Chapter 4

The Riemann-Hilbert-Poincare
Problem

4.1 Holomorphic Functions

4.1.1 Introduction

Recently some results on holomorphic functions have been achieved both in the unit disc [1]
and in polydiscs and in unit balls see [24] and [2] . On the basis of these results we study the
Riemann-Hilbert-Poincare problem for holomorphic functions in polydiscs. This problem plays
a significant role in solving the third boundary value problem for pluriholomorphic system and
pluriharmonic system in polydiscs.

Let D™ be the unit polydisc {z

z= (21, ,2n) €EC", |2zx] <1, 1<k <n}and D"
its essential boundary {z ‘ z=(21,-,2n) €C", |z| =1, 1<k <n}.
We consider the Riemann-Hilbert-Poincare problem :

Find a function u(z), which is holomorphic in D™ and satisfies the boundary condition

0
Re [8—12 + ap(Q)u| =1(C) , Ceoybh™, (4.1)

where Ou/0v; denotes the outward normal derivative of u(z) at the point ( € 9D ™ and
Y , o are given Holder continuous functions on 0ylD ™, further ag is boundary value of a
function, which is holomorphic in D™ .

By the fact that u(z) is holomorphic in D™ and by the definition of boundary function in
polydiscs [22] it is easy to see that the boundary condition (4.1) for the unit polydisc turns out
to be

R[S GOk faQu] =1(0).  Ceap” (1.2

with (¢) = v 70(¢), a(C) = v/n ().

93



94 CHAPTER 4. THE RIEMANN-HILBERT-POINCARE PROBLEM

4.1.2 The problem

Since the left-hand side represents the real part of boundary values of a holomorphic function
in D", the right hand-side has to satisfy

-1

D D e

T 1<ki< <k <n
1§k‘)\+1<"'<ky§n

Z d
H %ﬁzo,zeﬂ)" (4.3)
= Zhe 20 Gk — 2

see Lemma 2 in Section 2.2.1 . Then by the Cauchy integral for equation (4.2) we get

"L Ou(z) 1 1 ]dC ; B "
;ze S +alul) = o /Mﬂ(g){zl_z/c 1} SHiCy, zeD",  (44)

where Cj is an arbitrary real constant. Let us denote

d
(2731,)”/511)”7(()[21_12“—1]%—1—2(]0 =: Go(2)+iCy, ze€D".

Then equation (4.4) becomes

i Zgé)u(z) + a(z)u(z) =iCo+ Go(z), ze€D". (4.5)

— aZg
Clearly problem (4.5) is equivalent to problem (4.1). What we have to do is to determine the
holomorphic function u and the real constant Cj.

Let the function a be decomposed as

z) =ap+ Z zi;(2)
=1

where «y is a complex constant and «;(z) is holomorphic in D™ .

By the transformation

F
v(2) = u(z)ef @), OF(z) =ap(z), 1<k<n,
&zk

where the function F' has to be determined, problem (4.5) becomes

n a .
Kzl 2 ;S) + apu(z) = <ZC'0 + Go(Z))GF(Z) , zeD™. (4.6)

In order to find the function F' we have to solve the following system
F., =a(z), 1<k<n, (4.7)
with the compatibility conditions

80% . 80@

—_— = 1< <n. 4.
9% 95 <k t<n (4.8)
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Suppose that the function F' is holomorphic in D ™. Then for n = 2 we have

2 0" F(0) = kla’“F (0)
F<Z>:Z§ ozr Z Ozk

||>0 ki1=1

00 2 8k2F o0 kz akl-i-ng(O)
Z N azkz Z Z /ﬁle 02k 9k

ko=1 k1=1k

Applying equation (4.7) we have a special solution to (4.7) and (4.8) as follows.

00 k1+ 3k1a1 [e's] k2+1 ak2a2(0)
Z ]{?1 + ]_ 8zk1 Z ]{52 + 1 (‘37:’“2

k1+1 k'2 akl-‘rkga O
+ Z 1( )

ok
P 1 k?1—|-1 'kig 0211 0zy?

B 21 22 z an(C)
—/0 a1(§1,0)dél+/0 042(07C2)dC2+/0 %G d¢

N /Z2 a2(0, C2)dGy + /Z1 a1 (Cr, 22)dCr
0 0

By the same way for n = 3 we have

Fo(Z) = /0 ' Oég(0,0,Cg)ng —f—/() 2 062(0, CQ, Zg)ng +/0 1 041(41722723)d<1 .

So for general n it is easy to prove that
n 2k
:Z/ ak<07"'707Ck:7zk+17"'72n)d<k ) zebh" (49)
=170
is a special solution to equation (4.7) with compatibility condition (4.8).

4.1.3 The homogeneous problem

We suppose 7(¢) = 0. Then we consider problem (4.6) with Go(z) =0 .

Lemma 9 Let v(z) be holomorphic in D™ and satisfy

ZZgaU(Z) +ap(z)=0, ze€dD". (4.10)
— (924

If v(z) is single-valued and is not identically zero then ay must be an integer and must be non
positive . If ag > 0 then v(z) must be identically zero.
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Proof Let v(z) be holomorphic in 2 = D™ and satisfy equation (4.10). Applying Green’s
theorem we get

n

Z/Q<Ivzjl2+lvzjl2)dﬂ —Z/ [az] vT,;) a‘zj(vvgj)]dfzz
-2 [0 (5 ) (5 0 i
-3 o5

S RC {Z@ S e T [ el

This means that if v(z) is not identically zero then ay must be non positive. Clearly if ag > 0
then v(z) must be identically zero.

Suppose that oy is not a negative integer and the holomorphic function v(z) which satisfies
(4.10) has the form

n
kn __. K —
E : E 7k1 knzl = E V2™, K| = E kj .
k1=0 || >0 J=1

Then by equation (4.10) we have

ZVR(’K|+060)ZK:0, zeaolD” .

|5]>0

Thus if v(z) is single-valued and not identically zero on 9yD ", then for some non negative
integer |x| it holds that ap + |k| = 0, i.e., ap is a non positive integer.

Lemma 10 Let ag be a non-positive integer and v(z) satisfy (4.10), then

Z .z

|k]=—a0

where Cy, and |k| = —ag are arbitrary complex constants.
Lemma 11 If ag + || # 0 for all |k| € Z™, then

-CO K
v(z) = Z iCo/. 2"

s a solution of

Zgﬁ@v(z) + agu(z) = iCoef*® | 2 e gD, (4.11)
=1

where

=S g (112

and Fy(z) is defined as in (4.9).
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The proof is trivial.

Lemma 12 Let —ag = ko € Z™* . Assume that v is holomorphic in D™ satisfying

"0
;Ze gij) + av(z) = Z Crz"

|k|=ko

where C | |k| = ko , are arbitrary complex constants. Then C* =0, |k| =k .

Proof Let

=) "

k| >0

From the assumption we have

Z%agf) +agu(z) = ) (|ff|% - ko%) =) Ot

=1 ¢ Ik] >0 || =ko

Thus CF =0, || = ko .

From Lemmas 9-12 we obtain the following result.

Theorem 14 Let a(z) be the boundary of a holomorphic function in D™ and

- 0 0
z):oco—i-Zzgozg, aizj—a;::, 1<kl <n.

Then we have

1) If g+ k #0 for all k € Z™, the homogeneous problem (4.1) has a nontrivial solution

u(z) = iCoe & Z

|k|>0

|k —|—on ’

where Fy(z) is defined as in (/.9) and Cy is an arbitrary real constant.

2) If —ag € Z™ then

a) when f, u # 0, then the homogeneous problem (/.1) has the solution
k|l=—ag
u(z) = et Z Cy2"
|k|=—a0
where Cy, , |k| = —ag , are arbitrary complex constants.
b) when f, " =0, then
K|=—ag
W E vl £ gl
u(z) =e [ Z 2" +1Cy Z ’K’_i_aoz
Ixl==eo E
(|40 70)

where Cy is an arbitrary real constant and C,, , |k| = —«q , are arbitrary complex constants.
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Remark:

1) Under the assumption on « from the definition of {f.} in (4.12) the series appearing in
Theorem 14 are seen to converge.

An example for the values of f :
If ag(z) =1, then

eFo(z) — Attt f(1)<21) . f(n)(zn) : f(i)(zi> _—
flﬁ:flf;})fk(;:)u /i:(kb’kn)J fk(;j):

If ag(z) = 22 , then

eFo(2) — et ttah FO(z) - fMz),  fO(z) = e,

fn:flg)f]gn)a K/:(kla"':kn)a f]gl): (2t)' 5 k¢:2ti,tiEZ+.

But terms f,. for odd indices like k; = 2t; + 1 ,t; € Z" do not appear, i.e., f,g:) = 0 for
kiZQti+17ti€Z+ .

2) The conditions f " =0, are a finite number of conditions .
Kk|=—apg

4.1.4 The inhomogeneous problem

Let
Go(z)ef?®) = Z Gp2" .

s[>0

By finding a special solution of equation (4.6) we have :

Theorem 15 Suppose that the condition (4.3) is satisfied. Let a(z) be the boundary value of
a holomorphic function and

a(z)=a0+szg, %Zg—j’f, 1<k /l<n.

1) when ag+k # 0 for all k € Z™, problem (4.1) is solvable and its solutions are

G, +1iCofs
u(z) = e o — "
INIZEO |k| + ag
where Cy is an arbitrary real number.

2) when ag + ko = 0 for some ko € Z™, problem (4.1) is solvable if and only if there is a
real constant C§ such that

(G,ﬁiogfﬂ) —0, k=(k, - k). (4.13)

|r|=ko
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If this condition is satisfied, then the solution can be given by

—Fy( Gk_’_lc fn o
u(z) Fo( [% Cp2"™ + Z e+ a0
RI=Fo |k|>0

(I]+a070)

where Cy, , |k| = ko , are arbitrary complex numbers and Fy(z) is defined by (4.9).

Remark:
1. Clearly (4.13) are finitely many conditions.

2. The interesting case a(z) = P(Z) with deg(P) = m could be considered in a similar way.

4.2 Anti-polynomial with non-integer free term
coefficient

4.2.1 Introduction

Recently some results on holomorphic functions have been achieved both in the unit disc [1] and
in polydiscs [24] and in the unit balls [2] . The work [1] has obtained quite an impressing result
reducing the Riemann-Hilbert-Poincare problem for holomorphic functions to a Fuchsian type
differential equation. However their anti-polynomial case was too special. In this sense further
study is necessary. In this paper we consider general anti-polynomial case which in [1] remained
open. This problem plays a significant role in solving the third boundary value problem for the
pluriharmonic system in polydiscs. Also its Hele-Shaw applications is a motivating aspect of
the problem, see [26].

Let D be the unit disc {z ‘ ze , |zl <1} and 9D its boundary {z | z € T, |2| =1 }.
We consider the Riemann-Hilbert-Poincare problem :

Find a function wu(z), which is holomorphic in D and satisfies the boundary condition

Re [g—yc + a(C)u} — (), (eoD, (4.14)

where Ju/0v, denotes the outward normal derivative of u(z) at the point ¢ € 9D and v, «
are given Holder continuous functions on 0D .

The problem (4.14) is open for general coefficients. In some cases it is generally assumed
that the norm of a(z) is small enough , see [8] and [30]. However smallness of |a(z)| does not
tell if «(z) is analytic or anti-analytic or even a mixture of these. Depending on these cases the
number of solutions can be very different. Only for special coefficients, e.g., for a(z) = az* +b,
problem (4.14) has been considered [1] and it is shown that the number of solutions depends
on the coefficient a(z).

In this paper we consider a case of «(z) being a general anti-polynomial for problem (4.14)
and we show that even in this case the number of solutions still depends on the coefficient a/(z)
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but not on the smallness of |a(z)| and not on the smoothness of «(z) . It is interesting
that solving this simple looking problem gives an impression that a simple looking problem not
always has a simple answer.

For a holomorphic function w it is clear that

ou du

Thus the problem (4.14) for the unit disc turns out to be

du
Re [gd—g +aQu] =1(¢), ¢eop. (4.15)
From (4.15) we obtain an inhomogeneous Fuchsian type ordinary differential equation in the
complex domain. We need to determine the holomorphic solution u(z) and some constants
from the Riemann-Hilbert-Poincare problem at the same time. Solvability conditions are also
required to be taken into account. Therefore the main purpose of the paper remains on the

exact number of solutions and the solvability conditions as these are the major originators for
difficulties.

Applying the Fourier method we are able to calculate the exact number of solutions and the
solvability conditions for problem (4.14). Seemingly the Fourier method is very compromising
for both one- and several dimensional problems(in higher dimensional space at least for problems
in polydiscs), see [19].

4.2.2 The problem

Problem (4.15) is a Schwarz problem. Thus a solution for (4.15) is given by the Cauchy integral

/ 1 1 d ‘

zu (z2) + a(z)u(z) = 5 /azp ~(¢) PW — 1} ?C +iv, z€D, (4.16)
where 7, is an arbitrary real constant. Let us denote

1 / { 1 ¢ —

. (¢ 27—1]—4—27 =: G(z) = gz, zeD™.
A b P T L ) ; ’
Then equation (4.16) becomes
2 (2) + oa(2)u(z) =G(2), zeD . (4.17)

Clearly problem (4.17) is equivalent to problem (4.14). What we have to do is to determine
the holomorphic function v and the real constant ~.

We assume that

a(C):Zaf=Z%, (e oD,
=0 =0

where «; , 1 =0,1,---,m, are complex constants.
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From (4.17) and (4.14) we have
Re[zu'(2) + a2)u(z)] = ReG(z) on 9D . (4.18)

Since for the function u holomorphic in I, the function zu'(2) + a(2)u(z) is holomorphic in
D \{0} and has a pole of order at most m at 0. Therefore from (4.18) we have, see [29]

m
/ aq Q2 Oy . ag — k .
2u 4 <Oéo+;+§+"'+z—m)u_ 2 (;—akz ) +ico+G(z), zeD (4.19)
where a; , 1 = 1,---,m, are arbitrary complex constants and ¢y is an arbitrary real number.
We are going to find the holomorphic function u and the coefficients ay, -+, ay,.

We consider now the case that G(z) is a polynomial with deg(G) < m — 1.

4.2.3 The inhomogeneous problem with deg(G) <m —1

Let - -
u(z) = Zukzk , z€ D and Z |uk| < oo.
k=0 k=0
Then from (4.19) we have

00 [e's) m m—1
k an &%) Qm E ag  _ . k
Zkukz —i—(ao—i—?%—?—k---#—z—m)Zukz —Z(E—akz)—l—wo—l— 1%
k=1 k=0 k=1 k=0
or equivalently
Z kugz"tm + <a0zm 2™ a2t am> Z upz®
k=1 k=0
m m—1
= Z (akzm_k — Ekz’”m) +icg2™ + Z g2t 2z e D . (4.20)
k=1 k=0

Thus by comparing the coefficients of z¥ on both sides we get a system of algebraic equations

Qmlly = @y, for 20, (4.21)

Z QUi = ap — oug  for  2™mF k=m—1,---,2,1, (4.22)
=kt 1

Uy + o+ Qe Up—1 + Quply, = iCo + go — apug  for 2™, (4.23)

(B —m + a)Uk—m + 01 Uk—my1 + Q2Uk—my2 + =+ F Qo1 Up—1 + Qi
= Gbom — Qe , for 2F k=m+1,---,2m—1, (4.24)
(Oé() + m)um + U1+ F O 1U2m—1 + QU2 = —Giy for Z2m7 (425)

(k + ozo)uk + oUpy1 + QUgto + -+ Q1 Ut k—1 T Uk = 0
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for &, k>m+1. (4.26)

For convenience we denote icy+ go =: ag. Equation (4.21)-(4.23) can be written in matrix form
as follows.

A, 0 0 Ce 0 0 U1 Am—1 Ay —1
Ap—1 Oy 0 s 0 0 U2 Amp—2 Amp—2
AUp—2 1 « cee 0 0 us Am—3 Qm—3
m-2 Qm-1 Gm N T (4.27)
&%) Qs ag o ay 0 Upp—1 aq aq
aq Q2 a3t Opo1 Oy Um ag Q)

If we denote the left-side m x m matrix as A(m, 1) then its determinant |A(m,1)| = o . If
a™ £ (0 then A7!(m, 1) exists. Suppose, without loss of generality,

B 0 0 e 0 0
521 ﬁQQ 0 e 0 0
A (m, 1) = B31 B32 B33 e 0 0
B(m—l)l ﬁ(m—l)Z B(m—l)fﬂ T ﬁ(m—l)(m—l) 0
ﬁml 6m2 ﬁm?) T /Bm(m—l) ﬂmm
Interestingly
Q1 o' 0
Ay —2 A1 (8799 O O 0
A (ke | T
B(H—k)l ( 1) m Om—k+2 QUm—k+3 Om—k44 -1 O 0 ’
Om—k+1  OUm—k4+2 k43 Umpm—2 Qpm—1 Qpy
Om—k Om—k4+1  Om—k42 Am—3 Qpm_2 Ay
k:27”'7m_1 ) L= 1727"'7m_k' 7ﬁ(i+1)i: _amfla;r?; ﬁj] :Oé;f’ j: 17"'7m'

If @™t £ 0 then for equation (4.27) we get the following solution.

Uy Am—1 Qm—1
U2 Qp—2 Qp—2
us _ Q-3 Qm—3
= A 1(m, 1)( . — Ug A )
Um—1 a1 (@51
U, Qo o

U1, m) = A"Y(m, 1) [a(m ~1,0) — upar(m — 1,0) (4.28)
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For equation (4.23)-(4.25) we have

g1 — ag+1 o (6% e Qm—2 Q-1
g2 — G2 0 ag+2 o e Q-3 Q2
g3 — a3 | 0 0 ag+3 - Qg O3
Gm—1 — Qm—1 0 0 0 agt+m—1 o
—Qp, 0 0 0 0 ag+m
u1 Oy 0 0 0 0 Um 41
Uz A1 0 0 0 Um+2
u . Uy,
o . 3 _ Oy V1 O 0 0 . +3 (4.29)
Uy 1 oy 3 uy o, 0 Uy —1
Uy, ai 2% Qg Oyl Oy Uom,
or briefly
G(l,m)—M({A,m)U(l,m)=A(m,1)U(m+1,2m) . (4.30)

Equation (4.26) is equivalent to the matrix equation
Am, U((l+1)m+1,(+2)m) = —M{m+1,{+1)m)U(lm+1,({+1)m), £ > 1. (4.31)

Denote C* =: A~'(m, 1)M({m + 1, ({+1)m) = (Cf;) ,£ > 1 . Then for equation (4.31) we get
the solution
U+ 1)m+1,(0+2)m) = —C'U(Um +1,(£ + 1)m)

_ [(_Nﬁ (c ) |utm+1,2m), =1, (4.32)

Now we look at the elements of C* = (C’fj) in detail. It is easy to see that

ij = Bt + Piaoj_o + -+ + Bigj—nya + Bij(og + Im + j)

J—1
Biaj s + Bij(ao + m + j) , for j < i,
t=1

C@J = Bioj_1 + Bisoj_o + -+ + By = Zﬂitajfta for j>i.
t=1

One can see that above the diagonal of the matrix C* there is no ij which includes o + ¢m
terms and that below and on the diagonal every C’fj includes only one ag + ¢m + j term.

Case: ag+ k#0 for all £k >m+ 1.

We suppose ag + k # 0 for all k& > m + 1. Denote C*C*~! =: C¢ =1 = ( C’l(f 3_1)). We
calculate some elements of C% 41 and look at the terms which includes second order terms of

l.
m—1

E £-1) Z kacil_l = [ﬁll(ao + Im + ].) + Z ak/@(k+1)1:| /611(05[) + (E — 1)m + ].) .
k=1

k=1
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Among C’ﬁ e C’g eno C’l(i’f_l) the only element which includes second order term
of ¢ is Cﬁ 1 The others can only include first order ¢ terms due to the fact that the upper
triangle of the matrices has no any ¢ term both in C* and in C*~'. So for C“*~Y) second order
terms of ¢ do not appear in the upper triangle. They occur only in the lower triangle including
the diagonal. The second order term of C’ﬁ’ 1 comes from C{,CHY. Thus it is easy to see

that C’ﬁ’e_l’""zl) includes its highest order term
CHOY - CLOY = B (ap +tm+D(ag+ (0= Dm+1) - (g + 2m + 1) (ag + m + 1)

and that if u,,,1 # 0 then

—_ (£7€7177271) (£7Z7177271) T Ly 4,
Upm+1 = Cll Um+-1 + 012 Um+-2 + -+ Clm Uom,

0,0—1,2,1 :
:Cfl )um+1—>oo for ¢ — o0 if Uy #0.

This means u,;,11 =0 .

it = Z CoxCir ' = [521 (511(040 +0m + 1) + Faa(ag + Im + 2))

k=1

0500 + Z(ﬁm%q + ﬁ22ak—2>ﬁ31} (g + (L —1)m+1)
k=3

clL D Z OOyt = B3y (g + m 4+ 2) (ap + (£ — 1)m + 2)
k=1

+621061 [511(060 + m -+ 1) + 522(0(0 + (E — 1)m + 2) + 522(060 + /m —+ 2)

+ Z(ﬁm&k—l + Br2i—2)(Bric + Bra(co + (€ — 1)m + 1)) .
k=3
In the element C’Q(g’ e = S, C4.Chst the terms of ¢ cannot meet each other and therefore

here can only the first order terms of ¢ occur. This is true also for Oz(ff &1 R it Thus

2m
again it is not difficult to see that C’éi’z_l""’zl) has the same growth-rate of ¢ as C’ﬁ’z_l’”"z’l)

does. Now supposing u,,+2 # 0 and taking into account that u,,,1 = 0 we have
0,0—1,-,2,1 0,0—1,--,2,1 00—1,-2,1
Upm+2 = Cél )um+1 + CéQ )um+2 + -+ Cém )u2m

£,6—1,-2,1 £ f—1,--2,1 0,0—1,-,2,1
= Cél )um+1 + Cég )um+2 == Cég )Um+2 — o0 for ¢ — oco.

This means u,,1o = 0 . By a similar way we obtain u,,.3 = 0, ---, ug, = 0 . Clearly
CWA=11) has diagonal dominance for large enough ¢ .

Lemma 13 Suppose that
ag+k#0 forall k>m—+1. (4.33)

Then
Utk = 0 for all k> 1. (4.34)
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Now we discuss condition (4.30) in two cases.

By the necessary condition (4.34) and (4.29) we have

— Ty, — (g + M)y, =0

and
ao+1 o Qg
0 ag+2 oy
0 0 ag+ 3
0 0 0
0 0 0
g1—m
g2 — a2
or briefly

M(1,m-1)U(1,m—-1)=g(1,m—-1)—a(l,m—1) —upa(m-—1,1).

We transform equation (4.27) as

_um

Am,2)U(1,m—1) =a(m—1,1) —upa(m — 1,1) ,

Ay = g — Qg — (U + +++ + Qe 1Um—1) -
Casel: ag+k#0 forall k>m+1 and ag+m =0

105

(4.35)
(4.36)
(4.37)
(4.38)

If g + m = 0 then from (4.35) it is clear that a,, = 0 and therefore uy = 0 . In this case,
taking into account that uy = 0 due to equation (4.21) and substituting u,, from (4.38) in

equation (4.36) we have

Qm—3 Qm—2
Qp—4 Ap—3
Qm—5 Ayp—4

ap+1 o Qg
0 Oé()—|-2 (03]
0 0 ag+3
0 0 0
0 0 0

05§e%) [6518%)
100 (621851
g1 —
go — G2

— QoTo

0 ag+m —1
Am—1Qm—1 u1
O —10m—2 U2
U —1002 Upp—2
O{m_la]_ umfl
Om—1
A —2 1
..... , To = a—
(6%)] m
ay
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or in matrix form
M2 (L,m—1)U(1,m—1) =g(l,m—1)—a(l,m —1) — agroes(m — 1,1) , (4.39)

where

1
0 T
MTO(l,m—l):M(l,m—l)—ama(m—l,l)a(l,m—l) :

Let us denote M? (1,m — 1)A~"(m,2) =: C°(1,m — 1) , where

C?l 092 T C?(mfl)
Ogl 032 T Cg(mfl)
COL,m—1) = | o
0 0
C%m—Q)l C%m—?)Z C(m—Q)(m—l)
O(m—l)l C’(m—1)2 C(m—l)(m—l)

Substituting U(1,m — 1) from (4.37) in equation (4.39) we have the equation
C°(1,m — Da(m —1,1) +a(l,m —1) = g(1,m — 1) — agroa(m — 1,1) . (4.40)

Rotating the stones 180° (for the matrices it is better two times 90° rotation in the same
direction ) and taking conjugate we get

C'(m—1,1)a(l,m—1)+a(m—1,1) = g(m — 1,1) — agroa(l,m — 1) (4.41)
where
C’(mel)(mfl) C((O)mfl)(me) O(mfl)l
C(mf2)(m71) C(mf2)(m72) e C(me)l
COlm —1,1) = | oo : (4.42)
Cg(m—l) Cg(m—Q) e Cgl

C’?(m—l) C’10
Now we have a system of equations (4.40)-(4.41) and if
CO'(1,m—1)C(m —1,1) # I (4.43)

then system (4.40) - (4.41) is uniquely solvable. If condition (4.43) is not satisfied, then system
(4.40) - (4.41) is solvable if only if

g(1,m—1)—C°(1,m—1)g(m—1,1) = agroa(m —1,1) — C°(1,m — DagToa(1,m — 1) . (4.44)
We have got for the solvability of problem (4.14)
Theorem 16 Let ag+k #0 for k>m+1 and ag+m = 0. If (4./3) is not satisfied,
(4.44) holds. Then problem (4.1]) is solvable.

Casell: ag+k#0 forall k>m+1 and ag+m #0
If ag +m # 0 then from equation (4.21), (4.35) and (4.38) we have

Qp (07

am = a0 —a(l,m —1)TU(1,m-1). 4.45
= i = ag — a(Lm = 1)U (Lm = 1) (4.45)
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Substituting ug from (4.21) into (4.37) we get

A(m,2)U(1,m — 1) = a(m — 1,1) — Z—ma(m ~1,1). (4.46)

Since A~!(m, 2) exists U(1,m—1) can be uniquely represented in terms of a(m, 1) and a(m, 1).
Substituting U(1,m — 1) from (4.46) into (4.45) we have

91am — QQEm == f (447)
where
Qo —T1 A T
= ay — 6, = 6, = =c(1 —1 — 1,1
f=a9o—T2, 1 o, 2 aotm’ n=ci(l,m ) a(m 1),

n=c(l,m—D"a(m—-1,1), c(I,m—1)"=a(m-1,1)TA"(m,2).
Adding equation (4.47) to its conjugate we get

Re [(91 - @)am} = Re [go - 7-2:| : (4.48)
It
0, = 0, (4.49)
then
Re [go] — Re [TQ] (4.50)

has to hold and a,, is arbitrary. The real constant ¢, is determined by (4.45).
Case.Il.1: ag+m #0 and |a,,|? # (ag — 71) (@ + m)

If (4.49) does not hold, then equation (4.48) can be solved for a,, in terms of a(1,m — 1)
and «(0,m). Thus solving (4.47) for a,, we have

_ — 1

am:c*[ﬁlf—l—@gf}, e (4.51)

Substituting U(1,m — 1) from (4.46) and wu,, from (4.35) into (4.36) we have

C(1,m—1a(m—1,1)+a(l,m—1)
—g(l,m 1)+ |C(1,m — 1)2—: - m—laffm a(m—1,1), (4.52)
where C(1,m — 1) = M(1,m — 1)A~Y(m, 2).
Substituting a,, from (4.51) into (4.52) we have
Ci(L,m —1a(m—1,1)+ Co(l,m — 1)} _a(m —1,1)

=g(l,m—1)+G(m—-1,1), (4.53)

where I | =rot(2/m)I, 1 and

Bi(m —1,1) = [(ﬁcu,m 1) -

m
m oo +m
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02 01 — *
+(£C'(1,m - 1) — o+ mIm,1>a0]c a(m — 1, 1) s
C’l(l,m—l):C(l,m—l)—l—Bl(l,m—l) y Cg(l,m—]_>: m_1—|—B2<1,m—1) 5
o 510* 520* T
Bi(1,m—1) = [am CLm—1) = = +m1m,1}a(m 1, )e(l,m— 1T
. 020* 910* _ T
By(1,m—1) = [am C1,m—1)— a0+mfm_1]a(m— 1,16 (1,m—1)7 .

If |C1(1,m — 1)| # 0 then equation (4.53) can be transformed as
alm—1,1)+C{(l,m —1)a(m —1,1) = f,

where
fl = Ol_l(Lm - 1) g(lam_ 1) +ﬁ1(m - 1a 1) y

Ci(l,m—1)=C;7H1,m—1)Cy(1,m — 1) .

m

In this case equation (4.53) is uniquely solvable for a(m — 1,1) if
Ci(1,m—1)C7(L,m —1) # Ly . (4.54)
Otherwise it is solvable if f; = C;(1,m — 1)f, , i.e.,
g(1m = 1) = Cf (1,m = 1)g(1,m — 1) = Cf (Lm = 1), (m = 1,1) = Bi(m — 1,1)  (4.55)
where Cf(1,m — 1) = Cy(1,m — 1)I7,_,C7 (1, m — 1).
If |Ci(1,m—1)| =0 but |Cy(1,m —1)I},_,| # 0 then equation (4.53) can be transformed as
a(m—1,1)+C5(1,m —1la(m —1,1) = fo,
where .
fo=(Cm=DE ) |om=1)+Bim - 1,1)] |
Cr(1,m—1) = ((12(1, m— 1)1;1)_101(1, m—1).
In this case equation (4.53) is uniquely solvable for a(m — 1, 1) if
Cy(l,m —1)Cs(1,m—1) # I,y . (4.56)
Otherwise it is solvable if f, = C3(1,m —1)f, ,i.e.,

g(I,m—1)=C¥1,m—-1g(l,m—1)=CF(1,m—1)3,(m—1,1) = B(m—1,1), (4.57)

1
where CF(1,m — 1) = Cy(1,m — 1)(02(1,m - 1)];;,1> .
If |Ci(1,m—1)] =0 and |Cy(1,m —1)| = 0 then equation (4.53) is solvable for a(m — 1,1) if
rank(Cy(1,m —1),Co(1,m — 1)1}, ) = rank(Cy(1,m — 1), Co(1,m — 1)1 1, f). (4.58)

Thus for the solvability of problem (4.14) we have got
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Theorem 17 Let ag+m #0 and |a,|* # (ag—71)(@o+m) . If (41)- (44) are not satisfied,
(4.58) holds. Then problem (/.14) is solvable.

Case.Il.2 : ap+m #0 and |a,]* = (ag — 71) (@ + m)

If condition (4.49) holds, then a,, is arbitrary and by (4.21) also ug is arbitrary. In this case
(4.52) becomes

C*(1,m —Da(l,m—1)+a(l,m—1)=g(l,m —1) + Bo(m — 1,1 (4.59)

where C*(1,m —1)=C(1,m —1)I}_, and

A, Ay,
Balm = 1,1) = |C(Lm = 1) — Ly +m]a(m ~1,1).
Again conjugating (4.59) we get
C(1,m—1a(l,m—1)+a(l,m—1)=g(1,m —1) 4 By(m —1,1) (4.60)
If we have .
C*(1,m—1)C (m—1,1) # I,1 (4.61)

then the system (4.59)-(4.60) is uniquely solvable.
If (4.61) is not satisfied, then it is solvable if only if

g(l,m—1)—-C*(1,m—1g(1,m —1) = C*(1,m — 1)By(m — 1,1) — Bo(m — 1,1).  (4.62)
In this case we have for the solvability of problem (4.14)

Theorem 18 Let ag+k#0 for k>m+1, ag+m#0 and |an|> = (ao — 11) (@ +m) .
If (}.61) is not satisfied, (4.62) holds. Then problem (/].14) is solvable.

4.2.4 Number of solutions of the homogenous problem

We calculate the number of solutions of the homogenous problem (4.14), which is G(z) = 0 in
(4.19). Respectively ag = icy.

(% - Ekzk> Vicy, ze€D . (4.63)

/ (05] (6] (077%%
Z“+(O‘0+—1+—2+"'+—m>“: R
z z z z

k=1
Depending on «ay +m we consider three possible cases.

Case HI: o+ m=0

In this case from (4.35) it is clear that a,, = 0 and therefore uy =0 .

From (4.29) and Lemma 1 we have respective forms of (4.40)-(4.41) as

C°(1,m —Da(m —1,1) +a(l,m—1) = —a(m—1,1) , (4.64)
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C’(m—1,1al,m—1)+a(m—1,1) = —5—05(1, m—1). (4.65)

Now we have the system of equations (4.64)-(4.65) and if (4.43) is satisfied then it is uniquely
solvable.

If condition (4.43) is not satisfied, then system (4.64)-(4.65) is solvable if only if

D am—1,1) = C°(L,m - 1)La@(1,m—1) . (4.66)
am am
Case HII : oy +m #0 and |a,,|* # (g — 1) (@ + m)
In this case a,, is given by (4.52) and we have the respective form of (4.53) as
Ci(I,m—1)a(m —1,1) + Cy(l,m — 1)1 _ja(m —1,1) = f1(m —1,1) . (4.67)

Equation (4.67) is uniquely solvable for a(m —1,1) if (4.54) is satisfied. Otherwise it is solvable
if
Bi(m—1,1)=CF(1,m—1)3,(m—1,1). (4.68)

Suppose both of (4.54) and (4.68) are not satisfied. Then equation (4.67) is uniquely solvable
for a(m — 1,1) if (4.56) is satisfied. Otherwise it is solvable if

Bi(m—1,1)=CF(1,m—1)3,(m—1,1). (4.69)

If none of (4.54), (4.68), (4.56) and (4.69) is satisfied, then equation (4.67) is solvable if (4.58)
is satisfied.

Case H.IIT : ag+m # 0 and |a,|* = (ag — 1) (a0 + m)
In this case a,, is arbitrary and by (4.21) and (4.35) also ug and u,, are arbitrary.
In this case corresponding form of (4.50) and (4.59) become

Re|a(m — 1,1)T A (m, 2)a(m — 1, 1)] —0, (4.70)

C*(I,m—1Da(l,m—1)+a(l,m—1) = fa(m —1,1) . (4.71)
Equation (4.72) is uniquely solvable for a(1,m —1) if (4.61) is satisfied. Otherwise it is solvable

if
Ba(m —1,1) = C*(1,m — 1)By(m — 1,1) . (4.72)

We have for the number of linearly independent solutions of the homogenous problem (4.14)

Theorem 19 Let ag+k #0 for k>m-+1 . Then we have
1. If (4.43) is satisfied and ag+m =0 . Then problem (/.14) has one nontrivial solution.
2. If ag+m #0 and |an|* # (g — 1) (@ +m) . If one of (4.54) or (4.56) is satisfied,

then problem (4.14) has one nontrivial solution.

3. If ag+m #0 and |an|* = (ag — 1) (@ +m) . If (4.61) is satisfied, then problem
(4.14) has two independent nontrivial solutions over the field of real numbers.

Remark: We here considered only the case deg(G) < m — 1. Since G(z) is reducible to a
polynomial P(z) with deg(P) < m — 1, generality is not lost, see [1]. The case ag+ ko =
0 for some ky > m + 1 will be considered in the next paper.



