
Chapter 4

Modelling Covariate Information

In this chapter, a novel model for incorporating covariate information based upon a

modification of the generalized linear model using profile likelihood approach is pre-

sented.

4.1 A Generalized Linear Model

The theory of generalized linear models was first developed by Nelder and Wedderburn

(1972). In simple terms, the components of a generalized linear model consist of three

elements: the error distribution, the systematic component, and the link function [13,

15, 23, 25].

Firstly, the error distribution need to be chosen for a random response variable Yi,

i = 1, . . . , n. Typically, Yi is assumed to come from an exponential family, for example,

a Gaussian, binomial, or Poisson distribution.

Secondly, the systematic component is a linear predictor η which combines linearly a

set of parameters β1, . . . , βp and covariates zi1, . . . , zip as

ηi = β1zi1 + . . . + βpzip. (4.1)

Thirdly, the link function is a monotone function g which relates the mean E(Yi) = µi

of the random variable to the linear predictor:

g(µi) = ηi. (4.2)

Now a novel modification of the generalized linear model (as described above) is applied

to model the variation of treatment effect by means of covariate information. Let zij
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be the value of the j-th covariate in the i-th center, for i = 1, . . . , k and j = 1, . . . , p.

The linear predictor ηi for covariate information in the i-th center becomes

ηi = β0 + β1zi1 + β2zi2 + . . . + βpzip (4.3)

where β0, β1, . . . , βp are the parameters of the model whose values are usually unknown

and have to be estimated from the data. We consider again the profile log-likelihood

for the relative risk estimator

L∗(θ) =
k∑

i=1

xT
i log(θi) − (xC

i + xT
i )log(nC

i + θin
T
i ). (4.4)

The form of (4.4) suggests to use the canonical link θi = exp(ηi) to link the linear

predictor (4.3) to the relative risk parameter θi which guarantees that θi ≥ 0, an essential

requirement for a relative risk. With the canonical link, the profile log-likelihood for

covariate information becomes

L∗(β) =
k∑

i=1

xT
i ηi − (xC

i + xT
i )log(nC

i + exp(ηi)n
T
i ) (4.5)

with ηi = β0 + β1zi1 + β2zi2 + . . . + βpzip.

4.2 Finding Maximum Likelihood Estimates

We now estimate the parameters of model βj, for j = 0, 1, . . . , p. To find the maximum

likelihood estimate of βj we need to maximize the profile log-likelihood (4.5). For this

purpose, consider the partial derivative w.r.t βj

∂L∗

∂βj
(β) =

k∑
i=1

xT
i zij − xin

T
i

exp(ηi)

nC
i + exp(ηi)nT

i

zij (4.6)

where xi = xT
i +xC

i , and the corresponding vector of partial derivatives, the gradient is

∇L∗(β) = (
∂L∗

∂β0
, · · · , ∂L∗

∂βp
)′. (4.7)

Furthermore, Hesse matrix of second derivatives is

∂2L∗

∂βh∂βj
(β) = −

k∑
i=1

xin
T
i nC

i exp(ηi)

(nC
i + exp(ηi)nT

i )2
zijzih (4.8)



4.2. FINDING MAXIMUM LIKELIHOOD ESTIMATES 21

so that (4.8) becomes in matrix form

∇2L∗(β) =

(
∂2L∗

∂βh∂βj
(β)

)
= −Z ′W (β)Z (4.9)

where Z is the design matrix of covariate information defined as

Z =

⎛⎜⎜⎜⎜⎜⎜⎝
z10 z11 z12 . . . z1p

z20 z21 z22 . . . z2p

. . . . . . .

zk0 zk1 zk2 . . . zkp

⎞⎟⎟⎟⎟⎟⎟⎠
k×(p+1)

with

k is the number of centers,

p is the number of covariates,

zi0 is the constant value of coefficient in the i-th center, zi0 = 1,

zi1, . . . , zip is value of covariates in the i-th center,

and W (β) is a diagonal matrix defined as

W (β) =

⎛⎜⎜⎜⎜⎜⎜⎝
w11 w12 w13 . . . w1k

w21 w22 w23 . . . w2k

. . . . . . .

wk1 wk2 wk3 . . . wkk

⎞⎟⎟⎟⎟⎟⎟⎠
k×k

(4.10)

with wij = 0, if i �= j and

wii =
xin

T
i nC

i exp(ηi)

(nC
i + exp(ηi)nT

i )2
.

Then, we used the Newton-Raphson procedure which is a traditional method for

finding maximum likelihood estimate, to iteratively construct the maximum likelihood

estimates of βj. Choose some β(0) as initial values (for example β(0) = 0) and then

update β according to

β(n+1) = β(n) −∇2L∗(β(n))−1∇L∗(β(n)) (4.11)

until convergence.
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4.3 Finding Standard Errors of Effect Estimates

We can estimate variances of maximum likelihood estimates from the negative inverse

of the information matrix (4.9) [15, 23]. The variances estimate equals

ˆvar(β̂j) = (Z ′W (β̂)Z)−1
jj (4.12)

so that the standard errors become

ˆs.e.(β̂j) =
√

ˆvar(β̂j) (4.13)

and significance of individual effects can be consequently obtained by means of a Wald-

test defined as

Tj =
β̂j

ˆs.e.(β̂j)
(4.14)

so that the P-value of Wald test under the null hypothesis of no effect of the j-th

covariate can be found as

P-value = 1 − F (Tj) , Tj ≥ 0 (4.15)

with F (Tj) as the cumulative function of the standard normal distribution.

4.4 Finding Relative Risk and 95% CI for Covariate

Information

After finding standard errors of effect estimates, we compute the relative risk and 95%

confidence interval for covariate information as follows:

We consider again the linear predictor model (4.3)

ηi = β0 + β1zi1 + . . . + βpzip. (4.16)

If zi1, zi2, . . . , zip = 0, then ηi = β0, and the relative risk for the i-th center is estimated

as

θ̂i = exp(β̂0) (4.17)

and the associated 95% CI can be found as

exp{β̂0 ± 1.96 × ˆs.e.(β̂0)}. (4.18)
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If zi1, zi2, . . . , zip �= 0, then ηi = β0 +β1zi1 + . . .+βpzip, and the relative risk for the i-th

center is estimated as

θ̂i = exp(η̂i) (4.19)

where η̂i = β̂0 + β̂1zi1 + . . . + β̂pzip , and the associated 95% CI can be defined as

exp{η̂i ± 1.96 × ˆs.e.(η̂i)} (4.20)

where ˆs.e.(η̂i) can be found as

ˆs.e.(η̂i) =
√

z′
iĈOV (β̂)zi (4.21)

where zi = (zi0, zi1, zi2, . . . , zip)
′, with zi0 = 1.

4.5 Elements of the Developed Software Tool

The profile log-likelihood for covariate information (4.5) is a non-standard log-likelihood.

It is neither a Poisson log-likelihood nor any of the log-likelihoods available in the

standard generalized linear model family. This makes it less attractive to use one of the

existing statistical packages such as STATA, S-plus, MINITAB, or any other package

which offers macro-like programming. Instead, it was decided to use the Microsoft

Fortran Power Station to develop a software tool to accomplish modelling relative risk

based upon the profile likelihood, since the Microsoft Fortran Power Station has many

features that make development easy and efficient. In the following, we describe some

of the features of this developed tool.

• The first feature is to calculate relative risk based upon modelling of unobserved

heterogeneity. This feature allows to calculate relative risk based upon multi-level

model, fixed-effect model, and profile likelihood model.

• The second feature is to calculate relative risk based upon modelling of covariate

information. This feature allows to incorporate covariate information based upon

a modification of the generalized linear model using profile likelihood approach in

order to estimate the relative risk based upon the significant covariates.

• The third feature is to provide model diagnostics such as directional-derivative

-type diagnostics based upon the multi-level model, fixed-effect model and profile

likelihood model.
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• The fourth feature is to allow center allocation based on the maximum posterior

distribution.

For example, we consider the multicenter study of 59 trials that evaluates the effect

of nicotine replacement therapy (NRT) on the quitting smoking. There are two different

forms of NRT (patch and gum) and two different types of support (high support and low

support). The modelling of covariate information using profile likelihood approach has

been applied to see if the quitting smoking is dependent on the form of NRT, and/or on

the type of support. The results of calculation relative risk based upon the modelling of

covariate information using the profile likelihood approach from the developed software

is displayed in the Figure 4.1. All examples and analyses presented in the next chapters

were done using this software.
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Figure 4.1: An Example of Output Window based upon the Developed Software Tool

for the Quitting Smoking Study
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