Chapter 5

Visualization of Structured Adaptive
Mesh Refinement Data

Due to the growing popularity of structured AMR schemes for representing multi-scale
phenomena in the last years, an increasing number of scientists is in need of appropriate
interactive visualization techniques to interpret and analyze time-dependent simulation
data defined on this kind of grids. Tools for both, 2D analysis to quantitatively convey
the information within single slices and a 3D representation to quickly grasp the overall
structure are required.

A naive method for rendering structured adaptive mesh refinement data is to resample
the grid function onto a uniform mesh with a cell size corresponding to highest resolved
level. The data for the new grid nodes that are not present in the original AMR grid, has
to be obtained by interpolation. Though this approach has the advantage that it allows to
apply all standard visualization routines available for uniform grids, it is unfeasible even
for moderately resolved AMR data due to the enormous amount of memory requirements.
As an example consider a time-dependent hierarchy with five levels of refinement, a root
level subgrid with 1283 cells, an overall refinement factor of 2 and a grid function with
4 bytes per node. Resampling such an hierarchy would result in an uniform grid that
requires 256 GByte of memory for each time step.

An alternative approach is to convert AMR data to an unstructured, locally refined
hexahedral grid with explicit connectivity information. Though not as disadvantageous as
the approach mentioned above, it also increases the memory requirements for storing the
data and it further does not take advantage of the regular structure of the subgrids, that
allows for fast and efficient rendering.

Another drawback of these conversions is that information about the grid function
on different levels of resolution that is present in the original data is lost. Scientists are
often interested in comparing the grid functions on different levels of refinement in order
analyze their codes and numerical algorithms, and/or inspect the behavior of the solution
at the level boundaries.

Thus converting AMR data to standard grid types is neither a feasible nor a desir-
able strategy. It is much more advantageous to develop visualization techniques that can

69

directly handle and utilize the hierarchical structure of AMR data and at the same time
take advantage of the fact, that it consists of structured subgrids, in order to accelerate the
rendering.

This will be our basic paradigm for all visualization approaches presented in the next
sections. This chapter is organized as follows: In the next Section related work in the field
of hierarchical visualization techniques is discussed. Next the topics of point location and
interpolation for AMR data are addressed. In Section 5.4 we discuss the adaption of
indirect volume rendering methods for AMR data, whereas in Section 5.5 direct volume
rendering approaches for AMR data are presented.

5.1 Related Work

To our knowledge the first paper in the literature that deals with visualization of AMR data
was published in *93 by Max [57]. Max describes a back-to-front cell-sorting algorithm
for AMR grids and employs it for a software-based volume rendering approach and for
contour surface extraction.

Norman et al. [60] describe an approach of resampling AMR data to uniform as well
as unstructured grids, which allows them to apply standard rendering algorithms, though
their approach is feasible only for AMR hierarchies with a small number of refinement
levels, as discussed at the beginning of this chapter.

There exist quite a number of papers that deal with the problem of artifacts in trian-
gulations that result from the standard marching cubes algorithm, if it is applied to non-
conforming hexahedral grids. Shu et al. [81] use axis-aligned patches to fill the cracks
in the multi-resolution isosurface mesh. A disadvantage of this approach is the visually
noticeable change of the surface normal between triangles resulting from the marching
cubes approach and the triangles of the planar patches.

Shekkar et al. [78] propose a crack-fixing scheme that shifts vertices of triangle edges
located on the higher resolved face parallel to the face in order to align with triangle
edges of adjacent lower resolved cells. By this some details present in the higher resolved
regions might get lost and the resulting meshes contain T-vertices, which might lead to
shading artifacts.

Westermann et al. [94] discuss two strategies for dealing with the crack problems
for octrees. Their first approach utilizes a conforming split scheme in order to eliminate
hanging nodes. Since this approach can lead to a noticeable increase of the number of
generated triangles, they propose a second scheme in which coarse triangles which abut
higher resolved cells are split up into triangle fans, in order to match the shape of the
adjacent smaller triangles. Compared to [78] this has the advantage that the detail infor-
mation of the higher resolved regions is preserved, though it is feasible only for grids,
where adjacent cells differ by at most one level of resolution and hanging nodes that are
dependent nodes. Fang et al. [28] extended the conforming split approach proposed in
[94] to deal with vertex-centered data defined on unrestricted AMR grids. Their approach
still requires that the data at hanging nodes are dependent nodes.

70

In contrast to the approaches mentioned above, Weber et al. [89] address the problem
of isosurface generation for cell-centered data defined on AMR grids. They propose the
use of several types of stitching cells to connect cells on different levels of resolution. This
approach avoids resampling of cell-centered data, but has the drawback that it restricts
the applicability of their algorithm to restricted AMR grids, which guarantee that refined
levels are surrounded by at least one layer of cells from the next coarser level.

Two parallel, direct volume rendering approaches for octree data generated by the
PARAMESH framework [55] are compared by Ma [54]. The first one performs a resam-
pling of the data to a uniform grid, similar to [60], rendering subregions of the resulting
grid on individual processors, whereas the other methods utilizes the octree hierarchy and
distributes its leaf nodes.

In [90] Weber et al. apply the stitching scheme presented in [89] to a cell-projection
algorithm. Park et al. [66] present a hierarchical splatting approach for AMR data. Kel-
ley et al. [34] describe a framework for interactive, parallel volume rendering of remote
AMR data. Sub-trees of the AMR hierarchy are distributed on individual processors
and composed on the local rendering client. Weber et al. [91] further investigate load-
balancing strategies for parallel volume rendering of AMR data.

Visualization methods for time-dependent simulations carried out on locally refined,
unstructured grids, have been presented by Polthier et al. [68], Happe et al. [31] and
Schmidt et al. [74]. These approaches have in common that they assume the existence of
two unstructured grids and associated grid functions at each time step at which the under-
lying grid structure is changed: the solution before and after grid refinement, respectively
grid coarsening. This ensures that on each pair of consecutive time steps the interpolation
can be carried out on identical grids.

5.2 Point Location for AMR Data

Since in AMR grids subregions of the computational domain might be covered by multi-
ple cells from different levels of resolution, we have to specify the point location opera-
tion, which is important for many visualization methods, as follows:

Given a maximal search~ depth [with 0 < ! < linae, locate the unique cell
Qﬁjk e Al with 0 < [< [, for which

(PeQy) A (pg AU UNme)
holds.

Notice that [does not necessarily have to equal the highest resolved level. It is often
beneficial to use coarser approximations of the grid function in some subregions, for ex-
ample in order to accelerate rendering and/or preprocessing times. In this case it should
be avoided to interpolate data samples on the highest available level for coarser represen-
tations. This will in general violate the sampling theorem and result in aliasing artifacts,
since the sampling rate on the coarse levels is too low.

71

A direct approach for cell location is to inspect each subgrid on all refinement levels
0<1<I, starting at level I, until a subgrid that covers the considered location is de-
termined. Due to the uniform structure of the subgrids, the associated local coordinates
(u,v,w) are given by

Pz — 1My, Pz — 1My,
(u,v,w) = (4 [4 |
where [.] denotes the floor function, m the minimal coordinate of the subgrids bounding
box and d the cell size. This search strategy is not feasible for most visualization algo-
rithms, like for example direct volume rendering via raycasting, which involve a large
number of point location operations.

A way to speed up this process is to exploit the inherent hierarchical structure of AMR
hierarchies. Simulation packages, like for example the AMR code ENzO [65], often do
generate nested subgrids, so each I’é» (except for the root level subgrids) is completely
contained in exactly one subgrid Fé’l = P(Fé) on the next coarser level of refinement
A'=1. This tree-structure can be directly exploited for a hierarchical search strategy.

In case the subgrids are not arranged in a nested manner, this tree structure can always
be induced in a preprocessing step, as indicated in the following pseudocode:

set minimal bounding box of all A? as 1
insert all T9e€A® as C(I'Y);
for all (A, 1=0,...lnax—1) {
for all (T! € Al) {
for all (T e AL {
if (NI ¢ (artuorith))
set (FéﬂFzﬂ) as C(T')

}

Though for large n this hierarchical approach is preferable to the linear search strategy
mentioned above, it still suffers from the drawback that AMR hierarchies tend to be not
well balanced, i. e. the degree of the nodes can vary considerably. Subgrids located on the
coarser levels usually have a much larger number of descendants than the higher resolved
ones. Subgrids with hundreds of subnodes are not unusual. Thus the traversal of the
hierarchy becomes less beneficial. This in particular decreases the efficiency of local
search strategies. Even if the next query requests a point that is located in the same
subgrid, it is still necessary to inspect the potentially large number of the child nodes.

We address this problem by subdividing the computational domain into axis-aligned
blocks B!, that enclose cells from the same resolution level, i. e. we decompose the grid
domain into regions of cells that are either completely refined or unrefined

AZ:UBﬁn for 0 <1 < lau,

m=0

72

Figure 5.1: Left: 2D example of a grid, that contains 3 subgrids on the next level of
resolution. In order to subdivide the volume into axis-aligned, non-overlapping regions
containing only cells of the same refinement level, two split axes are determined. Right:
Subregions that contain just one subgrid, are finally partitioned in up to 4 subregions (up
to 6 in the 3D case)

such that
(BL, C A"\ (AU UAme)) v (B C AT U LU Al

Regarding the discussion above this decomposition should further have the following
properties

o (BINB) =0V (B,NB,) C (0B UIB,) fori # j, i.e. the interiors of the blocks
on the same level should be disjoint,

e the subdivision should consist of a small number of blocks,

e the blocks should be nested, that is for each Bﬁ exists exactly one Bé-*l with
B C B!
1T = 7 °

e and the nodes of this nested hierarchy should be of small degree.

In principle one could exploit an octree-data-structure for this purpose. The root node,
covering the domain of the AMR root level, is recursively subdivided into 8 child nodes,
until each leaf contains only cells on the same level of resolution. The drawback of this
approach is that it usually leads to a large number of bricks, since often the partition has
to carried out until the subregions contain exactly one cell. As an example consider a
subgrid of n X n x n cells, that is separated from the nearest boundary of its parent level
by just one layer of cells. Here the octree subdivision scheme would generate n x n leaf
nodes to cover this layer. Besides high storage requirements this large number of small
nodes is disadvantageous for local search strategies.

In the following we propose a different approach that aims at generating a smaller
number of blocks. The decomposition starts at the root level. In order to ease the dis-
cussion we assume that the root level consists of just one subgrid I'). This is no loss of

73

%
2

Q

(a) (b)

Figure 5.2: (a): Subgrid configuration where the unmodified decomposition leads to an
unnecessarily high number of bricks. (b): By first enclosing the subgrids with a minimal
bounding box, and decomposing the outer region, the number of created bricks is reduced.

generality, since in the case that the root level consists of multiple subgrids, we can intro-
duce a virtual level that is simply defined by the subgrids minimal axis-aligned bounding
box. We further assume that the subgrids are arranged in a nested structure, which always
can be generated in a preprocessing step as discussed above.

The decomposition strategy is to recursively separate subgrids on the same level of
resolution by axis-aligned hyperplanes. Starting at the root level, we perform a line-
sweep along the three coordinate axis, in order to detect separating planes that do not
intersect any of the subgrids as indicated in Figure 5.1. In the case that several separating
hyperplanes P exist, the one that leads to the most balanced split is chosen. We define the
most balanced split as the one that minimizes

710w (P) = 10p(P)];

where 1, (P) and n,,(P) denote the number of subgrids I" € H that are located in the
lower, respectively upper subregion defined by the plane P with respect to the considered
coordinate axis. For some configurations each hyperplane intersects at least one subgrid,
consider for example the configuration shown in Figure 4.4. In this case the plane that
intersects the smallest number of subgrids is chosen.

This splitting procedure is recursively continued on each of the two newly generated
subregions introduced by the plane P, until each of them contains at most one subgrid
or part of one subgrid. This configuration can easily be split up into disjoint blocks of
refined and unrefined cells. For certain configurations the partition algorithm discussed
so far, still produces unnecessarily many blocks. Figure 5.2 (a) shows an example. In such
cases we compute the minimal bounding boxes of the subgrids and decompose the outer
region, like indicated on the Figure 5.2 (b). Notice that this never increases the number of
created blocks. For our datasets, this step reduced the total number of leaf bricks by up to
10 %.

74

The splitting procedure described above is continued on each block that consists of
cells that are refined by grids on the next level of resolution, until the highest resolved
level is reached. This resulting space decomposition results in blocks that are arranged in
the manner of an adaptive kD-tree data structure, compare Section 2.4, consisting of three
different types of nodes:

e The first type represents blocks that cover cells that are not further refined. These
nodes are leaf nodes of the associated kD-tree.

e Nodes representing blocks that cover cells which are refined on the next level on
resolution. These also store information about the partition axis and references to
the two subnodes, associated with the next two subvolumes. We use nodes of this
type to prune the traversal of the hierarchy once a certain level of resolution is
reached.

e The third type of nodes is primarily used for tree traversal. It holds information
about the next partition plane and references to the next two subnodes.

Information of the number of generated block for several application examples will be
given in Section 5.5.5.

5.3 Interpolation

Assuming continuous fields, e. g. those that do not contain jumps, which are for example
present at material boundaries or shock fronts, a prerequisite for artifact-free rendering is
a globally continuous interpolation of the discrete data samples.

Figure 5.3: Cracks in a height field mesh, resulting from discontinuous interpolation.

75

For AMR data this requires special attention at the boundaries of the refinement levels.
Problems might arise at hanging nodes, present at common faces of cells that belong to
different resolution levels.

5.3.0.1 Vertex-Centered Data

Let us first discuss the case of vertex-centered data, for which typically piecewise trilinear
interpolation is employed, if C°-continuity of the interpolant is desired. C°-continuous
trilinear interpolation at common faces of adjacent cells of the same resolution level is
guaranteed, since the interpolants on both sides degenerate to the same bilinear interpolant
on the face. Continuity at boundaries of grid cells with different resolution requires the
following:

Firstly, the data values on the boundary nodes that are no hanging nodes (white
circles in Figure 5.4) have to coincide on the coarse and fine grid. This is usu-
ally ensured in numerical AMR schemes by the restriction step, in which the so-
lution on the coarser grid nodes is updated by the more accurate grid function of
the refined regions, compare Section 2.2. In general non-dependent hanging nodes
(black circles in Figure 5.4) lead to discontinuities of the piecewise trilinear inter-
polant, resulting in visible artifacts for most visualization methods, as for exam-
ple shown in Figure 5.3. There are two alternatives to deal with this problem:
One is to replace the data values at hanging

nodes by the result obtained via bilinear inter- 1
polation of the coarse cell faces, i. e. to con-
vert them to dependent nodes. This typically
introduces only minor corrections, because

the difference between the fine and coarse so-
lutions is usually small at level boundaries,
since most error estimators detect regions that ——(—
require refinement based on this difference.
Further the number of hanging nodes is small
compared to the number of all nodes in the }
grid hierarchy. T
Another method to obtain continuity
which does not change the grid function, is Figure 5.4: Different types of nodes at
to modify the underlying grid structure in or- level boundaries.
der to construct a conforming grid. In this ap-
proach (conforming split), the coarse cells at level boundaries are replaced by a set of
sub-cells of different topology, such that each internal face is shared by exactly two ad-
jacent cells. In Subsection 5.4.3.3, we will present a conforming split scheme for AMR
grids, that is capable of handling arbitrary level differences between adjacent cells and
requires only two types of split cells.
We apply both techniques in the visualization routines discussed in the following.
The first method is more advantageous for direct volume rendering approaches, since the

76

)
\/
)
\/
)
\/

)
o/

o

Figure 5.5: Resampling from cell-centered data to vertex-centered data: Data at the non-
hanging vertices (circles) is obtained via trilinear interpolation between the adjacent cell-
centered data samples (crosses) using a stencil width that corresponds to the mesh size of
the highest resolved adjacent grid. At boundaries missing samples (circles with crosses)
are generated via trilinear interpolation on the coarse grid. Data at hanging nodes is
obtained via bilinear interpolation between the adjacent non-hanging nodes.

performance of the methods would be decreased significantly if the uniform structure of
the subgrids is partially replaced by hybrid grid patches. For isosurface algorithms the
second approach is appropriate, since the conforming split avoids cracks, which arise at
level boundaries, even for a globally continuous interpolant, compare Section 5.4.3.

5.3.0.2 Cell-Centered Data

Let us now discuss the case of cell-centered data. Nearest-neighbor interpolation is the
natural interpolation scheme this kind of data, since it allows a direct inspection of the
data samples. We therefore support this kind of interpolation for cell-centered data in all
visualization techniques discussed in the next sections. However, the *blocky’ appearance
of the resulting representations, that is especially pronounced on lower resolved regions,
might obstruct the perception of the qualitative features of the data, consider for exam-
ple the isosurface shown in Figure 5.10. Hence higher-order interpolation scheme are

7

(a) (b)

Figure 5.6: Comparison of two height field meshes: a blocky mesh extracted from the
original cell-centered data using nearest neighbor interpolation (a) and a smooth mesh ex-
tracted from the resampled vertex-centered data using tri-linear interpolation (b). (dataset
courtesy of M. Norman, National University of California)

desirable also for cell-centered data.

One approach is to work on the dual grid, that has vertices at the locations of the data
samples, i. e. at the cell centers, and to use trilinear interpolation on this grid structure.
Problems arise at the boundaries of the levels, where the regular structure of the dual grid
is disturbed. Since one of our requirements is to deal with AMR grids, that allow adjacent
cells to differ by more than one level, 1. e. unrestricted AMR hierarchies, a stitching cell
approach to connect the cells of the dual grid like the one proposed by Weber et al. [89],
compare Section 5.1, is not feasible for our purpose.

We therefore decided to resample the cell-centered data into a vertex-centered form,
which is better suited for trilinear interpolation, as discussed above. In order to determine
the value of the grid function at the grid nodes, we need to construct an interpolation
rule for the grid function based on the cell data. According to Figure 5.5, we have to
distinguish the following cases:

e Data for vertices x;;;, in the interior of a refinement level A is obtained by trilinear
interpolation of the eight data samples f at the adjacent cell centers, i. e. (assuming
cubic cells for simplicity)

1 _ 1
f(in) = 3 Z f (fﬂijk + §(lh0,mh1,nh2)) ; (5.1)

Iy;mmn=—1,1

where h is the grid spacing on A'.

78

e For boundary nodes x;;;, € OA' that are not hanging nodes, the same interpolation
kernel as for interior nodes is used. In this case the width of the kernel is determined
by the highest resolved cell that shares the vertex x;;,. Data samples at locations
ik + %(iho, +hy, thy,) that are not present on this level are obtained by trilinear
interpolation on the highest resolved refinement level, that contains the point.

e In order to achieve a C’-continuous trilinear interpolant the data associated with
the hanging nodes are obtained by bilinear interpolation between the data at the
adjacent non-hanging nodes.

e Boundary values on the root level A° are generated via extrapolation.

We end up with a vertex-centered hierarchy that ensures continuous trilinear function
interpolation, even if adjacent cells differ by more than one level of resolution.

5.4 Indirect Volume Rendering

In this section we will discuss the modifications to some popular indirect volume render-
ing algorithms that are necessary when they are applied to structured AMR data. The
first part of the section deals with approaches for displaying data within planar slices and
in the second part a variant of the marching cubes algorithm, suitable for unrestricted,
refined hexahedral grids will be presented.

5.4.1 Planar Slices

Our approach for rendering data within planar slices utilizes 2D textures, in order to allow
interactive performance even if a large number of extracted slices is displayed simultane-
ously. For each subgrid that is intersected by the slice S, a separate 2D texture is allo-
cated and initialized with the extracted data samples. Multiple rendering of regions that
are covered by subgrids on different resolution levels would result in noticeable artifacts,
in particular if semi-transparent colormaps are applied. In order to avoid this, we employ
the stencil-buffer, offered by standard graphics APIs.

First the textures for the highest resolved level are processed. Each rendering of a
texture updates the stencil buffer, thus preventing the associated regions in the frame
buffer from being overwritten by subsequently processed textures from the coarser levels,
as indicated in the following pseudocode:

/* enable stencil test x/

glEnable (GL_.STENCIL_TEST);

/* suppress rendering in regions where stencil is 1 x/
glStencilFunc (GLNOTEQUAL, 0x1, 0x1);

glStencilOp (GL_KEEP, GL_KEEP, GL_REPLACE);

/* reset buffer x/

glClearStencil (0x0);

79

.
o
(a)

(b)

Figure 5.7: Texture offsets: For cell-centered data (a) textures are aligned with cell cen-
ters, whereas for vertex-centered data (b), texels are aligned with the vertices. The latter
one allows smooth transitions between the different texture patches if bi-linear interpola-
tion is employed and the “hanging” texels are adjusted. In (b) nearest-neighbor interpola-
tion was used, in order to better depict the texel offsets.

for (I =lnaz,--0) {
for all (I'leA; with (TLNS)#0) {
render texture of (I'NS);

}
}

For cell-centered data we apply nearest-neighbor interpolation, and the texels are
aligned with the centers of the squares that result from the intersection between the slice
and the cells, compare Figure 5.7 (a). For vertex-centered data the texels are aligned with
grid nodes, respectively with the intersections between the cell edges and the slice, as in-
dicated in Figure 5.7 (b). In this case the textures are rendered using bilinear interpolation.
In order to ensure a continuous interpolation across boundaries of textures associated with
different levels, we compute the boundary texels that belong to hanging nodes by bilinear
interpolation between the adjacent coarse texels, compare Figure 5.8.

5.4.2 Height Fields

Let us now discuss the extraction of height fields for AMR data. For cell-centered data
we display them as axis-aligned bars with top-faces perpendicular to the considered data

80

Figure 5.8: Texture-based rendering of AMR data within orthogonal slices. In the left im-
age nearest neighbor interpolation was applied. The subgrid boundaries are indicated by
the white lines. In the middle image the textures are interpolated using bilinear interpola-
tion. Since the "hanging texels’ are adjusted appropriately, no interpolation artifacts at the
interface between textures of different resolution occur. Utilizing the stencil buffer allows
to render semi-transparent textures without changes in the overall transparency in regions
that are covered by multiple subgrids, as shown in the right image. (dataset courtesy of
M. Norman, National University of California)

slice. The height is proportional to the value of the grid function at the projection of the
top-face onto the considered slice as shown in Figure 5.6 (a). For vertex-centered data we
approximate the resulting surface by a triangular mesh. The data of cells in the interior
of a refinement level, which are intersected by the considered slice, is represented by two
triangles, compare Figure 5.9 (a).

Problems arise at coarse cells that abut on a boundary of a higher level of resolution.
Although adjusting the data at the hanging nodes to obtain slave nodes, as discussed
above, ensures a continuous interpolation across the boundary, the resulting surface still
contains T-vertices. These can result in shading artifacts, compare Figure 5.9 (c).

So instead of modifying the grid function at hanging nodes, we rather decided to
remove these nodes by replacing the triangles of coarse boundary cells by sets of smaller
triangles, which provide a transition from the coarse triangles of the interior cells to the
higher resolved ones from the adjacent finer level. Therefore we introduce a new central
vertex and connect it to the triangle nodes from the adjacent cells that lie on the coarse
cell faces, as shown in Figure 5.9 (b).

81

=
e
e e e e
e e

(©) ()

Figure 5.9: Image (a) shows a height field approximation by a triangular mesh that con-
tains hanging nodes. These can lead to shading artifacts, as depicted in image (c). Re-
placing coarse triangles at level boundaries by strips of smaller triangles removes the
hanging nodes (b) and the shading artifacts (d). (dataset courtesy of M. Norman, National
University of California)

82

5.4.3 Isosurfaces
5.4.3.1 Cell-Centered Data

For cell-centered AMR data in combination with nearest-neighbor interpolation we gen-
erate the isosurface by primitives that are coplanar to one of the three coordinate planes.
The construction is straight-forward:

e [f two neighboring cells on the same level of resolution have associated data values
below and above the iso-value, a surface element with the shape of the common
face is generated.

e If the two cells belong to different levels of resolution, the smaller face segment of
the higher resolved cell is chosen.

An example of a resulting surface is shown in the following Figure:

et

Figure 5.10: Isosurface for cell-centered AMR data. Surface primitives represent isosur-
face patches between two adjacent cells with data values below and above the iso-value.
(dataset courtesy of G. Bryan, Princeton University)

5.4.3.2 Vertex-Centered Data

For vertex-centered data and trilinear interpolation the application of the standard march-
ing cubes algorithm is problematic, since it generates artifacts at the level boundaries,
visible as cracks in the isosurface, compare Figure 5.11 (a). In contrast to the display
of height field surfaces discussed in the last subsection, the problem remains even for
globally C’-continuous, piecewise trilinear interpolants.

83

T
AR S 2 é}‘(/ﬁ ‘
¥ s y -

NN S5 /2N
= v

47
£

NARRN
“ﬂNﬂ%

AR

rag..—»

Figure 5.11: The left image shows cracks in the triangulation generated by the marching
cubes algorithm applied to an SAMR dataset. The right image shows a conforming mesh
extracted from the hybrid grid that is obtained by replacing coarse cells at level bound-
aries by sets of tetrahedral and pyramidal cells. (dataset courtesy of G. Bryan, Princeton
University)

The origin of the artifacts is the following: Depending on the signature of the face
vertices, the one-dimensional isocontour of the intersection between the isosurface of the
trilinear interpolant and the face consists of up to two hyperbolas, defined by

(f(@o0) — f(@10))t — f(@00) + Viso
(f(-’Boo) — f(x10) + fz11) — f(ib'm))t + f(®01) — f(woo),

where x;; are the locations of the face nodes.

On the coarse face each of these hyperbolas is approximated by one line segment,
whereas on the higher resolved faces a finer approximation is generated, since the bilinear
interpolant is sampled at a larger number of locations, compare Figure 5.12 (a). Though
for a continuous interpolant the starting-, and end-points of the line-sets, which lie on the
edges of the coarse cell, coincide, the polylines will in general not be congruent in the
interior of the face. This is only the case, if the hyperbolas degenerate to a straight line,
i.e.if

s(t) =

f(®oo) — f(x10) + f(211) — f(T01) =0,
which is holds if the two vectors
(1,0, f(x10) = f(®00)), (1,0, f(01) — f(211))

are coplanar.
In case the values of the hanging nodes are not dependent nodes, the artifacts are even
more severe. Consider for example a central hanging node with a signature that differs

84

O

>
50
O

z

C

O O O O O

Figure 5.12: Reason for cracks at interfaces between fine and coarse grid cells: On the
left side the isocontour on the coarse face is approximated by a straight line, whereas on
the refined faces a larger number of isopoints (rectangles) is generated. In general these
additional points do not lie on the coarse isoline, which leads to cracks in the resulting
isosurface for the three-dimensional case. The figure on the right shows a situation for
hanging nodes that are not dependent nodes. In this example no isocontour is generated
on the coarse face, though a (discontinuous) isocontour results from the line segments of
the refined faces.

from the one of the adjacent, non-hanging nodes. On the refined side the marching cubes
algorithm would generate a closed isocontour, whereas on the coarse side no line-segment
is present at all, as shown in Figure 5.12 (b).

5.4.3.3 Conforming Split

According to the discussion above we need a generalization of the marching cubes algo-
rithm, that

e can handle non-restricted AMR hierarchies,
e can handle hanging nodes, that are not dependent nodes,
e and generates meshes without T-vertices, in order to avoid shading artifacts.

Due to these constraints we decided to generalize the conforming split approach discussed
in [94] to handle locally refined hexahedral grids, with adjacent cells that differ by an
arbitrary number of refinement levels.

Coarse cells that abut on a level boundary are replaced by two types of cells, namely
tetrahedra and pyramids. Therefore a new node is generated in the center of these cells,
with a data value obtained by trilinear interpolation. For faces that are shared by a cell on
the same level of resolution, one pyramidal cell with the new vertex in the center as its
apex and the face as its base is generated.

85

Figure 5.13: Illustration of the conforming split scheme. Pyramidal cells are employed
to remove hanging nodes in the interior of the coarse face (left image), while tetrahedral
cells are inserted according to the configuration of hanging nodes at the cell edges (right
image).

For faces at the level boundary, a set of pyramids is generated, depending on the
number of hanging nodes at the interior of the face. These pyramidal share the newly
generated center node as a common apex, compare left image in Figure 5.13.

- KA
Sa b

Figure 5.14: The 16 possible vertex configurations for tetrahedral cells can be reduced to
3 topologically different ones. Two of them lead to triangulations, as shown on the left
side. Analogously the topologically different cases for pyramidal cells are shown on the
right.

In the case that the hanging nodes that are not dependent nodes, it is further necessary
to remove hanging nodes that are located on the edges of the cells. Depending on the
configuration of these nodes the pyramidal cells are further split up into sets of tetrahedra
as illustrated in the right part of Figure 5.13. Notice that this is necessary also for coarse
cells that share only an edge with a refined cell.

86

»
S
_, =W ;
T AT N e L AVEY e 7
LV ISEF— 7 L < T >
LS S : D\ NS
7 : : : SN E S
L T S ey,
= S T A
Pl > gt A S S

VA \-GP'QA'h\V», AA SO Sl v
@ N R ‘H g N Sosse
Eostoay 7 Sn@oliyee, | ghones
]K‘Nmfg%w[“ ‘ggn; & %“A""A “:ﬁgg‘
AR R
= Mg‘g'lkh
o
Vap Yy Ay Ve
< AT AT
‘gny‘g‘gﬁ,«v.—.!m\m;¢‘
K a
VSN YA N A Y

AN K7
YANAY W
AVaV;WAN YL SN O

‘\y\% IR S
WeSSS” S
7 5:‘:6}&;:‘:5&‘ R "’ﬁv:;\;
T el S N \

SRR T

Ry s eSS
A AR ACR

Figure 5.15: Triangles resulting from different cell types. White triangles - hexahedral
cells; yellow triangles - tetrahedral cells; blue triangles - pyramid cells. The right image
shows the simplification of the triangulation of the left side using the compact cubes
algorithm [58]. (dataset courtesy of G. Bryan, Princeton University)

During the isosurface extraction step each cell is processed separately. The topolog-
ically different cases for tetrahedral and pyramidal cells are shown in Figure 5.14. Fig-
ure 5.15 shows a rendering, in which triangles generated from different types of cells are
highlighted in different colors.

A drawback of the approach discussed so far is that due to the increased number of
cell primitives in the hybrid grid, also the number of generated triangles is increased, if
compared to isosurfaces (with cracks), that result from the unmodified, standard march-
ing cubes. In order to reduce the number of triangles, we employ the compact cubes
algorithms [58] in a post-processing step.

5.4.3.4 Results and Discussion

We applied the algorithm to two AMR datasets - the results from galaxy cluster forma-
tion simulations. The first one consists of 984 subgrids on 7 levels of refinement; the
second one contains 1939 subgrids, distributed on 8 refinement levels. The measurements
were performed on a 2.0 GHz PENTIUM4-SYSTEM equipped with a 128 MBytes ATI-
RADEON 9200 graphics board. The results are given in Table 5.16.

87

preprocessing | standard MC | standard CC | adaptive MC adaptive CC
Dataset I (7.045.0) s 107,000 (1.6 s) | 58,000 (1.8 s) | 164,000 (2.1s) | 72,000 (2.3 s)
Dataset IT || (10.0+12.0)s | 332,000 (4.4s) | 190,000 (4.6s) | 527,000 (4.8 s) | 240,000 (5.0 s)

Figure 5.16: The table lists the preprocessing times for the detection of the location of hanging
nodes, as well as the generation of the cell configurations for the conforming split, which has to
be performed only once per dataset. The next three entries state the times for the actual extraction
of the isosurface and the number of generated triangles for the standard marching cubes that only
operates on the original hexahedral cells and leads to cracks at the boundaries, as well as for the
adaptive variant discussed above, in both cases with and without triangle reduction utilizing the
compact cubes approach.

The number of triangles resulting from the adaptive algorithm was about 60% larger
if compared to the isosurfaces with cracks resulting from the standard marching cubes
algorithm. Post-processing both surfaces using the compact cubes algorithm, reduced
the increase to 25%. The extraction times where comparable for the different methods.
Figure 5.17 shows a rendering example.

Figure 5.17: Nested semi-transparent isosurfaces depicting regions of constant gas density
inside a proto-galaxy. (dataset courtesy of T. Abel, Stanford University)

88

