
Vulnerability Modeling and Monadic Dynamical

Systems

Dissertation

zur Erlangung des Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik & Informatik
der Freien Universität Berlin

vorgelegt von
Cezar Ionescu

Berlin, November 2008

Erster Gutachter und Betreuer:

Prof. Dr. Rupert Klein, Freie Universität Berlin, Institut für Mathematik

Zweiter Gutachter:

Prof. Dr. Paul Flondor, “Politechnica” University of Bucharest, Depart-
ment of Mathematics

Datum der Disputation: 09.02.2009

Contents

1 Introduction 1
1.1 Vulnerability and Haskell . 1
1.2 Road-map . 3

2 Mathematical Preliminaries and Notation 7
2.1 Notation . 7
2.2 Monads . 10

2.2.1 The Kleisli construction: monads and monoids 12
2.3 Examples . 12

2.3.1 Identity. 12
2.3.2 Sets and lists. 13
2.3.3 Simple probability distributions 14
2.3.4 Simple fuzzy sets . 15

2.4 Recursive datatypes, algebras, coalgebras. 16

3 Definitions of Vulnerability 23
3.1 The Oxford Dictionary of English definition 23
3.2 Vulnerability in the context of poverty analysis 24
3.3 The IPCC definition of vulnerability 26

3.3.1 Vulnerability study of O’Brien et al. in India, 2004 . . 27
3.3.2 The ATEAM project 28
3.3.3 The Luers et al. method for quantifying vulnerability 30

3.4 Conclusions . 32

4 A Mathematical Model of Vulnerability 33
4.1 The basic model . 33
4.2 “Vulnerability to” and sensitivity 38
4.3 Adaptive Capacity . 42
4.4 Conclusions . 45

5 Dynamical Systems 47
5.1 Dynamical systems, classically 48
5.2 Coalgebras as general dynamical systems 50

5.2.1 Introduction . 51

i

ii CONTENTS

5.2.2 Breadth-first traversal of observation trees 54
5.2.3 Dynamical systems, behavioral equivalence, bismilarity 55

5.3 Abstract datatypes . 60
5.3.1 Abstract datatypes for dynamical systems 63

5.4 Trajectories of coalgebraic dynamical systems 66
5.4.1 Micro-trajectories . 66
5.4.2 Generalizing breadth-first traversal 68

5.5 General dynamical systems 73
5.6 Monadic systems and their trajectories 75
5.7 Conclusions . 80

6 Working with Monadic Systems 83
6.1 Monadic systems with input 83
6.2 Combining monadic dynamical systems 88

6.2.1 Parallel combination 89
6.2.2 Serial combination . 94
6.2.3 Input-output connections 107

6.3 Conclusions . 108

7 Monadic Systems and Vulnerability 111
7.1 Micro-trajectories as possible evolutions 111
7.2 Measures of harm on monadic structures 112
7.3 Computational testing using QuickCheck 116

7.3.1 Introducing QuickCheck 116
7.3.2 Testable conditions . 119
7.3.3 Example . 121

7.4 Conclusions . 128

8 Conclusions and Perspectives 131
8.1 A look back . 131
8.2 A look ahead . 134

Acknowledgements

My first thanks go to Rupert Klein for undertaking to supervise and energet-
ically seeing through the production of a somewhat unusual thesis, developed
under unorthodox circumstances by a sometimes difficult student.

I would like to thank all my teachers: I wish I had been a better stu-
dent. To Paul Flondor, in particular, I owe much, much more than excellent
mathematical instruction.

I am grateful to Richard Klein for the effort he has put in introducing me
to the concepts of vulnerability in the context of climate change research,
and for the patience with which he allowed himself to be exposed to their
translation in unfamiliar mathematical notation.

Many of the ideas in this work were presented in the Cartesian Seminar at
PIK: thanks are due to all the participants to these discussions, particularly
Nicola Botta, Carlo Jaeger, Jochen Hinkel and Rupert Klein.

Earlier drafts of this thesis have been carefully read by Daniel Lincke,
Sarah Wolf, and Patrik Jansson.

Special thanks to Jochen Hinkel for shielding me from administrative
duties while writing this thesis.

Thanks to Anne Biewald and Christian Elsner who helped with the sur-
prisingly difficult task of writing a German summary. Of course, without
Anne’s generous support throughout the past four years, there would have
probably been no thesis to summarize.

iii

Chapter 1

Introduction

“Translations can sometimes create a sense of explanation”, says Goldblatt
in his account of categorial logic ([17]), and that is perhaps most true of
translations in the language of mathematics. Writing a program, especially
in a high-level declarative language such as Haskell, is a similar exercise, and
it is the same resulting feeling of explanation which accounts for statements
common in the software world, such as “you only understand it if you’ve
implemented it”. Moreover, the understanding achieved can be more easily
shared with others by virtue of the fact that it is expressed in executable
form. For the non-specialist, it is usually easier to play around with a
program than with a theorem.

A recent example of using insights from functional programming to bet-
ter understand a “real-world” domain is the work on financial contracts of
Peyton-Jones and Eber described in [33]. Our work here aims to achieve
similar results in the interdisciplinary world of Climate Impact Research,
by focusing on the concept of vulnerability and the task of vulnerability
assessment in a computational context.

1.1 Vulnerability and Haskell

In the past decade, the concept of “vulnerability” has played an important
role in the fields such as climate change, food security or natural hazard
studies. Vulnerability studies have often been successful in alerting policy-
makers to precarious situations revealed by scientific analysis in these fields.
The importance of the concept in the particular field of climate change is
described, for example, as follows ([25]):

1

2 CHAPTER 1. INTRODUCTION

. . . Studies based primarily on the output of climate models tend to
be characterized by results with a high degree of uncertainty and
large ranges, making it difficult to estimate levels of risk. In addi-
tion, the complexity of the climate, ecological, social and economic
systems that researchers are modeling means that the validity of sce-
nario results will inevitably be subject to ongoing criticism. . . . Such
criticisms should not be interpreted as questioning the value of sce-
narios; indeed, there is no other tool for projecting future conditions.
What they do, however, is emphasize the need for a strong founda-
tion upon which scenarios can be applied, a foundation that provides
a basis for managing risk despite uncertainties associated with future
climate changes.
This foundation lies in the concept of vulnerability.

Unfortunately, this foundation has problems of its own. The definitions
of vulnerability differ across the fields mentioned, and even within any one
field there seem to be a bewildering multitude of definitions to choose from
(Thywissen, for example, summarizes thirty-five definitions of vulnerability
in [36]!).

The definitions usually proposed are not mathematical ones, and leave
quite a bit of room for interpretation. In the climate change community, a
particularly influential conceptualization of vulnerability is the one proposed
by the IPCC, which we describe in 3.3 together with three different studies
which apply it to the task of assessing vulnerability. As will be seen, each
of these studies uses its own “reading” of the IPCC definition, and while
none of them can be considered “wrong”, they are incompatible with one
another.

Nevertheless, there is a tantalizing similarity underlying the definitions
and the usage of “vulnerability”, at least in those studies which are attempt-
ing to “project future conditions” by using computational tools, and which
can thus be termed computational vulnerability assessment.

This is the same sort of similarity which emerges many times when writ-
ing computer programs: one finds oneself using the same computational
patterns over and over again, with small yet important differences. Invent-
ing the proper concepts and tools for describing these patterns as instances
of the same structure has been one of the main driving forces of computer
science. Structured programming, object-orientation, template program-
ming, can all be seen as increasingly sophisticated solutions to the problem
of generic programming.

Functional programming languages such as Haskell, with clean syntax,
staying close to the original mathematical notation from which they borrow
their expressive type systems and algebraic type classes, seem particularly
promising as candidates for reliable generic implementations.

1.2. ROAD-MAP 3

It seems therefore natural to try to apply the techniques used in writ-
ing generic programs to the problem of capturing the commonalities of the
various definitions and usages of vulnerability, at least those that appear
in computational vulnerability assessments. In doing so, we can hope to
reap the usual benefits of generic programming: we obtain a more robust
design, better code, and code reuse. Perhaps more significantly, we hope
to gain a better understanding of the concept of vulnerability itself, and
thus make an interdisciplinary contribution of some importance. Since this
understanding is, in final instance, expressed in mathematical terms, it can
be communicated unambiguously to the trained specialist. However, since
it is also implemented in working code, we can hope to convey at least some
of the consequences to the layman, by providing suitable examples.

This, then, is the idea of this work. The road to its realization is, how-
ever, quite long and not altogether straight. We have accordingly prepared
a road-map for the convenience of our fellow travellers.

1.2 Road-map

1. Experience shows that Haskell syntax is easily picked up by the non-
specialist or by programmers who have not seen Haskell code before,
so they are not the intended readership for our next chapter, “Math-
ematical Preliminaries and Notation”. It is also quite likely that the
specialists in vulnerability assessment are going to want to skip the
technically difficult details and concentrate more on the conceptual
understanding of vulnerability emerging from Chapters 3 and 4. For
this, an intuitive understanding of Haskell notation is entirely suffi-
cient. Similarly, programmers interested in knowing about the design
of software based on our model of vulnerability are going to want to
read, besides the two chapters just mentioned, Chapter 7, which re-
quires a working knowledge of Haskell (at the level of [1]), but they
don’t really need to read about coalgebras or the connections to cate-
gory theory.

The audience for this chapter consists of computer scientists who want
a refresher of these and similar subjects (monads, fixed points, fusion
theorems), and, most particularly, of mathematicians who are unfa-
miliar with Haskell. The latter are most at disadvantage: Haskell
notation has been designed to approximate usual mathematical nota-
tion, but the differences can be much more confusing to the trained
mathematician than to the layman, for in mathematics, perhaps more
than anywhere else, the saying of Flaubert holds: “le bon Dieu est dans
le detail”. Our preliminaries are designed to minimize this confusion,
by presenting familiar subjects in Haskell clothing.

4 CHAPTER 1. INTRODUCTION

2. Chapter 3, “Definitions of vulnerability”, consists of a close reading of
various definitions and examples of usage of vulnerability, in different
contexts. We encounter the expected “family resemblances”, but also
many puzzling differences, representing as many problems to be solved
by any attempt at providing a synthesis of these definitions.

We start by reading the natural language definition, as given by the
Oxford Dictionary of English, considering it likely that the technical
usage represents a refinement of the everyday one. We examine the
examples given, noting the relative character of vulnerability, its neg-
ative connotations, and its potential aspect.

The next section is devoted to the usage of vulnerability in Develop-
ment Studies. We take advantage of the synthetical effort made by
Calvo and Dercon in [4], which unifies a large number of disparate
studies in the field, on the basis of an axiomatic approach. We partic-
ularly note the usage of “vulnerability to”: in the Development Stud-
ies, one commonly says, for example, “vulnerability to poverty”. Thus,
one is vulnerable to potential harmful results. In the Climate Change
community, one typically says “vulnerability to climate change”, em-
phasizing the causes of the harmful results.

The subject of vulnerability in the context of climate change is treated
next, first by examining the most influential definition in the field, the
one proposed by the IPCC in its assessment report. Analysis of this
definition also involves looking at the related concepts of “sensitivity”
and “adaptive capacity”.

The somewhat problematic character of the IPCC definition is illus-
trated in the study of three computational vulnerability assessments,
which all attempt to operationalize this definition. The differences in
interpretation are pointed out, while at the same time continuing the
effort of uncovering the common structure of the various assessments.

3. Armed with the knowledge about the various facets of vulnerability
obtained in the previous chapter, we move on to the task of formulating
a unifying mathematical model. The fundamental idea expressed by
this model is that vulnerability is a measure of possible future harm:
the various studies we have seen differ as to how “possible future” is
expressed (deterministically, non-deterministically, or stochastically),
what counts as “harm” and how the various possible harms are to be
measured.

We return to the definitions and assessments of the previous chapter,
and translate them in terms of our model. In so doing, we refine
our model to represent related notions such as sensitivity or adaptive
capacity. In the process, we gain confidence that the model is indeed
capable of expressing all these variations. An interesting result is that

1.2. ROAD-MAP 5

the problem of “vulnerability to” uncovered in the previous chapter
can be explained in terms of the model: thus, the model is consistent
with common usage, and in a certain sense can be said to justify it.

The measure which is supposed to assess the possible future harms is
perhaps the main source of difference of the different assessments. The
mathematical formulation allows us to express a natural condition on
this measure, which can be used to uncover possible inconsistencies.

The translations of various examples in a common framework is inter-
esting in its own right, independent of the technical developments of
the next chapters. It is an illustration of how a mathematical model
can be used for the task of “meta-analysis”, which is of importance in
many projects involving vulnerability assessment.

4. The model of vulnerability as a measure of the harm or impacts suf-
fered along possible future evolutions raises the question of how to
compute these evolutions. In computational vulnerability assessment,
this is achieved by using complex models representing the climate,
ecological, social and economical systems. In the chapter “Dynami-
cal Systems”, we look for a generic way to compute these evolutions.
The problem is that the various dynamical systems used are of dif-
ferent types: discrete and continuous, deterministic, stochastic, non-
deterministic (scenarios), fuzzy, etc. and, importantly, combinations
of all these. Is there a common structure to all these systems? We look
at the definitions proposed in classical systems theory and computer
science, and at several examples. Finally, and perhaps luckily, we dis-
cover the class of monadic dynamical systems which is indeed general
enough to represent the models of interest in vulnerability assessment,
and which offers a uniform way of computing their trajectories.

5. In Chapter 6, “Working with Monadic Systems”, we build the in-
frastructure needed to use the generic trajectory computing functions
defined in the previous chapter. We define functions for transforming
systems with discrete or continuous input in monadic systems, and im-
plement the means for combining various monadic systems in order to
yield new monadic systems. In the end, we have the means for putting
systems of various types in series, in parallel, or in a feedback loop,
and the trajectories of the resulting systems are still calculated by the
same generic functions. This algebra of monadic systems is achieved
by using a surprisingly small number of combinators, and is the main
technical achievement of the thesis.

6. Finally, we return to the subject of vulnerability. Using monadic dy-
namical systems, we are able to give a surprisingly simple and general
implementation of the model of vulnerability developed in the first

6 CHAPTER 1. INTRODUCTION

part of the thesis. An important question we address regards the com-
patibility of the measures of vulnerability used in various studies. We
would like to know what changes if we replace some models used in
our assessment by others representing the same system, but having a
different type, say stochastic instead of deterministic. What can be
reused from the previous assessment? How can we compare the vari-
ous assessments resulting from using different vulnerability measures?
The answer to such questions is given in Section 7.2, where we define
the conditions of compatibility of vulnerability measures, and show
how to translate a measure defined for one type of system to another
type.

Combining systems, defining vulnerability measures, translating from
one type to another, are all complex tasks which leave a lot of room for
error. Fortunately, we can formulate correctness conditions which can
be automatically tested by software tools such as QuickCheck, and we
devote Section 7.3 to showing how that is done.

We conclude by showing how the model can be used in an idealized
example of a vulnerability assessment-like problem. This “toy ex-
ample” exhibits many of the features of full-blown vulnerability as-
sessments: possible evolutions given by combined systems of different
types, conflicting definitions of “harm”, partial ordering of vulnerabil-
ity measurements. Our analysis of the compromises that need to be
made between the conflicting goals, and the possible changes to the
problem that could lead to better results, have many parallels in the
“real-world” discussions on the impacts of climate change.

7. As usual, the end point of our journey turns out to be only the starting
point for many other possible travels. In the last chapter, “Conclu-
sions and Perspectives”, we briefly review some of the most important
landmarks seen on our way, and list some of the possible destinations
for the future.

Chapter 2

Mathematical Preliminaries
and Notation

2.1 Notation

Most of the mathematical concepts we shall use, such as function, strict
order relation, monad and so on, are easily represented computationally in
the Haskell programming language. We have therefore decided to adopt a
Haskell notation throughout. This has the advantage that there is no need
for a separate implementation of most concepts: the description we give is
the implementation and the files comprising this document are at the same
time the source code of our programs. The disadvantage is that Haskell
differs at several points from standard mathematical notation. To alleviate
the potential confusion caused by this, we present in this section a summary
of the most important differences.

1. Membership. Haskell is a typed language, so in most cases the mem-
bership relation is replaced by the “of type” relation, for example
n ∈ N is written n :: N. We will represent subsets of values of a given
type by lists, and use the standard Haskell elem function to express
membership of a value to a given list. As is common usage, we have
configured the typesetting program to print the standard membership
symbol ∈ for infix uses of elem. The names of types are capitalized,
thus we write a :: A for the membership of a to the type A. Haskell
allows polymorphic type assignment, for example [] :: [a] which can be
read “for any type a, [] denotes an element of type list of a, namely
the empty list”. As can be seen in this example, type variables are
written in lowercase and are implicitely universally quantified. The
Haskell type class system provides a way of restricting the domain of
quantification to those types which have been declared to be members
of a type class. For example

7

8CHAPTER 2. MATHEMATICAL PRELIMINARIES AND NOTATION

min :: Ord a ⇒ a → a → a

declares min to denote a value of type a → a → a for any type a on
which a total order has been defined (see below).

2. Functions. Functions f : A → B are represented in Haskell as
f :: A → B . Function application, f(a) is denoted by juxtaposition:
f a, the brackets being omitted.

3. Order relations. In Haskell, the types on which a total order has been
defined are grouped together in a type class Ord . To add some type
A to this group, one must provide an instance declaration defining (at
least) the relation 6:

instance Ord A where
a1 6 a2 = ...

The Haskell compiler generates the other relations <, > and > under
the assumption that the order is total.

We will be interested however more in partial orders, for which we
define a type class PartialOrd . In order to distinguish total orders
from partial orders typographicall, we will use the “squarish” symbols
v and w for partial orders.

4. Functors. Functors are represented in Haskell by type constructors,
and are written in uppercase. For example, the functor F A = 1+A
is called in Haskell Maybe, the result of applying it to an arbitrary
datatype A is accordingly written Maybe A. Just as with arbitrary
datatypes, variables of functor type are written in lowercase. Thus,
g :: Functor f ⇒ a → f a is read “for any type a and functor f , g
denotes a coalgebra of f with carrier a”. The namespaces of values and
types are disjoint, so in this example we can also write f ::Functor f ⇒
a → f a.

In Category Theory, the action of a functor F on an arbitrary function
g : A→ B is denoted F g : F A→ F B. Given a type constructor
F , representing a functor, Haskell cannot automatically generate the
extension of F to functions. This extension has to be explicitly pro-
vided by the user, by instanciating F as a member of the type class
Functor . The name of the associated operation is fmap. Here is, for
example, the function associated with the functor Maybe:

instance Functor Maybe where
fmap :: (a → b)→ Maybe a → Maybe b
fmap f Nothing = Nothing
fmap f (Just a) = Just (f a)

2.1. NOTATION 9

The programmer is responsible for veryfing that the defining properties
of a functorial operation are satisfied (fmap id = id and fmap (f ·g) =
fmap f · fmap g)

5. Natural transformations. As shown in [37], Haskell functions of type
alpha :: F a → G a correspond to natural transformations from the
functor F to the functor G , that is, for any x :: a → b we have that

fmap x · alpha = alpha · fmap x

(the first occurence of fmap x above has the type G a → G b, the
second F a → F b).

6. Cartesian products. The cartesian product of two sets, A×B is written
in Haskell (A,B). The projection functions are fst :: (a, b) → a and
snd :: (a, b)→ b. Given f :: a → b and g :: a → c, the function denoted
usually by < f, g > is written in Haskell pair (f , g) with the definition

pair :: (a → b, a → c)→ a → (b, c)
pair (f , g) a = (f a, g a)

Doing things component-wise is written cross and defined as

cross :: (a → b, c → d)→ (a, c)→ (b, d)
cross (f , g) = pair (f · fst , g · snd)

A number of properties hold for pair and cross, their usage is usually
signalled by the phrase pair calculus. For example,

pair (f , g) · h = pair (f · h, g · h) -- fusion
cross (f , g) · pair (h, k) = pair (f · h, g · k) -- absorption

7. Coproducts. The coproduct (the disjoint sum) of two sets, A + B is
represented in Haskell by the datatype Either A B , defined by the data
declaration data Either a b = Left a | Right b. Left and Right , the
two constructors, also play the role of the injections more commonly
called inl and inr . Given f ::a → b and g ::c → b, the dual construction
to the pair above, denoted by [f, g] in most mathematics texts, is called
case and is defined by

case :: (a → b, c → b)→ Either a c → b
case (f , g) (Left a) = f a
case (f , g) (Right c) = g c

In Haskell, case is provided by the standard prelude in curried form
under the name either .

A related function is the conditional :

10CHAPTER 2. MATHEMATICAL PRELIMINARIES AND NOTATION

cond :: (a → Bool , a → b, a → b)→ a → b
cond (p, f , g) a = if p a then f a else g a

The conditional satisfies a number of properties, for example

cond (const False, f , g) = g
cond (const True, f , g) = f
cond (p, f , g) · h = cond (p · h, f · h, g · h)

2.2 Monads

An important structure in Category Theory in general, and in Computing
Science in particular, is that of a monad.

Definition 1 (Monad) A monad is a triple (M,η, µ) consisting of

1. an endo-functor M : C −→ C

2. a natural transformation η : Id −→M

3. a natural transformation µ : MM −→M

such that
µ · ηM = µ ·Mη = id
µ · µM = µ ·Mµ

Haskell provides a Monad class, which, given the above, has a somewhat
surprising definition. Given that, as explained above, in Haskell functors are
represented by instances of the class type Functor and natural transforma-
tions are expressed by polymorphic functions, one would expect something
like the following:

class (Functor m)⇒ Monad m where
η :: x → m x
µ :: m (m x)→ m x

satisfying the axioms of functoriality, naturality and the monad equations:

fmap id = id
fmap (f · g) = fmap f · fmap g
fmap f · η = η · f
fmap f · µ = µ · (fmap (fmap f))
µ · η = id
µ · fmap η = id
µ · fmap µ = µ · µ

We could call this definition “classical”.

2.2. MONADS 11

The choice made by the Haskell implementors is different:

class Monad m where
return :: x → m x
(B) :: m x → (x → m y)→ m y

which are subject to the following three requirements:

(return x) B f = f x
mx B return = mx
(mx B f) B g = mx B h

where
h x = (f x) B g

The operator B is called the monadic bind operator.
The two definitions are equivalent, in the sense that if one has fmap, η

and µ as in the “classical” version, one can define

return = η
mx B f = µ ((fmap f) mx)

and the resulting return and B statisfy the three requirements from the
Haskell version. Perhaps more surprisingly, return and B can also be used
to define appropriate fmap, η and µ, which verify all the seven axioms, by

fmap f = (B(return · f))
η = return
µ = (Bid)

This is the reason for the Haskell definition: it requires the programmer to
check fewer axioms.

In many cases, it is more natural to use C which is just the flipped version
of B and is defined automatically by Haskell from it. Some properties of the
bind operator are best shown by using the definition of C in terms of µ and
fmap: one which we will have the occasion to use in a later chapter is:

Proposition 1 (fmap and C) We have

(f · g) C mx = f C (fmap g mx)

Proof.

(f · g) C mx
= { Definition of C in terms of µ }

(µ · fmap (f · g)) mx
= { fmap functor, composition }

(µ · fmap f) (fmap g mx)
= { Definition of C in terms of µ }

f C (fmap g mx)

�

12CHAPTER 2. MATHEMATICAL PRELIMINARIES AND NOTATION

2.2.1 The Kleisli construction: monads and monoids

There exists yet a third, equivalent, definition of a monad class:

class Monad m where
unit :: x → m x
(�) :: (y → m z)→ (x → m y)→ (x → m z)

such that

unit � f = f
f � unit = f
(f � g) � h = f � (g � h)

The operator � is called Kleisli composition, and the categorial construction
which has inspired this Haskell definition is called the Kleisli construction.

We can obtain the elements of the Haskell definition in terms of the
Kleisli one by

return = unit
(Bf) = f � id

and we can go the other way around by

unit = return
g � f = (Bg) · f

The axioms of the Haskell definition are as many as those of the Kleisli one,
and they are arguably somewhat more awkward. However, the monadic bind
operator has proven more useful in practice than the Kleisli composition
operator, and has been given precedence.

For us, it is important to note that, if M is a monad, then the set
Hom (A,M A) of arrows from A to M A is a monoid with respect to the
Kleisli composition. The axioms given above state the associativity of the
operator, and the fact that unit is indeed appropriately named.

2.3 Examples

In this section, we present a number of monads, which we shall use exten-
sively in the sequel.

2.3.1 Identity.

The identity functor is represented in Haskell as

newtype Id a = Id a

2.3. EXAMPLES 13

The new type Id a is isomorphic to a: in one direction, the isomorphism is
given by the constructor Id , in the other by its inverse

unwrapId :: Id a → a
unwrapId (Id a) = a

Unfortunately, we cannot make Id a inherit the properties of a: in particu-
lar, we have to define

instance Eq a ⇒ Eq (Id a) where
Id x ≡ Id y = x ≡ y

The identity functor is a monad:

instance Functor Id where
fmap f (Id a) = Id (f a)

instance Monad Id where
return a = Id a
(Id a) B f = f a

The return of the Id monad is (isomorphic to) the identity function, and
the (B) operator is (isomorphic to) functional application.

2.3.2 Sets and lists.

The powerset functor, P , is a monad:

instance Monad P where
return a = {a }
as B f = ∪{f a | a ∈ as }

However, this is not a Haskell code fragment! Implementing the power-
set functor is not a trivial exercise. The solution adopted in Haskell, for
instance, restricts the domain of P to ordered sets, for efficiency reasons.
Unfortunately, one loses thus the ability to declare P as an instance of the
Monad class. It is tempting to introduce P using characteristic functions as
a way of representing sets:

newtype P a = P (a → Bool)

but we still lose the ability to make P an instance of the monad class: the
∪ operation is not, in general, implementable.

The solution we have adopted is to use lists as representations of sets.
The datatype of lists is predefined in Haskell as an instance of the Monad
class, with

14CHAPTER 2. MATHEMATICAL PRELIMINARIES AND NOTATION

instance Monad [] where
return a = [a]
as B f = concat [f a | a ← as]

The main difference between lists and sets is, of course, that lists may contain
duplicates. The Haskell function nub removes duplicates and can be used
to “regularize” the representation of sets of types which are instances of the
typeclass Eq . Another difference is that equality of sets does not imply the
equality of their list based representations (which depends on the order of
appearance of elements in the lists). In the sequel, we shall not have to use
the equality test ≡ for sets, and therefore we sidestep this difficulty.

2.3.3 Simple probability distributions

A simple probability distribution is one with a finite (or at most countable)
support, so what we want is something like the following:

type Supp a = [a]

to represent the support, and

type Prob = Double

newtype SimpleProb a = SP (a → Prob,Supp a)

to represent the distribution. Unfortunately, we can not declare this new
type to be an instance of the monad class, since we can only define the return
and (B) operations on types which are instances of Eq . (For a similar reason,
the Haskell implementation of the powerset functor, Set , cannot be declared
to be an instance of the Monad type class.)

Therefore, we shall adopt the representation used by Erwig in [12]:

newtype SimpleProb a = SP [(a,Prob)] deriving Show

unwrapSP :: SimpleProb a → [(a,Prob)]
unwrapSP (SP ds) = ds

Values sp of type SimpleProb a are required to satisfy

sum (map snd (unwrapSP sp)) = 1.0

The support of a simple probability distribution ds is the set of values in
the list map fst ds, but now we need to ensure that there are no values
associated to zero probability:

2.3. EXAMPLES 15

supp :: Eq a ⇒ SimpleProb a → [a]
supp (SP ds) = nub (map fst (filter notz ds))

where
notz (x , p) = p 6≡ 0

The main difference between the list-based representation and the functional
one is that we can now have several values associated with the same element,
and values associated to zero probability (which are therefore outside the
support). This makes it necessary to introduce a function that normalizes
the representation:

normalize :: Eq a ⇒ SimpleProb a → SimpleProb a
normalize (SP ds) = SP (map (pair (id , f)) (supp (SP ds)))

where
f a = sum [p | (x , p)← ds, x ≡ a]

We can now define SimpleProb as an instance of the typeclasses Eq and
Monad .

instance Eq a ⇒ Eq (SimpleProb a) where
sp1 ≡ sp2 = and (map (∈ ps2) ps1)

where
ps1 = unwrapSP (normalize sp1)
ps2 = unwrapSP (normalize sp2)

instance Monad SimpleProb where
return a = SP [(a, 1.0)]
SP (ds1) B f = SP (concat (map g ds1))

where
g (a, p) = map h (unwrapSP (f a))

where
h (x , p ′) = (x , p ′ ∗ p)

The monadic bind operator expresses the conditional probabilities of the
elements in the target of f , depending on the distribution on the elements in
the source of f . For finite, identical source and target, f can be represented
as a stochastic matrix, and the bind operator gives the transition of the
associated Markov chain.

2.3.4 Simple fuzzy sets

Fuzzy sets are generalisations of characteristic functions, taking values in
[0, 1] instead of {0, 1}. A fuzzy subset of some set a is therefore a function
f :: a → [0, 1].

As in the case of probability distributions, we are actually going to imple-
ment and use simple fuzzy sets, fuzzy sets with finite or countable support.
The definitions parallel those given above for SimpleProb.

16CHAPTER 2. MATHEMATICAL PRELIMINARIES AND NOTATION

type UI = Double -- unit interval

newtype SimpleFuzzy a = SF [(a,UI)] deriving Show

unwrapSF :: SimpleFuzzy a → [(a,UI)]
unwrapSF (SF fs) = fs

fsupp :: Eq a ⇒ SimpleFuzzy a → [a]
fsupp (SF fs) = nub (map fst (filter noz fs))

where
noz (a, x) = x 6≡ 0

fnormalize :: Eq a ⇒ SimpleFuzzy a → SimpleFuzzy a
fnormalize (SF fs) = SF (map (pair (id , f)) (fsupp (SF fs)))

where
f a = maximum [x | (b, x)← fs, b ≡ a]

instance Eq a ⇒ Eq (SimpleFuzzy a) where
sf1 ≡ sf2 = length fs1 ≡ length fs2 ∧

and (map (∈ fs1) fs2)
where
fs1 = unwrapSF (fnormalize sf1)
fs2 = unwrapSF (fnormalize sf2)

instance Monad SimpleFuzzy where
return a = SF [(a, 1.0)]
SF (fs1) B f = SF (concat (map g fs1))

where
g (a, x) = map h (unwrapSF (f a))

where
h (b, x ′) = (b,min x x ′)

The monadic bind operator of the fuzzy set monad is similar to the one of
the simple probability monad, in that it represents the fuzzy membership
function of the results of f given a fuzzy uncertainty in the argument of f .

2.4 Recursive datatypes, algebras, coalgebras.

Haskell allows (in fact, encourages) the definition of recursive datatypes such
as

2.4. RECURSIVE DATATYPES, ALGEBRAS, COALGEBRAS. 17

data N = Zero | Succ N

the natural numbers, or

data List1 a = Wrap a | Cons (a,List1 a)

the datatype of non-empty lists. The most popular such datatype is that
of lists, predefined in the standard prelude, which uses a more convenient
notation:

data [a] = [] | a : [a]

The semantics of these datatype declarations are given by the fixed points
of the functors read from the right-hand sides as, respectively: FNat X =
1 + X , FList1 A X = A + A × X , FList A X = 1 + A × X . The last two
functors are parametrized on the type A.

In Haskell, these functors are represented by the declarations

newtype FNat x = N (Either () x)
newtype FList1 a x = L1 (Either a (a, x))
newtype FList a x = L (Either () (a, x))

(The last declaration corresponds to a curried version of the constructors of
[a], and therefore is only isomorphic to the functor underlying [a]).

together with instance declarations:

instance Functor FNat where
fmap f (N (Left ())) = N (Left ())
fmap f (N (Right x)) = N (Right (f x))

instance Functor (FList1 a) where
fmap f (L1 (Left a)) = L1 (Left a)
fmap f (L1 (Right (a, x))) = L1 (Right (a, f x))

instance Functor (FList a) where
fmap f (L (Left ())) = L (Left ())
fmap f (L (Right (a, x))) = L (Right (a, f x))

The expression “the fixed point” is justified in the category CPO (pointed
complete partial orders) which underlies much of the semantics of Haskell, or
in Rel (the category of relations). There, these functors have only one fixed
point. In Set , the situation is somewhat more complicated: the functors
we consider have a least fixed point and a different greatest fixed point.
Moreover, there exist functors which have a fixed point in CPO , but not a
greatest fixed point in Set (for example, F X = A × X).

18CHAPTER 2. MATHEMATICAL PRELIMINARIES AND NOTATION

If F is a functor, then a function of type F X → X is called an F-
algebra, or, if there is no danger of confusion, just algebra, and X is called
the carrier of the F -algebra. The data declarations above introduce the
following algebras:

[Zero,Succ] :: FNat N → N
[Wrap,Cons] :: (FList1 a) (List1 a)→ List1 a
[[], (:)] :: (FList a) [a]→ [a]

A morphism between two F -algebras f :: F X → X and g :: F Y → Y is a
function h :: X → Y such that

h · f = g · fmap h

If T is the least fixed point of a functor F , then the F -algebra that witnesses
the isomorphism alpha ::F T → T has the following property: for any other
F -algebra f ::F X → X there exists a unique function h ::T → X such that

h · alpha = f · fmap h

That is, there exists a unique morphism from alpha to any other F -algebra:
alpha is an initial object in the category which has as objects F -algebras
and as arrows the morphisms between them. Because of this, alpha is called
an initial algebra. The algebras introduced by the data declarations above
witness unique fixed points in CPO , therefore also least fixed points, and
are therefore all initial.

The initiality of these algebras is what guarantees that the common fold
functions actually exist. These are functions which construct the unique
morphism given an arbitrary algebra. For example:

foldn :: (FNat x → x)→ N→ x
foldn f Zero = f (N (Left ()))
foldn f (Succ n) = f (N (Right (foldn f n)))

foldl1 :: (FList1 a x → x)→ List1 a → x
foldl1 f (Wrap a) = f (L1 (Left a))
foldl1 f (Cons (a, as)) = f (L1 (Right (a, foldl1 f as)))

foldl :: (FList a x → x)→ [a]→ x
foldl f [] = f (L (Left ()))
foldl f (a : as) = f (L (Right (a, foldl f as)))

Examples of fold functions are ubiquitous in programming: the classic intro-
duction to functional programming [3] and its successor [1] contain hundreds
of examples. For instance:

2.4. RECURSIVE DATATYPES, ALGEBRAS, COALGEBRAS. 19

plus m = foldn f
where
f (N (Left ())) = m
f (N (Right x)) = Succ x

max1 = foldl1 f
where
f (L1 (Left a)) = a
f (L1 (Right (a, x))) = max a x

sum = foldl f
where
f (L (Left ())) = 0
f (L (Right (a, x))) = a + x

The uniformity of these fold functions virtually guarantees that their cre-
ation can be described generically. Indeed, the fixed point of a functor can
be introduced by the declaration:

newtype (Functor f)⇒ FixP f = In (f (FixP f))

The initial algebra associated with FixP f is In. Thus, the following iso-
morphisms hold:

N ≡ FixP FNat
List1 a ≡ FixP (FList1 a)
[a] ≡ FixP (Flist a)

The initiality of In implies that

fold f · In ≡ f · fmap (fold f)

for any algebra f. This is not a computational characterization, but we can
use the inverse of the isomorphism In:

out :: (Functor f)⇒ FixP f → f (FixP f)
out (In x) = x

and define the fold function generically:

fold :: (Functor f)⇒ (f a → a)→ FixP f → a
fold f = f · fmap (fold f) · out

We have:

20CHAPTER 2. MATHEMATICAL PRELIMINARIES AND NOTATION

fplus m = fold f
where
f (N (Left ())) = m
f (N (Right n)) = In (Right (In (Right n)))

fmax1 = fold f
where
f (L1 (Left a)) = a
f (L1 (Right (a, x))) = max a x

fsum = fold f
where
f (L (Left ())) = 0
f (L (Right (a, x))) = a + x

An initial algebra such as In is always an isomorphism, but in CPO and
Rel , though not in Set , the inverse of In is a final coalgebra. Coalgebras are
the duals of algebras: thus, arrows f :: X → F X for some functor F . A
morphism from f :: X → F X to g :: Y → F Y is a function h :: X → Y
such that:

g · h = fmap h · f

A coalgebra is final if it is a terminal object in the category which has as
objects coalgebras of F and as arrows morphisms between them. Thus, the
finality of out implies that for any g ::x → f x there exists a unique function
h :: x → FixP f such that:

out · h = fmap h · g

As in the case of initial algebras, this characterization can be turned into
a computationally adequate definition by using the fact that the inverse of
out is In:

h = In · fmap h · g

The pattern of constructing, for any coalgebra, the corresponding function
h is called unfold and is defined by:

unfold :: (Functor f)⇒ (a → f a)→ a → FixP f
unfold f = In · fmap (unfold f) · f

unfold f is characterized by the universal property :

φ = In · fmap φ · f ≡ φ = unfold f

2.4. RECURSIVE DATATYPES, ALGEBRAS, COALGEBRAS. 21

As a simple example, we present two programs related to the Collatz con-
jecture. This conjecture states that the following process terminates for any
given argument n:

coll :: Integer → Integer
coll n = if n ≡ 1 then 1 else coll m

where
m = next n

next n = if even n then n ‘div ‘ 2 else (3 ∗ n + 1)

In other words, ∀n, coll n = 1.
Then, counting the number of steps the argument requires in order to

reach 1 is given by:

countN :: Integer → FixP FNat
countN = unfold f

where
f n = if n ≡ 1 then (N (Left ()))

else (N (Right (next n)))

and collecting the trajectory required to reach 1 is given by:

trjL1 :: Integer → FixP (FList1 Integer)
trjL1 = unfold f

where
f n = if n ≡ 1 then (L1 (Left 1))

else (L1 (Right (n,next n)))

Probably the best way to understand these programs is to rewrite them in
terms of the original data declarations:

count :: Integer → N
count n = if n ≡ 1 then Zero

else Succ (count (next n))

trj :: Integer → List1 Integer
trj n = if n ≡ 1 then (Wrap 1)

else Cons (n, trj (next n))

The generic definitions are perhaps more of interest in formulating, prov-
ing and applying properties pertaining to all recursive datatypes, allowing,
among others, to implement compiler optimization techniques (fusion, de-
forestation, etc.), or specify properties of dynamical systems and abstract
data types as in Chapter 5, than for writing programs that are meant to
be understandable and maintainable. The fusion theorem for unfold , for
example, is:

22CHAPTER 2. MATHEMATICAL PRELIMINARIES AND NOTATION

Theorem 1 (Unfold fusion) Let f ::x → F x, h ::y → F y and g ::y → x .
Then

unfold f · g = unfold h ⇐ f · g = fmap g · h

The proof is a simple application of the unicity of unfold :

In · fmap (unfold f · g) · h
= { fmap functor }

In · fmap (unfold f) · fmap g · h
= { hypothesis }

In · fmap (unfold f) · f · g
= { definition of unfold f }

unfold f · g

Therefore, by the universal property of of unfold , unfold f ·g = unfold h.
Since lists in Haskell are not given by FixP definitions, but introduced

by more convenient special syntax, the unfold function operating on them
is written explicitely.

unfoldl :: (x → Bool)→ (x → a)→ (x → x)→
x → [a]

unfoldl p f g x = if p x then []
else (f x) : unfoldl p f g (g x)

and the fusion theorem translates to

unfoldl p f g · h = unfoldl p ′ f ′ g ′

⇐
p ′ = p · h
f ′ = f · h
h · g ′ = g · h

We shall use this result in Chapter 5.

Chapter 3

Definitions of Vulnerability

In this chapter, we review some representative definitions of vulnerability.
We start with the ordinary language definition, and then move on to the
more technical ones which appear in the literature on Global Environmental
Change.

3.1 The Oxford Dictionary of English definition

The latest edition of the Oxford Dictionary of English gives the following
definition for “vulnerable” [35]:

vulnerable (adj.):

1. exposed to the possibility of being attacked or harmed, either physi-
cally or emotionally: we were in a vulnerable position | small fish are
vulnerable to predators

2. Bridge (of a partnership) liable to higher penalties, either by conven-
tion or through having won one game towards a rubber.

Vulnerability according to the ODE is thus the condition of being vul-
nerable, and “vulnerable” is an adjective, a property that is predicated of
something. This something is, in the context of the definition, the entity
exposed to the possibility of harm. In the first example sentence, it is the
position, in the second example sentence it is the small fish, and in the
context of the game of Bridge, it is the partnership. The first of these is
somewhat surprising: one would expect “vulnerable” to be predicated of the
subject of the sentence, “we”, rather than of the position. However, this is
an example of a transferred epithet (a hypallage), and the sentence can be
interpreted as “we were in a position in which we were vulnerable”.

The second example sentence introduces an adjective complement : the
idea of vulnerability to something. The small fish are exposed to the pos-
sibility of being harmed or attacked by the predators. Here, “vulnerable”

23

24 CHAPTER 3. DEFINITIONS OF VULNERABILITY

becomes a binary predicate, since it is relative not just to the entity ex-
posed to the possibility of harm, but also to the cause of that harm. This
is the typical usage of vulnerable in the context of Climate Change studies:
“vulnerable to climatic change”.

As a final remark, we note the potential aspect of vulnerability. The
entity that is said to be vulnerable is not “exposed to harm”, but “exposed
to the possibility of harm”.

3.2 Vulnerability in the context of poverty analy-
sis

In Development studies, the term “vulnerability” has gained prominence
after being used in the 2000/1 World Development Report, where it was
defined as “a measure of resilience against a shock – the likelihood that a
shock will result in a decline in well-being” ([39], p.139). Vulnerability is
here no longer a boolean predicate, but a measure which in general is going
to take values other than True or False.

We can interpret this definition as a specialisation of the ordinary lan-
guage usage, in the following way. The general idea of “being attacked or
harmed” is replaced by the more specialised “suffers a decline in well-being”.
The “likelihood of . . . ” refines perhaps the idea of “exposure to the possi-
bility of . . . ”, suggesting that zero likelihood represents impossibility, and
that harm might be more or less possible.

Many other conceptualisations have been proposed in order to “opera-
tionalize” the World Bank definition, or to account for aspects that were
felt lacking, such as taking into account the magnitude of the decline in
well-being, not just the likelihood of that decline. In [4], Calvo and Dercon
propose the following definition of vulnerability to poverty as a synthesis of
these various efforts:

vulnerability is the magnitude of the threat of future poverty
where we have

1. The “magnitude of the threat” combines the likelihood of suffering
poverty in the future, as well as the severity of the poverty in that
case.

2. Vulnerability is “an ex-ante statement about future poverty”, that is,
it is a statement about an uncertain future.

3. This definition is meant to apply only to a particular situation: “[. . .]
we are referring to vulnerability to poverty. Individuals face several
other threats such as illness, or crime, or loneliness. Yet we focus on
poverty in particular, as this was also the focus other authors arguably

3.2. VULNERABILITY IN THE CONTEXT OF POVERTY ANALYSIS25

had in mind when using the term ‘vulnerability’. We thus understand
expressions such as ‘vulnerability to an epidemic’ as a shortcut to
‘vulnerability to poverty due to an epidemic’. ”

The last remark is interesting in the light of the second example sentence
in the Oxford Dictionary: “small fish are vulnerable to predators”. If we
take some notion of “harm” that befalls the fish as analogous to poverty,
then Calvo and Dercon seem to suggest that this sentence is an abbrevia-
tion of “small fish are vulnerable to harm due to predators”. In the Oxford
Dictionary, “vulnerable to” was relative to the factors that induced the po-
tential harm, here, “vulnerable to” is relative to the potential harm induced
by the given factors.

Calvo and Dercon propose a set of requirements on a measure of vulner-
ability, which further elucidate their definition:

1. Vulnerability measures a set of outcomes across possible states of the
world. These states of the world are assumed to be in finite number
and come with associated probabilities.

2. Poverty is defined in terms of a threshold, which has the same value
in all states of the world.

3. The states of the world in which the outcomes are above the threshold
do not enter in the vulnerability measurement (this is called the “axiom
of focus”).

4. Monotonicity requirements: the likelier the outcomes below the thresh-
old, and the greater their distance to the threshold, the greater the
vulnerability.

A measure of vulnerability to poverty which satisfies these requirements
has then the form:

V = sum [p i ∗ v (x i) | i ← [1 . .n]]

where

n :: N -- the number of possible states of the world
p :: N→ [0, 1] -- p i is the probability of state i
v :: R→ R -- a monotonically decreasing and convex function
x i = (y i) / z -- relative distance to threshold of outcome i
y :: N→ R -- y i is the outcome in state i if below the

-- threshold, 0 otherwise
z :: R -- the threshold

This measure generalises many of those proposed in the literature on Devel-
opment Studies.

26 CHAPTER 3. DEFINITIONS OF VULNERABILITY

3.3 The IPCC definition of vulnerability

Within the Climate Change research community, the most influential defi-
nition of “vulnerability” is given by the Intergovernmental Panel of Climate
Change in its assessment reports. The most recent of them, the Fourth
Assessment Report [32], contains the following:

vulnerability : the degree to which a system is susceptible to and
unable to cope with, adverse effects of climate change, including
climate variability and extremes. Vulnerability is a function of the
character, magnitude and rate of climate variation to which a system
is exposed, its sensitivity, and its adaptive capacity.

As in the previous section, vulnerability is not a boolean predicate, but
one admitting degrees: “the degree to which ...”. We can interpret the IPCC
definition as a specialisation of the ODE one: there is a notion of “harm”,
phrased as the occurence of “adverse effects” with which the system is “un-
able to cope”. The potentiality aspect is expressed by “susceptible” (versus,
for example, “affected”). The role of climate change (“including climate
variability and extremes”) is that of an adjective complement, similar to
the “predators” to which the small fish were said to be vulnerable. Here,
the notion is of vulnerability to climate change. This is in contrast to the
vulnerability to poverty defined in the previous section: climate change is
the cause of harm here, poverty was the harmful effect there.

On the whole, there is an intention of making the context of vulnerability
statements more precise than in the previous two sections. This is also
apparent from the evolution of this definition, compare for example an earlier
version (in the Second Assessment Report [38]): “vulnerability defines the
extent to which climate change may damage or harm a system”.

Along the same lines, the second sentence makes explicit some of the de-
terminants of vulnerability. Besides a characterization of the climate change
factors that vulnerability is considered relative to, one should also take into
account the “sensitivity” and the “adaptive capacity”, defined as follows.

sensitivity : the degree to which a system is affected, either adversely
or beneficially, by climate variability or change. The effect may be
direct (e.g., a change in crop yield in response to a change in the
mean, range or variability of temperature) or indirect (e.g., damages
caused by an increase in the frequency of coastal flooding due to
sea-level rise).

3.3. THE IPCC DEFINITION OF VULNERABILITY 27

adaptive capacity : the ability of a system to adjust to climate change
(including climate variability and extremes) to moderate potential
damages, to take advantage of opportunities, or to cope with the
consequences.

In the following, we present three representative assessments of vulnera-
bility to climate change, all of which take the IPCC definitions as a starting
point.

3.3.1 Vulnerability study of O’Brien et al. in India, 2004

In [31], O’Brien et al. describe their approach as “operationalizing the
IPCC definition”. The entities whose vulnerability to climate change was
assessed were the agricultural units within the 466 (in 1996) districts of
India: the same kind of calculation was done for each of them. Vulnerability
was computed as the sum of two indices: an index of climate sensitivity
under exposure, and another of adaptive capacity. Details about the data
sources and the normalisation procedures used to compute each of the indices
involved are given in [24].

The index of climate sensitivity under exposure results, in turn, from the
average of two other indices: the monsoon dependency index and the dryness
index. Monsoon dependency is considered proportional to the percentage of
water received in the monsoon season (the four consecutive months with the
largest amount of rainfall in the year). The dryness index is computed as
a ratio of average potential evapotranspiration to precipitation. The data
used to obtain these indices is produced by a downscaled general circulation
model, HadRM2, and calibrated with measurements available for a period
of thirty years (1961-1990).

The model HadRM2 is actually run twice: once, with control parameters
set at the measured levels of 1990, another time with parameters consistent
with a doubling of the CO2 levels in the atmosphere. The point-wise differ-
ences between the two runs are combined with the available measured data
to obtain a final data set from which the two indices are calculated. This
procedure is meant to give an estimate of the influence of climate change
on the agricultural units in the region: the farmers in the regions with the
highest monsoon dependency index are those most likely to develop farming
practices which depend on the amount of rainfall received in the monsoon
season, thus they are also the most likely to be affected by climate induced
variations of rainfall. Variables describing climate change are estimated to
lie within the range of values obtained when the model is driven by concen-
trations of CO2 levels in the atmosphere between current (when the study
was undertaken) and double the current levels.

The adaptive capacity is calculated as the average of (normalized) values

28 CHAPTER 3. DEFINITIONS OF VULNERABILITY

of several other indices, classified in biophysical (depth of soil cover, severity
of soil degradation, amount of replenishable groundwater available annu-
ally), socioeconomic (adult literacy rates, degree of gender equity, percent-
age of workforce employed in agriculture, percentage of landless laborers in
the agricultural workforce), and techological (net irrigated area as percent-
age of net sown area, the Infrastructure Development Index of the Center
for Monitoring of Indian Economy).

It is argued that these indices provide an estimate of the entities’ adap-
tive capacity. For example, when the adult literacy rates are higher, available
information can be used to “moderate potential damages, take advantage of
opportunities, or cope with the consequences” of climate change.

It is interesting to note that the indices which determine the adaptive
capacity are measured at their present levels, whereas those that represent
the sensitivity under exposure are calculated from estimated future values.
Thus, in terms of the dictionary definition, the sensitivity under exposure
would represent the potential aspect, the “possibility of harm”, while the
adaptive capacity would serve to characterize the “current position”.

3.3.2 The ATEAM project

Within the ATEAM project (Advanced Terrestrial Ecosystem Analysis and
Modeling) [29] the IPCC definition was taken as the starting point for an
assessment of the vulnerability of various regions of Europe “to the loss
of particular ecosystem services, associated with the combined effects of
climate change, land use change, and atmospheric pollution”. (Here we see
“vulnerability to” used both with respect to the criteria of harm, “loss of
ecosystem services”, as above in the context of Development Studies, and
with respect to the potential causes of this harm, “climate change, land
use change, and atmospheric pollution”, as common in the Climate Change
community.)

In ATEAM, the second sentence of the IPCC definition is interpreted as
asserting a functional dependence between vulnerability and exposure, sen-
sitivity and adaptive capacity. In fact, the authors considered that exposure
and sensitivity determine the potential impacts, and that they only enter
the computation of vulnerability via these potential impacts. Vulnerability
is then a function of the potential impacts and adaptive capacity only.

An impact was defined in terms of differences in ecosystem service levels
in a region. The ecosystem services considered were agricultural (farmer
livelihood, consumer food quality, support of rural communities, etc.), bio-
diversity related (number of plant species, bird species, etc.), energy or
biomass related (carbon storage, energy supply), water related (drinking
water, irrigation, hydro-power, etc.) and forestry (wood production and
supply, carbon storage). The regions considered covered the entire territory
of the European Union and not all ecosystem services were present in each

3.3. THE IPCC DEFINITION OF VULNERABILITY 29

region.
A level was computed for each ecosystem service, as the value of a rele-

vant indicator, possibly with changed sign, so that the largest value repre-
sented the best ecosystem service level. For example, the “carbon storage”
ecosystem service level was given by the net biome exchange, which was
provided by the LPJ vegetation model.

The changes in the values of these levels were computed using various
computer models for the evolution of the variables associated with the level
indicators. For example, the evolution of the net biome exchange was com-
puted using the LPJ model. The evolution of some indicators were computed
using several models: evolution was considered non-deterministic. Several
possibilities of evolutions were computed even for those indicators for which
only one model was used, because each model was run several times with
input data and parametrisations compatible to each of the four SRES sto-
rylines in [30].

For each resulting possible evolution, a potential impact for each ecosys-
tem service level present in a region was computed. The potential impact
was just the difference between (normalised) values of current and future
ecosystem service levels. The normalisation was done in terms of the max-
imal level of the ecosystem service level in a cluster of regions which were
neighbour of the region considered.

In order to compute the second argument of the vulnerability function,
adaptive capacity, a distinction was made between “overarching manage-
ment choices” and the “capacity of regions for macro-scale adaptation”.
The first one was represented by the use of the four SRES storylines, which
had been used in the development of the possible evolutions of service indica-
tors. The second one was computed for each region as an “adaptive capacity
index” in a manner similar to that used by O’Brien et al. described in the
previous section. The adaptive capacity index of a region was computed
using a fuzzy aggregation of the values of several indices, including GDP
per capita, female activity rate, income inequality, number of patents and
age dependency ratio. Again, computational models were used to estimate
the evolution of the adaptive capacity index in every region, according to
each of the four SRES storylines.

After having computed the two arguments of the vulnerability function,
the authors remark:

The last step, the combination of the potential impact index (PI) and
the adaptive capacity index (AC), is however the most dangerous
step, especially when taking into account our limited understand-
ing of adaptive capacity. We therefore decided to create a visual
combination of PI and AC without quantifying their relationship.

We note that this can also be interpreted by choosing the function that

30 CHAPTER 3. DEFINITIONS OF VULNERABILITY

gives the vulnerability as the identity function on [−1, 1] × [0, 1] (since
the PI is a difference of normalised positive index and the adaptive capacity
index is also normalised). For example, we may have only a partial order
on the results of vulnerability assignements:

(pi1 , ac1) < (pi2 , ac2) = pi1 < pi2 ‘and ‘ ac1 < ac2

3.3.3 The Luers et al. method for quantifying vulnerability

In [28], Luers et al. start from “a general definition of vulnerability as sus-
ceptibility to damage”, which accords with the IPCC definition (“degree to
which the system is susceptible [...] to adverse effects”) and then “propose a
new approach to quantifying vulnerability that integrates four essential con-
cepts: the state of the system relative to a threshold of damage, sensitivity,
exposure and adaptive capacity”. The approach is then applied to assess
the “vulnerability of wheat yields in the Yaqui Valley, Mexico, to climate
variability and change, and market fluctuations”.

Similar to the Development Studies approach, Luers et al. introduce a
measure of well-being, and damage is considered to occur if the value of well-
being falls below a given threshold. The well-being depends on the values
of a “stressor”: there is a parabolic function W :: X → R+ which, given
the value of a stressor x :: X returns the resulting value of the well-being,
w x > 0. The set of stressor values is considered a subset of R. The threshold
well-being is denoted w 0 :: R, and the stressor values are considered to be
distributed according to a given probability distribution p :: X → [0, 1].

For a given stressor value, x , the sensitivity of the entity to that stressor
is defined as the absolute value of the derivative of w computed at x :

sensitivity x = abs (deriv w x)

Since w is a parabolic function, it has only one optimum which we denote
by (x opt ,w opt). The derivative of w at this optimum is, of course, zero,
and the sensitivity function thus defined induces the same preorder on X
as the functions: λx → abs (x opt − x) and λx → abs (w opt − (w x)) (we
can drop the abs from the latter if the optimum point is a maximum). In
other words, sensitivity can be seen as a kind of measure of the distance
from optimality: the farther from optimality, the greater the sensitivity.

The vulnerability of an entity to a stressor distributed according to p is
then computed as the expected value of the ratio between sensitivity and
well-being relative to the threshold:

vulnerability p = sum [(sensitivity x / (w x / w 0)) ∗ p x | x ← X]

In the deterministic case, in which the value x of the stressor is known, so
that p x = 1 and p x ′ = 0 for x ′ 6≡ x , we have that the value of vulnerability ,
given by

3.3. THE IPCC DEFINITION OF VULNERABILITY 31

sensitivity x / (w x / w 0)

is again a measure of the distance from the optimal point. In the general
case, vulnerability gives us a measure of the expected distance from the
optimum. The induced preorder is independent of the threshold w 0 .

The form of this vulnerability measure is very similar to the one given
by Calvo and Dercon, discussed in 3.2. The function v used there depended
on values of the outcome, not of a stressor, in other words, it was a function
of r = w x / w 0 , and not of x . However, if we are just interested in the
vulnerability “ranking”, that can be just as well computed using the distance
of w x from w opt instead of the sensitivity, that is, we could take v to be

v r = (w opt − r ∗ w 0) / r

(we assume that w opt is a maximum). This would violate the assumption
of focus that Calvo and Dercon put forward: v r > 0 even when r > 1, that
is, when the outcome is above the threshold.

The problem with this analysis is that the threshold value plays different
roles in the development measures described above and here. The measure
of Luers et al. is, in fact, consistent with the Calvo and Dercon measure if
one considers the threshold value to be w opt , and not w 0 . The latter plays
here just the role of a scaling factor, unimportant if one is interested only
(or mostly) in the induced preorders. The threshold value which satisfies
the focus axiom and is consistent with the rest of the requirements of Calvo
and Dercon is, in fact, w opt .

The last “essential concept” in the framework proposed by Luers et. al,
adaptive capacity, is defined as “the extent to which a system can modify its
circumstances to move to a less vulnerable condition”, which is consistent
with the IPCC characterization as “the ability of a system [...] to moderate
potential damages”. The following measure of adaptive capacity is then
proposed:

adaptive capacity = v e − v m
where
v e = ... -- current vulnerability
v m = ... -- potentially “better” vulnerability

that is, adaptive capacity is measured as the difference in the vulnerability
under existing conditions and under the less vulnerable conditions to which
the system could possibly shift. It is assumed that v m < v e. The authors
argue that the IPCC characterization of vulnerability as “a function of [...]
adaptive capacity” only applies to the potentially minimal vulnerability, that
is, it considers only v m = v e − adaptive capacity , and not the existing
vulnerability, v e.

In the application of this approach to the assessment of the vulnera-
bility to climate change of farmers in the Yaqui valley, the well-being was

32 CHAPTER 3. DEFINITIONS OF VULNERABILITY

defined as the annual wheat yield obtained as a function of average tem-
perature during the growth season. (A farmer in this study was identified
with a farming unit, i.e. a 30 m × 30 m parcel of agricultural land.) The
function coefficients were obtained by regression on a data set consisting of
yield and temperature values coming from satellite observations during four
years. Statistical analysis of a time series of temperatures recorded in the
Yaqui valley in a 30 years interval was used to determine the probability
distribution of temperature values for the next year, and this was used in
order to compute the vulnerability of each farmer. The difference between
the vulnerability values thus computed and the best values of vulnerabil-
ity actually observed in the past data was offered as a measure of adaptive
capacity.

3.4 Conclusions

We have examined a number of definitions of vulnerability, focusing on the
ones most important to applications in the field of Climate Change, but
seeing also the natural language definition given by the Oxford Dictionary,
and the technical one as it appears in the context of Development Studies.
There are some common features, chief among which is that vulnerability is
viewed as a measure of a potential harm, but also a number of differences:

1. differences in the way “vulnerability to” is interpreted in the various
contexts: in the field of Climate Change and in the Oxford Dictio-
nary, “vulnerability to” refers to the causes of the potential harm;
within Development Studies, it refers to the harm or adverse effects
themselves;

2. differences in the the entitities that vulnerability is predicated of:
sometimes, vulnerability is said to be of a state, or of a position (as in
the OED), other times of an individual or a region;

3. differences in which the various determinants of vulnerability, such as
“adaptive capacity”, are defined and measured, even in the context of
the same field.

In the next chapter we shall develop a mathematical model to capture
the common features of these definitions, help in understanding the differ-
ences, and serve as a starting point for building software for computational
vulnerability assessment.

Chapter 4

A Mathematical Model of
Vulnerability

In the previous chapter, we have reviewed a number of definitions of “vulner-
ability”, as used in various contexts: in everyday language, in Development
Studies and within the Climate Change community. In the following, we
shall attempt to synthetize the common aspects of these definitions in a
computational model. This will serve as a starting point for developing
software for vulnerability assessment tasks, and help clarify the differences
between the various usages of vulnerability and related terms.

4.1 The basic model

As we have seen, common to all the definitions and uses of vulnerability
presented in the previous chapter is (at least) the idea of potential negative
outcomes, formulated by the Oxford Dictionary as “exposed to the possibil-
ity of being harmed”. A first difficulty in modeling comes from having to
deal with the concept of “possibility”. There are several alternatives: for
example, one could try to formulate vulnerability within standard modal
logic with possibility. We have chosen here to consider a temporal view of
possibility: something is possible if it could happen in the future. This in-
terpretation is consistent with the example of vulnerability assessments we
have examined: computer programs, scenarios, or some form of statistical
analysis are used to determine the possible future evolutions, or character-
istics of these future evolutions.

We have also seen that these future evolutions are only considered for a
limited time horizon (in Development Studies, this horizon is typically of one
year, in Climate Change it is 100 years). Correspondingly, in the following
we assume that we are interested in possible future evolutions over a given,
fixed, time interval.

Consider a set States of “states of the world”, or “states of affairs”. Then

33

34 CHAPTER 4. A MATHEMATICAL MODEL OF VULNERABILITY

we model possibility by a function which tells us, given a state, which are
the possible future evolutions of the world:

possible :: States → [Evolutions]

Thus, possible s is a set (represented by a list) of possible future evolu-
tions, which all start in s. The states that we consider are assumed to be
such that we can find out, examining a pair (s, s ′), all that has happened
in the evolution of the world between s and s ′. In particular, if we consider
continuous evolutions over a time t , then from s and s ′ we can obtain the
entire trajectory as a function trj :: [0, t] → States such that trj 0 = s and
trj t = s ′. Thus, Evolutions is just a type alias for (States,States):

type Evolutions = (States,States)

With this interpretation of possibility, we can translate “exposed to the
possibility of being attacked or harmed” as “among the possible future evo-
lutions there is at least one in which harmful condition (or an attack) has
actually occurred”. The simplest way to model this is by a predicate on the
set of evolutions which detects the occurrence of a harmful condition:

harm :: Evolutions → Bool

The extension of the predicate harm, i.e. the set of those pairs (s, s ′) for
which harm s ≡ True, represents the set of evolutions of the world in which
a harm has befallen the entity under consideration, and not the pair or the
state of the world itself. In other words, the definition of harm presupposes
the selection from all the elements that compose a state of the world of those
which describe the condition of an entity which might be exposed to harm.

Finally, we can use the Haskell prelude function any , which checks if
there exists an element of a given list which fulfills a given predicate, in
order to attempt a first definition of vulnerability:

vulnerable :: States → Bool
vulnerable = any harm · possible

We can also consider a more explicit version, in which harm and possible
are given as parameters to the function:

vuln :: (States → [Evolutions]→ -- possible
(Evolutions → Bool) → -- harm
States → Bool -- resulting predicate

vuln p h = any h · p

The extension of the predicate vulnerable is represented by the states in
which the entity under consideration might come to harm (or be attacked)

4.1. THE BASIC MODEL 35

in a possible future evolution. As such, we have a mathematical analogue
of the transferred epithet we found in the first example given by the OED:
“we were in a vulnerable position”, which seemed to assign the exposure to
harm to the “position”, instead of to “us”.

The use of “vulnerable” in the game of bridge also accords with this
interpretation. The entity exposed to the possibility of harm is the part-
nership, the harm being the loss incurred by the greater (double) penalties.
The states of affairs in which such a possibility exists are those which occur,
for example, after the partnership has won a game towards the rubber.

The boolean view of vulnerability has the advantage of simplicity, and of
capturing an important structural aspect of all the vulnerability definitions
that we have seen, but it cannot acount for the various uses of the concept
which we have examined in the previous chapter. It is clear that we would
like, not just in assessing vulnerability in technical situations, but also in
natural language, to be able to compare the vulnerability of different entities,
or of the same entity in different situations. We would like a model of
vulnerability which goes beyond “all or nothing”, or “true or false”, allowing
us to talk, as required for example by the IPCC definition, of degrees of
vulnerability.

To guide us in going from a boolean view of vulnerability to a more
nuanced one, we can try to find a mathematical analogue of the structural
pattern expressed by any harm · possible. For a given state s, possible s is a
set of possible outcomes, harm is a function assigning values to the elements
of that set, and any “measures” the set of resulting values with a boolean
value. The immediate analogue of aggregating values of possible outcomes
is, in mathematics, the expected value of a random variable.

Assume that possible s returns a simple probability on the set of evolu-
tions, instead of just a set of possible evolutions. That is, we take possible s ::
SimpleProb Evolutions. The predicate harm can then be seen as a ran-
dom variable, say harm :: Evolutions → R. The simple probability distri-
bution describing the values taken by harm along the possible evolutions
is fmap harm (possible s). Finally, instead of combining the values of a
boolean predicate by taking, as it were, the maximum of these values using
any , we instead compute the expected value of the resulting simple proba-
bility distribution:

stoch vuln s = expected (fmap harm (possible s))
where

expected (SP xs) = foldl f 0 xs
where
f (x , p) avg = x ∗ p + avg

This is, in fact, the formula used by Calvo and Dercon, as described in 3.2
above. Indeed, the system they use describes discrete one-step stochastic
evolutions, so that fixing the initial state we have that

36 CHAPTER 4. A MATHEMATICAL MODEL OF VULNERABILITY

type Evolutions = States

A possible evolution from the given fixed state is given by the immediate
next state. The function possible is stochastic, that is

possible :: States → SimpleProb States

States are represented by natural numbers, that is

type States = N

and the harm or damage measures the distance below the given threshold
z :

harm i = v (x i)

This stochastic interpretation of vulnerability is a generalisation of the
boolean one, at least if we interpret values of 0 as False, and any others
as True. Indeed, since we assumed that we work with finite sets represented
as lists, we can take

list2SP :: [a]→ SimpleProb a
list2SP as = SP [(a, r) | a ← as]

where r = 1 / length as

Then, we have

vuln p h s = expected (fmap harm ′ (list2SP (possible s))) > 0
where harm ′ e = if harm e then 1.0 else 0.0

However, it is not the case that all vulnerability measurements are express-
ible in terms of expected values of damage or harm. For example, this was
not the case in the studies carried out by ATEAM or O’Brien et al. described
above. We can expect the set of possible evolutions to have a different struc-
ture from SimpleProb Evolutions. It might be Id , or [a], or SimpleFuzzy or
any combination of these. A general representation which includes all these
cases is F Evolutions where F is a type constructor for which an instance
declaration instance Functor F where... has been defined.

The type of the function possible becomes then:

possible :: States → F Evolutions

Similarly, we do not want to assume that the function measuring the harm
or damages along a possible evolution takes real values, but we do want
them to be comparable:

harm :: Evolutions → V

4.1. THE BASIC MODEL 37

where V is a partially ordered type, that is one for which an instance dec-
laration instance PartialOrd V where... has been supplied.

Finally, we replace the functions any and expected by general “measures”
of the sets of results given by applying harm to the possible evolutions:

measure :: F V →W

where, again, W is an instance of PartialOrd .
The intended meaning of this measure imposes the following constraint:

we expect that if the values in the structured set xs :: F V increase, but
the structure does not change, then the measure of the result should not
decrease. It is here that the functoriality of F comes into its own: without
the concept of a functor, it would be quite difficult to express precisely what
it means for the values to increase, while the “structure does not change”.
As it is, we require:

The monotonicity condition for vulnerability measures:
For all increasing functions inc :: V → V and for all xs :: F V , we have:

measure xs v measure (fmap inc xs)

Assembling all these elements, we obtain the basic model for vulnerability:

Definition 2 (Vulnerability model) With the notation above, we define
vulnerability to be the function given by

vulnerability = measure · fmap harm · possible

This expresses in a very general fashion the idea, common to all defini-
tions of “vulnerability” that we have seen, of a measure of possible harm.

Remarks

1. In the stochastic case we have F = SimpleProb, V = R, W = R,
and measure = expected . In the boolean case, F = [], V = Bool ,
W = Bool , and measure = maximum.

2. The monotonicity condition for vulnerability measures is satisfied by
both maximum and expected . To see that it is not vacuous, consider
the seemingly inocuous measure of “likeliest harm”. Formally, F =
SimpleProb and

measure :: SimpleProb V → V
measure (SP xs) = snd (maximum (map swap xs))

where
swap (x , p) = (p, x)

The swap is necessary because in Haskell the order on pairs is the
lexicographical ordering. Take

38 CHAPTER 4. A MATHEMATICAL MODEL OF VULNERABILITY

xs = SP [(10, 0.4), (0, 0.3), (1, 0.3)]
inc :: N→ N
inc 0 = 1
inc (n + 1) = n + 1

The function inc is obviously non-decreasing, but measure xs = 10 >
measure (fmap inc xs) = 1. Thus, the measure “likeliest harm or im-
pact” fails the monotonicity condition and cannot be used as a vulner-
ability measure. In 7 we show how to check the monotonicity condition
using QuickCheck .

3. The two examples of types of Evolutions given above are themselves
constructed functorially from States. In fact, we would probably reject
a representation for Evolutions which is not so constructed. That
means that in general Evolutions is going to take the form G States
for some functor G and we’ll have

possible :: States → F (G States)

That is, possible is a coalgebra of the functor F ·G with carrier States.
Coalgebras are extensively applied in the study of dynamical systems
and modal logics, and indeed the intuition behind the possible func-
tion is that of a dynamical system (which describes possible future
evolutions). We develop this point of view further in the next chapter.

4.2 “Vulnerability to” and sensitivity

The basic model of vulnerability we have developed in the previous section
covers the common aspects we have seen when examining various definitions
from Chapter 3. In particular, it can be specialized to obtain the vulnera-
bility definition of Calvo and Dercon. This definition was quite similar to
the one given by Luers et al., so it seems natural that the Luers formula, in
turn, is obtained as a special case.

The transitions of the state of the world were described there as being
induced by a stressor, element of a type X , so that every possible evolution
was associated to one value x :: X . The harm registered along such an
evolution was a function of just this x which was influencing the evolution.
Since the states of the world play no role in this description, we can take
States = () and Evolutions = (X , ()). There was a probability distribution
xp ::SimpleProb X given, and the magnitude of vulnerability was computed
as the expected value of the random variable given by the function f x =
sensivity x / (w x / w 0). Putting it all together we have

4.2. “VULNERABILITY TO” AND SENSITIVITY 39

luers vuln = measure · fmap harm · possible
where
possible :: ()→ SimpleProb (X , ())
possible () = fmap (λ(x , p)→ ((x , ()), p)) xp
harm (x , ()) = sensitivity x / (w x / w 0)
measure = expected

We can see here that the computation of sensitivity affects the way that the
damage or the harm is estimated. In the formulation of Calvo and Dercon,
the impact or damage was given by a term similar to the one given here as
1 / (w x / w 0), an estimate of the distance below the threshold which was
nondecreasing with respect to this distance. The Luers formula no longer
displays this monotonicity: one could have an increase in the distance below
the threshold, and yet a smaller estimate of harm, because of a corresponding
decrease in sensitivity.

In other words, the estimate of the harm suffered by the entity considered
is no longer just a function of the impacts, for example the distance below
a threshold, but also of the sensitivity to the stressor associated with those
impacts. The reason given for this by Luers et al. is that what is computed
by this formula is “vulnerability to stressors such as climate change”, and the
sensitivity function measures the influence of the stressors on the evolution
of the system. Thus, the sensitivity, like the estimation of the impacts, can
be measured along a given evolution:

sensitivity :: Evolutions → V1

impacts :: Evolutions → V2

harm :: Evolutions → V
harm = combine · pair (impacts, sensitivity)

where V1 ,V2 ,V are ordered types.
The idea that sensitivity measures the influence of the factors of interest

on the potential harm assessed by the vulnerability measure can help us
translate the prey-predators example given in the Oxford Dictionary: “small
fish are vulnerable to predators”. We can assert this sentence in a context
or state of the world s if among the possible evolutions the fish are, say,
wounded by the predators. That is, we check each possible evolution for
the case in which the fish have been wounded, but also for whether these
wounds have been caused by the predators. Thus, we assume the existence
of two predicates on the set of possible evolutions:

wounded :: Evolutions → Bool
predators :: Evolutions → Bool

40 CHAPTER 4. A MATHEMATICAL MODEL OF VULNERABILITY

The first of these represents the analogue of the impacts above, the second
measures (in a boolean way) the contribution of the factors of interest to the
impacts, and corresponds thus to the sensitivity . The intended combination
is in this case logical conjunction:

harm = combine · pair (impacts, sensitivity)
where
impacts = wounded
sensitivity = predators
combine = and

In O’Brien et al., leaving aside for now the adaptive capacity index, we have
that vulnerability is equated with the climate sensitivity index. The model
HadRM2 which was used to compute the possible evolutions was driven by
the given initial state and by a chosen concentration of CO2 levels in the
atmosphere, i. e. it had the form:

model :: States → Concentration → Evolutions
model s c :: Evolutions

Concentrations were expressed in terms of multiples of the standard con-
centration levels measured when the study was conducted, so that a con-
centration of c meant a level c times bigger than the standard one. The
study assumed that c could take values in the range of [1.0, 2.0], thus, if we
discretize this interval with a step of size 0.1, we have that

possible s = [model s c | c ← [1.0, 1.1 . . 2.0]]

The sensitivity associated to a possible evolution was given by a normal-
ization of the difference between the values taken by certain variables of
interest, such as rainfall or evapotranspiration, along this evolution and
those taken along the standard evolution given by std = model s 1.0. Thus,
the computation had the form:

sensitivity ev = normalize (rfall ev − rfall std)

Finally, as explained in the previous chapter, the harm sustained by the
entities of interest is proportional to this sensitivity, for example, taking
k > 0:

harm ev = k ∗ sensitivity ev

The model was run only twice: once with the standard value c = 1.0 and
once with the maximal value c = 2.0. This was because the vulnerability
measure used was maximum and it was assumed that the sensitivity of
evolutions driven by larger concentrations of CO2 levels will be larger, in

4.2. “VULNERABILITY TO” AND SENSITIVITY 41

other words, that the function sensitivity ·model s is monotonous. Indeed,
with this assumption we have:

vuln s = maximum (map harm (possible s))
≡ { definition of possible }

vuln s = maximum (map harm [model s c | c ← [1.0, 1.1 . . 2.0]])
≡ { definition of map }

vuln s = maximum [harm (model s c) | c ← [1.0, 1.1 . . 2.0]]
≡ { definition of harm }

vuln s = maximum [k ∗ sensitivity (model s c) |
c ← [1.0, 1.1 . . 2.0]]

≡ { sensitivity . model s monotonous }
vuln s = k ∗ sensitivity (model s 2.0)

≡ { definition sensitivity }
vuln s = k ∗ normalize (rfall (model s 2.0)− rfall (model s 1.0))

In the study conducted by ATEAM, sensitivity was a measure of the
variation of the levels of ecosystems services, having the form:

Evolutions = (States,States)

sensitivity (s0 , s1) = ecoLevel s1 − ecoLevel s0

Of course, as explained in the previous chapter, the actual operation used
was more complicated than (−), involving a local averaging of the variables
involved, etc. and the result of this operation was a multidimensional index,
not a real number. As in O’Brien’s study, the variables of interest were com-
puted running models with initial states and with various inputs considered
to describe the exposure to climate change: thus, the variations of these
variables were taken as a good measure of the influence of these inputs on
the evolution of the entities considered.

Potential impacts were then calculated as normalized sensitivities, in
a manner consistent with viewing them as negative effects on the entity
considered, so that

potential impacts ev = normalize (sensitivity ev)
harm ev = k ∗ (potential impacts ev)

for some k > 0.
We summarize the conclusions of this section in the following
Remarks.

1. In all the examples we have seen, sensitivity measures the influence
of factors of interest (be they predators or climate change) along a

42 CHAPTER 4. A MATHEMATICAL MODEL OF VULNERABILITY

potential evolution, and the value of sensitivity enters the assessment
of harm sustained along that evolution. The value of harm is either
computed directly from the sensitivity, as in the studies of O’Brien and
ATEAM, or combined with measurement of impacts, as in the study
of Luers or in the Oxford Dictionary of English. In the latter case, the
combination of the impacts and sensitivity is commutative: multiplica-
tion in Luers, logical conjunction in the ODE. The symmetry between
impact measurements and sensitivity measurements is very similar to
the symmetrical way in which the expression “vulnerability to” is used:
Calvo and Dercon, who do not consider specific factors that influence
the stochastic evolution of the system, say “vulnerability to poverty”,
where poverty can be regarded as the impacts or the harm suffered;
O’Brien and ATEAM, who compute harm directly out of sensitivity,
talk about “vulnerability to climate change”, that is, vulnerability to
those factors of interest whose contribution is measured by sensitivity.
Luers et al., who have both impacts and sensitivity, use “vulnera-
bility to stressors” whose effects are measured by sensitivity most of
the time, but slip without comment into “vulnerability to poverty” or
“vulnerability to food insecurity” when relating their work to existing
literature. In a certain sense, the model of sensitivity outlined in this
section justifies, or at least serves to explain, this usage.

2. When interested in assessing vulnerability to some factors of interest,
then a measure of the contribution of these factors to potential harm
may allow us, as in the O’Brien study, to reduce the number of po-
tential evolutions to be considered. Often, it is difficult to measure
the contribution of these factors on the resulting harm, but one can
measure their influence on the evolution itself, and eliminate those evo-
lutions on which this influence is negligible. This is consistent with the
IPCC definition, where sensitivity is a measure of the “the degree to
which a system is affected, either adversely or beneficially, by climate
variability or change”.

3. In some cases, sensitivity is used in an implicit way: a number of
evolutions are modeled, and it is assumed that the resulting impacts
are largely influenced by the factors of interest, e.g. climate change.

4.3 Adaptive Capacity

The major obstacle in carrying out a vulnerability assessment by applying
the formula

vulnerability s = measure (fmap harm (possible s))

4.3. ADAPTIVE CAPACITY 43

is, of course, that the set of possible evolutions is usually not computable.
We have seen in the previous section that, when considering vulnerabil-
ity to some factors of interest, we may be able to reduce, sometimes even
drastically, the number of evolutions needed to compute the vulnerability.
This was achieved by discarding the evolutions which were not at all, or
insufficiently influenced by the factors of interest.

In this section, we describe a means of achieving a similar result, thinning
the set of results produced by possible s, by considering the evolutions from
the point of view of the entity under consideration.

The studies of vulnerability in the context of climate change which were
examined in the previous chapter generally make use of the assumption
that there are a number of “standard” scenarios which describe the possible
evolutions of the climate. These scenarios are either summarized in the
SRES storylines, as assumed in the study conducted by ATEAM, or derived
from statistical data, as in the Luers et al. assessment, or both, as in the
case of the study undertaken by O’Brien et al. These standard evolutions
can be thought of as describing the possible evolutions at a macro scale, or
with a lower degree of resolution.

Let us assume that the actual set of possible evolutions can be obtained
from these standard evolutions by taking into account the actions of the
entity considered. In particular, we want to consider the case in which each
of the possible evolutions can be represented as a modification of a standard
one depending on the course of action taken by the entity.

Formally, let Actions denote the type of actions or courses of action
which the entity considered might take. In general, not all elements of
Actions are available to the entity in a given context or state of the world
s. For example, the set of potential investments is usually represented by
R, but the investments which can actually be carried out in a given context
are limited by the available capital. We can represent the possibilities of
actions of the entity in a given context by a function

doable :: States → G Actions

where G is a functor. doable s represents the structure of actions which may
be undertaken in context s.

Let the standard evolutions be given by a function of the same kind as
possible, but possibly returning a different structure of potential evolutions:

standard :: States → H Evolutions

Each standard evolution may be modified by the actions of the entity. Let
⊕ :: H Evolutions → G Actions → F Evolutions be the operation which
computes the resulting set of evolutions, that is

possible s = (standard s)⊕ (doable s)

44 CHAPTER 4. A MATHEMATICAL MODEL OF VULNERABILITY

For example, if F = H = G = [] and every action a :: Actions of the entity
can modify an evolution according to a function f ::Evolutions → Actions →
Evolutions, we have that

possible s = [f e a | e ← standard s, a ← doable s]
= (standard s)⊕ (doable s)
where
xs ⊕ ys = [f x y | x ← xs, y ← ys]

Then:

vulnerability s = measure (fmap harm (possible s))
≡ { Express possible evolutions in terms of standard ones }

vulnerability s = measure (fmap harm ((standard s)⊕
(doable s)))

≡ { introduce g, ⊗ explained below }
vulnerability s = (std measure (fmap harm (standard s)))
⊗ (g (doable s))

≡ { introducing stdVulnerability and adaptiveCapacity }
vulnerability s = (stdVulnerability s)⊗ (adaptiveCapacity s)

We have assumed that the functions measure and harm “distribute”
over the computation of ⊕, so that the vulnerability can then be obtained
as a measure of the potential harm registered along standard evolutions,
combined with the measure of the local effects due to the actions of the
entity. This term corresponds to what has been called “adaptive capacity”
in the studies we have examined. Thus we have shown

Theorem 2 (Adaptive Capacity) With the notation above, if for all he ::
H Evolutions and ga :: G Actions

measure (fmap harm (he ⊕ ga)) = (std measure (fmap harm he))
⊗ (g ga)

then

vulnerability s = (stdVulnerability s)⊗ (adaptiveCapacity s)

where

stdVulnerability = std measure · fmap harm · standard

and

adaptiveCapacity = g · doable

4.4. CONCLUSIONS 45

1. In the study of Luers et al., “adaptive capacity” was obtained as the
difference between two values of vulnerability: the “current” value
of vulnerability and a past “optimal” one. This corresponds to the
computation above, with ⊗ = + and the standard evolution taken to
be the best evolution observed in the past.

2. In the study of O’Brien et al., “adaptive capacity” was a measure of the
current state of the farming units under consideration from the point
of view of their ability to adapt to future impacts, thus, a measure
of the actions or courses of action available to them. The adaptive
capacity index was subtracted from the macro-level climate sensitivity
index, which, as we have seen in the previous section, corresponds to a
vulnerability computation in which the values of harm are proportional
to the sensitivity. Thus, in the formula above, the climate sensitivity
index stands for stdVulnerability and ⊗ = −.

3. In the study conducted by ATEAM, “adaptive capacity” was measured
in a similar manner to the O’Brien study, therefore a measure of the
“doable” actions. The last step, of combining the potential impacts,
which can be understood as an indicator of standard vulnerability,
with the adaptive capacity, was not undertaken: thus, ⊗ was left to
the user of the assessment results.

Defining adaptive capacity as a measure of the influence of the actions
or courses of action of the entity considered on vulnerability can also be
seen as a mathematical formulation of the IPCC definition, especially if one
consideres that the effect of these actions on vulnerability is expressed by
“adjusting to climate change (including climate variability and extremes),
moderating potential damages, taking advantage of opportunities, or coping
with the consequences”.

Within the climate change community, adaptive capacity is used to ac-
count for the lack of predictive models for the complex systems (especially
the social systems) involved. However, as we have seen, the emphasis put
on adaptive capacity in climate change vulnerability assessments can also
be justified computationally: adaptive capacity is what allows us to actu-
ally compute the vulnerability by reducing the set of possible evolutions to
manageable proportions.

4.4 Conclusions

In this chapter we have presented a mathematical model for vulnerability
which captures the commonalities of the definitions and uses of vulnerability
previously examined. The model expresses the idea that vulnerability is a
measure of potential harm, generalizing the expected value models of Calvo
and Dercon or Luers et al.

46 CHAPTER 4. A MATHEMATICAL MODEL OF VULNERABILITY

Additional concepts, such as sensitivity or adaptive capacity, refine our
measurements of potential harm. Sensitivity, for example, is a way of taking
into account the influence of factors of interest along a potential evolution, al-
lowing us to model “vulnerability to” these factors (a very important aspect
in climate change studies). Additionally, sensitivity may lead to a reduction
of the computational effort, by eliminating from the structure of possible
evolutions those which are not influenced (significantly) by the factors of
interest.

A reduction of the computational effort can also be achieved by using a
characterization of the initial state from the point of view of the actions avail-
able to the entity and their influence on the potential harm, and combining
it with a vulnerability measured along a structure of standard evolutions.
This usage of “adaptive capacity” is justified if the distributivity condition
given above is fulfilled.

The computation of possible evolutions is complicated by the need to
model the interactions between different types of systems: non-deterministic
systems representing scenarios, deterministic models of physical processes or
stochastic systems resulting from data analysis. The combination of such
systems is an important topic of the next chapters.

Chapter 5

Dynamical Systems

In the previous chapter, we have modeled vulnerability as a measure of the
potential future evolutions starting from a given state. In computational
vulnerability, these future evolutions are described by using models of the
various systems involved, which usually have heterogenous types. Indeed, it
is a consensus in the Global Change and Sustainability Science communities
that assessment of vulnerability in these fields can only be done by focusing
on social-ecological systems, defined as “systems that include societal (hu-
man) and ecological (biophysical) subsystems in mutual interaction” ([13]).
Such a complex system will replace the abstract possible function used in the
previous chapter, providing the available information about the evolution of
the system states.

The current emphasis in computational vulnerability assessment is on
the usage of low and intermediate complexity models of the subsystems
involved. That is, models which typically take minutes to run on modern
PCs, in contrast, for example, with current state-of-the-art simulations of
the climate system, which can take months to run on the fastest available
parallel machines. The computational effort in vulnerability assessments
arises mainly because of the interactions between the systems involved, and
from the need to explore several scenarios of possible evolutions.

In order to assist the vulnerability assessment task, a software framework
must allow the user to put together complex systems from simpler ones, to
combine different types of systems and to take advantage of existing models.
The design of such a framework is the subject of the next two chapters. We
start by investigating the mathematical notion of “dynamical system”. We
then attempt to find the class of dynamical systems which represents the
“minimal generality” necessary to represent the models used in practice, and
which is closed with respect to the typical ways in which these models are
combined.

The class of dynamical systems we settle on is that of “monadic systems”.
The next chapter then analyses various combinations of these systems, show-

47

48 CHAPTER 5. DYNAMICAL SYSTEMS

ing that they do indeed give rise to new monadic systems. We conclude with
a discussion of the limitations of monadic systems.

5.1 Dynamical systems, classically

The usual way of defining a system in the fields of Engineering is in terms of
the actions of a monoid on a set. A standard example is offered by Manfred
Denker in [11] (page 4, my translation):

Definition 3 (Classical dynamical system) Let T be a semigroup with
unit element e and X a non-empty set. The tuple (X ,T) is called a dy-
namical system if there exists an associative map

X × T −→ X
(x, t) −→ tx

for which the unit e acts as identity, that is, when the following two
conditions hold:

(t1x, t2) −→ t2(t1x) = (t2t1)x and ex = x

By currying the map X × T → X , we obtain the somewhat simpler
equivalent definition:

Definition 4 (Classical dynamical system, equivalent to 3) Let (T ,+, 0)
be a monoid and X an arbitrary set. A dynamical system is a monoid mor-
phism from (T ,+, 0) to (X → X , ·, id), i.e. a function

φ :: T → (X → X)

such that

φ 0 = id
φ (t 1 + t 2) = φ t 2 · φ t 1

The set X is called the state space, an element x :: X is called a state of
the system. The set T is usually intended to represent time, being usually
R or N, but it is important to understand that the elements of T are to
be thought of as time intervals or durations, not as clock or calendar time.
That is, φ t x represents the state of the system after t units of time since
it was in state x .

If T is a monoid such as R or N, then fixing x0 ::X , we can compute the
trajectory of the system ‘starting’ in x0 as the graph of the function of time
flip φ:

trj x0 = {(t , φ x0 t) | t ∈ T }

5.1. DYNAMICAL SYSTEMS, CLASSICALLY 49

Of course, if, for example, T = R, the subset of trj x0 associated to negative
elements of T will represent the past evolution of the system. For the case
in which T = N, we can use a list instead in order to define the trajectory:

[φ x0 n | n ∈ N]

The graph above can be obtained by pairing every element of the list with
its index.

A discrete dynamical system is one for which T = N or T = Z.
If T = N, then denoting f = φ 1, we have

φ n = fn

The function f is called the transition function of the system. When T = N,
the transition function is often identified with the system, since, by the above
equation, any endo-function f uniquely determines a φ.

If T = Z, the monoid morphism condition implies that the transition
function is an isomorphism, with inverse φ (−1):

φ 1 · φ (−1) = φ (−1) · φ 1 = φ 0 = id

In the following, we shall consider mainly the case T = N (and non-
isomorphic transition functions).

In this classical setting, different types of system are distinguished by the
existence of certain structures on X . Thus, in order to define linear systems,
X must be a vector space, for stochastic systems we must have a probability
space on X , for non-deterministic systems X must be a powerset, and so on.
However, this structure on the state space is not sufficient to determine the
type of the system. For example, for a liniar system, the transition function
must be a liniar map, in other words an endo-map in Vect K , the category
of vector spaces over a given field K .

Similarly, the powerset structure on X does not guarantee that the sys-
tem is a non-deterministic one. Consider, for instance, the identity function
on P X , the powerset of X . Intuitively, we would view this as the transition
function of a deterministic system, whose states happen to be represented by
subsets of X . The transition function of a non-deterministic system should
be formulated in terms of a relation, that is, of a function which gives us for
a given state a set of possible next states:

nondet :: X → P X

The transition function would then be given by

φ 1 xs = ∪{nondet x | x ∈ xs }

Similarly, we would not view the identity function on SP X as the transi-
tion function of a stochastic system, but as that of a deterministic system

50 CHAPTER 5. DYNAMICAL SYSTEMS

whose states happen to be represented by simple probability distributions.
A stochastic system should have be formulated in terms of a function which
tells us, given the current state, what the probability distribution of next
states is, that is, should have the signature:

stoch :: X → SP X

In particular, if X is finite, stoch could be represented as a stochastic matrix.
These and many other examples have led in Computer Science to the

definition of dynamical system as coalgebras, that is, arrows of the form
X → F X for some functor F . In the cases above, for F = Id we obtain a
deterministic system, for F = P a non-deterministic system, and for F = SP
a stochastic one.

Remarks.

1. An arrow of the form X → F X defines, in the coalgebraic point of
view, a system, not the transition function of a system, whereas in
the examples of nondet and stoch above we were using the transition
functions of discrete dynamical systems.

2. The classical definition contains, via the morphism of monoids, a no-
tion of dynamics: φ t1 x represents a state reached from x after t1
time, and φ t2 (φ t1 x) represents a state reached from there after
an additional t2 time, and this latter state coincides with the state
reached after t1 + t2 from x . It is not immediately clear how such a
notion of dynamics can be translated in the coalgebraic context.

3. Similarly unclear is the notion of a trajectory in the coalgebraic con-
text: since the time is not explicit in this definition, we do not know
what the source of the trj function should be. Moreover, the target of
trj is also not a-priori determined: should it be X , or F X ?

These questions will be addressed in the following section, in which we
present the coalgebraic view of systems.

5.2 Coalgebras as general dynamical systems

The presentation we give here of the vast subject of coalgebras is of necessity
brief, and guided by our main interest, which is the generic computation
of trajectories of complex systems. Thus, important topics, such as the
connection with modal logic, automata theory, program specification and
verification, and so on, are touched upon only in passing or not at all. For
a more complete introduction to this field we refer the reader to one of the
many tutorial articles available (for example[21], [34], or [23]). A textbook
presentation is being prepared by Bart Jacobs, the current version of which
is available online ([20]).

5.2. COALGEBRAS AS GENERAL DYNAMICAL SYSTEMS 51

5.2.1 Introduction

Central to the interpretation of coalgebras as dynamical systems is the idea
that states are not always accessible to direct inspection. In the simplest
case, the information that we can obtain about the states is summarized in
a function obs :: X → O , where O is a type of observable values, whereas
the function gives the evolution of states has the form f :: X → F X . The
system proper is then the pair of these two functions:

f ′ :: X → (O ,F X)
f ′ = pair (obs, id)

Starting now with an element x :: X , we can apply the system to obtain a
value (o, xf) :: (O ,F X) (the notation xf is meant to remind that the type of
x is F X and is similar to the convention of using xs for lists of “x”s). The
value o is the only one which we can actually use: we have no direct access
to xf . Applying fmap f ′ to xf , we obtain a value of type F (O ,F X), from
which we can extract, by fmap fst and fmap snd respectively, an of :: F O
and an xff :: F (F X), the first being the only one which we can actually
observe. Iterating, we obtain a sequence of observations off ::F (F O), offf ::
F (F (F O)),

Let us consider as a simple example the following coalgebra of the list
functor []:

f :: N→ [N]
f n = [n − 1,n + 1]

with the observation function

obs :: N→ Bool
obs = even

so that

f ′ :: N→ (Bool , [N])
f ′ = pair (obs, f)

Starting from an arbitrary natural number, say 3, and following the process
described above, we obtain a succession of values as follows:

3
([2, 4],False)
([[1, 3], [3, 5]], [True,True])
([[[0, 2], [2, 4]], [[2, 4], [4, 6]]], [[False,False], [False,False]])

The observations are always, as it were, a step behind. We could say that
we have a picture that emphasizes state. We obtain a much more accurate

52 CHAPTER 5. DYNAMICAL SYSTEMS

view of the coalgebraic point of view if we “blot out” the anyway inaccessible
states:

~
(~,False)
(~, [True,True])
(~, [[False,False], [False,False]])

The first observable value, False, corresponds to the initial state, 3. After
that, every state at a given level gives rise to a list of observable values at a
lower level. Removing the ~s, we obtain an infinite tree-like data structure
of more and more nested lists of boolean values. This infinite tree tells all
that can be known about the observable evolution of the system from the
initial state: let us call this tree the behavior of the system from that state.

The type of the behavior of the system does not depend on the the state
space X . In our example, the same data structure of observations would
arise if we were instead, considering the system obtained by pairing the
function

g :: R→ [R]
g x = [x / 2, x ∗ 2]

with the observation function

obs ′ :: R→ Bool
obs ′ x = x > 100

g ′ :: R→ (Bool , [R])
g ′ = pair (obs ′, g)

We can now compare elements x ::R with elements n ::N according to whether
the systems g ′ and f ′, exhibit the same behavior when started in x and n
respectively. Thus, we can define an equivalence relation on R + N. In this
case, it is obvious that no element of type R will be equivalent to an element
of type N. However, consider the next system:

h :: Bool → [Bool]
h b = [¬ b,¬ b]

obs ′′ :: Bool → Bool
obs ′′ = id

h ′ :: Bool → (Bool , [Bool])
h ′ = pair (obs ′′, h)

5.2. COALGEBRAS AS GENERAL DYNAMICAL SYSTEMS 53

Here, we have that the behavior of the initial system started from n coin-
cides with that of h started from even n. Thus, every natural number n is
equivalent to the boolean even n. Moreover, since the set of behaviors of
both systems coincide, we can call the two systems equivalent.

In order to make these ideas more precise, let us take a closer look at the
datatype of possible behaviors. This is, in fact, a familiar data structure: a
rose tree (see, for example, section 6.4 in [1]). The data definition for this
structure is:

data RoseT o = Node (o, [RoseT o])

In our case, the type of the possible behaviors is RoseT Bool .
As explained in section 2.4, we have that RoseT o is (isomorphic to) the

fixed point of the functor FRoseT o where

newtype FRoseT o x = R (o, [x])
instance Functor (FRoseT o) where

fmap f (R (o, xs)) = R (o,map f xs)

The initial algebra of FRoseT o is (isomorphic to) Node.
The behavior starting from a given initial state can be computed by

beh :: (x → (o, [x]))→ x → RoseT o
beh f ′ x = Node (obs x ,map (beh f ′) (f x))

where
obs = fst · f ′
f = snd · f ′

The reason the definition of beh “works” is, as explained in 2.4, that RoseT o
is the carrier of the final coalgebra of the functor FRoseT o, and beh is, in
fact, unfold for this type:

unfoldR :: (a → (o, [a]))→ a → RoseT o
unfoldR = beh

The remarks about equivalent states made above can now be expressed
formally:

For all n :: N and all x :: R, we have that

beh f ′ n 6≡ beh g ′ x
(beh f ′ n = beh h ′ b) ≡ (even n = b)
{beh f ′ n | n :: N} = {beh h ′ b | b :: Bool }

In fact, there is one more system we have implicitely considered in this
section, namely the one given by the inverse function of the isomorphism
Node, that is, by the final coalgebra of the functor FRoseT a:

54 CHAPTER 5. DYNAMICAL SYSTEMS

roseT :: RoseT o → (o, [RoseT o])
roseT (Node (o, xts)) = (o, xts)

The set of states of this system is the set of all possible behaviors.
We can now compute the behavior of this system, by using the equivalent

generic definitions:

beh roseT
= { beh is unfold, roseT is out }

unfold out
= { definition of unfold }

In · fmap (unfold out) · out

Therefore

unfold out = In · fmap (unfold out) · out
≡ { out is the inverse of In }

out · unfold out = fmap (unfold out) · out

But

out · id = fmap id · out
⇐ { fmap id = id }

out = out

which shows that, because of the unicity of unfold out we have

unfold out = id

In other words, the system started from a given behavior exhibts exactly
this behavior.

5.2.2 Breadth-first traversal of observation trees

If we were to try printing the value of beh f ′ 3 using the automatic instance
derivation of Show , we would obtain something like this:

Node (False,[Node (True,[Node (False,[Node (True,[Node ...

corresponding to a depth-first traversal of the tree. A better solution is
to print the breadth-first levels of RoseT o values. This can be written as
an unfold on lists, as described in [16].

levels :: RoseT o → [[o]]
levels = unfoldl null (map getObs) (concat ·map getNext) · wrap

where
getObs (Node (o, rts)) = o
getNext (Node (o, rts)) = rts
wrap rt = [rt]

5.2. COALGEBRAS AS GENERAL DYNAMICAL SYSTEMS 55

The function unfoldl was defined in Section 2.4.
We can now print the observation values in a more informative manner:

levels (beh f’ 3)
==> [[False],[True,True],[False,False,False,False],

[True,True,True,True,True,True,True,True], ...

If we assume that we can observe the states directly, that is, we can use
id as observation function, we can use levels to print the successive states
that the system passes through:

levels (beh (pair (id, f)) 3)
==> [[3],[2,4],[1,3,3,5],[0,2,2,4,2,4,4,6], ...

Remember that at the end of Section 5.1 we have remarked that a dis-
crete non-deterministic system should be expressible via a function of type
X → P X . We can consider the coalgebras of f as representations of such
functions (modulo the presence of duplicates): what is the non-deterministic
system they represent? The analogue of the ∪ operator on sets is concat , so
we have that the transition function of such a system, call it φ, is given by

φ 1 xs = concat [f x | x ← xs]

or, equivalently

φ 1 = concat ·map f

If we compute now the trajectory of this discrete system starting from
the singleton set represented by [3], we obtain the infinite list

[phi n [3] | n <- [0 ..]]
==> [[3],[2,4],[1,3,3,5],[0,2,2,4,2,4,4,6], ...

This is the importance of this aside: the trajectory of the classical non-
deterministic system coincides with the infinite list produced by the breadth-
first traversal of the behavior tree. If we could generalize breadth-first traver-
sal to the case of other types of coalgebras, not just those of [], we could
perhaps obtain a “good” notion of trajectory for the case of coalgebraic
systems.

5.2.3 Dynamical systems, behavioral equivalence, bismilar-
ity

In view of our example, one might expect that the general definition of a
system is given in terms of an explicit observation function paired with a
coalgebra, that is, a system would be a function of type X → (O ,F X).
But, in fact, such a function is again a coalgebra: namely of the functor G
where G X = (O ,F X). Thus, the following definition:

56 CHAPTER 5. DYNAMICAL SYSTEMS

Definition 5 (Coalgebraic definition of dynamical systems) A dynam-
ical system is a coalgebra of a functor, that is an arrow of the form X →
F X . The set X is called the state space of the dynamical system. We call
F the functor of the system.

Coalgebras of a functor form a category, with arrows from a coalgebra
f :: X → F X to g :: Y → F Y being given by arrows arr :: X → Y such
that g · arr = fmap arr · f .

Definition 6 (Morphism of dynamical systems) Let f and g be two
dynamical systems with the same functor F . A morphism from f to g is an
arrow from f to g in the category of coalgebras of F .

In the following, equalities between types or type constructors are to be
understood “up to isomorphism”.

Example 1 The functions f ′, g ′ and h ′ defined above are all coalgebras of
the functor F X = (Bool , [X]), having as state spaces respectively N, R and
Bool.

Example 2 (Explicit observations) A coalgebra of type f ::X → (O ,F X)
is a dynamical system with functor FTree F O given by FTree F O X =
(O ,F X).

In Haskell, we have to provide an explicit instance declaration for FTree F O:

data FTree f o x = FT (o, f x)

instance Functor f ⇒ Functor (FTree f o) where
fmap f (FT (o, xf)) = FT (o, fmap f xf)

Example 3 An endo-function is a dynamical system with functor Id.

Example 4 The final coalgebra of a functor F is a dynamical system with
the functor F and the state space FixP F.

The next definition generalizes the notion of behavior, computed above
by the function beh.

Definition 7 Let f :: X → F X be a dynamical system. The datatype of
behaviors of f is the fixed point of the functor of f , FixP F. If x is an
element of type X , the behavior of f starting from x is

behavior f x = unfold f x

Example 5 The datatype of behaviors of the dynamical systems f ′, g ′ and
h ′ defined above is RoseT Bool.

5.2. COALGEBRAS AS GENERAL DYNAMICAL SYSTEMS 57

Example 6 The datatype of behaviors of a dynamical system with functor
FTree F O is Tree O = FixP (FTree F O). Thus, in the previous example,
we have RoseT Bool = Tree Bool = FixP (FTree [] Bool). In Haskell, it
is customary to write the datatype declaration of Tree explicitely, without
using FixP:

data Tree f o = T (o, f (Tree f o))

The unfold function is given by

unfoldT :: Functor f ⇒ (x → (o, f x))→ x → Tree f o
unfoldT sys = T · cross (id , fmap (unfoldT sys)) · sys

Example 7 The datatype of behaviors of a dynamical system with functor
Id is isomorphic to a singleton set: FixP Id = (). A dynamical system with
functor [] has the same datatype of behaviors: FixP [] = ().

Definition 8 (Final system) A final system is a final coalgebra of its
functor. Since all final coalgebras are isomorphic, we can talk about the
final system. In particular, out :: FixP F → F (FixP F) is the final system
of F .

We have therefore that the datatype of behaviors of a system with functor
F is the state space of the final system of F , and the function behavior is
the unique morphism from the system to the final system of its functor.

Proposition 2 The behavior of a final system is the identity.

Proof.
We could just repeat the calculation done above in Section 5.2.1 for the

behavior of the system roseT . Instead, we can just note that the behavior
of a final system is a morphism from itself to itself, that the identity on its
state space is also such an arrow, and that by definition there is only one
such arrow.

�
We now generalize the equivalence relations discussed in our example.

Definition 9 (Behavioral equivalence of states) Let f ::X → F X and
g :: Y → F Y be two dynamical systems. The states x :: X and y :: Y will
be called behaviorally equivalent if

unfold f x = unfold g y

Remark. Obviously, the behavioral equivalence relation defined above
is not an equivalence relation, since it is not an endo-relation. However, it

58 CHAPTER 5. DYNAMICAL SYSTEMS

can be extended to an equivalence relation ∼ on X + Y in the natural way
(remember that X + Y is Either X Y in the Haskell notation):

(Left x)∼(Left x ′) = unfold f x = unfold f x ′

(Right y)∼(Right y ′) = unfold g y = unfold g y ′

(Left x)∼(Right y) = unfold f x = unfold g y
(Right y)∼(Left x) = unfold f x = unfold g y

Definition 10 (Behavioral equivalence of systems) Let f ::X → F X
and g ::Y → F Y be two dynamical systems. They will be called behaviorally
equivalent if

{unfold f x | x ∈ X } = {unfold g y | y ∈ Y }

Example 8 Every state of every endofunction exhibits the same behavior:
endofunctions are dynamical systems with functor Id, therefore the final sys-
tem is () → () and the behavior of any system is const (), independent of
the state from which it starts and from the system itself. The same holds for
dynamical systems with functor [] instead of Id. That is why it is extremely
misleading to talk, when in a coalgebraic context, of endofunctions as “de-
terministic systems” or of functions of type X → [X] as “non-deterministic
systems”, etc.

We note that although the fixed points of Id and [] are isomorphic, we
cannot compare systems with functor Id with systems with functor [].

The study of such equivalences has been traditionally conducted using
the concept of bisimulation. In order to define this, we first need the notion
of a relator.

We remind that Rel denotes the category of relations, having as objects
sets and as arrows R : X → Y subsets of the cartesian products X × Y .
The set of relations of type X → Y is a partially ordered set, with the order
relation being given by set inclusion: R ⊆ S .

Definition 11 (Relator) A relator is a monotonous endofunctor F :Rel →
Rel, that is, a functor such that:

R ⊆ S ⇒ F R ⊆ F S

Since every function is also a relation, Set is a subcategory of Rel , and
it is natural to consider extensions of endofunctors on Set to endofunctors
on Rel .

Definition 12 (Extending a functor) An endofunctor F : Set → Set is
extended to an endofunctor G : Rel → Rel if Inc (F f) = G (Inc f) for all
functions f (where Inc : Set → Rel is the standard inclusion functor).

5.2. COALGEBRAS AS GENERAL DYNAMICAL SYSTEMS 59

An essential property of relators is summarized in the following

Theorem 3 If two relators F and G agree on functions, then they are equal.

For the proof, see for example [2].
The importance of this result is that it shows that an endofunctor on

Set can be extended to at most one relator. There are functors that cannot
be so extended, but a large class of functor can, including all polynomial
functors.

With these preliminaries, we can define bismulation as follows:

Definition 13 (Bisimulation) Let f ::X → F X and g ::Y → F Y be two
dynamical systems and F ′ the extension to a relator of F . A bisimulation
is a relation R ⊆ X × Y such that

x R y ≡ (f x) (F ′ R) (g y)

Definition 14 (Bisimilarity of states) Let f :: X → F X and g :: Y →
F Y be two systems. The states x :: X and y :: Y will be called bisimilar if
there exists a bisimulation R ⊆ X × Y such that x R y.

If F can be extended to a relator and has a final coalgebra, then the
bisimilarity coincides with behavioral equivalence (see [23]).

Theorem 4 Let f :: X → F X and g :: Y → F Y be two coalgebras of a
functor F which has a relator extension F ′ and a final coalgebra. Then, for
any two states x ::X and y ::Y a bisimulation R ⊆ X × Y exists such that
x R y if and only if unfold f x = unfold g y.

For a proof, see [34].
In particular, this is the case for all polynomial functors. Using bisim-

ilarity over behavioral equivalence or the other way around is in such cir-
cumstances a matter of which leads to simpler proofs of equivalence. See,
for example, [15].

Example 9 We examine the notion of bisimulation for the case of the func-
tor FTree F O. Assume that F can be extended to a relator F ′. Then
FTree F O extends to the relator Id × F ′, that is, for any relation
R ⊆ X × Y we have

(ox , xf) ((Id × F ′) R) (oy , yf) ≡ ox = oy ∧ xf (F ′ R) yf

Proof.
× is monotonous, therefore Id × F ′ is monotonous since both Id and

F ′ are. Moreover, if f is a function we have

60 CHAPTER 5. DYNAMICAL SYSTEMS

(Id × F ′) f
= { Definition of × }

(Id f) × (F ′ f)
= { Definition of Id, F ′ extends F }

f × (F f)
= { definition of FTree F O }

(FTree F O) f

and therefore Id × F ′ extends FTree F O monotonously, and there can
be only one such extension.

�
Therefore, given f :: X → FTree F O X and g :: Y → FTree F O Y , R

is a bisimulation over f and g iff

x R y ≡ ox = oy ∧ xf (F ′ R) xy
where
(ox , xf) = f x
(oy , yf) = g y

We see that bisimilarity of states translates to equality of observations over
the behaviors started from those states.

5.3 Abstract datatypes

From the examples we have seen, it appears that the concepts of coalgebraic
dynamical systems are clearest in the case in which the observation function
is made explicit. The question is then whether there are indeed cases which
would require more than functors of the form FTree F O . The answer is yes,
and one example is the study of abstract datatypes. A detailed exposition
of this subject can be found in [14]. Here we shall just summarize the main
points of the approach.

An abstract datatype is described as a collection of operations acting
on an internal state which is an element of some inaccessible type. The
operations are usually of the form op :: S → I → Either (O ,S) E with the
interpretation “the operation op acts on the hidden state of type S as a
function of some input of type I and produces either an output of type O
and a change in the state, or an error of type E . These operations all act
on S , and so can be collected in one function with a sum-type value, having
the general form S → F S .

In Haskell, the “inaccessibility” of the state is ensured by using an exis-
tential type. Thus, the general definition of an abstract datatype is

data Functor f ⇒ ADT f = ∃ s ·D (s → f s) s

5.3. ABSTRACT DATATYPES 61

The Haskell keyword translated here by the symbol ∃ is, surprisingly, forall.
The data declaration states that given an element a :: ADT f there exists
some type S such that a can be written uniquely as D ops s where ops ::S →
F S and s :: S . Since the type ADT f is not parametrized on the type of
the internal state s, there is no way that the programmer can operate on
values of this type: the type checker would report an error.

Besides the coalgebra ops, the values of type ADT f also encapsulate
an internal state: this is the only possibility to ensure that ops is ever going
to be applied. This also implies that the implementor of values of type
ADT f must supply at least one element of the type, which is going to act
as a “factory” for other elements constructed on the basis of the operations
provided (the internal state of this initial element is usually some form of
the ⊥ or the “zero” element of type S).

As an example, consider the datatype Queue a of queues with elements
of some type a (see, for example, [1]). From the point of view of the user,
the operations on Queue a are:

empty :: Queue a -- constructs an empty queue
put :: Queue a → a → Queue a -- adds an element to the rear
front :: Queue a → a -- removes an element from front
isEmpty :: Queue a → Bool -- checks whether queue empty

These operations are related by a number of equations, for example

isEmpty (put x q) = False
isEmpty empty = True

and so on. The signatures of the operations, together with the equations
these operations must fullfill, constitute the signature of the abstract datatype.

The implementor of Queue a will have to choose a representation of
some internal state, say S . For him, front must act on this internal state
and change it so that it corresponds to the initial queue with the front
element removed, and so on. That is, the operations have the signatures:

put :: s → a → s
front :: s → (a, s)
isEmpty :: s → Bool

and empty is just going to correspond to the initial element the implementor
provides, the empty queue.

Putting together the internal operations, we obtain the signature of the
coalgebra characterizing the abstract datatype:

ops :: s → QueueF a s

where

62 CHAPTER 5. DYNAMICAL SYSTEMS

data QueueF a x = Q (a → x) (a, x) Bool

with accessor functions corresponding to

putF (Q p f b) = p
frontF (Q p f b) = f
isEmptyF (Q p f b) = b

QueueF a is a functor:

instance Functor (QueueF a) where
fmap f (Q p (a, x) b) = Q (f · p) (a, f x) b

and we can define Queue a as

type Queue a = ADT (QueueF a)

The user-level functions are defined independently of a choice of repre-
sentation for the internal state:

put :: Queue a → a → Queue a
put (D ops s) a = D ops (putF (ops s) a)

front :: Queue a → (a,Queue a)
front (D ops s) = (a,D ops s ′)

where
(a, s ′) = frontF (ops s)

isEmpty :: Queue a → Bool
isEmpty (D ops s) = isEmptyF (ops s)

We can now implement a queue by choosing a particular representation for
the internal state: the simplest is to choose a list.

empty :: Queue a
empty = D ops []

where
ops s = Q put ′ front ′ isEmpty ′

where
put ′ x = x : s
front ′ = (last s, init s)
isEmpty ′ = null s

Alternatively, we can implement the internal state by a pair of lists, as in
Section 8.6 of [1]:

5.3. ABSTRACT DATATYPES 63

empty1 :: Queue a
empty1 = D ops ([], [])

where
ops (xs, ys) = Q put ′ front ′ isEmpty ′

where
put ′ x = if null xs then

(reverse (x : ys), [])
else (xs, x : ys)

front ′ = (head xs, (tail xs, ys))
isEmpty ′ = null xs

The two implementations are intuitively equivalent, but how can this be
stated formally and proved? Here the connection with dynamical systems
comes in: the two implementations are equivalent if and only if the internal
states [] and ([], []) are behaviorally equivalent. That is, if the observable
behavior of the two datatypes are indistinguishable. The behaviors in this
case are much more complicated than in the simple example of the non-
deterministic system given above, due to the greater complexity of the op-
erations, but they are still quite tame in comparison to the behaviors of the
abstract datatypes which the average programmer is required to implement
every day. However, the generic definition of equivalence:

equiv :: (Functor f) ADT f → ADT f → Bool
equiv (D ops1 s1) (D ops2 s2) = unfold ops 1 s1 ≡ unfold ops2 s2

is the appropriate conceptual tool for reasoning about implementation equiv-
alence, and thus it would be inappropriate to restrict ourselves to functors
of a simple type.

5.3.1 Abstract datatypes for dynamical systems

We have emphasized in the previous the notion of “internal” or “inacces-
sible” state, and we have seen that an (instance of an) abstract datatype
can be represented as a colagebra packaged together with an internal state.
It would therefore seem that coalgebraic dynamical systems with explicit
observation functions, as introduced in the Example 2, are ideal candidates
for being represented as abstract datatypes.

In the Queue a datatype, transitions such as put or front were modeled
as functions which were changing the internal state, possibly using some
input or providing some output. This change in state was deterministic, so
for example, the function put ′ could have the signature s → a → s.

In the simple example we have used in Section 5.2.1, we had however
a non-deterministic system, that is one in which the internal state is not
changed to another state, but to a set or list of such states. This raises the
question of how to model such a system, starting in an initial state, as an

64 CHAPTER 5. DYNAMICAL SYSTEMS

abstract datatype, because instances of this type will always have exactly
one internal state.

The solution is to create as many instances of the type as there are
new states after the transition. For a stochastic system, we would have to
create a simple probability distribution over the possible next instances of
the system, and so on. In general, if we have a dynamical system with functor
FTree F O , we have to create an F -structure of possible next instances.

From the user point of view, the interface of the abstract datatype
DynSys F O of dynamical systems with functor F and observation type
O is

observe :: DynSys F O → O
transition :: DynSys F O → F (DynSys F O)

At the implementational level, these functions are going to be translated in
terms of the internal states X as

observe :: X → O
transition :: X → F X

The signature of the coalgebra that characterizes this abstract datatype is

ops :: X → DynSysF F O X

where

DynSysF F O X = (O ,F X) = FTree F O X

The functor that characterizes the signature of DynSys is FTree F O , hence
the “ideal fit” between dynamical systems with explicit observations and
abstract datatypes. In Haskell:

type DynSysF = FTree

and we introduct the accessor functions as usual:

observeF (FT (o, xf)) = o
transitionF (FT (o, xf)) = xf

Finally, we have

type DynSys f o = ADT (FTree f o)

The user level functions can then be defined as

observe (D ops x) = observeF (ops x)
transition (D ops x) = fmap (λx → (D ops x)) (transitionF (ops x))

Let us now implement the system f ′ defined in Section 5.2.1. The functor
of this system is FTree [] Bool : we can call f ′ a non-deterministic system

5.3. ABSTRACT DATATYPES 65

(we are not exposed to the danger of calling a function of type X → [X] a
non-deterministic system, which we have seen to be misleading in the coal-
gebraice context). Non-deterministic systems are special cases of DynSys:

type NonDet o = DynSys [] o

For every integer we can construct an instance of NonDet Bool which be-
haves like the example system f ′ defined above when started from that
number:

newnd :: N→ NonDet Bool
newnd n = D ops n

where
ops = FT · f ′

We have

observe (newnd 3)
==> False

map observe (transition (newnd 3))
==> [True, True]

map (map observe) (map transition (transition (newnd 3)))
==> [[False, False], [False, False]]

An application of transition to an instance of NonDet o produces a list
of new instances, each one with its own state, each one in turn being a valid
starting point for a new transition, producing a list of states, and so on.
Every instance of NonDet o results either from being constructed by the
function newnd , or by repeated application of the transition function to an
instance constructed by newnd . We can keep track of the states successively
generated from the initial one to the state of a given instance, as in the
following. We can access only the sequences of observations, of course, so
let’s assume that we have o = N and obs = id .

ndHist :: N→ NonDet [N]
ndHist n = D ops [n]

where
ops (x : xs) = FT (x : xs,

[(x − 1) : x : xs, (x + 1) : x : xs])

We have

observe (ndHist 3)
==> [3]

66 CHAPTER 5. DYNAMICAL SYSTEMS

map observe (transition (ndHist 3))
==> [[2,3],[4,3]]

map (map observe) (map transition (transition (ndHist 3)))
==> [[[1,2,3],[3,2,3]],[[3,4,3],[5,4,3]]]

These histories that instances of NonDet [N] carry around and extend
with each transition are potential candidates for a coalgebraic definition of
trajectory. This definition, assuming we can actually give it, is emphati-
cally not the one suggested, for the case of the same system f ′, in Section
5.2.2. There, we had a connection to the classical notion of trajectory of
a non-deterministic dynamical system, via the accessibility relation. Here,
the trajectories we obtain appear to be similar to those of a classical deter-
ministic system: it’s just that we obtain them embedded in a list, or a set.
In the first case, we had one non-deterministic system, while here we treat
the same situation as though we had a collection of deterministic systems.

We can look at the difference between these two notions also by analogy
with a stochastic system, say a markov chain. The states of a markov chain
are the elements over which probability distributions evolve as a result of the
transitions. We can see this as a stochastic system, moving from probability
distribution to probability distribution, or as a large collection of individual
deterministic systems over whose trajectories we can make only stochastic
evaluations.

Following a usage common in economics, we can call the states of the
individual deterministic systems that make up the collection, micro-states,
and the states of the system representing the collection, macro-states. Ac-
cordingly, the two types of trajectories suggested by the above considerations
will be called micro-trajectories and macro-trajectories, respectively. Both
notions have merit, and are encountered in practice. Ideally, we want to
make both explicit and general enough to apply to any coalgebra. We shall
attempt to do so in the next section.

5.4 Trajectories of coalgebraic dynamical systems

5.4.1 Micro-trajectories

We start with the micro-trajectories, because the programming “trick” we
used to keep the history of a non-deterministic system is immediately gen-
eralizable to an arbitrary coalgebra:

addHist :: Functor f ⇒ (x → f x)→ [x]→ f [x]
addHist g (x : xs) = fmap (:(x : xs)) (g x)

so that we have

5.4. TRAJECTORIES OF COALGEBRAIC DYNAMICAL SYSTEMS67

ndHist ′ n = D (addHist (FT · f ′)) [n]

addHist creates systems with the same functor as those given as input, but
which have a different state space, reflecting the change that must be made
in order to keep track of the history.

There are certain requirements for considering the lists built by succes-
sive calls to addHist f as micro-trajectories of f . We expect that the lists all
have the same length: no trajectories are swept under the carpet, as it were.
An application of addHist f leads to lists which are longer than the initial
ones by exactly one element. The elements of micro-trajectories should all
come from f : we don’t want addHist to invent new elements.

We can express these requirements formally, and prove them:

Theorem 5 (addHist) With the definitions above

1.
fmap length (addHist f (x : xs)) =
fmap (const (1 + length (x : xs))) (f x)

2. fmap head · addHist f = f · head

Proof.

1. We have

fmap length (addHist f (x : xs))
= { Definition of addHist }

fmap length (fmap (:(x : xs)) (f x))
= { fmap functor }

fmap (length · (:(x : xs))) (f x)
= { Definition of length }

fmap (λz → 1 + length (x : xs)) (f x)
= { Definition of const }

fmap (const (1 + length (x : xs))) (f x)

For the second property we need the following property of head :

Lemma:

head · (:xs) = id

Proof.

68 CHAPTER 5. DYNAMICAL SYSTEMS

(head · (:xs)) x
= { Composition }

head (x : xs)
= { Definition of head }

x
= { Definition of id }

id x

2. We have:

(fmap head · addHist f) (x : xs)
= { Composition, definition of addHist }

fmap head (fmap (:(x : xs)) (f x))
= { fmap functor }

fmap (head · (:(x : xs))) (f x)
= { Lemma }

fmap id (f x)
= { fmap functor }

f x
= { Definition of head , composition }

(f · head) (x : xs)

�
However, the situation is not entirely satisfactory. Trajectories of length

n are embedded in a structure of type F (F (...(F [X]))) with n − 1 appli-
cations of the functor F . That is, if we want to obtain the trajectories of
length n, we have to write a function trj such that

trj f n x :: Fn [x]

Such a function requires a dependently typed system, and is not imple-
mentable in Haskell.

In the next section, we attempt to generalize the breadth-first traversal
of Tree F O values, in order to determine under which conditions we can
compute such macro-trajectories. This investigation will lead us to restric-
tions on F which will allow us to solve the typing problem for trj .

5.4.2 Generalizing breadth-first traversal

The idea of macro-trajectories was suggested by the observation that

levels (beh (pair (id , f))) x = [φ n [x] | n ← [0 . .]]

5.4. TRAJECTORIES OF COALGEBRAIC DYNAMICAL SYSTEMS69

for the case of the specific f we had considered. Indeed, for an arbitrary
argument to beh, this property does not hold:

levels ((beh (pair (id, \n -> if even n then [n-1, n+1] else []))) 3)
==> [3]

levels ((beh (pair (id, \n -> if even n then [n-1, n+1] else []))) 4)
==> [[4],[3,5]]

while in both cases the list on the right-hand side will be infinite. The
reason this did not happen in the example we had is that the predicate given
as first argument to the unfoldl function in levels, namely null , was always
returning False. We can make a similar clame to the above if we replace
levels by

levels ′ = unfoldl (const False) (map getObs) (concat ·map getNext) · wrap
where
getObs (Node (o, rts)) = o
getNext (Node (o, rts)) = rts
wrap rt = [rt]

The infinite list on the right-hand side of the equation is computed by

[φ n [x] | n ← [0 . .]]
=
unfoldl (const False) id (concat ·map f) (wrap x)

(remember that φ 1 = concat ·map f).
We want to generalize levels ′ and the construction of φ in order to define

macro-trajectories for other functors, but there are obvious dependencies
in our definitions on []-specific functions: map, concat and wrap. It is
natural to think of restricting the functors F for which we can define macro-
trajectories to those that come equipped with similar functions, but what
does “similar” mean? What properties of map, concat and wrap are required
for the above equation to hold? In order to answer this question, we have
only one solution: we must prove the above equation (which is not really
obvious anyway), and check which properties of the three [] specific functions
are used.

Proposition 3 For any f :: X → [X]

levels ′ · beh (pair (id , f)) = [φ n [x] | n ← [0 . .]]

Proof.
Expanding the definitions involved, we have to prove that

70 CHAPTER 5. DYNAMICAL SYSTEMS

unfoldl (const False) (map getObs) (concat ·map (getNext)) ·
wrap · beh (pair (id , f))
=
unfoldl (const False) id (concat ·map f) · wrap

It is tempting to try to fuse the computations on each side of the equation.
Unfortunately, the fusion theorem cannot be applied for any side. For ex-
ample, on the right-hand side, the fusion theorem would require finding a
function g ′ such that

concat ·map f · wrap = wrap · g ′

The right-hand side always creates a singleton, but the one on the left-hand
side in general does not, therefore there is no such g ′.

We need to guess an intermediate step, one to which we might apply
fusion. For example, let us try to find an equality which holds when we
throw away the wrap on the right-hand side of the original equality. A
moment’s thought suggests the following

Lemma

unfoldl (const False) (map getObs) (concat ·map (getNext)) ·
map (beh (pair (id , f)))
=
unfoldl (const False) id (concat ·map f)

End of Lemma.
Assume we have shown the Lemma. Then, composing each side with

wrap, we get on the right-hand side the desired result, and on the left we
have

unfoldl (const False) (map getObs) (concat ·map (getNext)) ·
map (beh (pair (id , f))) · wrap

= { wrap natural transformation Id → [] }
unfoldl (const False) (map getObs) (concat ·map (getNext)) ·
wrap · beh (pair (id , f))

which is equal to the desired left-hand side. Therefore, we can establish
the result if we can prove the Lemma. We note that we have used the
naturality of wrap.

To prove the Lemma, we only need to check the three conditions for
the application of fusion. We use the notation in Section 2.4, so that
p = const False, f = map getObs, g = concat · map (getNext), h =
map (beh (pair (id , f))), p ′ = const False, f ′ = id , g ′ = concat · map f .
We have to check

1. p ′ = p · h
This expands to const False = const False · h which is trivially true.

5.4. TRAJECTORIES OF COALGEBRAIC DYNAMICAL SYSTEMS71

2. f ′ = f · h
Expanding f · h we have

(map getObs) ·map (beh (pair (id , f)))
= { map functor }

map (getObs · beh (pair (id , f)))
= { Definitions of getObs and beh }

map id
= { map functor }

id

which is f ′. We have used the functoriality of map, which will translate
to the functoriality of fmap for a general functor F .

3. g · h = h · g ′

Expanding the left-hand side, we have

(concat ·map getNext) ·map (beh (pair (id , f)))
= { map functor }

concat ·map (getNext · beh (pair (id , f)))
= { Definitions of getNext and beh }

concat ·map (map (beh (pair (id , f))) · f)
= { map functor }

concat ·map (map (beh (pair (id , f)))) ·map f
= { concat natural transformation [[]]→ [] }

map (beh (pair (id , f))) · concat ·map f

which is the right-hand side. Again we have used the functoriality of
map, and, additionally, the naturality of concat .

All conditions check out: thus we have shown the Lemma, and conse-
quently the Proposition.

�
We can now generalize this proposition to any functor F which is equipped

with two natural transformations wrap::a → F a and concat ::F (Fa)→ F a.
The equivalent of Rose trees for such a functor is Tree F X , and the general
breadth-first traversal is written as

bft = unfoldl (const False) (fmap getObs)
(concat · fmap getNext) · wrap

where
getObs (T (o, xf)) = o
getNext (T (o, xf)) = xf

72 CHAPTER 5. DYNAMICAL SYSTEMS

We have

Theorem 6 (General breadth-first traversal) For any colagebra f ::X →
F X , the general breadth-first traversal of behavior (pair (id , f)) starting
from a state x is equal to the trajectory of the classical discrete dynamical
system given by the transition function

φ 1 = concat · fmap f

That is:

bft (unfoldT (pair (id , f))) = [φ n (wrap x) | n ← [0 . .]]

By now, any Haskell programmer will have recognized that we propose
to restrict our attention to the case in which F is a monad, replacing wrap
by return and concat by join. This restriction is sufficient, although not
necessary for the above result. For example, we could use, instead of the
usual wrap for lists, the natural transformation λx → [x , x], which no longer
constructs a monad with the usual concat (it violates the law concat ·wrap =
id), but with which we still have the above result.

However, the cases encountered in practice, such as []. SP and so on,
are all monads. Therefore, the over-specialization does not seem excessive.

As an example, let us consider a stochastic version of our simple non-
deterministic system:

st :: Integer → SimpleProb Integer
st n = SP [(n − 1, 0.4), (n + 1, 0.6)]

Using bft , we obtain:

bft (unfoldT (pair (id, st)) 3)
==> [SP [(3,1.0)],SP [(2,0.4),(4,0.6)],

SP [(1,0.16),(3,0.48),(5,0.36)], ...

These are indeed the successive probability distributions over the states
of the system st . The first one is the concentrated probability distribution
corresponding to the given argument, and the rest result from the application
of the conditional probability formula represented by st to the previous
distribution. Such a computation is useful, for example, in many stochastic
sequential decision problems where the control goal is to reach a certain
macrostate after a number of states.

Perhaps surprisingly, since addHist does not change the functor of a
coalgebraic system, we can use bft also to compute the micro-trajectories of
the system:

bft (unfoldT (pair (id, addHist st)) [3])
==> [SP [([3],1.0)],SP [([2,3],0.4),([4,3],0.6)],
SP [([1,2,3],0.16),([3,2,3],0.24),([3,4,3],0.24),([5,4,3],0.36),...

5.5. GENERAL DYNAMICAL SYSTEMS 73

The macro-states of the addHist st coalgebra are simple probabilities
over the micro-trajectories. We thus have a common way of dealing with
both the micro-trajectories and the macro-trajectories of coalgebraic dy-
namic systems with monadic functors.

It is, however, still important to have a more general view of “system”
which would allow us to understand how to deal with, for example, the case
of continuous systems. Until now, we have been able to relate coalgebraic
systems with discrete classical systems. In the following section, we take a
closer look at this relation.

5.5 General dynamical systems

As explained in Section 2.2, in Haskell we use more commonly the “bind”
operator, so that, in defining the transition function of the discrete system
that corresponds to a given monadic coalgebra f :: X → M X , we would
write

φ 1 = (f C)

rather than φ 1 = join · fmap f .
Since we are always considering an atomic point of view, we can evalu-

ate the macro-states resulting from successive applications of φ 1 to some
return x by applying the function

iterate (f C) · return

If we want to compute the nth macro-state, we can do that by

(iterate (f C) · return x) !! n

or, alternatively, by defining the function

app f 0 = return
app f (n + 1) = (f C) · app f n

which “applies” f n times. This way of computing the macro-states is
perhaps the most familiar and the simplest, involving only repeated appli-
cations of f C without the construction of a Tree M X structure or of using
an unfolding process. Moreover, the result of app (addHist f) n [x] is the
M -structure of micro-trajectories obtained in n steps starting from x , con-
structed without the need to refer to an intermediate Tree M X structure.

Using the Kleisli composition � and unit defined in Section 2.2, we have
that

app f (n + 1) = f � (app f n)

74 CHAPTER 5. DYNAMICAL SYSTEMS

The type of app f is

app f :: N→ X → M X

and it has the property:

app f (m + n) = app f n � (app f m)

Therefore, app f is a monoid morphism from (N,+, 0) to (X → M X , �, unit),
or equivalently, to HomK (X ,X), ·, id in the Kleisli category constructed
with monad M . This is, in fact, very similar to the classical definition of a
dynamical system: a morphism of monoids, whose target is a Hom (x , x) set,
a set of endo-arrows, except that the category in which these endo-arrows
exist is not Set but the Kleisli category of m.

This justifies the following definition:

Definition 15 (Dynamical System) Consider a monoid (T ,+, 0), a (lo-
cally small) category Cat and an object X of this category. A dynamical
system is a monoid morphism from (T ,+, 0) to (HomCat (X ,X), ·, id, that
is, a function

sys :: T → HomCat (X ,X)

such that

sys 0 = id
sys (t1 + t2) = sys t2 · sys t1

This definition unifies the classical and the coalgebraic ones. Indeed, if
Cat = Set then we obtain the classical definition. For the coalgebraic point
of view, let F :: C→ C be an endofunctor and take Cat to be the category
with the following elements:

1. Object: the same objects as C

2. Arrows: there exist an arrow (f ,n) :: X → Y in Cat for every arrow
f ::X → Fn Y in C, for any n ∈ N. Here, Fn has the usual meaning of
F composed with itself n times. We consider F 0 = Id , and therefore
C can be seen as included in Cat (the inclusion functor sends every f
to (f , 0)).

3. Composition: If (f ,m) :: X → Y and (g ,n) :: Y → Z , then (g ,n) ·
(f ,m) = h (n + m) where h = Fm g · f in C.

The identities on Cat are (id , 0):

5.6. MONADIC SYSTEMS AND THEIR TRAJECTORIES 75

(f ,n) · (id , 0)
= { Definition · }

(F 0 f · id ,n + 0)
= { Definition F 0 }

(Id f · id ,n)
= { Id }

(f ,n)

(id , 0) · (f ,n)
= { Definition · }

(Fn id · f , 0 + n)
= { Fn functor }

(id · f ,n)
= { id }

(f ,n)

Composition is associative:

(h, p) · ((g ,n) · (f ,m))
= { Definition · }

(h, p) · (Fm g · f ,n + m)
= { Definition · }

(F (n + m) h · (Fm g · f), p + (n + m))
= { Functors }

(Fm (Fn h · g) · f , (p + n) + m)
= { Definition · }

(Fn h · g , p + n) · (f ,m)
= { Definition of · }

((h, p) · (g ,n)) · (f ,m)

If f ::X → F X , then the successive applications of f , fmap f , fmap (fmap f),
and so on, described above, are given by the arrows corresponding to (f , 1), (f , 1)·
(f , 1), (f , 1) ·(f , 1) ·(f , 1) and so on, that is, by the iterations of (f , 1), that is,
by a general dynamical system sys ::N→ HomCat (X ,X) with sys 1 = (f , 1).

5.6 Monadic systems and their trajectories

Finally, the systems obtained by pairing a function of type X → M X ,
where M is a monad, with the identity, are obtained by taking Cat to be
the Kleisli category of M :

Definition 16 (Monadic dynamical system) A monadic dynamical sys-
tem is a dynamical system in which the category is the Kleisli category of
a monad M , that is, a monoid morphism sys from a monoid (T ,+, 0) to
(HomK (X ,X), �, unit). In Haskell, we have

76 CHAPTER 5. DYNAMICAL SYSTEMS

sys :: Monoid T ⇒ T → (X → M X)
sys 0 = return
sys (t1 + t2) = (sys t2C) · sys t1

In the context of monadic dynamical systems, we are going to refer to T as
the monoid of the system, to X as the state space of the system, and to M
as the monad of the system.

We can now attempt to generalize the notion of trajectory, in order
to take other cases into account. In the classical setting, trajectories were
defined as graphs of functions T → X in the case in which T was an ordered
monoid. This definition can be applied with no changes to the monadic case:

trj sys = {(t , sys t x) | t ∈ T }

which gives us, for every x0 :: x the graph function of a function T → M X .
We therefore have a general notion of trajectory for the macro-states.

We cannot hope for the same uniformity in computing the M -structure
of possible micro-trajectories, because these are going to be in general, for
uncountable T , in uncountable number. We can, however, define trajecto-
ries along a finite or countable list of elements of T . We remind that in
the cases in which T stands for a “time”-set, the values t :: T are inter-
preted as durations, and not as calendar time. Thus, sys t x represents the
macro-state resulting from x after t . Thus, for a list [t 0 , t 1 , ..., t n], the
trajectory along this list will represent “samples” after t 0 , (t 0 + t 1), . . . ,
(t 0 + t 1 + ... + t n).

mtrj sys x [] = return [x]
mtrj sys x (t : ts) = (addHist (sys t)) C (mtrj sys x ts)

With this definition, we can compute the micro-trajectories of the stochas-
tic system st defined above, by first embeding the st transition function
in a monadic system with the function app, and applying mtrj to lists of
successive “durations” of 1:

mtrj (app st) 3 []
==> SP [([3],1.0)]

mtrj (app st) 3 [1]
==> SP [([2,3],0.4),([4,3],0.6)]

mtrj (app st) 3 [1, 1]
==> SP [([1,2,3],0.16),([3,2,3],0.24),([3,4,3],0.24),([5,4,3],0.36)]

In order to have a more uniform approach, we can also redefine trj to
give us the trajectory of the macro-states along a list of elements in T :

5.6. MONADIC SYSTEMS AND THEIR TRAJECTORIES 77

trj sys x [] = [return x]
trj sys x (t : ts) = ((sys t) C mx) : mxs

where
mxs = trj sys x ts
mx = head mxs

For example:

trj (app st) 3 [1, 1]
==> [SP [(1,0.16),(3,0.48),(5,0.36)],

SP [(2,0.4),(4,0.6)],SP [(3,1.0)]]

This approach works, of course, for any monadic system, independent of
the properties of T , though the interpretation of “trajectory” is not always
appropriate. In the next chapter, we shall use mtrj to compute micro-
trajectories for the case where T is, in fact, not a “time”-set at all, when
we study the representation of monadic systems with input.

There are a number of important relationships between trj , sys and mtrj .
If mplus and e are the associative operation and the unit of the monoid T ,
let us denote by sum the function

sum :: [T]→ T < sum = foldr (mplus) e

(This is a trivial generalization of the Haskell Prelude function sum, which
works only for numeric types.)

By the definition of foldr , we have that

sum (t : ts) = t mplus (sum ts)

Theorem 7 (trj and sys) We have

head (trj sys x ts) = sys (sum ts) x

Proof. By induction over ts.

1. Case [].

For the left-hand side we have

head (trj sys x [])
= { Definition of trj }

head ([return x])
= { Definition of head }

return x

For the right-hand side we have

78 CHAPTER 5. DYNAMICAL SYSTEMS

sys (sum []) x
= { Definition of sum }

sys e x
= { sys monoid morphism }

return x

2. Case (t : ts).

For the left-hand side:

head (trj sys x (t : ts))
= { Definition of trj }

head (((sys t) C mx) : mxs)
where mxs = trj sys x ts

mx = head mxs
= { Definition of head , induction hypothesis }

(sys t) C (sys (sum ts) x)
= { Definition � }

(sys t � sys (sum ts)) x
= { sys monoid morphism }

sys (t mplus (sum ts)) x
= { Property of sum, see above }

sys (sum (t : ts)) x

�

Theorem 8 (mtrj and sys) We have

fmap head (mtrj sys x ts) = sys (sum ts) x

Proof. By induction over ts.

1. Case [].

fmap head (mtrj sys x [])
= { Definition of mtrj }

fmap head (return [x])
= { return natural transformation }

return (head [x])
= { Definition of head }

return x
= { Same as case [] in previous proof }

sys (sum []) x

5.6. MONADIC SYSTEMS AND THEIR TRAJECTORIES 79

2. Case (t : ts).

fmap head (mtrj sys x (t : ts))
= { Definition of mtrj }

fmap head (addHist (sys t) C (mtrj sys x ts))
= { Composition }

(fmap head · addHist (sys t)) C (mtrj sys x ts)
= { Theorem 5 }

(sys t · head) C (mtrj sys x ts)
= { fmap and C, see Section 2.2 }

(sys t) C (fmap head (mtrj sys x ts))
= { Induction hypothesis }

(sys t) C (sys (sum ts) x)
= { sys monoid morphism, property of sum }

sys (sum (t : ts)) x

�

Corollary 1 For all n 6 length ts we have

1.
(trj sys x ts) !! n =

sys (sum [ts !! i | i ← [n . . (length ts − 1)]]) x

2.
fmap (!!n) (mtrj sys x ts) =

sys (sum [ts !! i | i ← [n . . (length ts − 1)]]) x

3. fmap (!!n) (mtrj sys x ts) = (trj sys x ts) !! n

Proof.

1. Induction on ts.

(a) Case [].
We have that n 6 length [] ≡ n = 0.

(trj sys x []) !! 0
= { Definition of !! }

head (trj sys x [])
= { Theorem 7 }

sys (sum []) x
= { List comprehension }

sys

80 CHAPTER 5. DYNAMICAL SYSTEMS

(b) Case (t : ts).
If n > 0 we have

(trj sys x (t : ts)) !! n
= { Definition of !! }

(tail (trj sys x (t : ts))) !! (n − 1)
= { Definition of trj }

(tail (((sys t) C mx) : mxs)) !! (n − 1)
where mxs = trj sys x ts

mx = head mxs
= { Definition of tail }

(trj sys x ts) !! (n − 1)
= { Induction hypothesis }

sys (sum [ts !! i | i ← [n − 1 . . (length ts − 1)]]) x
= { List comprehension and !! }

sys (sum [(t : ts) !! i | i ← [n . . (length (t : ts)− 1)]]) x

If n = 0 then

(trj sys x (t : ts)) !! 0
= { Definition !! }

head (trj sys x (t : ts))
= { Theorem 7 }

sys (sum (t : ts)) x
= { List comprehension and !! }

sys (sum [(t : ts) !! i | i ← [0 . . (length (t : ts)− 1)]]) x

The proof of the second item is similar, and we omit it. The third
item results immediately from transitivity of equality.

�

5.7 Conclusions

In order to make a vulnerability assessment, we have to consider possible
evolutions of the current state of affairs. In computational vulnerability
assessment, these possible evolutions are given by the trajectories of a rep-
resentation of the social-ecological system, which representation is usually
a combination of dynamical systems of heterogenous types: deterministic,
non-deterministic, stochastic, or fuzzy.

In an attempt to interpret and compute in a uniform way these “possible
evolutions”, we have started by studying the notion of dynamical system.

5.7. CONCLUSIONS 81

Having reviewed the classical definition commonly used in Systems Theory,
based on a morphism of monoids, we have examined the competing ap-
proach used mainly in Computing Science, which views dynamical systems
as coalgebras. We have seen that these offer a satisfying view of dynamical
systems with “hidden” states, and we have seen that the generality of the
coalgebraic approach is made necessary by the study of more complicated
systems, such as those of abstract datatypes.

The example of instances of abstract datatypes, objects with an internal
state, has led us back to the study of trajectories. Writing an abstract
datatype representation of discrete non-deterministic dynamical systems, we
were led to a definition of “micro”-trajectories, computed by the standard
programming trick of storing a history of the changes in the internal state
of the datatype.

Finally, we have isolated a class of coalgebras, those given by monadic
functors, for which we can compute trajectories in a particularly easy way.
This led us to a point of view very similar to the classical one, which, in
turn, suggested a general definition of dynamical systems which generalizes
both the classical one and the coalgebraic one. Finally, we have returned to
the monadic dynamical systems in this more general context, defined macro-
and micro-trajectories for them in a general way, and given algorithms for
computing both.

In the next chapter, we shall continue our examination of monadic sys-
tems. We shall examine monadic systems with input and ways in which to
combine monadic systems of the same type, and of different types, to form
new monadic systems.

82 CHAPTER 5. DYNAMICAL SYSTEMS

Chapter 6

Working with Monadic
Systems

In the previous chapter, we have identified a class of dynamical systems
for which we could compute in a simple and uniform manner the micro-
and macro-trajectories which represent the possible evolutions of an initial
state. In this chapter, we continue the investigation of this class. We start by
looking at systems “with input” in order to see whether they are instances of
monadic systems. We then define and implement the elements of a simple
algebra of monadic systems: ways of combining such systems in order to
yield new ones, for example in series, in parallel and so on.

A word about the examples chosen to illustrate the concepts of this
chapter. They are exceedingly simple, for the following reason. We will
be dealing with quite abstract and general ways of computing trajectories
of interacting systems. This is already hard enough: if we layer on top
of this the additional complexity of the systems themselves, our chances
of understanding the abstract operations and convincing ourselves of their
correctness will be greatly diminished.

6.1 Monadic systems with input

In many contexts, the notion of a (discrete) system with input is associated
to a function of the form f :: (X ,A)→ X , the idea being of iterations which
can be performed starting from a given initial state with an additional input
being provided at each step of the iteration: from the initial x0 and the
additional initial input a 0 we obtain x1, this together with a 1 give us x2,
and so on.

If we want to model such a process as a monadic system, we have to find
a monoid T and a monad M such that the (micro- or macro-) trajectories
of a system T → X → M X correspond to the results described above.

Since the process of obtaining succesive states is a discrete one, it seems

83

84 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

natural to choose T = N. Then the system we seek is given by iterations
of its transition function of type X → M X , for a convenient M . Again,
a natural idea is to curry f , thus obtaining curry f :: X → (A → X). The
functor Exp A, which associates to each type X the type of all functions
A→ X is, indeed, a monad:

newtype Exp a x = E (a → x)

unwrapE :: Exp a x → a → x
unwrapE (E f) = f

instance Monad (Exp a) where
return = E · const
ef B f = E g

where
g a = unwrapE (f (unwrapE ef a)) a

The verification of the monad laws is trivial. Haskell programmers are
more familiar with Exp under the somewhat puzzling name Reader .

Now, if we have an f :: (X ,A) → X we obtain a system N → (X →
Exp A X) by using the function app defined in Chapter 5 with the uncurried
version of f . For example, consider a simple adder:

adder :: (R,Char)→ R
adder (r , c) = r + (realToFrac (fromEnum c))

Here the type of the states is R and the type of the input is Char (the
usage of realToFrac is mandated by the Haskell cast rules). The function
adder increments the state represented by a real number r with the ASCII
code of the input character. The transition function of the monadic system
corresponding to adder is then

tadd :: R→ Exp Char R
tadd r = E (λc → adder (r , c))

and the system is given by app tadd . The trajectory of the macro-states
along a list of type Char elements is a list of elements of type Exp Char R.
Since this is a type of functions, we cannot print the values of this type, but
we can print the values of functions for some arguments, say for the first 5
characters in the alphabet:

toList :: Exp Char a → [a]
toList (E f) = [f c | c ← [’a’ . . ’e’]]

We can now check the macro-trajectories along some simple lists:

6.1. MONADIC SYSTEMS WITH INPUT 85

map toList (trj (app tadd) 4.2 [])
==> [[4.2, 4.2, 4.2, 4.2, 4.2]]

No matter what the input, after no steps, the state remains the same.
This is what we expected (by the definition of return).

map toList (trj (app tadd) 4.2 [1])
==> [[101.2,102.2,103.2,104.2,105.2],[4.2,4.2,4.2,4.2,4.2]]

After one step, the state changes to the initial state, plus the input. This
agrees to our description of systems with input.

map toList (trj (app tadd) 4.2 [1, 1])
==> [[198.2,200.2,202.2,204.2,206.2],

[101.2,102.2,103.2,104.2,105.2],
[4.2,4.2,4.2,4.2,4.2]]

After two steps, the state changes to the initial state plus twice the input.
Unfortunately, this no longer corresponds to the description above. It is a
consequence of the definition of the monadic operators for Exp a: an input
a is given once, and fixed for the rest of the trajectory. In other words, the
process is described by: starting in x0, an input a produces x1 = f (x0, a),
x2 = f (x1, a), . . .xn = f (xn−1, a).

The micro-trajectories, stored in a structure of type Exp N [R], make
this behavior even clearer:

toList (mtrj (app tadd) 4.2 [1, 1])
==> [[198.2,101.2,4.2],[200.2,102.2,4.2],[202.2,103.2,4.2],

[204.2,104.2,4.2],[206.2,105.2,4.2]]

To each element of type N corresponds the trajectory of states obtained
by giving that element as input, at every step.

Although this does not correspond to the idea of “system with input”
which we wanted to capture, this behavior is quite important, since it de-
scribes parametrized systems. In programming, parameters are often orga-
nized in “environments”: the behavior of the system depends on the envi-
ronment, but the environment is chosen only once, in the beginning, and
does not change in the course of a simulation.

Back to formulating a monadic representation of a system with input:
choosing the Exp A monad has failed. This choice is, in fact, the standard
one in the coalgebraic description of systems. The successive applications of
the transition function lead to values of types Exp A X , Exp A (Exp A X),
Exp A (Exp A (Exp A X)) and so on. In order to obtain a value representing
a state after n steps, one has to provide n values of type A: one input per
step. When working with monadic systems, however, the type of the value

86 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

obtained after n steps is always the same, namely Exp A X . “Collapsing”
the sequence of Exp A (Exp A ... (Exp A X)) down to Exp A X is done by
threading one input value through all the levels.

If the coalgebraic choice does not lead to satisfactory results in the con-
text of monadic system, what about the classical approach? Here, one
chooses a different monoid T to drive the dynamical system, namely (T =
[A],++, []), that is, lists of elements of type A under concatenation, with the
empty list as neutral element. The system corresponding to f is defined as

sys :: [A]→ X → X
sys [] = id
sys (a : as) x = f (sys as x , a)

and it’s easy to see that this is indeed a morphism from ([A],++, []) to
(X → X , ·, id).

In fact, the original definition of a dynamical system given in Section 5.1
was given in terms of a function X × T → X with properties which made
it equivalent to a morphism of monoids. Such a function is called a monoid
action: the representation of systems with input offers an intuition for this
terminology.

In general, we can obtain for any function f :: (X ,A)→ M X a system

inpsys f :: [A]→ X → M X

that is, a monoid morphism from ([A],++, []) to (X → M X , �, return, by
defining

inpsys f [] = return
inpsys f (a : as) = f ′ � inpsys f as

where
f ′ x = f (x , a)

The function inpsys is similar to the function app defined in Section 5.5. In
particular, the function f :: (X ,A)→ M X can be considered the analog of
the transition function.

To illustrate this definition, consider a stochastic version of the adder
defined above:

sadder :: (R,Char)→ SimpleProb R
sadder (x , c) = SP [(x + n − 1, 0.4), (x + n + 1, 0.6)]

where n = realToFrac (fromEnum c)

We can use inpsys sadder directly in trj to obtain the macro-trajectories of
the system:

trj (inpsys sadder) 4.2 []

6.1. MONADIC SYSTEMS WITH INPUT 87

==> [SP [(4.2,1.0)]]

trj (inpsys sadder) 4.2 [[’a’]]
==> [SP [(100.2,0.4),(102.2,0.6)],SP [(4.2,1.0)]]

trj (inpsys sadder) 4.2 [[’a’], [’b’]]
==> [SP [(197.2,0.16),(199.2,0.24),(199.2,0.24),(201.2,0.36)],

SP [(101.2,0.4),(103.2,0.6)],
SP [(4.2,1.0)]]

and in mtrj to obtain the micro-trajectories:

mtrj (inpsys sadder) 4.2 []
==> SP [([4.2],1.0)]

mtrj (inpsys sadder) 4.2 [[’a’]]
==> SP [([100.2,4.2],0.4),([102.2,4.2],0.6)]

mtrj (inpsys sadder) 4.2 [[’a’], [’b’]]
==> SP [([197.2,101.2,4.2],0.16),([199.2,101.2,4.2],0.24),

([199.2,103.2,4.2],0.24),([201.2,103.2,4.2],0.36)]

A similar approach allows us to treat continuous systems with input,
that is, where the input is given as a function of one real variable taking
values in a semi-open interval for some t ∈ R, t > 0. Classically, such
systems are presented as f ::, with the interpretation that f (x , inp) is the
state after consuming input inp starting from state x .

We can define the input type in Haskell as

newtype ContInp a = CI (R, R→ a)

apply :: ContInp a → R→ a
apply (CI (t , f)) t ′ = if t ′ 6 t ∧ 0 < t ′ then f t ′

else ⊥

ContInp a is then the relevant monoid for the definition of a dynamical
system:

instance Monoid (ContInp a) where
mempty = CI (0, λt → ⊥)
(CI (t1 , f1)) ‘mappend ‘ (CI (t2 , f2)) = CI (t1 + t2 , f)

where
f t = if t 6 t1 then f1 t

else if t 6 t1 + t2 then
f2 (t1 + t2 − t)
else ⊥

88 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

The names mempty and mappend are given to the neutral element and the
operation of the monoid, respectively, in the Haskell library. The ContInp a
monoid has as unit the empty function, and as operation the “pasting”
together of the two arguments. Given an f as above, but with a general
monadic output, f :: (X ,ContInp A) → M X , the system with input is
constructed by the function cinpsys defined as

cinpsys f :: ContInp A→ X → M X

cinpsys f ci = λx → f (x , ci)

The trajectories of this system can then be computed using trj and mtrj
without any changes.

6.2 Combining monadic dynamical systems

We have seen until now that trj and mtrj can be used to compute in a uni-
form way the macro- and micro-trajectories of many different types of sys-
tems: deterministic, non-deterministic, stochastic, fuzzy, each with or with-
out input, discrete or continuous. In this section, we explore how monadic
systems can be combined to yield more complex monadic systems.

It is, in fact, a common task to build a model of a complex system, such
as the climate system, from building blocks: a model of the atmosphere, a
model of the ocean, one for the ice-sheets at the poles, and so on. Tradition-
ally, such components are represented in a similar way, for example, they are
described as solutions to systems of partial differential equations, yielding
deterministic systems. In such cases, the main problems are to ensure that
the models are “compatible”: that none of them violates assumptions that
are vital to the functioning of the others, and that the meanings of various
shared variables are not contradictory. Usually, there will be a need for pre-
and post-processing the results of one model before they can be passed to
the others: for example, data which is geographically situated might have
to be interpolated to account for different resolutions, or it might have to
be filtered or smoothened in order to fit with the numerical schemes used
by the other models.

These are not the difficulties we address here. The problems we aim
to solve are characteristic of the type of modeling needed in vulnerability
studies, where the building blocks are represented in very different ways:
physical systems might be described by deterministic or stochastic systems,
while the social systems are usually described as non-deterministic or fuzzy.
Even if all the systems operate on the same time scale, even if the geograph-
ical resolution is identical and all shared variables have uniform semantics,
it is still not clear how to compute the trajectory of a combination of, say,
fuzzy and stochastic systems.

6.2. COMBINING MONADIC DYNAMICAL SYSTEMS 89

A discussion of combining monadic systems can hardly be exhaustive. It
is well known (see, for example, Section 10.4 in [1]) that there is no unique
way of combining monads to yield monads. The same two monads may be
combined differently, and which way is chosen is decided on the basis of
pragmatic considerations. Accordingly, we shall present those combinations
of systems which are most likely to be useful in the practice of computational
vulnerability assessment.

6.2.1 Parallel combination

Conceptually, the simplest way of combining two systems is to put them in
parallel. The trajectories of the two systems are computed independently,
and are combined by tupling (product). The product of two monoids is a
monoid:

instance (Monoid m,Monoid n)⇒ Monoid (m,n) where
mempty = (mempty ,mempty)
mappend (a, b) (c, d) = (mappend a c,mappend b d)

The product of two monads M and N always results in a monad M × N :
everything is done “component-wise”:

return (x , y) = (return x , return y)
(f , g) C (mx ,ny) = (f C mx , g C ny)

Checking that the monad laws are satisfied is trivial.
Therefore, given two systems sys1 :: T1 → X → M X and sys2 :: T2 →

Y → N Y , putting them in parallel results in the system syspar (sys1 , sys2)::
(T1 ,T2) → (X ,Y) → (M X ,N Y). Again, it is trivial to check that
syspar (sys1 , sys2) is a monoid morphism.

Unfortunately, syspar (sys1 , sys2) cannot be used with trj and mtrj ,
because, in fact, M × N cannot be declared as to be a monad in Haskell!
The reason for that is that, in Haskell, we can only declare monads which
are endo-functors on Set , while M × N is an endo-functor on the product
category Set × Set , so that the above instance declaration for M × N
would be rejected. Another way of expressing this is that in Haskell monads
are unary type constructors, while M × N is a binary type constructor.

In order to circumvent this problem, we first define the “pairing” of two
monads:

newtype PairM m n a = PM (m a,n a)

unwrapPM :: PairM m n a → (m a,n a)
unwrapPM (PM x) = x

90 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

instance (Monad m,Monad n)⇒ Monad (PairM m n) where
return x = PM (return x , return x)
(PM (mx ,nx)) B f = PM (mx ′,nx ′)

where
mx ′ = mx B (fst · unwrapPM · f)
nx ′ = nx B (snd · unwrapPM · f)

The next step is to “extend” the types of sys1 and sys2 to (X ,Y) →
M (X ,Y) and (X ,Y) → N (X ,Y) respectively. This can be done by
using the more general functions pr and pl (standing for “product right”
and “product left”, respectively).

pr :: Functor f ⇒ (f a, b)→ f (a, b)
pr (fa, b) = fmap (λa → (a, b)) fa

pl :: Functor f ⇒ (b, f a)→ f (b, a)
pl (b, fa) = fmap (λa → (b, a)) fa

Finally, we can define syspar as

syspar :: (Functor m,Functor n)⇒
(t1 → x → m x , t2 → y → n y)→
(t1 , t2)→ (x , y)→ PairM m n (x , y)

syspar (sys1 , sys2) (t1 , t2) (x , y) = PM (pr (sys1 t1 x , y),
pl (x , sys2 t2 y))

The definition of syspar requires only the functoriality of m and n. If,
however, m and n are monads and sys1 and sys2 are monoid morphisms,
then syspar (sys1 , sys2) is also a monoid morphism, therefore a monadic
system.

The elements constructed by syspar contain a lot of redundant informa-
tion, which can be stripped away by the following function:

strip :: (Functor m,Functor n)⇒ PairM m n (x , y)→ (m x ,n y)
strip (PM (mxy ,nxy)) = (fmap fst mxy , fmap snd nxy)

In fact, strip allows us to recover in a sense the intended combination of
systems, namely cross · (sys1 t1 , sys2 t2). We have

Proposition 4 (strip) With the notations above, we have

strip · syspar (sys1 , sys2) (t1 , t2) = cross (sys1 t1 , sys2 t2)

Proof.
We have

6.2. COMBINING MONADIC DYNAMICAL SYSTEMS 91

(strip · syspar (sys1 , sys2) (t1 , t2)) (x , y)
= { Definition of syspar , composition }

strip (PM (pr (sys1 t1 x , y), pl (x , sys2 t2 y)))
= { Definition of strip }

(fmap fst (pr (sys1 t1 x , y)),
fmap snd (pl (x , sys2 t2 y)))

= { Definitions of pr , pl }
(fmap fst (fmap (λa → (a, y)) (sys1 t1 x)),

fmap snd (fmap (λb → (x , b)) (sys2 t2 y)))
= { Functor }

(fmap (fst · (λa → (a, y))) (sys1 t1 x),
fmap (snd · (λb → (x , b))) (sys2 t2 y))

= { Definitions of fst , snd , id }
(fmap id (sys1 t1 x), fmap id (sys2 t2 y))

= { Functor }
(sys1 t1 x , sys2 t2 y)

= { Definition of cross }
cross (sys1 t1 , sys2 t2) (x , y)

�
To illustrate, consider the system inpsys sadder defined above with the

discrete non-deterministic system given by the transition function

next2 :: Char → [Char]
next2 c = [toEnum ((n + 1− a) ‘mod ‘ m + a),

toEnum (((n + 2− a) ‘mod ‘ m) + a)]
where
n = fromEnum c
m = fromEnum ’z’− fromEnum ’a’ + 1
a = fromEnum ’a’

that is, app next2 . We can combine this two systems in parallel with syspar ,
and we have, for example

syspar (inpsys sadder, app next2) ([’ ’], 1) (4.2, ’c’)
==> (SP [((35.2,’c’),0.4),((37.2,’c’),0.6)],[(4.2,’d’),(4.2,’e’)])

strip (syspar (inpsys sadder, app next2) ([’ ’], 1) (4.2, ’c’))
==> (SP [(35.2,0.4),(37.2,0.6)],"de")

We can compute macro- and micro-trajectories as usual with trj and
mtrj :

92 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

map strip (trj (syspar (inpsys sadder, app next2)) (4.2, ’c’) [])
==> [(SP [(4.2,1.0)],"c")]

map strip (trj (syspar (inpsys sadder, app next2))
(4.2, ’c’) [(" ", 1)])

==> [(SP [(35.2,0.4),(37.2,0.6)],"de"),(SP [(4.2,1.0)],"c")]

map strip (trj (syspar (inpsys sadder, app next2))
(4.2, ’c’) [(" ", 1), ("a", 1)])

==> [(SP [(131.2,0.16),(133.2,0.48),(135.2,0.36)],"effg"),
(SP [(100.2,0.4),(102.2,0.6)],"de"),(SP [(4.2,1.0)],"c")]

The result of mtrj has the type Pair SimpleProb [] [(Double,Char)], so
that the strip function defined above won’t work: we have an additional level
to strip into, as it were. We can generalize the function to act on structures
of pairs:

genstrip :: (Functor f ,Functor m,Functor n)⇒
PairM m n (f (x , y))→ (m (f x),n (f y))

genstrip (PM (mxys,nxys)) = (fmap (fmap fst) mxys, fmap (fmap snd) nxys)

strip is then a special case of genstrip for the case in which f = Id .
We have

genstrip (mtrj (syspar (inpsys sadder , app next2))
(4.2, ’c’) [(" ", 1), ("a", 1)])

(SP [([131.2, 100.2, 4.2], 0.16), ([133.2, 100.2, 4.2], 0.24),
([133.2, 102.2, 4.2], 0.24), ([135.2, 102.2, 4.2], 0.36)],
["edc", "fdc", "fec", "gec"])

There is another common pattern of parallel combination of systems. This
is the case when the systems all have the same monoid, state space and
monad, they are started from the same initial state and are driven by the
same list of elements. This is the case when these systems are supposed to
represent alternative evolutions, such as different scenarios. Let us assume
that the systems are indexed with elements from a set I :

sysfam :: I → T → X → M X

Then, the parallel evolution of this family of systems is described by a system

parfam sysfam :: T → X → I → M X

where parfam sysfam t x i = sysfam i t x represents the result given by the
ith system in the family when started from the common initial state x and
driven by the common input t .

6.2. COMBINING MONADIC DYNAMICAL SYSTEMS 93

The combined system parfam has the same monoid and state space as
the systems in the familiy, but a different monad, namely the one given by
the functor F X = I → M X . This is, in fact, the composition of the Exp I
monad defined above with M , that is, F = Exp I ·M . In other words, a
parametrized system can be seen as describing the parallel evolution of a
familiy of systems indexed by the parameter.

In the Haskell terminology, an operation which constructs a monad such
as Exp I ·M from a monad M is called monad transformer (see, for example,
section 10.4 of [1] or the article [26]).

In order to be able to use parfam with trj and mtrj we need to define
Exp I ·M explicitely as a monad.

newtype ExpT i m a = ExpT (i → m a)

unwrapExpT :: ExpT i m a → (i → m a)
unwrapExpT (ExpT f) = f

instance Functor m ⇒ Functor (ExpT i m) where
fmap f (ExpT g) = ExpT (fmap f · g)

instance Monad m ⇒ Monad (ExpT i m) where
return x = ExpT (const (return x))
(ExpT f) B g = ExpT h

where
h i = (f i) B g ′

where
g ′ a = (unwrapExpT · g) a i

It is easy to see that the return and B operators fulfill the necessary condi-
tions that define a monad. For example, in order to prove the “associativity”
of B, that is

((ExpT f) B g) B h = (ExpT f) B g ′

where g ′ a = ((unwrapExpT · g) a) B h

we compute for the left-hand side:

94 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

((ExpT f) B g) B h
= { Definition of B for ExpT }

(ExpT (λi → ((f i) B (λa → (unwrapExpT · g) a i)))) B h
= { Definition of B for ExpT and λ application }

ExpT (λi ′ → (((f i ′)>> = (λa → (unwrapExpT · g) a i ′))
B (λb → (unwrapExpT · h) b i ′)))

= { m monad, B for m is associative }
ExpT (λi ′ → ((f i ′) B h ′))
where
h ′ a = ((unwrapExpT · g) a i ′) B (λb → (unwrapExpT · h) b i ′)

= { Definition of B }
(ExpT f) B h ′

where
h ′ a = ExpT (((λi → (unwrapExpT · g) a i ′) B

(λb → (unwrapExpT · h) b i ′)))

and for the right-hand side:

(ExpT f) B g ′

where g ′ a = ((unwrapExpT · g) a) B h
= { Definition of B for ExpT }

(ExpT f) B g ′

where
g ′ a = ExpT (λi → (((unwrapExpT · g) a i)

B (λb → (unwrapExpT · h) b i)))

Since h ′ and g ′ denote the same function, both sides reduce to the same
expression, which concludes the proof.

We can now define parfam as follows:

parfam :: Monad m ⇒ (i → t → x → m x)→
t → x → ExpT i m x

parfam sysfam t x = ExpT (λi → sysfam i t x)

Just as the Haskell standard libraries use the name Exp instead of Reader ,
they call this transformer ReaderT . We will see an important usage of ExpT
in the next section.

6.2.2 Serial combination

As one would expect, the situation is more complicated when the systems
interact. In this section, we consider interaction over the state: the two
systems are assumed to have the same state space X , although possibly
different monoids and monads. We want to represent the following situation:

6.2. COMBINING MONADIC DYNAMICAL SYSTEMS 95

an initial state (element of X) is modified by the first system according to
an input from its own monoid, the resulting macro-state is then modified
by the second system according to an input from its monoid, the resulting
macro-state is given again to the first system, and so on.

Let us consider first the case in which the two systems have the same
monad, that is, they have the form sys1 ::T1 → X → M X and sys2 ::T2 →
X → M X . Then the combination we have described could be defined as:

comb (sys1 , sys2) (t1 , t2) = (sys2 t2) � (sys1 t1)

but the result would not be, in general, a monadic system. Indeed, we have

comb (sys1 , sys2) (t1 + t1 ′, t2 + t2 ′)
= { definition of comb }

(sys2 (t2 + t2 ′)) � (sys1 (t1 + t1 ′))
= { sys1 and sys2 are systems }

(sys2 t2 ′) � (sys2 t2) � (sys1 t1 ′) � (sys1 t1)

while

(comb (sys1 , sys2) (t1 , t2)) � (comb (sys1 , sys2) (t1 ′, t2 ′))
= { definition of comb }

(sys2 t2 ′) � (sys1 t1 ′) � (sys2 t2) � (sys1 t1)

and, since � is not commutative, the two are in general different.
The difficulty comes from the fact that we do not want to consider the

product monoid (T1 ,T2). Rather, the pairs (t1 , t2) play the role of the
inputs in Section 6.1, and the system resulting from the combination has as
monoid ([(T1 ,T2)],++, []):

sysser (sys1 , sys2) = inpsys f
where
f (x , (t1 , t2)) = ((sys2 t2) � (sys1 t1)) x

For example, consider combining with the system app next2 defined in the
previous section the system with input inpsys choose where

choose :: (Char ,Char)→ [Char]
choose (c1 , c2) = [c1 , c2]

(The idea is that a non-deterministic choice is made between continuing
with the initial state or with the input.)

We have

sysser (app next2, inpsys choose) [(1, "f")] ’a’
==> "bfcf"

96 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

Starting in ’a’, the list of reachable states after the application of
app next2 1 is "bc". Then inpsys choose "f" leads to a choice between
any of "bc" and ’f’. Since we use lists instead of sets, the ’f’ appears
twice: we can obtain a leaner presentation by removing the duplicates by
using the function nub provided by Haskell.

The trajectories of the combined system are computed as usual:

map nub (trj (sysser (app next2, inpsys choose)) ’a’
[[(1, "g")], [(1, "f")]])

==> ["cgdhe","bfc","a"]

nub (mtrj (sysser (app next2, inpsys choose)) ’a’
[[(1, "g")], [(1, "f")]])

==> ["cba","gba","dba","gfa","hfa","dca","gca","eca"]

We now consider the case in which the systems have different monads,
that is, they have types sys1 ::T1 → X → M X and sys2 ::T2 → X → N X .
The idea is to find some “common” monad K to which both M and N can
be “promoted”, and use sysser with the transformed systems which are now
sys1 ′ :: T1 → X → K X and sys2 ′ :: T2 → X → K X . There is, as we
have already said, no unique way of finding such a K . What we shall do in
the rest of this section is to explore a number of typical patterns of monadic
combinations, which often arise in practical problems.

Deterministic systems

As might be expected, the simplest case is that in which one of the two
systems is deterministic, that is, when either M or N is the identity functor,
Id . A deterministic system can be combined with any other system by
simply turining it into a system of the appropriate type using return:

detserl (detsys, sys) = sysser (detsys ′, sys)
where
detsys ′ t = return · unwrapId · (detsys t)

detserr (sys, detsys) = sysser (sys, detsys ′)
where
detsys ′ t = return · unwrapId · (detsys t)

For example, consider the discrete dynamical system inpsys lower given by
the transition function (with input):

lower :: (Char ,Char)→ Id Char
lower (c1 , c2) = Id (toLower c2)

We can now combine inpsys lower with app next2 by using either of the
detser functions.

6.2. COMBINING MONADIC DYNAMICAL SYSTEMS 97

detserl (inpsys lower, app next2) [("C", 1)] ’a’
==> "de"

map nub (trj (detserl (inpsys lower, app next2)) ’a’
[[("E", 1)], [("C", 1)]])

==> ["fg","de","a"]

mtrj (detserl (inpsys lower, app next2)) ’a’
[[("E", 1)], [("C", 1)]]

==> ["fda","gda","fea","gea"]

But, just because one can always turn a deterministic system into a
system with a different monad, does not mean that this is always the desired
mode of combination. One could, instead, transform the other system in a
deterministic one. However, there is in general no “canonical” way of doing
that: each case must be treated on its own.

For our example we might wish to transform the app next2 system in a
deterministic one by taking the first element of the list of results.

detnext t c = Id (head (app next2 t c))

We can combine the resulting system with inpsys lower using sysser directly:

sysser (inpsys lower, detnext) [("C", 1)] ’a’
==> ’d’

trj (sysser (inpsys lower, detnext)) ’a’
[[("E", 1)], [("C", 1)]]

==> [’f’,’d’,’a’]

mtrj (sysser (inpsys lower, detnext)) ’a’
[[("E", 1)], [("C", 1)]]

==> "fda"

This kind of transformation is often used in combining stochastic systems
with deterministic ones, usually using the “expected value” operator to go
from SimpleProb a to a.

Non-deterministic systems

When combining non-deterministic systems with other types of systems one
often takes advantage of simple ways of transforming a set into an instance
of a more complex structure. For example, a finite set can be turned into a
simple probability distribution by taking the uniform distribution over the
set, and into a simple fuzzy set by assigning to all members of the set the

98 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

membership degree 1.0. Conversely, a simple probability or a simple fuzzy
set can be turned into a set by using the forgetful functor which discards
the probability or membership information and returns the support of the
simple probability distribution or of the fuzzy set. In all these cases, the
monad K is, as in the case of combinations with a deterministic system, one
of the initial monads of the systems involved.

An alternative, familiar to functional programmers, is to combine the
monads M and [] to yield a monad M [], by using the list transformer, an
element of the Haskell monad transformers refered to above in Section 6.2.1.

The list transformer is defined in the Haskell standard libraries as follows
(slightly rewritten for readability). This definition is based on the proposal
by Jones and Duponcheel in [22].

newtype ListT m a = ListT (m [a])

unwrapListT :: ListT m a → m [a]
unwrapListT (ListT mxs) = mxs

instance (Monad m)⇒ Monad (ListT m) where
return = ListT · return · return
(ListT mas) B f = ListT mbs

where
mlmbs = fmap (map (unwrapListT · f)) mas -- :: m [m [b]]
mmbss = fmap sequence mlmbs -- :: m (m [[b]])
mmbs = fmap (fmap concat) mmbss -- :: m (m [b])
mbs = join mmbs -- :: m [b]

The function sequence is the decisive component in this definition: ev-
erything else could be generalized to any other monads. This function is
part of the standard Haskell prelude, and is defined as:

sequence :: Monad m ⇒ [m a]→ m [a]
sequence [] = return []
sequence (m : ms) = m B (λa →

(sequence ms B (λas →
return (a : as))))

sequence takes a list of m-structures and forms an m-structure of lists. In
terms of trajectories, it constructs all possible micro-trajectories from a given
macro-trajectory.

As an example, let us combine the stochastic system inpsys sadder de-
fined above in Section 6.1 with the following non-deterministic system:

simpleND :: N→ R→ [R]
simpleND = app (λx → [−5.0, 5.0])

6.2. COMBINING MONADIC DYNAMICAL SYSTEMS 99

We now have a system inpsys sadder of type [Char]→ R→ SimpleProb R
and another one, simpleND , of type N→ R→ [R]. We want to unify their
types, and have two systems with the ListT SimpleProb monad:

sys1 :: [Char]→ R→ ListT SimpleProb R
sys1 cs = ListT · fmap return · inpsys sadder cs

sys2 :: N→ R→ ListT SimpleProb R
sys2 n = ListT · return · simpleND n

sysser (sys2, sys1) [(1, "C")] 0.0
==> SP [([61.0,71.0],0.16),([61.0,73.0],0.24),

([63.0,71.0],0.24),([63.0,73.0],0.36)]

As can be seen, the combined system operates in the following way:
the initial state is transformed by the non-deterministic system in a list of
possible next states. This list is then turned into a concentrated probability
distribution. The stochastic system is then applied to every element in this
list: the result is a concentrated probability distribution over lists of simple
probability distributions. In order to turn this into a simple probability
distribution over lists, the function sequence is then applied. The list within
the concentrated probability distribution is turned into a simple probability
distribution over lists as follows: a list is obtained by picking an element from
the support of each simple probability distribution in the list: the list then is
assigned the probability resulting from the multiplication of the probabilities
of its elements (as given by their original probability distributions).

trj (sysser (sys2, sys1)) 0.0 [[(1, "E")], [(1, "C")]]
==> [SP [([63.0,73.0],0.0256),([63.0,73.0,75.0],0.07680001),

([63.0,65.0,73.0],0.07680001),([63.0,65.0,73.0,75.0],0.2304),
([63.0,75.0],0.05760001),([63.0,65.0,75.0],0.1728),
([65.0,73.0],0.05760001),([65.0,73.0,75.0],0.1728),
([65.0,75.0],0.1296)],
SP [([61.0,71.0],0.16),([61.0,73.0],0.24),
([63.0,71.0],0.24),([63.0,73.0],0.36)],
SP [([0.0],1.0)]]

mtrj (sysser (sys2, sys1)) 0.0 [[(1, "C")]]
==> SP [([[61.0,0.0],[71.0,0.0]],0.16),([[61.0,0.0],[73.0,0.0]],0.24),

([[63.0,0.0],[71.0,0.0]],0.24),([[63.0,0.0],[73.0,0.0]],0.36)]

The computation of micro-trajectories results in a simple probability
distribution over lists of trajectories. The output above shows that, for ex-
ample, starting from 0.0 we can have the non-deterministic evolution given

100 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

by the trajectories [[63.0, 0.0], [73.0, 0.0]] with probability 0.36. Because
we assign probabilities to non-deterministic evolutions, instead of to indi-
vidual trajectories, there is a certain amount of duplication involved: for
example, the trajectory [73.0, 0.0] appears twice: in the second possible
non-deterministic evolution, and in the last.

If what is of interest is just the trajectories and the probabilities with
which they appear, and not the context of non-deterministic evolution in
which they appear, then we can obtain this by the much simpler transfor-
mation of the non-deterministic into a stochastic one, which we described
in the beginning of the section:

sys2 ′ :: N→ R→ SimpleProb R
sys2 ′ n r = SP [(x , p) | x ← xs]

where
xs = simpleND n r
p = 1.0 / (realToFrac (length xs))

mtrj (sysser (sys2’, inpsys sadder)) 0.0 [[(1, "C")]]
==> SP [([61.0,0.0],0.2),([63.0,0.0],0.3),

([71.0,0.0],0.2),([73.0,0.0],0.3)]

The problem is that in practice we often find the need for a different kind
of combination: we would like to obtain not M [A], for example probabilities
over possible states, but rather [M A], possible probabilities over states.
This is the case whenever we combine a system with some M monad with a
non-deterministic system representing possible scenarios: we want to obtain
M -type evolutions for each possible scenario. As an example, the IPCC
explicitely states that the SRES scenarios used in evaluating possible future
evolutions of the global socio-ecological system are not stochastic: they
are independent possibilities which should be explored independently, and
taking, say, the expected value of a variable along evolutions induced by the
scenarios is not a meaningful operation.

Some scenarios, such as the SRES ones, are actually a collection of deter-
ministic systems which are not meant to be “mixed”. One should not evolve
a system with a scenario, and then switch to another scenario after that.
In this sense, these scenarios represent a family of deterministic systems,
rather than a non-deterministic system.

Let sysfam ::I → T1 → X → Id X be a family of scenarios indexed by I .
Then, combining sysfam i with a monadic system sys :: T2 → X → M X is
done using detserl or detserr defined in the section on deterministic systems.
We obtain a family of combined systems:

combfaml (sysfam, sys) i = detserl ((sysfam i), sys)

or

6.2. COMBINING MONADIC DYNAMICAL SYSTEMS 101

combfamr (sys, sysfam) i = detserr (sys, (sysfam i))

depending on which is used: detserl or detserr . Finally, we construct the
parallel combination of the systems of the family using parfam:

sysserfaml (sysfam, sys) = parfam (combfaml (sysfam, sys))
sysserfamr (sys, sysfam) = parfam (combfamr (sys, sysfam))

A non-deterministic process is like a collection of scenarios which may be
“mixed”. Every entire relation r :: A→ [B] (that is, r a 6≡ [] for all a), can
be represented as a set of functions

funs r = {f | f :: A→ B , f a ∈ r a }

Uncurrying a non-deterministic system nondet :: T → X → [X] we have a
relation of type (T ,X) → [X]. The set of functions corresponding to this
relation is then

funs (uncurry nondet) = {f | f :: (T ,X)→ X ,
f (t , x) ∈ nondet t x }

Finally, uncurrying the functions in this set, we have

funs ′ nondet = fmap (uncurry) (funs (uncurry nondet))
= {f | f :: T → X → X ,

f t x ∈ nondet t x }

funs ′ decomposes a non-deterministic system into a the set of all determinis-
tic systems compatible with it. This statement can be formalized as follows:

Proposition 5 Let f :: T → X → X . Then

1. f ∈ funs ′ nondet ≡ ∀ ts :: [T], x :: X : mtrj f x ts ∈ mtrj nondet x ts

2. f ∈ funs ′ nondet ≡ ∀ ts::[T], x ::X :head (trj f x ts) ∈ head (trj nondet x ts)

Proof.
We prove the first equivalence. For the implication ⇐ consider an arbi-

trary t :: T and x :: X . We have that

102 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

mtrj f x [t] ∈ mtrj nondet x [t]
≡ { definition of mtrj }

(addHist (f t)) C (mtrj f x []) ∈ (addHist (nondet t)) C
(mtrj nondet x [])

≡ { definition of mtrj , monad laws }
addHist (f t) [x] ∈ addHist (nondet t) [[x]]

≡ { definition of addHist }
fmap (:[x]) (f t x) ∈ fmap (:[[x]]) (nondet t x)

≡ { fmap for Id and [] }
[f t x , x] ∈ [[y , x] | y ← nondet t x]

≡ { ‘elem‘, lists }
∃ y ∈ nondet t x : f t x = y

≡ { simplify }
f t x ∈ nondet t x

Since t and x were arbitrary, we have that f ∈ funs ′ nondet .
In the other direction, ⇒, consider an arbitrary x :: X . We are going to

use induction on ts:
Case ts = []:

mtrj f x []
= { definition of mtrj , }

[x]

and

mtrj nondet x []
= { definition of mtrj }

[[x]]

Therefore, mtrj f x [] ∈ mtrj nondet x [].
Case (t : ts)
We have

mtrj f x (t : ts)
= { definition of mtrj }

(addHist (f t)) C (mtrj f x ts)
= { definition of C for Id }

addHist (f t) (mtrj f x ts)
= { definition of addHist }

fmap (:(mtrj f x ts)) (f t (head (mtrj f x ts)))
= { fmap for Id }

(f t (head (mtrj f x ts))) : (mtrj f x ts)

6.2. COMBINING MONADIC DYNAMICAL SYSTEMS 103

and

mtrj nondet x (t : ts)
= { definition of mtrj }

(addHist (nondet t)) C (mtrj nondet x ts)
= { definition of C for [] }

concat [addHist (nondet t) xs | xs ← mtrj nondet x ts]
= { definition of addHist }

concat [fmap (:xs) (nondet t (head xs)) |
xs ← mtrj nondet x ts]

= { definition of fmap for [] }
concat [[y : xs | y ← nondet t (head xs)] |

xs ← mtrj nondet x ts]

But, by the induction hypothesis, we have that mtrj f x ts ∈ mtrj nondet x ts
and, since f ∈ funs ′ nondet we have that f t (head (mtrj f x ts)) ∈
nondet t (head (mtrj f x ts)). Therefore, we find mtrj f x ts among
the xs and f t (head (mtrj f x ts)) among the y values that make up
mtrj nondet x (t :ts), therefore we have that mtrj f x (t :ts) ∈ mtrj nondet x (t :
ts).

The proof of the second equivalence is similar: ⇒ by induction, ⇐ by
specializing the right-hand side with arbitrary x and [t].

�
The significance of this proposition is that we can study the combination

of a monadic system with a non-deterministic system by replacing the latter
with the family of deterministic systems given by funs ′ (we can simply take
funs ′ nondet to be the indexing set, and sysfam i t x = i t x), using one of
the functions sysserfam defined above.

Of course, this is not a useful computational characterization: in general,
the number of elements of funs ′ nondet is going to be uncountable. Consider,
for example, the case of nondet :: N → N → Bool ,nondet = app (λn →
[True,False]). The transfer function of nondet is the total relation N ×
Bool : any function f :: N → N → Bool is a member of funs ′ nondet . Thus,
funs ′ nondet has the same cardinality as R.

Nevertheless, this characterization can be a useful conceptual tool. We
can use it to give precise specifications of problems, and as starting point
for the derivation of solutions.

For example, consider the following simple control problem. We start
with a discrete “runaway” stochastic process:

run (r , c) = SP [(−2 ∗ x − 0.5, 0.5), (2 ∗ x + 0.5, 0.5)]
where
x = r + c

104 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

The process, started in the initial state 0.0, tends to “run away” from this
initial state, faster and faster, if the control variable c is not suitably chosen.

In turn, the control variable can be chosen to be either 0.0, or 3.0 or
−3.0. The choice of 0.0 is always available, of the other two, only the one
with the opposite sign to the state of the process may be chosen:

choice r = if r > 0 then [−3.0, 0.0] else [0.0, 3.0]

The control problem is, starting with 0.0, to choose controls in such a way
that the state of the system is maintained, for a given number of steps,
say 10, within a given interval, for example [−5.0, 5.0] with at least 0.5
probability, while minimizing the number of control choices different from
0.0

We can formalize the problem by considering a system that gives us
all possible trajectories of the stochastic process depending on the control
choices made.

First, let us examine more closely the two processes involved. The first
can be written as a stochastic system

runsys :: N→ (R, R)→ SimpleProb (R, R)
runsys = app run ′

where
run ′ (r , c) = fmap (λx → (x , c)) (run (r , c))

The choice of the control can be expressed as a non-deterministic system:

ctrlsys :: N→ (R, R)→ [(R, R)]
ctrlsys = app ctrl ′

where
ctrl ′ (r , c) = map (λc′ → (r , c′)) (choice r)

A “control choice”, a potential solution to the problem, can be seen as a
deterministic system:

ctrl :: N→ (R, R)→ Id (R, R)

such that

ctrl t (r , c) ∈ choice t (r , c)

that is, one that always chooses an allowed element.
The set of all potential solutions is then funs ′ ctrlsys. One such solution

can be combined with runsys in order to give a probability distribution over
possible trajectories:

onemtrj = mtrj (detserl (onesol , runsys)) 0.0 (replicate 10 [(1, 1)])

6.2. COMBINING MONADIC DYNAMICAL SYSTEMS 105

The function replicate creates a list of as many copies of the second argument
as specified by the first argument. Here, we want to make 10 steps starting
form 0.0. We advance both systems equally at each step, and the trajectories
include the states reached at each step.

In order to evaluate such a probability distribution over trajectories, we
need to determine the probability that the trajectory stays within the given
bounds, and to count the number of control choices different from 0.0. It
is not clear from the problem information whether only the choices along
successful trajectories count, or all should be added up: we choose the second
alternative.

within bounds :: [(R, R)]→ Bool
within bounds = null · filter bad

where
bad (r , c) = abs r > 5.0

cost :: [(R, R)]→ N
cost = length · filter expensive

where
expensive (r , c) = c 6≡ 0.0

prob qual :: SimpleProb (Bool , N)→ (R, N)
prob qual (SP bns) = (sum qs, sum cs)

where
qs = [q | ((b,n), q)← bns, b]
cs = [n | ((b,n), q)← bns]

eval = prob qual · fmap (pair (within bounds, cost))

The computation of all trajectories, for all potential solutions, is defined
by combining runsys with the family of allowable systems sysfam by using
sysserfaml . We do not want to add up the probability of identical trajecto-
ries coming from different control choices, which is why a combination based
on turning ctrlsys into a stochastic system is inappropriate.

sysfam :: funs ′ ctrlsys → N→ (R, R)→ Id (R, R)
sysfam f n (r , c) = f n (r , c)

At this point we are no longer in the realm of legal Haskell. The indexing
set funs ′ ctrlsys is not a legal type for a function declaration, and moreover
it is uncountable.

alltrj = mtrj (sysserfaml (sysfam, runsys)) 0.0
(replicate 10 [(1, 1)])

106 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

The type of alltrj is ExpT (funs ′ ctrlsys) SimpleProb [(R, R)], isomorphic
to funs ′ ctrlsys → SimpleProb [(R, R)]

The quality of a particular solution f ∈ funs ′ ctrlsys is given by

qual f = eval (unwrapExpT alltrj f)

A solution to the control problem is a deterministic system sol ∈ funs ′ ctrlsys
such that:

fst (qual sol) > 0.5
∀ f ∈ (funs ′ ctrlsys) : fst (qual f) > 0.5⇒ snd f > snd sol

We can move towards a solution of this problem by implementing a subset
of sysfam. For example, we can discretize the domain of choice and keep
just an interval from it. Since any state outside [−5.0, 5.0] is already “lost”,
we can just concentrate on a subinterval of [−5.0, 5.0]. For example:

dom = [−4.0 . . 4.0]

On this small discrete domain, the relation choice can be fully decomposed
in functions. The graphs of these functions can be represented as lists:

funlists = foldr f [[]] dom
where
f r rcss = [(r , c) : rcs | rcs ← rcss,

c ← choice r]

There are 512 functions in total. In order to combine these functions with
runsys, we have to turn each of them into a deterministic dynamical system
defined on (R, R), which is a problem of interpolation. For example:

mkfun xs (r , c)
| r <−4.0 = Id (r , 3.0)
| r > 4.0 = Id (r ,−3.0)
| r ≡ −4.0 = Id (xs !! 0)
| otherwise = Id (r , c)

where
Just i = findIndex (λ(x , y)→ r 6 x) xs
(rl , cl) = xs !! (i − 1)
(rr , cr) = xs !! i
c = if r − rl < rr − r then cl else cr

Then, the functions in the family are defined by

funs :: [N→ (R, R)→ Id (R, R)]
funs = map (app ·mkfun) funlists

The family of systems is given by:

6.2. COMBINING MONADIC DYNAMICAL SYSTEMS 107

sysfam :: N→ N→ (R, R)→ Id (R, R)
sysfam n t (r , c) = (funs !! n) t (r , c)

We can now compute all the trajectories by using sysserfaml :

alltrj = mtrj (sysserfaml (sysfam, runsys)) (0.0, 0.0)
(replicate 10 [(1, 1)])

Evaluating all trajectories, we obtain

quals = [eval (unwrapExpT alltrj n) | n ← [0 . . (length funlists − 1)]]

Finally, the graph of the best function is given by

best = funlists !! (snd (head (sortBy f (zip (filter g quals) [0, 1 . .]))))
where
g (p,n) = p ≡ 1.0
f ((p1 ,n1), i1) ((p2 ,n2), i2)
| min p1 p2 > 0.5 = compare n2 n1
| max p1 p2 < 0.5 = compare p1 p2
| p1 < 0.5 ∧ p2 > 0.5 = LT
| p1 > 0.5 ∧ p2 < 0.5 = GT

In our case, we have

best = [(-4.0, 3.0), (-3.0, 3.0), (-2.0, 0.0), (-1.0, 0.0), (0.0, 0.0),
(1.0, 0.0), (2.0, 0.0), (3.0, -3.0), (4.0, -3.0)]

This keeps runsys always within the given bounds, and the total number
of controls different from 0.0 is 2418. In fact, this is also the solution with
the smallest number of controls different from 0.0, so that minimizing this
“cost” automatically brings the system within the desired range. This is a
feature of the way we interpolated the graphs of the functions in funlists,
selecting non-zero controls for the case in which the state of the system is
out of bounds.

Of course, computing alltrj is a very inefficient way of going about finding
a solution to the control problem. Rather, one would try to find conditions
under which the number of potential solutions can be decreased at every step
of computing potential trajectories, leading to thinning algorithms, such as
those presented, with illustrative examples, in [2], [9], [10].

6.2.3 Input-output connections

In the example of the previous section we started with a stochastic process
given by the function run :: (R, R)→ SimpleProb R and the relation choice ::
(R, R) → [R]. When viewing these as dynamical systems, we considered
them as discrete systems runsys :: N → (R, R) → SimpleProb (R, R) and

108 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

ctrlsys :: N→ (R, R)→ [(R, R)] respectively. However, both run and choice
have the appropriate form to be used with inpsys, the function defined above
in Section 6.1. Using inpsys, we obtain

inpsys run :: [R]→ R→ SimpleProb R
inpsys choice :: [R]→ R→ [R]

Let us use R for the real numbers representing the states of run and C for
those representing the states of choice:

inpsys run :: [C]→ R → SimpleProb R
inpsys choice :: [R]→ C → [C]

We could now pose the problem of combining such systems by noticing that
the monoid of each system is related to the states of the other system. In
fact, by rewriting run and choice to act on lists rather than elements by
wrapping the states and the results, the state of each system would be equal
to the monoid of the other system.

The general form of this combination is then: given

sys1 :: T1 → T2 → M T2
sys2 :: T2 → T1 → N T1

to combine them by using the output states of one system as elements of
the monoid of the other system.

But, in fact, there is no need to introduce this special form of combi-
nation, as the above example shows. We can transform both systems in
discrete systems which have the same state space, by:

sys1 ′ :: N→ (T1 ,T2)→ M (T1 ,T2)
sys1 ′ = app f where f (t1 , t2) = fmap (λt → (t , t2) (sys1 t1 t2)
sys2 ′ :: N→ (T1 ,T2)→ N (T1 ,T2)
sys2 ′ = app g where g (t1 , t2) = fmap (λt → (t1 , t) (sys2 t2 t1)

Thus, the problem of combining sys1 and sys2 is reduced to finding a serial
combination of sys1 ′ and sys2 ′.

6.3 Conclusions

The main ideas of this chapter are expressed in the various constructors and
combinators of monadic dynamical systems. The function inpsys, defined
in the first section and used throughout, constructs a monadic dynami-
cal system from a system “with input”, classically presented as a function
f :: (X ,A) → X . The combinators parsys and parfam construct monadic
systems by putting in parallel two different systems or a family of identically
typed systems, respectively. The combinator sysser allowed us to combine

6.3. CONCLUSIONS 109

two monadic dynamical systems which interact via a common state, in the
case in which they have the same monad. We have then discussed several so-
lutions for the case in which the two systems do not have the same monad.
Special attention was paid to the combination, frequently encountered in
practice, of a stochastic system with a non-deterministic one, where a first
failed attempt at representing systems with input came surprisingly handy.
Finally, we have seen that the case of systems interacting via their monoids
can be reduced to that of systems interacting via their common state.

All the systems resulting from these constructions are monadic systems,
and their trajectories, both macro and micro, can be computed with trj and
mtrj . In the following chapter, when we return to the context of vulnera-
bility, we will interpret mtrj as the implementation of the function possible
which was returning the structures of possible future evolutions. If mtrj
were restricted, say, to computing the trajectories of stochastic systems, its
use as possible would be questionable. Due to the flexibility of monadic
systems, however, we can hope to use mtrj in all situations that arise in
practice.

In the course of this chapter we have also seen a number of limitations or
awkward effects of using monadic systems. In the case of systems with in-
put, the first attempt of obtaining a monadic system failed, resulting instead
in a representation of parameterized systems. Moreover, there is in general
no guidance about how to combine systems with different monads. Some-
times, as in the case of combinations involving deterministic systems, the
two monads are “promoted” to their composition, but this is by no means
a universal solution. In the important case of combining non-deterministic
systems serially with other systems, the common monad is a version of the
parameterized systems monad.

Despite these flaws, we were always able to formulate a satisfactory,
even if not always natural, monadic version of the systems involved. More
experience with these combinators and others which might arise in practice
will hopefully lead to a smoother presentation of these versions, or will reveal
a simpler, better structure than that of the monad.

110 CHAPTER 6. WORKING WITH MONADIC SYSTEMS

Chapter 7

Monadic Systems and
Vulnerability

In this chapter, we return to the model of vulnerability developed in Chapter
4. We use monadic dynamical systems to specialize some of its components,
in particular the function possible which was assumed to generate the future
evolutions of the world. We discuss how to define measures of harm on a
structure of possible evolutions which are compatible with other measures
of harm defined on a different structure. We implement a small example
and show how a number of conditions can be computationally tested using
QuickCheck.

7.1 Micro-trajectories as possible evolutions

The model of vulnerability developed in Chapter 4, expressed as

possible :: States → F Evolutions
harm :: Evolutions → V
measure :: F V →W
vulnerability :: States →W
vulnerability = measure · fmap harm · possible

where F is a functor, V and W are ordered sets, and measure satisfies
the monotonicity condition, left open the question of how its components
might be implemented. In this chapter, we propose the following answer:
the function possible is computed as the structure of micro-trajectories of a
monadic dynamical system.

This answer implies that the type of future evolutions is the same as
that of micro-trajectories, that is, [States]. The states in question have
been “narrowed down”, from general states of the world, to states of the
dynamical system involved in the computation. Additionally, we have the
restriction that F is a monad.

111

112 CHAPTER 7. MONADIC SYSTEMS AND VULNERABILITY

Formally, we have:

newtype VulnerabilityContext m v w x t
= VC (t → x → m x , [x]→ v ,m v → w)

system (VC (sys, h,m)) = sys
harm (VC (sys, h,m)) = h
measure (VC (sys, h,m)) = m

vulnerability vc x ts = (measure vc) (fmap (harm vc)
(mtrj (system vc) x ts))

We compute vulnerability in the context of a given monadic dynamical sys-
tem, with given functions harm and measure. In such a context, vulnerabil-
ity is computed in an initial state, along a given trajectory of inputs (which
could be, for example, intervals of time).

This represents an implementation of the basic model of vulnerability.
In the Sections 4.2 and 4.3, we have presented extensions involving the usage
of sensitivity and adaptive capacity. We can implement these extensions by
extending the context of vulnerability with the missing elements.

newtype SensitivityContext x v1 v2 v
= SC ([x]→ v1 , [x]→ v2 , (v1 , v2)→ v)

impacts (SC (i , s, c)) = i
sensitivity (SC (i , s, c)) = s
combine (SC (i , s, c)) = c

vulnerability sensitivity sys meas sc
= vulnerability (VC (sys, harm,meas))
where harm = (combine sc) · pair (impacts sc, sensitivity sc)

newtype AdaptiveCapacityContext x w w ′ w ′′ = AC (x → w ′, (w ,w ′)→ w ′′)
adaptive capacity (AC (ac, adj)) = ac
adjust (AC (ac, adj)) = adj
vulnerability adcap vc acc x ts

= (adjust acc) ((vulnerability vc x ts), adaptive capacity acc x)

7.2 Measures of harm on monadic structures

Computational vulnerability assessment is generally considered an exploratory
activity: various ways of computing the possible evolutions of the systems in-
volved are tried out, the models representing the systems are often changed,
and different ways of assessing harm, impacts or sensitivity are used. One
of the most important problems in all these changes is that of the type of

7.2. MEASURES OF HARM ON MONADIC STRUCTURES 113

the measure function, which is estimating a structure of possible harms, or
impacts, along a trajectory of states. When the system giving us this tra-
jectory changes, for example, when a deterministic system is replaced by a
stochastic one, the harm function generally does not need to change: its type
remains [X] → V , but the measure function has to change: the new type
is given by the monad of the new system. In our example, initially we had
measure :: Id V →W , and after the change measure ::SimpleProb V →W .

It is interesting, especially when comparing the results of these explo-
rations, to know whether the measures used are in some sense compatible.
Further, it would be desirable if one could take advantage of an existing
measure function in order to devise others which are compatible with it, but
work on different structures.

The feasability of this depends on the precise sense of “compatible”.
Since we are assuming that W is a partially ordered set, we have that
any vulnerability measure m :: M V → W induces a preorder on M V :
mv1 vM V mv2 ≡ m (mv1) vW m (mv2). In order to decide whether two
measures with the same target defined on different structures of the same
underlying set, m1 :: M1 V →W and m2 :: M2 V →W are compatible or
not, we can examine the preorders they induce on their sources.

Let us give some examples.

1. If X is a set and M is a monad, a preorder vX on X can be considered
compatible with a preorder vM X on M X if

∀ x1, x2 :: X : x1 vX x2 ≡ (return x1) vM X (return x2)

2. The preorder v1 on [R] given by

xs1 v1 xs2 ≡ (average xs1) 6 (average xs2)

seems to be more compatible with the preorder v2 on SimpleProb R
given by

sp1 v2 sp2 ≡ (expected sp1) 6 (expected sp2)

than with the preorder v3 on SimpleProb R given by

sp1 v3 sp2 ≡ (likeliest sp1) 6 (likeliest sp2)

where likeliest sp chooses the greatest real number assigned the great-
est probability (ties between equally likely elements are broken by
using max)

3. It seems reasonable to consider that the preorder v3 above is compat-
ible with the preorder v4 on SimpleFuzz R given by

114 CHAPTER 7. MONADIC SYSTEMS AND VULNERABILITY

sf1 v4 sf2 ≡ (highestDeg sf1) 6 (highestDeg sf2)

where highestDeg sf returns the real number with the greatest degree
of membership to sf and ties are broken, as with v4, by using max .

On the other hand, v3 does not seem intuitively to be compatible with
v5 where

sf1 v5 sf2 ≡ (cog sf1) 6 (cog sf2)

where cog sf computes the “center of gravity” of the fuzzy set sf
(similar to taking the expected value in SimpleProb R).

The reason the choices made in these examples between compatibility
and non-compatibility seem so obvious is probably that in each case, al-
though we have not made it explicit, we have a transformation between two
different types of structure. The transformation is natural: in programming
terms, the functions it defines are polymorphic, and injective: all functions in
the transformation have left inverses. In each case, the preorders are judged
compatible when both the transformation between the structures and its left
inverses, restricted to the image of the transformation, are monotonous, and
otherwise they are classified as incompatible. In other words, we can take
the following as definitions of “compatibility”.

Definition 17 Compatible preorders.
Let M and N be functors and τ :: M a → N a be an injective natural

transformation. Two preorders vM on M X and vN on N X are compat-
ible with respect to τ if M X and the image of M X under τ are order
isomorphic, that is

mx1 vM mx2 ≡ τ (mx1) vN τ (mx2)

Definition 18 Compatible vulnerability measures.
Two vulnerability measures m1 ::M1 V →W and m2 ::M2 V →W are

compatible with respect to an injective natural transformation τ :: M1 a →
M2 a if the preorders induced by them are compatible with respect to τ .

We can now state the main result about “translating” vulnerability mea-
sures from one type of structure to another.

Theorem 9 Translating vulnerability measures.
Let τ :: M a → N a be an injective natural transformation, and let

τ−1::N a → M a be a left inverse of τ which is also a natural transformation.
Then:

1. If mM ::M V →W is a vulnerability measure, then mM ·τ−1 ::N V →
W is a vulnerability measure compatible with it with respect to τ .

7.2. MEASURES OF HARM ON MONADIC STRUCTURES 115

2. If mN ::N V →W is a vulnerability measure, then mN ·τ ::M V →W
is a vulnerability measure compatible with it with respect to τ .

Proof.

1. Let inc :: V → V be an increasing function, and nv :: N V . We have

mM (τ−1 (N inc nv))
= { naturallity of τ−1 }

mM (M inc (τ−1 nv))
v { mM vulnerability measure }

mM (τ−1 nv)

and therefore, mM · τ−1 is a vulnerability measure.

Remark. Since only the naturality of τ−1 has been used, we have the
more general result that the composition of a vulnerability measure
with a natural transformation is a vulnerability measure.

Let mv1,mv2 :: M V . We have

mM mv1 v mM mv2

≡ { τ−1 · τ = id }
mM (τ−1 (τ mv1)) v mM (τ−1 (τ mv2))

≡ { function composition }
(mM · τ−1) (τ mv1) v (mM · τ−1) (τ mv2)

therefore, mM and mM · τ−1 are compatible with respect to τ .

2. mN · τ is a vulnerability measure, as shown above.

Let mv1,mv2 :: M V . We have

(mN · τ) mv1 v (mN · τ) mv2

≡ { composition }
mN (τ mv1) v mN (τ mv2)

which shows that mN · τ and mN are compatible with respect to τ .

�
The “compatibility” between the examples with which we started and

the formal definitions above is summarized in the following proposition.

Proposition 6 Examples of compatibility.
With the notations in the examples above, we have:

116 CHAPTER 7. MONADIC SYSTEMS AND VULNERABILITY

1. vX and vM X are compatible with respect to return if return is injec-
tive. They are compatible with respect to an injective inverse of return,
if one exists.

2. average and expected are vulnerability measures, compatible with the
following natural transformation:

l1ToSP :: List1 x → SimpleProb x

l1ToSP xs = SP [(x , p) | x ← xs] where p = 1.0 / realToFrac (length xs)

The preorder v3, induced by likeliest which is not a vulnerability mea-
sure, is not compatible with the preorder induced by average, v1.

3. v3 and v4 are compatible with respect to the natural transformation

spToSF :: SimpleProb x → SimpleFuzzy x
spToSF (SP xs) = SF xs

The preorder v5 induced by cog, which is a vulnerability measure, is
not compatible with v3 with respect to spToSF, but is compatible with
v2.

The proofs are just routine verification of the definitions involved.

7.3 Computational testing using QuickCheck

7.3.1 Introducing QuickCheck

QuickCheck is a Haskell module with functionality which allows the user
to express, in a language somewhat resembling first-order logic, properties
of Haskell functions, to generate data required to test these properties, and
finally to test these properties using the generated data.

QuickCheck is presented in the online manual [18] and in a number of
publications ([5], [6], [7] and others). Here, we briefly present the compo-
nents we will use in the sequel.

The most important of these is the function quickCheck which verifies
testable properties. The simplest testable properties are boolean valued
functions, for example:

prop addition associative x y z = (x + y) + z = x + (y + z)

The names of such functions start, by convention, with prop . Arguments
of prop functions are universally quantified, so prop Something x y z =
some property is read: for all x , y and z , the property some property holds.

The function quickCheck uses data generators in order to test the prop-
erty for random values of the arguments. One cannot generate in Haskell ar-
bitrary values for polymorphic properties such as prop addition associative,
therefore a specific type signature has to be provided:

7.3. COMPUTATIONAL TESTING USING QUICKCHECK 117

quickCheck (prop_addition_associative::Nat -> Nat -> Nat -> Bool)
==> OK, passed 100 tests.

quickCheck (prop_addition_associative::Double -> Double
-> Double -> Bool)

==> Falsifiable, after 1 tests:
-2.0
2.25
1.66666666666667

Addition on integers is associative, on floating point numbers it is not.
The number of tests quickCheck executes in order to verify a property is 100
by default, and can be changed by using a different configuration.

The arguments of prop functions need to be instances of the type class
Arbitrary , providing the data generator arbitrary . The QuickCheck mod-
ule provides many instances of this type class, for the primitive types, for
data structures such as tuples, lists and even for functions. Among the
datatypes for which QuickCheck does not provide such instances are Id a,
SimpleProb a and ExpT a m b, which we need in order to test properties of
monadic dynamical systems. Therefore, we define them here.

instance Arbitrary a ⇒ Arbitrary (Id a) where
arbitrary = (return · Id) C arbitrary

instance (Arbitrary a,Arbitrary (m b))⇒
Arbitrary (ExpT a m b) where
arbitrary = (return · ExpT) C arbitrary

These instance declarations take advantage of the predefined ones, and con-
struct arbitrary elements of the required type from their components.

In defining the data generator for SimpleProb a we must also check
that the lists of elements generated are not empty (that is, that we do not
generate SP []) and that the elements have non-zero probabilities (otherwise
the scaling of probabilities might fail with a divide-by-zero error).

118 CHAPTER 7. MONADIC SYSTEMS AND VULNERABILITY

instance Arbitrary a ⇒ Arbitrary (SimpleProb a) where
arbitrary = arbitrary B f

where
f (x : xs) = return (SP xs ′)

where
xs ′′ = map (cross (id , abs ′)) (x : xs)

where abs ′ x = if x = 0
then 0.00001
else abs x

tot = sum (map snd xs ′′)
xs ′ = map (cross (id , (/tot))) xs ′′

f [] = (return · return) C arbitrary

Boolean-valued properties are not the only testable properties. The combi-
nator ⇒ introduces conditional properites, whose values are not Bool , but
rather the QuickCheck type Property . The combinator allows to formulate
a precondition on the values of the arguments of the prop function before
testing the property. For example

prop has inverse x = (1 / x) ∗ x = 1

fails when checked for Rational

quickCheck (prop_has_inverse::Rational -> Bool)
==> 2

Program error: Ratio.%: zero denominator

because 0 has no inverse. What we want is rather

prop has inverse x = x 6= 0⇒ (1 / x) ∗ x = 1

which has the type

prop has inverse :: Rational → Property

quickCheck(prop_has_inverse::Rational -> Property)
==> OK, passed 100 tests.

Some preconditions are fulfilled only for a small subset of the datatype’s
space, and generating arguments until such conditions are met can be very
costly. In order to avoid is, one can use the forAll combinator, which allows
one to provide a custom generator. For example, instead of

prop transitive x y z = x v y ∧ y v z ⇒ x v z

which gives

7.3. COMPUTATIONAL TESTING USING QUICKCHECK 119

quickCheck (prop_transitive::(Real, Real) -> (Real, Real) ->
(Real, Real) -> Property)

==> Arguments exhausted after 77 tests.

it is better to use

prop transitive x = forAll (gen bigger x) (λy →
(forAll (gen bigger y) (λz →

x 6 z)))
where
gen bigger x = (return · (+x)) C choose (0.0, 1.0)

This time, quickCheck has no problems:

quickCheck (prop_transitive::Real -> Property)
==> OK, passed 100 tests.

7.3.2 Testable conditions

About the simplest condition we can test when given a VulnerabilityContext
is that the monoid of the system giving us the possible evolutions is indeed
a monoid. In Haskell, the typeclass Monoid ensures that the datatype of
the monoid of the system is equipped with the function mappend and with
the unit mempty , but checking associativity and unit properties cannot, in
general, be done by the type system. However, both properties are easy to
define in QuickCheck:

prop mappend associative x y z = x ‘mappend ‘ (y ‘mappend ‘ z) =
(x ‘mappend ‘ y) ‘mappend ‘ z

prop mempty unit x = (x ‘mappend ‘ mempty = x) ∧
(mempty ‘mappend ‘ x = x)

Similarly, if a type constructor such as SimpleProb has been declared to
be of the type Monad , then instances of the types constructed by it are
guaranteed to be equipped with return and B operations, but the properties
of these operations cannot be checked by the type system. When writing
tests for these operations, we have two additional difficulties as compared
to the case above. First, we have to test equality between values which
represent functions, second, we have to generate functions in order to be
able to test these properties. For example:

prop return left unit f x = (return x) B f = f x

Checking that return is a left unit of B requires testing the equality of
the functions (f C) · return and f . We can, in general, only test equality

120 CHAPTER 7. MONADIC SYSTEMS AND VULNERABILITY

of functions extensionally, therefore we need to provide the argument of
the function explicitely (remember that arguments of prop functions are
universally quantified).

Functions can be generated by QuickCheck if elements in the source
and target can be generated. In general, however, it is better to use a
custom generator. In our case, we could use the generator that the given
VulnerabilityContext provides for us. The given system, say sys ::T → X →
M X gives us, for every t , a function X → M X , namely sys t . We can
then reformulate the property using sys as a custom generator:

sysfuns sys = (return · sys) C arbitrary

test return left unit sys x = forAll (sysfuns sys)
(λf → ((return x) B f) = (f x))

The property to be tested is test return left unit sys, not test return left unit .
If the latter were the case, sys would be universally quantified, and QuickCheck
would attempt to generate random instances of the type of sys. In order
to respect the convention that arguments of prop functions are universally
quantified, we prefix properties that depend on a paramenter with test ,
rather than prop .

We can use custom generators to state the associativity of B as well:

test bind assoc sys mx = forAll (sysfuns sys)
(λf → (forAll (sysfuns sys)
(λg → (((mx B f) B g) =

(mx B (λx → (f x) B g))))))

Finally, the right unit property of return is simpler to formulate:

prop return right unit mx = (mx B return) = mx

Once we have tested the monoid and monad properties, we can test that the
given system represents a monoid morphism.

test monoid morphism sys t1 t2 x = (sys (t1 ‘mappend ‘ t2) x) =
(sys t1 C sys t2 x)

The most vulnerability-specific property we can check when given a VulnerabilityContext
is the monotonicity condition for the vulnerability measure. Again, this
property requires generating functions, but in this case the functions must
be non-decreasing. We could implement a test for non-decreasing functions
and specify the monotonicity condition as

test monotonicity measure inc mv = nondecreasing inc ⇒
mv v measure (fmap inc mv)

7.3. COMPUTATIONAL TESTING USING QUICKCHECK 121

This specification is in most cases inadequate because arbitrarily generated
functions are unlikely to be non-decreasing, and QuickCheck will stop with
an inconclusive result once it reaches the maximum number of attempts for
which it is configured. Thus, it is better to use a custom generator which
guarantees that the functions it generates are non-decreasing.

test monotonicity measure geninc mv = forAll geninc
(λinc → ((measure mv) v (measure (fmap inc mv))))

The last condition we deal with here is the compatibility of two vulner-
ability measures, as defined above. We need for this an injective natural
transformation. The injectivity condition is checked by

test injective f x1 x2 = x1 6= x2 ⇒ (f x1) 6= (f x2)

We can then translate the definition of compatibility of vulnerability mea-
sures in QuickCheck as follows:

test compatibility τ mM mN mx1 mx2 =
((mM mx1) v (mM mx2)) ≡
((mN (τ mx1)) v (mN (τ mx2)))

This test fails if τ is not monotonous with respect to the preorders induced
by the vulnerability measures (the implication ⇒ does not hold), or if there
exist mx1 and mx2 for which τ mx1 and τ mx2 are comparable, but mx1

and mx2 are not.

7.3.3 Example

In many ways, the example of the interacting stochastic and non-deterministic
systems given in Section 6.2.2 is representative for the problems which ap-
pear in vulnerability studies. The systems involved have different types,
the evolutions are not deterministic, and the objective is to keep the con-
trolled system in a certain range (in the Climate Change community, this
is often called the coping range, see, for example, Chapter 2 in [19]). Only
one feature is missing from it in order for it to be a good “toy model”
for vulnerability assessments: we have seen that the goals of keeping the
system within the desired range and minimizing the costs were very much
compatible: minimizing the costs led to the desired behavior of the system.
In vulnerability studies, the situation is mostly the opposite: the goal of
emission reduction (keeping the climate system within certain bounds), for
instance, is often seen as conflicting with that of economic growth. The
latter could be represented in our example if we choose to maximize, rather
than minimize, the number of controls different from 0.0.

Disclaimer: this example is not meant to be in any way a realistic rep-
resentation of the interaction between the social and the ecological systems,

122 CHAPTER 7. MONADIC SYSTEMS AND VULNERABILITY

beyond the features explicitely stated in the above paragraph. And much of
the research in climate impact studies aims to show that, in fact, the goals of
environmental-friendly developement and economic growth are quite com-
patible with each other.

In our example, the ecological system is represented by runsys and the
social system is represented by a family of systems included in sysfam.

The first thing to check is that the monoid, monad and monoid morphism
conditions are in fact fullfilled (of course, we know that in this case they
are, but in general the models are presented as executable code, and the
conditions should be tested).

The monoids involved are N for runsys and the systems in sysfam,
[(Int , Int)] for the combination sysserfaml (sysfam, runsys). We have

quickCheck (prop_mappend_associative::Int ->
Int -> Int -> Bool)

==> OK, passed 100 tests.

quickCheck (prop_mempty_unit::Int -> Bool)
==> OK, passed 100 tests.

quickCheck (prop_mappend_associative::[(Int, Int)] ->
[(Int, Int)] -> [(Int, Int)] -> Bool)

==> OK, passed 100 tests.

quickCheck (prop_mempty_unit::[(Int, Int)] -> Bool)
==> OK, passed 100 tests.

No surprises there. As an aside, we note that a frequent case in which
a function sys fails the monoid morphism test is when sys t :: X → M X
depends on the argument t . Consider, for example,

detsys ′ :: N→ N→ Id N
detsys ′ t n = Id (t ∗ n)

We do have that detsys ′ 0 = return, but the monoid operation is no longer
preserved. QuickCheck gives us

quickCheck (test_monoid_morphism detsys’)
==> Falsifiable, after 0 tests:

2
0
1

Indeed, detsys ′ (2 + 0) 1 = 2, while detsys ′ 2 (detsys ′ 0 1) = 0.
The monads involved are SimpleProb for runsys, Id for the systems in

sysfam and ExpT Int SimpleProb for the combination sysserfaml (sysfam, runsys).

7.3. COMPUTATIONAL TESTING USING QUICKCHECK 123

quickCheck (prop_return_right_unit::SimpleProb Real -> Bool)
==> OK, passed 100 tests.

quickCheck (prop_return_right_unit::Id Real)
==> OK, passed 100 tests.

quickCheck (prop_return_right_unit::ExpT Int SimpleProb Real)
==> OK, passed 100 tests.

quickCheck (test_return_left_unit runsys)
==> OK, passed 100 tests.

quickCheck (test_return_left_unit (sysfam 0))
==> OK, passed 100 tests.

quickCheck (test_return_left_unit (sysserfaml (sysfam, runsys)))
==> OK, passed 100 tests.

quickCheck (test_bind_assoc runsys)
==> OK, passed 100 tests.

quickCheck (test_bind_assoc (sysfam 0))
==> OK, passed 100 tests.

quickCheck (test_bind_assoc (sysserfaml (sysfam, runsys)))
==> OK, passed 100 tests.

The monoid morphism property for the systems involved is checked by

quickCheck (test_monoid_morphism runsys)
==> OK, passed 100 tests.

quickCheck (test_monoid_morphism (sysfam 0))
==> OK, passed 100 tests.

quickCheck (test_monoid_morphism (sysserfaml (sysfam, runsys)))
==> OK, passed 100 tests.

Next, we have to define the function harm to be used in estimating
the vulnerability. Harm is measured along two dimensions in our example:
runsys going out of bounds, or having a small number of controls different
from 0.0. Along the first dimension, we can borrow the idea of Luers et al.
described in Section 3.3.3 and compute a function of the distance from the
desired range:

124 CHAPTER 7. MONADIC SYSTEMS AND VULNERABILITY

out of bounds :: R→ R
out of bounds r
| r > −5.0 ∧ r 6 5.0 = 0.0
| r <−5.0 = abs (−5.0− r)
| r > 5.0 = abs (r − 5.0)

total oob :: [(R, R)]→ R
total oob = sum ·map (out of bounds · fst)

Along the second dimension, we can choose a definition of “small”: say,
under half of the controls are different from 0.0. We can just count the
“missing” elements:

misses :: [(R, R)]→ N
misses xs = if k > (n ‘div ‘ 2) then k else 0

where
n = length xs − 1
k = length (filter (λ(r , c)→ c = 0.0) xs)− 1

h1 :: [(R, R)]→ (R, N)
h1 = pair (total oob,misses)

We have to define a partial order on (R, N). The simplest one is given by
the dominance relation:

instance (Ord a,Ord b)⇒ PartialOrd (a, b) where
(a1 , b1) v (a2 , b2) = (a1 6 a2) ∧ (b1 6 b2)
(a1 , b1) w (a2 , b2) = (a1 > a2) ∧ (b1 > b2)

We now have to choose a measure for vulnerability, which aggregates the
measures along all trajectories.

Let us first consider the case in which the family of systems representing
the social system is reduced to just one, for example, the optimal choice of
the previous chapter

prevbest = app (mkfun ([(−4.0, 3.0), (−3.0, 3.0), (−2.0, 0.0),
(−1.0, 0.0), (0.0, 0.0), (1.0, 0.0),
(2.0, 0.0), (3.0,−3.0), (4.0,−3.0)]))

The combined system is

combsys1 = detserl (prevbest , runsys)

The structure of all trajectories is a SimpleProb [(R, R)], and the vulnera-
bility measure thus has to act on SimpleProb (R, N). Again, following Luers
et al., we can take the expected value along the two dimensions:

7.3. COMPUTATIONAL TESTING USING QUICKCHECK 125

m1 :: SimpleProb (R, N)→ (R, R)
m1 = pair (expected · fmap fst ,

expected · fmap (realToFrac · snd))

In order to check that the monotonicity condition is fulfilled, we need to
write a generator for increasing functions on (R, N). For example, we can
take

geninc :: Gen ((R, N)→ (R, N))
geninc = do

dx ← choose (0, 10)
dn ← choose (0, 10)
return (λ(x ,n)→ (x + dx ,n + dn))

The monotonicity condition is then checked by

quickCheck (test_monotonicity m1 geninc)
==> OK, passed 100 tests.

The vulnerability of sys1 in the state (0.0, 0.0) within 10 steps is

vulnerability (VC (combsys1, h1, m1)) (0.0, 0.0)
(replicate 10 [(1, 1)])

==> (0.0,7.638671875)

Let us now consider the case in which the family of systems is composed
of several members. For example:

lists = [[(−4.0, 3.0), (−3.0, 3.0), (−2.0, 3.0), (−1.0, 3.0),
(0.0, 3.0), (1.0,−3.0), (2.0,−3.0), (3.0,−3.0),
(4.0,−3.0)], -- a greedy strategy

[(−4.0, 3.0), (−3.0, 3.0), (−2.0, 0.0), (−1.0, 0.0),
(0.0, 3.0), (1.0, 0.0), (2.0, 0.0), (3.0,−3.0),
(4.0,−3.0)], -- a version of prevbest

[(−4.0, 3.0), (−3.0, 3.0), (−2.0, 3.0), (−1.0, 3.0),
(0.0, 3.0), (1.0, 0.0), (2.0, 0.0), (3.0,−3.0),
(4.0,−3.0)], -- greedy prevbest

[(−4.0, 3.0), (−3.0, 3.0), (−2.0, 0.0), (−1.0, 0.0),
(0.0, 3.0), (1.0,−3.0), (2.0,−3.0), (3.0,−3.0),
(4.0,−3.0)]] -- greedy prevbest

The system family is constructed as in the previous chapter:

sysfam2 n t (r , c) = (funs ′ !! n) t (r , c)
where
funs ′ = map (app ·mkfun) lists

126 CHAPTER 7. MONADIC SYSTEMS AND VULNERABILITY

The combined system is

combsys2 = sysserfaml (sysfam2 , runsys)

Now the structure of the trajectories is ExpT N SimpleProb [(R, R)]. Corre-
spondingly, the vulnerability measure will act on ExpT N SimpleProb (R, N).
An intuitively reasonable way of aggregating this structure is to take the av-
erage across all trajectories:

m2 :: N→ ExpT N SimpleProb (R, N)→ (R, R)
m2 numsys (ExpT f) = (avg1 , avg2)

where
xs = map m1 [f n | n ← [0 . .numsys − 1]]
avg1 = sum (map fst xs) / l
avg2 = sum (map snd xs) / l
l = realToFrac (length xs)

The measure is m2 numsys, not m2. We have to pass explicitely the number
of systems in the family, in this case 4. We can check that this is indeed a
vulnerability measure:

quickCheck (test_monotonicity (m2 4) geninc)
==> OK, passed 100 tests.

Is this compatible with the expected value measure? In order to answer
this, we have to find a natural transformation SimpleProb → ExpT N SimpleProb
with respect to which we can test monotonicity. Fortunately, this is not dif-
ficult:

τ :: SimpleProb a → ExpT N SimpleProb a
τ sp = ExpT (const sp)

For every type A, the function τ :: SimpleProb A → ExpT N SimpleProb A
is injective:

τ sp1 = τ sp2

≡ { definition τ }
ExpT (const sp1) = ExpT (const sp2)

≡ { constructors are injective }
const sp1 = const sp2

≡ { const }
sp1 = sp2

Of course, checking with QuickCheck confirms this:

7.3. COMPUTATIONAL TESTING USING QUICKCHECK 127

quickCheck (test_injective
(tau::SimpleProb Real -> ExpT Nat SimpleProb Real))
==> OK, passed 100 tests.

The compatibility condition can then be checked:

quickCheck (test_compatibility tau m1 (m2 4))
==> OK, passed 100 tests.

The vulnerability of the combined system in state (0.0, 0.0) within 10
steps is

vulnerability (VC (combsys2, h1, m2 numsys)) (0.0, 0.0)
(replicate 10 [(1, 1)])

where numsys = length lists
==> (521.5,0.0)

Let us represent the social system by the collection of all systems in
sysfam, and find out the optimal policies with respect to our two goals.
Combining each system in sysfam with runsys, we obtain

allsyss = [detserl (sysfam n, runsys) |
n ← [0 . . (length funlists − 1)]]

We can compute the vulnerability of each of these systems by

allvulns = [vulnerability (VC (sys, h1 ,m1)) (0.0, 0.0)
(replicate 10 [(1, 1)]) | sys ← allsyss]

If we give priority to keeping runsys within the prescribed bounds, we are in-
terested in the systems for which the vulnerability along the first component
is 0.0 and the second component is as small as possible:

bestBounds = takeWhile (p (head xyzs)) xyzs
where
p ((a, b), c) ((x , y), z) = y 6 b
xyzs = sort (filter (λ((a, b), i)→ a = 0.0)

(zip allvulns [0 . .]))

bestBounds
==> [((0.0,0.474609375),14),((0.0,0.474609375),15)]

The skeleton of the 15th member of the system is

[(−4.0, 3.0), (−3.0, 3.0), (−2.0, 3.0), (−1.0, 3.0),
(0.0, 0.0), (1.0,−3.0), (2.0,−3.0), (3.0,−3.0), (4.0,−3.0)]

128 CHAPTER 7. MONADIC SYSTEMS AND VULNERABILITY

On the other hand, if we give priority to minimizing the number of controls
of 0.0, we have

bestCtrls = takeWhile (p (head xyzs)) xyzs
where
p ((a, b), c) ((x , y), z) = x 6 a
xyzs = sort (filter (λ((a, b), i)→ b = 0.0)

(zip allvulns [0 . .]))

All the elements in bestCtrls have a vulnerability of (512.5, 0.0). Their in-
dices in the family of systems are given by

[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
112, 113, 114, ...508, 509, 510, 511]

(in total 256).
As we see, the two goals are not compatible: there is no policy which

keeps the system within bounds and which always fulfills the “economic”
objective. One could try, for example, to increase the bounds within which
runsys is to be kept: this is similar to the discussions in climate reasearch
about the climate change range with which society can cope. Alternatively,
one could try to bring about a “technological improvement”, which would
represent in this case a control range of more than just the values −3.0 and
3.0. Indeed, for example the policy described by the “skeleton”

[(−4.0, 3.0), (−3.0, 3.0), (−2.0, 2.0), (−1.0, 2.0),
(0.0, 2.0), (1.0,−2.0), (2.0,−2.0), (3.0,−3.0), (4.0,−3.0)]

leads to a combined system whose vulnerability is

(0.0, 0.0)

Bringing about a situation as close as possible to this one is the goal of
climate impact research.

7.4 Conclusions

In this final chapter, we have gathered together the main threads running
through this work. Using the monadic dynamical systems developed in the
second part, we have been able to give a surprisingly simple implementation
of the model of vulnerability developed in the first part. The main theo-
retical result of this chapter, the compatibility condition on vulnerability
measures, allows us to check to what extent various computational vulnera-
bility assessments may be compared, and to extend vulnerability measures

7.4. CONCLUSIONS 129

defined on one type of structure to other types by means of composing them
with natural transformations.

The various conditions that can be posed on the components of the
implemented models of vulnerability can be expressed in a form suitable
for automatic testing. We have presented the main components of such a
testing tool, the popular Haskell utility QuickCheck, and we have shown
how to implement the conditions in terms of QuickCheck combinators.

Finally, we have shown how the model can be used in an idealized exam-
ple of a vulnerability assessment-like problem. This “toy example” exhibits
many of the features of full-blown vulnerability assessments: possible evo-
lutions given by combined systems of different types, conflicting definitions
of “harm”, partial ordering of vulnerability measurements. We have used
the implemented tests to verify the various components of the model and
to ensure that the vulnerability measures introduced were compatible. The
analysis of the compromises that need to be made between the conflicting
goals, and the possible changes to the problem that could lead to better
results, have many parallels in the “real-world” discussions on the impacts
of climate change.

130 CHAPTER 7. MONADIC SYSTEMS AND VULNERABILITY

Chapter 8

Conclusions and Perspectives

8.1 A look back

We started our journey by examining a number of definitions of vulnerabil-
ity, both in the ordinary language context, as well as in fields of Development
Studies and Climate Change. We have attempted to leverage the work of
synthesis done by Calvo and Dercon in [4] and by the IPCC in [19]. The
common theme of all these definitions is that vulnerability represents a mea-
sure of the harm that might occur in future evolutions. There were, as we
have seen, also a number of important differences. The Development Studies
community, for example, favors expressions such as “vulnerable to poverty”,
that is, vulnerability is relative to the harm suffered, while the Climate
Change community prefers to refer to “vulnerability to climate change”,
emphasizing the causes of the potential harm. The model we have devel-
oped has helped us understand this (and other) differences: in development
studies, the measurement of harm along a possible evolution focuses on
poverty, neglecting other negative effects, but considering all causes of this
poverty, while climate change studies typically try to assess many different
kinds of impacts, but only taking into account those caused (mainly) by cli-
mate change. The symmetry involved in these exclusion/inclusion decisions
is exhibited in our model by the similar role played by the impacts (negative
effects) and the sensitivity to certain factors (the causes in whose effects we
are interested).

In order to unify the various definitions of vulnerability, we have taken
a very general view of what a “possible future evolution” is. We did not
want to be limited to “a set of evolutions”, because, for example, we wanted
to also represent “probable future evolutions” in the same framework as
a probability distribution over evolutions. At this point, we made use of
elementary concepts of Category Theory, representing “possible evolutions”
as functorially constructed structures of evolutions. Computing the impacts
along these evolutions is done by “mapping” the function that evaluates

131

132 CHAPTER 8. CONCLUSIONS AND PERSPECTIVES

the impacts on the structure of evolutions, while vulnerability represents a
measurement on the entire structure of impact values.

Similarly, we were able to formulate precisely the natural condition of
consistency between the impact evaluations and the vulnerability measure:
ceteris paribus, if all impacts in the structure increase, then the vulnerability
measure should not decrease. It is hard to imagine how one might capture
this requirement in a precise fashion without the notion of functor.

Once we had developed the model, we returned to the original definitions,
especially to those which had been expressed in mathematical terms, in
order to see whether we could now interpret all of them as special cases of
the more general, unifying version. We also formalized the derived concepts
of sensitivity and adaptive capacity, and gave conditions for their usage.

Once this was done, we had a certain confidence that the model was
adequate to account for the concept of vulnerability and its usage. However,
what we had was only a formalization (or specification): to develop software,
we needed to refine this specification.

The major problem in operationalizing our specification of vulnerability
was how to compute the structure of future evolutions. We decided to view
the possible evolutions as given by a dynamical system, in conformity to ac-
tual usage, where the systems considered are interacting models of the phys-
ical, social, or economical world. In attempting to compute the trajectories
of systems of different types (deterministic, stochastic, non-deterministic,
and combinations thereof), we examined the mathematical literature. The
classical work on systems theory, as exemplified by the textbook of Denker
([11]) provided the means of computing trajectories of systems viewed as
monoid actions, but did not account for the structure of these trajectories
in a satisfactory fashion. The modern work presented, for example, in [34],
which views systems as coalgebras, preserved the structure, but made com-
puting the trajectories difficult.

The solution was to settle on a particular class of coalgebras, namely
the coalgebras of monadic functors. Monads come equipped with a kind of
natural “iteration” which is given by the Kleisli composition. Thus, monadic
coalgebras were able to represent the structural properties of the systems
we considered, and to allow the generic computation of trajectories.

In monadic systems, in fact, we encountered two kinds of trajectories:
those that are the perfect analogues of the traditional trajectory of a dy-
namical system, and which we called macro-trajectories, and those that
more resembled the results of iterating coalgebraic systems, which we called
micro-trajectories. Both kinds of trajectories are interesting in applications,
and both can be computed generically.

At this point, there could arise the question: do we have three kinds of
systems, or only one? Is there no way of unifying the various definitions
so as to be able to translate various results from one kind of system to the
other? In fact, it turned out that classical systems, coalgebras and monadic

8.1. A LOOK BACK 133

coalgebras were all instances of the same defintion: a system is a morphism
of monoids whose target is a set of endo-arrows.

In this way we could also treat the continuous case and the case of
systems with input, by taking over the definitions from the classical systems
(endo-arrows in Set) and translating them into endo-arrows of a Kleisli
category.

We could now compute trajectories of monadic systems in a generic fash-
ion, but, in computer parlance, we were missing the constructors of monadic
systems. We saw that the “elementary” components of the complex systems
typically considered in vulnerability assessments, the deterministic, stochas-
tic, fuzzy, non-deterministic systems were all monadic, but what about their
combinations? It is well known that there is no uniform way of combining
monads, and that the same two monads can be combined to yield a monad
in different ways. For better or worse, the same flexibility is available to
monadic systems as well. We developed generic functions for the most fre-
quent combinations, and we showed that different combinations of the same
systems are possible and useful.

Armed now with a collection of operations on monadic systems, enabling
us to build up complex systems out of simpler ones and to compute their
trajectories, we returned to the design and implementations of components
for vulnerability assessment. At this point, we could fully flesh out our
model: the various components received computational expression, and we
could implement and test a number of examples.

Since vulnerability assessments are often exploratory, it is common to
want to replace a system of one type, say deterministic, by another which
represents the same “real-world component” but has a different type, say
stochastic. Since the types of the components of a complex system influence
the type of the complex system itself and ultimately the structure of its tra-
jectories, and since vulnerability measures are defined on these structures,
it follows that changes in the types of components attract changes in the
vulnerability measure. On the other hand, since the complex system is still
meant as a representation of the same “reality”, we can ask what is the re-
lation between the two vulnerability measures? When are they compatible?
What can be reused in the passage from one structure to another? We were
able to give a general answer to these questions, again using elementary
categorial machinery, in this case, natural transformations.

Speaking of reuse, when putting together complex systems there is al-
ways the possibility of error: are all the components compatible? do all
components fulfill their requirements? and so on, are typical questions that
arise in software engineering. An advantage of a precise mathematical speci-
fication of the compatibility conditions and component requirements is that
it can the be translated into tests which can be automatically performed
using a tool such as QuickCheck. We showed how this is done, using simple
examples for all tests of interest.

134 CHAPTER 8. CONCLUSIONS AND PERSPECTIVES

As a final proof of concept, we conducted a “toy vulnerability assess-
ment”, where we encountered all the problems of realistic cases in labora-
tory conditions: combined systems of different types, conflicting definitions
of “harm”, partial ordering of vulnerability measurements, etc., thus en-
abling us to conclude, with a certain degree of confidence, that the model
proposed and the attendant software infrastructure are adequate for the pur-
poses of computational vulnerability assessments in the context of climate
change.

8.2 A look ahead

The research reported here was partly financed by the European Commission
within the ADAM project (Adaptation and Mitigation Strategies Support-
ing European Climate Policy, http://www.adamproject.eu), where it is used
to guide the meta-analysis task (a comparative study of approximately two
hundred case studies of climate change impacts, vulnerability and adapta-
tion) and the design of a digital atlas of vulnerability. Our model of vulner-
ability was also used to formalize the notion of “risk” as it appears in the
Natural Hazards community, and to clarify the similarities and differences
between the usage of “vulnerability” in this field and Climate Change.

In the longer term, the model of vulnerability is expected to play a big-
ger part in the analysis of vulnerability studies, along the lines of Chapter
4. This will involve taking a closer look at the models used in the various
case studies, in order to arrive at the computational expressions of the struc-
tures of possible evolutions that were used for the assessment. Many studies
do not end up with a vulnerability measurement, but present instead the
possible evolutions in a synoptic form, as was done in the ATEAM project
discussed in Subsection 3.3.2 where the introduction of a vulnerability mea-
sure was considered as “the most dangerous step”. We aim to use the results
developed in this thesis in order to make the introduction of vulnerability
measures simpler and eliminate at least some of the pitfalls associated to it.

This brings us to the next application of our thesis: the developement
of software components for vulnerability assessment. Taking the work pre-
sented here as a starting point, Daniel Lincke from the Potsdam Institute
for Climate Impact Research is currently developing a library of generic
concepts (in the C++ sense) together with implementations of important
instances of these concepts, in order to put the foundations of a computer
assisted vulnerability assessment tool. The current status of his work is
reported on in [27].

Also working at the Potsdam Institute for Climate Impact Research,
Sarah Wolf is investigating additional examples of uncertainty representa-
tion in dynamical systems. She is currently focusing on finitely additive
probability theory, a generalization of the classical probability theory (which

8.2. A LOOK AHEAD 135

requires countable additivity), and which promises to also encompass fuzzi-
ness, possibility functions, and default reasoning, and thus serve as a unify-
ing tool for uncertainty management (see [8]). The question that arises is:
do finitely additive probability distributions form a monad? Or is there a
more general structure that should be used instead?

The functions trj and mtrj can be defined as folds on lists. Indeed, we
have

trj sys x = foldr f [return x]
where
f t (mx : mxs) = ((sys t) C mx) : mxs

mtrj sys x = foldr f (return [x])
where
f t = (addHist (sys t)) C

One can therefore pose the question of writing other versions of these func-
tions, for other structures of type Fix f than []. Remember that the list
of values along which trajectories are computed is not always a list of time
intervals, but can also be a list of commands or inputs. If we want to com-
pute trajectories along different lists of commands, we can do that list by
list, but we risk being very inefficient if the lists have, say, initial segments
in common. In this case, we could for example arrange the commands in
a tree structure, so that they branch out where they differ, but the initial
identical parts are computed only once.

An even more important source of inefficiency is the combinatorial ex-
plosion which results from combining non-deterministic systems with other
types of systems. In the examples we have seen in Chapters 6 and 7, the
set of all trajectories that needed to be computed grows exponentially with
the number of steps taken. For optimization problems, building this set
of trajectories may be avoided if we can eliminate non-optimal trajectories
while they are being constructed. For the case in which the system to be
combined with the non-deterministic one is deterministic, there exist well
known algorithms which allow us to do just this: see, for example, the chap-
ters on thinning and dynamic programming in [2]. The same algorithms can
be applied also to the case in which the system to be combined with the
non-deterministic one is stochastic, but the resulting gain is smaller: there
is already a growth in the support of the probability distributions over the
possible trajectories. What is necessary here is to generalize thinning to the
general case of monadic systems, from the current case where the monad is
[]. Another necessary step is to investigate what type of thinning may be
achieved when the vulnerability measure is not of the “worst impact” type,
but has a more integrative structure.

Finally, thinning algorithms achieve a similar effect to using sensitivity
and adaptive capacity contexts in a vulnerability assessment: they eliminate

136 CHAPTER 8. CONCLUSIONS AND PERSPECTIVES

possible evolutions from those that need to be considered. Investigating the
relationship between these three is an interesting topic for future research.

The conditions for this elimination are described in the chapters on thin-
ning and dynamic programming in [2].

Bibliography

[1] R. Bird. Introduction to Functional Programming using Haskell. In-
ternational Series in Computer Science. Prentice Hall, second edition
edition, 1998.

[2] R. S. Bird and O. de Moor. Algebra of Programming. International
Series in Computer Science. Prentice Hall, 1997.

[3] R. S. Bird and P. Wadler. Introduction to Functional Programming.
International Series in Computer Science. Prentice Hall, 1988.

[4] C. Calvo and S. Dercon. Measuring individual vulnera-
bility. Economics Series Working Papers 229, University
of Oxford, Department of Economics, 2005. Available at
http://ideas.repec.org/p/oxf/wpaper/229.html.

[5] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random
testing of Haskell programs. In Proc. of International Conference on
Functional Programming (ICFP). ACM SIGPLAN, 2000.

[6] K. Claessen and J. Hughes. Testing monadic code with QuickCheck.
In Proc. of Haskell Workshop. ACM SIGPLAN, 2002.

[7] K. Claessen and J. Hughes. Specification based testing with
QuickCheck. In The Fun of Programming, Cornerstones of Comput-
ing, pages 17–40. Palgrave, 2003.

[8] G. Coletti and R. Scozzafava. Probabilistic Logic in a Coherent Setting.
Springer, 2002.

[9] O. de Moor. A generic program for sequential decision processes. In
PLILPS ’95: Proceedings of the 7th International Symposium on Pro-
gramming Languages: Implementations, Logics and Programs, pages
1–23, 1995.

[10] O. de Moor. Dynamic programming as a software component. In
N. Mastorakis, editor, Proceedings of the 3rd WSEAS International
Conference on Circuits, Systems, Communications and Computers.
WSES Press, 1999.

137

138 BIBLIOGRAPHY

[11] M. Denker. Einfuhrung in die Analysis dynamischer Systeme. Springer,
2005.

[12] M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic func-
tional programming in haskell. Journal of Functional Programming,
16(1):21–34, 2006.

[13] G. Gallopin. Linkages between vulnerability, resilience, and adaptive
capacity. Global Environmental Change, 16(3):293–303, 2001.

[14] J. Gibbons. Unfolding abstract datatypes. In Mathematics of Pro-
gram Construction, Lecture Notes in Computer Science, pages 110–133.
Springer, 2008.

[15] J. Gibbons and G. Hutton. Proof Methods for Corecursive Programs.
Fundamenta Informaticae Special Issue on Program Transformation,
66(4):353–366, 2005.

[16] J. Gibbons and G. Jones. The under-appreciated unfold. In Proceedings
3rd ACM SIGPLAN Int. Conf. on Functional Programming, ICFP’98,
Baltimore, MD, USA, 26–29 Sept. 1998, volume 34(1), pages 273–279.
ACM Press, 1998.

[17] R. Goldblatt. Topoi, The Categorial Analysis of Logic. Dover Publica-
tions, Inc., 2006.

[18] J. Hughes. QuickCheck: An automatic testing
tool for haskell. User manual avaiable online at
http://www.cs.chalmers.se/ rjmh/QuickCheck/manual.html.

[19] IPCC. Impacts, adaptation, and vulnerability: Contribution of working
group II to the fourth assessment report of the intergovernmental panel
on climate change. In M.L. Parry, Canziani O.F., J.P. Palutikof, P.J.
van der Linden, and C.E. Hanson, editors, Climate Change 2007, page
976 pp., Cambridge, UK, 2007. Cambridge University Press.

[20] B. Jacobs. Introduction to Coalgebra. Towards Mathematics of
State and Observations. In preparation. Current version available at
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf.

[21] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:62–222, 1997.

[22] Mark P. Jones and Luck Duponcheel. Composing monads. Technical
report, 1993.

[23] A. Kurz. Coalgebras and modal logic. In Proceedings of Advances in
Modal Logic ’98, pages 222–230. Uppsala, 1998.

BIBLIOGRAPHY 139

[24] R. Leichenko, K. O’Brien, G. Aandahl, H. Tompkins, and A. Javed.
Mapping vulnerability to multiple stressors: A technical memorandum.
Technical report, CICERO, Oslo, Norway, 2004.

[25] D. Lemmen and F. Warren, editors. Climate Change Impacts and Adap-
tation: A Canadian Perspective. Natural Resources Canada, 2004.

[26] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages: San
Francisco,California,January 22–25,1995, pages 333–343, New York,
NY, USA, 1995. ACM Press.

[27] D. Lincke, C. Ionescu, and N. Botta. A generic library for earth sys-
tem modelling based on monadic systems. Technical report, Potsdam
Institute for Climate Impact Research, Potsdam, Germany, 2008.

[28] A.L. Luers, D.B. Lobell, L.S. Sklar, C.L. Addams, and P.A. Matson.
Method for quantifying vulnerability, applied to the agricultural system
of the Yaqui Valley, Mexico. Global Environmental Change, 13(4):255–
267, 2003.

[29] M.J. Metzger and D. Schröter. Towards a spatially explicit and quan-
titative vulnerability assessment of environmental change in europe.
Regional Environmental Change, 6(4):201–216, 2006.

[30] N. Nakicenovic and R. Swart. IPCC special report on emission scenarios
(SRES). Technical report, Intergovernmental Panel on Climate Change,
2000.

[31] K. O’Brien, R. Leichenko, U. Kelkar, H. Venema, G. Aandahl, H. Tomp-
kins, A. Javed, S. Bhadwal, S. Barg, L. Nygaard, and J. West. Mapping
vulnerability to multiple stressors: Climate change and globalization in
india. Global Environmental Change, 14(4):303–313, 2004.

[32] M. Parry, O. Canziani, J Palutikof, P. van der Linden, and C. Hanson,
editors. Climate Change 2007: Impacts, Adaptation and Vulnerability.
Contritbution of Working Group II to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change. Cambridge University
Press, 2007.

[33] S. Peyton Jones and J.-M. Eber. How to write a financial contract. In
The Fun of Programming, Cornerstones of Computing, pages 105–129.
Palgrave, 2003.

[34] J. Rutten. Universal coalgebra: a theory of systems. Theoretical Com-
puter Science, 249(1):3–80, 2000.

140 BIBLIOGRAPHY

[35] C. Soanes and A. Stevenson, editors. Oxford Dictionary of English.
Oxford University Press, second edition (revised) edition, 2005.

[36] K. Thywissen. Components of risk, a comparative glossary. SOURCE
- Studies Of the University: Research, Counsel, Education, 2, 2006.

[37] P. Wadler. Theorems for free! In Functional Programming Languages
and Computer Architecture, pages 347–359. ACM, 1989.

[38] R.T. Watson, M.C. Zinyowera, and R.H. Moss, editors. Climate
Change 1995: Impacts, Adaptations and Mitigation of Climate Change:
Scientific-Technical Analyses Contribution of Working Group II to the
Second Assessment of the Intergovernmental Panel on Climate Change.
Cambridge University Press, 1995.

[39] The World Bank. World Development Report 2000/2001. Attacking
Poverty. Oxford University Press, 2001.

Zusammenfassung

In der vorliegenden Arbeit wurde ein mathematisches Modell von Vul-
nerabilität und verwandten Begriffen (Sensitivität und Anpassungsfähigkeit)
eingeführt. Die genannten Begriffe sind zentrale Bestandteile der Fach-
gebiete ”Globaler Wandel” und ”Klimafolgenforschung” und werden hier
entsprechend verwendet.

Es wurde gezeigt, dass verschiedene repräsentative Definitionen Speziall-
fälle dieses allgemeinen Modells sind, dies zeigt, dass es die Möglichkeit einer
mathematischen Metaanalyse von Vulnerabilitätsassessments gibt.

Der Bedarf für ein allgemeines Model begründet sich unter anderem aus
der Tatsache, dass es viele verschiedene Definitionen für Vulnerabilität in der
Literatur gibt. Diese Vulnerabilitätsdefinitionen sind im Allgemeinen nur
auf einen bestimmten Typ eines dynamischen Systems zugeschnitten: de-
terministisch, nichtdeterministisch (szenariengesteuert), stochastisch, fuzzy,
usw. Um die verschiedenen Definitionen zu vereinheitlichen wurde die Klasse
der monadischen dynamischen Systeme identifiziert. Diese Klasse beinhal-
tet alle vorher erwähnten Systeme, sowohl in kontinuierlicher, als auch in
diskreter Zeit, mit und ohne Input. Das heißt, eine Vulnerabilitätsdefinition,
welche sich auf allgemeine monadische Systeme bezieht, kann man auf alle
Systeme eines üblichen Typs anwenden. Spezifische Definitionen erhält man
durch die Auswahl einer Monade, eines Zustandtyps, einer Schadensfunk-
tion und einer Funktion für die Vulnerabilitätsabschätzung. Es wurden Be-
dingungen für die Konsistenz von Vulnerabilitätsabschätzungen und für die
Kompatibilität der Vulnerabilitätsabschätzungen, die auf unterschiedlichen
Typen von Systemen definiert wurden, formuliert.

Operationen wurden auf monadischen dynamischen Systemen definiert.
Die wichtigsten Operationen sind allgemeine Funktionen für die Berech-
nung von Trajektorien solcher Systeme und Operationen, die aus zwei oder
mehreren monadischen Systemen ein neues monadisches System erzeugen.

Das Vulnerabilitätsmodell und die Kombinatoren monadischer Systeme
wurden in der funktionalen Programmiersprache Haskell implementiert. Die
Verwendung der Kombinatoren wurde exemplarisch in einem vereinfachten
Modell dargestellt, welches die praxisbezogenen Probleme von Vulnerabilitäts-
assessments widerspiegelt. Es wurde gezeigt wie man die vorher erwähnten
Konsistenz- und Kompatibilitätsbedingungen automatisch testen kann.

Erklärung

Hiermit versichere ich, dass ich die Dissertation selbstständig verfasst
habe und dass ich keine anderen als die in der Arbeit genannten Hilfsmitteln
und Quellen benutzt habe.

Berlin, den 15.11.2008 Cezar Ionescu

