Chapter 4

Accelerated Volume Rendering

3D imaging and computational science produce increasingly large volumetric datasets.
While data volumes consisting of O(10?) voxels are not unusual today, future imaging
devices and large scale simulations are supposed to create tera-scale datasets. Hence the
development of volume rendering approaches dedicated to handle large datasets is getting
more and more important.

The main performance limitations for volume rendering is the large amount of inter-
polation operations during the evaluation of the integral (3.7) and the texture memory
limitations for hardware-accelerated approaches.

This chapter proposes algorithms for software-based raycasting as well as hardware-
accelerated volume rendering that address these problems. Both approaches have in com-
mon that they aim at reducing the number of interpolation operations by focusing the
computational effort to regions of the data volume that have the most contribution to the
resulting pixel intensities.

In the next subsection, related work in the field of volume rendering for large data
is discussed. In Section 4.3 we present an algorithm that employs an error-controlled
adaptive integration scheme to accelerate the computation of the raycasting integral. In
Section 4.4 we propose an approach for accelerated texture-based volume rendering for
large, sparse datasets.

4.1 Related Work on Software-Based Volume Rendering

Various papers that deal with the topic of accelerating emission-absorption approaches
have been published in the last years. In 1990 Levoy et al. [47] presented an algorithm
that skips empty space utilizing an octree data structure to encode the presence of non-
transparent material. Danskin [24] extended this approach by exploiting data homogene-
ity and accumulated opacity as well.

Subramanian et al. [84] designed a ray-tracer that works efficiently for cases where
the data of interest is distributed sparsely through the volume. A space partitioning of the
data volume is carried out by a median-cut subdivision. Empty spaces are pruned of and
the subdivision is repeated until each region contains exactly one voxel.
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Laur et al. [45] proposed a splatting algorithm that operates on a pyramidal repre-
sentation of the volume and determines the number of splats adaptively, according to
user-supplied error criteria. Storing data mean and root mean square at each node per-
mits rendering by progressive refinement. Nodes within the user-specified tolerance are
rendered as single splats by utilizing texture mapping capabilities.

The idea of exploiting the distance transform to speed up the background traversal
by Zuiderveld et al. [99] has been extended by Cohen et al. [23], who introduced so-
called ’proximity clouds’ that store uniformity information’ (typically encoded in a space
partitioning tree) directly in the voxel raster: Voxel data either contain a data value or
information indicating how far incident rays may leap without missing important features.

Novins et al. [62, 61] utilizes a BSP-tree to store lower and upper bounds of the in-
tensity and opacity for subregions of the data volume. Based on these bounds, an ini-
tial coarse ray discretization is refined in regions where the error exceeds a user-defined
threshold, aiming at an equally distributed discretization error.

Lee et al. [46] reduced raycasting overheads by an adaptive block subdivision. Their
algorithm applies an uniform space subdivision and then merges coherent uniform blocks
in order to generate adaptively-sized blocks which are efficient for leaping space.

A common drawback of all these approaches is that they require some kind of prepro-
cessing, for example in order to detect homogeneous regions and/or the computation of
error bounds on the volume rendering integral. This procedure usually has to be repeated
each time the transfer function is changed, which might be computationally expensive for
larger datasets.

In Section 4.3 we will present a scheme that accelerates raycasting without the need
of preprocessing the data. Its underlying idea is to start with an approximation of the
ray-integral based on a coarse discretization of the whole interval. Employing local error
criteria this coarse discretization is recursively refined by point enrichment in regions that
require higher resolution, i. e. regions where the local error exceeds a certain threshold.

4.2 Related Work on Hardware-Accelerated Approaches

Spatial data structures have been employed in combination with 3D texture-based volume
rendering approaches, too.

LaMar et al. [44] proposed a multi-resolution techniques for interactive volume vi-
sualization of large datasets. They employ an octree representation and a node selection
scheme for adapting the distance of texture slices for regions depending on their distance
to the viewpoint. They further introduced the use of spherical shells as proxy geometries.
Weiler et al. [92] improved the latter approach by techniques that avoid rendering artifacts
due to discontinuous texture interpolation and varying sample distances at boundaries be-
tween regions with different resolutions.

Boada et al. [15] presented an error and importance driven strategy for selecting a set
of octree nodes from the full pyramidal structure. Fang et al. [29] introduced an approach
for rendering deformable volume data utilizing an octree encoded target volume.
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Octree-based data structures have further been applied for efficient handling of time-
dependent datasets by Shen et al. [79]. They proposed a combination of a ‘spatial’ octree
and a binary ‘time’ partitioning tree. It effectively captures both, the spatial and the
temporal coherence in a time-varying field. Originally intended to accelerate raycasting
algorithms, this work has been extended to hardware volume rendering via 3D texture
mapping [80].

Another approach for accelerating texture-based volume rendering by leaping of
empty regions has been proposed by Tong et al. [86]. The data volume is partitioned
into equal-sized blocks that are pruned in one direction. The resulting blocks are merged
to reduce texture I/O and rendered in parallel projection. Similar to the octree approach
this algorithm introduces partitioning axes independent of the underlying spatial data dis-
tribution, and it is not clear which brick size to choose for optimal rendering performance.

Combining the approach presented in [84] with texture-based volume rendering would
suffer from the simple median-cut subdivision strategy which produces regions containing
too many irrelevant voxels, or too many regions, if the subdivision is carried out until
voxel-size is reached.

The techniques presented in [99, 23] is disadvantageous for 3D texture-based volume
rendering, since the volume is not subdivided into axis-aligned regions.

The approach in [46] is not efficient for volume rendering via 3D textures, since it
usually generates many boxes of voxel size and it does not guarantee that the resulting
blocks can be traversed in a view-consistent order.

In Section 4.4 we propose an algorithm that employs an AMR hierarchy of nested
subgrids in order to accelerate texture-based volume rendering of sparse data. The con-
tents of the scalar data are evaluated based on relevance criteria. This approach achieves
significant performance gains if compared space leaping approaches using an octree data
structure.
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4.3 Acceleration by Adaptive Integration

The raycasting algorithm discussed in this section is based on the application of an error-
controlled adaptive multigrid quadrature algorithm [25]. We chose this approach since it
does not require a preprocessing of the data and in contrast to other adaptive integration
schemes, it is applicable to integrands that are only C°-continuous, which is important for
our purposes, since we employ piecewise trilinear interpolation.

The local error criterion is based on the comparison of two integration methods of
different order, the trapezoidal and Simpsons rule in this case, though other schemes
might be applied. The local refinement is carried out by interval bisections. We will
briefly describe the employed numerical integration scheme in the next section, for more
details the reader might refer to [25].

4.3.1 Numerical Background

Let I(g) := f; g(s) ds denote the integral of the scalar function g : [a,b] — R, that is
to be approximated numerically over the interval € := [a, b]. Consider an initial, coarse
discretization G of 2, that is given by a set of intervals

Z; == [si, Sir1], fori=0,...,n,with sgp:=a, s, =b

as indicated in Figure 4.1.
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Figure 4.1: Refinement of ray-intervals by bisection.

Further let h(Z;) := |Z;| = |si+1 — si| denote the length of the interval Z;, and 7 (Z),
S(Z) the results of trapezoidal rule, respectively the Simpson’s rule applied to the interval
T = I[sy, 8]

T(Z) = (f(s)+2f(sm) + f(sr)), and 4.1)

S S

S(@) = GUsn) +4f(sm) + £5,). @)

(si+sr)
2

Here s, = is chosen as the third node which is required for the Simpson’s rule.
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Analogously

T7(G) = iT(L) and (4.3)
S(G) =) S(T) (4.4)

denote the approximations of /(g) over the whole domain 2. The local approximation
error on Z can be estimated by

€oc(Z) := | T(I) = S(I) |. 4.5)
Intervals Z,, that are tagged for refinement, as discussed below, are split up into the two
subintervals by simple bisection

Sl—i-ST] [Sl—i-ST
2 7 2

T= [Sbsr] - [Sla 757“] = (IZ"ef,I:ef>7
compare Figure 4.1. In the following P(f ) will denote the next coarser interval that

contains Z, 1. e.
P(I) = P(Z}!) = 1.

The refinement strategy of the integration approach is to obtain an equidistribution of the
local approximation errors e;,.(Z;) for all intervals Z;. Following the abstract suggestion
in [6] the decision which intervals should be refined in order to achieve this is based on a
second error estimator e, (Z), that yields information about the local approximation er-
ror of the subintervals Z; of 77! in case Z would be refined. This information is obtained
by extrapolation of the local approximation errors on Z and P(Z). The estimated error
for the trapezoidal rule is of the form

eloe(Z) = Ch(T)". (4.6)

Here C' is a local constant and = denotes equality up to "higher-order’ terms in h. The
actual value of v is not important for the derivation, because it will cancel out in the
following. Since h(P(Z)) = 2h(Z) holds, it follows that e;,.(P(Z)) = 27€j0.(Z) and
therefore

eloc(I)

P

This gives rise to the following estimation of the extrapolated local error
€loc (I)2

eloc(P(T))

Based on definition (4.7) the maximal local error after global refinement of G can be
estimated via

Cloe(I7™) = (CH(T)") 277 = €10e(T) (

extr(Z) = 4.7)

memtr(g) = @ggx Cextr (I) (48)
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Since the goal of the refinement process is to obtain an equidistribution of the local ap-
proximation errors, it is reasonable to restrict the refinement at each integration step to
those intervals for which e;,.(Z) > M.y, holds. A modification of this criterion is dis-
cussed in [63].

A suitable measure for the unknown global approximation error

b n
([ st - 3 s(@)

is obtained by comparing the approximations of the integral via the actual discretization
G and the next coarser one P(G)

egiop(9) = | S(P(G)) = S(9) | (4.9)

This global error estimation is used in order to define a “stopping”’-criterion for the itera-
tion. The refinement process is stopped, if

egion(G) < ot |S(9)], (4.10)

where ¢y, is a relative precision threshold.

4.3.2 Application to Volume Rendering

Evaluation of Equation (4.3) and (4.4) for the emission-absorption model (3.7) yields

h(T

T(I) = %(qz F 2 ge T RrERm) | g o= ME (A 2ntn)y and (4.11)
h(T

S(I) — %(q1+4qm€h(‘lz)(mem)—l-qre’l(ffz)(ﬁl+4ﬁm+m)). (4.12)

Here the segments are oriented such, that Z; denotes the segment that is closest to the
viewpoint, see Figure 4.1.

Instead of defining the local approximation error for the interval Z; directly according
to Equation (4.5), we multiply it by a weighting factor e~7(*0:%) which specifies the ac-
cumulated absorption between the i-th ray-segment and the viewpoint. This is motivated
by the fact, that the contribution of a ray-segment to the total intensity depends on the
amount of absorption between the segment and the viewpoint. So we obtain the following
expression for the local approximation error

eloc(z.i) = 6_7(8078i)|7(1i)_8(1i)|
1—1
= ([[mT(@) - 51, (4.13)
k=0

where 7}, denotes the transparency of segment k, according to definition (3.9) .
The overall algorithm for the the adaptive ray-integration scheme is summarized in
the following pseudocode:
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generate initial discretization;
do
{
// traverse intervals from front—to—back
for all (Z;; i=0,..,n) {
if (Z; is newly refined) {
compute 7(Z;), S(Z;);
Compute 6loc(Ii) ) eea:tr(Ii );
}
update global transparency;
update global intensity;
update meztr(g);
}
compute egop;
refine all Z, with epe(Z) > mextr(G);
} while (eglob > Ctol‘s(g)“;

4.3.3 Results and Discussion

Figure 4.2: Renderings of the three tested datasets. The first one was generated by sam-
pling the function f(z) = (x* + 1072)~! on a uniform grid a resolution of 256° voxels.
The second dataset, the result of an astrophysical simulation describing the collision of
three black holes, had a resolution of 5122 voxels. The third dataset, the result of a molec-
ular dynamics simulation and conformational analysis, contained 185 x 202 x 157 voxels.
(datasets courtesy of P. Diener, Louisiana State University (b) and D. Baum, Zuse Institute
Berlin (c))

We applied the adaptive ray-integration scheme discussed above to three datasets with
different frequency characteristics. The first example was a smooth analytical grid func-
tion, the spectrum of the second datasets contained high frequencies and the last tested
dataset contained large homogeneous regions as well as sharp edges in other parts. More
information about the examples is given in Figure 4.2.
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All measurements were performed on a SGI ONYX3 with a 500 MHz MIPS R14000
processor. The screen resolution was 400 x 400 pixels for all examples. We compared the
performance of the adaptive ray-integration scheme with that of a standard raycasting
algorithm. Our implementation performs “early ray-termination” with a transparency
threshold of 1072 and the trapezoidal rule was chosen as quadrature rule. For the adaptive
scheme a relative error threshold of 10-2 was chosen. The following table shows the
resulting rendering times as well as the relative reduction of interpolation operations of
the adaptive scheme in comparison to the standard raycasting method.

fps(standard) | fps(adaptive) | reduction of evaluations
Dataset I 0.118 fps 0.335 sec 76.1%
Dataset 11 0.028 fps 0.041 fps 54.3%
Dataset 111 0.109 fps 0.097 fps 53.1%

Table 4.1: This table states the frame rates of the standard and adaptive raycasting scheme
for the three different datasets as well as the reduction of interpolation operations due to
the adaptive approach.

The adaptive scheme achieves best results for the first dataset. In this case the number
of interpolation operations was reduced by about 76 percent and the rendering perfor-
mance was almost three times higher if compared to the non-adaptive renderer. Here the
adaptive scheme takes advantage of the smoothness of the data, which allows for very
coarse initial discretizations. The error estimator efficiently decreased the interval length
in the central region of the data volume, where the sharp peak is located.

In order to generate the semi-transparent isoshells for the higher resolved second
dataset, a high-frequency colormap was applied. This required an increased sampling
rate. For this example the number of interpolation operations was reduced by about 55%
and the rendering performance of the adaptive scheme was about 45% faster, if compared
to the non-adaptive method.

For the third dataset the performance of the standard scheme was about 10% higher,
though the adaptive scheme needed about 50% less interpolation operations. This is due
to the fact that for this data set a rather fine initial discretization for the rays was necessary
in order to ensure that the sharply edged ring was not missed by the integrator. Figure 4.3
shows a sequence of three renderings with increasing resolution of the initial discretiza-
tions. In this case the overhead due to the error estimator computation and the additional
data structures involved was higher than the performance gain due to the reduced interpo-
lation operations. For datasets that contain high frequencies the adaptive approach, like
any adaptive integration scheme, potentially misses features like sharp edges. In order
to chose appropriate initial ray discretizations for this type of data it would be advanta-
geous to detect regions of different frequency characteristics in a preprocessing step. As
future work it would be interesting to investigate if the adaptive integration scheme can
be employed for this purpose.
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Figure 4.3: From left to right the initial refinement of the rays is increased.

As a conclusion one can state that the application of the adaptive integration scheme
reduced the number of necessary function evaluations for all tested data sets if compared
to the standard algorithm. The amount of decrease ranged from 76% to 53%, though the
frame rates do not increase at the same rate, due to overhead of the adaptive solver which is
caused by allocation of data structures for storing the ray-segments and the computations
of the estimated local errors. The adaptive scheme is advantageous during the preparation
phase of the visualization session, when a suitable colormap is determined and hence
modified and adjusted frequently, since it does not require any preprocessing of the data,
which usually depends on the chosen colormap. It achieves best performance for smooth
datasets, since in this case the error estimation process is most efficient.

33



4.4 Acceleration by Exploiting Sparsity of Data

4.4.1 Motivation

As discussed in Section 3.5, the availability of powerful texturing units on consumer
graphic hardware enormously increased the popularity of 2D-, and 3D texture-based vol-
ume rendering algorithms. Though they allow interactive frame-rates for moderately sized
data volume for large datasets the rendering performance of texture-based approaches is
still too slow for interactive exploration. The main performance limiting factors are

o the fill-rate of the texture hardware,

e the amount of texture memory, since it determines the number of texture bricks
necessary to render the data volume and, closely related to this,

e the texture I/O-bandwidth, since this (mainly) determines the time for placing new
texture chunks in texture memory during each pass.

Often just a small portion of the highly resolved dataset is of interest for the user. This
holds, for example, if the dataset contains large transparent and/or homogeneous regions
that do not contribute any information to the final image. For segmented image data
the user often needs to visualize just a subset of the various segmented regions. For
instance, in biomedical visualization only line-like structures, such as vessel trees, neuron
trees, trabeculae in bones, or filament structures in muscles, have to be visualized. Thin
structures, occupying only a tiny fraction of a volume, occur on all length scales in nature
—ranging from chain molecules in chemistry to filaments of galaxies and galaxy clusters.
Additionally, in numerical simulations, often large computational volumes have to be
considered to take care of boundary conditions, though the interesting phenomena happen
in very small spatial regions.

4.4.2 Ansatz

Sparsity of data can be exploited to increase the rendering performance by assigning indi-
vidual “texture bricks”, only to regions that have been classified as relevant. The optimal
coverage of these subvolumes would be achieved by assigning a texture to each relevant
elementary cell of the dual voxel grid. This approach is unfeasible, since it requires a
large amount of texture memory: texture bricks need to share rows of texels at common
boundaries, to ensure consistent trilinear interpolation. Further it would result in an enor-
mous number of texture-, and polygon-coordinates to be computed and specified, since
every brick has to be intersected with the proxy geometries to be rendered. A good bal-
ance between the volume enclosed by texture bricks and the number of created bricks is
therefore crucial.

In the following we present an algorithm that achieves this balance. Is consists of the
following steps:
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e Recursive subsampling of the dataset, in order to build a pyramidal structure.

Application of a signature-based clustering algorithm to generate an AMR hierar-
chy that efficiently encloses the relevant regions.

Assignment of separate 3D texture bricks to each leaf of the hierarchy.

e Minimization of the usage of texture memory due to power-of-two restrictions (of
the graphics API or graphics hardware) by utilizing a 3D-packing algorithm.

For evaluation we apply our algorithm to several 3D-image and simulation datasets with
different characteristics and compare its performance and texture memory requirements
with the standard as well as an octree-based algorithm. We show that significant gains
in rendering performance are achieved for sparse datasets. The AMR-based algorithm
has the additional advantage that it requires less parameter adjustment, i. e. it reduces
the amount of user interaction, since standard parameter settings already yield good ren-
dering performance — almost independent of the topology and spatial distribution of the
interesting subregions.

This Section is organized as follows: the octree-based and AMR approaches are pre-
sented in Subsections 4.4.4 and 4.4.5. Subsections 4.4.7 to 4.4.9 address issues related to
the hardware-accelerated rendering of the resulting data structures. Finally we apply the
algorithms to several datasets and discuss the results in Subsection 4.4.11. But first we
list some requirements that the desired coverage of the relevant regions should fulfill.

4.4.3 Data Structure Requirements

In order to decide if a cell is relevant or not an importance criterion is necessary. It might
for example be based on opaqueness or on a voxel classification performed by a preceed-
ing segmentation step. The first case will be discussed in more detail in Subsection 4.4.6.
Let us for the moment consider that the relevance of the cells is encoded by a function

1, ifcell Q”k 1s “relevant”, 4.14)
0 otherwise.

R(i, j, k) :== {
We aim at generating an efficient coverage of the relevant cells for accelerating 3D texture-
based volume rendering. It should fulfill the following conditions:

e The coverage should consist of a set of axis-aligned blocks B;, since these geome-
tries are most appropriate for rendering via 3D textures.

e The blocks should have pairwise disjoint interiors, i. e.
(B nB) =0V (B'NnB) C (0B"UIB")
for ¢ # j, in order to avoid multiple rendering of subregions of the data volume.
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e The coverage should not contain any visibility cycles, in order avoid expensive
occlusion computations and allow independent rendering of the separate blocks.

For a definition of visibility cycles assume three convex polyhedra A, B and C and
let the relation (A, B) denote that A (partially) occludes B for the given viewpoint.
The polyhedra build a visibility cycle if the
relations (A, B), (B,C) and (C,.A) are ful-
filled for this viewpoint. A simple 3D ex-
ample of a set of three axis-aligned bound-
ing boxes that form a visibility cycle from the
considered viewpoint is given in Figure 4.4.

In addition to the requirements listed
above, the blocks should further build an ef-
ficient coverage of the relevant cells in the
sense that that the total number of boxes, as
well as

{2 € B | R(i, j, k) = 0}
ViBn) =T /
Figure 4.4: Example of three axis-aligned
blocks that form a visibility cycle for the

considered viewpoint.

1. e. the ratio of the non-relevant cells to the
whole number of cells in each block, are
small.

In the following we will compare two ap-
proaches that employ spatial data structures to generate these coverings. The leaf nodes of
the data structures will correspond to the axis-aligned blocks B,,. Regarding the discus-
sion in Subsection 2.4, only two data structures fulfill at least the first three requirements
listed above, namely the octree and the kD-tree!.

4.4.4 Octree Generation

In this subsection we describe the construction of the octree structure. In a first step the
data volume is subdivided into blocks of pre-selectable extensions. Only sub-branches
with leaf nodes that cover relevant regions of the data volume are inserted into the hierar-
chy.

In order reduce the number of blocks, we recursively visit each node and check if all
its subnodes are leaves. In this case they are pruned off and the node itself becomes a leaf.
We achieve another reduction of the number of bricks by taking into account

~ HC(B,,) | C(B,,) is leaf node}|
N Bl ’

r(Bn) :

'Tt is obvious that the first two requirements are fulfilled. For the view-consistent traversal of the nodes
we refer to Section 4.4.9.

2We choose powers of two, in order to meet the restriction on the texture dimensions given by the
graphics hardware, respectively graphics APIL.
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i. e. the ratio between the volume covered by the sub-branch of 5,,, and the node’s volume
itself. If r(B,,) is smaller than a pre-selectable threshold, this sub-branch is pruned and
the node gets a leaf node. To find a good balance between the performance limiting
factors, this parameter has to be adjusted carefully.

In the last step the data of the subvolumes corresponding to the resulting leaves of
the octree is copied and stored in the hierarchy’s nodes. Here some care is necessary at
the boundary faces of the grids, since trilinear interpolation is applied; to avoid artifacts
caused by discontinuities between adjacent grids during the rendering using 3D textures,
it has to be ensured that they share one row of data samples at their common interfaces.

A drawback of the octree data structure is that the spatial locations of the partition-
ing boundaries are not adapted to the underlying data contents. As shown in Subsec-
tion 4.4.11, for large, sparse datasets this often results in an unnecessarily high number of
boxes and/or boxes that capture only very few relevant voxels.

4.4.5 Adaptive Approach

In contrast to the octree, the AMR data structure allows to freely place subgrids and
thereby to better adapt the shape of the subregions that contain relevant cells. Consider
for example the simple case of a rectangular region of opaque voxels in the center of a
larger volume. The AMR structure can enclose this with just one child node and with-
out covering many transparent cells, whereas an octree requires at least eight or more
subnodes, thereby introducing a higher number of interior boundaries.

Since AMR subgrids in general might build visibility cycles we use a generation
scheme that arranges the nodes in a kD-tree manner. In order to construct an AMR hier-
archy that fulfills the constraints listed above, we generate a pyramidal representation of
the original dataset by subsampling it with an integer factor in a preliminary step. This
factor usually equals 2, but larger values (e. g. to reduce the amount of additional memory
necessary for storing the hierarchy), possibly different for the three coordinate directions,
are also admissible.

The relevance function R!(.) for the pyramid level A' is related to the one of the next
higher resolved level, R'"1(.), via

: 2%it1 =2j+1 x~2h+1 it 5]
1, if (Zizzi Goaj Qdimok 12 (zgk;))Zl

(4.15)
0 else.

R\(i, j k) := {
Here we adopted the notation introduced in Subsection 2.2.1. In particular A° denotes
the coarsest level of resolution, while the highest level is given by the original dataset.
Equation 4.15 states that a cell on the coarser level is tagged as relevant, if it contains at
least one tagged cell in the original dataset.
After this preparing step we build the AMR hierarchy utilizing the clustering algo-
rithm discussed in Section 2.2.3. The clustering starts at the coarsest resolution of the
pyramid, which defines the root node of the hierarchy and it is recursively repeated on the
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newly generated subregions, until the finest level, i.e. the original data, is reached. The
signature lists (2.7) are computed from the relevance functions R(i, j, k)' via

PR (' +n)

Z Z (i, 4, k). (4.16)

.7171

The choice of the splitting planes in the clustering algorithm ensures that the resulting
blocks, respectively subgrids are arranged in an adaptive kD-tree, which will be important
for the view-consistent traversal, compare Subsection 4.4.9. As for the octree, the leaf
nodes have to share one row of data samples at their common boundary faces.

Notice that one could alternatively cluster directly on the original data volume, without
first creating the pyramid. This usually slightly decreases the number of blocks needed for
the coverage, but in turn increases the running time of the algorithm. As discussed in [11]
the running time is O(k(P + M)), where k is the total number of grids upon termination
of the algorithm, P is the number of flagged cells, and M is related to the determination of
the inflection points. Keeping the preprocessing times small is crucial in our application,
since the clustering has to be repeated each time the colormap is changed. Further this
hierarchical approach offers the possibility to obtain a multi-resolution representation of
the interesting regions by applying appropriate averaging methods in order to compute
the data samples on the coarser grids.

The overall approach is summarized in the following the pseudo code:

// subsampling of data
create pyramidal structure;

// start grid generation
create_subgrid (0, data domain);

// render of resulting leaves
traverse_subtree (root—node);

/! recursive grid generation
create_subgrid (level , bounding box)

{
I' = new subgrid(bounding box,level);
if (level # maxlevel)

markedCells = inspect_cells (I', importance_criterion);
newBoxList = cluster (markedCells);
for all (boxes[i] € newBoxList)

{

T'sup = create_subgrid (boxes[i],level+1);
set Tgyp as C(T);

}
}

return [

The pseudo code for the view-consistent traversal (traverse_subtree) is given in Sec-
tion 4.4.9.
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4.4.6 Opacity as Relevance Criterion

In the following we will briefly discuss the special, but nevertheless important case that
the relevance criterion is based on the opacity of the cells. Since the opacity, respectively
transparency depends on the colormap, which usually is changed several times during a
visualization session, storing the values of relevance functions R(i, j, k)! directly for each
cell on the pyramid level [ would be disadvantageous, because in this case the subsampling
stage would have to be carried out after each modification of the colormap.

In order to avoid this, for each cell Qﬁj i 1n the pyramid we rather store the minimal
and maximal data value

(f" = min f(x), fii* = g&if(X) ).

Determining the min-max intervals is inexpensive for trilinear interpolation, since it
equals the minimal and maximal data samples of the vertices covered by Qﬁj - During the
clustering procedure each of the intervals C,, (| foe, ZT,S“]) in the colormap’s alpha chan-
nel is inspected, and the cell is tagged, if its maximal opacity C, = 1 — 7' is below a user
selectable threshold. Recall that according to Equation (3.18), the opacity entry stored in
the colormap is related to the absorption factor s via C,(f(x)) = 1 — exp(—r(x)dy),
assuming that x is piecewise constant per slice segment of thickness dy. Hence we can
estimate an upper bound of the transparency A(£2;;;) of the cell €;;; by

AQjr) = 1 — exp(—FKmaz (i) d)
= 1= (1= Apag).

Here d is the cells diagonal and

Apaz = mazx  {A(f(z))}.

F(@)elfrmin, froe

Due to the subdivision of the preprocessing step into pyramid creation and clustering,
only the clustering step has to be repeated if the colormap is changed.

4.4.7 Rendering

We render each of the generated blocks separately utilizing the standard 3D texture map-
ping approach [18, 97]. Individual 3D texture bricks are assigned to the separate leaf
nodes of the resulting hierarchies and each block is rendered separately in a back-to-front
order. One-channel textures and the SGI color table extension were used. In the follow-
ing we describe the differences during rendering for both types of hierarchies, AMR tree
and octree.

The graphics hardware assumes the dimensions of 3D textures to be equal to a power
of two. This could be achieved by extending the data subvolume of each leaf grid of the
AMR hierarchy to the next bigger power of two, for example by clamping the boundary
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Figure 4.5: 2D example of the “next-fit-decreasing-heigh” packing algorithm: subvol-
umes are inserted from left to right, starting at the lower left corner.

texels and restricting the generated texture coordinates to the unextended area. Regarding
the potentially large number of textures to deal with, this would typically result in a large
overhead of unused texture memory. We decided to reduce this overhead by utilizing a
packing algorithm that inserts the texture bricks into one single texture.

4.4.8 Texture Packing

For our purposes the following variant of the three-dimensional packing problem is ap-
propriate:

pack a given number of axis-aligned boxes into one container with fixed width and
depth sizes, such that its height is minimized.

This problem belongs to the class of NP-hard problems, but a couple of useful heuristics
have been suggested, compare [48]. We adopt a three-dimensional version of the “next-
fit-decreasing-height” (NFDH) algorithm [36].

First, the boxes are inserted into a list in the order of decreasing height. The packing
algorithm starts at the lower left corner of the container and the boxes are inserted from
left to right until the right border is reached. Then a new row is opened, with a depth
coordinate given by the largest depth of the already inserted boxes. This procedure is
repeated until the lowest layer of the container is filled. Then a new layer is opened and
this process continues until all boxes are inserted. See Figure 4.5 for a 2D example.

We iterate this procedure with different values for the base layer extensions of the
container, chosen as powers of two. For the resulting containers the height is extended
to the next power of two, and the one with smallest volume is taken. Then a 3D texture
of this size is defined with the sub-textures are inserted at the appropriate positions. For
each block its offset in the merged texture is stored.

If the packed texture is still too large to fit entirely into texture memory, a separate
texture brick is generated for each leaf node of the hierarchy.
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4.4.9 View-Consistent Node Traversal

As discussed above, it is not possible in general to render arbitrary arranged axis-aligned
blocks separately in a back-to-front order, because occlusion cycles might occur for cer-
tain viewpoints. However, since the clustering algorithm performs a partition of the data
volume in a kD-tree style, no cycles occur in this AMR approach. We employ the tree in
order to traverse the generated blocks in the view-consistent order.

The traversal starts at the root node of the kD-tree. At each internal node the associated
axis-aligned partition plane divides the domain into two half-spaces H;, H.. For a back-
to-front traversal the subtree corresponding to the half-space which does not contain the
viewpoint, has to be visited first. In case the viewpoint is located on the plane, the subtrees
can be traversed in any order. The procedure is outlined in the following pseudocode:

traverse_subtree (subnode)

{
if (subnode is a leaf node) {
render (subnode);
}
else {
‘H1 := ‘halfspace of subnode.childA ’;
Ho := ‘halfspace of subnode.childB ’;
if (viewpoint C H; )
traverse_subtree (subnode.childB);
else
traverse_subtree (subnode.childA);
}
¥

4.4.10 Generation of the Proxy Geometries

Computing the intersection points of the slices and the bounding boxes of the blocks is
done in software. We speed up this procedure by first determining the interval of slices
that intersect the actual block. This is accomplished by projecting the vertices x;, of the
bounding boxes onto the planes normal direction 2. Indexing the slice through location
a by 0 and slices in normal direction by positive indices, the slice index the corresponds
to the vertex xy, is given by i = [((xx — @) « ) /dp]. Thus the intersection computations
can be restricted to the slices with indices within [,,i, tmaz)-

In order to compute the coordinates of the polygons that result from the intersections
between the slices and the block edges, the bounding box vertices that lie above and
below the oriented slice are determined. For each configuration a table lookup returns
which edges are intersected, as well as their correct order (needed for the definition of
the associated texture polygons). The coordinates are computed by linear interpolation
between the endpoints of these edges.

The view-consistent order of the octree nodes can easily be determined by a table
lookup at each node, which returns the correct order to visit the subnodes with respect
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Figure 4.6: The order of a view-consistent node traversal for the decomposition of the
AMR grid example from Figure 2.6 for a viewpoint in the lower right.

to the actual viewpoint, as discussed for example in [5]. As in the AMR case, for each
block the interval of intersecting slices is precomputed and the intersection points are
determined using the fast table-lookup approach mentioned above.

4.4.11 The Applications

We applied our algorithm to several datasets with decreasing degrees of sparseness, rang-
ing from extremely sparse neuron data to non-sparse bee-brain scans. The performance
was tested on an SGI ONYX2 INFINITEREALITY2 with two RM7 RASTER MANAGERS
with 64 MBytes texture memory. The runs were performed on a single 195 MHz MIPS
R 10K processor.

Since texture-based volume rendering is fill-rate limited, the frame rates depend on the
size of the viewer window, the number of slices, and the area in screen space covered by
the data volume (and thus on the actual position of the viewpoint). We averaged the frame
rates for several positions inside and outside the data volume by choosing viewpoints
located on different circles with varying radii and orientations. For all examples the size
of the rendered images was 764 x 793 pixels; the numbers of slices are listed below. In
the examples we used the opacity as the importance criterion. Cells with an associated
opacity value greater than ay,..s = 0.03 were marked as relevant.

4.4.11.1 The Datasets

The datasets I and II are confocal microscopy images of neurons inside a honey bee’s
brain. About 0.1% respectively 0.2% of the cells were marked as relevant and the volumes
were rendered with 1200 slices. For dataset II a greater threshold of ayp,,..s = 0.1 was used,
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in order to eliminate noise contained in the microscopy image. Dataset III represents a
part of a human vascular tree. Here 1.2% of the cells were tagged as relevant. This
dataset also was rendered with 1200 slices. Example IV contains data from a molecular
dynamics simulation and conformational analysis. About 14% of the cells were marked
as relevant. The volume was rendered with 320 slices. This is the only dataset which
fitted into memory without the need of bricking. The last example is a non sparse dataset
containing 23% of relevant cells, which was rendered with 900 slices.

Images of the different datasets are shown in Figure 4.7 to Figure 4.11. boxes of the
octree, and the right images display the AMR bounding boxes.

4.4.11.2 Results

The statistics are displayed in Tables 4.2 to 4.6. For each dataset we list the results for
standard volume rendering, for the octree and the AMR approach. The first rows (‘Stan-
dard’) show the results for the standard volume rendering approach. Rows labeled ‘Octree
I’ contain the octree result with leaf dimensions that result in optimal frame rates. Rows
labeled ‘Octree II' show the best octree results we achieved by adjusting the ratio thresh-
old parameters. The fourth rows (‘AMR I’) display AMR results with the clusterer’s
efficiency parameter set to 0.85 and a minimal extension bound of 8. The last rows, la-
beled ‘AMR II’, report the optimal results achieved by adjusting these parameters for each
dataset.

The table columns list the depth of the hierarchies, the number of created texture
bricks, the percentage of the data volume covered by them, the amount of texture mem-
ory (after extension to the next power of two and packing them into one texture), the
preprocessing times, and finally the frame rates. On the INFINITEREALITY?2 the texel-
size is two bytes, so the internal size of the textures is twice the number given in the table.
Note that for the datasets I, II, III and IV the volume entries for the standard case give
values greater than 100%, because the bricks share a common row of data samples at
their boundaries. For the standard approach the preprocessing times are just given by the
times to allocate and define the texture or textures (in cases where bricking is necessary).
The preprocessing times for the AMR hierarchies are split into the part needed for the
resampling and a second part for clustering and packing. Note that only the clustering
and packing step has to be updated, when the colormap is changed.

4.4.12 Discussion and Conclusions

The number of generated texture bricks in the AMR case is much smaller than the bricks
created by the corresponding octree hierarchy, compare Tables 4.2 to 4.6. Also less cells
that are not tagged are enclosed, especially for the sparse datasets I, I and III. So the num-
ber of interpolation operation as well as the rendered area in screen space are drastically
reduced, resulting in significant performance gains for the AMR approach for datasets I,
IT and I1I.

For these examples the best AMR results required less texture memory compared to
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the octree results with optimal parameters. This is due to the efficient clustering that
captures only few non-relevant cells and the smaller number of bricks, resulting in less
duplicated texels on common boundaries of bricks. For the dataset IV the amount of
texture memory was almost equal for both hierarchical approaches. For the non-sparse
dataset V the amount was twice as high as for the octree case. Here the sizes of the
covered volume are comparable for octree and AMR (choosing a better heuristics for
packing could improve this for AMR). The frame rates for these two datasets are also
comparable.

The frame rates for the standard and optimal parameter settings in the AMR cases
are similar for all datasets. This shows that the standard setting usually yields good per-
formance and hence almost no user interaction is necessary for finding good rendering
parameters. In contrast to this the optimal parameter settings for the octree based algo-
rithm vary strongly even for similarly structured datasets and are therefore difficult to
predict. Adjusting the parameters typically requires a higher amount of user interaction.

To summarize: The AMR-based algorithm yields best results for sparse and large
datasets. For these kind of data it benefits from the capability of tightly covering complex
shaped domains of relevant voxels with a smaller number of boxes, resulting in significant
performance gains.
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levels | bricks | volume texsize preproc. fps
standard 1 7 103.0% | 208.0 MB 8.1s 0.1
Octree I 8 1503 2.9% 3.1 MB 6.5s 10.2
Octree I1 8 615 3.6% 5.1 MB 17.3s 13.1
AMR I 4 333 0.8% 2.0 MB 21.3s+2.7s | 28.6
AMR 1T 4 333 0.8% 2.0 MB 21.3s+2.7s | 28.6

Table 4.2: The table columns list the depth of the hierarchies, the number of created
texture bricks, the percentage of the data volume covered by them, the amount of texture
memory (after extension to the next power of two and packing them into one texture), the
preprocessing times, and finally the frame rates for dataset I: Neurons inside a bee brain,
containing 654 x 993 x 200 voxels and rendered with 1200 slices.

levels | bricks | volume texsize preproc. fps
standard 1 7 103.0% | 208.0 MB 8.0s 0.1
Octree I 8 1786 3.4% 3.7 MB 17.2s 8.2
Octree I1 8 857 5.3% 6.4 MB 15.1s 11.8
AMR1I 4 417 1.4% 4.0 MB 19.5s+4.6s | 24.6
AMR II 4 417 1.4% 4.0 MB 19.5s+4.6s | 24.6

Table 4.3: Dataset II: Neurons inside a bee brain, containing 566 x 990 x 200 voxels and

rendered with 1200 slices.

levels | bricks | volume texsize preproc. fps
standard 1 23 103.1% | 736.0 MB 13.3s 0.1
Octree I 7 3277 7.7% 15.9 MB 34.6s 3.2
Octree IT 7 1907 8.7% 19.0 MB 11.7s 39
AMR1 5 1388 4.3% 16,0 MB | 34.4s+13.9s | 6.3
AMR II 5 1525 3.9% 16,0 MB | 34.4s+13.5s | 6.5

Table 4.4: Dataset III: Vascular tree, containing 528 x 574 x 700 voxels and rendered with

1200 slices.

levels | bricks | volume texsize preproc. fps
standard 1 1 100.0% | 16.0 MB 0.5s 3.5
Octree I 8 652 8.9% 0.6 MB 4.1s 13.7
Octree 11 8 587 7.9% 0.9 MB 6.1s 15.6
AMR I 4 61 8.8% 1.0 MB 09s+0.7s | 14.3
AMR II 4 333 6.9% 1.0 MB 09s+0.8s | 16.7

Table 4.5: Dataset IV: Molecular conformation dataset, containing 185 x 202 x 157 voxels

and rendered with 320 slices.

levels | bricks | volume texsize preproc. fps
standard 1 2 101.0% | 64.0 MB 2.0s 0.4
Octree I 7 2947 37.6% 14.5 MB 11.0s 3.7
Octree 11 7 1814 37.0% 15.0 MB 7.2s 4.5
AMR1 3 619 32.1% | 320MB | 6.1s+114s | 4.5
AMR IT 3 501 35.0% | 32.0MB | 6.1s+13.2s | 4.7

Table 4.6: Dataset V: Bee brain dataset, containing 749 x 495 x 100 voxels and rendered

with 900 slices.
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Figure 4.7: Dataset I: The images show volume renderings for the three different ap-
proaches. left: standard, middle: AMR, right: octree. (dataset courtesy of R. Menzel,
Freie Universitit Berlin)

Figure 4.8: Dataset II: bee brain neuron, left: standard, middle: AMR, right: octree.
(dataset courtesy of R. Menzel, Freie Universitit Berlin)

Figure 4.9: Dataset III: vascular tree, left: standard, middle: AMR, right: octree. (dataset
courtesy of P. Schlag, Robert-Rossle-Klinik and Unversitétsklinikum Charité)
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Figure 4.10: Dataset IV: molecule conformation, left: standard, middle: AMR, right:
octree. (dataset courtesy of D. Baum, Zuse Institute Berlin)

Figure 4.11: Dataset V: bee brain, left: standard, middle: AMR, right: octree. dataset
courtesy of R. Brandt and R. Menzel, Freie Universitit Berlin)
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