Chapter 2

The Neumann Problem

2.1 The inhomogeneous pluriharmonic system

2.1.1 Preliminaries and Definition

The Neumann problem for the unit ball has been considered recently, see [2]. However for the
polydisc which is another fundamental domain in € "(n > 1) and as was first realized by C.
Caratheodory topologically different from the unit ball, see [14], it remained open. The very
first thing here is how to define the boundary function of the torus dyD"(n > 1).

In the case of a unit bidisc, i.e. 2 = D? we know that 9D U 9D, U JylD?* =: (0D x D) U
(D x D) U (9pID?) is the whole boundary of D x D and €2\ D2 = (D~ x D*)uU(D* x
D ~)U (D~ x D) is the outside of D x ID with respect to the whole boundary. The domains
D~ x DT and DT x D~ are the outside of DT x DT related to 0D, and 0D 5. So the
remaining part ID ~ x ID ~ may be considered as the outside of ID x ID related to the essential
boundary 9y 2.

Thus the essential boundary dyD™(n > 1) divides ¢'™ into 2" parts rather than just in
an inner and an outer domain as the whole boundary does or as in the case n = 1 . For
D" =X,_ Dt , 0D"=X;_,0D , letoutgypn(D"):=X,_, D~ =: D" This means
that we have to consider ID =" as the outside of D™ relative to the essential boundary 0y D ".
The sense of this kind of devision of '™ related to dy[D ™ can be explained by further discussion
of the Riemann problem related to dyD ", see [20]. Since analytic functions in D™ can be
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34 CHAPTER 2. THE NEUMANN PROBLEM

described completely by their values just on the essential boundary dyD ", see [27], we have to
restrict our discussion to the essential boundary. Its boundary function p is defined by

p(2)=> (% P-1) , z=(z1,-+,2) €ED"UGKRD"UD ™ (2.1)

J=1

Let 2 be a smooth domain in €™ and fie(2) € L1() N CY(£2) be given functions. Consider the
following inhomogeneous system of n? independent equations

Pu

071,07 N

fre(z), 1<k l<mn, (2.2)

with given right — hand sides, satisfying the condition

afks afés -0 afsk . afs@

(%g sz Y 825 azk

=0, 1<s<n. (2.3)
The Problem N;. Find a C*(Q) — solution of system (2.2), satisfying the Neumann condition

ou
8_7/( = VO(C)a QS o2, (24)

where (2 is a smooth enough domain in €™ and Ou/0v, denotes the outward normal derivative
of u(z) at the point ¢ € 9f.

By definition, see [2] page 172, it is known that

a—w:;%a—zﬁ%—z—j)m“ o

where p(z) is the boundary function of €2 defined on 92 as follows.
<i>p(Q) =0, | gradp ;£ 0, ¢ €0

<ii > p(z) <0, z € Q;

<iii > p(z) >0, z€out N ="\ Q.

Hence from the representation (2.1) of the boundary function p for the polydisc gD "™ we have
pr; = 225, py; = 25, | gradp [3pa= 4> (25 +y]) |j5;121= 4n,
j=1
the Neumann condition (2.4) for the polydisc turns out to be

= 0 0
Y (og, + 752 )| =0 ceanr, (2.5)

Jj=

with 7(¢) =70 (¢)vn.
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2.1.2 Specification and the Solution

The condition (2.5) can be written as

Re v(¢) = Re 7(C), Rew(¢) = —Imy(C), ¢ € D™, (2.6)

with . .
z) =2 Z zk(Re u),,, w(z) = 2i Z ze(Im u),,
k=1 k=1

According to (2.2) these functions satisfy the inhomogeneous Cauchy-Riemann systems

n n

Vg, = Z (oo + fon) = Fr, wsz, = lz 2e(fre — for) = Oi (2.7)

=1 =1
in D™ with the right-hand sides because of (2.3) satisfying the compatibility conditions
Fk?g:FKEka q)kzg:q)ézka 1§k7€§n

Therefore if the compatibility conditions are satisfied then v(z), w(z) must be the solutions of
the Schwarz problem (2.6) , (2.7) and this problem was solved, see [2] Chapter 5 and [3] . Thus
under the solvability conditions

n v—1
J — Re Z Z Z kleQ"‘zk)\Ck)\+l"‘<ku
v=2 A=1 1<ki<-<ky<n IDkl

lgk)\+1<~-~<ky§n

A v

Zk
< [I—=— ] Hdgk dne. =0 (2.8)
bl 1_Zk<.k )\+11_2ka7 =
n v—1
— Re Z Z Z klez"‘Zk)\CkA+1“‘<kV
v=2 A=1 1<kj<--<ky<n Dy,

1§k>\+1<~~<kugn

A v

Zk
X H - I —— HdeTdnkT =0 (2.9)
1 — ZkTqu— =M1 1 — ZkT k‘r -
we have the solutions
n
=D 2 1T o
v=1 1<k <<k, <n Dy, Dy, 2

v 1 v
It - 0, Il = T e

=1 L— ZkTCkT =1 T T=1

n v—1

14
—1*

D D S Nl s
N Dkl Dky 2 A +1

v=2 A=1 1<ki<--<ky<n
1<kyf1<<ky<n

X
+1+
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A

X7 = H H d&p., dny., +iCh , (2.10)
T= 11—ZkT<kTT N1 Ck: — 2k,
=2 X —
v=1 1<k <<k, <n Dk Dy, 15kg Sk
v - }
< T —=_ _ (= i d
71;[1 1 — 2k, Gy, (=1 lekQ Chy H CkT — U & A1,

n v—1

( ]‘))\
+1I* + ~ . o - -
Z Z v ﬂ)k,l Dky lekg'"Ck)‘Ck)\+1kau

v=2 A=1 1<ki<--<ky<n
1<k>\+1<~~~<k1,§n

A v
<]l—=

T=1

dek dny,. +iCh (2.11)

1—szCkTT /\+1Ck — Zke

where
14

Fkﬁkz"'?k)\%/\ﬂ"'zku = E (fklka + fk:akl)ik?”ihzh“~--zka71zka+1mzku
a=\+1

n

+ Zf(fkﬂ + 7€k1)5k2"'fhzk>\+1"'Zku ()‘ < V) )
=1

Fozyyoz, = 3 a(fue+ fu)zg-m, (A=),
/=1

n v—1

1 Zk-r 2l d
/ :@m)n/aomR”(O DR H H Cer — 21, C

v=2 A\=1 1<kj<--<ky<n T= 1Ck7' TRkt iy = Pk
1<k <<ky<n

¢ dg
Re ~(C) |2 - 1} —
OoD™ g -z C ’
(Dklzkg“’zk)\zk)\—o-l"'zku (fklka fkakl)zkz“‘zhzhﬂ"‘Zka—lz’“aJrl"'Z’“v

a=A+1

n
+ ZZ Zf(flﬂf - fékl)E@“-Ehzhﬂ'“zku (>‘ < V) )

(=1

(I)klzkz"‘zk,, = ZZ zf(flﬂf - 7€k1)5k2---5ky ()‘ = V) )

(=1

n v—1

s G RIS SIS I | | e

v=2 A=1 1<kj<--<ky<n T= 1Ck _Zk'TT A1
1§k>\+1<~~<k,,§n

= (2732')“ /(%m (_Im 7(0) [QC E z 1]% )
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and O, Cy, are arbitrary real constants. Since v(0) = w(0) = 0 follow by their definitions,
from (2.10) and (2.11) we obtain

<273z'>n/aom ?C‘Z 2 i/JD/D

Lv=11<k1<---<ky,<n

1O +

¥ T dGy. d
X [Ce(fkle + fékl)zkz“'ZkU} 11 Ckgk T — g (2.12)

=1

O e [y (I @) =iy Y L

liv=11<k1<--<k,<n

- r dC,.d
. [Q(f’ﬁf - fﬁk1)2k2"'zkui| 11 % =0 (2.13)
T=1 T

1.e.

¢y _[mi Z $/le “./ID@ [Cé(fklé‘i‘?ekl)fk?-fky} ﬁdechfnkT’

Lv=11<k1<--<k,<n =1

Cy = Re i > % /]DIc --~/1Dky [Cz(fkle —Tm)zkz...zky] ﬁ dQZiZ??kT ;

lr=11<k1<--<k,<n =1

<27:z'>n /8011)" > ¥ i/m/zv

Lrv=11<k1<-<k,<n

G A, |~ T Gk, dn,
[, TT + Tt e [T 7] 214)
T=1 T T=1 T

Again by the definitions of v(z) and w(z) we get

Z i, (2) = 5(0(2) — (=) = G(=,7)
) (2.15)
szuzk 5 (v(2) —iw(2)) = H(z,%)
Since . .
> mGs(2.7) = > mafulz) =) wH., (2,7)
k=1 k=1 k=1

the system (2.15) is compatible. Clearly, the homogeneous system

n

Z 2y, =0 , ikuEk =0 , (2.16)
k=1

k=1



38 CHAPTER 2. THE NEUMANN PROBLEM

corresponding to (2.15) means that its C'-solution is holomorphic as well as antiholomorphic
in D™ and therefore is a constant. So the general solution to (2.15) is a sum of a particular
solution to (2.15) and a constant. A particular solution to system (2.15) is given by

1
d
u(z) :/ (sz,sZ) / H(sz, sz) iy (2.17)
0

Next we simplify the conditions such as (2.8), (2.9) and the solution (2.17). Actually the
conditions (2.8) and (2.9) are equivalent to

D) SIS DIR fee ey Y

v=2 A=1 1<ki<--<ky<n =1
1§k‘/\+1<"'<k§y§n

(—1 n
/ / Z fklkackz oy Chpp 1+ Chg—1 Sk 1 Cho Z ggfkléZkQ'”ZkACk)\+1"'Cku
Dk, b =1
v

kv a=X+1
le_Zkgk 11 Hdckdnk

>\+11_Zk‘ CkT _

A _ v
kT dC
H C H G — 25, C

TRkt 2Ty

F1Chy Gy ey yy o1 Chps "oy T Zszzzﬂ%...%gml...gku
lel leV a=\+1 _
A
x dgkfd%} ~0. (2.18)
El—zk Cr, 2 >\+11_2k Crsr H

Substituting (2.10) and (2.11) into (2.15), the representation (2.17) gets the form

[Cff@kl Clg*Chy

/ e
0 Ly= 11<k1< <ky<n Dy Dy,

(T L)

=1 ]' - Szkfgkr =1 Ck"r - Szkﬂ'
v

z d
+Cefuiz,, 2, (HSZ% —(=1) H [ _Szkf)} Hdgkfd% s

L — 5%k, G, e

! ¢ ¢ a¢d
v <2riz‘>n/aomﬂ<o[c—sz+c—sz‘qff“j

+/01V” DS (?/Ml“'/%{

=2 A\=1 1<kj<-<ky<n
1<kyp1<<kv<n

v n
X [ Z fkakl%---%?h“---Zka,likaﬂ---zku + Z ngklkaQ"'CkAZk)\+1"'Zkl,:|
(=1

a=\+1
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v

1

1_32kr<kTT e Ck, — 2,

I

T=1

v
+[ Z fklkaZkQ“'Zk,\Ck)\“'l"'Cka—lgka+1”'<ky + ZCffklfzkg"zm(kxﬂ"'Cky
a=A+1 (=1

v

A
y TH 5%k, H — }Hd@ dnk & (2.19)

1—sZ
N kr Chor el

Theorem 6 Let fy, € CH(D™)N Li(ID™) and satisfy the conditions (2.3). Then problem Ny is
solvable if and only if the condition (2.14) holds and the condition (2.18) holds for any z € D™.
The solution is given by (2.19). The corresponding homogeneous problem has no nontrivial
solutions.

Corollary 1 Problem Ny for pluriharmonic functions in D™ (n > 1) is solvable if and only if

o L 0% =0 (2.20)

holds and the condition

n v—1

1 x sz
2 Z Z (2? /a mn 1;[ i, H Ce, — C =0 (2.21)

=2 A=1 1<kj<-<ky<n
lgk)\+1<--~<k,,§n

N

holds for any z € D™. Then the solution to N; s

u(2>:/Olﬁ/mﬂ(o[g—gsﬁgiz }ddeSJrC (2.22)

In this case (2.14) coincides with (2.20) and (2.18) with (2.21) and Cy = Cy = 0 in (2.14)
because of fre(z) = 0. But from (2.10) and (2.11) it follows that

v(2) —iw(z) = (27:7;)71 /aOJDnV(O [2( E z 1}%

v(z) —iw(z) = ﬁ/@owv(é) [2C E = - 1}%

So the equations (2.15) according to the representation u(z) = ¢(2) + 1(z) and together with
condition (2.20) turns out to be the following partial differential equations for the holomorphic
functions ¢ and ¢ in D ™.

Zzwzk - 0[] (2.23)

OgD™

n

k=1
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40

Transforming the variables via

wr =21, Wa 221/22,"'76% = Zl/Zn
we obtain
890 1 G1 G2 Cn S
3w1 (2mi)" /aozpn <) [Q —wy (o — wi/wy Cn — w1 /wn 1] ¢’
Low 1 — 7 G G G
&01 a (27”)” /aozpn i )[Cl —wy G2 —wl/w2 Cn — w1 /wn 1] ¢

Integrating these equations we get
o) = o [ a0 [T [[2 )
0 = foa 0 ST S - 05 s
Transforming 0 < s = ¢/w; < 1 and returning to the original variables gives
= [ 10 [ [P -2

v(z) = (2732)” /aoﬂ)nm/o [1 —1szC a 1]%% TG

It is also possible to solve (2.23) applying power series, i.e. let
k

where k = (ky,-- -, kpn), k1, k, € NU{0}, ze€ D"
Keeping (2.20) in mind and representing both sides of (2.23) as series leads to

oo

S S b b 2o
k1=0 kn=0
— z C k1 e chn n_>
(2mi)" Ao mn ,;) ,%Z:O 1 ( ) ¢

By the Lebesgue theorem we know

1 —kd
[kl =g [ (T2 o<kl

(2.24)
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This means .

_ ! S
4 G o T EPO

1.e.

)= (o | m%%)z’f +C;

! (0 dC |
= ©) e (2.25)
(2ri) /aom” HZ k[ C

In the same way

R Ry ;T
Y= g 7O 2 Terc t

By the way, comparing (2.25) with (2.24) we get the sum of an interesting series :

> (zg)ki ! 1 ds " "
3 |k| _/0[1_826—1}? for zeD" (ecdb"

If we choose ( = (1,---,1) € 0o D™ then it turns out to be

. e 1 d
D B el SR
kl—l— o L1 — 52 1—s2z, s

|k|>0

By the induction method it is easy to get

1 n 1
1 1 ds 1 2y

n— d

/0[1—321 l—szn ] Z Hzl,—z“/ —szl,s

v=1
u#v

1
:_Z n— llog l—zy)HZV_ZH.

wﬁv

2.2 The inhomogeneous pluriholomorphic system

2.2.1 Preliminaries and Definition

The Neumann problem for the inhomogeneous pluriholomorphic system in the unit ball was
studied in [2] page 225. However, about the Neumann problem even for the homogeneous
pluriholomorphic system in the unit polydisc nothing can be found in the literature , although
a great deal of research has been done about the d— Neumann problem in polydiscs, see [6],
[9], [25] etc.
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Let fu , 7 be given functions with fz, € Li(D™) N C(D"),y € C(9yD™). We denote by
Z* the set of non-negative integers, i.e., Z = = {0}UIN where IN is the set of positive integers.

Consider the following inhomogeneous system of n(n+1)/2 independent equations
0*u

= 1<k, (< 2.26

(9@8@ fkf(z) ) SR, N, ( )
with given right — hand sides satisfying the condition
afk@ afks

= — =0 1<s<n. 2.27

sz(z) ffk<z> Y 825 age Y —S—n ( )

Problem N, . Find a C'(ID™) — solution of system (2.26), satisfying the Neumann condition

8—% =%(¢) , CedD™, (2.28)

where du/0v, denotes the outward normal derivative of u(z) at the point ¢ € 9yD ™.

By the definition it is known that, see the previous section or [22], the Neumann condition
(2.28) for the unit polydisc turns out to be

i( A +a§—§j)‘g=v(<), (€ ab™, (2.29)

19z,
i j

with 7(¢) = 70(¢)v/n/2.

It is also known that the general solution to (2.26) is representable as

u(z) = ¢o(z) + < ¢(2), z > + up(z) (2.30)
where ¢(z) = <¢1(z), = ~,¢n(z)> and every ¢x(z),k = 0,1,---,n is an arbitrary function,

analytic in D™ ; ug(z) is a special solution to (2.26) given by

n

Uy = Z(—l)#+1 Z Tgu . TKQTZ fh@lz@“fzu

p=1 1<6:1<n
1<ty lu<n

DI To T foei, -2, (2.31)

1<l <<ty <n

see the previous chapter or [21].

It is well known that for any given real — valued continuous function ~ on 9D there
exists an analytic function w in D | the real part of which has the boundary values + on
0D , Rew = 7. A solution can be given by the Schwarz integral S~ which is the complex
counterpart of the Poisson integral P~y . Hence ~ turns out to be the boundary values of
a harmonic function in D . For two complex variables in order that a given real — valued
function on the distinguished boundary 9y % of the unit bidisc D ? is the boundary value
function of the real part of an analytic function in /D2 it has to belong to the space dPhp-
of boundary values of pluriharmonic functions in D2 . It is known that not every function
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defined on 9yD? isin OPhpe , see [2] page 243. However, for our discussion we need to look
at the problem a little bit further. Let the real- valued function v on 9y[D? be representable
by a Fourier series

+oo
. 1 i—kd(y d
v(z1, 22) = Z awziz g = 7'/3 Y(C1s C2)C1Cl; b1 dea
oD 2

2 2ri)? o G
Q_; — = ik y 7;, ke Z N (Zl,ZQ) € 3011)2. (232)
Thus for the given 7 we have two real pluriharmonic function in ¢'? : onein D+ =
D> (D~ ={zlz=(21,2), |aa| > 1, [ > 1}) , ie
Z {aikZiZQ“ + a_i,_k?l?’é}—ao,o (2.33)
i,k=0

and onein D1t~ ={z|z = (21,22), |z1| <1, |z| >1} (D ~T) ,

“+oo

Z {ai,kaizgk + a,iyszizg} (2.34)

ik=1

Clearly, if v € OPhp-= , then obviously a_;, =a;_r =0 for ¢,k € IN jie.,

_ - derdlide o
@i~k = (2mi)? /8011)2 Y(C1, 62)¢16 C G =0, 1,kecIN, (2.35)
or equivalently
1 2(, ZG d¢idé 2
(27Ti)2 /60D2 V(Ch CQ) 1-— 2161 1-— zQCQ zl CQ =0 ’ (217 22) < D (236)

If vy€OPhp+- ,then a; 3, =a_;_, =0 for i,k € Z* . This means v satisfies
1 =t kd(:l dCQ .
a,k‘ (27TZ)2 /aom (Cl <2)<.1<-2 < C 0 ) Z? € 1) ( 3 )
equivalently

1 1 1 dgdé
(27Ti)2 /80D2 ’7(<17 CQ) 1— ZlZl 1-— ZQZQ Cl CQ

=0 s (Zl, 22) S D2 . (238)

Evidently, it is easy to see that OPhp2: = O0Php--, OPhp+- = OPhp-+ .

Further, if v belongs to OHp: the space of boundary values of functions, holomorphic in
D? | then v satisfies the condition (2.36) and

Ld¢id
ﬁ/@ v(C1, G) ik fl CCQ =0, ke Z",i+k+#0, (2.39)

A_j — =

as well, i.e.,

1 1 1 dCl dC2 . 2
(2mi)? /aomﬂ“l’@)[l—zm—m_1 o 0 umelt (240)
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equivalently

1 Z1G1 Z2G2 216 ZaGe 1dGdG
(27”)2 /80ﬂ)2 ’y(Cb CQ) |:1 - Elgl * 1 - E2<2 B 1 — EICI 1-— §2<2:| Zz o 0 ) (241)

For our further discussion we need Theorem 5.1 from [2]:

Theorem 7 Let v be real-valued continuous on OyID™ satisfying

n—1

— 1 Zt1 u ¢, > 241 }
_ Ckr. — 1 )=k
; (27”)” /8010” [( H Cu — cy ) Cht1 — Zhkt1 " ( ,1:[1 Co— 2 Cht1 — 21
¢, ¢
) H ( G — 2 - 1) ? =0

v=k+2 CV v

or equivalently v € OPhpn . Then for any real ¢

¢@>:<#%némnﬂgpcfz‘lyg+“

is analytic in D™ satisfying Re ¢(¢) = v(() on gD ™ .

On the basis of this theorem and from our discussion above we can get some conclusion
about the boundary values of holomorphic functions in polydiscs.

Lemma 2 Let ~ be real-valued continuous on OgID™ satisfying v € OHpn :

any_l Z ! / H ﬁ Eé% =0 (2.42)
vELAS0 g <ochagn (2" 80@” Ckf ~ e 2t Gk — 2k, G
1§k)\+1<"'<]€1/§n
Then . &«
P(2) == 75— / (¢ 2.43
&= Gy | 107 (2.43)

is analytic in D™ satisfying ¢(¢) = () on OyD™ .

2.2.2 The classical problem

From (2.30) it follows that

0 "0 0
U'Zk = ¢k(z) + UOEk ) uzk - ﬂ + Z z (b,u + — all (244)
1%

8zk — K 8zk 8Zk

where
n

Ugz, = Z(—l)uﬂ Z Ty, - - 'Tklfklkfkg---fk, , 1 <k<n.

v=1 1<k <<k, <n
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Substituting these expressions into (2.29), we obtain an equality for ¢ € gD " |,

ACTS +z<ﬁ¢'f <kzcﬂ¢0) > (%0 —%—<kz<ﬁ“0>. (2.45)
k=1 —1 n I¢;

Evidently this equality is satisfied if

(C) + ZCJ 8% ;& ZCJ a¢0 = gk[ ZCJ gzo} gzz (2.46)

hold for any ¢ € dpD™ and k €{1,2,---,n} . Since the left hand-side represents the boundary
values of a holomorphic function in D" | the right hand-side does too. Thus according to
Lemma.1, the problem is solvable if and only if the following conditions are satisfied,

n v—l1
1 / <(,z> Z
DD DD DR - G < gradzug, z >
vELEAS0 ek <n (2i) 6°Dn{ [ aCJ] }
1<kyp1<--<k,<n
A v
2k Zk d¢
X _— — =0 , zeb". 2.47)
’1_[1 CkT = Pk lelkl Ck-r = %k, C (
Then
- a¢k Zk 8¢0
dr(z) + 'sza +D sy
Jj=1 j
1 Cr "L Oupy Ougy dC
- - - j = , ebh” 2.48
(2mi)" /aoJD"{ n [W(O ;CJ 3@'] 8Ck}C —z 7 (2.48)

is analytic in D™ and satisfies condition (2.47).

To derive the solution of problem Ny we apply the Cauchy formula to (2.46) and by taking
into account

! Tf<<>% -
D z

1/ we % g
@mi)" Jopn (=2

we get the following partial differential equations for z € D™,
—~_ 0z~ Odo 1 / dug] d¢
E . - E : 2.49
Pila) ¥ s 02 " @ri) Jype 1 [ CJ agj} (2:49)

By the transformation

0

i

ie.,

<1 <1
Wi =21, Wy =—, ", Wph=—,
Z9 Zn

we obtain for (2.49) the equations

folo] _ wi 0y 1 Oug
A T T T By T (2mi)" /Mn n[ ZCJ@QJ}
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d¢y dCs . dGy,
G —wi (2—001/002 Cn—wl/wn ’
oJu wi Oy 1 Oug
“Lowr o =  nwg Ow; * (27i)™ /aoﬂ)n n [ ZCJ 6(]}
d¢y dCa dGy,

L k=2--,n.
G —wy Cz—wl/wz Cn—wl/wn

Integrating these equations we have

w1 42 9 w1 0
wigr = —/0 . ej:sod”/o (2;‘)" /aolpn n[ ZC" 5’20]

" d¢ de — dG,
GQ—tQ—t/ws  (u—t/wy

. “i t2 8¢0 “i 1 8u0
w1 Pk = _/0 nwy Ot dt+/0 (2mi)™ /aojpn [ ZCJ (%J

G e dG,
Cl_t<2_t/w2 n_t/wn

Substituting w; = 0 on both sides we see that C, = 0,k = 1,2,---,n. Returning to the
original variables we have

1
21¢1(Z):/0 (zilz)n /aozpn [ ZC]??Z;] igsz

dt + C,

dt+Cy, k=2--.n

[ 55N g OP0(52)
1/0 n Z( i) 8(szj)d

J=1

aote) = [ oo /W %o 29235} e
/ SZkZ 0¢o k=2 .n,

ie,for k=1,---,n, we have

_ ! Oug1 d¢ V22
¢k(z)—/0 i /aom [ Zgjacj} _Szds—/o =L dgo(s2). (2.50)

Hence the representation (2.30) gets the form

1= [ e o 520 S
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1
+¢o(z)—/0 %dqﬁo(sz). (2.51)

If we take
¢o(2) = Z a.2", zeD",
|| >0
then

1
®o(2) _/o <Lnsz>d¢o(sz) = Z a. 2"

|| 20

—/0 it [ ( a,{ffj(sz)”/szj>zjds]

Thus

+Zaﬁ[1—%}z“, ceD". (2.52)

Theorem 8 Problem Nj is solvable if and only if its right-hand sides satisfy condition (2.47)
on gD ™ . The general solution can be given by (2.52). The corresponding homogeneous problem
has infinitely many linearly independent non—trivial solutions,

2
[I—M]Z”, |k| >0, zeD™.
w8 +2)

The problem Ny is not well posed.

2.2.3 The modified problem

Since the solution (2.52) includes a free analytic function, clearly to get a fixed solution only a
Schwarz problem is needed to be solved. So we introduce an additional boundary condition.

Problem N; Find a C'(D") solution to system (2.26) satisfying the Neumann condition
(2.28) and

Reu(()=7'(C), Ce€ab™. (2.53)
We call this problem the modified Neumann problem for system (2.26).
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Let fre = 0 in (2.26). Then the solvability condition (2.47) takes the form

L 1 <(, z> A z
) k-
> : YOI —"—
2mi)" / n n Ch, — 2k,
lgk)\+1<~~-<ky§n
- Zr,  d

T=A+1 Ck" - sz C

and it means that every (;y(¢() on 0yD™ (k = 1,---,n) belongs to dHp~ . Actually it is

evident that ~(¢) € dHpn» . Note (17(¢) = »i(¢) ,»1(¢) € OHpn , then y(() = Goi(Q) .
If v({) ¢ OHpn , then (3(191(¢) ¢ OHpr . But by the condition above (oy(¢) € dHp~ . This
is a contradiction. Hence condition (2.54) becomes

n v—1
1

Zr,  d(
S ID'S <2m>n/80mn<ngk,_ S 2% ew

v=LAS0 g cichy<n =A+1
1§k’/\+1<“'<ky§n

Substituting (2.53) into (2.52) shows

_/{_H nﬁ * ! ) d
ST - Re [ g [ S )i o),

FEd 2+ |k n —sC

i.e.,

Re Y G by ceabt (2.56)

Due to the character of the left—hand side of (2.56), the right—hand side T'(¢) on dyD™ is also
the boundary values of a function, pluriharmonic in D™ . This means the given function I'({)
on JyID "must satisfy the condition,

—_

n v— A v

1 / 2 Zk ¢
: Ol —— —r > =0 (2.57)
; 1 1<k1<'§k>\<n (2mi)m doDn 71_11 Ch, — 2k, Tzlll Ck, — 2k, G

1<kyy1<--<k,<n

>
Il

In fact due to y(¢) € dHpn , it follows that

(O =)= Re [ (50 =97(0) = Re [ s(s0)ds

Hence

1
Re / sv(sC)ds € OPhpn
0

the condition (2.57) implies that v*(¢) € OPhp~ i.e.,

A v

iZ > 1.n f(C)HL 11 e 4, (2.58)
(2mi)" Joomn ¢

L Gk — 2 G — 2k
v=2 \=1 1<ky <-<ky<n T=1 T=A+1 T T
1§k@\+1<"'<k‘y§’l’b
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So if condition (2.58) is satisfied, then the Schwarz problem (2.56) is solvable and the solution

is given by
1 ¢ ¢ .
Z \/i|+2 (2mi)» /aoﬂ)nf(C)Pc_Z—l}?—i—zCo

k| >0

=Y o [ O G s [ T0T +ic

||>0 oD ™

with an arbitrary real constant C°, is analytic in D™ and satisfies equation (2.56), see [2] page
251. One can see that

__ 2 d¢ S C i i) =

Hence if conditions (2.55) and (2.58) are satisfied, i.e., if () € 0Hp» and v*(¢) € OPhpn ,
then problem NJ with fr, = 0 is solvable and the solution is given by

_ Rl e, [ <Gz> o dC .
U(Z)_ Z aﬁ[l—m]z +/O (Q’ZT—i)TL/(90Dn n ,Y(C)C—Szds’ zeD™. (260)

But from
R o= 30 P e
2wl - X [ 2O 2

=0+ (e [, 2| e (G

(2mi)™ 1—2C ¢ =0 n(2mi)" Jo,pn ¢
_ 2 1 qdC n— |z|? 9, =. 4
— o (2mi)m /aolpn 20 [1 —2C 1} ¢ * MZN) n(2mi)? /aomn QF(Oat (t=¢) t=1 (

B n—[20 1 L qd
ot at(2m)n/801,)n2r(o[1_tzz 1]4

dg
+(2§z‘)n /Mn 200 [1 —1zZ N 1] I3

L n—|z290 1 1 d¢
u(z) = iCo+ ~— S /aom2r<<)[1_tzz_1}?

+ /D 2rQ) = Tz JES (2.61)

where Cj is an arbitrary real constant. Next we make some simplifications. Let

I = (2732')" /aozanF(O[l—zzz_l}%’ e

t=1

we get

t=1




20 CHAPTER 2. THE NEUMANN PROBLEM

then
_ 1
b= (27?2’1)” /aom{Re /0 (2732')n /mn . 77;1( >7(77)77 inscds} [1 —ZzZ - 1]d_§
+(27:z')” /aomn 77 (¢) [1 _222 - 1}% = —Lg— I+ 1.
where

1 R <n,(> dn 2 qd¢
2ha = (2mi)" /aom/o (2mi)" /(%m n V(U)n—sgd‘sh—zz 1} c

By changing the order of integration, we have

1
2he = (2732')” /aom/o 7("){ (2732')71 /M,n : 777,1( : 1 —13Cﬁ [1 _QZE B 1]% }dsdﬁn

but
1 / <n¢> 1 [ 2 _1}%
27i)™ Jaypn n 1—s¢ll —2C ¢
_y ! / _mG 7 L 2 -y <Cn> &
2 n@mi)" Japn T sGae AL TG C— 2~ @) Japn  n C— sy
T=1
T#k
u 2 _ ST - 1 1 d¢ <snn>
- 2'”/ ”k[<k+1—k—]n1 Tl—2 C
— n(2mi)" Joypn — Gk » —8GT-1—2C ¢ n
vk
n 9 s n 1 9
S ke e
—n 1 — szm, 1—sz7m, 1—s2m
T=1
T#k
leads to

bl n dn
2Ia:/7,/ 70[2 —1}—8618
! o (2mi)" Joypn ) n— sz ]

The second part of I; which has to be simplified is

1 1 <n,(> dn 2 qdC
”“"(2m'>n/aom/o <2m‘>"/aom ) s [ -1 T

By changing the order of the integrals

1—
200 = G S, O o ol N

and from

n

1 <¢n> 1 2 4 L CkTk
(2mi)m /aolpn n 1—3772[1—22 1] ¢ (2mi)" /8011>n n

k=1
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X[1+snkfk (smiCr)? }ﬁ 1_377T {[14_2"?7216_] ﬁ %_1}%

— s1kC), . 1 — 2y, - 1 —s2:¢; S
Ak Ak
¢ d
_ Z / Cknk+5+5 e }{2[14_ Zk:Ck_ ]_1}ﬁ
27 Jop, 1 — smily 1 — 2,Cy Ck
p 27 Jop, M 1 — snCy, 1 — 2,Cp G 1

1 L > d
2l = 75— / / v(n) [2< 507 4 s] ds2!
(2mi) oo™ Jo n n

27i)™ Joupn n n - 227)" Japn n

Thus we have got I calculated as

1 i} ¢ ac 1 (' 1 ¢ dc
©(2mi)n /aolpn 7(0) [2C -z 1] ? B 5/0 (2mi)™ /8011,”7(0 [2C — sz 1} ?sds
1 <z, >—=d( 1 ——d(

~ni)r /m n OE T /D Oy

I = (2;,)” /80m 20(¢) [1 —1tzE — 1]% .

Similar to I it is easy to get

1
Iz = (2731')” /(M,ﬂ*@ [g —Ctz 1]% - %/0 (27:2')71 /80m7(o [g —Cstz N 1} %Sd‘s

1 <tz >——dC
2(2m)n/80m n 7@?

Let

So we have |2 . ¢
u(z) = iCo+ n &{(QM /ajpn [(—tz }
1
2, e e O e 00
1
+(27:i)” /Mﬂ*(o [Qg E 2 1}% - %/0 (2732')” /Mﬂ(o [Qg —Csz - 1] d_gCSdS

1 < z,( >——=d( 1 —_dC
(2w /Mn n 7@? A2 /aomv(C)?7 (2.62)

where () is an arbitrary real constant.

Lemma 3 The modified Neumann problem N3 for pluriholomorphic functions in D™ 1is
uniquely solvable if and only if the condition (2.55) and (2.58) are satisfied,i.e., v € OHpn
and v* € OPhpn . The solution which is unique up to an arbitrary real constant, is given by
(2.62). The problem is well — posed.
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Next we clarify the solution and the solvability conditions of the modified problem N; for the
inhomogeneous system (2.26). By substituting the condition (2.53) into the representation
(2.52) we have ,

> (8" +au") g = 770 = Re w0

] >0
| <n,(> " OQugy dn
—Re/ P / — [v(n)— 77~—] ds =:2F(C), C€ D",
o @mi)" Jopn M ; Ton;dn—s¢ 0
i.e.,
aKCH n
Re Z = F(), ¢€db™. (2.63)
|| >o
This means again F' € OPhp», because the left-hand side belongs to dPhp« , i.e.,
n v—1 v —
1 / Zk dC
2> X T FCH Il =—¢~-0.
27)" n - —
v=2 A=l 1<ki1<--<kx<n ( ) nb CkT kT =A+1 CkT Bhr g
1<ky;1<<kp<n
zeD". (2.64)

Then the Schwarz problem (2.63) is solvable and the solution can be given by

Q2" 1 ¢ d¢ 1
= . F 2 +1C
2 2T @y L, POk 1T
and from it one can derive that

B i 22+ |n)) edC
0= [ FOG et a= T [ e 0,

where C! is an arbitrary real constant. Substituting them into (2.52) we get

B | <(z> dug]  d(
o) = | <2m'>"/60m4{ Zgja@]c— ds + t(z)

2+ | Wl ] e el n
* Z (2mi)™ aown[l_M}F(C)(zO f+Z2C1, e ™.

Similarly to the case of the pluriholomorphic system we obtain

L <(,z> Jug]  d¢ i
u(z):/o @ri) /80]Dn [ cha@}c_ ds + up(z) +iC

9 n— |z 1 d¢ 1 2 ¢
" oty /aom POl =z Ut /aom FOli—z-17 o

where C* is an arbitrary real constant.

Theorem 9 The modified Neumann problem N3 for the inhomogeneous pluriholomorphic sys-
tem (2.26) in D™ is solvable if and only if the conditions (2.47) and (2.64) are satisfied. The
solution which is unique up to an arbitrary real constant, is given by (2.65). The problem is
well — posed.
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2.2.4 A simple application

Find the sums

k
T
ZW’ D k|2t m] <1 o] < 1

|k|>0 |k|>0

By the above method we get

Z gt ghn _/1< 1 1 1)d8
ki+---+k, o \1—s11 1— sz, s’

|k|>0

Z(k1+"-+kn)(a:]f1---xﬁ”):%( L1 1)

1— sz ' 1— sz
k|>0 ! n

2.3 The inhomogeneous Cauchy-Riemann system

2.3.1 Preliminaries and Definition

From the literature it is known that about the @ — Neumann problem a great deal of research
has been done, not only in polydiscs and in the unit ball, see [6], [9] and [25] etc., but also
in general domains, see [15] and [12]. However, about the Neumann problem even for the
homogeneous holomorphic system in the unit polydisc nothing can be found in the literature,
while similar problem is solved in the case of the unit ball, see [3].

Let fi , v be given functions with fiz, € C(D"),v € C(9D™). Consider the following
Cauchy-Riemann system of n independent equations

— = f(2), 1<k <n, (2.66)

with given right — hand sides, satisfying the condition

%_%:0, 1<l k<n. (2.67)

0z 0z

Problem N; . Find a C*(ID™) - solution of system (2.66), satisfying the Neumann condition

o (),  CEHD™, (2.68)

where Ou/0v, denotes the outward normal derivative of u(z) at the point ( € oD ™.

By definition it is known that, see the previous sections or [22], the Neumann condition
(2.68) for the unit polydisc turns out to be

J=1

i( ‘%Jr?jg—;j)‘cz 7€), C€dD”, (2.69)

z
J
82’]‘

with 7(¢) = 70 (¢)vn.
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2.3.2 The problem

It is known that the general solution to (2.66) is representable as

u(z) = ¢(2) + uo(2) (2.70)

where ¢(z) is an arbitrary function analytic in D" and

n

up(z) = Y (=1t - Tew T fugyzy, - 2€D", (2.71)

pu=1 1<ki<--<k,<n

see Chapter 1 Theorem 1 or [2] Theorem 5.2 . Substituting (2.70) into (2.69) we have

n

> Gty =) = Y (Cofa+Catiog,), C €D (2.72)
a=1

a=1

Since the left—hand side represents the boundary values of an analytic function in D" | the
right hand—side has to satisfy

3 ﬁ /6 . {v(@ - i(zafa + cauOca)}

1<k <--<ky<n a=1
1<kyp1<<ku<n

XHC}CT H L%:O, ze D", (2.73)

— Rk, /\HCkT—ZkTC

n v—

D

1
v=1 \=0

see Lemma 1 in the previous section or [23]. Then by the Cauchy integral for equation (2.72)

we get
—~ ¢ 1 " d¢
Applying
1 —k ¢ —
ﬁ aﬂ)C Tf(C)Cj—O, fELl(D), OSKZ, ZEE), (275)
see [2] page 305, from (2.71) and (2.74) it is obvious that
o L0961 " d¢
82 (27_[_2)” \/60]D" |:7(<) - ;(Cafoz _I_ COcHOzfoc>:| Cj (276)

where, I1; : C(D) — C*(D), see [29],

1 d(;dn; —
ijj=—;/'fj(0<gfii:;)2, zpeD;

and
1 dC

f =T~ g | SOF=

57 fec(b)ync(d),
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see again [2]| page 282.

Since the left-hand side of (2.74) vanishes for z = 0 € D™ so the right-hand side has to vanish,

1.e.
n

1 % _ 1 _ %
(277'@)" /801D" V(C) C - ; (27-(-2)77, /80D”(Cafa + CozHafoz) C . (277)

Transforming the variables via
up =21, Uy = 21/%,0 00, Up = 21/2n

integrating the transformed equation and returning to the original variables one obtains

n

o= [ oo [ 0= L) 2B e e

a=1

where C' is an arbitrary complex number.

Taking into account that

I N S W AN
CTHOZS = 1 [ f0 = dgan,

21 Jop s (—z

fel(b), 0<k, z€D, (2.79)
see [2] page 305, and

1 ¢ 1 [~ /S N dédn
5 |10 =1 [0S e [ ToS

fecip)nc(D)

it is easy to derive

1 d¢ 1 [ = déd
Wy =Tf- oo [ O =T [ GO sep.
and further with n = ¢ 47
1 a1 1 [ _ dédr | d¢
i éUDCHfC_Z_% a;pg[Tf§+;/zpnfn(n)1—Cﬁ}C—Z

_ ! 1 1 ¢ _d¢
[ nwacar s 2 [ g [ dar]

1 2n 1 dédr
=2 [ o+ i T aar =2 [ g S
By the Green’s theorem it follows that
1 — ac 1 1 d¢
37 Jom Cf(QC_Z = 2mi Lo f(C)g_Z?
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1 d¢ 1 dédr
- wf(ol_zz—ﬂ/mfc(ol_z?

1 dfdn
o | (errens) 2 =2 [ oS (2:80)

Thus (2.78) takes the form

Therefore

n

T i~ 1 2 [, d§dn
¢(z) = /0 |:(27Ti)n /a;])n V(C)C — 52 jz:; (27m‘)n71 /811)”1 m /ﬂ)j fJCJ‘ 1-— SZij
H A } Cis +C.

Ck — Sz
k#J

Further, by the Pompeiu formula for z;, € D, 1 < k < n, k # j one derives

00 = [ [ [ 2075

2/ fo
— R . f}\ = =
Z Z o p,, Jp,, D, 1Cx CrgCry,

1<A<n
1</\2< <>\ <n

11

SZIHCM =2 CA — 82,

HdgA dny. }— +C. (2.81)

So the solution to problem N3 can be given by

dfdeUkT
u(z) = —
() = ) -/ RO | by

v= 11<k< <ky

1
L 2
+/0 {(271’2')” /8]Dn — 52 Z Z h /Dkl /DkQ ) '/ﬂ)ku fkl(klzkg'“Zku

1<k1<n
1<kg<--<kp<n

1 " 1

1 — s2,Cy, o5 Chr — 52k,

H dﬁkfdnkT] s o (2.82)

Also making some simplifications one can get a more explicit form of (2.73). We rewrite
condition (2.73) as

(2mi)™ Ja, ,pn Ck; = Zhe 0y ke — 2k, C
1<k1<--<kx<n
1<ky41<<ky<n
DS
a, v=1 A=0

1<k1 < <kx<n
1§kk+1<~~-<kl,§n

(Cata+ o, )
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X ﬁ = ﬁ S % =1
5 Sk = 2k e, — 2k, G

T or=2+1
Applying ,
d dn, zeD,
2ri aﬂ)fC—ZC /f< i
and 1
z
d dn, zebD,
we have .
[ =
’ 1<k < <kx<n
1<kr41<-<k,<n
1<k, 41 < <kn<n
A v _ n
X (Z fo+ Cou ) H 2k, A8k, Ak, H Zk, &k, dn, H Ak,
aJ & a0l — — - = —
“) Gty G ek 1 — 2, ok 1= 2, Gry AN G,
n —1 1
DD O S A
1<k1 < <kx<n
1§k)\+1<"'<k1/§n
1<ky4+1<-<kn<n
@), (Cafk,, SR
Ckl"'CkACk)\Jrl"'CkV Ckl"'gk/\ck)\+1"'<ky71
A v n
__*k dCy,
X g d&p., dn, .
1=z, 7111 1 - ZkTCkT 1;[ THH .,
Let X .
n v— 14 Ek_
E ; e —
gl Z Ckl Ck)\CkAJrl H 1— Zk: Ck-,— qu 1— qu—CkT

1<k1 <<k x<n
1§]{IA+1<"'<]€V§’VL

Replacing the summation index v by pu = v — A we have

n—1 n—X\ A 5 Ap z
ke ke
7= Z FCleCk)\Zk/\-ﬁ—lmZk)\-‘ru H 1—2.C H 1 —Zp, Gk
A=0 pu=1 =1 krSkr r=xt1 ™ >RT

0n 1<k1 < <kr<n
1SI€)\+1<"'<1€)\+u§n

Denote {kxt1, -, kasu} = {h1, -  hut, {ka, oo ka} = {hus1, -+ hugn} . where
1§h1<~-<h“§n,1§h#+1<'--<hu+,\§n.

Thus J can be written as

n—1n " z Hia z
h h
J = E g E e e th H - H =
iy 1 w1 Bt 1 1-— ZhTQhT r=p+1 1-— ZhTChT
1<hi<--<hu<n
1§hu+1<~-<hﬂ+x§n

o7

(2.83)
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Again replacing the summation index A\ by v =pu+ A we get

v

n 14 o z .
hy hy
=22 X Fpaaaalli= Il ;7=
v=1 p=1 Lo e it ek MO
" 1<hy<-<h,<n n
1<hyp1<<hy<n

By virtue of

<gwémﬂo Gy Y 5%14

k=1 u=0 1< <<yp<n
1§V[,L+1<”'<Vk§n

v1

.
k

n
71 1
o Tt Ul Cor — 20, H -z g H dé, dipi,., f € CH(D™), (2.84)

Vr t=1

see [2] page 262, we obtain

I:i: V > %/kal/ﬂu{

La=1 1<k < <kx<n
lgk)\+1<-~-<ku§n

J@r), o (ehe), |
Chy Gy Cin gy o Gy Cyy Ciney G

@ (-1
2.2 ) T
v
1<o1 < <op<n—v
1§Uu+1<-~~<05§n—u
{o1, 00 y={1,,0}

4@&%Wz+@MM%M_

k1 Ckx1:| Chagr Chy Ce

kl/+0'1 b ku-&-o’g

1/+o'1 ”.Cku-ﬁ—al

a 1 ‘ 2k -
X H H B H dgku+o'7' d77kV+aT }

"'Cku—o—cr” Ckl’-ﬂf‘hq

721 Ckvtor = Zhusor it L™ Zhuso, Gl 70
A > v
ke
<[] e II - H A .
=1 kr Sk =2+1 — 2k, CkT _

5PN SR AR

av=l 1<k <--<kx<n
1<kyp1<<kv<n

{(Cafa> (Cafm ca) }
Cry CkACk)\+l ~Ck Chy ™ CkA 1Skag1 Sk

v

1<o1 < <op<n—v

{0—17"'705}:{17"'76}
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sl o el ]
oy Cry ChyCha_y Chagr Sk Chy gy Sk o,

l 1
XHll ] | [

Zkl/-‘rﬂ'T Cku+a7— =1

+n—u L Z (_i—#/ﬂ)

(=1 p=1

vtoq D ku+o'[

1<o1 < <op<n—v
1§OM+1<---<UZSTL7V
{U17'“7U£}:{17"'7£}

X {(Zafa>ck e + <Caka Ca)(kl"(h 1

175k - }Ckl\ﬂ'“(kl,(k “Cr Gk

vt+oq vtoy CkV‘FO'N_;'_l vtoy

L

o l
A1 1 I i | dfku+UTd77ku+M}
—1 Cku-&-aq—

= Phutar T=p+1 1 - “kytor Ckv+07— T=1

A _ v

lel_;;kgk I1 dek i,

ot 1=z, C kr r—
Replacing the summation over ¢ by one over v := v + £ and changing the order of summations

give for the last two terms

n n v—1 v

YYYY > e

a=1 v=2 v=1 \=1 1<hy <-<hpy<n, 1<hy 1 <-<hy,<n {k1,kxy={h1,hx}
1<hyp1 <o <hy <0 {Rxgt kv kg o Koton Y= gty st ko }

A i

X H 1 _Zth; o H H d&p., dnp,.

Sl thghr =

+ Z (_13:7_%#

1<hy<-<hy<n, 1<hyp1<-<h,<n,
1<hu+1< <h1/+p<n 1<hl/+u+1< <h—y§n s
{k)\+17 . 7kwku+a#+17 : 7ku+a,y ,,} {h)\+u+17 7hu+uvhu+#+17"'7h'y}
{k17 : ,k?/\,k,/+<71, : 7kU+GM}_{ 1, 7h)\7h)\+17 . 7h)\+,u,

o f [ )]

17y

ho Chy Gyt 1 " Chy g Shagtgp S Shug g1 Chy

A Mp 1 'y
XTnl—zh o o= E+lmndfh e

Since

¥ )

{Exs1kukutor ko, Y ={hag1,shoshogr, by
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for some a) with 1 < A < v we have

y—1~v=A-1 N v—1 =2 N 0 v—1
EE ()00 () B
A=1 v=0 A=1 A=1

Similarly from

{kla"'7k)\7ku+o'1 7"'7ku+o#}:{hly"'vhu—Q—)\}

1= y»
v—A ’

for some ay, with 1 <A <v, 1 <pu<~vy—v it can be easily shown that

{kk+1a"'7ku7ku+au+l :"'7ku+a.y,l,}:{h/\+u+1 7"':hw}

=1 v ~y—v

Y —p—X A
(=1 u( ¥ u}\ ) (u-}i‘- ) ™
v=1 A\=1 p=1 YT

1
=YY X L o @), (k)]
@ v=1 =1 1<k1<--<kx<n Dy Dy 1 Ckz"'Ck,\CkAJrf"Cku
1<kry1<<kv<n
A > v
k
X - ——= | | d&.dm.
rl_Il 1= 2k, G, 111 L— ZkTCkT U
n n v—1
_ Z 7T'7/ / |: C fa <€osz1 Ca>:|_ B
a=1 vy=2 A=1 1<ky<--<kr<n D ., Ck2...gk>\<k)\+1...<k’y

1<kyf1<<ky<n
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A — Y

X 71;[1 1 _z;; . H H A&, dn,

=)\+1 1 - Zkf(kr =1

n

-y ¥ Wi/m/m [(Zafa)zkl+(<afkl<a)}

a, v=11<k1 <<k, <n
v z v
kr
| ot | LU
=1 kr Skr T=1

Therefore condition (2.83) turns out to be

A Y _
> [ oT 2 T =2
2 el | o
1<ky <-<kx<n =1 o1 G .
1<kyf1<<kp<n

S5 Mo @), )] | TR o

a, v=1 1<k <<k, <n Ck2“'CkV =1

Cry:Cry

n v—

2

1
v=1 A=0

2.3.3 An alternative

In the following we give an alternative to the solvability condition (2.85). Let ¢ belong to the
Wiener algebra:

+00 +oo
WO €)= {f|f(z) =Y " €D, | fllwi= Y law <o},

see [18] and [28]. Then ¢ is representable as a Fourier series

= Z ap® + Z oy (F
5—=0 =1

and the series converges absolutely and uniformly to ¢(() , ¢ € dD. If a_ =0 (ap =
0) k € IN then ¢(¢) is the boundary value of a function, holomorphic in D (D7) , i.e.,
€ BH(D)(@pe BH(D™)) .

So, if ¢ € W(0D ; €') then condition ¢(¢) € BH(D ) is equivalent to a_ =0, k € IN , i.e.,

1 LdC
i o (C)CC
This leads to
=1 L d
5 [ AQEE =0, zeD,
]
namely X _— 0 .
2ri Q=% =0 =€
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Let o € W(OD?2 @) and ¢(¢) € BH(D?). Then
-ty =0, gy g, =0, g, =0, (ki, ko) € Zﬁ \ (0,0)

where . i
= — G (b k) € Z°
ke ko (27_”)2 /Bﬂ)2 @(C)Cl Cl ¢ ) ( 1 2) S

and it holds if and only if

This is the same as

n v—1

)9) DD DI Y [0y PR ) s S
(2mi)m 817)”90 el O Goo—2a ¢ T

—Z
v=1 p=0 1<X<-<Ay<n Ar T=p+1
1<A << <n

II. In the case ¢ € W(OD™, '), it is easy to conclude from the Plemejl formula that ¢ €
BH(D") if and only if

b dp* 1y

n= (77*77]/) ) <(k) - (C*ﬂ?/) € aODn ) C* ) 7]* € aﬁmk ) k= 1727"'7n_ 17n' (286)
Clearly from (2.86) it follows that

1 d 1
@) /a o 80(77)77?774 - 27@(@)7 CEOD™. (2.87)

However, this is not a sufficient condition. For example take

0(Q) = GG, C € D3, ki, kg, ks € IN,

then by
27 alpcg_n 277 727Ti aﬂ)g C_n 27] ) S + eﬂ”vne@ )

it is evident that

1 d 1
o | AOZE = geln). but olQ) = MGRGY ¢ BH(DY).

And yet, together with (2.87) the condition
ooy det 1

C*:(gla"'7Ck)777*:(771’"'777/6) Gamkv Cleﬁmn_k(kzlj...’n—]_)’ (288)
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without loss of generality, is a sufficient condition. In one variable case (2.88) vanishes au-
tomatically. Actually, it is evident that condition (2.87) together with (2.88) is equivalent

w0 | e, 1
k — —
27 Jom. e 290(6)

s €ODy, k=1,--,n. (2.89)

Ce="k

This is exactly the definition for a given function ¢ on 0D " to satisfy ¢ € BH(D™").

Thus the solvability condition (2.85) for N3 just can be replaced by

n

o o 0= et G )| 2
= L) = e + a0, )] n € 007 (2:90

a=1

o [ [0 = DGt t Gt )] 2

Py Gk — Mk
n

70 = Y@t + Catiog)] lmm » k=1, n—1. (2.91)

a=1

N —

Since

1
, T de =0
2w Jop T C— %

is valid even on the boundary 0D, (2.90) can be simplified as

(27ii)n /am [7(@) - i@f& - CaHafa)} %
_ in v(n) — i(ﬁafa +atig, )| € OD™ . 29
2 [ }

a=1

Thus the following result is proved.

Theorem 10 Let fiz, € Li(D") N C(D™) satisfy (2.66).

< a > The conditions (2.77) and (2.92) are necessary in order that problem Nj is solvable.
If the condition (2.91) is also satisfied then the problem is uniquely solvable with a normalising
condition. The solution can be given by (2.82).

< b > If the conditions (2.77) and (2.85) hold then problem N3 is uniquely solvable up to
an arbitrary constant. The solution is given by (2.82). The homogeneous problem has only the
trivial solution. The problem is well — posed.



64

CHAPTER 2. THE NEUMANN PROBLEM



