Chapter 3

Derivative Expansion

The derivative expansion, first developed by C. Fraser [53], is a powerful
method for calculating the one-loop effective Lagrangian of any given field
theory. The resulting expansion of the effective Lagrangian in powers of the
derivatives of the field is primarily useful when one is interested in low-energy
or long-distance effects.

For ease of illustration, let us apply this method to a simple quantum
mechanical problem.

3.1 Quantum corrections to effective action

Consider a particle of mass m moving in a one-dimensional potential
V(z). Its classical Lagrangian reads

L(z,3) = tmi? — V(x), (3.1)

2

where the dot indicates a time derivative. According to the path integral
formulation of quantum mechanics [54], the probability amplitude of the
particle initially at position z, at time ¢, to be found at position x; at a later
time ¢, is given by the path integral

(s tuls, ) = [ Diexp(; Slal), (3.2)

where S[x] is the classical action

Sl = [ dt £(z, #), (3.3)

ta
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32 CHAPTER 3. DERIVATIVE EXPANSION

and the path integral (3.2) runs over all paths with fixed end points at z(¢,) =
zq and x(tp) = .

In the path integral formulation, the rules of quantum mechanics ap-
pear as a natural generalization of the rules of classical statistical mechanics
[65]. In statistical mechanics, each volume in phase space is occupied with
the Boltzmann probability. In the path integral formulation of quantum me-
chanics, each volume element in the path phase space is associated with a pure
phase factor exp(iS[z]/h). One may thus consider the quantum-mechanical
partition function

Zoult ta)[X]= [ Daexp(; SIX +a]), (3.4)
Tq=xp=0 h

for the fluctuations = around some background orbit X (¢). The quantum-
mechanical partition function can be used to define the effective action in the
same way as the partition function in statistical mechanics is used to define
the free energy of the model being studied. Accordingly, the effective action
is given by

Seff[X] = —ihln ZQM[X] (35)

By calculating Zgu we are able to introduce quantum corrections to the
classical Lagrangian (3.1). However, the quantum-mechanical partition func-
tion cannot be calculated exactly for most potentials V(z), and one must
resort to some approximative method. In the so-called semi-classical ap-
proximation, Seg is expanded around the classical action, and the quantum
corrections are expressed as a series expansion in powers of A, also referred
to as loop expansion.

Let x4(t) be the classical path, solving the classical equation of motion

miaq+V'(za) = 0. (3.6)
Accordingly, the first functional derivative of the action (3.3) vanishes at z:
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Hence (3.3) has a functional Taylor series around the classical path starting
as

1 52S[z]
Sla] = Slzal + 2 Jiw W

)zt + -, (3.8)
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where Z(t) = z(t) — za(t) and the quantum-mechanical partition function
reads, in the semi-classical approximation,

i ) t
Zou(ty, to)[za) = enSzal D7 exp {% / ’ dtz (t) [mw? — V"(a:cl)]a_ﬁ(t)} :
Ta=Tp=0 ta
(3.9)

where we have defined the time derivative operator @ = —id/d¢. The path
integral in (3.9) is Gaussian, and can be calculated analytically (for details
see Ref. [55]), yielding an effective action

Seff = S[l‘cl] + 51 [$Cl], (310)

with the one-loop quantum correction
ih .
Silza] = —ETr In[ma? — V" (zq)]. (3.11)

The functional trace Tr in (3.11) contains a time integral [;* dt as well
as a discrete sum over all eigenvalues w, of the operator @ [53]. Since
the summation over discrete eigenvalues introduces unnecessary complica-
tions in the calculation, we shall replace the sum Y, f(w,) with an integral
Jdw/27 f(w). This approximation should not affect the results as long as
‘tb — ta‘ > \/m/V”(xcl(t)) for all ¢.

If the classical path z.(t) is taken to be a constant, the determination of
the functional trace in (3.11) is straightforward, and the quantum correction
to the classical Lagrangian has no explicit time-dependence. We are inte-
rested in calculating corrections that are explicitly time-dependent, that is,
we look for corrections proportional to @ (t), Za(t), etc. The time derivative
expansion of the correction to the effective action has the general form

Siloal = [ dt[-V(za(0) + §2(a()i + Zlza@)ih+--]. (312)

The idea behind Fraser’s derivative expansion [53] is to set z () in (3.11)
and (3.12) equal to x¢+ Z(t), where x; is a constant, and expand both (3.11)
and (3.12) in powers of Z and its derivatives. By comparing the result of
both expansions, the coefficients V(z), Z(z), etc., may be extracted.

To illustrate the method, let us calculate the first two coefficients in (3.12).
Expanding it about zy up to terms of order %2, one obtains

Sy[za) = /tt" dt [=V(zo) = V'(w0)E — §V" (20)#* + LZ(x0)i + -] (3.13)
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The corresponding expansion of (3.11) yields

1
mw? — V"(zy)

5= gt Ve B -l o

where

A(Z) = V" (z0)Z + LV (30) 7. (3.15)

The first term in (3.14) is just the time-independent effective potential,
and can be immediately calculated. The trace can be converted into a simple
integral over time and over the eigenvalues w,, of @, since V"(zy) is time-
independent. Using the integral formula

[Pl e rOmEle S = e
—o0 27 [mw? — V" ()] ATV (3)]4 " m*> Tq]
(3.16)
for p — 0,q — 0, we obtain
. h V”(.To)

The logarithm in the second term of (3.14) is also expanded up to terms of
order 7%

ih 1 -
ih 1 B 1
ETI [mdﬂ — V() A@) mw? — V"(zy)

+ A(i)].(3.18)

The first term in the above expression can again be calculated using formula
(3.16),

in 1 e B V) o, V@)
P m@z_v'f(xo)f‘(x)] =], z[‘ S ) ]
(

3.19)
By comparing the linear term in # with that in (3.13) we identify

V(o) = V() (3.20)

4 ,/mV”(xo)'
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To calculate the quadratic terms in (3.18), we must first move all operators
@ to the left, and all functions of ¢ to the right. Then we can perform the
traces independently. To do this, we use the commutator

[f(1),&] = if(2), (3.21)
where f(t) is a smooth function of t. Thus we have
f)wg(t) = [ +id] f(t)g(2), (3.22)

for arbitrary functions f(¢) and g(¢) with the convention that the time deriva-
tive operator 0; acts only on the first term to its right. By repeatedly applying
the above identity, the second term in (3.18) may be expanded in powers of
time derivatives of Z, and up to (9(:%)2, it gives

| e i v ) -
| o (xo)]zA(j)A(i)]
T | o 1V ENE (—2imwd, +may ) A(:i)A(aE)]
I 1V” o (~2imwd; +ma})’ A(:%)A(i)] . (3.23)

In each line, the derivative operators 0; act only on the first A(Z). After
carrying out all integrations, we are left with
ih 1 1
—T Az A)| =
2 [mdﬂ — V'(zy) () mw? — V"(zy) (x)]
) [V”’(xo)]2m1/2

o B[ V(@) 221 22
" dt16 lml/Q[VIl(xO)]3/2 + 4 [V”(xo)]5/2 ] . (324)

Adding the second term of (3.19) to the coefficient of the 2 term in the
above expression one obtains —V"(z)/2, as expected. From the second term

in (3.24), proportional to I, we extract an zo-dependent contribution to the
kinetic energy (3.12):

B h [Vm(mo)]zml/Z
Z(z0) = 39 (Vi ()52

(3.25)
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The resulting effective action reads

Serle] = [ dt [$mard? = Vin(2)]. (3.26)
where
Mo = M+ %% (3.27)
and
Via(2) = V() + 1/ 0) (3.28)

2 m

are the effective mass and potential, respectively. We have replaced zy with
x, since the functional dependence of the coefficients ¥V and Z on zy and =
is the same.

We see that the quantum corrections to the classical Lagrangian not only
generate an effective potential, but also introduce an effective coordinate-
dependent mass, leading to the modified equation of motion

e (2)& + smig(2)i® + Vig(z) = 0. (3.29)

3.2 Comparison with graphical method

It is useful to compare the derivative expansion method with the calcu-
lation using Feynman graphs. To do that, we first expand the potential V()
about an extremum z;, and write the classical Lagrangian as

L(z, &) = imz”® — LV"(20)7? — LV"(20)2® + -+ -, (3.30)

where now Z(t) = z(t) — xo and we dropped the constant term V' (z,). To
one loop order, we need to expand only up to terms of order z3.
Expanding the effective action about z,, one obtains:

)zt +---. (3.31)

Zo

t ! 625eff
Serr[z] = S[zo] + 3 /t dedt’ — - 62(7)

From the Fourier transform I'® (w) of the second derivative term

82 Set

PO = S 05a@)

(3.32)

Zo
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the effective mass can be extracted:
T®(w) = —ih(Mmegw?® + - --). (3.33)

['®)(w) is calculated in the perturbation scheme, where the free propagator,
read off from the Lagrangian (3.30), is

1

G = 3.34
0(('{)) mwg _ V”(l‘()) ( )

and there is one vertex, corresponding to the cubic term in (3.30):
V" (). (3.35)

The only one-loop diagram contributing to I'® (w) is
w+ W
[V"(20)]* dw' 1 1
o . 2 21 mw'? — V" (xg) m(w + w')? — V(o)

W' (3.36)

After carrying out the integration in (3.36), we obtain

B [V"'(xo)]2m1/2
T (w) = — 24 3.37
Comparing the above expression with (3.33), one readily identifies the cor-
rection to the effective mass, in agreement with the one obtained by the

derivative expansion in (3.27).

3.3 Coordinate-dependent mass

Now we allow the mass to be coordinate-dependent from the outset
[56]. This is necessary to describe a larger variety of interesting physical sys-
tems, for instance compound nuclei, where the collective Hamiltonian, com-
monly derived from a microscopic description via a quantized adiabatic time-
dependent Hartree-Fock theory (ATDHF')[57], contains coordinate-dependent
collective mass parameters.
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Let us take the classical action

Slel = | "at [m(z)i? - V()] (3.38)

a

where the mass m(z) is explicitly coordinate-dependent, as our starting point.
As discussed in the previous section, the quantum correction to the classical
action in the semi-classical approximation is now given by

Silza] = —%Trln [ m(zq)o? — V"(2q) — im' (2q)Ta®
—m! (za)ia — " (za)d? |- (3.39)

After replacing z with zy + T and expanding up to the second order in Z
and its derivatives, we obtain

S, = —%Trln[G_l(cD) +A@)], (3.40)

where the inverse free propagator G~'(®) is given by

G @) = m(zo)@? — V"(xp), (3.41)
and
AE) = F[m!(mo)d® — V" (z0)] + 18°[m" (m0)@? — V" ()] — izm/ (20)&
— iEEm" ()& — am’ (x) — am (z4) — %iQm”(xo). (3.42)

Following the same steps as in the previous section, we expand the logarithm
in (3.40) up to the second order in :

Si = —%Tr[G_l(d))] - %Tr[G(d))A(a"c)] + ZZTr[G(cD)A(i)G(d))A(j)]. (3.43)
After carrying out the remaining steps of the derivative expansion, we obtain

Si[za] = /tt dt [~V(x0) — V'(20)F — V" (20)3% + §2(20)3 + -], (3.44)

with

, (3.45)
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as in the previous section, and

B V" (o) P[m(wo)]' 2 5h m(20) V" (20)
32 [V"(@o)]5? 16 [m(ao)]'/2[V" (0)]*/
11h [m/ (z0)]? h m" (o)

T B ) PPV @l T AoV e 2

Z(z0)

The effective potential and mass to be introduced in the corrected equa-
tion of motion (3.29) are now given by

Vet = V(z) + V(z), (3.47)

and
meg = m(z) + £ Z(x), (3.48)

where we again replaced zy with the full z.



40

CHAPTER 3. DERIVATIVE EXPANSION



