# 9. Verzeichnisse

## 9.1. Abkürzungen und Akronyme

| Abb.  | Abbildung                                                                                                        |
|-------|------------------------------------------------------------------------------------------------------------------|
| bzw.  | beziehungsweise                                                                                                  |
| ca.   | circa                                                                                                            |
| d. h. | das heißt                                                                                                        |
| EDV   | elektronische Datenverarbeitung                                                                                  |
| engl. | englisch                                                                                                         |
| etc.  | et cetera (lat.)                                                                                                 |
| f.    | folgend                                                                                                          |
| ff.   | folgende                                                                                                         |
| Gl.   | Gleichung                                                                                                        |
| Gln.  | Gleichungen                                                                                                      |
| HESS  | Wasserstoffelektrode in derselben Lösung (engl.: Hydrogen Electrode in the Same Solution)                        |
| HRTEM | Hochauflösende Transmissionselektronenmikroskopie (engl.: High Resolution Trans-<br>mission Electron Microscopy) |
| Kap.  | Kapitel                                                                                                          |
| LIOAC | Laserpulsinduzierte Optoakustische Kalorimetrie (engl.: Laserpulse-Induced Opto-<br>acoustic Calorimetry)        |
| lat.  | lateinisch                                                                                                       |
| NHE   | Normalwasserstoffelektrode (engl.: Normal Hydrogen Electrode)                                                    |
| NIR   | nahes Infrarot                                                                                                   |
| pzc   | Nulladungspunkt (engl.: point of zero charge)                                                                    |
| o. a. | oben angeführt                                                                                                   |

| s.       | siehe                              |
|----------|------------------------------------|
| TEM      | Transmissionselektronenmikroskopie |
| tridest. | tridestilliert                     |
| UV       | Ultraviolett                       |
| u. a.    | unter anderem                      |
| vgl.     | vergleiche                         |
| Vis      | visible                            |
| vs.      | versus                             |
| z. B.    | zum Beispiel                       |

## 9.2. Symbole

### 9.2.1. Lateinisches Alphabet

| Α                | Fläche                                                                        |
|------------------|-------------------------------------------------------------------------------|
| $A_{\mathrm{H}}$ | HAMAKER-Konstante                                                             |
| $a_0$            | BOHRscher Radius; 0.53 Å                                                      |
| $a_{\rm EZ}$     | kleine Achse der Anatas-Einheitszelle; 0.378nm                                |
| Cp               | spezifische Wärmekapazität bei konstantem Druck                               |
| C'               | elektrische Kapazität                                                         |
| С                | molare Konzentration                                                          |
| <sup>Р</sup> с   | molare Konzentration der Partikeln in einer Suspension                        |
| $c_{\rm EZ}$     | große Achse der Anatas-Einheitszelle; 0.951 nm                                |
| $c_{\rm L}$      | Lichtgeschwindigkeit; im Vakuum $299792458\mathrm{ms^{-1}}$                   |
| D                | Diffusionskoeffizient                                                         |
| $d_{\rm LB}$     | Durchmesser der Lochblende                                                    |
| $d_{\mathrm{P}}$ | Durchmesser der TiO <sub>2</sub> -Partikeln; 2.4 nm                           |
| Ε                | Energie                                                                       |
| $E^{\circ}$      | Redoxpotential                                                                |
| $E^{\lambda}$    | Extinktion; unterer Index: Wellenlänge $\lambda$ in nm                        |
| Ea               | molare Photonenenergie; 337 kJ mol <sup>-1</sup>                              |
| Eg               | energetischer Abstand zwischen Valenz- und Leitungsband ("Bandlückenenergie") |
| $E_r$            | in vom Strahlteiler in reflektierter Richtung gemessene Photonenenergie       |
| $E_t$            | durch die Zelle transmittierte Photonenenergie                                |
| e <sub>0</sub>   | Elementarladung; $1.60219 \cdot 10^{-19} \text{ C}$                           |
| F                | FARADAY-Konstante; $96485 \mathrm{C}\mathrm{mol}^{-1}$                        |
| $f_{\rm BS}$     | Strahlteilerfaktor                                                            |
| $G^{\circ}$      | GIBBS-Energie (Freie Enthalpie)                                               |
| 8Prot            | Protonierungsgrad                                                             |

| $H^{\circ}$                  | Enthalpie                                                                                                                                                            |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| h                            | PLANCKsches Wirkungsquantum; $6.62618 \cdot 10^{-34}  \text{Js}$                                                                                                     |
| i                            | Laufvariable                                                                                                                                                         |
| IEPS                         | isoelektrischer Punkt des Massivmaterials (engl.: Isoelectric Point of the Solid)                                                                                    |
| j                            | Laufvariable                                                                                                                                                         |
| K                            | thermodynamische Gleichgewichtskonstante                                                                                                                             |
| $\overline{Kz}$              | mittlere Koordinationszahl einer Ti $O_2$ -Partikel in den Aggregaten im Photolysevolumen                                                                            |
| k                            | Geschwindigkeitskonstante                                                                                                                                            |
| k <sub>B</sub>               | BOLTZMANN-Konstante; $1.38066 \cdot 10^{-23}  \text{JK}^{-1}$                                                                                                        |
| l                            | Länge                                                                                                                                                                |
| la                           | Länge des beleuchteten Zylindervolumens in der Apparatur; 1 cm                                                                                                       |
| М                            | molare Masse                                                                                                                                                         |
| $M_{ m P}$                   | molare Masse der Partikeln; $18.4 \text{ kg mol}^{-1}$                                                                                                               |
| т                            | Masse                                                                                                                                                                |
| m <sub>e</sub> -             | Ruhemasse des Elektrons; $m_{e^-} = 9.10953 \cdot 10^{-31} \text{ kg}$                                                                                               |
| Ν                            | Teilchenanzahl                                                                                                                                                       |
| N <sub>A</sub>               | AVOGADRO-Zahl; $6.02205 \cdot 10^{23} \text{ mol}^{-1}$                                                                                                              |
| $N_{\rm Ad,X,0}$             | Anzahl der pro TiO <sub>2</sub> -Partikel adsorbierten $X^-$ vor der Photolyse                                                                                       |
| N <sub>Ad,X,max</sub>        | Anzahl der Adsorptionsplätze für $X^-$ auf einer TiO <sub>2</sub> -Partikel                                                                                          |
| N <sub>bX</sub>              | Anzahl der Adsorptionsplätze für $X^-$ , die eine TiO <sub>2</sub> -Partikel auf einer anderen durch Aggregation blockiert                                           |
| $\overline{N_{\mathrm{bX}}}$ | mittlere Anzahl blockierter Adsorptionsplätze für X <sup>-</sup> pro TiO <sub>2</sub> -Partikel im Photo-<br>lysevolumen; $0 \le \overline{N_{bX}} \le N_{Ad,X,max}$ |
| п                            | Molzahl                                                                                                                                                              |
| n <sub>P,PZ</sub>            | analytische Molzahl von TiO <sub>2</sub> -Partikeln in der Photolysezone; $1.54 \cdot 10^{-10}$ mol                                                                  |
| р                            | Druck                                                                                                                                                                |
| Q                            | Ladung                                                                                                                                                               |

| q                | Wärmemenge                                                          |  |
|------------------|---------------------------------------------------------------------|--|
| R                | allgemeine Gaskonstante; $8.31441  \text{Jmol}^{-1}  \text{K}^{-1}$ |  |
| R                | Schallsignalamplitude der Referenzsubstanz                          |  |
| r                | Abstand                                                             |  |
| r <sub>a</sub>   | Radius des beleuchteten Zylindervolumens in der Apparatur; 0.3 mm   |  |
| r <sub>exc</sub> | Excitonenradius                                                     |  |
| r <sub>P</sub>   | Radius der TiO <sub>2</sub> -Partikeln; 1.2nm                       |  |
| S                | Schallsignalamplitude                                               |  |
| $S^{\circ}$      | Entropie                                                            |  |
| Sig(t)           | elektrisches Signal des Schalldetektors                             |  |
| Т                | absolute Temperatur                                                 |  |
| t                | Zeit                                                                |  |
| V                | Volumen                                                             |  |
| v <sub>ak</sub>  | Schallgeschwindigkeit                                               |  |
| W                | Arbeit                                                              |  |
| Z.               | Ladungszahl                                                         |  |
|                  |                                                                     |  |

#### 9.2.2. Griechisches Alphabet

| α                     | Anteil der in einer Lösung absorbierten Photonenenergie, der innerhalb der akusti-<br>schen Transitzeit in Wärme umgewandelt wird                       |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| lpha'                 | Anteil der in einer Lösung absorbierten Photonenenergie, der innerhalb der akusti-<br>schen Transitzeit durch Photoreaktionen in Wärme umgewandelt wird |
| β                     | thermischer Ausdehnungskoeffizient                                                                                                                      |
| Г                     | Verhältnis der auf die absorbierten Energien normierten Schallsignalamplituden                                                                          |
| γ                     | Absorptionskoeffizient                                                                                                                                  |
| <i>E</i> <sub>r</sub> | relative Dielektrizitätskonstante                                                                                                                       |
| $\epsilon_0$          | Influenzkonstante; $8.8542 \cdot 10^{-12} \mathrm{AsV^{-1}m^{-1}}$                                                                                      |
| $arepsilon^\lambda$   | Extinktionskoeffizient                                                                                                                                  |
|                       |                                                                                                                                                         |

| $\varphi$              | Potential                                                                                                             |
|------------------------|-----------------------------------------------------------------------------------------------------------------------|
| $\Theta(\mathbf{X}^-)$ | Gleichgewichtsbedeckungsgrad für $X^-$ auf einer TiO <sub>2</sub> -Partikel                                           |
| $\Theta_a^*$           | Nichtgleichgewichtsbedeckung der TiO2-Partikeln nach Photodeaggregation                                               |
| ϑ                      | Temperatur (CELSIUS-Skala)                                                                                            |
| $\kappa_T$             | adiabatische Kompressibilität                                                                                         |
| λ                      | Wellenlänge                                                                                                           |
| $\lambda_{ m g}$       | Wellenlänge, unterhalb der die Photonenenergie zur Promotion der Elektronen vom Valenz- in das Leitungsband ausreicht |
| $\lambda_{ m Ph}$      | Untersuchungswellenlänge; 355 nm                                                                                      |
| ν                      | Frequenz                                                                                                              |
| Φ                      | Quantenausbeute                                                                                                       |
| ξ                      | Wechselwirkungsparameter in der TEMKIN-Adsorptionsisotherme                                                           |
| ρ                      | Dichte                                                                                                                |
| $	au_{ m ak}$          | akustische Transitzeit                                                                                                |
| $	au_\lambda$          | Laserpulsdauer; 6ns                                                                                                   |
| Ψ                      | Oberflächenpotential                                                                                                  |

#### 9.3. Schaltplan des Impedanzwandlers



 Abbildung 9.1.: Schaltplan nach Dr. M. ROHR und Prof. S. BRASLAVSKY (MAX-PLANCK-Institut für Strahlenchemie, Mühlheim a. d. Ruhr, 1992) mit Modernisierungen von Dipl.-Ing. SCHWARTZE (Freie Universität Berlin, 2001) zur Anpassung der Impedanz der PVF<sub>2</sub> -Folie an den 100MΩ-Eingang des angeschlossenen Verstärkers (JANATA, [94]). Integrierte Schaltkreise bewährten sich nicht, da die große Anzahl darauf enthaltener Transistoren das Signal/Rausch-Verhältnis drastisch verschlechterte.