5.5 Direct Volume Rendering for Structured AMR Data

In this section we present a hardware-accelerated volume rendering algorithm as well
as a software-based raycasting approach for structured AMR data, that directly exploit
the hierarchical structure in order to achieve fast rendering performance even for highly
resolved datasets.

5.5.1 3D Texture-Based Volume Rendering

A possible approach for volume rendering of AMR data via 3D textures is based on the
utilization of the stencil buffer, similar to the algorithm for slice extraction discussed in
Section 5.4. In this case a separate 3D texture is allocated for each subgrid and a stack
of slices S;, oriented perpendicular to the viewing direction, is extracted and blended
back-to-front in the frame buffer:

define 3D textures;
enable stencil —buffer test;
enable blending;
/+ loop over all slices from back—to—front =/
for all (S;, i=0,...,n) {
clear stencil —buffer;
/+ loop over all levels from fine to coarse x/
for all (A', I=lna,-..,0) {
/+* loop over all subgrids x/
for all (I'Y € Ay {
render (S; N Fi,) ;
}
}
¥

However, this approach has some drawbacks: Volume rendering is fill-rate limited
and the stencil-buffer test is performed in the last stage of the rendering pipeline, compare
Section 3.1, so the time consuming interpolation operations are still performed for regions
that do not contribute to the final image at all.

Secondly, frequent texture-I/O operations will decrease the rendering performance,
since the volume is processed in the order of slices, which increases the number of tex-
ture switches. This is especially disadvantageous if the total size of textures required to
represent the AMR hierarchy exceeds the amount of available texture memory.

It is more advantageous to avoid multiple processing of regions that are covered on
different levels of resolution. We therefore decompose the data domain into axis-aligned
blocks B, C A!, with

(BiNBY) =0V (BiNB) C (0B.UIB,) for i+ j,

that consists either of cells that are refined by subgrids, or of cells which are not further
refined. Each block is processed separately during rendering phase, so it has to be ensured

89

that no subsets of the blocks build visibility cycles for any viewpoint. In Section 5.2 we
proposed a decomposition that fulfills all of these constraints. In particular the resulting
blocks are arranged in a kD-tree structure, allowing efficient determination of the view-
consistent order for each viewpoint.

To reduce the amount of additional texture memory required by the “power-of-two”
restrictions of the graphics-API, respectively graphics-hardware, we apply the texture-
packing approach discussed in Section 4.4.

As discussed above we employ nearest-neighbor interpolation for cell-centered AMR
data and trilinear interpolation for vertex-centered data. In the first case the texels are
aligned with the centers of the cells, while in the second one they are aligned with the
vertices of the grid. To avoid artifacts originating from discontinuities between sibling
subgrids, adjacent texture-blocks share a row of data samples at their common boundary
faces and the data at dangling nodes has to be replaced to the interpolated texel values of
the abutting, coarse texture.

5.5.2 Opacity Corrections

If a block is selected for rendering, as dis-
cussed in Section 5.5.4, it is processed
as in the standard approach for volume
rendering via 3D textures. Each texture A
. . . . 0
is sampled on slices perpendicular to the \
viewing direction, which are blended in
the frame buffer.

Since texture-based volume rendering
is fill-rate limited, it is advantageous to re- §/
duce the number of interpolation opera-
tions by adapting the distance of the tex-
tured slices according to the resolution of
the associated subgrids. If blocks on level Q
0 are rendered with slice distances A, the
slice distance for blocks on level [is given
by A, = %, where r denotes the refine-
ment factor. Slices for the different blocks
are aligned as indicated in Figure 5.18.

Figure 5.18: The sample distance of slices
varies locally and depends on the blocks’ cell
size.

The texel alignment ensures C°-continuity for vertex-centered data, if texels that cor-
respond to hanging nodes are obtained by bilinear interpolation between the texels on
the coarse face. Nevertheless, since blocks from different levels are rendered with vary-
ing sample distances, the opacity entries of the colormap have to be adjusted in order
to avoid noticeable differences in the overall transparency between blocks from different
resolution levels.

Let «;(0) denote the i-th colormaps opacity entry used for rendering root level blocks.

90

According to Equation (3.18), the opacity is related to the absorption coefficient x; via
@i(0)=1—-T, =1— e "o,

So one yields the following relation for the opacity entries for rendering blocks on refine-
ment level [

() = 1— e mi
- 1— (efnir_lA())
= 1 (1—a(0)7 (5.2)

For each level of the hierarchy a separate colormap is precomputed and activated prior to
rendering the separate blocks.

Even with these opacity correction artifacts might remain in the resulting renderings.
They are due to small regions at level boundaries, where the sample distance does not cor-
respond to the opacity correction according to Equation (5.2). Weiler et al. addressed this
problem in detail in [92]. They present an efficient algorithm to detect these problematic
regions and render the corresponding slice parts with the correct opacity that corresponds
to the actual sample distance in these regions.

5.5.3 Raycasting

For the raycasting approach we also employ the decomposition of the data domain into
blocks B; of cells from the same resolution level, since it accelerates the point location
operation. In contrast to the hardware-accelerated algorithm, the tree is traversed in a
front-to-back order, to allow for “early-ray-termination” once the opacity of the ray ex-
ceeds a certain threshold. Each block is processed separately. First the bounding box
is scan-converted and for each pixel the intensity contribution of its ray-segment, which
results from the intersection between the ray and the blocks bounding box, is computed
according to (3.11)

I(sn) =1(8p-1)T + by-

Here I(s,_1) is the accumulated intensity of the pixels ray-segments that have already
been processed. We support the standard as well as the adaptive integration scheme de-
scribed in Chapter 4 for the numerical approximation of 7}, and b,. In the last step the
updated intensity values for the pixel are written into the frame-buffer and the next ray-
segment of the block is processed.

5.5.4 Adaptive Block Selection

The kD-tree structure is utilized for traversing the separate blocks in a view-consistent
order. If a node that is associated with a block is processed, two cases have to be distin-
guished:

91

e The node is a leaf node, indicating that the covered cells are not further refined and
thus have to be rendered.

e The node is not a leaf node, i.e. it represents a region that is further refined.

In the second case, there are two alternatives: to render the region with the actual level of
detail, or to further decent the subtree, since higher visual accuracy is required.

We base this decision upon the projected extend of the subgrid cells in screen space.
If the projected size is smaller than the extend of a selectable number of pixels, the block
is selected for rendering and the traversal of the subtree is stopped. In order to quickly
estimate the maximal screen space extent of the subgrid cell, we project a ball centered
at the grids bounding box corner closest to the viewpoint and with a diameter equal to
the grid cells diagonal. In addition a maximal level at which the hierarchy traversal is
stopped can be specified. Lower resolution can be used during user interaction like rota-
tion or zooming, while a deeper traversal of the hierarchy is performed for still images. A
combination of the methods can be used to guarantee a desired lower bound of the frame
rate.

5.5.5 Results and Discussion

The measurements were performed on a SGI ONYX2-SYSTEM with a 195 MHz MIPS
R 10K processor and a single INFINITEREALITY?2 graphics-pipeline with two RM7 raster
managers and 64 MBytes of texture memory each. The size of the viewport was 800 x 800
pixels. We applied the algorithms to three different datasets with increasing complexity.
See Figures 5.19 to 5.21 for detailed information and resulting renderings.

The results of the measurements are shown in Table 5.1. It lists the number of gen-
erated leaf blocks, the preprocessing time for allocating the block hierarchy and texture
packing as well as resampling in case of cell-centered data, the percentage of texture
memory reduction achieved by texture packing and the size of the resulting texture. An
average number of 3 to 4 leaf blocks per subgrid was created, independent of the depth and
total number of grids of the hierarchy. The average texture memory reduction achieved
by packing was about 45 %.

Table 5.2 shows the associated frame rates for the root level data, the full hierarchy
and the close-up view on the refined part for the viewer positions chosen in Figure 5.19

leaf blocks | preprocessing | ratio | texture memory
Dataset I 345 0.2s 45% 1 MB
Dataset 11 970 1.2s 43% 16 MB
Dataset I11 3370 5.8s 46% 16 MB

Table 5.1: This table lists the number of generated leaf blocks, the preprocessing times for
allocating and packing the textures as well as resampling, the achieved texture memory
reduction and the resulting size of the packed texture.

92

Figure 5.19: Dataset I, resulting from an AMR galaxy cluster simulation, consists of 91
grids on 7 levels of refinement. The (resampled) root level contained 33 samples and
was rendered with 120 slices, the more refined grids with respectively more, as discussed
in Section 5.5.2. If resampled to an uniform grid, the grid would contain more than
4.000° data samples, corresponding to about 70 GByte of texture memory. (left) root
level, (middle) full hierarchy, (right) associated bounding boxes. (dataset courtesy of
M. Norman, National University of California)

Figure 5.20: Dataset II represents a hierarchy consisting of 359 grids on 4 levels of re-
finement. The root level contains 95 x 63 x 14 data and was rendered with 200 slices.
This AMR hierarchy was generated from an uniform confocal microscopy dataset with
749 x 495 x 100 cells utilizing an opacity based importance criterion. Regions with as-
sociated opacity values below a certain threshold are represented at coarser resolution,
based on the algorithm proposed in Section 4.4. Rendering the uniform dataset with the
standard approach for texture-based volume rendering resulted in frame rates below 2 fps.
The amount of texture memory in this case was 64 MBytes. (left) root level, (middle) full
hierarchy, (right) associated bounding boxes. (uniform dataset courtesy of R. Brandt and
R. Menzel, Freie Universitit Berlin)

93

Figure 5.21: Dataset III is another AMR hierarchy resulting from a cosmological simu-
lation that consists of 813 grids distributed on 9 levels of refinement. The (resampled)
root grid contains 129° data samples and was rendered with 250 slices. If resampled to an
uniform grid, the grid would contain about 66.000% data samples, resulting in an amount
of 2.7 x 10® MBytes of texture memory. (left) root level, (middle) full hierarchy, (right)
associated bounding boxes. (dataset courtesy of G. Bryan, Princeton University)

to 5.21. The last entry represents the frame rate achieved by rendering the full hierarchy
in the mode described in Subsection 5.5.4, i. e. the subtree traversal is stopped, once the
cells of the grid associated to the subtree root node have a screen space extension that is
smaller than a pixel.

For all datasets (almost) interactive frame rates were achieved !. The frame rates were
minimal for the close-up views, since the covered screen space is maximal for these view-
points. As the performance results for the third dataset show, the subpixel criterion for
block selection can result in significant performance gains. In general the effect is more
pronounced for deep hierarchies with a large number of subgrids on the more refined lev-
els. Rendering the datasets with the stencil buffer approach as discussed in Section 5.5.1
was about three times slower than the approach that utilizes the domain decomposition.

root | full | close-up | full adap.
Dataset I (hardware) 104 | 6.7 2.0 7.2
Dataset I1 (hardware) 10.1 | 3.2 2.0 3.2
Dataset III (hardware) || 6.5 | 1.4 1.1 2.4

Table 5.2: This table shows the frame rates for the root level data, the full hierarchy, the
close-up view on the refined part and the view-dependent rendering.

'Notice that the frame rate are more than two times higher on actual graphics hardware.

94

5.6 Visualization of Time-Dependent AMR Data

For analysis purposes of scientific data, like animation, feature identification, or feature
tracking, the underlying non-discrete time-dependent function has to be faithfully recon-
structed from the grid function. This is done by spatial and temporal interpolation.

Appropriate interpolation methods may improve the results of data analysis greatly.
Furthermore, they help to reduce the amount of grid data to be saved and handled. For
instance in large numerical simulations this allows to store fewer time steps and neverthe-
less create smooth animations that display the underlying process without discontinuities
or cracks. Even if numerical methods that provide dense output by maintaining and inter-
nally evaluating some interpolants are avaliable, it is usually unfeasible to store all the data
due to the immense storage requirements. Only information that can not be regenerated
by spatio-temporal interpolation methods should be saved.

In this section we describe an approach that allows the generation of dense output for
time-dependent AMR data. In principle temporal interpolation approaches for unstruc-
tured grids like proposed by Polthier et al. [68], Happe et. al. [31] or Schmidt et al. [74],
compare Subsection 5.1, could be applied also in the case of AMR data. These approaches
require the storage of the grid structures and grid functions before and after grid adaption
for each time step. In this case the temporal interpolation can be performed on pairs of
identical grids.

But for realistic AMR simulations, which often contain dozens of refinement levels,
and typically evolve several scalar and vector quantities, this would require to store huge
amounts of data, because the temporal step size usually doubles between two consecutive
levels of refinement, i.e. increases exponentially. AMR simulation codes therefore often
store data only for time steps that correspond to root level updates.

We therefore propose a different approach in which intermediate grid hierarchies are
generated in order to connect the given key-frames hierarchies. An imaginable approach
for this would be to identify corresponding subgrids present in the key-frames, and to
interpolate their position and sizes for the intermediate steps. But this would in general
result in overlapping grids on the same level of refinement and it is also not clear how to
proceed in case a subgrid has no corresponding ’partner’ on the next frame. Instead we
propose an approach that

e generates an intermediate grid hierarchy by merging the cells on each refinement
level that is present in the key-frames,

e uses a clustering algorithm to induce a nested grid structure on the resulting collec-
tion a cells,

e projects the grid functions of each key-frame to such an ‘merged’ grid hierarchy
and finally

e generates the intermediate grid functions by interpolating between each set of cor-
responding data samples on these ‘merged’ hierarchies.

95

5.6.1 Generation of Intermediate Grids

The temporal refinement scheme for AMR data was described in Subsection 2.2.4. The
resulting change of the underlying grid structure complicates the interpolation of interme-
diate time steps during the visualization phase. We can propose the problem as follows

Given a set of grid hierarchies and associated grid functions (H(t), f*(t)i=o....n)
at discrete time steps o, t1, ..., t,, With potentially different topology, we want to
generate intermediate grid hierarchies H(t), as well as interpolated grid functions
fU(¢t) fort €ty tiq]2

Let us first address the construction of the intermediate grid hierarchies. We make the
following assumptions, which are usually fulfilled by the numerical schemes:

e The root-grid structure A°(¢) remains constant for all time steps *, and

e the spatial refinement factors between two consecutive levels (A'(t), A™*1(¢)) does
not change in time.

In a first step, the refinement levels of the intermediate grid are generated. This is done
by merging the subgrids for each level of the key-frame hierarchies:

H(t) = H(to) UH(t1) U ... UH(tn) (5.3)
Imaz

= |J (A(to)) UA(t) U UA(En)) . (S.4)
=0

Here [,,,,. denotes the maximum number of refinement levels present in the set of consid-
ered time steps. By this merging of corresponding levels, in general we loose the subgrid
structure present in the keyframe hierarchies, as illustrated in Figure 5.22. The resulting
collection of cells on each level could be stored as an unstructured hexahedral grid with
explicit connectivity information. But in terms of memory efficiency and performance it
is more advantageous to reintroduce a structure of disjoint subgrids on these unions of
cells, since the rendering algorithms work faster on blocks with implicitly given (trivial)
connectivity.

So for each A!(t) of the intermediate hierarchy, we require a partition into axis-
aligned, non-overlapping rectangular subgrids I'(¢;), such that A;(¢t) C |J,T4(¢t). We
achieve this by utilizing the clustering algorithm described in Subsection 2.2.3. In princi-
ple the clustering could be applied at once to all subgrids on the same level, but this would
result in too high computational efforts for computing the signature lists, due to the large
number of cells contained in the minimal bounding box enclosing the higher resolved
levels. Thus we perform the clustering procedure per subgrid rather than per level.

>The number of key-frames required for this depends on the order of the interpolation function that is
applied to obtain the associated grid function, compare Subsection 5.6.2.

3This assumption can be weakened. It just has to guaranteed that the cells on the coarsest level of
refinement are not shifted or rotated against each other.

96

TO0 T1

\ TO < T < T1 /

Figure 5.22: Top: Coarse grid and level 1 subgrids of two keyframes. Bottom: Coarse
grid and level 1 union of subgrids for intermediate time steps (created by merging corre-
sponding level [subgrids of each keyframe).

Per assumption I’ remains unchanged, i. e. T'§(¢) := AJ(¢) = ... = A% (¢). Suppose
we want to generate the subgrids of a grid I',(t) C A'(t). The signature list for its index
field is initialized as follows:

1, if 3ty € (to,..., tn) with Q!

ri,rj,rk

C ULy A (E)

S(i,j,k) = { (5.5)

0, otherwise,

that 1s, a cell in Ffl(t) is marked for clustering, if it is refined by the next finer level in
at least one of the key-frames. This signature list is passed to the clustering algorithm,
which generates a set of subgrids I, (¢), T (¢), ... that belong to the next level A" (#).

This procedure is recursively repeated for each of the newly created subgrids, until the
maximal level [,,,,, 1s reached.

5.6.2 Temporal Interpolation of Grid Functions

Next the vertex-, respectively cell-centered grid functions f!(t), ?l (t): Al(t) — R asso-
ciated with the intermediate grid hierarchy H(¢), are constructed. Two cases have to be
distinguished for each cell 2}, € A!(t):

) Ql]k € Al(ts) vts € (t()v "'7tm)’

o 3t € (to, ... tm) with QL & Al(t,).

In the first case ,fj (1) can simply be computed from the set of given functions values
iljk(ts) at the given keyframes. In the second case, in at least one of the given hierar-

chies no corresponding cell on the refinement level [exists, so we have to apply some

97

Figure 5.23: Two keyframes and an interpolated intermediate frame generated from
dataset I, a galaxy-formation simulation, via texture-based volume rendering. (dataset
courtesy of T. Abel, Stanford University)

form of interpolation on the grid function on the coarser levels of resolution to obtain it.
Let us assume that this is the case for Al(,) in the following. Because of the nesting

property of the levels, the cell is covered by at least one coarser cell. Let Qi]k denote

the cell on the finest level [< [that contains (! ;5 In the cell-centered case we per-

— .
form a nearest-neighbor interpolation, i. e. f”k(s) = [7i(ts). For vertex-centered grid

functions, f},(t,) is obtained by trilinear interpolation within Q~5~

For larger hierarchies determining which of the two cases holds for each cell and col-
lecting the associated data samples can be an expensive operation. In order to accelerate
this procedure we resample each grid function f'(t,) onto a grid with the topology of the
intermediate hierarchy in a first step. This involves some interpolation in order to obtain
data values for fine cells or vertices that are not present in the given set of hierarchies.
After this preprocessing the grid function can be computed much more efficient, since
now for each subgrid I'(¢) there exist corresponding subgrids I'!(¢,), I (ts11), This is
especially advantageous if more than one intermediate time step for the same subset of
key-frames has to be be generated.

We employ three different temporal interpolation schemes. The first one is C°-
continuous piecewise linear interpolation

t —1
l s+l l
k(t) = o — 1. ik (ts) +

t —t

o —tos filjk(tS—i-l) (5.6)

The second one is C'-continuous cubic Hermite interpolation. So besides the function
values for ¢4 and t,,, also the first derivative at these time steps has to be taken into
account

d

fz’ljk(t) = zyk(o) Ho(t) + (dtfz]k()) H(t) + (5.7)
Leltonn) B0+ (5 7h(te) HY) 68

98

Figure 5.24: Three interpolated frames from dataset II, a simulation describing a su-
pernova explosion visualized by texture-based volume rendering. (data set courtesy of
T. Abel, Stanford University)

In case the first derivative of the grid functions is not available during the visualization
phase, we generate a Catmull-Rom spline, as discussed in Section 2.3. This implies that
we require the grid function values at four successive time steps in order to obtain an
approximation of the first derivatives at ¢; and ¢, 1.

It is possible to obtain more precise values for the first derivative of the grid func-
tions in the case that the grid function represents some conserved quantity that fulfills a
conservation law of the form

% (Z,t) = div (7, t). (5.9)
Here p(Z,t) denotes the density of the conserved quantity and j(Z,¢) is the associated
current. An common example is the case of mass conservation in hydrodynamic simula-
tions. Here p(Z, t) denotes the mass density and the current is computed from the density
and the velocity field v (7, t) via j= pv. Since usually in hydrodynamic simulations
besides the mass, respectively density fields, also the associated velocity vector fields are
stored, we can compute the derivative of the scalar field according to equation (5.9). The
divergence of the current is approximated by the flux of the mass through each of the cells
faces

1 5

chell ;

0

div j = div (p¥) = i A; 3 U (5.10)

pi, U denote the density and velocity fields evaluated at the ¢-th face and A;, V., 71; are

the face area, its volume and the outward-oriented face normals.

5.6.3 Results and Discussion

The performance was tested on a SGI ONYX3 system on a single 500 MHz MIPS
R14000 processor. Dataset I is a result from a cosmological simulation of the forma-
tion of stars in the early universe with a root grid resolution of 1283 cells, 8 levels of

99

Figure 5.25: Comparison of three different time interpolation schemes for the analytical
dataset I1I, a damped cosine wave traveling along the x-axis with constant velocity. For
linear interpolation oscillations occur, whose minimal peak amplitude during the consid-
ered time interval is depicted by the semi-transparent plane. The oscillations decrease for
the Hermite interpolation (middle image) and vanish for the flux-based approach (right
image). The cell-centered data was rendered using constant spatial interpolation.

refinement and about 2000 grid per time step, compare Figure 5.23. Dataset II depicts a
supernova explosion with 8 levels of refinement and about 1600 grids per time step. We
took 10 time steps and generated 8 intermediate frames for each pair using linear and
Hermite interpolation, with estimated first derivatives. Figure 5.24 shows some volume
rendered images of the sequences. The resulting animations show slight oscillations in
some parts for linear interpolation, which decrease for Hermite interpolation. Besides
that the resulting animations are smooth.

For illustrating the differences of animation quality of the different interpolation
schemes we choose an analytical example as dataset III. It shows a damped cosine os-
cillation that moves along the x-axis with constant velocity. The 64 x 32 x 32 root grid is
refined two times and contains about 1100 sub grids at each of the 20 keyframes. We com-
pared the animation quality of linear, Hermite and flux-based interpolation by generating
8 intermediate frames per pair of time steps. Figure 5.25 shows volume rendered images
of the resulting sequences. The animation shows disturbing oscillations for linear interpo-
lation were visible. They decreased for Hermite interpolation with estimated derivatives
and vanished for the flux-based interpolation, where the knowledge of the velocity vector
fields are taken into account.

Information about performance and memory requirements is given in Figure 5.26.
The number of subgrids in the merged hierarchies is decreased by about 20% compared
to the number of subgrids present in the stored hierarchies. As can be seen in the table
the amount of additional memory requirements and the times for grid generation where
highest for the Hermite interpolation, since 4 keyframes had to be merged in this case.
But the space increase was still less than 30% in all examples. The middle row depict
the times for grid generation and keyframe projection, which has to be carried out only
if the subset of keyframes used for the interpolation is changed. Again it was highest
for Hermite interpolation, but with less than 7 seconds even for the 2000 grid dataset it

100

increase of cells | grid generation | interpolation
Dataset I (linear) 7% 3.4 sec 0.2 sec
Dataset I (Hermite) 12% 6.6 sec 0.8 sec
Dataset II (linear) 11% 2.2 sec 0.1 sec
Dataset II (Hermite) 15% 3.5 sec 0.3 sec
Dataset III (linear) 20% 1.8 sec 0.1 sec
Dataset 111 (Hermite) 30% 4.2 sec 0.3 sec
Dataset III (flux-based) 20% 3.5 sec 2.0 sec

Figure 5.26: The first two columns denote the increase in the number of cells for the
intermediate time steps relative to the given keyframes. The third column states the times
for generating the intermediate grid and projecting the given grid functions. This has to be
carried out only if the keyframes change. The last column gives the time for interpolation
of the intermediate grid function.

still admits a on-the-fly generation during the visualization phase. Due to the keyframe
projection step the times for the interpolation (right row) are short, which is advantageous
if more than one intermediate frame is generated for a constant set of keyframes.

5.6.4 Future Work

There are several ways to extend the presented algorithm. Higher order interpolation
schemes could be implemented for spatial interpolation during the prolongation step.
Further it would be interesting to combine the presented approach with feature track-
ing algorithms. Also it seems promising to adapt the order of temporal interpolation to
the rate of change of the underlying data. It might be beneficial to use lower order tem-
poral interpolation for subgrids with slowly varying data and higher order interpolation
for subgrids with rapidly changing data (which is usually the case for the higher resolved
levels).

101

