
Chapter 6

Discussion

6.1 Comparison with Classical Approaches

It is becoming more important in medical research to carry out analyses which explains

reasons for heterogeneity of the treatment effects in multicenter studies.

In a conventional approach, the weighted regression analysis assumes a normal dis-

tribution for the logarithmic relative risk where for each center the variance is gained

from a first-order Taylor-series approximation. For the analysis, this variance is treated

as a known value. To explain the heterogeneity of the treatment effects by covariate

information, the idea of generalized linear model was applied and the identity link func-

tion was used to link covariate information to relative risk. Fixed and Random effects of

weighted regression analysis have been discussed in many literatures [4, 11, 32, 36, 38].

The problem related to these approaches, is firstly, the potentially insufficient approx-

imation of the normal distribution. This may be inadequate when the sample size or

the number of events for the individual studies are small. Secondly, correlation between

estimates of the log-relative risk and their variance estimates may produce bias in the

estimates of regression coefficients. The third problem is the inappropriate identity link

which is used to link covariate information to relative risk. This link does not guarantee

that the relative risk estimates are positive, which would be an essential requirement

for a relative risk.

In the second conventional approach, logistic regression is applied to overcome these

problems. The approach directly uses the binomial structure of the binary data. The

conventional logistic model assumes a fixed parameter and fixed effects to intercept

parameter and treatment effects, respectively. Multi-level logistic regression model is
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one way to allow heterogeneity of treatment effects in the models. The treatment effects

are assumed to be random effects and have an independent normal distribution in this

model. An alternative multi-level model, the intercept parameter, is regarded as random

rather than fixed. The multi-level approach has been discussed in various contributions

[3, 36, 37]. One disadvantage of the logistic regression approach is the strong influence

of the nuisance parameter, that is the intercept parameter, on estimating the treatment

effects and potential lack of power in identifying the structure of relative risk.

The profile likelihood approach eliminates the nuisance parameter before dealing

with the inference for the parameter of interest and becomes therefore attractive in this

situation. In this study, a generalized linear model was applied to describe covariate

information. The canonical link is used to link covariate information to relative risk

which guarantees that the relative risk estimates are positive. In practice there may

be many such covariates that should be considered for the sources of heterogeneity.

Collinearity between pairs of covariates can occur and lead to difficulty in interpretation

[5]. This can be a problem in modelling covariate information using profile likelihood.

As in many references [14, 29, 36, 38], heterogeneity of the treatment effects cannot

be completely explained by the covariate information. Thus, it is important to take

into account the possibility of unobserved heterogeneity. Ignoring the unobserved het-

erogeneity will underestimate the standard error of the parameters in the model, and

thus overstate the importance of the covariate [36]. However, the modelling of covariate

information using the profile likelihood considered in this study does not include the

unobserved heterogeneity of the treatment effects into the model. In other words, the

unobserved heterogeneity of the treatment effects need to be considered.

6.2 Extensions of the Profile Likelihood Model

In this section, the possible extensions of the modelling covariate information using

profile likelihood are described.

We consider again in the likelihood function for estimating the relative risk for each

center
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and then inserting the MLE of pC
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and, finally, the parameter dependent part of the profile likelihood for risk ratio becomes
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In situations where heterogeneity is present, the mixture profile likelihood approach has

been applied. It is assumed that the population consists of m different subpopulations

with different relative risks θ1, θ2, . . . , θm. Some centers belong to the same subpopula-

tion or cluster. However, it is assumed that the subpopulation or cluster to which the

center belongs is not known. This situation is called unobserved or latent heterogeneity

[7].

Suppose the distribution of subpopulations in the population follows a discrete dis-

tribution

Q =

⎛
⎝ θ1, . . . , θm

q1, . . . , qm

⎞
⎠ (6.4)

where q1, . . . , qm is the probability of belonging to the subpopulation j, j = 1, . . . , m.

Additionally, let a latent indicator zij describe which of the m subpopulations the center

belongs:

zij =

⎧⎨
⎩ 1 center i belongs to subpopulation j

0 otherwise

and these indicator variables zij have the constrains that

m∑
j=1

zij = 1. (6.5)

The conditional likelihood, conditional that observed xT
i , xC

i in center i comes from

subpopulation j, is given as
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Note that contrary to (6.3), several centers might come from the same subpopulation

j with parameter θj. With (6.6) and given data (xT
i , xC

i , zij), the associated likelihood

can be written as
m∏

j=1

{
f(xT

i , xC
i , θj)qj

}zij
. (6.7)
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Therefore, the unconditional or marginal likelihood over the unobserved variable zij

becomes ∑
(zi1,zi2,...,zim)

m∏
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{
f(xT
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Finally, the mixture profile log-likelihood overall centers can be written as
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In situations where observed heterogeneity in the form of covariates is considered, the

profile likelihood (6.3) becomes

L∗(β) =
k∑

i=1
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exp(β0 + ηi)
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with ηi = β1zi1 + β2zi2 + . . . + βpzip.

One method to incorporate unobserved heterogeneity into the likelihood correspond-

ing to (6.10) is to enter linearly an unobserved heterogeneity into the model. Here, we

suppose that the intercept parameter is mixing and follows a discrete distribution
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and then, the conditional likelihood for this situation is given as
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Therefore, the mixture profile log-likelihood for incorporating covariate information and

unobserved heterogeneity over all centers can be written as

L∗(β, Q) =
k∑

i=1

log

⎛
⎝ m∑
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There are numerous ways how an unobserved heterogeneity can enter the model, how-

ever equation (6.13) illuminates only one of them. The intercept parameter might be

fixed (β
(1)
0 = β

(2)
0 = . . . = β

(m)
0 = β0) and mixing might occur in one, several or all

covariate parameters, as it occurs in the intercept parameter similarly to our case. In

other words, a new range of models need to be considered.

In this study, we consider only covariates on the study level, for example, average

cholesterol reduction, percentage of males that could explain the differences between
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the studies. We did not go into covariates on the individual level. The use of individual

data would of course become necessary in the developing area where covariates on the

individual level rather than on the study level are investigated [31], the profile likelihood

approach naturally is applied to this case.
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