
Chapter 2

Function Approximation on Discrete
Grids

Two main sources of scientific data can be distinguished: the first group consists of mea-
sured data, for example acquired by 3D imaging devices like computer tomographs or
microscopes. In this case the original, continuous signal is sampled at certain positions in
space and/or time. The second main source of scientific data are numerical simulations,
which for example compute the solution of partial differential equations. The most popu-
lar approaches are finite difference and finite element schemes. Whereas in the first case
the continuous solution is approximated at discrete points, lines, area or volume elements,
in the latter case it is represented by a finite set of locally defined (polynomial) functions,
so called shape functions.

So in the vast majority of cases scientific data is not given as an analytical expression
f(x) that can be evaluated at any position within the data domain Ω, but rather as a finite
number of data samples fi defined at discrete locations xi ∈ Ω .

Computational grids are employed to represent the geometrical and topological struc-
ture of these discrete approximations of the continuous data. In order to faithfully re-
construct the original signal (ideal reconstruction), respectively the continuous function,
the discretization has to fulfill certain constraints. In particular the sampling theorem
states that the spatial/temporal distance of the sampling locations has to correspond to the
highest frequency components contained in the Fourier spectrum of the signal.

We will sketch the topics of computational grids and reconstruction, respectively in-
terpolation in the next two sections.

2.1 Computational Grids
It is often advantageous to distinguish the topological structure (abstract complex) of a
grid from its geometrical embedding (realization). Following the discussion in [13], these
concepts can be defined as

5

Definition 1 (Abstract complex): An abstract finite complex C of dimension d is a finite
set of elements e, together with a mapping dim : C 7→ {0, ..., d} ⊂ N and a partial
order relation <, such that (e1 < e2) =⇒ (dim(e1) < dim(e2)). dim(e) is called the
dimension of e. Elements of dimension 0 are called vertices, dimension 1-elements are
called edges, dimension (d − 1)-elements are called faces and d-dimensional elements
are called cells.

Definition 2 (Geometric realization): A geometric realization of an abstract complex C
is a Hausdorff space H together with a mapping

Φ : C 7→ Φ(C) =
⋃
e∈C

Φ(e) ⊆ H

that fulfills the following requirements:

(i) e1 < e2 ⇔ Φ(e1) ⊂ ∂Φ(e2) and

(ii) ∂Φ(e2) =
⋃

e1<e2

Φ(e1),

for all elements e1,e2 ∈ C.

This definition is relatively general and allows for example cells that contain holes. In the
special case that each cell in the complex is homeomorphic to open balls in Rd, which
is still general enough to cover more or less all types of cells that are employed in nu-
merics and geometrical modeling, the complex is also called a CW-complex1. A detailed
discussion of these topics is for example given in [26, 12].

According to their topological structure computational grids can be classified into two
main categories, namely structured and unstructured grids, as well as mixtures of these
two types.

2.1.1 Structured Grids

Structured grids are logically rectangular in the sense that their vertices can be arranged
on a rectangular lattice in an appropriate geometric realization. Hence the vertices can
be addressed by sets of integer indices, such that sequential indices refer to vertices that
are connected by an edge, and so this type of grids does not require the storage of explicit
connectivity. Structured grids consist of quadrilateral, respectively hexahedral cells. Their
implicit connectivity relation allows for fast and efficient access of adjacent data samples
and hence structured grids are popular in finite difference approaches.

1CW stands for closure-finite weak topology.

6

(a) (b) (c)

Figure 2.1: Examples of structured grids with uniform (a), rectilinear (b) and curvilinear
coordinates (c).

The simplest but nevertheless very important example, particularly for measured data,
are uniform grids. In this case the computational domain is discretized by rectangular,
axis-aligned cells. Neglecting a potential offset vector, the coordinates of the vertices xijk

can be computed from the index triples (i, j, k) via

xijk := (ih0, jh1, kh2). (2.1)

Here h are the edge lengths of the cells, which are constant along each coordinate axis,
but might differ between the three main directions. In the following the cell that contains
the vertices

{ xlmn | l = i, i + 1; m = j, j + 1; n = k, k + 1 }

will be denoted by Ωijk

Rectilinear grids are a generalization of uniform grids in the sense that the edge
lengths hi might vary along each coordinate axis, compare Figure 2.1 (b). Although
the connectivity between the cells is still defined implicitly, the coordinates of the vertices
have to be provided explicitly for each axis, usually in form of three separate lists.

Curvilinear grids have a geometric realization such that the cells are not axis-aligned
to an Euclidean coordinate system, as shown in Figure 2.1 (c). Often an analytic mapping
from the uniform parameter space to the actual coordinate system is given, which allows
to compute the vertex coordinates from their index triples. Otherwise the coordinates
have to be stored explicitly. This separation allows to benefit from the memory efficient
regular topology, while at the same time curvilinear grids are flexible enough to model a
vast range of complex geometries.

7

2.1.2 Unstructured Grids

Figure 2.2: Unstructured grid that models the flow
field inside a turbine.

The second main category of com-
putational grids are unstructured
grids. They often consist of tri-
angles or quadrilateral cells in two
dimensions, respectively tetrahedral
and hexahedral cells in the three di-
mensional case, but also prisms or
pyramid cells are employed. Due
to their flexibility, unstructured grids
are well suited for modeling highly
complex geometries. They further
allow for easy grid adaption and lo-
cal refinement, as discussed below.
A disadvantage are their high mem-
ory requirements, since vertex coor-
dinates as well as cell connectivity
information have to be stored explic-
itly. Unstructured grids are primarily applied in finite element schemes.

2.1.3 Block-Structured, Overlaid and Hybrid Grids
A third category are grid types that combine aspects of both, structured and unstructured
grids. Block-structured grids, introduced in the 1980s, further increase the flexibility
of curvilinear grids. The computational domain is covered by a set of structured grids,
which are pieced together at their boundary interfaces, ensuring coinciding vertices in
these regions. Figure 2.3 (a) shows an example.

(a) (b) (c)

Figure 2.3: Examples of block-structured (a), overlaid (b) and hybrid (c) grids.

8

A generalization of block-structured grids are so-called chimera or overlaid grids,
compare Figure 2.3 (b). In this case vertices on the overlapping patch region do not have
to coincide, which facilitates the grid generation process substantially. A drawback is the
increased complexity for interpolation due to partially overlapping cells in the boundary
regions of adjacent patches and communication, especially in case of parallel computing.

Hybrid grids are grids that consist of different types of cells. This allows for example
to cover homogenous regions by hexahedral cells, while complex shaped geometries at
the boundaries of computational domains might be modeled with tetrahedra. Hybrid grids
usually require complex data structures and increase the complexity of the numerical
solvers, in order to handle the different types of cells. Figure 2.3 (c) shows an example.

In the remainder of this sections we will deal with the special case, that the discretized
data is a numerical solution approximation of some equation, for example a system of
partial differential equations.

2.1.4 Grid Adaption and Local Refinement
A powerful strategy to increase the accuracy of numerical solutions is to adapt the under-
lying grid structure, in order to better adjust to the physical behavior of the given problem.

There exist various grid adaption methods. In the r-method the topological structure
of the grid remains unchanged. Instead the geometric location of the nodes is altered,
based on an analysis of the current solution. Hereby it is crucial to avoid degenerated and
overlapping elements. In contrast to this p-methods adjust the degree of the approximation
by employing higher order shape functions (in the finite element approach). Therefore
additional nodes have to be added to existing elements. In h-methods the grid adaption
is carried out by refining (and coarsening) grid elements. Approaches that follow both of
the latter two branches are called hp-methods.

In principle h-refinement can be carried out by refining the whole computational grid
(global refinement), for example by simply replacing every cell by a number of smaller
cells. However, for realistic grid sizes this usually results in too high computational ef-
forts, in terms of memory and computational requirements. A much more efficient way
is to refine only those cells Ωi that cover regions where the local error of the solution
eloc(Ωi) is above a certain threshold, aiming at an equal distribution of the error over the
whole computational domain (local refinement). This usually involves the application of
some kind of error estimator ēloc(Ωi) for the unknown local error eloc(Ωi), for example
by comparing the solutions obtained by applying shape functions of different order or by
different grid spacing.

Local refinement of tetrahedral grids is usually carried out by replacing the cells that
need refinement by sets of smaller tetrahedra, generating new vertices in the interior of
the cells. Special refinement strategies (for example red and green refinement rules), are
necessary to avoid the creation of degenerated cells that can cause numerical problems,
compare for example [71, 7].

Local refinement is more problematic for structured grids, since it interferes with the
regular grid topology, and thus requires more sophisticated data structures to store the

9

(a) (b) (c)

Figure 2.4: Refinement process for AMR schemes: Cells that require refinement are
determined using local error criteria (a) and clustered into separate subgrids (b), which
cover the regions with higher resolution. This process is recursively continued until each
cell fulfills the error criteria (c).

resulting grid structures. A related problem is the introduction of so-called hanging or
dangling nodes. These are nodes in the interior of the domain, that have a smaller number
of emerging edges, compare Figure 5.4. These nodes require special treatment by the
numerical solver in order to ensure the desired continuity properties of the solutions. One
method is to restrict the solution at these nodes to the solution obtained at the location
within the adjacent coarse cell (dependent nodes). Alternatively a so-called conforming
closure might be performed, in which cells that contain dangling nodes are replaced by
cells of a different types, resulting in a hybrid grid.

2.2 Adaptive Mesh Refinement (AMR)

A special adaptive method for solving hyperbolic partial differential equations was intro-
duced by Berger et al. in 1984 [10]. The basic idea of AMR is to combine the simplicity
of structured grids with the advantages of local grid adaption.

In this approach the computational domain is covered by a set of coarse, potentially
overlapping structured subgrids. During the computation local error estimators are uti-
lized to detect cells that require higher resolution. These cells are covered by a set of
rectangular subgrids which may have arbitrary orientations. Unlike in finite element ap-
proaches these subgrids do not replace, but rather overlay the refined regions of the coarse
base grid. The equations are advanced on the finer subgrids and this refinement procedure
recursively continues until all cells fulfill the considered error criterion, giving rise to a
hierarchy of nested refinement levels, as shown in Figure 2.4.

A further advantage of AMR is that each subgrid can be viewed as an separate, in-
dependent grid with a separate storage space. This allows to process subgrids almost
independently during integration and hence the approach is well suited for parallel pro-
cessing.

10

2.2.1 Structured Adaptive Mesh Refinement (SAMR)

Figure 2.5: 2D example of an unre-
stricted, structured AMR hierarchy, i.e.
adjacent cells can differ by an arbitrary
number of refinement levels.

In 1989 Berger and Collela [9] proposed a
variant of the approach above, called struc-
tured adaptive mesh refinement (SAMR),
dedicated to simplify the application of the
AMR scheme to hyperbolic conservation
laws.

The main difference of SAMR is that the
subgrids do not have arbitrary orientations
anymore, but are rather aligned with the ma-
jor axes of the Euclidean coordinate system.
In particular this facilitates the computation
of fluxes of conserved quantities like mass or
energy through the cell faces. In principle
the base grid and the subgrids can be recti-
linear grids, but usually uniform patches are
employed, compare Figure 2.5.

In the last decade SAMR has gained more
and more popularity and nowadays it is ap-
plied in many domains like computational
fluid dynamics [4], meteorology [3], relativistic astrophysics [75, 49] and in particular
in cosmology [16, 2]. In the following we will describe the spatial and temporal refine-
ment scheme in more detail and introduce basic notations for SAMR, which are used in
the remainder of this thesis.

2.2.2 Notations

Let Ω ⊂ R3 denote the data domain, which is discretized by a hierarchy of axis-aligned,
uniform grids (Ωl)l=0,1,...,lmax with decreasing mesh spacings. The index l numbers the
refinement level, starting with 0 for the coarsest level. Let the mesh spacing of the coarsest
grid be given by h0 = (h0

0, h
0
1, h

0
2). The mesh spacings of the finer grids are recursively

defined by hl := (hl−1
0 /r, hl−1

1 /r, hl−1
2 /r), where the positive integer r denotes the so-

called refinement factor. In principle this factor can differ for each direction and each
level, but in order to simplify the notation we assume that it is constant.

Further let ni be the number of vertices along the i-th coordinate axis of the base
grid Ω0. Assuming that the origin of the coordinate system is located at (0, 0, 0), the
coordinates of the vertices of Ωl are given by

xl
ijk := (ihl

0, jh
l
1, khl

2); i = 0, 1, ..., (n0 − 1)(r)l, j, k = ..., (2.2)

and thus the coordinate xl
ijk ∈ Ωl coincides with xl+1

ri,rj,rk ∈ Ωl+1.

11

x11x01

x00 x10

Γ1
0

Γ2
0

Γ1
1

Γ1
2

Γ0
0

h0
1

h1
1

Ω00

Figure 2.6: Two-dimensional example of a structured AMR grid. The root level Γ0
0 is

refined by three subgrids Γ1
0, ...Γ

1
2 that generate the refinement level Λ1. Λ1 itself is refined

by one subgrid Γ2
0. All three subgrids on Λ1 are siblings and each is a parent of Γ2

0.

The grid cell Ωl
ijk ⊆ Ωl is given by

Ωl
ijk := conv

{
x ∈ Ωl | x = xl

ijk +
2∑

m=0

αmem, αm ∈ [0, hl
m]

}
, (2.3)

where (e0, e1, e2) denote the standard basis in R3. Each coarse cell can be decomposed
into a set of r3 cells of the next finer discretization

Ωl
ijk =

⋃
î,ĵ,k̂

Ωl+1

îĵk̂
with î = ri, ri + 1, .., ri + r; ĵ, k̂ = ..., (2.4)

so the cells Ωl+1

îĵk̂
provide a refinement of the coarse cell Ωl

ijk. Since in AMR grids can
be represented as a tree of nested levels, the coarse base grid Ω0 is also called root level
in this context. In general it may be composed of a set of non-overlapping, axis-aligned
uniform patches, but in order to simplify the notation we assume that Ω0 consists of just
one patch.

As mentioned above, the solution of the equations are initially approximated on this
root grid and the coarse solution is inspected utilizing the error estimator that detects
cells that require higher resolution. These cells are clustered into disjoint, axis-aligned
rectangular regions, which define new subgrids, consisting of cells of the next finer dis-
cretization Ω1. We will sketch a clustering algorithm for this purpose in Subsection 2.2.3.

Notice that cells are either completely refined by cells of the next finer grid according
to Equation (2.4), or remain completely unrefined. Let the m-th subgrid of Ωl be denoted

12

by

Γl
m =

{
Ωl

ijk ⊆ Ωl | i = pm
0 , ..., pm

0 + nm
0 ; j, k = ...

}
, (2.5)

where pm is the integer offset vector of this subgrid, and nm
i + 1 is the number of cells

per i-th coordinate axis.

Definition 3 :
(i) The union of all level l subgrids Λl :=

⋃nl

m=0 Γl
m is called refinement level l or

just level l. By construction these levels are nested, i. e. Λl+1 ⊆ Λl ⊆ Ωl. We will denote
the whole grid hierarchy, i. e. the union of all refinement levels byH :=

⋃lmax

l=0 Λl.
(ii) The level l subgrid Γl

m is called a child or descendant of Γl−k
n ∈ Λl−k, denoted

by Γl
m = C(Γl−k

n), if (Γl
m ∩ Γl−k

n) 6= ∅ ∧ (Γl
m ∩ Γl−k

n) * (∂Γl
m ∪ ∂Γl−k

n). In this case Γl−k
n

is a parent of Γl
m, denoted by Γl−k

n = P(Γl
m).

(iii) Two subgrids Γl
n and Γl

m on level l are called siblings, denoted by
(Γl

n = S(Γl
m)⇔ Γl

m = S(Γl
n)), if (Γl

n ∩ Γl
m) 6= ∅ ∧ (Γl

n ∩ Γl
m) ⊆ (∂Γl

m ∪ ∂Γl
n).

In the original AMR scheme described in [9] each refinement level had to be enclosed
by at least one layer of cells from the next coarser level of resolution, such that adjacent
cells differ by at most one level. This constraint was relaxed by others, see for example [2,
65]. In the following we will refer to AMR grids that contain adjacent cells which differ
by at most one level as restricted AMR grids, and to the more general case, like for
example the one depicted in Figure 2.6, as unrestricted AMR grids.

2.2.3 A Clustering Algorithm
A crucial part in the AMR algorithm is the generation of the structured subgrids, which
cover the cells that require higher resolution. An efficient and fast algorithm for clustering
collections of cells into axis-aligned regions was suggested by Berger et al. [11]. It adopts
signature based methods used in computer vision and pattern recognition. We will briefly
describe the basic ideas in this section.

Assume that the information about which cells of a subgrid Γl
m are selected for clus-

tering is encoded by the binary function defined on the index domain of Γl
m:

S : [pm
0 , .., pm

0 + nm
0]× [pm

1 , ..]× [pm
2 , ..]→ {0, 1} (2.6)

with

S(i, j, k) =

{
1, if Ωl

ijk is marked for clustering
0, otherwise.

(2.7)

In a first step the number of cells that need refinement is computed for each slice perpen-
dicular to the three major coordinate planes and stored in so called signature lists. For
example the entry for slice number i parallel to the yz-plane is given by

Syz(i) =

(pm
1 +nm

1)∑
j=pm

1

(pm
2 +nm

2)∑
k=pm

2

S(i, j, k) (2.8)

13

(a) (b) (c)

Figure 2.7: 2D example of the clustering procedure: (a) In a first step the signature lists
are computed. (b) Exterior rows and columns with zero entries are pruned off. (c) Interior
zero entries and inflection points indicate splitting edges.

and similarly for the two other orientations.
A two dimensional example is shown in Figure 2.7 (a). In the next step exterior zero-

entries in these lists are detected and pruned off in order to place a minimal bounding box
around the marked cells, as shown in Figure 2.7 (b). Any interior zero entry in these lists
indicates a potential splitting index, i. e. a position at which the given volume is subdi-
vided into two smaller subregions. If all signatures are non-zero, the second derivative

∆yz(i) = Syz(i + 1)− 2Syz(i)− Syz(i− 1), (2.9)

and similar for ∆xy(k), ∆xz(j), of each signature list is computed and the largest in-
flection point is chosen as the splitting plane, compare Figure 2.7 (c). This procedure is
repeated recursively on the newly created subregions until one of the following halting
criteria is satisfied:

• The subregion exceeds the efficiency ratio, i. e. the ratio of the number of cells
tagged for clustering to its total number of cells is greater than a preselected thresh-
old.

• Further subdivision of the region would result in grid dimensions smaller than some
minimal extension.

Notice that according to these criteria the clusters usually contain a number of cells that
are not marked, in order to keep the number of created subgrids low. Usually an efficiency
ratio of 85% and a minimal extension of 8 yields good results in terms of the number of
grids and the additional memory overhead for the additional cells.

2.2.4 Temporal Refinement Scheme
For numerical solvers for hyperbolic partial differential equations with explicit time-
integration, stability conditions demand that the time step size ∆t of the scheme corre-
sponds to the mesh size ∆x, in the sense that the time step decreases as the mesh spacings

14

decreases. As an example consider the Courant-Friedrichs-Levy (CFL) condition, which
for hyperbolic and parabolic systems implies that

∆x

∆t
≥ k,

respectively
(∆x)2

∆t
≥ k,

have to be fulfilled, where k is a system dependent constant. Hence a global time step
for all subgrids in an AMR hierarchy would be determined by the cell size of the highest
resolved level present in the hierarchy, resulting in a large computational overhead for the
coarser levels.

This is the reason for the fact that besides the spatial refinement, AMR schemes for
solving partial differential equations additionally perform a refinement in time. That
means the spatially refined levels are updated more frequently than the coarser ones. The
order in which the levels are advanced in time is demonstrated in the following pseudo
code:

I n t e g r a t e L e v e l (l e v e l , p a r e n t T i m e) {
d t = ge tT imeS tep (l e v e l) ;
w h i l e (t ime<p a r e n t T i m e) {

t ime = t ime + d t ;
Se tBounda ryVa lues () ;
AdvanceEqua t ions (d t) ;
i f (l e v e l <maxLevel) {

I n t e g r a t e L e v e l (l e v e l +1 , t ime) ;
P r o j e c t S o l u t i o n (l e v e l +1 , l e v e l) ;
R e g r i d H i e r a r c h y (l e v e l + 1) ;

}
}

}

Figure 2.8: Pseudo code for the recursive AMR time-integration scheme.

First the coarse level Λl is advanced for a large time step (AdvanceEquation). Bound-
ary values for the subgrids on levels are provided by interpolation on the next coarser
level Λl−1 or by copying from sibling subgrids on Λl (SetBoundaryValues).

Next the integration routine is recursively called for the refined levels Λl+1, ..., Λlmax ,
and these subgrids are advanced with a decreasing time step size. The integration of the
finer levels is followed by the so-called restriction step (ProjectSolution), that updates the
coarse grid function by the more accurate values of the finer ones.

In the last step the solution is inspected and the grid structure is adapted based on the
local error criterion (RebuildHierarchy). This implies that the topology of Λl+1, ..., Λlmax

15

might change after each integration step on a level l. In general the structure of the whole
hierarchy (except for the root level) is modified at time steps at which the root level grid
is updated.

The time steps of the refined levels do not necessarily have to be equally distant, but
it has to be ensured that after an integer number of updates the times of all levels in the
hierarchy match up again.

A temporal refinement factor rt ∈ N between a pair of two consecutive refinement
levels (Λl, Λl+1) indicates that Λl is evolved one large step ∆tl, and next Λl+1 is evolved
rt times with a step sizes of ∆t/rt. Figure 2.9 depicts the AMR integration order for a
temporal refinement factor of 2. In the following we denote the union of level l subgrids
at a certain time by Λl(t) and the grid hierarchy byH(t).

Figure 2.9: Order of temporal integration of a grid hierarchy with an overall temporal
refinement factor of rt = 2.

16

2.3 Interpolation
In the following we will restrict the discussion to interpolation schemes that are employed
in the remainder of this thesis. For the sake of simplicity we will assume real-valued,
scalar grid functions. For more detailed information the reader might refer to textbooks
like [98].

Let the grid function f : G 7→ R and possibly also some of its derivatives f
′
, f

′′
, ...

be defined at the n discrete locations pi, i = 0, ..., n − 1 on the computational grid G.
Common examples are grid functions sampled at the vertices of the grid (vertex-centered
grid functions), as well as at cell or face centers (cell-, respectively face-centered grid
functions). In order to obtain data values at arbitrary positions inside the data volume Ω,
an interpolant

I(f, f ′, f ′′, ...|p0, ...,pn−1) : Ω 7→ R with p 7→ I(p) (2.10)

needs to be specified. Interpolation functions are often expressed as linear combinations
of a set of weighting functions ωi, ω̃i, ... : G 7→ R, that are also called shape functions in
the context of finite element analysis

I(p) =
n−1∑
i=0

ωi(p) f(pi) + ω̃i(p) f ′(pi) + ... (2.11)

According to the Shannon sampling theorem [64, 77], a continuous signal f̂ can be re-
constructed from its discrete data samples (ideal reconstruction), if the sampling rate was
larger than the highest frequency contained in the spectrum of the signal:

Theorem 1 Let f̂ be a function that is band-limited to [−σ, σ], i. e.

f̂(t) =
1√
2π

∫ σ

−σ

g(κ)e−iκtdκ for t ∈ R,

with g ∈ L2(−σ, σ). Then f̂ can be reconstructed from its samples f̂(kπ
σ

) = f̂k, taken at
equally spaced nodes kπ

σ
∈ R, via convolution with the sinc function

f̂(t) = d

∞∑
k=−∞

sin(σt− kπ)

(σt− kπ)
f̂(

kπ

σ
), i. e. ωi := sinc(σt− kπ).

Since the support of the sinc function is infinite, the values of the interpolant I at each
location depend on all data samples present in the volume. Thus ideal reconstruction is
computationally expensive, especially for highly resolved data. For this reason usually
approximations of the sinc function by weighting functions with finite support are used.
The simplest example are box functions, that are centered at the data locations

ωi(x) =

{
1, if |x− xi| < h

2

0, otherwise
(2.12)

17

respectively the products ωi(x) := ωi(x0)ωi(x1)... for higher dimensions. This results in
so-called constant or nearest-neighbor interpolation

I(x) = fi for x ∈ supp(ωi). (2.13)

This interpolation is usually applied to cell-centered grid functions, which for example
result from finite volume simulations. In this case the data often represents the average of
some (conserved) quantity q(x) over the domain of cell Ωi, i. e.

fi = q̄ :=

∫
Ωi

qi(x)dx∫
Ωi

dx
, (2.14)

like for example mass density in hydrodynamic simulations. Of course the resulting
global interpolant is discontinuous. Higher order interpolation for hexahedral cells is
usually realized by shape functions that are (tensor-)products of the Lagrange polynomi-
als

Li(x|x0, x1, ..., xm) :=
m∏

j=0; j 6=i

x− xj

xi − xj

. (2.15)

Consider the one dimensional interval [x0, x1] with data located at the boundaries, and set
ωi(x) := Li(x|x0, x1). Introducing the local coordinates ξ = x−x0

x1−x0
with ξ ∈ [0, 1], one

obtains w0(ξ) = 1− ξ and w1(ξ) = ξ. Hence Equation (2.11) yields the linear interpolant
I(ξ) = f0 + ξ(f1 − f0) for the interval.

For quadrilateral cells, the shape functions in local coordinates are analogously de-
fined by

ωij(ξ, η) := Li(ξ|0, 1) Lj(η|0, 1), (2.16)

with vertex numbering according to Figure 2.10.

p010

p000

p110

p100

p011 p111

p001 p101

χ

η

ξ

Figure 2.10: Local coordinates and numbering of vertices for hexahedral cells.

18

Hence the bilinear interpolant reads as follows

I(ξ, η|f00, ..., f11) =
1∑

i=0

1∑
j=0

ωij(ξ, η)fij (2.17)

= L0(η) (L0(ξ)f00 + L1(ξ)f10) +

L1(η) (L0(ξ)f01 + L1(ξ)f11)

= I(ξ|f00, f10) + η(I(ξ|f01, f11) + I(ξ|f00, f10)). (2.18)

This shows that bilinear interpolation is equivalent to two linear interpolations along the
x-axis followed by a linear interpolation along the y-axis. This is computationally more
efficient than a direct evaluation of (2.17), since the number of multiplications is reduced
from 12 to 4.

Completely analogously the shape functions for hexahedral elements and trilinear in-
terpolation are defined by

ωijk(ξ, η, ρ) := Li(ξ|0, 1) Lj(η|0, 1) Lk(ρ|0, 1), (2.19)

and the resulting trilinear interpolant for hexahedral cells reads

I(ξ, η, χ) =
1∑

i,j,k=0

ωijk(ξ, η, χ)fijk = ... (2.20)

= I(ξ, η|f0,0,0...f1,1,0) + (2.21)
χ (I(ξ, η|f0,0,1, ..., f0,1,1)− I(ξ, η|f0,0,0, ..., f1,1,0)) . (2.22)

Hence trilinear interpolation is equivalent to two bilinear interpolations parallel to the
xy-coordinate plane, followed by a linear interpolation along the z-direction.

If in addition to the function values also information about the first derivative is avail-
able, C1-continuous Hermite interpolation might be applied. Let us again consider the
case of a one-dimensional interval [x0, x1] with the function values f0, f1 and first deriva-
tives f

′
0, f

′
1 given at the interval boundaries. Equation 2.11 reads as

I(x|f0, f1, f
′

0, f
′

1) = f0 H3
0 (x) + f

′

0 H3
1 (x) + f1 H3

2 (x) + f
′

1 H3
3 (x), (2.23)

where the shape functions {H3
0 , ..., H

3
3} are given by the cubic Hermite polynomials. They

can be defined by

H3
0 (x0) = 1, d

dt
H3

0 (x0) = 0, H3
0 (x1) = 0, d

dt
H3

0 (x1) = 0,

H3
1 (x0) = 0, d

dt
H3

1 (x0) = 1, H3
1 (x1) = 0, d

dt
H3

1 (x1) = 0,

H3
2 (x0) = 0, d

dt
H3

2 (x0) = 0, H3
2 (x1) = 1, d

dt
H3

2 (x1) = 0,

H3
3 (x0) = 0, d

dt
H3

3 (x0) = 0, H3
3 (x1) = 0, d

dt
H3

3 (x1) = 1.

Using local coordinates ξ ∈ [0, 1] they have the explicit form

H3
0 (ξ) = 2ξ3 − 3ξ2 + 1,

H3
1 (ξ) = −2ξ2 + 3ξ3,

H3
2 (ξ) = ξ3 − 2ξ2 + ξ,

H3
3 (ξ) = ξ3 − ξ2. (2.24)

19

Piecewisely connected, cubic Hermite polynomials result in globally C1-continuous
interpolation for a one-dimensional grid [ξ0, ξ1, ...ξn]. Often no information about
the derivatives of the function is available. In this case the first derivative at a
vertex ξi might be approximated by the slope of two quadratic polynomials fit-
ted through (ξi−1, fi−1), (ξi, fi), (ξi+1, fi+1), respectively (ξi, fi), (ξi+1, fi+1), (ξi+2, fi+2).
For equidistant intervals, the resulting Catmull-Rom spline, reads as follows

I(ξ|ξ0, ξ1) =
1

2
(2fi + (fi+1 − fi−1) ξ

+ (2fi−1 − 5fi + 4fi+1 − fi+2) ξ2

+ (3fi − fi−1 − 3fi+1 + fi+2) ξ3).

Similar to the bi-, and trilinear interpolation discussed above, interpolants for quadrilateral
and hexahedral cells are generated via products of the one-dimensional cubic Hermite
polynomials.

20

2.4 Spatial Access Methods

1

5

7

2

6

8

11 12

3

9

10

4

(a)

1

2 3

6 7

89

10

13

(b)

Figure 2.11: Decomposition of the AMR grid example given in Figure 2.6 into disjoint
blocks that consist of cells from the same level of resolution, see also Section 5.2. Im-
age (a) shows a result for a point-quadtree, whereas in (b) a region-quadtree is employed.
The numbers indicate the order in which the first quadrants are inserted. In the region-
octree example quadrants that lie outside the grid domain have been omitted.

For many visualization algorithms it is necessary to locate cells that enclose a particular
spatial position, for example during the interpolation operation for volume rendering via
raycasting. This point location operation has a complexity of O(1) for uniform grids,
since according to Equation (2.1), the index triple (i, j, k) of the cell containing the loca-
tion x = (x0, x1, x2) can be computed via

i = [
(x0 − k0)

h0

], j = [
(x1 − k1)

h1

], k = [
(x2 − k2)

h2

],

where k denotes the grid offset vector and h is the grid spacing. However, for unstructured
grids no such simple relation holds and the simple O(n) approach of inspecting each of
the n grid cells is unfeasible even for moderately sized grids.

In order to accelerate the performance of the point location and other spatial operations
like intersection-, or adjacency-queries, dedicated spatial data structures are employed.
They have in common that they decompose the search domain into a set of smaller, usu-
ally polyhedral subregions of simple geometry, which index into the set of spatial objects
contained within the search domain. The decomposition is often organized in a hierarchi-
cal manner, which results in a logarithmic search complexity.

In the following we will sketch the most popular spatial data structures that are em-
ployed for these purposes. For more detailed information the reader might refer to text-
books, like [69, 73].

21

1

5

3

4 26

(a)

4 5 2

3

1

(b)

Figure 2.12: Decomposition of the hierarchy of Figure 2.6 using a kD-tree (a) and an
adaptive kD-tree (b) data structure. The numbers indicate the order of the first partition
axes.

Developed in 1974, quadtrees are among the first data structures investigated for spa-
tial data access. Quadtrees and their three dimensional analog, octrees, are rooted trees,
which recursively decompose the data domain into four axis-aligned rectangles, respec-
tively eight subvolumes. Two types of quadtrees are distinguished in the literature: region-
and point-quadtrees. Point-quadtrees are primarily used to store collections of points. For
each point that is inserted in the tree, the leaf node that contains the point is subdivided
into four disjoint axis-aligned subnodes, such that the newly inserted point coincides with
the intersection of the partition hyperplanes. In contrast to this, nodes of region quadtrees
(octrees) are always subdivided into subregions of the same size. Figure 2.11 shows two
examples.

Besides to accelerate the spatial operations mentioned above, (region) octrees are of-
ten employed to generate multi-resolution representations of volumetric datasets. Here
the root node represents the coarsest resolution of the data, which is recursively refined,
until the original data resolution is reached. In this context a full octree, i. e. an octree
where all leaf nodes are located on the same level, is called a pyramidal representation of
the original data.

Bin-trees are similar to region-quadtrees, with the difference that each internal node is
recursively split into two equal sized subregions along one axis-aligned hyperplane. The
splitting direction alternates from one level of the tree to the next. kD-trees, which operate
on k-dimensional domains, are a generalization of bin-trees in the sense that each non-
leaf node is subdivided into two subregions of potentially different size. As for bin-trees
the (k-1)-dimensional hyperplane is aligned with one of the major coordinate axes, with
a cyclic change of orientation from level to level, compare Figure 2.12 (a).

The adaptive kD-tree variant relaxes the restriction of the alternating orientations of
the dividing planes. Here the direction of the next axis-aligned plane at an internal node is

22

unrelated to the depth of the node and might rather be changed in an flexible way, compare
Figure 2.12 (b). Binary-Space-Partition trees or just BSP-trees are even more general, in
the sense that the division planes do not have to be axis-aligned, but may rather have an
arbitrary orientation.

R-trees are well suited for representing hierarchies of overlapping d-dimensional in-
tervals. Each internal node stores the minimal axis-aligned rectangle or bounding box that
encloses all the object indexed by its children.

The R-tree is a height-balanced tree, with a maximal height of logm(n) for n objects
in the index set. A R-tree has a degree of (m, M), where m, M ∈ N and m ≤ M

2
, if

each interior node has a number of children that ranges between m and M . The root
node has to contain at least two children. In contrast to R-trees, sibling nodes of R+-

BA

C

F K

A B C

E D G H I J L ML

IH

G

M

KJ

E F

D

Figure 2.13: Decomposition of the hierarchy of Figure 2.6 using a R+-tree. To avoid
visual clutter only the first two levels are shown.

trees do not overlap. This might be achieved by clipping objects that intersect more than
one interval on the same level. This results in an increased search efficiency, since point
queries require traversing only one path through the tree, but on the other hand increase
the storage requirements due to a potentially higher number of nodes.

The examples given in Figures 2.11 to 2.13 suggest that adaptive kd-trees are well
suited for decomposing AMR hierarchies into non-overlapping blocks of constant reso-
lution, due to the small number of resulting regions. Compared to the R+-tree example
that also requires a relatively small number of blocks, they have the further advantage to
guarantee that the regions can be traversed in a view-consistent order, which is advanta-
geous for volume rendering approaches, as discussed in Section 4.4.9. In Section 5.2 we
will propose an algorithm that utilizes an adaptive kd-tree for such a decomposition.

23

24

