

From the statement that “semantics belongs to the subjective perspective of the 

human mind” follows that it is impossible to provide a semantic hierarchy that would be 

universally applicable (cf. Kiang, Prugh, & Kutas, 2008). Logical classification always 

depends on the perspective of the observer: “Is the ayers rock a mountain?” – “Surely 

no” would answer a geologist, because for him “mountain” is defined by its genealogy, 

i.e. tectonic processes lift limescales. On the other hand, big, stone-like risings may 

define “mountains” for a naive observer: Thus for another one, ayers rock is surely a 

mountain (cf. Eco, 2003, pp. 258-263). In Southern Germany, where huge mountains 

reside, the definition of [mountain] (“Berg”) starts at a height of about a mile – smaller 

risings may be termed [hill] (“Hügel”). In the North, where the land is more flat, a part of 

Berlin is termed [mountain] from a rising of about a few hundred feet (“Kreuzberg”). 

Again, this demonstrates that any approach to meaning must consider the context in 

which a word occurs.

Therefore, it is impossible to generate semantic hierarchies universally valid for 

every observer. The AROM's computational approach predicts performance completely 

without relying on any subjective performance measures (cf. e.g. Talmi & Moscovitch, 

2004; Roediger & McDermott, 1995). The observed responses of the AROM 

nevertheless seem to reflect constructs that are necessary to define semantic 

hierarchies (cf. Schrott & Jacobs, 2011). I suppose that co-occurrence-based models 

provide the only way to define something objective with respect to 'semantics'. 

Associations simply reflect semantic relations likely for many people. Thus only the 

definition of associations is very broadly applicable to many subjects, because each of 

them to some degree has her or his own semantic taxonomies. Egoism is a vice for 

most people, but might be considered a virtue for the most unselfish martyr (cf. Figure 

19). Defining different semantic taxonomies as deviation from the 'average' associative 
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structure, is a challenge, and a potential practical application for the general psychology 

framework presented here. In sum, the present associative-probabilistic model may 

account for semantic effects, because semantics is the logical rationalization of the 

statistical properties of the world itself.
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General Discussion: Summary and outlook

Conclusions

From the tiniest sub-lexical representation to lexical processing IAMs so far 

provided a theoretical framework. By virtue of this dissertation, they can address 

associative relations between words. 

Localist connectionist models are a powerful tool that can bring structure into the 

vast research field of word recognition. They explain why frequencies of sub-lexical 

units affect word recognition (Study 1). When no direct simulations of the word 

recognition process are available, they can help to attribute function to behavioral and 

neuroimaging findings (Study 2; cf. Jacobs & Hofmann, subm.). When word recognition 

is directly simulated, an IAM can predict performance and electrophysiological 

responses at the level of single items (Study 3). They allow for specifying potential 

functional loci at which affective word features may influence lexical processing. Either 

they may boost lexical activation (Kuchinke, 2007), or affective effects may result from 

semantic cohesion between words (Study 4). Study 5 has set the stage for investigating 

this issue in the future. Moreover, the AROM extends the range of tasks at which IAMs 

can be applied. Explicit memory processing is not any longer an unanswered challenge. 

IAMs can now be tested in any situation at which contextual-associative relations 

between words can be assumed to take effect, e.g. during sentence processing.
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