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Introduction and Overview 1 

Introduction and Overview 

About 50 years ago, Miller (1956) concluded that people can consider about seven 

items or categories simultaneously (plus or minus two). The limitations of human 

cognition concern psychologists until today. In the view of Kahneman, Slovic, and 

Tversky (1982), “cognitive psychology is concerned with internal processes, mental 

limitations, and the way in which the processes are shaped by the limitations” (p. xii). 

Congruently, Cowan (2001) believes that one of the “central contributions of cognitive 

psychology has been to explore limitations in the human capacity to store and process 

information” (p.87). 

The goal of my dissertation will be to explore how cognitive limitations, such as a 

limited memory capacity, impact on human decision making in decision situations in 

which people need to rely on information they retrieve from memory (i.e., inferences from 

memory). More specifically, I am interested in how cognitive limitations shape the search 

for information in memory, and how people adapt their strategies accordingly. From the 

perspective of ecological rationality (e.g., Gigerenzer, Todd, & the ABC research group, 

1999; Gigerenzer, 2004), which guided my dissertation, successful decision strategies are 

anchored both in the environment and in the human mind. People can exploit the core 

capacities of the human mind such as recall (and potentially also its limitations), which 

makes decision strategies simple. And they can exploit the structure of the environment, 

which makes decision strategies smart. Adaptive decision making thus means that people 

adapt their strategies both to the structure of the environment and to the limitations of the 

cognitive system. 

Before I describe the decision situations I will investigate, ranging from very 

simple decision paradigms (such as a repeated binary choice probability learning 

paradigm) to multi-attribute decision paradigms, I briefly want to review the more general 

debate on how cognitive limitations affect human behavior. Basically, the two poles of the 

debate are, on the one hand, a pessimistic appraisal of human cognition, regarding 

cognitive limitations as severe liability. On the other hand, there is the view that cognitive 

limitations serve important functions and thus can also be beneficial. Interestingly, these 

views are closely tied to different views on rationality in general, which I will also 

illustrate. 
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Cognitive Limitations – Curse or Bliss or Both? 

Very often, the premise of limited cognitive capacities is directly linked to its 

supposed negative consequences, such as reasoning errors or poor cognitive performance 

(e.g., Johnson-Laird, 1983). In this view, cognitive limitations force people to abandon 

what would be optimal decision making. Instead, people need to rely on shortcuts, on 

heuristics, which according to a pessimistic appraisal of human cognition make people 

vulnerable to systematic and predictable reasoning errors (e.g., Tversky & Kahneman, 

1974). 

This premise stems from a view of rationality as defined by the laws of logic and 

probability theory (see Gigerenzer & Todd, 1999). Hammond (1996) called these criteria 

coherence criteria. In this view, rational judgment is defined by unbounded rationality, 

which presupposes that people have unlimited time, infinite knowledge and endless 

reasoning powers. The proponents of this view continue to dream Leibniz’s (1677/1951) 

dream of a universal calculus that can replace all human reasoning. According to this 

view, the human being should ideally be omniscient: the more information, the more 

processing capacity, the better. If one follows this view, it seems natural that any 

limitation of the cognitive system needs to pose a problem to the organism. 

Another view on the limitations of the cognitive capacities of the human mind is 

that those limitations – such as forgetting – may serve important functions. The most 

important function of memory, for example, is not simply to store all information we 

encounter. Its most important function is to provide us with important information in 

specific situations. Our memory system is organized in a way which facilitates the 

retrieval of information which is recent or frequent (J. R. Anderson & Schooler, 1991). 

This is also the information we are most likely to need. Many computer programs work in 

a similar way by providing instant access to the files we have most recently used, which 

are often the files we currently need. Similarly, if you want to remember where you have 

parked your car, it is quite useful to have forgotten all parking lots except of the last one. 

There is growing evidence also from other domains (such as language acquisition) that 

cognitive limits can be beneficial (for an overview, see Hertwig & Todd, 2003).  

From this perspective, the impact of cognitive limitations on human decision 

making looks quite different. Schooler and Hertwig (2005) believe that human decision 

strategies (such as heuristics) “have arisen over phylogenetic or ontogenetic time to 

exploit the existing forgetting dynamics of memory” (p. 626). Congruently, Goldstein and 
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Gigerenzer (2002) “consider heuristics to be adaptive strategies that evolved in tandem 

with fundamental psychological mechanisms” (p. 75). 

In this view, the mind is an adaptation to the environment. Researchers following 

this perspective (e.g., Gigerenzer et al., 1999), have abandoned the beautiful dream of a 

universal calculus (although some of them admit that they could be easily convinced if 

someone were to finally show them the calculus). Instead of searching for the universal 

tool that can solve all problems, they believe that humans possess a repertoire of cognitive 

strategies (such as heuristics) that can solve specific problems. Gigerenzer et al. called this 

collection of cognitive strategies the adaptive toolbox. 

The success of these cognitive strategies is anchored both in the structure of the 

environment and in the core capacities of the human mind (Gigerenzer, 2004). A cognitive 

strategy can be simple if it exploits the evolved capacities of the human mind that through 

evolution or learning are highly automatized, requiring little or no effort. And, in this 

view, the rationality of cognitive strategies is not logical, but ecological, since a strategy is 

not good or bad, rational or irrational per se, but only relative to an environment. 

Exploiting the structure of the environment makes a cognitive strategy smart. 

Therefore, the right question to ask is not whether heuristics are successful. The 

right question to ask is when heuristics are successful. Or, to put it more generally, the 

right question to ask is under what circumstances a cognitive strategy (such as a heuristic) 

will be successful and where it will fail. Being successful here means that a cognitive 

strategy is successful with regard to some outside criterion such as accuracy of prediction. 

Hammond (1996) called assessing how good a judgment is in comparison to some outside 

criterion to apply a correspondence criterion. In the view of Herbert Simon (1990), to 

evaluate a cognitive strategy, one needs to consider the match between this strategy and 

the environment in which it operates in: “Human rational behavior is shaped by a scissors 

whose two blades are the structure of task environments and the computational capabilities 

of the actor” (p. 7). To understand human behavior, it does not suffice to look at one blade 

alone, such as one would not understand how scissors cut when only looking at one blade. 

To understand human behavior, one needs to study how the two blades fit. 

A good example for the interplay between the structure of the environment and the 

core capacities of the human mind is the recognition heuristic (Goldstein & Gigerenzer, 

2002). In short, the recognition heuristic uses the information whether an object is 

recognized or not to make inferences about some criterion value of this object. The 
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recognition heuristic is simple because it can rely on the human core capacity of 

recognition memory, which was shown to be astonishingly accurate (e.g., Shepard, 1967; 

Standing, 1973). Note that this does not mean that the process of recognition is simple per 

se; it is only simple given human recognition memory and might be tremendously hard to 

be implemented in a robot. The recognition heuristic will be successful in environments in 

which the probability of recognizing objects is correlated with the criterion to be inferred. 

This is, for example, the case in many geographical domains such as city or mountain size 

(Goldstein & Gigerenzer, 2002) and in many competitive domains such as predicting the 

success of tennis players (Serwe & Frings, 2006) or of political parties (Marewski, 

Gaissmaier, Dieckmann, Schooler, & Gigerenzer, 2005). One reason why objects with 

larger criterion values are more often recognized is that they are more often mentioned in 

the media. 

The example of the recognition heuristic can illustrate that certain premises that are 

often made by proponents of “classical” rationality do not always hold, such as the 

premise that more information is always better. From the perspective of ecological 

rationality, more information is not better per se, but only given a certain structure of the 

environment; sometimes, more information may even be detrimental. 

To be successful the recognition heuristic requires that an organism is partially 

ignorant. If an organism knows too little and recognizes none of the objects, recognition is 

not informative because it does not discriminate between the objects. The same happens, 

however, if the organism knows too much and recognizes all of the objects. Then, 

recognition also does not discriminate and is thereby a useless piece of information. 

Therefore, it can happen that people who recognize fewer objects (and thus have less 

knowledge) than others can make more successful predictions because they can use the 

recognition information more often – a less is more effect (for the exact circumstances 

when this can happen, see Goldstein & Gigerenzer, 2002).  

The recognition heuristic may also serve as a further illustration that forgetting can 

be useful. Schooler and Hertwig (2005) showed that some forgetting could fuel the 

success of the recognition heuristic because it helps remaining the important level of 

partial ignorance. Without forgetting, the organism would, over time, recognize all of the 

objects. Then, recognition is not a useful piece of information anymore because it does not 

discriminate between objects. If, on the other hand, there was too much forgetting, the 

organism would not be able to recognize any of the objects, leaving it again puzzled. The 
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key to success lies in recognizing some, but not all of the objects, and forgetting helps to 

keep it that way. 

To answer the question posed in the title of this subsection – whether cognitive 

limitations are curse or bliss or both – I would argue that cognitive limitations are neither 

curse nor bliss, they can be both. I strongly believe that cognitive limitations are 

functional with regard to certain tasks in certain situations. This, however, may come with 

a price in other situations. Thus, the answer is an answer that every journalist interviewing 

a scientist hates: It depends on the situation. In my dissertation, I investigated how 

limitations of the memory system affect decision making in different decision situations, 

in particular with regard to how information is searched in memory. In the next section, I 

will give a brief overview of those different decision situations, and thereby of the 

different chapters.  

Outline of the Dissertation 

The question that ties all the chapters together is the question how people search 

for information in memory when they make decisions. This information search in memory 

is shaped by the limitations of the cognitive system, which will constrain people, for 

example, in which order they search for information or how much information they are 

able to search for. The idea here is that these constrains may be functional because they 

facilitate specific ways of searching for information, which are adaptive in certain 

situations. 

An important distinction in all of the chapters is the distinction between 

understanding and evaluating cognitive processes. I believe that somewhat artificial 

experiments which do not represent the outside world are often needed to understand and 

describe cognitive processes. In some sense, this is similar to studying how the visual 

system works with stimuli that are deliberately designed to trick the system, resulting in 

visual illusions. They help us to understand how the visual system works. To evaluate 

processes, visual or cognitive ones, however, it is important to consider how such a 

process would fare in the outside world. This distinction draws on concepts such as 

ecological rationality (see above) and on Brunswik’s idea of representative design (e.g., 

Brunswik, 1956), in which he stresses that a generalization of results requires that 

variables are representative of a carefully defined set of conditions. These important issues 

will reoccur at several points throughout the dissertation. In this regard, please also note 
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that the chapters were written to be understandable on their own. Therefore, there may be 

some redundancies especially with regard to these general issues. 

The work in Chapter 1 was inspired by the stunning result that a lower short-term 

memory capacity benefits performance on a correlation detection task (Kareev, 

Lieberman, & Lev, 1997). In the task people successively encountered envelopes with two 

different colors and each time had to decide which out of two objects they think they will 

contain. Kareev et al. assumed that low spans perceived the correlations as more extreme 

because they relied on smaller samples, and small samples were shown to overestimate the 

correlation coefficient. However, this small sample hypothesis has been criticized recently, 

because small samples also bear a higher risk of false alarms (Juslin & Olsson, 2005; R. B. 

Anderson, Doherty, Berg, & Friedrich, 2005). 

Therefore, I put forward an alternative explanation that draws on the idea that low 

spans are more strongly constrained in their memory search and will adapt their strategies 

accordingly. Instead of assuming that low spans compute the correlation coefficient based 

on smaller samples, however, I assume that they explore the space of hypotheses how to 

improve performance on the task to a lesser degree. A typical hypothesis people have in 

those tasks is that there is a pattern in the sequence of events. But since there is no pattern 

in the sequence, such an exploration is counterproductive. Therefore, people who explore 

less, fuelled for example by capacity limitations, could be more successful. 

However, less exploration could come with the price that it makes it harder to 

adapt to an environment which is changing. This idea will be modeled precisely in the 

cognitive architecture ACT-R (e.g., J. R. Anderson & Lebiere, 1998) and investigated 

experimentally. The results will be discussed in terms of ecological rationality and 

representative design. Explorative behavior cannot be finally evaluated by considering its 

success in those experiments. Instead, it needs to be considered in which environmental 

structures outside of the laboratory it will be successful. 

In Chapter 2, I will study more complex situations, in which people face several 

attributes (cues) which they could use when making decisions. This chapter was inspired 

by the work of Bröder and Schiffer (2003b, 2006). In contrast to the usual screen-based 

research paradigm, Bröder and Schiffer implemented the idea of memory search in cue 

based decisions by introducing a cue-learning paradigm in which participants acquired 

knowledge about cues describing objects. These cues then had to be retrieved from 

memory when making decisions between objects in a decision phase. In sum, the results 
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by Bröder and Schiffer show that the need to retrieve cue information from memory 

induced the use of simple decision strategies, especially when cues were represented 

verbally and when working memory load was high. These results link to the idea explored 

in Chapter 1 that the search for information in memory is constrained by cognitive 

limitations and that people adapt their strategies to demands imposed on their memory 

system. 

The decision strategies Bröder and Schiffer (2003b, 2006) investigated rest on the 

strong assumption that people should process information retrieved from memory in a 

sequential manner. A methodological challenge in studying memory-based decisions is, 

however, that the search process is not directly observable, so that Bröder and Schiffer 

determined which strategy someone apparently used solely on the outcomes of the 

decisions. And such an outcome-based strategy classification remains ambiguous: A 

simultaneous global matching process with cue weights chosen appropriately could mimic 

the decision outcomes predicted by sequential search strategies, albeit assuming cognitive 

processes that are very different. Therefore, I have reanalyzed response times from Bröder 

and Schiffer’s published experiments and of one new experiment, which could serve as 

convergent evidence for the assumption of sequential search. 

The main goal of Chapter 2 was to understand the process underlying memory-

based multi-attribute decisions. It was assumed that people often rely on simple cue-based 

strategies that process information sequentially in memory-based decisions. Chapter 2 

remained silent on the evaluation of those strategies. This is where Chapter 2 is 

complemented by Chapter 3. In Chapter 3, I want to explore the possibility that people 

could exploit their memory system in a way that facilitates sequential search strategies and 

at the same time is successful in a real world environment. The success of sequential 

search strategies depends crucially on the way in which cues are ordered. Juslin and 

Persson (2002) argued that some of the heuristics introduced by Gigerenzer et al. (1999) 

and studied in Chapter 2 presuppose quite some knowledge about how to order cues and 

thus are not so simple after all. Therefore, I investigated a very simple way to order cues 

which exploits central features of the memory system. In particular, I addressed the 

question whether the speed of retrieving information (i.e., the fluency of information) 

could be used successfully to order cues. 

The speed of retrieving information is mostly a function of frequency and recency 

of encountering this information (J. R. Anderson & Schooler, 1991), and also the context 
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of the information is important (Schooler & Anderson, 1997). That is, people are most 

likely to come up with cues quickly they have encountered frequently and recently. There 

could thus be some peculiarities of the environment which betting on the speed of retrieval 

might exploit. For example, positive cue values (i.e., cue values indicating the presence of 

a cue) should be more fluently available for large objects, since people will encounter 

information about those large objects more frequently in the environment. For negative 

cue values, this relation might be the exact opposite. That is, the fluency of negative cue 

values could be negatively related to city size (i.e., retrieved more quickly for smaller 

cities), which again is informative. A further feature of the memory system a retrieval 

based strategy could exploit is that correct cue knowledge should come to mind more 

quickly than incorrect cue knowledge, which is a common finding in the memory 

literature (e.g., Ratcliff & Smith, 2004). 

To investigate whether those exploitable features do occur, an experiment has been 

conducted to assess the fluencies of stimuli that people have encountered in the real world 

outside of the laboratory – German cities described on several attributes such as whether a 

city has an airport, a soccer team, etc. These fluencies were then used to actually simulate 

the performance of strategies using the fluency of cues to order information. The success 

of those strategies was compared to other decision models such as heuristics described by 

Gigerenzer et al. (1999) and multiple regression. 
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1 Chapter 1                                                                                                                 

Simple Predictions Fueled by Capacity Limitations:                              

When are They Successful?  

 

In this chapter, I discuss the hypothesis forwarded by Kareev and colleagues that a 

limited short-term memory capacity fosters the detection of correlations (Kareev, 1995a, 

1995b, 2000, 2004; Kareev, Lieberman, & Lev, 1997). They made the counterintuitive 

prediction that limited capacities are beneficial in correlation detection because they force 

people to rely on small samples. This prediction was derived from the statistical fact that 

correlations tend to be overestimated in small samples, which was initially supported by 

behavioral data. However, their theoretical account has been challenged recently because 

small samples also yield a higher risk of false alarms (R. B. Anderson, Doherty, Berg, & 

Friedrich, 2005; Juslin & Olsson, 2005). Furthermore, I will review empirical evidence 

that is in conflict with Kareev’s theoretical account. These challenges call for the 

exploration of alternative explanations for the findings that Kareev and colleagues 

interpreted as supporting their theory. My alternative explanation, drawn from the 

probability learning literature, was tested against Kareev’s hypothesis. Before reporting 

these results, I describe the domain of correlation detection and explain Kareev’s 

arguments and their challenges in more detail. 

1.1 Limited Capacities and Correlation Detection: The Small Sample Hypothesis 

Correlation detection (or, more generally, contingency assessment) is considered to 

be an important component of adaptive behavior, and has been studied in a variety of 

domains and with a variety of tasks (for reviews, see Alloy & Tabachnik, 1984; De 

Houwer & Beckers, 2002). Most studies of contingency assessment are concerned with 

contingencies between binary variables. They can be described by a two-by-two 

contingency table (see Figure 1.1) that shows the frequencies (or probabilities) of the 

presence or absence of one variable (outcome, e.g., a disease), given the presence or 

absence of another variable (input, e.g., a symptom).  
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Figure 1.1. Prototypical contingency table. 
 

The phi coefficient1, a common measure to compute contingencies between binary 

variables, is defined as 

))()()((/)( dbcadcbabcad ++++−=Φ .    (1) 

Kareev (1995b) argued that people rely on samples from the environment to assess 

correlations between, for example, two dimensions of a set of objects. The size of these 

samples is supposed to be bounded by short-term memory capacity. In a theoretical 

analysis, Kareev concluded that the use of small sample sizes facilitates the early detection 

of correlations by amplifying them. Specifically, both the median and the mode of the 

sampling distribution exceed the population correlation, and the smaller the sample, the 

more so. Building on the assumption that people’s perception of correlation is the result of 

calculating the correlation on the basis of a sample, Kareev assumed that consideration of 

a small sample is more likely to result in a more extreme perception of correlation. Since 

the samples people consider are smaller for people with a lower short-term memory 

capacity (low spans) than for those with a higher short-term memory capacity (high 

spans), the argument goes, low spans should be more likely to perceive the correlation as 

more extreme, and thereby detect it earlier.  

Kareev and his colleagues provided experimental support for this theoretical 

argument since low spans indeed performed better on a correlation detection task (Kareev 

et al., 1997). The task consisted of predicting, trial-by-trial, which of two possible symbols 

(X or O) an envelope (which could be either red or green) contained. The number of Xs 

and Os within the envelopes was varied to yield correlations ranging from Φ = –.60 to Φ = 
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.60. A correlation here means that, for example, there are more Xs in red envelopes and 

more Os in green envelopes. Detecting this correlation helps people to increase their 

predictive performance. I will refer to this task as the envelope task. Kareev et al. 

concluded that people with a lower short-term memory capacity, and hence a smaller 

sample size to consider, “perceived the correlation as more extreme and were more 

accurate in their predictions” (p. 278). I will call this Kareev’s small sample hypothesis of 

correlation detection in the remainder of this chapter. 

The phenomenon of a low capacity advantage in correlation detection is 

particularly surprising, considering that short-term memory capacity has generally been 

found to be positively correlated with a variety of cognitive abilities, for example, 

executive functioning (Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001) or 

performance on the scholastic aptitude test (SAT, Engle, Tuholsky, Laughlin, & Conway, 

1999). The correlation between the related construct of working memory capacity and 

reasoning ability is even more pronounced (Kyllonen & Christal, 1990). Moreover, the 

theoretical explanation of this low capacity advantage, the small sample hypothesis, has 

been criticized on theoretical grounds, and there is also conflicting empirical evidence, 

both of which will be reviewed in the following. 

1.1.1 Theoretical limitations of the small sample hypothesis 

Juslin and Olsson (2005) criticized Kareev (2000) for only taking into account the 

hit rate when discussing the small sample advantage, that is, detecting a sample correlation 

(Φ) given that there is a population correlation (ρ), p(Φ|ρ). In contrast, Juslin and Olsson 

stressed the importance of the posterior probability of a hit, p(ρ|Φ), which takes into 

account false alarms (i.e., believing that there is a positive correlation when it is in fact 

zero or negative). Juslin and Olsson’s analyses of considering how likely it is that one 

correctly infers that there is a population correlation ρ based on a sample correlation Φ 

lead to the conclusion that the alleged benefits of small samples do not occur.  

                                                                                                                                              

1 If correlations are symmetrical (i.e., cdba −=− ) and marginal distributions are equal 

(i.e., dcba +=+ ), the phi coefficient leads to the same nominal value as ∆P, defined 

as d)c/(cb)a/(a∆P +−+= . 
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R. B. Anderson et al. (2005), using a signal detection approach, specified some 

conditions under which a small sample advantage could hold, even if one takes false 

alarms into account. Their simulations demonstrated that a small sample advantage can 

exist if one makes the additional assumption that people only decide that a correlation is 

present in the population when the correlation they observe in the sample exceeds a 

decision threshold. Otherwise, the observed correlation is ignored. If the decision 

threshold is above or equal to the correlation in the population, a small sample advantage 

exists. For more liberal correlation thresholds (i.e., between zero and the population 

parameter), however, there is a large sample advantage.  

In response to these criticisms, Kareev refined the small sample hypothesis, 

arguing that a small sample advantage is only possible for large correlations (Kareev, 

2005, see also Kareev, 2000). However, this restriction makes it problematic to explain, 

with the small sample hypothesis, the low capacity advantage observed in Kareev et al. 

(1997, Experiment 1) because a low capacity advantage was also observed for small 

correlations. Moreover, additional empirical evidence conflicting with the small sample 

hypothesis also exists, which will be reviewed in the following. 

1.1.2 Conflicting empirical evidence  

Kareev et al. (1997) assumed that people who consider smaller samples are likely 

to perceive correlations as more extreme than they actually are in the population. From 

this assumption, it follows that people should also estimate correlations as being higher 

when they base their estimate on a small, compared to a large, sample. However, in 

experiments in which participants repeatedly explicitly estimate correlations, participants 

do not estimate higher correlations based on smaller samples, but rather the tendency is 

that those estimates increase with increasing sample size (e.g., Clément, Mercier, & Pasto, 

2002; Shanks, 1985, 1987). Moreover, studies with measures related to short-term 

memory capacity suggest that people with lower capacities are less accurate in correlation 

assessment. For instance, such people include those with lower general cognitive ability, 

measured by SAT scores (Stanovich & West, 1998), who are elderly (e.g., Mutter & 

Williams, 2004; Parr & Mercier, 1998), and who are performing under increased memory 

demands (Shaklee & Mims, 1982). That is, in correlation assessment, neither a small 

sample nor a low capacity advantage has been reported, but rather the opposite. How then 

can the empirical finding of the low capacity advantage on correlation detection reported 

by Kareev et al. (1997) be reconciled with these other results? 
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1.2 An Alternative Explanation: Differences in Predictive Behavior 

Juslin and Olsson’s (2005) arguments imply that Kareev et al.’s (1997) task is not 

really about the detection of correlation. Participants did not have to detect a correlation 

among trials with a correlation present (signal trials) and trials without a correlation (noise 

trials), but they were separately tested on either signal or noise trials, thereby not 

encountering the risk of false alarms. Since the task therefore does not really pose a 

detection problem, one cannot conclusively argue for a low capacity advantage in the 

detection of correlation. It has only been shown that low spans are more successful given 

that there is a correlation. The theoretical limitations of the small sample hypothesis 

suggest that a different cognitive mechanism could underlie this low capacity advantage. 

In the following, I will develop an alternative explanation which depends on reinterpreting 

the task as simple probability learning. 

Kareev et al. (1997) assume that a low capacity advantage in correlation detection 

stems from a more exaggerated perception of correlation. However, the envelope task 

(Kareev et al., Experiment 1) did not assess differences in the perception of correlation. 

Kareev et al. refrained from asking their participants about their perception, but rather 

inferred their perception from their predictive behavior (a term used by Estes, 1976, for 

example). That is, they counted how often a participant predicted an event, given the color 

of the envelope, for example, how often he or she predicted X, given a red envelope. 

These frequencies were used to compute what Kareev et al. called the perceived 

correlation by entering them into a contingency table, such as Figure 1, and determining 

the phi correlation from this table. Inferring perception from behavior requires the strong 

assumption that people predict events exactly with the relative frequency with which they 

perceive them.  

In my view, it is necessary to disentangle perception and predictive behavior 

because predictive behavior can differ between people who perceive the same correlation. 

Thus, it is possible that differences in predictive behavior alone could be sufficient to 

explain the low capacity advantage. To understand the difference between perception and 

predictive behavior, and to understand how differences in predictive behavior could be 

related to capacity limitations, I next draw a connection to the probability learning 

literature that reaches back to Brunswik (1939) and Humphreys (1939), and which has 

been extensively studied since the 1950s (e.g., Estes & Straughan, 1954; for reviews, see 

Myers, 1976; Vulkan, 2000). 
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1.2.1 Correlation detection as probability learning 

The typical probability learning task consists of repeatedly predicting which of two 

events will occur next, with one event usually having a higher probability of occurrence. 

The correlation detection task used by Kareev et al. (1997) is similar because it also 

requires predicting one out of two events (the symbols X and O, given the color of the 

envelope). Bauer (1972), for example, used a task that is almost identical to the one used 

by Kareev et al. However, she did not cast it as a correlation detection task, but rather as a 

probability learning task with two cues (the colors) and criterion events (the symbols).  

A very simple predictive behavior that performs well is to always predict the event 

that, so far, has been observed most frequently. For example, if one event occurs with a 

probability of 70%, always predicting this event will result in an accuracy of 70%, on 

average. This behavior is called maximizing. Most often, it has been found, however, that 

the majority of people do not maximize. Instead, what is often found is probability 

matching (Vulkan, 2000), which consists of predicting an event in proportion to its 

probability of occurrence (i.e., an event that occurs with a probability of 70% is predicted 

to occur in 70% of the trials). Probability matching, on average, leads to lower accuracy 

(i.e., expected accuracy of .7*.7+.3*.3 = .58).  

The distinction between maximizing and probability matching is relevant for the 

correlation detection task used by Kareev et al. (1997). Consider the two types of 

envelopes and the conditional probabilities of the events, given the color of the envelope. 

Maximizing implies always predicting X when, for example, a red envelope is shown, if X 

has been observed more frequently in the past when opening red envelopes. Given a 

correlation between the envelopes’ color and the symbols, this would then imply always 

predicting O when a green envelope is encountered2. 

Two people may share a perfect perception of the probabilities of the events (or of 

the correlation), but behave differently, for instance, by probability matching or 

maximizing. In contrast, Kareev et al.’s (1997) assumption that it is possible to deduce 

perception from behavior presupposes that everyone’s behavior matches their perception 

                                                
2 However, it is interesting to note that in the case of asymmetric marginal distributions, it can occur that 
even when observing a positive correlation between two variables, maximizing implies always predicting the 
same event. For example, consider a sample of 20 red and 20 green envelopes. Imagine that 19 Xs had been 
observed in red envelopes and 11 Xs had been observed in green envelopes, which leads to a substantial phi 
coefficient of .46. Nevertheless, since X is the most frequent event for both kinds of envelopes, maximizing 
implies predicting X every time. 
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of the conditional probabilities, but that low spans have a distorted perception of these 

probabilities. 

Moreover, Kareev et al.‘s (1997) explanation requires that people actually think 

about the task in terms of the correlation between the color of the envelopes and the 

frequencies of the different symbols within them. But just because this task can be 

described as a correlation detection task does not mean that the participants view it this 

way. From the probability learning perspective (e.g., Bauer, 1972) one could assume that 

participants learn the conditional probabilities of a symbol given a color independently for 

both colors. Thus, the perception of correlation argument would not be applicable. But 

then, I need to explain how short-term memory limitations could be beneficial from the 

probability learning perspective, which I will do next. 

1.2.2 Maximizing is fostered by limited memory capacities 

The probability learning literature has struggled with the phenomenon of 

probability matching because it seems inconsistent with a person’s goal to maximize his or 

her payoff. West and Stanovich (2003) argued that this inconsistency results from 

insufficient cognitive capabilities, and it has been shown that this inconsistency can be 

reduced with extensive training and high monetary payoffs (e.g., Shanks, Tunney, & 

McCarthy, 2002). At odds with this perspective that people are not smart enough to 

maximize, is evidence that reduced or limited memory capacities are associated with a 

higher prevalence of maximizing.  

On the one hand, there are studies demonstrating that people with lower memory 

capacities maximize more frequently. Maximizing was shown to be more prevalent for 

people with lower intellectual abilities (Singer, 1967), for children (Derks & Paclisanu, 

1967; Weir, 1964), and for different kinds of animals, such as pigeons (Herrnstein & 

Loveland, 1975, Hinson & Staddon, 1983), rats (Bitterman, Wodinsky, & Candland, 

1958), and monkeys (Wilson & Rollin, 1959). On the other hand, the likelihood of 

maximizing is higher for people under the cognitive load of a secondary task, which was 

shown with a concurrent estimation task (Bauer, 1972; Neimark & Shuford, 1959) and 

with a verbal working memory task (Wolford, Newman, Miller, & Wig, 2004). 

An explanation for this could be that maximizing is very simple – a feature that is 

often overlooked (Bauer, 1972). In contrast, probability matching could be the remnant of 

more involved cognitive processes, such as searching for patterns in the sequence of 

events, which has been nicely demonstrated in a probability learning study by Yellott 



Chapter 1 – Simple Predictions Fueled by Capacity Limitations 16 

(1969). In the last block of his experiment, participants always received feedback 

indicating that their predictions were correct, irrespective of what they predicted. They 

continued to match probabilities as they did previously, and when they were asked for 

their impressions afterwards, most responded that they finally found the pattern in the 

sequence. Wolford, Miller and Gazzaniga (2000) hypothesized that the search for such a 

pattern necessarily results in behavior that appears to be probability matching because 

every reasonable pattern will tend to match the probabilities.  

Preventing complex hypothesis testing, such as searching for patterns by means of 

instruction, for example, by telling people that the best they could do is reaching an 

accuracy of 75% (Fantino & Esfandiari, 2002), or by making the task look like a gambling 

task and not a problem solving task (Goodnow, 1955), increased the prevalence of 

maximizing. Since working memory capacity is related to hypothesis generation 

(Dougherty & Hunter, 2003), lower memory capacities could foster maximizing by 

making complex hypothesis testing, and thereby complex predictive behavior, less likely 

because it is more memory demanding.  

1.3 Summary: Differences in Perception Versus Differences in Predictive Behavior 

The findings that people with lower or reduced memory capacities show a higher 

prevalence of maximizing could present a plausible alternative explanation for the low 

capacity advantage found by Kareev et al. (1997). This implies that low spans are more 

likely to maximize because they are less likely to test complex hypotheses, and are thereby 

more likely to settle on simple maximizing. The reasoning behind this explanation and the 

explanation given by Kareev et al. is strikingly different. Kareev et al. stressed the 

influence of short-term memory capacity on the perception of correlation, which implies 

that the behavioral response to the perception is always identical, while my alternative 

explanation builds on the idea that people could very well share the same accurate 

perception, but still differ in how they respond to their perception. That is, I have here two 

competing hypotheses, Kareev et al.’s small sample hypothesis and my alternative 

explanation, the predictive behavior hypothesis. 



Chapter 1 – Simple Predictions Fueled by Capacity Limitations 17 

1.4 Modeling the Competing Hypotheses in ACT-R 

The central goal of this chapter consists of pitting these hypotheses for a low 

capacity advantage on the correlation detection task, used by Kareev et al. (1997), against 

each other. An important step in doing this, which Kareev has not yet carried out, is to 

specify a precise computational models of the cognitive process underlying correlation 

detection. I think it is important that the model specifies the learning process, resulting in a 

certain perception of correlation and the behavioral response, so that both processes can be 

disentangled. To model the processes, I use ACT-R which has been developed by 

Anderson and his colleagues (e.g., J. R. Anderson & Lebiere, 1998; J. R. Anderson et al., 

2004). ACT-R models are able to account for a wide variety of phenomena including, for 

example, practice and retention (J. R. Anderson, Fincham, & Douglass, 1999), decision 

making (Gonzalez, Lerch, & Lebiere, 2003), language learning (Taatgen & Anderson, 

2002), and, important for me, probability learning (Lovett, 1998). Implementing the 

correlation detection task in ACT-R allows me to model the explanation for a low capacity 

advantage on the basis of differences in perception, as provided by Kareev et al. (1997), 

versus the explanation based on differences in predictive behavior. Thereby, these models 

allow me to make divergent predictions for people who differ in their short-term memory 

capacity. 

1.4.1 Implementing the correlation detection task in ACT-R 

The core of ACT-R is constituted by the declarative memory system for facts and 

the procedural system for rules. Here, I focus on the declarative memory system to model 

the correlation detection task which results in an instance-based model, building on 

Logan’s (1988) idea that previous solutions to a problem are stored in memory as 

examples that can be retrieved to solve future problems (for a more detailed description of 

instance learning in ACT-R, see Taatgen, Lebiere, & Anderson, 2006). The declarative 

memory system consists of chunks that represent information (e.g., about the outside 

world, about oneself, about possible actions, etc.). These chunks take on activations that 

determine their accessibility. That is, whether they can be retrieved. When applied to the 

correlation detection task, chunks represent instances of possible responses to the 

envelopes encountered in each trial. Altogether, there are four chunks to represent all 

possible combinations of the envelopes’ two colors and the two possible events connected 
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with the envelopes (i.e., “red envelope: X”, “red envelope: O”, “green envelope: X”, and 

“green envelope: O”). As a consequence of following ACT-R’s standard rule for 

reinforcing chunks, the history of how often and when chunks have been used in the past 

determines their activation (see below). Since activation is a combination of frequency and 

recency, different histories can lead to the same activation at any given moment of time. 

The model represents the cognitive processes of one single individual solving the 

envelope task. Each time an envelope is presented, the model attempts to retrieve one of 

the two responses associated with the envelope’s color. For example, if there is a red 

envelope, the model attempts to retrieve the chunks “red X” and “red O.” These two 

chunks enter a retrieval competition since only one of them can be retrieved at a time. The 

likelihood of each chunk winning this competition depends on their activations. The more 

frequently and the more recently a chunk has been used the higher its activation. The 

combination of the chunks’ activation levels determines the probability that any one chunk 

will be retrieved and so determines the model’s predicted response. After the response, the 

model receives feedback whether it was right or wrong, which leads to reinforcing the 

chunk representing the correct answer. Thus, the chunk that was retrieved and triggered 

the response, and the correct chunk, are reinforced, which thereby strengthens their 

activation. This also implies that a correct answer will be reinforced twice, while an 

incorrect answer results in reinforcing both the chosen and the correct response once. 

Formal definitions. Formally, the activation of a certain chunk i is defined as  

∑+=
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where Bi is the base-level activation of chunk i that reflects its learning history, the 

Wjs reflect the attentional weighting of the elements that are part of the current goal, and 

the Sjis are the strengths of association from the elements j of the current context to chunk 

i. For my purpose, only the base-level activation is relevant. The base-level activation of a 

chunk is defined by  
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where tj is the time since the j-th practice of an item and d is a decay parameter for 

which .5 has emerged as a default value across a variety of studies (J. R. Anderson et al., 

2004). A chunk can only be retrieved if its activation Ai is above a retrieval threshold τ, 

accordingly the probability that a chunk is retrieved is 
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where s controls the noise of the retrieval process. If there is more than one chunk 

that matches a retrieval request, as there is here, the probability that a particular chunk is 

retrieved is  
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If a chunk has been retrieved, the retrieval time is defined as 
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where F is a latency factor. 

Parameters that relate to the competing hypotheses. There are two parameters that 

are of interest to me since they can be related to the two hypotheses (small sample 

hypothesis vs. predictive behavior hypothesis), the decay parameter d in the base-level 

learning equation and the noise parameter s in the equation specifying the probability of 

winning the retrieval competition. The decay parameter d affects the impact of recency on 

the activation of chunks. Note that there is no differentiation between short- and long-term 

memory in ACT-R. The base-level learning equation which produces rapid initial decay 

and slower later decay is key to accounts of both short-term memory tasks, such as 

memory span, and long-term memory tasks, such as free recall (J. R. Anderson, Bothell, 

Lebiere, & Matessa, 1998). Without decay, each outcome would be weighed equally, 

irrespective of how long ago it has been observed. A model with high decay puts more 

weight on recent information and tends to disregard old information. I believe that this 

parameter offers a precise way to relate the small sample hypothesis proposed by Kareev 

(1995b; Kareev et al., 1997) to processes in ACT-R. The higher the impact of recency, the 

fewer items are important for a decision, which leads to paying attention to a small 

sample. 

The noise parameter s affects how likely it is that the more activated chunk will 

win the competition. Without noise (i.e., s = 0), the most activated chunk will always be 

retrieved (given that it is above the retrieval threshold τ), resulting in perfect maximizing 

in the limit. Higher noise allows less activated chunks to be retrieved from time to time. 

While such noise results in suboptimal behavior under some conditions, it is also used to 

model exploration (Taatgen et al., 2006). Thus, the noise parameter provides a simple way 

to model facets of predictive behavior, without developing a precise model of how people 
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go about searching for patterns. In this regard, it is important not to interpret noise solely 

as error. Rather, higher levels of noise capture a proliferation of hypotheses that a 

participant may entertain, yielding behavior that looks like the model is searching for 

patterns in the data. This searching results in probability matching (the precise value for s 

leading to probability matching behavior depends on the task), whereas low levels of noise 

result in deterministic maximizing behavior. I think that the higher complexity of this 

behavior makes the relation to short-term memory plausible. Therefore, I believe that 

variation in this parameter nicely captures the predictive behavior hypothesis. 

1.4.2 Methods 

I used two variants of the model to instantiate the two hypotheses for explaining 

the low capacity advantage. With the first decay variant of the model, I represent Kareev’s 

small sample hypothesis, with fast decay resulting in a focus on a small sample of recent 

events. With the second noise variant of the model, I represent the predictive behavior 

hypothesis, with low noise resulting in deterministic maximizing behavior. 

Kareev kindly provided me with the data from Kareev et al.’s (1997) Experiment 

1, with which I constrained the models used in my simulations. I chose the 128 trials from 

the conditions with Φ = |.375| with symmetric distributions of Xs and Os contained in the 

envelopes (i.e., there were 44 Xs [68.75%] and 20 Os [31.25%] contained in envelopes of 

one color, while this was exactly reversed for the other color). This is the condition that I 

also used in my experiments (see Chapter 3). Note that the qualitative modeling results did 

not depend on the actual correlation, that is, modeling other conditions yielded the same 

qualitative results. The model was fit to the relative frequency of maximizing responses, 

that is, the average proportion choosing the maximizing answer on a particular trial which 

was further averaged within four blocks consisting of 32 trials each. This was done 

separately for high and low spans as defined by Kareev et al.  

While it is, in principle, possible to differentiate between the two model variants 

quantitatively on the trials that were fitted, it is not possible to disentangle the two 

hypotheses qualitatively on those trials. Therefore, I considered a manipulation that 

distinguishes between the two model variants, and thereby the two hypotheses. A change 

in the correlational structure of the environment (simply referred to as shift in the 

following) allows for such a differentiation (see below). That is, after the initial 128 trials 

with a correlation of Φ = +.375, I added 128 trials in which the correlation (i.e., the 

probability of each event given one or the other color) was exactly reversed, that is, Φ = –
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.375. If, for example, red was predictive for X in the 128 fitting trials, it was predictive for 

O in the trials after the shift. Thus, I made predictions for how high and low spans would 

adapt their behavior to this shift, depending on the variant of the model, and thereby the 

hypothesis3. However, note that this shift was not implemented in Kareev et al.’s (1997) 

experiment. Thus, I first fitted the two model variants to Kareev et al.’s data, and second, 

the fitted models were used to predict behavior for a hypothetical shift not conducted by 

Kareev et al. 

To fit the models to Kareev et al.’s (1997) data, only the one parameter 

representing either of the hypotheses was varied in each of the model variants. That is, in 

the decay variant of the model, only decay d was varied to fit the curves of both low and 

high spans separately, while noise s was held constant. In the noise variant, only noise s 

was varied to fit the curves of both low and high spans separately, while decay d was held 

constant. All other parameters were set to identical values for both model variants. My 

parameter search was informal, and there is no guarantee that they produce optimal fits on 

Kareev et al.’s data. But I was mostly interested in the predictions made by the two model 

variants after the hypothetical shifts, and there the qualitative results of the model did not 

change within a wide range of parameter values. Each simulation was run 10,000 times to 

obtain reliable results. 

1.4.3 Results 

Given the simplicity of the task, I think it is unrealistic that people fail to retrieve 

an answer at any point in time. Therefore, the retrieval threshold τ was set to –10 to ensure 

that the model never fails to retrieve a chunk in both model variants. The latency factor F  

was set to .1. These parameter values are well within the range of parameter values 

commonly used (see J. R. Anderson & Lebiere, 1998). In the decay variant, I found the 

best fit for low spans by setting d either to be fast (1, representing low spans, R2 = .70) or 

absent (0, representing high spans, R2 = .93), while keeping the noise s constant at .5.  

                                                
3 For convenience, I present the theory here in its complete form, although it was formalized after running 
the experiments. Initially, I started out with the informal hypothesis that if a low short-term memory capacity 
helps people in detecting correlations, then it should also help them in detecting a change in the correlation. 
The predictive behavior hypothesis was developed after Experiment 1. 
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In the noise variant, I obtained a good fit by setting the noise s to either .45 for low spans 

(R2 = .74) or .6 for high spans (R2 =.95), while keeping the decay d constant at its default 

value of .5. Overall, the predictions of both model variants are quite good since both 

models appropriately describe the increasing frequency of maximizing. However, both 

models miss the drop in the relative frequency of maximizing that the low spans exhibit on 

the third block, which explains the lower fit for low spans (see Figure 1.2). 

Before the shift, the decay variant of the model predicted a higher frequency of 

maximizing with a higher decay parameter value, representing faster forgetting, and 

thereby capturing the behavior of low spans. The noise variant of the model captures the 

behavior of low spans with the lower value of noise because lower noise predicts a higher 

frequency of maximizing, representing a more deterministic response. Therefore, both 

variants of the model allow for the prediction of a difference in maximizing behavior for 

low and high spans, although based on different mechanisms. However, the decay 

parameter d was not able to fully capture the magnitude of the gap separating the curves. 

A clear difference between the predictions of the two variants of the models 

emerged after the shift. Faster decay also led to increased maximizing after a shift. Thus, 

according to the decay variant, low spans should perform better both before and after a 

shift. Moreover, the predicted fast decay advantage is even more pronounced after the shift 

than before. However, the opposite prediction was observed for the noise variant of the 

model. Lower noise yielded decreased and not increased maximizing after a shift. The 

chunks with the highest activations before the shift favor the wrong choice after the shift. 

Thus, it is likely that a chunk is retrieved which results in an incorrect (i.e., non-

maximizing) answer after a shift, the lower the noise, the more so. Thus, according to the 

noise variant, high spans who did worse before a shift should outperform low spans after 

the shift4. Figure 1.2 shows the predictions of the two variants of the model. 

                                                
4 Note, however, that this only holds until the activation of the chunk representing the correct (i.e., 
maximizing) answer is strengthened enough so that it surpasses the activation of the chunk representing the 
wrong answer. Then, lower noise would turn out to be beneficial once more. That is, the disadvantage after a 
shift resulting from lower noise will only hold as long as the relative frequency of maximizing is below .5, 
on average. Therefore, this noise variant of the model predicts that, over time, low spans catch up with high 
spans, and even outperform them subsequent to many trials after the shift. 
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Figure 1.2. Model predictions of (A) the decay and (B) the noise variant. The models were 
fitted to data on 4 blocks of 32 trials each, and then predictions were made for behavior 
after a shift in the environment (indicated by the vertical line). 

A 
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1.4.4 Is the ACT-R model equivalent to the small sample hypothesis? 

One could argue that the ACT-R model accounting for the small sample hypothesis 

(the decay model) is not a strict translation of the small sample hypothesis, because the 

decay model assumes that people rely on samples biased to include more recent items, 

while the small sample hypothesis assumes that people rely on random samples (see, e.g., 

Karrev, 2004). Therefore, I tested whether strictly translating the random sample 

procedure of the small sample hypothesis results in qualitatively identical predictions to 

my decay model. That is, I wanted to find out whether small samples are, in a comparable 

manner, also better for detecting a shift in the environment than larger samples when using 

randomly selected samples. 

Method. I simulated the late-shift condition of my experiment with 256 trials with 

a correlation of Φ = .375 followed by 128 trials with a correlation of Φ = -.375. Recall that 

there were envelopes with two different colors containing one of two different symbols. 

One symbol (e.g., X) had a prevalence of .6875 within one kind of envelope (e.g., red) and 

a prevalence of .3125 in the other (e.g., green), while this was reversed for the other 

symbol. After the shift, the distribution of symbols within the envelopes was exactly 

reversed (i.e., if X was more prevalent in red envelopes before the shift, it was more 

prevalent in green envelopes afterwards). 

I was interested in how quickly the shift would be detected when random samples 

consisting of different numbers of trials were drawn from all previous trials. On each trial 

after the shift, I randomly sampled between 4 and 10 previous trials without replacement 

and computed the sample correlation to see whether it indicated a “correlation more 

extreme than that of the population” (Kareev et al., 1997, p. 278). That is, the sample 

correlation had to be more negative than Φ = -.375 to count as detection, which is also 

consistent with R. B. Anderson et al.’s (2005) notion of a decision criterion that is 

necessary for a small sample advantage to exist. The simulation was run 1000 times. 

Results. Smaller samples were indeed better for detecting the shift than larger 

samples. Figure 1.3 illustrates this result for sample sizes 4, 7, and 10. 



Chapter 1 – Simple Predictions Fueled by Capacity Limitations 25 

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of trial after the shift

P
(s

a
m

p
le

 c
o
rr

e
la

ti
o
n
 >

 p
o
p
u
la

ti
o
n
 c

o
rr

e
la

ti
o
n
)

sample size: 4

sample size: 7

sample size: 10

 

Figure 1.3. Probability of encountering a sample correlation exceeding the population 
correlation on a specific trial after the shift, for random samples with sizes 4, 7, and 10. 
 

Conclusion. A strict translation of the small sample hypothesis by using a random 

sample procedure results with the same qualitative predictions as my decay model. 

Therefore, I think it is appropriate to map differences in sample size onto differences in 

decay. At the same time, it appears psychologically more plausible that if people, due to 

capacity limitations, have to rely on a sample of data, the sample will tend to include more 

recent cases rather than randomly sampling from all cases. It is simply that older cases are 

harder to retrieve. This assumption is embedded in ACT-R’s mechanisms for retrieval 

competition and is endorsed by other researchers by its inclusion in their own 

computational models of cognition (e.g., Erev, 1998; Rieskamp, Busemeyer, & Laine, 

2003; Yechiam & Busemeyer, 2005). 

1.4.5 Signal detection analyses of the ACT-R models 

I was also interested in discussing the ACT-R models in terms of signal detection 

theory. As Juslin and Olsson (2005) pointed out, it does not suffice to look at the hit rate, 

but one ultimately needs to consider the posterior probability of a hit, which also takes 

false alarms into account. More specifically, I was interested in the question whether the 
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noise and the decay models make different predictions about high and low spans with 

regard to sensitivity and response bias. 

Method. I conducted a simulation of 4 blocks with 32 trials each of the envelope 

task with two different kinds of envelopes, red and green ones, which contained two 

different kinds of symbols, Xs and Os. The simulation was run 1000 times with every 

single model. In the noise condition, there was no correlation. Both symbols had a 

prevalence of .5 within both the red and green envelopes, and both kinds of envelopes had 

an equal probability of occurrence. In the signal condition, which was identical to the one 

described in section 1.4.2, there was a correlation of Φ = .375. One symbol (e.g., X) had a 

prevalence of .6875 within one kind of envelope (e.g., red) and a prevalence of .3125 in 

the other (e.g., green), while this was reversed for the other symbol. Again, both kinds of 

envelopes had an equal probability of occurrence. 

Results. Here, I define a model’s response bias as its tendency to produce false 

alarms. That is, to respond to the noise trials as if they were signal trials. The threshold to 

count a model’s responses to a block as a false alarm was a maximizing rate of at least 

.6875, which corresponds to the prevalence of the more frequent symbols (given a color) 

in the signal condition. 

The false alarm rates are depicted in Figure 1.4. As can be seen, the noise model 

predicts higher false alarm rates for low spans on all blocks. These simulation results fit 

nicely with the interpretation that low spans explore less and settle more quickly on 

maximizing, while the high spans are more careful in drawing conclusions and continue to 

explore longer. The decay model, in contrast, predicts a higher response bias for high 

spans, but basically only on the first block, while the difference is very small thereafter.  
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Figure 1.4. False alarm rates on 4 blocks of 32 trials each for the different models. 

 

Differences in sensitivity can be seen in comparing, for each model, how well it 

can differentiate between signal and noise trials. For the sensitivity analysis, I acquired 

ROC curves for the 4 blocks by varying the decision threshold that needs to be exceeded 

before interpreting the models’ responses as signal responses. This threshold was varied 

between 0 and 1 in steps of .1. Figure 1.5 shows those ROC curves, separately for A) the 

decay models, and B) the noise models. As can be seen, the models representing the low 

spans (fast decay and low noise) have a higher sensitivity than the models representing the 

high spans (no decay and high noise). 
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Conclusion. In sum, the signal detection analyses illustrate that both the decay and 

noise models predict a higher sensitivity for the variant describing low spans. 

Furthermore, it is interesting that the noise model predicts a higher response bias for low 

spans, which can be interpreted as less explorative behavior and thus is congruent with the 

predictive behavior hypothesis. 

1.4.6 Overall discussion of the ACT-R models 

With the simulations, I tried to make differential predictions between the predictive 

behavior hypothesis (modeled with noise) and the small sample hypothesis (modeled with 

decay). Importantly, the decay model is congruent with major ideas of Kareev et al. 

(1997)’s small sample hypothesis. Even small random samples are more likely to reveal 

the shift than large random samples, as I found out in supplementary simulations. Thus, 

also strictly translating the random sample procedure of the small sample hypothesis 

results in qualitatively identical predictions to my decay model. Therefore, I think it is 

appropriate to translate the small sample hypothesis with differences in decay d. 

When fitting the two model variants to the data, the noise variant had a slightly 

better fit in predicting participants’ behavior. I could not improve the fit of the decay 

variant by only varying decay d because the parameter values in the decay variant are at 

the extremes of the reasonable parameter value space. The extreme values signal a 

problem with the decay variant because usually they are not set too differently from the 

default value of d = .5. These results already support the predictive behavior hypothesis 

represented with the noise variant of the model. However, both model variants provide a 

good fit to Kareev’s data. A more decisive comparison can be provided by considering the 

two qualitatively different predictions that the two variants of the model make after a shift 

in the environment occurs. Therefore, a correlation detection task (or probability learning 

task, as I conceptualize it) that includes a shift in the environment will assist in deciding 

which of the two hypotheses of the low capacity advantage on correlation detection (small 

sample hypothesis vs. predictive behavior hypothesis) is more likely. If short-term 

memory capacity affects people’s perception of contingencies (or conditional 

probabilities) in the manner suggested by the small sample hypothesis (Kareev et al., 

1997), then it should be captured by the decay parameter. The model makes the clear 

prediction that this should result in a low capacity advantage after a shift. If, however, 

lower short-term memory capacity fosters simple maximizing, then the data should be 
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congruent with the predictions made by varying the noise parameter. Thus, there should be 

a high capacity advantage after a shift.  

Altogether, four Experiments were conducted to test the predictions of the ACT-R 

model. Experiment 1 and Experiment 2 are the major experiments in testing the predictive 

behavior hypothesis against the small sample hypothesis. In both Experiment 1 and 

Experiment 2, people who naturally differ in their short-term memory capacity were 

compared with respect to their behavior in the correlation detection task used by Kareev et 

al. (1997). In Experiment 3, memory capacity was experimentally manipulated with a 

secondary task, which also allows causal conclusions. Furthermore, Experiment 3 used the 

simple binary choice probability learning situation (as applied by Wolford et al, 2004) to 

show that the results between a correlation detection and a simple probability learning task 

are indeed comparable. Also using this setting, Experiment 4 tries to test the result from 

the signal detection analyses that low and high spans could not only differ with regard to 

their sensitivity, but also with regard to response bias. 

1.5 Experiment 1 

Experiment 1 was designed to assess the impact of short-term memory capacity on 

behavior in an extended version of the correlation detection task used by Kareev et al. 

(1997, Experiment 1). To test the model predictions empirically, I added shifts in the 

correlational structure of the task (i.e., reversals of the correlations) which made it 

necessary to conduct a computer version of the task. To obtain a more complete picture of 

people’s cognitive capacities, I applied measures of working memory in addition to the 

digit span short-term memory task that Kareev et al. used. 

The idea for using these additional working memory measures was that they allow 

for testing an additional hypothesis, regarding performance after a shift, not captured by 

the models. Performance after a shift will not only depend on detecting the change but also 

on how susceptible people are to proactive interference. That is, how strongly information, 

that they have learnt so far, will interfere when people attempt to learn new information or 

when they attempt to adapt their behavior to this new information. Kane and Engle (2000) 

found that people with a low working memory capacity are more susceptible to proactive 

interference. Therefore, one could imagine that low spans, even if they detected the shift 

earlier, are not able to adapt their behavior to this shift appropriately because they are 

more susceptible to proactive interference. Such an effect could negate a possible 
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advantage, resulting from an earlier detection of correlation. This alternative hypothesis is, 

in a sense, the opposite of the decay model in ACT-R. While the decay model assumes 

faster forgetting for low spans, and thereby a recency effect, the proactive interference 

hypothesis assumes a stronger primacy effect for low spans. That is, it assumes that low 

spans, due to proactive interference, put too much weight on old information, and thereby 

fail to adapt to a changing environment. 

1.5.1 Methods 

Participants. Eighty students (42 female) with an average age of 24 years (SD = 

3.5) participated in the experiment. They were paid 7€ for participation, plus a bonus 

depending on their performance. 

Design and procedure. Each participant was tested individually in a quiet room. I 

retained the task order of the original Kareev et al. (1997) study. First, short-term memory 

capacity was measured with a digit span forward task (as in Kareev et al.). People were 

required to verbally repeat sequences of digits that were read to them by the experimenter 

at a pace of approximately one digit per second. After correct repetition, the length of the 

sequence increased by one digit, whereas a failure ended the task. Digit span capacity was 

determined by the highest number of correctly repeated digits. After the digit span forward 

task, participants were seated in front of a computer, where the correlation detection task 

was presented to them. This task was a computer adaptation of the correlation detection 

task used by Kareev et al. (Experiment 1). Participants sequentially encountered red and 

green envelopes on the computer screen. On each trial, they had to predict whether the 

envelope contained a coin marked with an X or an O. They received visual feedback 

lasting 3 seconds after each trial and were paid 3 € cents for each correct prediction. 

Kareev et al. similarly rewarded their participants. Overall, there were 384 trials divided 

into three seamless blocks (consisting of 128 trials each), in each of which, envelopes 

were drawn randomly without replacement5. With regard to differences in performance 

between high and low spans, the conditions with a correlation of Φ ≈ |.4| had, on average, 

the largest effect size in Experiment 1 by Kareev et al. Therefore, I decided to administer a 

condition with a correlation of that size. For all participants, the first block in Experiment 

1 corresponded to Kareev et al.’s condition with Φ = |.375| in which the total amount of Xs 

                                                
5 I wanted to be as close as possible to Kareev et al.’s (1997) Experiment 1, where people drew envelopes from a real 

bag, also without replacement. 
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and Os was equal (i.e., a symmetric condition): Within this block, each participant 

encountered an identical distribution of color-symbol combinations consisting of 44 Xs 

(68.75%) and 20 Os (31.25%) in red envelopes, and 20 Xs and 44 Os in green envelopes. 

There were four conditions that were identical in the first block, but differed 

according to whether shifts in the correlational structure (i.e., in the probabilities of 

outcomes given the color of the envelope) occurred in the second and/or in the third block. 

A shift always consisted of reversing the correlation, resulting in Φ = –.375. That is, the 

distribution of symbols within the envelopes was exactly reversed, so that there were 20 

Xs and 44 Os in red envelopes, and 44 Xs and 20 Os in green envelopes, in blocks after a 

shift. This large shift has the methodological advantage of leading to very distinct 

predictions of the two hypotheses I want to test against each other. Given the probabilistic 

nature of the task, a more subtle shift than this could have been too difficult for the 

participants to detect. There was no cue to indicate shifts in the correlational structure. 

In the constant condition, no shift occurred, in the early shift condition, a shift 

occurred after the first block, in the late shift condition, a shift occurred after the second 

block, and in the back shift condition, there was a shift after the first block and a shift back 

to the initial correlation after the second block (see Table 1.1). 

 

Table 1.1. Conditions in Experiment 1: Positive or Negative Correlations in the Blocks 
 

Condition Block 1 Block 2 Block 3 

Constant + + + 

Early shift + – – 

Late shift + + – 

Back shift + – + 

 

The motivation of the different conditions was the following. The constant 

condition is useful to see how the low capacity advantage, if replicable, develops over 

time. Since I did not know when a change would affect participants strongly, I thought it 

was useful to also have an early and a late shift condition, independent of which model is 

more appropriate. If people catch a change in the environment quickly, then it is 

interesting to see how they detect another change as is provided in the back shift 

condition.  
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After the correlation detection task, I administered a counting span and an 

operation span task (Engle et al., 1999) as additional working memory measures. The 

main difference between short-term and working memory is that short-term memory only 

requires storage, while working memory additionally requires processing (Miyake et al., 

2001). The counting span task consisted of counting aloud the objects on the screen, and 

remembering the number for a later test. After several trials, participants had to recall all 

the numbers from the last two to six trials. For the operation span task people had to 

evaluate simple mathematical equations, and read aloud words that appeared with the 

equations on the screen. After two to five trials they had to write down the words from 

these trials. 

1.5.2 Results and discussion 

For all analyses, results of different conditions were pooled for blocks that were 

identical in both position (i.e., first, second, third) and learning history. That is, the 

analyzed block and all previous blocks had to share the same correlational structure. For 

example, behavior in block 2 after an early shift can be pooled across the early and the 

back shift conditions. Table 1.2 summarizes all correlations between the different capacity 

measures and the relative frequency of maximizing behavior on the different blocks. 

 

Table 1.2. Summary of Results in Experiment 1 
 

 Maximizing 

 Pre-shift 
 

Post-shift 

     early Late  back  

Block 1 2 3  2 3 3 3 

         

Digit  

span 

r = –.23, 

p = .04 

r = –.16, 

p = .32 

r = –.44, 

p = .05 

 r = .13, 

p = .41 

r = –.04, 

p = .87 

r = .49, 

p = .03 

r = –.11, 

p = .64 

         

Counting 

span 

r = .01, 

p = .96 

r = –.15, 

p = .37 

r = –.21, 

p = .38 

 r = –.14, 

p = .38 

r = –.08, 

p = .73 

r = .19, 

p = .43 

r = –.12, 

p = .61 

         

Operation 

span 

r = –.06, 

p = .60 

r = –.17, 

p = .30 

r = –.08, 

p = .73 

 r = –.03, 

p = .85 

r = –.15, 

p = .53 

r = –.13, 

p = .58 

r = –.14, 

p = .56 

         

N 80 40 20  40 20 20 20 
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Replication. Analyzing the first block, which was comparable for all participants, 

allowed testing whether the low capacity advantage observed by Kareev et al. (1997) was 

replicable. In keeping with the original analysis, I split the participants into two groups 

according to their median digit span capacity. Since it was not clear whether to treat those 

with median scores as high or low spans, I decided to exclude them. I believe this adds 

less noise than Kareev et al.’s procedure of randomly categorizing participants with a 

median value as either high or low digit spans. Low digit spans (M = 73.82, SD = 5.40) 

performed better on the task than high digit spans (M = 68.75, SD = 9.30), t(43.37) = 2.50; 

p = .02, with corrected degrees of freedom due to higher a variance for high spans, F(1, 

54) = 10.68, p < .01. The mean difference corresponds to an effect size of Cohen’s d = 

0.67. This effect size is lower, compared to the corresponding condition of Kareev et al., 

with an effect of d = 0.94. As I deliberately picked a condition with a comparatively large 

effect size, some regression to the mean is likely to occur. In Kareev et al., the overall 

effect size was d = 0.33. Thus, the effect size in the present study was somewhere between 

the overall effect size Kareev et al. had observed and that which was observed in the 

conditions closest to my own. In sum, the original finding could successfully be replicated.  

The variance for high digit spans was higher because their prevalence of 

maximizing was lower, on average. A group of participants that adopted perfect 

maximizing would have the same expected performance. In contrast, a group of 

participants that did not adopt maximizing would, on average, perform less well, 

compared to the maximizing group, but would also show much more variance in 

performance, which could, in principle, vary between zero and 100% accuracy.  

Since the performance depends to a certain degree on chance, I decided to focus on 

the relative frequency of maximizing. For each participant, I computed the proportion of 

trials in which participants chose the option corresponding to maximizing (i.e., choosing X 

if red and O if green before the shift, and vice versa after the shift). A value of .5 reflects 

random behavior, a value close to the frequency of the more frequent event in the 

environment (68.75%) reflects probability matching, and a value of 1 reflects perfect 

maximizing. I argue that this measure is less noisy than the performance because it is 

independent of the outcome of a decision (although it naturally correlates with 

performance, r = .89, p < .01). I think that this measure is easier to grasp intuitively than 

the measure Kareev et al. (1997) used, which they originally called perceived correlation. 
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The relative frequency of maximizing is correlated by 1 to perceived correlation, and for 

my analyses, it made no difference which measure was applied. 

In the analysis reported above, I used a median split to correspond with Kareev et 

al.’s (1997) analysis. However, median splits decrease statistical power and can introduce 

error, primarily because the inherent variability of the predictor is reduced (Irwin & 

McClelland, 2003). Therefore, in the following analyses, correlations include all levels of 

digit span capacity. The low digit span capacity advantage was also reflected in a negative 

correlation between digit span capacity and pre-shift maximizing on the first block (r = –

.23; p = .04), indicating that low digit spans show maximizing more frequently in this 

block. The course of pre-shift maximizing on the first 128 trials is depicted in Figure 1.6. 
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Figure 1.6. Pre-shift maximizing on block 1, Experiment 1. The amount of maximizing is 
averaged within a moving window of 32 trials and is reported separately for high and low 
digit spans as derived by the median split. 

 

Post-shift trials. In the trials after a shift, the correlation in the environment was 

reversed. Therefore, maximizing now consisted of choosing the opposite object, given a 

color (e.g., O is now the maximizing answer, given red, since the maximizing answer was 

X previously). In contrast to the small sample hypothesis, there was no relation between 
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digit span capacity and post-shift maximizing behavior on the early post-shift block (r = 

.13, p = .41), and even a high digit span capacity advantage, indicated by a positive 

correlation between digit span capacity and post-shift maximizing on the late post-shift 

block, was observed (r = .49, p = .03). These results are contrary to the prediction of the 

decay variant of the model implementing the small sample hypothesis. According to the 

decay variant model, the low digit span capacity advantage, corresponding to a fast decay 

parameter value of the model, leads to an even more pronounced advantage after a shift. 

Instead, the data revealed either no effect or the opposite, and is thereby congruent with 

the predictions made by the noise variant model representing the predictive behavior 

hypothesis. Post-shift maximizing behavior was only related to digit span capacity in the 

late shift condition, and here, the correlation was positive. That is, high digit spans 

adopted maximizing with a higher relative frequency after the late shift. This condition is 

depicted in Figure 1.7. 
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Figure 1.7. Maximizing on all trials, Experiment 1, late shift condition. Low and high digit 
spans were averaged separately across trials within a moving window of 32 trials. To 
prevent an overlap between trials before and after the shift in this window, I started 
averaging again after the shift, which is indicated by the two vertical lines at trials 240 and 
272. That is, the last depicted data point before the shift consists of the last 32 trials before 
the shift, and the first depicted data point after the shift consists of the first 32 trials after 
the shift. 
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Other working memory measures. Naturally, digit span capacity was correlated 

with both counting span (r = .24; p = .03) and operation span (r = .24; p = .03). However, 

the other working memory measures were unrelated to pre- and post-shift behavior. That 

is, neither the low digit span capacity on pre-shift trials nor the high digit span capacity 

advantage on post-shift trials could be captured by those measures. If the high digit span 

capacity advantage on the post-shift trials were due to higher proactive interference of the 

low digit spans, this should be captured with one of the other working memory measures, 

which were also used by Kane and Engle (2000). Therefore, I am confident that this high 

digit span capacity advantage on post-shift trials indeed favors the predictive behavior 

hypothesis (although I try to more carefully rule out the proactive interference hypothesis 

in Experiment 2, see below). 

Preliminary conclusion. The overall picture supports the hypothesis that it is not 

the perception of correlation that differs between people with high and low digit span 

capacity, but differences in predictive behavior (i.e., differences in how consistently they 

maximized their payoffs). There was a low digit span capacity advantage before a shift, 

but no difference or even a high digit span capacity advantage that emerged after a shift. 

Thus, the data are not at all congruent with the decay variant of the model, but they are 

congruent with the noise variant, and thereby, my assumption that differences in predictive 

behavior are of importance. 

However, a high digit span capacity advantage after an early shift was not found, 

but only after a late shift. Since the sample size of the late shift condition in which I found 

a post-shift high digit span capacity advantage is small (n = 20), this finding should be 

interpreted with care. 

1.6 Experiment 2 

The second experiment was a slightly refined version of the first, intended to 

replicate the important results of Experiment 1. Now, I know that a change in the 

correlational structure of the environment only reveals differences between high and low 

spans after many trials. Therefore, I only implemented the late shift condition in which I 

found a high capacity advantage. I also wanted to more strongly rule out the alternative 

hypothesis that high spans were at an advantage after a shift because they were less 

susceptible to proactive interference. In Experiment 1, I only addressed this question by 

assessing additional working memory measures that were shown to be related to proactive 
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interference (Kane & Engle, 2000). However, Kane and Engle used extreme group 

comparisons and a large sample size (192 and 216 participants, respectively) to show the 

modest relation between working memory and susceptibility to proactive interference. 

That is, there could have been proactive interference which I did not capture with my 

working memory measures. Therefore, I assessed susceptibility to proactive interference 

directly. 

1.6.1 Methods 

Participants. Eighty students (51 female) with an average age of 24 (SD = 3.6) 

participated in the study. They were paid 9 € for participation, plus a bonus depending on 

their performance (identical to Experiment 1, per correct trial 3 € cents). 

Design and procedure. Each participant was tested individually in a quiet room. 

Again, I kept the task order as in the original study by Kareev et al. (1997), starting with 

the digit span forward task to measure short-term memory capacity. This time, digit strings 

were digitally recorded beforehand, so that participants listened to identical audio files 

instead of listening to an experimenter reading the digits to them. The correlation detection 

task consisted of only the late shift condition of Experiment 1, with a shift seamlessly 

occurring after two blocks. Colors of the envelopes and keys on the keyboard (e.g., 

whether X was left or right) were counterbalanced. For a more detailed description of the 

task, see Experiment 1. 

After the correlation detection task, the counting span task (see Experiment 1) was 

administered. Furthermore, I assessed susceptibility to proactive interference (Kane & 

Engle, 2000), which I considered to be a possible alternative explanation for the high digit 

span capacity advantage after a shift in Experiment 1. This task consisted of learning three 

word lists with words that belong to one category (professions) and one word list that 

belongs to another category (animal names). The words were presented successively, and 

participants had to recall as many words as possible after each list. It is usually observed 

that performance decreases over the course of the three word lists from one category 

(proactive interference) and then increases again on the last word list (proactive 

interference release).  

1.6.2 Results and discussion 

A repeated measure analysis revealed no difference between the counterbalanced 

conditions with regard to maximizing in the three blocks, F(5, 126.8) =.76; p = .58. 
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Therefore, all counterbalancing conditions were merged. Surprisingly, the original low 

capacity advantage on pre-shift maximizing could not be found in Experiment 2. There 

was no significant correlation between digit span capacity and pre-shift maximizing on 

block 1 (r = –.08; p = .50) and on block 2 (r = –.10; p = .38). There was also no post-shift 

high digit span capacity advantage, post-shift maximizing on block 3 was unrelated to 

digit span capacity (r = .10; p = .39).  

Neither proactive interference nor its release could predict any behavior. That is, 

post-shift maximizing really does not seem to be a function of susceptibility to proactive 

interference at all. Proactive interference was not correlated with digit span or counting 

span. Surprisingly, counting span was positively correlated to pre-shift maximizing on 

block 2 (r = .27, p = .02).  

Since both experiments were almost identical in structure, this result surprised me. 

Therefore, I suspected that some peculiarity of my sample in Experiment 2 might be 

responsible. Digit span capacity and counting span capacity were comparable between the 

experiments. The only demographic variables assessed were age and sex. The only 

difference between the samples from the two experiments that struck me was the larger 

proportion of women in Experiment 2, compared to Experiment 1 (63.8% vs. 52.5%), 

which suggested that I should explore sex differences in a post hoc analysis. 

1.6.3 Post hoc analyses of sex differences 

One reason for the different results might be based on sex differences since a 

different proportion of men and women participated in Experiment 2. I decided to merge 

the data sets from my two experiments to have a reasonable sample size to analyze men 

and women separately. 

Merging the data sets only makes sense for blocks that are identical in both 

position (i.e., first, second, third) and learning history for both experiments, which is the 

case for the first two pre-shift blocks and the late post-shift block. It results in sample sizes 

of n = N = 160 for pre-shift block 1, n = 120 for pre-shift block 2, and n = 100 for post-

shift block 3 from the late shift condition. For all other blocks, I do not have an 

appropriate sample size to further divide them by sex. Individual difference measures 

assessed in both experiments were digit span and counting span. 

Looking at the correlations between digit span and counting span, on the one hand, 

and relative frequency of maximizing, on the other hand, separately for men and women, 

indeed revealed a sex difference. The pre-shift low digit span capacity advantage and the 
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post-shift high digit span capacity advantage only existed for men, but not for women. For 

women, there was even a positive correlation between counting span and pre-shift 

maximizing (see Table 1.3). 

 

Table 1.3. Sex Difference in the Interaction between Capacity and Maximizing 
 

 Maximizing 

 Men  Women 

 Pre-shift  
Post-shift 

late 
 Pre-shift  

Post-shift 

Late 

Block 1 2  3  1 2  3 

          

Digit span 
r = –.19, 

p = .12 

r = –.43, 

p < .01 
 

r = .36, 

p = .03 
 

r = –.10, 

p = .37 

r = .13, 

p = .30 
 

r = .12, 

p = .34 

          

Counting 

span 

r = .03, 

p = .83 

r = –.09, 

p = .53 
 

r = –.03, 

p = .86 
 

r = .18, 

p = .09 

r = .33, 

p < .01 
 

r = .21, 

p = .11 

          

N 67 50  38  93 70  62 

 

To illustrate this, Figure 1.8 depicts the relative frequency of maximizing, 

separately for men and women from the late shift condition in Experiment 1 and from 

Experiment 2 in which only the late shift condition was conducted. Men and women were 

separately divided into high and low digit spans with a median split (based on all 

participants), and the relative frequency of maximizing is averaged within a moving 

window of 32 trials. 
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Figure 1.8. Maximizing separately for high and low digit spans, late shift condition, both 
experiments, for (A) women and (B) men. I averaged low and high digit spans separately 
across trials within a moving window of 32 trials and started averaging again after the 
shift, which is indicated by the two vertical lines at trials 240 and 272 (see also Figure 
1.7). 

A 

B 
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The difference lies in the interaction. Men and women did not differ on absolute 

levels of relative frequency of maximizing (MMen = .64; MWomen = .65; F[1, 158] = .22, p = 

.64) or performance (MMen = 70.82%; MWomen = 70.99%; F[1, 158] = .02, p = .89) on 

block 1, which I chose for this comparison because there are comparable data for all 

participants on this block. Note, however, that digit span capacity was higher for men 

(MMen = 6.22; MWomen = 5.85; F[1, 158] = 4.32, p = .04) which was not the case for 

counting span (MMen = .71; MWomen = .69; F[1, 158] = .34, p = .56). There was a 

correlation between digit span and counting span for men and women (r = .26, p = .03, 

and r = .21, p = .04). 

Fortunately, I was able to test whether this sex difference is a peculiarity of my 

samples or something that may be more general because Kareev provided the original data 

set from Kareev et al.’s (1997) Experiment 1. It included a total of 112 participants, 64 of 

whom were women. Note that this experiment did not include a shift in the correlational 

structure, so that I could only test whether the sex difference on pre-shift trials also holds 

there. It does: There only is a (negative) correlation between performance and digit span 

capacity for men (r = –.28, p = .06), but not for women (r = .06, p = .66). The same holds 

for the correlation between digit span and the absolute strength of perceived correlation 

(which corresponds to the variable I call maximizing), which only existed for men (r = –

.29, p = .05), but not for women (r = -.05, p = .68). Here, men and women did not differ 

with respect to performance (F[1, 110] = .44, p = .51), the absolute strength of perceived 

correlation (F[1, 110] = 1.44, p = .23), and digit span capacity (F[1, 110] = 1.54, p = .22). 

To summarize, the low digit span capacity advantage on trials before a shift only 

exists for men, which was the case for the present experiments and Kareev et al.’s (1997) 

Experiment 1. In Experiment 2, the pre-shift low digit span capacity advantage developed 

over time and was stronger on pre-shift block 2. In my view, this strengthens my argument 

that the difference between high and low digit spans lies in differences in predictive 

behavior. If the difference lied in perception, and thereby in the earlier detection of the 

correlation by low digit spans, as assumed by Kareev et al., then this difference should be 

more pronounced earlier, rather than later. The post-shift high digit span capacity 

advantage also existed only for men. That is, for women, digit span was unrelated to 

behavior. But interestingly, counting span was related to behavior, but in the opposite 

direction: It was positively correlated to the relative frequency of maximizing before a 

shift. 
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1.7 Discussion of Experiments 1 and 2 

Although there are two more experiments to come in this chapter, I think it is 

worthwhile to discuss the major findings and the major peculiarities of Experiments 1 and 

2 already here because the following experiments, although based on the predictions of the 

same model, will be different in design and procedure. 

The goal of Experiments 1 and 2 was to disentangle two potential explanations for 

the stunning finding of a low digit span capacity advantage on correlation detection 

(Kareev et al., 1997). Kareev et al.’s original explanation was that low digit spans perceive 

correlations as more extreme than they actually are because they based their estimates on 

smaller samples from the environment. Small samples statistically tend to overestimate 

correlations, and this overestimation can be advantageous in correlation detection. I have 

called this the small sample hypothesis.  

However, the small sample hypothesis has been criticized theoretically (R. B. 

Anderson et al., 2005; Juslin & Olsson, 2005), and some studies dealing with contingency 

assessment provide conflicting evidence (e.g., Clément et al., 2002; Shanks, 1985, 1987). 

Therefore, I explored whether the low digit span capacity advantage found by Kareev et 

al. (1997) could be explained differently. Instead of assuming that people differ in their 

perception of correlations, I assumed that people differ in their predictive behavior. This 

predictive behavior hypothesis was inspired by revisiting the related probability learning 

literature, which revealed convergent evidence showing that the most successful predictive 

behavior (maximizing) can be related to a reduced or limited memory capacity.  

I therefore hypothesized that low digit spans are more likely to maximize their 

payoffs more consistently, resulting in the low digit span capacity advantage. Based on the 

initial learning trials as implemented by Kareev et al. (1997), one cannot distinguish 

conclusively between the small sample hypothesis and the predictive behavior hypothesis. 

However, by instantiating both of these explanations in ACT-R models, it was possible to 

demonstrate that these hypotheses make different predictions about how participants will 

behave after a shift in the correlational structure of the environment. The model that 

implemented the small sample hypothesis predicted a low digit span capacity advantage 

before and after a shift. In contrast, the model that implemented the predictive behavior 

hypothesis exhibited a low digit span capacity advantage before a shift, but a high digit 

span capacity advantage after a shift. 
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1.7.1 Support for differences in predictive behavior 

The results of Experiments 1 and 2 replicate the low digit span capacity advantage 

found by Kareev et al. (1997), although these and the following results only held for men 

(see section 1.7.4 “A Puzzling Sex Difference”). After a shift in the environment, 

however, I found either no difference between high and low digit spans or a high digit 

span capacity advantage. This is contradictory to the assumption made by the proponents 

of the small sample hypothesis that high and low digit spans differ in their perception, but 

it is congruent with my assumption that this difference lies in predictive behavior. 

However, if one wanted to keep the perceptual argument, one could argue that low 

spans are less likely to engage in further sampling, because they perceive the correlation as 

more extreme, and hence reach a conclusion faster. High spans, in contrast, keep 

sampling, because they have observed a weaker correlation and are less committed to their 

estimate, and hence are less at a disadvantage when a change takes place. Nevertheless, I 

see an advantage of my explanation is its consistency with similar findings of a low 

capacity advantage in the binary choice probability learning literature (e.g., Wolford et al., 

2004). The typical binary choice task is very similar to the task at hand, but a sample 

based perceptual argument cannot hold, because one only needs to acquire information 

about proportions. In contrast to correlations, sample proportions are unbiased estimators 

of population proportions. Thus, my account covers those highly related results, which the 

perceptual argument does not. Moreover, the results for men revealed that the low capacity 

advantage developed over time (at least in Experiment 2). It was stronger on block 2 than 

on block 1, which is, in my view, further counterevidence for the small sample hypothesis. 

According to it, the low digit span capacity advantage lies in the early detection of strong 

correlations due to the small sample bias to overestimate these correlations. Thus, it should 

plausibly have the largest effect early in the experiment. 

1.7.2 Estimation versus prediction 

I think that explaining the low capacity advantage in this correlation detection task 

with differences in predictive behavior rather than with differences in the perception of 

correlation also reconciles this low capacity advantage with apparently conflicting 

empirical evidence. the assumption that people with a lower short-term memory capacity 

consider smaller samples, and thereby perceive correlations as more extreme, conflicts 

with findings that correlation estimates are higher with larger rather than with smaller 
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samples (e.g., Clément et al., 2002; Shanks, 1985, 1987). For correlation estimation tasks, 

there is usually also no low capacity advantage reported, but rather the opposite (e.g., 

Shaklee & Mims, 1982). But estimation and prediction are two different processes. For the 

task at hand, precise estimation is not necessary. It suffices to figure out which symbol is 

more frequently associated with which color. Building on that, the simpler predictive 

behavior by low spans is more successful, at least until the shift. 

1.7.3 Why is digit span a better predictor than other working memory measures? 

I was surprised to only find a relation between behavior and short-term memory 

capacity assessed with a digit span test, but not with one of the working memory 

measures, counting span and operation span. It is unlikely that this is due to a lack of 

reliability in these measures, since these tasks usually have a reliability, based on internal 

consistency, between .70 and .90 (with 0 and 1 being the borders “no reliability” and 

“perfect reliability”; Conway et al., 2005). As pointed out before, short-term memory tasks 

tend to emphasize the simple storage of information, whereas working memory tasks 

require the additional processing of the information being stored (Miyake et al., 2001).  

I have argued that the lower performance of high digit spans is the result of their 

more complex predictive behavior. They search for patterns, but since there are none, they 

fail. Of my capacity measures, only digit span capacity was related to the prevalence of 

maximizing, suggesting that simple storage is particularly important for pattern search. If 

one adopts the strategy of rehearsing the sequence of events to search for patterns in it, 

then one constraint on pattern search is storing the sequence. Other processes involved in 

pattern search, such as hypothesizing about specific patterns, should be more strongly 

related to working memory (for the relation between working memory and hypothesis 

generation, see, e.g., Dougherty & Hunter, 2003). Finding no relation between working 

memory and maximizing, however, suggests that this part of pattern search, at least for 

this task, did not tax the working memory capacity of even my low span participants. So, 

the difference between simple storage (required for the digit span test) and more complex 

processing (additionally required for the working memory tasks) would explain why I only 

find a relation between digit span capacity and behavior. 

1.7.4 A puzzling sex difference 

I found an intriguing sex difference in the interaction between digit span capacity 

and predictive behavior. Only men exhibited the low digit span capacity advantage before 
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a shift and the high digit span advantage after a shift. In contrast, short-term memory 

capacity did not explain any variance in the behavior of women. This sex difference in the 

interaction between short-term memory and predictive behavior exists in the data from 

Experiments 1 and 2 and in Kareev et al.’s (1997) data. 

In the probability learning literature, a sex difference with respect to the absolute 

amount of maximizing has been reported: West and Stanovich (2003) found that men were 

more likely to deliberately opt for a maximizing strategy when a typical probability 

learning task was described to them and they had to specify, in advance, what they would 

do. Furthermore, there are reports of sex differences favoring men in a similar task, the 

Iowa Gambling Task (Overman, 2004; Reavis & Overman, 2001). However, in the data 

reported here, there is no sex difference in decision making (here: maximizing behavior) 

per se, but only in the interaction between short-term memory capacity and maximizing. 

Since maximizing behavior is comparable on average, it is likely that men and 

women do not differ with regard to the complexity of their predictive behavior on average. 

However, looking at the low digit spans only, it seems to be the case that women are better 

able to engage in complex behavior (resulting in non-maximizing) despite a low digit span 

capacity. This suggests that women can draw on resources other than simple storage 

capacity, while men draw more exclusively on the simple storage that the digit span test 

presumably taps. 

Since I do not have additional data, I can only speculate about what these resources 

could be. Reliable sex differences favoring women have been repeatedly shown on 

episodic memory tasks, particularly those with a verbal component (for an overview, see 

Herlitz, Nilsson, & Bäckman, 1997). More generally, females surpass males on tasks in 

which verbal processing of material is either required or can be used (Lewin, Wolgers, & 

Herlitz, 2001). This indicates that women could more easily engage in verbal processing to 

solve a task. Speculating about patterns in sequences of events is a task where 

verbalization clearly is possible. Thus, women could draw on verbal episodic memory to 

search for patterns, while men are apparently more likely to depend on short-term memory 

to store these sequences. This would explain why digit span capacity only explains the 

variance in the maximizing behavior for men, but not for women.  

1.7.5 Limitations 

One potential drawback of both Experiment 1 and Experiment 2, however, is that 

they were only of quasiexperimental nature because they related natural differences in 
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short-term memory capacity to behavior. Hence, it is, in a strict sense, not appropriate to 

assume a causal connection between the limitations in short-term memory capacity and the 

predictive behavior. Therefore, I decided to administer a simple binary choice probability 

learning experiment with a secondary verbal working memory task, building on the design 

of Wolford et al. (2004), and to include a change in the environment (i.e., a reversal of the 

probabilities). This is on the one hand an experimental manipulation that allows drawing 

causal conclusions. Furthermore, it is a further test of the assumption that the results on the 

correlation detection task as applied in Experiment 1 and Experiment 2 are indeed 

comparable to results from binary choice probability learning tests. 

I hypothesize that the secondary verbal working memory task which reduces 

pattern search and thereby increases maximizing, as shown by Wolford et al. (2004), will 

put people at a disadvantage if the environment changes. In Experiment 1 and Experiment 

2, short-term memory capacity could only explain variance in the behavior of men, but not 

in the behavior of women. The same held for the data of Kareev et al. (1997). Therefore, I 

was interested whether the secondary verbal working memory task affects men, but not 

women. Since it thus is clear that I will have to split the sample into men and women and 

analyze those subsamples separately, I made sure that there were at least 30 men and 30 

women in each of the conditions (cognitive load vs. no load). 

1.8 Experiment 3 

1.8.1 Methods 

Participants.122 students (62 female) with an average age of 25.63 years (SD = 

3.21) participated in the study. They were paid 10 € for participation plus a bonus 

depending on their performance. 

Design and procedure. Each participant was tested individually. The main task for 

all participants was a repeated binary choice task, which was an extended version of the 

task used by Wolford et al. (2004). People had to predict whether a square appeared on the 

upper or the lower half of the screen for a total of 600 trials. For easier discrimination of 

the two squares, the upper squares were red while the lower squares were green. On the 

first 350 trials, the probability of occurrence of an upper red square was p = .75 while it 

was only p = .25 for a lower green square. On the remaining 250 trials, these probabilities 

were reversed, that is, p = .25 for an upper red square and p = .75 for a lower green square. 
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I will refer to this reversal of probabilities as shift in the following. The number of trials 

was chosen for the following reasons. In Experiment 1 by Wolford et al., a difference 

between two conditions (see below) reliably emerged after 300 trials. Therefore, I wanted 

to administer at least 300 trials before the shift. On the other hand, I did not want the 

participants to be completely exhausted when the shift occurred to ensure that they have a 

chance to capture it. 

People were randomly assigned to one of two conditions. The 3-Back condition 

consisted of the binary choice task with a secondary verbal working memory task as used 

by Wolford et al. (2004). This secondary task was a 3-back task. Each time the 

participants had to predict the square, they saw a digit between 0 and 9 on the screen. On 

random trials, participants were probed and had to recall the last three digits. They were 

probed approximately 5 times out of every 100 trials. These trials were randomly selected, 

with a minimum of three trials between the probes. In addition, the very last trial was 

probed. The control condition consisted only of the binary choice task without the 

secondary task. 

Participants earned 1 € cent for each correct trial. Consistent with Wolford et al. 

(2004), this payment was reduced by 20 € cents for each incorrect probe on the 3-Back 

task. 

1.8.2 Results 

I wanted to check whether participants in the 3-Back condition paid attention to the 

secondary task. The mean accuracies (with standard deviations in parentheses) from block 

1 to 6 were .89 (.16), .92 (.13), .96 (.09), .95 (.11), .96 (.09), .96 (.08). That is, 

performance on the secondary task was very good and even slightly higher than in 

Wolford et al. (2004) where the mean accuracy on the secondary task was .85 (.07). 

I compared the average relative frequency of maximizing between the 3-Back and 

the control condition over the blocks with a repeated measure ANOVA, separately for the 

trials before and after the shift. Before the shift, there was no between subjects effect for 

condition (F(1, 122) = 0.19, p = .67). Nor was there a linear contrast effect for the 

interaction between block and condition (F(1, 122) = 1.45, p = .23), which was reported 

by Wolford et al. (2004) as reflecting a growing separation between the conditions. After 

the shift, the mean relative frequency of maximizing was lower in the 3-Back condition 

compared to the control condition (F(1, 122) = 22.28, p < .01). That is, the secondary task 

had a strong impact on mean maximizing after the shift in the predicted direction. But 
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before the shift, at least on the mean level, I could not replicate the findings by Wolford et 

al. (2004) that the secondary task increases maximizing. 

Are there more maximizers in the 3-Back condition? However, a closer look at the 

data reveals that the means hide what is really going on. When looking beyond the mean 

level at the relative frequency of participants who maximize consistently, then it becomes 

apparent that there are many more consistent maximizers in the 3-Back condition. 

Consistent maximizing is defined, following Wolford et al. (2004), as choosing the 

maximizing answer on 95% or more of the trials within a block. Figure 1.9 depicts mean 

maximizing in the upper part and the relative frequency of participants who consistently 

maximized in the lower part, separately for the two conditions. The vertical line indicates 

the shift. As can be seen, the mean values do not differ before the shift, but the relative 

frequency of maximizers is quite different. On the last two blocks before the shift, there 

are 31/62 maximizers (i.e., people choosing the maximizing answer on 95 or more of these 

100 trials) in the 3-Back condition, but only 16/60 maximizers in the control condition 

(χ2(1, 122) = 7.01, p < .01). 

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Maximizing

Relative Frequency

of Maximizers

Block

3-Back

Control

 

Figure 1.9. Mean relative frequency of maximizing (+ 2 standard errors of mean; upper 
half) and relative frequency of participants who chose the maximizing answer 95% or 
more trials of the respective blocks (lower half), both depicted separately for the 3-Back 
and the control condition. 
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Another way analyzing maximizing behavior was reported by Shanks, Tunney, and 

McCarthy (2002). They counted the number of people who had streaks of choosing the 

maximizing answer on more than 50 consecutive trials. Before the shift, there were 35/62 

participants who had such streaks in the 3-Back condition, but only 19/60 in the control 

condition (χ2(1, 122) = 7.59, p < .01). The mean length of streaks before the shift was M = 

99.29 (SD = 91.04) in the 3-Back condition and M = 64.67 (SD = 78.47) in the control 

condition (t(120) = 2.25, p = .03). After the shift, there were no such differences, neither 

for the relative frequency of people who maximized consistently (19/62 in the 3-Back 

condition vs. 25/60 in the control condition, χ2(1, 122) = 1.61, p = .21) nor for the mean 

length of streaks (M = 54.40 (SD = 61.70) in the 3-Back condition versus M = 59.67 (SD 

= 57.00) in the control condition, t(120) = -.49, p = .63). 

Taking these results together – more people who maximize consistently before the 

shift in the 3-Back condition, but no difference in mean maximizing – indicates that there 

must be also more people with very low mean maximizing in the 3-Back condition. 

Pooling the mean maximizing across all blocks, separately for blocks before and after the 

shift, reveals that the distribution of behaviors is much more skewed in the 3-Back 

condition. On the pooled behavior before the shift, the standard deviation in the 3-Back 

condition is SD = .15, while it is only SD = .09 in the control condition (F = 8.13, p < .01). 

On the pooled behavior after the shift, this difference is even more pronounced: the 

standard deviation in the 3-Back condition is SD = .24, while it is only SD = .09 in the 

control condition (F = 37.26, p < .01). In the 3-Back condition, some people obviously did 

not react at all to the shift. In the control condition, however, there are quite some people 

who reach probability matching performance again immediately after the shift. Figure 1.10 

depicts histograms of the relative frequency of maximizing across all blocks, separately 

for the conditions, and thereby illustrates this skewness. The means and standard 

deviations on the single blocks are also reported.  
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Sex Differences. Applying many different methods, I did not find any sex 

differences in this experiment. Neither including gender as a factor in an ANOVA where 

possible resulted in a significant effect of this factor or in a significant interaction between 

sex and another factor. Nor did running the chi-square tests for the number of people who 

maximize consistently on the last 100 trials before the shift or who have streaks of 50 or 

more consecutive trials choosing the maximizing answer separately for both sexes reveal 

any differences. Some of those tests fell below standard levels of significance due to 

smaller sample size, though. But since they are all pointing into the same direction for 

both sexes, I conclude that there are no sex differences. 

1.8.3 Discussion 

The results replicate the finding reported by Wolford et al. (2004) that a secondary 

verbal working memory (3-Back) task increases the likelihood that a person will 

maximize. I did not find this effect on the level of mean maximizing, though. However, in 

the 3-Back group there are substantially more people who maximize consistently, but there 

are also people who pick the less frequent option in the binary choice task more often than 

the more frequent one and thereby pull the mean down. Thus, the distribution of behaviors 

in the 3-Back group is much more skewed than in the control group. 

Furthermore, the pattern of results is very similar to the results of Experiment 1 

and Experiment 2. Taxing memory capacity with a secondary task results in stronger 

maximizing behavior before a shift, but puts people at a disadvantage after the shift. Thus, 

I conclude that taxing memory capacity causally affect predictive behavior in the sense 

that they push people towards more simple and deterministic maximizing behavior instead 

of searching for patterns. Moreover, the similarity between the results of Experiment 3 to 

both Experiments 1 and 2 supports the claim that the correlation detection task used by 

Kareev et al. (1997) can be indeed interpreted as a probability learning task. 

There was no sex difference in this experiment regarding the impact of the 3-Back 

task on behavior, in contrast to the sex difference in the interaction between short-term 

memory capacity and mean maximizing. I believe that the 3-Back task prevents pattern 

search much more strongly than a low short-term memory capacity and therefore the effect 

is observable for both sexes. Note, however, that it also could be that the short-term 

memory task, which was a digit span task, is solved differently by men and women and 

thereby measures different things for men and women, while the 3-Back task affects them 

in the same way. 
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1.9 Experiment 4 

In Experiments 1 to 3, I have studied behavior in environments in which there was 

a correlation in the data. Although there were no systematic patterns in the sequence of 

events, participants could learn that there were events that were more prevalent than 

others. I could demonstrate that in those environments – at least before the environment 

changed –, a lower or reduced short-term memory capacity was beneficial because it 

prevented participants from searching for patterns where there are none and instead 

allowed them to quickly settle on maximizing. In other words, I have shown that 

participants with a lower or reduced short-term memory capacity have a higher hit rate. 

That is, they are more likely to jump on something given that there is something to jump 

on. 

Given that the predictive behavior hypothesis (modeled by noise) is indeed right – 

and all the data so far point in this direction – then low spans should also be more prone to 

the risk of false alarms. At least the signal detection analyses above (see section 1.4.5) 

have shown that a lower or reduced short-term memory capacity results not only in a 

higher hit rate, but also in a stronger response bias, resulting in a higher risk of false 

alarms. That is, low spans (or people distracted by a secondary task) should also be more 

likely to jump on something given that there is actually nothing. Experiment 4 is designed 

to test this prediction in a binary choice probability learning task in which the two events 

were equally prevalent. Following the signal detection analyses, the hypothesis is that 

people will even search for patterns in such a task in which there is absolutely no signal as 

long as they are not distracted by a secondary task. A secondary task distracting people 

should, similar to Experiment 3, result in more deterministic behavior, indicative of an 

absence of pattern search behavior. 

1.9.1 Methods 

Participants. 80 people (40 female) with an average age of 24.71 years (SD = 

4.32) participated in the study, most of them were students. They were paid 5 € for 

participation plus a bonus depending on their performance. 

Design and procedure. Each participant was tested in a quiet room. Such as in 

Experiment 3, the main task for all participants was a repeated binary choice task, which 

was similar to the task used by Wolford et al. (2004). This time, people had to predict on 

overall 400 trials whether a square appeared on the upper or the lower half of the screen. 

For easier discrimination of the squares, the upper squares were red while the lower 
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squares were green. Both events had an equal prevalence of 50%. That is, there is 

absolutely no signal one could exploit in any way; any strategy will perform equally well 

(or badly) on average. 

People were randomly assigned to either a 3-back or a control condition, such as in 

Experiment 3. The 3-Back condition consisted of the binary choice task with a secondary 

verbal working memory task as used by Wolford et al. (2004). This secondary task was a 

3-back task. Each time the participants had to predict the square, they saw a digit between 

0 and 9 on the screen. On random trials, participants were probed and had to recall the last 

three digits. They were probed on randomly selected trials, approximately 5 times every 

100 trials, with a minimum of three trials between the probes. The control condition 

consisted only of the binary choice task without the secondary task. 

In addition to the 5€ show-up fee, participants earned 1 € cent for each correct trial. 

Consistent with Wolford et al. (2004), this payment was reduced by 20 € cents for each 

incorrect probe on the 3-Back task. 

1.9.2 Results 

Again, I first wanted to check whether participants in the 3-back conditions paid 

attention to the secondary verbal working memory task. This was the case: the average 

accuracy on the secondary task in the 3-back condition was again very high (M = 87.9%, 

SD = 13.9%).  

Since in this experiment both events had an equal prevalence of 50%, there was no 

maximizing answer. I believe that the behavior of participants who look for patterns 

should be close to choosing each option in 50% of the cases. Should a person either realize 

that the sequence of events is random and that both options are equally prevalent or should 

a person give up the search for patterns, this person’s behavior should be more 

deterministic; and I think that more deterministic behavior will be, on average, closer to 

choosing one option 100% of the cases. The clear prediction is that the behavior in the 3-

back group should be more deterministic on average because participants in that condition 

should be more likely to give up the search for patterns. 

Thus, I simply computed, for each person, how often this person decided for each 

option. As an indicator of behavior of each person’s behavior, I then took the choice 

prevalence for the option this person has decided for more often. Therefore, this value 

could vary between 50% if the person has decided for both options equally often and 

100% if the person always chose one option, no matter which of the two options this was. 
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This indicator was computed separately for the first and the second half of the experiment 

(i.e., for trials 1 to 200 and for trials 201 to 400). 

Comparing how deterministic the behavior was in the different conditions, 

separately for the first and the second half of the experiment, revealed that there was 

basically no (or only a weak) difference in the first half (3-back: M = .60; SE = .018; 

Control: M = .57, SE = .016%; t(78) = -1.28, p = .202). On the second half, however, 

behavior in the 3-back condition was indeed more deterministic than in the control 

condition, as predicted (3-back: M = .64; SE = .021; Control: M = .58, SE = .017; t(78) = -

2.11, p = .038). These results, separately for both halves of the experiment, are depicted in 

Figure 1.11. There is a rather substantial effect size in the second half of the experiment, d 

= 0.47.  
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Figure 1.11. Observed magnitude of choosing one option predominantly, separately for 
both conditions and for both halves of the experiment. The errorbars represent two 
standard errors of the mean. Since only the magnitude of the predominantly chosen option 
is plotted, no matter which option this was, a value of 0.5 represents the minimum possible 
value. 
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1.9.3 Discussion 

Experiment 4 demonstrated that the magnitude of response bias is indeed higher if 

memory capacities are reduced by a secondary task, such as predicted by the noise model. 

Response bias was defined here as choosing one option predominantly. This could be 

interpreted as a kind of false alarm: Participants with lower or reduced memory capacities 

have a response bias, a tendency to jump on something although there is nothing. In 

contrast, participants with a higher (or non-reduced) memory capacity match the marginal 

probabilities more closely, which I interpret as a stronger exploration of potential patterns 

in order to outsmart the task. 

1.10 Overall Discussion 

Experiments 3 and 4 provided additional support for the predictive behavior 

hypothesis, beyond the support that already Experiments 1 and 2 provided. Experiment 3, 

by experimentally manipulating cognitive load, demonstrated that taxing memory capacity 

with a secondary task is comparable to naturally occurring differences in short-term 

memory capacity. Maximizing fueled by the secondary task comes with the price that an 

adaptation to a changing environment is prevented (or at least slowed down strongly) also 

in a repeated binary choice probability learning setting. Thus, the claim that the correlation 

detection task as used by Kareev et al. (1997) can be reinterpreted as probability learning 

task is substantiated. This also shows that the results by Kareev et al. are indeed 

comparable to results from the probability learning literature as reviewed above. 

Furthermore, Experiment 3 demonstrates that taxing memory capacities with a secondary 

task does not only fuel simple predictive behavior for men (as was the result in 

Experiments 1 and 2, and in Kareev et al.), but also for women. I have speculated that the 

sex differences in Experiments 1 and 2 resulted from women being able to draw on 

different resources (such as verbal episodic memory) to search for patterns, even if their 

digit span capacity is low. Manipulating cognitive load with a secondary task is the much 

stronger manipulation compared to naturally occurring differences in digit span capacity. I 

believe that this strong manipulation also prevents women to draw on other resources to 

search for patterns, which makes the sex difference disappear.  

Experiment 4 provided support for the prediction that a lower or reduced memory 

capacity should not only yield a higher hit rate (i.e., more successful behavior given that 
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there is a signal in the environment), but also results in a stronger response bias, including 

a higher risk of false alarms. In a binary choice situation with both events being equally 

likely (i.e., 50% each), participants who were distracted by a secondary task behaved more 

deterministically (i.e., were more likely to predominantly decide for one option) than 

undistracted participants whose behavior matched the marginal probability of 50% of both 

events more closely. I interpret the more deterministic behavior of people who are 

distracted as less explorative – they give up the search for patterns and switch to simpler 

predictions. The less deterministic behavior of people who are not distracted, in contrast, 

could be interpreted as them continuously trying to improve their predictions by trying to 

find patterns in the sequence of events. That is, they are more careful in drawing 

conclusions and continue to explore longer. 

To summarize, the major predictions by the predictive behavior hypothesis, 

modeled with noise in ACT-R, have been confirmed. First, lower or reduced capacities 

(modeled with lower noise) result in more successful maximizing behavior as long as the 

environment is stable. Second, as soon as the environment changes, lower or reduced 

capacities put people at a disadvantage. These results both hold for naturally occurring 

differences in digit span capacity and for manipulation cognitive load with a secondary 

task. Furthermore, these results both hold for the correlation detection task as used by 

Kareev et al. (1997), which I regard as a probability learning task with two cues and 

events, and for a simple binary choice probability learning task. Last, Experiment 4 

supported the model’s additional prediction that lower or reduced capacities should result 

in a stronger response bias (i.e., being more prone to give up searching and jumping on 

something although there is nothing). Overall, I consider the noise model representing the 

predictive behavior hypothesis to be successful. In the next section, I want to discuss why 

I believe that such a model is indeed plausible. 

1.10.1 Plausibility of the ACT-R model 

The results I found are congruent with the noise variant of the ACT-R model 

which I use to implement the predictive behavior hypothesis. Noise has been used in ACT-

R to account for different levels of explorative behavior (Taatgen et al., 2006). The noise 

parameter thereby can account for differences in predictive behavior, capturing the result 

that the behavior of high digit spans tends to match the probabilities whilst low digit spans 

are more likely to maximize. 
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At first glance, it may not be clear how the noise parameter relates short-term 

memory capacity to the tendency to match the probabilities. The connection may be that 

people do not actually attempt to match probabilities, but rather that probability matching 

is the result of more complex predictive behavior, such as pattern search (e.g., Wolford et 

al., 2004). Looking for patterns in the envelope task and in the binary choice task requires 

tracking the order of events, which could place high demands on memory. The memory 

demands of searching for patterns could be even higher than the memory demands for 

assessing correlations (in the envelope task). Explicitly assessing a correlation requires 

just knowing the frequencies of color-symbol combinations, since the order in which these 

appeared is irrelevant. So the cause of the low span advantage could be that people with a 

low short-term memory capacity find it difficult to entertain very complex patterns and, 

therefore, tend to settle on maximizing. Since noise is used to model the outcome of either 

simple predictive behavior (maximizing) or of rather complex predictive behavior (pattern 

search, resulting in probability matching), I think it is reasonable to capture this short-term 

memory phenomenon with noise in ACT-R. 

It is plausible that more complex predictive behavior helps people to adapt to a 

shift appropriately. Here, I modeled what I interpret as rather systematic exploration with 

higher levels of noise. However, there could also be unsystematic, random variability, 

which can be detrimental. This could be captured by too high levels of noise. Then the 

predicted behavior would be approximately at chance level before and after a shift. Results 

that could be interpreted in this way were reported by Sanford and Maule (1973). They 

compared the relative frequency of maximizing between young and old people in a simple 

binary probability learning task, including a shift. Older people performed worse than 

young people before and after the shift. While young people reached probability matching 

or slightly overmatched both before and after the shift, old people stayed below the 

probability matching level even before the shift and were approximately at chance level 

after the shift. This could indicate too high levels of noise (in the sense of too much 

random variation) for the old people, which clearly slows the adaptation to a shift. 

1.10.2 Relations to other models 

The implementation in ACT-R is based on the idea that instances of possible 

solutions are stored in memory that can be used to solve future trials (Logan, 1988). 

Therefore, it is interesting to consider similarities and differences to other instance based 

models such as exemplar models. One exemplar model that has been used to explain 
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multiple-cue probability judgment is ProbEx (probabilities from exemplars, Juslin & 

Persson, 2002). ProbEx could plausibly solve the envelope task by storing the outcome of 

each trial as a separate exemplar, with the exemplars containing information about the 

color of the envelope and the symbol within it. On each trial, it activates exemplars as a 

function of their similarity to the stimulus. Since each stimulus has only one feature (the 

color of the envelope), there are always a large number of exemplars that have exactly the 

same similarity. Thus, it would basically retrieve exemplars proportionally to their 

frequency of occurrence. ProbEx has a deterministic choice rule and will always select the 

option supported by more exemplars. But since the sampling of exemplars is probabilistic, 

ProbEx still could predict behavior similar to probability matching on the aggregated 

level. Another possibility for ProbEx to approach the task would be to store not only the 

outcomes as exemplars, but to store the answers as additional exemplars. This would make 

it similar to my ACT-R models, in which the activation of a chunk is also a function of 

outcome and behavior. In this manner, ProbEx would predict overmatching and 

asymptotically approach maximizing over time, because the proportion of exemplars 

representing the maximizing answer will grow steadily the more often it is chosen. Similar 

to my model without decay, ProbEx does not forget exemplars and so after the shift would 

have difficulty overcoming its initial response tendencies.  

The exemplar based random walk model (EBRW, Nosofsky & Palmeri, 1997) 

weighs recent exemplars more strongly and thus will be better able to capture a shift. This 

model is an extension of the general context model (GCM, Nosofsky, 1986), which 

predicts probability matching (Nosofsky, Kruschke, & McKinley, 1992). If, in a 

categorization task, GCM receives Category A feedback in 70 percent of the cases, it will 

predict Category A in 70 percent of the cases. Since EBRW includes GCM as a special 

case, it can also account for probability matching. However, it has a parameter that allows 

the theory to account for maximizing, namely the response criteria defining how much 

evidence the model needs before making a decision. The higher the response criterion, the 

more deterministic (i.e., maximizing) the choices predicted by the model will be, resulting 

in a greater sensitivity to differences between the two categories. Such a model would be 

very similar to my predictive behavior models, in which I modeled higher sensitivity with 

lower noise. 

The results presented here could also be interpreted in the light of the RELACS 

model (reinforcement learning among cognitive strategies, Erev & Barron, 2005; see also 
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Rieskamp & Otto, 2006). Their model is able to capture a large variety of binary choice 

tasks. It assumes three different cognitive strategies that are involved in those tasks: Fast 

best reply (i.e., select the action with the highest recent payoff), case-based reasoning (i.e., 

choose the best action that led to the best outcome in a similar case in the past), and slow 

best reply (i.e., a slow learning of the strategy likely to maximize earnings). The pattern 

search process could be either modeled with a high proportion of case-based reasoning or 

with a high exploration in slow best reply. Both of these implementations would predict a 

deviation from maximizing, similar to increased noise in the ACT-R model I applied. 

1.10.3 Conclusion 

I reported counterevidence to the small sample hypothesis of correlation detection. 

The modeling and empirical results support the view that differences between high and 

low digit spans lie in differences in predictive behavior and not in differences in 

perception, although the whole effect only seems to exist for men. Yet, I agree with 

Kareev et al. (1997) that subtle benefits can follow from what are commonly seen simply 

as limitations (Hertwig & Todd, 2003; Schooler & Hertwig, 2005). For example, 

forgetting has been interpreted not simply as regrettable failures of the memory system, 

but as reflecting statistical patterns with which information recurs in the environment (J. 

R. Anderson & Schooler, 1991).  

Therefore, while I am, in general, sympathetic to the idea that limitations of 

cognitive capacities can serve adaptive functions, I disagree with Kareev et al.’s (1997) 

assertion that limitations in short-term memory amplify the detection of correlation by 

forcing people to rely on small samples. Instead, I think that these limitations foster 

simpler predictive behavior, choosing the more frequent option on every trial 

(maximizing), due to an incapability to apply more complex predictive behavior. In this 

experiment, simple predictive behavior, maximizing, is more successful than any other 

more complex predictive behavior, such as pattern search, when the correlational structure 

of the task is stable. However, applying this behavior consistently seems to put people at a 

disadvantage if the environment changes.  

To appropriately evaluate the phenomenon probability matching, I think it is 

necessary not only to consider how probability matching and the process I believe to 

underlie probability matching – the search for patterns – fare in the laboratory, but to 

consider how they would fare outside of the laboratory.   
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1.11 Probability matching reconsidered 

 

The remarkable thing about this is that the asymptotic behavior of the individual, 

even after an indefinitely large amount of learning, is not the optimal behavior… 

Thus, there is no indication that the individual is maximizing even in the sense of 

approaching a maximum. It is certainly reasonable enough from an economic point 

of view that he does not achieve an optimum immediately, since he does not know 

the situation. But it is usually assumed that after a certain amount of trial and error, 

the optimal behavior will in fact be found, and this reasoning is given implicitly 

and explicitly in most economic texts. We have here an experimental situation 

which is essentially of an economic nature in the sense of seeking to achieve a 

maximum of expected reward, and yet the individual does not in fact, at any point, 

even in a limit, reach the optimal behavior. (Kenneth J. Arrow, 1958, p.14). 

 

This quote by Nobel Laureate Kenneth J. Arrow captures a rather typical, 

pessimistic view on the “choice anomaly” probability matching and its negative 

indications for human decision making. 

Here, I want to step back from the specifics of the data I collected and embed the 

conclusions I drew from them – namely that probability matching is the result of people 

trying to search for patterns – into the larger picture of different approaches to probability 

matching. More specifically, I will argue that many of the negative conclusions about 

human rationality that have been drawn from probability matching stem from failing to 

take an ecological perspective. First, I want to briefly reiterate different approaches before 

I evaluate probability matching – or, more specifically, the process underlying probability 

matching – from an ecological perspective, stressing that a cognitive process can only be 

evaluated in the light of the environment in which it usually operates. 

1.11.1 Different approaches to probability matching 

Probability matching is commonly seen as a consistent violation of rational choice 

theory, because it is inconsistent with a person’s goal to maximize his or her payoff. To be 

considered rational, proponents of rational choice theory require people to follow the 

principle of expected utility maximization, going back to Bernoulli and revived in the 

1940s by von Neumann and Morgenstern (1947). 
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The cognitive limitations approach. Most people regard probability matching as 

one of the numerous deviations from the predictions made by expected utility theory that 

have been reported, all of which are usually considered as reasoning errors (Tversky & 

Kahneman, 1974). The explanation of those errors – including probability matching – has 

been echoed repeatedly: human cognitive capacities are limited (e.g., Johnson-Laird, 

1983). Kahneman et al.’s (1982) heuristics-and-biases program consists of a collection of 

behaviors that deviate from a normative standard, which usually is either logic or 

probability theory. Probability matching has largely contributed to this pessimistic 

appraisal of human cognition. Even more so, since the conditions to behave congruently 

with rational choice theory are ideal – the task is simple and repeated for many trials 

which should enable learning. 

Congruently, West and Stanovich (2003) assume that probability matching simply 

results from people not being smart enough to understand the task. That is, the human 

mind is simply not able to figure out the optimal strategy. The remedy is thus also 

obvious: One needs to foster the understanding of the task and to motivate people to apply 

maximizing to make this so-called choice anomaly disappear. Two self-evident factors in 

this respect are extensive learning and performance contingent payment. In general, 

maximizing is supported by high monetary payoffs and large numbers of trials (Vulkan, 

2000). An extreme example of this is the study by Shanks, Tunney, and McCarthy (2002) 

in which participants were trained on up to 1800 trials and in which monetary incentives 

were larger than in comparable studies. Both high monetary incentives and intensive 

training largely boosted maximizing behavior. Note, however, that there are also studies 

reporting perfect probability matching despite financial incentives (Healy & Kubovy, 

1981).  

The repair program. Some people, in contrast to the cognitive limitations 

approach, have tried to keep expected utility theory not only as a prescriptive (i.e., 

normative) but also as a descriptive theory by making probability matching congruent with 

it, which could be called the repair program (cf. Gigerenzer & Selten, 2001). In order also 

to describe probability matching with expected utility maximization, the assumption has 

been introduced that different outcomes yield different utilities, even if they are equal 

regarding monetary payoffs. It was for example assumed that the utility for predicting the 

less frequent event is increased (Brackbill & Bravos, 1962). The idea behind this was that 

the (positive) surprise associated with correctly predicting the less frequent serves as some 
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kind of additional reward beyond the monetary payoff. In contrast, the utility for choosing 

the more frequent option over many trials is considered to be decreased due to the 

boredom attributed to making the same choice over and over again (Siegel & Goldstein, 

1959). This is a typical example of how researchers try to resolve the discrepancy between 

description and prescription by amending the utility function post-hoc in an atheoretical 

manner without questioning the ideal of maximization or optimization (Gigerenzer & 

Selten, 2001). The problem with this is that by amending the utility function every 

behavior can be “explained” post-hoc by expected utility maximization without ever being 

falsifiable and without giving any insight in the processes underlying human decision 

making. 

Searching for patterns in random sequences. The results that lower cognitive 

capacities actually foster maximizing instead of preventing it invited a third view: 

Probability matching is the result of a more complex strategy – the tendency of people to 

look for patterns. The results reported in this chapter (and the results I reviewed under 

1.2.2) support this view. Every pattern that could possibly be correct needs to match the 

probabilities of the different events on the surface level. 

The search for patterns indicates that people do not believe that the sequence is 

random. Fostering the belief in randomness increases the prevalence of maximizing. This 

is for example the case if the task resembled a ‘gambling’ task, compared to a structurally 

identical task that appeared to be a ‘problem solving’ task (Goodnow, 1955). The same 

occurred by giving people the opportunity to generate their own series of random events 

(Morse & Runquist, 1960). They were asked to repeatedly drop a rod and each time to 

predict whether the rod will cross a line on the floor or not when becoming stationary. It 

was intuitively clear to them that the sequence could not be prescheduled by the 

experimenter. Finally, people often have the expectation that there must be a perfect 

solution to the task, and this would require a pattern in the sequence. Telling them that the 

best possible result is to have about 75% correct answers also increased maximizing 

(Fantino & Esfandiari, 2002). 

It is well known that people have problems to detect randomness where it exists 

and that they instead detect patterns even where there are none (Lopes, 1982). It is much 

more difficult to convince them that a sequence is random than to convince them that it is 

structured (Hyman & Jenkins, 1956). Is probability matching therefore just another 

downside of this inability to deal with randomness? On the one hand, yes. 
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But to conclude from this that people are irrational is premature. In the view of 

Herbert Simon (1990), it is important not only to look at the human mind, but also to 

consider the structure of the environment. This idea is captured in the concept of 

ecological rationality, and there have been several examples now that the structure of the 

environment is a sufficient explanation for many ‘biases’ without the necessity to assume 

biased cognition (Gigerenzer, 2004). 

1.11.2 Probability matching reconsidered from an ecological perspective 

An important cornerstone of the idea of ecological rationality is the idea that it is 

impossible to judge a strategy as good or bad per se. Instead, a strategy can only be good 

or bad given a certain structure of the environment. That is, a strategy can be good in one 

environment, but fail in another. The strategy that is considered to be the optimal strategy 

in classical probability learning studies, maximizing, is only optimal under very specific 

conditions. First, it is only optimal if the occurrence of an event is independent of what has 

occurred before (i.e., if there is conditional independence of a succession of events) and if 

the environment is stable. Second, it is only optimal if there are no competitors to share 

with. Both of these conditions are likely not to hold in many real environments. 

Betting on the nonrandom structure of the environment. Outside of casinos and 

psychological laboratories, there are probably only few sequences of events that are indeed 

conditionally independent (Ayton & Fischer, 2004). If the sequence is not conditionally 

independent but rather systematic in some sense, it may well be worth spending some time 

figuring out the regularities to be able to make correct predictions on all trials. In a signal 

detection framework, Lopes (1982) argued that the predisposition towards patterns 

detection can be seen as a low criterion value to classify something as signal (i.e., 

generated by a nonrandom process) instead of noise (i.e., generated by a random process). 

Thereby, people limit the number of misses but increase the number of false alarms. Lopes 

further argued that often misses will be more severe than false alarms and that therefore 

this predisposition towards the detection of patterns is very well rational. She illustrates 

this argument with the fundamental attribution error, which is the predisposition of most 

humans to incorrectly attribute behavior of others to stable personality variables instead of 

attributing it to the situation. But if there is an effect that is predictable by the presence of 

an individual, even if only weakly so, then it is very useful to detect this. 

A famous fallacy that possibly could be explained by this predisposition is the 

gamblers fallacy (Jarvik, 1951): people often have the inevitable impression that an event 
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that has already occurred repeatedly is less likely to occur again. That is, they expect 

negative recency. For example, in a roulette game, people think that after a series of “red” 

trials, “black” will be more likely on the next trial, although this is certainly false for 

random events. Outside of the casino, however, negative recency does exist in all cases 

where one samples without replacement from a finite population or from a population 

where replenishment is slow. Then, observing a particular outcome lowers the chances of 

observing that outcome again. Pinker (1997) questions the fallacious view of this 

phenomenon for exactly this reason: “Many events work like that. They have a 

characteristic life history, a changing probability of occurring over time which statisticians 

call a hazard function. An astute observer should commit the gambler’s fallacy and try to 

predict the next occurrence of an event from its history so far” (p. 346). The only 

exceptions are devices particularly designed to fool these intuitions, such as gambling 

devices. 

Psychological experiments are probably not deliberately designed to fool people’s 

intuitions, but they nevertheless often do so. I think the explanation for the gambler’s 

fallacy therefore also applies to probability matching. People try to detect patterns, which 

is usually useful in their natural environment. But since they are dragged out of this 

environment and put into an artificial situation where this pattern search fails, they appear 

to behave irrationally. The setting of a psychological experiment is additionally 

problematic in this respect, because the mere fact of participating in such an experiment is 

likely to raise the expectation that there will be a perfect solution to the task that needs to 

be figured out. Even telling people that the sequence is random does not always help 

because people know that deception is a common practice in psychology, which has been 

criticized for exactly this reason (Hertwig & Ortmann, 2001). And indeed, in many studies 

the sequence of events is not as random as is pretends to be, for example due to sampling 

without replacement or due to taking care that no event occurs more than three times in a 

row, both of which are structures that participants could exploit to perform better than the 

typical maximizing strategy (Fiorina, 1971). 

Competing minds in the environment. Another important difference between the 

laboratory situation and the outside world is that classical probability learning experiments 

are individual experiments. That is, the payoff only depends on the choices of one 

individual and is independent of choices other people make. In the real world, however, 

there are competitors to share with. In such a situation, maximizing is likely to be 
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evolutionary unstable (Gallistel, 1990). Among a group of individuals who maximize their 

payoffs and choose the more frequent option on every occasion, individuals that deviate 

from the majority and pick the less frequent option would be naturally selected, because 

there are less competitors to share the outcome with. Such a countervailing selection 

pressure does not occur for matching. For groups of fish in a tank or ducks in a pond in 

both of which food was provided for instance twice as often on the one side as on the other 

side, it can be observed that the animals divided themselves up in the same ratio of 2:1 

after only a few minutes. Thuijsman, Peleg, Amitai, and Shmida (1995) showed that 

simple rules could produce this ideal free distribution in an environment where there are 

competitors. The same rules, however, cause suboptimal matching if applied to the 

individual situation. 

1.11.3 Conclusions 

Following the tradition of Brunswik’s Representative Design, the argument has 

been made that it is necessary not only to sample participants randomly from the 

population, but also to randomly sample stimuli from the environment (Dhami, Hertwig, 

& Hoffrage, 2004). Probability learning experiments are a typical example of 

unrepresentative design. People only encounter a sequence of events in which there are no 

sequential dependencies. Randomly sampled sequences from the environment would be 

likely to include a majority of nonrandom sequences, and then people would be well off 

searching for patterns to detect those nonrandom sequences and to detect the pattern 

within them. Furthermore, outside of the laboratory there are likely to be competitors, and 

then matching will be optimal. 

This perspective on probability learning is at odds with the common view of it as 

irrational behavior originating in people’s inability to figure out the optimal strategy. It 

rather demonstrates that it is likely to be an artifact of the experimental situation: People 

apply behavior that is usually smart to an artificial situation that is not representative of 

their natural environment and thereby end up behaving in way that appears to be biased. 

Additionally, participating in an experiment makes it even more likely that people apply 

behavior that does not yield the best payoff in a repeated binary choice task, because they 

suspect that there could be more going on than they are told, which is actually still a 

common practice in psychology. 

Thus, probability matching can be added to the long list of choice anomalies, 

biases and cognitive illusions that can be explained by the structure of the environment 
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without blaming the cognitive limitations of the human mind. From this perspective, 

findings showing that maximizing is more likely for people (or animals) with reduced or 

lower cognitive capacities are actually no less-is-more effects. Although lower cognitive 

capacities are beneficial in this task, the cognitively more demanding strategy, the search 

for patterns, is likely to be superior outside the psychological laboratory. Not only in the 

laboratory, but in the real world, it often pays to explore alternatives, looking for changes 

and other patterns in the statistical structure of the environment. This is also supported by 

findings from Experiments 1 to 3 showing that people who are more likely to maximize 

due to a lower short-term memory capacity are put at a disadvantage as soon as the 

environment changes. Here I modeled what I take to be systematic exploration with 

random noise, but even random noise has been shown to be an effective way to escape 

local minima in optimization problems (Kirkpatrick, Gelatt Jr., & Vecchi, 1983). 

I started by testing the small sample hypothesis, which considers less information 

to be helpful, and end by noting that noisy behavior, which can of course be harmful, has 

the potential to be beneficial. Like Kareev (2000) I emphasize that it is crucial to consider 

the match between a cognitive process and the environment in which it operates, because 

what works well in one environment may work poorly in another. No single strategy is 

optimal per se. 

To conclude, I want to comment on an analogy that is often drawn: Many 

researchers studying biases and cognitive illusions claim that this will help to understand 

the human mind such as the study of visual illusions with artificial stimuli gives insights 

about the visual system. But, interestingly, no one studying visual illusions concludes 

from them that there is something wrong with the visual system. Taking this analogy 

seriously means that concluding from probability matching that people are irrational is, to 

borrow Pinker’s (1997) words, “like calling our hands badly designed because they make 

it hard to get out of handcuffs” (p.346). 
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2 Chapter 2                                                                                        

Sequential Processing of Cues in Memory-Based                               

Multi-Attribute Decisions 

 

Although many decisions in real life depend on information we have stored in our 

long-term memory, relatively little experimental research has directly addressed the 

question how exactly attribute or cue information is integrated to form judgments and 

make decisions (Bröder & Schiffer, 2003b; Juslin, Olsson & Olsson, 2003) in this case. 

More work has investigated decision rules in environments with information supplied by 

the experimenter, for example on the computer screen (e.g. Betsch, Haberstroh, Glöckner, 

Haar, & Fiedler, 2001; Bröder, 2000; 2003; Maule, 1994; Newell & Shanks, 2003; 

Newell, Weston & Shanks, 2003; Payne, Bettman & Johnson, 1988; 1993). However, 

Gigerenzer and Todd (1999) speculated that these "inferences from givens" form an 

exception in everyday life which is more dependent on "inferences from memory". In 

addition, they argued that due to retrieval costs, inferences involving memory search 

would promote the use of fast and frugal heuristics. 

These heuristics differ substantially from many normative theories of decision 

making which usually assume that more information is always better. In contrast, fast and 

frugal heuristics often ignore information and bet on only one good reason, which makes 

them psychologically plausible models of human decision making in the view of their 

promoters (e.g. Gigerenzer, Todd, & the ABC Research Group, 1999). Since heuristics 

exploit certain structures of the environment, these heuristics nevertheless do not need to 

be inferior to more complex decision strategies and can even outperform them under 

certain conditions (e.g. robustness in cross-validation, see below). The general idea behind 

this is that no strategy is good or bad per se, but only in relation to a certain structure of 

the environment (Johnson & Payne, 1985). A strategy can be called ecologically rational 

if there is a fit between the environment and the (cognitive) strategy (e.g., Gigerenzer & 

Todd, 1999). 

An example of a fast and frugal heuristic that ignores most of the information and 

relies on one good reason only is Take The Best (TTB, Gigerenzer & Goldstein, 1996). 

TTB can be applied to compare pairs of objects on some criterion value, for example to 
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decide which of two German cities is larger. It is a lexicographic strategy searching 

information about cues sequentially, starting with the most valid cue. For example, the 

size of German cities can be predicted with cues such as whether a city is the capital of a 

state, whether it has a soccer team in the premier league or whether the city is on the 

Intercity train line. As soon as one cue discriminates between the objects (i.e., if it is 

positive for one object, but negative or unknown for the other), TTB stops searching for 

further information and decides based on this cue alone. That is, TTB is a one-reason 

decision making heuristic and is thereby noncompensatory: Less valid cues cannot change 

a decision based on a more valid cue, they cannot compensate a cue with a higher validity 

because they are not considered at all. 

Despite ignoring information, TTB can outperform the compensatory multiple 

regression on binarized datasets when making predictions about unknown data, although 

multiple regression always considers all information and is a standard benchmark 

(Czerlinsky, Gigerenzer & Goldstein, 1999). By ignoring information, TTB is more robust 

than multiple regression. That is, TTB is more likely to consider only important 

information, which is likely to be still important in the future, while multiple regression is 

susceptible to random noise in the data which does not generalize – a phenomenon called 

overfitting. 

After demonstrating that heuristics such as TTB can be successful, the question 

remained whether people actually use them. There is evidence that people’s decisions 

indeed often can be described with TTB, especially if information search is constrained by 

high costs or time pressure (e.g. Bröder, 2000; 2003; Newell & Shanks, 2003; Newell et 

al., 2003; Payne, Bettman, & Johnson, 1988; 1993; Rieskamp & Hoffrage, 1999).  

The assumption of sequential search of cues makes noncompensatory heuristics 

such as TTB different from global matching models (e.g., exemplar models), which have 

often been used to describe memory-based decision making (e.g., Dougherty, Gettys, & 

Ogden, 1999; Juslin & Persson, 2002; Mitchell & Beach, 1990). Contrary to 

noncompensatory heuristics, global matching models assume a simultaneous assessment 

of cues. While the assumption of sequential search is testable in an “inferences from 

givens” paradigm in which cues can be looked up on the screen (i.e., in a so-called 

mouselab design), this process of sequentially searching for cues is not observable in 

memory-based decisions. 
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This chapter has the goal to analyze response times as convergent evidence to 

substantiate that people indeed often use heuristics involving sequential search when 

making memory-based decisions. In this regard, I will reanalyze five experiments 

conducted by Bröder and Schiffer (2003b, 2006) and report one new experiment, which 

was necessary to disentangle two variables which were confounded in Bröder and 

Schiffer’s experiments. Chapter 3 will then explore the complementary prescriptive 

question of how people could exploit features of their memory system to successfully 

order information, which is a crucial part of noncompensatory heuristics such as TTB.  

As mentioned in the very beginning of this chapter, the application of 

noncompensatory heuristics was mostly studied in screen-based paradigms, although the 

heuristics have been proposed as memory-based heuristics. In contrast to the usual screen-

based research paradigm, Bröder and Schiffer (2003b, 2006) implemented the idea of 

memory search in cue based decisions by introducing a cue-learning paradigm in which 

participants acquired knowledge about cues describing objects. The results broadly 

confirmed the claim that memory-based decisions are often noncompensatory and can be 

described by TTB for most of the participants. 

However, when people use information from memory rather than from the screen, 

it is impossible to observe how they actually search for information. The inability to 

observe information search (called process tracing) poses a methodological challenge 

because one can only rely on outcome-based measures to decide which decision strategy 

someone is apparently applying. On the mere outcome level, compensatory procedures 

could produce decisions indistinguishable from noncompensatory strategies if the 

dimension weights are chosen appropriately (Martignon & Hoffrage, 2002). In addition, 

further evidence is needed to distinguish models assuming sequential feature processing 

(such as fast and frugal heuristics) from models assuming a global matching process, such 

as Image Theory (Mitchell & Beach, 1990), Minerva-DM (Dougherty, Gettys, & Ogden, 

1999), or PROBEX (Juslin & Persson, 2002). Global matching models assume that a 

probe is compared to all information in memory resulting in an activation depending on 

the similarity of probe and stored information. Although the models differ in their details 

of describing the feature-based similarity match, the process appears as a simultaneous 

assessment rather than sequential feature comparison. 

Recently, Bergert and Nosofsky (2007) analyzed response times as convergent 

evidence for an outcome-based strategy classification in a decision making task from 
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givens. I suggest that response time analyses could similarly be applied to investigate 

different strategies in memory based decisions. Such an analysis is also an important step, 

even if only a first one, to answer the call that models should ideally aim to be testable 

with different kinds of data (e.g., Jacobs & Grainger, 1994). I hypothesize that response 

times increase with the number of information pieces that have to be retrieved to make a 

decision, which differs for different items and/or strategies.  

I will report response time analyses of 5 published experiments and one new 

experiment.  

2.1 Reanalyzing Response Times in Bröder and Schiffer (2003b, 2006) 

All experiments reported subsequently (Bröder & Schiffer, 2003b; 2006) 

employed a hypothetical criminal case involving 10 suspects of a murder: A famous singer 

was murdered near the pool, presumably by one of his former girlfriends. The participants 

were asked to help find the murderer. The basic idea of all the studies was to separate the 

acquisition of knowledge about the suspects from making decisions about them, so that 

knowledge had to be retrieved from memory when making decisions.  

Each experiment consisted of four phases: First, in an anticipation learning 

paradigm, participants acquired knowledge about the individual cue patterns of 10 

suspects, which differed on four cues (e.g., dog breed). Each of the cues could have three 

different values (e.g., Spaniel, Dalmatian, or Dachshund). A portrait and a name of a 

suspect appeared on the screen, and participants had to reproduce the cue values with 

appropriate feedback. All 10 patterns were repeated until 90% of the responses were 

correct, indicating a sufficiently reliable knowledge base in memory. 

To prevent participants from making inferences already during learning, a cue 

hierarchy was established only in a second phase by informing them about the evidence 

(cues) witnessed at the site of crime and about its relative importance. The relative 

importance of the four cues (predictive cue validity) was established by telling participants 

how many witnesses agreed on them. For example they were told that four witnesses 

agreed that the suspect had a Spaniel dog, whereas only two witnesses agreed that the 

suspect was wearing leather trousers. 

The third phase consisted of complete paired comparisons of all suspects in which 

participants had to decide which suspect was more likely to be the murderer. Importantly, 
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only the name of the suspects and their portrait were displayed. To decide between the two 

suspects, participants had to retrieve the cue values from memory. 

After this decision phase, a final memory test assessed the stability of cue memory 

as a manipulation check. 

The experiments differed with respect to minor procedural details (see Bröder & 

Schiffer, 2003b; 2006) and were in general very similar to the procedure reported in more 

detail for the new experiment I conducted in this respect (Experiment 6, see below). 

2.1.1 Description of the strategies and response time predictions. 

The strategies considered to potentially underlie the participants’ decisions are 

TTB, Dawes's Rule (DR), Franklin's Rule (FR), and guessing. When comparing two 

suspects, the lexicographic TTB heuristic assumes that participants sequentially retrieve 

cues describing the suspects in the order of their validity. A person using TTB searches 

the most valid cue for both suspects first. If this cue discriminates, the person does not 

search further and makes a decision. Otherwise, searching for cues (in order of validity) 

continues until a discriminating cue is found. Therefore, the best (i.e., most valid) 

discriminating cue determines when TTB stops searching and decides, so that I predict a 

monotonic increase in response times depending on the number of cues that have to be 

retrieved until this best discriminating cue is found. Figure 2.1 illustrates four different 

item types with an increasing number of cues that have to be looked up in order of validity 

(according to TTB) until the best discriminating one is found. 

 

            

Cue 1 1 0  1 1  1 1  1 1 

Cue 2    0 1  0 0  0 0 

Cue 3       1 0  1 1 

Cue 4          0 1 

            

 Item Type 1  Item Type 2  Item Type 3  Item Type 4 

 

Position of best discriminating cue 

 

Figure 2.1. Four different item types differing with regard to the position of the best 
discriminating cue. 
 



Chapter 2 – Sequential Processing of Cues in Memory-Based Decisions 73 

DR, going back to Robyn Dawes’s (1979) work on unit-weight models, is a rule 

that takes all cues into account but does not consider their validity. A DR user tries to 

retrieve all cues and decides for the suspect that is “favored” by more cues. In case of a tie, 

the person has to guess. FR, similar to DR, takes all the information into account, but 

weighs it according to cue validity. Since less valid cues can overrule more highly valid 

cues, DR and FR are compensatory strategies. Both DR and FR, at least in a strict sense, 

require searching all cues in an unspecified order. Response times should therefore not 

depend on which is the best discriminating cue. Since DR and FR do not specify a search 

order, it is more difficult to distinguish between sequential search and global matching for 

users of these strategies. One prediction that, in our view, follows from the sequential 

search assumption but not from the global matching assumption is that people classified as 

using FR should be slower on average than DR users, since FR, additionally to DR, 

requires weighing cues according to their validity and is thus cognitively more complex. 

The last strategy, guessing, consists of retrieving no cues at all and just guessing 

which of the suspects is more suspicious. Therefore, the response times of guessers should 

not vary with the position of best discriminating cue, and they should be the quickest 

overall. 

To summarize, I expect the following qualitative pattern of response times. For 

participants classified as using TTB response times should increase with the number of 

cues TTB has to retrieve to make a decision. Such an increase should not exist for the 

users of other strategies. Furthermore, I expect that, on average, FR takes longer than DR, 

and that guessing is quicker than all other strategies. 

2.1.2 Results and discussion 

To decide which of the strategies someone was apparently using, the choice vector 

produced by each participant was classified by a maximum-likelihood procedure, details 

of which are provided in Bröder and Schiffer (2003a). In a nutshell, this method is 

designed to find the strategy that fits the data of this participant best. The method assumes 

a uniform response error probability and stable strategy use across trials. The likelihood of 

the data, given each of the models is maximized by estimating a random response error 

probability. The model with the highest likelihood of the data is chosen as the presumably 

data-generating model. 

Table 2.1 contains an overview of the experiments reported previously. In sum, the 

results show that the need to retrieve cue information from memory induced fast and 
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frugal decision making, especially when cues were represented verbally and when 

working memory load was high. 

 

Table 2.1: Overview of studies 
 

Source %TTB users x condition N Cue Descriptions 

Bröder & 

Schiffer 

(2003b) 

Exp. 1 load a 

72.0 % 

no load a 

56.0 % 

50 Blood type, cigarette 

brand, perfume, 

vehicle 

 Exp. 2 memory 

44.0 % 

screen 

20.0 % 

50 Jacket, shoes, bag, 

vehicle 

 Exp. 3 verbal 

64.0 % 

pictorial 

64.0 % 

50 Jacket, shoes, bag, 

vehicle 

 Exp. 4 verbal 

47.4 % 

pictorial 

26.4 % 

114 dog breed, jacket, 

trousers, shirt color 

verbal 

69.7 % 

pictorial 

36.0 % 

Bröder & 

Schiffer 

(2006) 

Exp. 5 

load a 

53.0 % 

no load a 

34.2 % 

151 dog breed, jacket, 

trousers, shirt color 

a working memory load 

 

To analyze response times, I combined participants from all 5 experiments and split them 

into four groups with identical strategy classifications. There were 198 TTB users, 90 FR 

users, 83 DR users and 44 participants who appeared to guess. Nine unclassified patterns 

(with identical likelihoods for more than one strategy) were excluded. For each 

participant, I computed the outlier-robust median response time for each of the four item 

types, depending on the position of the best discriminating cue. These individual response 

time medians were entered in the subsequent ANOVA6. 

The mean response times for each strategy group are shown in Figure 2.2. There 

was a main effect of the position of the best discriminating cue, Greenhouse-Geisser-

corrected F(2.53, 1041.48) = 20.63, p < .001, showing increasing decision times in 

                                                
6 Note that also individual z-scores of response times and log-transformed response times were computed to 
control for between-subject variability and bias due to outliers. These alternative measures yielded the same 
patterns of significant results in all analyses. 
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general. There was also a main effect of strategy, F(3, 411) = 6.92, p < .001 and, much 

more important, a significant interaction, F(2.53, 1041.84) = 3.41, p = .001. The increase 

of decision times with the position of the best discriminating cue was most pronounced for 

TTB users. To substantiate this claim, regression slopes were computed for each 

individual and compared across strategy groups, showing an overall difference, F(3,411) = 

9.52, p < .001. According to Scheffé posthoc tests, TTB slopes (B = 1.31) differed 

significantly from all others, whereas DR, FR, and GUESS slopes did not significantly 

differ from each other (B's = 0.49, 0.24, and 0.26, respectively). Neither did FR and 

GUESS slopes significantly differ from Zero, both t(>42) < 1.30, both p > .20, whereas 

TTB slopes did, t(197) = 8.49, p < .001, as did DR slopes, t(82) = 3.27, p< .01. 
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Figure 2.2. Mean decision times in seconds (and standard errors) as a function of best 
discriminating cue and outcome-based strategy classification on the combined data from 
Bröder and Schiffer (2003b, 2006). 

 

The response times thus followed the predicted pattern and supported the 

assumption of sequential search: The increase was much less pronounced for FR, DR, and 

guessing than for TTB which would be expected if people generally search more cues than 

the best discriminating one, or no cues at all (when guessing). Still, there is a slight 

increase in response times also for FR and DR users, which I will discuss in the General 
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Discussion. FR users generally needed more time than DR users which was expected, 

given that DR users only have to count evidence, while FR users also have to weigh it. 

Participants with predominantly non-systematic guessing behavior generally needed less 

time than all others. 

An alternative interpretation is that the results are not due to sequential search but 

to option similarity and hence item difficulty. The more nondiscriminating cues TTB has 

to retrieve, the more similar on average the options must be. Hence, both variables are 

confounded. If the sequentiality assumption is correct for TTB users, their decision times 

should be related more strongly to the position of the best differentiating cue than to the 

number of identical cue values indicating similarity or difficulty. Since position and 

similarity are correlated, I computed individual multiple regressions of response times on 

both predictors. As expected, people classified as using TTB showed a steeper increase 

with position (mean B = 1.08) than with similarity (B = 0.37), t(197) = 2.76, p < .01, 

whereas there was the opposite tendency for DR users (.14 vs. .57), t(82) = -1.69, p = .09. 

There was no difference in slopes for FR users (0.26 vs. -.02, t(89) = 0.89, p = .37). The 

same pattern of results emerges when raw rather than partial correlations are analyzed by 

Wilcoxon tests or t-Tests on the Fisher-Z-transformed values. Hence, there is no support 

for the potential alternative explanation that the TTB response time results were caused by 

item difficulty rather than sequential search, whereas the opposite is true for DR users. 

However, a second criticism could argue that the results reported here are an 

artifact of a procedural peculiarity used in Experiments 1 to 5: In all cases, the cue validity 

hierarchy was equivalent to the order in which the cue values were learned. Hence, the 

seemingly sequential retrieval of cues in order of their validities might just reflect a search 

in order of learning. Maybe the evidence in favor of TTB and the sequential retrieval is 

apparent rather than real because participants only mentally repeated the learning phase 

and did not care about cue validities at all. To rule out this interpretation, I conducted an 

experiment in which I disentangled both factors. 

2.2 Experiment 6 

2.2.1 Methods 

Design. Experiment 6 also used the paradigm of the invented murder case. A two 

group design was used to disentangle the two possible search orders, search by learning 
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and search by validity. In the match condition, the cue validities matched the order in 

which the cues were learned. In the mismatch condition, cue order and validity order were 

different. For instance, the learning order was "dog breed, jacket, trousers, shirt color", 

whereas the scrambled validity order of cues was "trousers, dog breed, shirt color, jacket". 

Hence, if the cues are numbered according to the learning sequence, the validity order in 

the mismatch condition was 3-1-4-2. The labels of the cues were counterbalanced by 

reversing validity and learning order for half of the participants (i.e., “dog” was now the 

most valid cue and “trousers” was the topmost cue in the learning order). Both of those 

cue orders were also used in two counterbalanced match conditions, in which learning and 

validity order coincided. Since there was no difference between the counterbalancing 

conditions, I merged them and subsequently only refer to cues in order of validity or in 

order of learning, irrespective of the actual content of the cue. 

Participants. Ninety-four participants attended the study, almost 90% of them 

were students, about two thirds of them from the humanities. Twelve participants did not 

reach the learning criterion in Phase 1 within one hour (for a detailed description of the 

experiment, see below). Their learning phase was interrupted, but they finished the 

experiment like all others. Their memory performance in a final test was much worse: 

They only reproduced 69% of all trials correctly, while the remaining participants had a 

mean accuracy of 86% in this final memory task, t(92) = 5.69, p < .001. Thus, these 

twelve participants were excluded in all following analyses. The remaining 82 

participants, 50 of them female, had a mean age of 25.6 years (SD = 3.25, 20 - 36). They 

were randomly assigned either to the match or the mismatch condition, so that there were 

41 participants in each condition. Participants received 15 € for their participation with an 

additional chance to win 10 €, which were granted to the 5 participants with the best 

performance in the final memory task. 

Procedure. The procedure was basically identical to Experiments 1 to 5 (Bröder & 

Schiffer, 2003; 2006). Still, I will describe the newly conducted experiment in detail here. 

First, participants were introduced to the cover story of the experiment, which was an 

invented criminal case: A famous singer was murdered near the pool with a tequila bottle, 

presumably by one of his many former girlfriends. The participants were asked to help 

find the murderer. In an anticipation learning paradigm, they acquired knowledge about 

the individual attribute patterns of 10 suspects, which differed on four cues (dog breed 

etc., see above). Each of the cues could have three different values (e.g., Spaniel, 
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Dalmatian, or Dachshund). The learning procedure was as follows: At the beginning of the 

trial, a color portrait of a young woman and a first name were presented. These were 

randomly assigned to the attribute patterns for each participant, and the 10 patterns were 

ordered in a different random sequence for each participant. Then participants guessed (in 

the first trial) or attempted to reproduce (in subsequent trials) the suspect’s type of dog (or 

trousers, depending on condition) by choosing one of these possible cue values. Then 

participants received feedback: The actual type of dog appeared on the screen and, along 

with the participant’s response, remained there for the duration of the trial. Afterwards, the 

suspect’s type of trousers had to be guessed and so on. After reproducing the fourth cue 

value, the complete cue pattern of this suspect was displayed. This procedure was repeated 

for each of the suspects until completion of a trial on which the participant chose the 

correct value for all four attributes for the suspect. Hence, the whole attribute pattern of a 

suspect was learned before turning to the next suspect. 

The procedure contained a lot of redundancy to ensure overlearning of the 

information. The first attribute pattern containing four cues was learned until it was 

reproduced without error. Then the second pattern was learned until it was also reproduced 

without error and so on. After the participant learned a new attribute pattern, a test 

followed in which all of the patterns hitherto learned were repeated. If at least 90% of the 

learned information was reproduced correctly in this test, a new pattern was presented 

or—after the 10th pattern—the learning phase was finished. If the criterion was not 

achieved, all patterns had to be learned again. One trial is defined as a sequence of 

learning all four cue values of one pattern. Even with a perfect learning strategy, 

participants had to complete at least 63 of these learning trials. 

After this extensive learning phase, participants were told about the evidence 

concerning the critical cues found at the site of crime and the testimonies witnesses had 

given. The validity hierarchy of the four cues was established by telling participants how 

many witnesses agreed on them. For example they were told that four witnesses agreed 

that the suspect had a Spaniel dog, while there were only three witnesses agreeing that the 

suspect was wearing leather trousers. 

In the test phase, all possible pairs of the 10 suspects (altogether 45 pairs) were 

presented to the participants successively in a random order. Seven items that distinguish 

between TTB and compensatory strategies were repeated in order to achieve a more 

reliable strategy assessment. Each time, they had to decide which of two presented 
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suspects was more likely to be the murderer. After the test phase, participants were asked 

again to indicate all cue values for all suspects in a final memory test. Participants needed 

on average 72 minutes to complete the whole experiment. 

2.2.2 Results and discussion 

Learning Phase. There were no differences between the match and the mismatch 

group with regard to the learning phase, in which I also did not expect to find a difference. 

Overall, people needed on average 85 trials to finish the learning phase (SD = 20.43; 65-

142), which took them on average 36 min. The groups also did not differ in their memory 

performance in the final memory test. On average, people remembered 86% of cue values 

(89, 84, 86, 85 for cues 1, 2, 3, and 4, respectively) in this final test. That is, knowledge 

about the cue values belonging to different suspects was very reliable. 

Strategy Classification. People were classified as users of one of the different 

strategies following again the outcome-based strategy classification after Bröder and 

Schiffer (2003a, see also section 2.1.2). In the match condition, cue validity order and 

learning order were identical. In the mismatch condition, however, participants may either 

use the validity order as a search sequence (according to TTB) or they search cues in the 

order of learning, which I will refer to as a "Take The First" (TTF) heuristic. 

Consequently, TTF was included in the set of possible strategies for the mismatch 

condition.  

In the match condition, there were 21 TTB users, 9 FR users, 8 DR users, and 3 

people who were guessing. Thus, like in the comparable Bröder & Schiffer (2003b) 

experiments, there was a majority of people whose decisions can best be described with 

TTB. In the mismatch condition, there were only 11 TTB users, 8 FR users, 12 DR users, 

and 5 people that appeared to guess. In addition, 5 of the 41 participants were classified as 

using TTF. The strategy distributions across conditions differed significantly, χ2(4, N = 

82) = 9.48, p = .05. However, if TTF and TTB participants are combined into one class, 

the difference between the conditions disappears, χ2(3, N = 82) = 2.04, p = .56. Hence, the 

data support the interpretation that the proportion of TTB users found when validity and 

learning order are confounded may be a composite of "real" TTB users and others using 

TTF.  

Decision times. There was no difference between the match and the mismatch 

condition regarding group decision times, F(1, 80) = 0.06, and no interaction between cue 

and condition, F(2.17, 173.7) = 0.14. Therefore, decision times for people classified as 
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using the same strategy were pooled across the conditions. The mean decision times for 

each outcome-based strategy are presented in Figure 2.3. The pattern is very similar to the 

one obtained in the reanalysis combining Experiments 1 to 5 (see Figure 2.2), although 

somewhat noisier since the sample size is only one fifth of the combined sample size of 

Experiments 1 to 5.  
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Figure 2.3. Mean decision times in seconds (and standard errors) as a function of best 
discriminating cue and outcome-based strategy classification in Experiment 6 including 
five participants who apparently searched in the order of cue retrievability ("Take The 
First") in the mismatch condition. 

 

The main effect of cue is significant, F(2.08, 160.19) = 6.55, p = .002. There was 

also a slight effect of strategy, F(4, 77) = 2.07, p = .09, and an interaction between cue and 

strategy, F(8.32, 160.19) = 2.40, p = .02. Again, TTB users show the largest increase in 

response times, followed by FR, DR and Guessing. Response times are again generally 

higher for FR than for DR. A striking pattern can be seen for the five TTF users: They 

show the shortest response if Cue 3 discriminates, followed by Cue 1, Cue 4 and Cue 2. 

This pattern of response times exactly matches the learning order of the cues. Note that 

this result is far from trivial: The strategy classifications were exclusively based on 

choices. Hence, this congruence of classification and response times constitutes true 

converging evidence for this strategy and the notion of sequential cue search. 
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2.3 General Discussion 

The goal of this chapter was to find converging evidence for processes assumed to 

underlie memory-based multi-attribute decisions. Direct process tracing is not possible for 

memory-based decisions. Therefore, I analyzed response times to validate the idea of 

sequential cue search in multi-attribute decisions from memory and as an independent 

source of support for the outcome-based strategy classification method.  

In this manner, I have tried to answer the call that models should ideally aim to be 

testable with different kinds of data (e.g., Jacobs & Grainger, 1994). The current 

specification of the models of decision making I tested, however, only allowed for making 

qualitative predictions about patterns of response times, but they did not allow for making 

quantitative predictions or for making predictions about the distribution of response times, 

which is another important feature (e.g., Grainger & Jacobs, 1996; Ratcliff, 1978; Ratcliff 

& Smith, 2004). A promising step of specifying similar heuristic models, such as the 

recognition heuristic (Goldstein & Gigerenzer, 2002), has been made by Schooler and 

Hertwig (2005) who embedded the recognition heuristic within the ACT-R framework 

(e.g., J. R. Anderson et al., 2004). I believe that this would be similarly possible for the 

models discussed in this chapter, so that more precise predictions will be hopefully 

possible in the near future. 

Generally, both Bröder and Schiffer’s (2003b, 2006) experiments and the new 

Experiment 6 have shown that simple strategies are rather prevalent in memory-based 

decisions, especially if cognitive load is high. Both the reanalysis of the 5 published 

experiments and the results of the new experiment support the idea of sequential cue 

search. For users of TTB this support is clearest, as their response times increased with the 

number of cues that need to be looked up until the best discriminating cue was found. This 

result seems better explained by sequential search than by global matching because 

regression analyses revealed only a weak relation between RT and item difficulty based on 

feature similarity. For users of DR and FR, the increase based on the position of the best 

discriminating cue was much weaker and, contrary to TTB users, depended more on item 

difficulty based on similarity (at least for DR). In principle, this could be explained by 

both sequential search and global matching. However, I think that the additional finding 

that DR users are generally quicker than FR users is more supportive of sequential search 

assuming that DR users only add up information, while FR users additionally weigh it. At 

least, it is not clear to me how a global matching model could explain this difference. 
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Finally, for TTF users, response time patterns fitted the presumed search order and 

stopping rule, which also favors sequential search. 

The strength of these sequential search effects is surprising. In none of the 

experiments were people instructed to decide quickly, which is usually a prerequisite to 

obtain interpretable response time data. Large inter- and intraindividual differences 

normally inflate noise and demand for large effects. 

A slight increase in response times for users of compensatory strategies, as 

observed, is likely to occur nevertheless because it is possible that someone classified as 

using FR sometimes applies TTB. Moreover, retrieving information in order of validity 

also makes sense for compensatory strategies. For example, a FR user who knows that the 

two most valid cues point towards one suspect does not need to look up further 

information because the less valid cues could never overrule this judgment.  

Experiment 6 was necessary because the previous experiments confounded 

learning order and validity order. Therefore, it is possible that participants in the test phase 

did not try to retrieve cues in order of validity, but simply in the order in which they 

learned them. Thus, the response time pattern I assumed to support the idea of sequential 

cue retrieval in order of validity could have been an artifact of the experimental design. 

However, even in the mismatch condition of the new experiment the data support 

sequential cue retrieval in order of validity for many participants. That is, although it is 

potentially more difficult to retrieve the cues in order of validity, response times still 

increase with the number of the first discriminating cue, starting with the most valid one. 

However, the classification data reveal that a proportion of apparent TTB users actually 

switch to another retrieval order if this is easier to accomplish. Hence, even with "one 

reason decision making", people may actually consider a variety of search orders that go 

beyond the criteria mentioned for example by Martignon and Hoffrage (2002) and Newell, 

Rakow, Weston, and Shanks (2004).  

This result adds a new facet to the debate about how the structure of the 

environment affects human decision making. Usually, the structure of the environment is 

discussed in relation to the performance of different decision strategies. For example, it 

has been shown that people are able to adapt their strategies to the feedback structure of 

the environment (Bröder, 2000; 2003; Payne et al., 1993; Rieskamp & Otto, 2006). That 

is, they learn to apply different strategies depending on which strategy is more accurate. In 

the current experiment there was no accuracy criterion, but strategy use tended to vary 
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with the difficulty of applying a strategy given a certain order of cues in the learning 

phase. The fit between the (learning) environment and the “applicability” of a strategy 

apparently matters. Newell et al. (2004) also provided evidence that people do not solely 

search cues in order of validity, but that instead their search order is, roughly speaking, 

influenced as well by validity as by how often a cue is applicable. In the study reported 

here, the ease of application depended on the learning order of cues and thereby on the 

difficulty to retrieve cues in a certain order. Outside of the laboratory, it will probably 

more strongly depend on the frequency of encountering cues. Our memory system is 

organized in a way which facilitates the retrieval of information which is recent or 

frequent (J. R. Anderson & Schooler, 1991; Deese, 1960; Geoff et al., 2003). 

In Chapter 3, I investigate whether people can have both easily applicable and 

successful strategies outside of the laboratory because they can exploit their memory 

system which mirrors the nonrandom distribution of information. 
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3 Chapter 3                                                                                                  

An Ecological Approach to Memory-Based Heuristics 

 

The question of how people actually search for information in the real world has 

raised quite some interest. Juslin and Persson (2002) argued that TTB is not so simple, 

since all the difficult computations go into ordering cues by validity. Only given this 

validity order, however, can TTB be successful and simple at the same time. Dieckmann 

and Todd (2004) have shown that people do not seem to order cues by validities they 

could learn on a trial-by-trial basis. Instead, people often seem to use much simpler rules 

to order cues, which results in strategies that are more frugal than TTB (i.e., need fewer 

pieces of information) and are better than strategies using a random cue order. However, 

they fall behind the performance of TTB. 

Chapter 2 has demonstrated that people often rely on simple cue-based strategies 

that process information sequentially in memory-based decisions. Building on Dieckmann 

and Todd’s (2004) results that people seem to use simple strategies to order cues, I want to 

explore the possibility that people could exploit their memory system in a way that 

facilitates ordering cues and at the same time is successful. In particular, I want to address 

the question of whether the speed of retrieving information could be used successfully to 

order cues. 

The speed of retrieving information is mostly a function of frequency and recency 

of encountering this information (J. R. Anderson & Schooler, 1991), and also the context 

of the information is important (Schooler & Anderson, 1997). That is, people are most 

likely to come up with cues quickly that they have encountered frequently and recently. 

Betting on the speed of retrieval could exploit some peculiarities of the environment. 

Goldstein and Gigerenzer (2002) reported that it is more likely to encounter information 

about objects with large criterion values: A newspaper analysis revealed that large objects 

(here: German cities) were mentioned more often than small objects. Moreover, the more 

often the name of a city appeared in the newspapers, the more likely people were to 

recognize its name. Building on these two correlations – the correlation between the size 

of a city and how often it is mentioned in the media, and the correlation between how 

often it is mentioned in the media and how often it will be recognized – Goldstein and 
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Gigerenzer demonstrated how people could successfully rely on their recognition if they 

wanted to predict which of two cities has more inhabitants. They labeled using recognition 

to infer values on a certain criterion (like city size) the “recognition heuristic”. 

 

Recognition heuristic: If one of two objects is recognized and the other is not, then 

infer that the recognized object has the higher value with respect to the criterion 

(Goldstein & Gigerenzer, 2002, p. 76). 

 

Schooler and Hertwig (2005), building on the recognition heuristic, have used the 

ACT-R framework (e.g., J. R. Anderson et al., 2004; see also Chapter 1) to specify the 

fluency heuristic (e.g., Jacoby & Dallas, 1981), which stems from the idea that fluency of 

reprocessing can be used as a cue in inferential judgment. In that sense, the fluency 

heuristic is similar to the availability heuristic (Tversky & Kahneman, 1973), which 

assumes that people use the ease of retrieving instances and the frequency of instances 

they retrieve to assess the probability and the frequency of events. In the view of Tversky 

and Kahneman, the availability heuristic can explain all kinds of biases and cognitive 

illusions. Others (e.g., Gigerenzer, 1996), however, have criticized the availability 

heuristic because its underlying processes are still not precisely specified, even more than 

25 years after it has been introduced. The fluency heuristic as defined by Schooler and 

Hertwig transcends this criticism as it is precisely defined in the ACT-R framework and 

thus makes testable predictions where it will succeed and where it will fail. Contrary to 

Tversky and Kahneman, Schooler and Hertwig do not focus on biases, but believe that 

their “implementation of the fluency heuristic offers a definition of availability that 

interprets the heuristic as an ecologically rational strategy by rooting fluency in the 

informational structure of the environment“ (p. 626). 

Schooler and Hertwig applied the notion of fluency to the city paired comparison 

task, as described above. Their specification of the fluency heuristic captures both the 

binary connotation of recognition and the conceptualization of recognition as something 

that gradually increases with repeated exposure. That is, it is applicable in situations in 

which one object is recognized while the other is not as well as in situations in which both 

objects are recognized, but one of them is recognized faster because it has been 

encountered more often. 



Chapter 3 – An Ecological Approach to Memory-Based Heuristics 86 

According to Schooler and Hertwig’s (2005) model of the fluency heuristic for 

paired comparisons, an attempt is made to retrieve both representations of objects from 

memory. If an object’s representation can be successfully retrieved, then it is recognized. 

But even if both objects’ representations can be retrieved, it is still likely that one will be 

retrieved faster than the other, which is the notion of fluency. Fluency is related to the 

number of exposures and is therefore informative. For example, it is likely that one has 

heard more often of “Berlin” than of “Greifswald”. Even if someone recognizes both of 

them, “Berlin” is likely to be recognized faster, which can be used to infer that it is the 

larger city. 

Here, I am interested in extending the idea of fluency to the level of cues. More 

specifically, I believe that not only the fluency of recognizing an object is informative, but 

that the order with which cues about the object come to mind (the more fluent, the 

quicker) could be useful. If, in the German cities task, someone recognized both objects, 

and wanted to rely on further cues to predict which of the two has more inhabitants (which 

I will simply refer to as “city size” subsequently, even when referring to the number of 

inhabitants), the memory system could help people in the following ways. 

People may not only encounter the names of these cities more frequently (which 

was the level of analysis in Goldstein and Gigerenzer, 2002), but are also likely to 

encounter more information about these cities. Encountering more information means two 

things in this context. First, people may encounter more different pieces of information 

about larger objects and, second, they may encounter each piece of information more 

frequently. Note that this will hold especially for positive cue values, that is, for the 

presence of cues (e.g., that a city has an airport, a train station, etc.). Therefore, the fluency 

of retrieving positive cue values could be positively related to the size of the object (i.e., 

city size), and subsequently, the order of retrieving positive cue values will be informative 

because more positive cue values will be available more quickly about the larger object. 

For negative cue values, this relation might be the exact opposite. For example, 

one might know fairly quickly that the rather small city Moers does not have a soccer 

team. However, to know that the 7th largest German city, Essen, also does not have a 

soccer team, might take longer. The reasoning behind this is that people will know more 

positive cue values in general about the larger city Essen, and these other positive cues 

could make them believe that Essen is more likely also to have a soccer team. Although 

this is not the case, people might still think more about it. For Moers, in contrast, many 
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people probably do not even have a single positive cue value in mind and thus can also 

answer quickly that it does not have a soccer team. That is, the fluency of negative cue 

values could be negatively related to city size (i.e., be retrieved more quickly for smaller 

cities), which again is informative. 

A retrieval-based strategy that attempts to predict which of two objects is larger 

could exploit the positive relation between city size and the fluency of positive cue values 

by betting on the object about which more positive cue values come to mind more quickly. 

Such a strategy could also exploit the negative relation between city size and the fluency 

of negative cue values by betting against the object about which more negative cue values 

come to mind more quickly. Both of these features could fuel the success of retrieval-

based strategies. 

A further feature of the memory system that a retrieval-based strategy could 

exploit is that correct cue knowledge should come to mind more quickly than incorrect cue 

knowledge, which is a common finding in the memory literature (e.g., Ratcliff & Smith, 

2004). This is plausible since people will almost exclusively encounter correct 

instantiations of object-cue relations in the environment. Therefore, a person will be more 

likely to end up with a wrong cue value if he or she makes an effort to think about a 

particular cue value that does not come to mind quickly, as is the case with strategies that 

enforce a particular order on the individual (such as TTB). In contrast, retrieval-based 

strategies should be fairly robust against incorrect cue knowledge, because incorrect cue 

values will only be retrieved very slowly and thereby often ignored. 

An experiment was designed to study whether these features exist in a real world 

environment. These data will then be used to simulate the accuracy of retrieval-based 

strategies building on these features in comparison to other strategies. 

3.1 Experiment 

The approach I will take to explore whether ordering cues by fluency is 

ecologically rational relies on the assumption that people’s memory in some sense mirrors 

the environment, as was shown by Goldstein and Gigerenzer (2002), where recognition 

rates mirrored environmental frequencies. Therefore, I believe it to be appropriate to 

investigate the knowledge people have stored in memory as a reflection of the 

environment instead of analyzing the environment directly. More specifically, instead of 

analyzing how often people would actually encounter certain object-cue combinations 
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(such as Hamburg – airport) in the environment, I want to study directly how quickly 

people can retrieve such object-cue combinations. The basic idea of how this can be done 

is to ask people questions of the type “Does object X have cue Y?” The assumption here is 

that the faster people will be able to answer this question, the more fluently available this 

object-cue knowledge is to them. Therefore, an experiment was designed to assess the 

fluency of cues for different objects. These fluencies provided by the data will then be 

used to order cues and to simulate the performances of different cue-based strategies that 

apply this order. These strategies will be called retrieval-based strategies and will be 

compared to other models. 

The experiment needs to assess people’s knowledge about real cues and real 

objects because the ecological argument I am making relies on a nonrandom distribution 

of cues and objects in the real world, which, in turn, are reflected in different fluencies. 

The selection of the real world environment to be studied is thus crucial. First, it is 

important to select an environment about which people have some kind of knowledge. 

Second, it is important that the cues that describe the objects within the environment are 

cues that people would probably use were they to make an inference about the objects. 

And finally, the cues need to be defined and assessed precisely so that their relation to the 

criterion can be specified. In the next section, I will describe the selection of the 

environment. 

3.1.1 The  environment 

The environment in which I studied how the fluency of cues could be implemented 

successfully in cue-based strategies was German cities. German cities were already 

studied to assess the performance of different heuristics in comparison to other models by 

Gigerenzer and Goldstein (1996). The German city environment I studied was an updated 

and altered version of Gigerenzer and Goldstein’s environment. Most importantly, it was 

smaller, so that it was possible to ask participants exhaustively about all city-cue 

combinations. Furthermore, the selection of the cues was more strongly based on what 

people believe to be important cues, resulting in a somewhat different, but still 

overlapping selection of cues. In the following, I want to describe how the cues and the 

cities were selected. 

Selection of the cities. The cities included in the study I will describe below were 

selected based on the publicly accessible Urban Audit database on the internet (Urban 

Audit, 2006a), a large database of European cities which provides much information about 
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each city. The most recent data accessible in this database is from 2001. Urban Audit aims 

at a balanced and representative sample of cities in Europe. To obtain such a selection, a 

few simple rules were followed (quoted from Urban Audit, 2006b):  

 

• Approximately 20% of the national population should be covered by the Urban 

Audit. 

• All capital cities were included. 

• Where possible, regional capitals were included.  

• Both large (more than 250.000 inhabitants) and medium-sized cities (minimum 

50.000 and maximum 250.000 inhabitants) were included.  

• The selected cities should be geographically dispersed within each Member 

State. 

  

Among data for 258 European cities, the database provides information about 35 

German cities, ranging from size, demography, and social aspects to economic indicators. 

Out of these 35 cities, I selected 20 cities at random while at the same time ensuring that 

the relation between cues and city size, described by cue validity (see below), did not 

differ between the set of 35 cities and the set of 20 cities. This procedure guaranteed that 

the subset of 20 cities reflects the Urban Audit set of 35 German cities well. Furthermore, 

I ensured that the set of 20 cities did not contain both the cities Frankfurt (Main) and 

Frankfurt (Oder) because this could be confusing for participants. The cities in the final set 

were: Berlin, Munich, Cologne, Frankfurt (Main), Essen, Bremen, Leipzig, Nuremberg, 

Dresden, Wuppertal, Bielefeld, Wiesbaden, Augsburg, Freiburg, Erfurt, Mainz, Göttingen, 

Moers, Trier, and Weimar. The most recent information on city sizes was dated to 

December 31st, 2003 (City Population, 2006). 

Selection of the cues. For the selection of the cues, two criteria were important. 

First, the cues needed to reflect information that people actually consider to be important 

to predict city size. Second, the cues needed to be precisely definable so that it was 

possible to assess the cue values for different cities. Pachur, Bröder, and Marewski (2006) 

kindly provided data on which cues people actually believed to be important. They asked 

100 participants in an open format which information they believed to be predictive of city 

size and categorized those answers. Among the most frequently mentioned categories, I 

selected those cues I believed to be precisely definable.  
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Note that all cues are binary, most of them naturally so, and the others were 

dichotomized at the median. A value of one points in the direction of the city being large, 

while the value of zero points in the direction of the city being small. Based on these 

binary cue values, the relation between the cues and the criterion (here: city size) can be 

described by the cue validity. The validity of a cue measures how often one cue alone 

would successfully predict which of two cities is the larger one in all possible pairs of 

cities, given that the cue discriminates. That is, to compute the cue validity, one first needs 

to generate all 190 paired comparisons from the 20 cities. Then, on all the paired 

comparisons on which the cue discriminates (i.e., is 1 for one city and 0 for the other), one 

counts how often the larger city actually has the larger cue value. More specifically, the 

cue validity is defined as the number of correct predictions divided by the number of all 

predictions where the cue discriminates between the objects. 

The discrimination rate of a cue is the relative frequency with which a cue 

discriminates between pairs of objects. The more often a cue discriminates between pairs 

of objects, the more useful it is. On the other hand, a cue with a high ecological validity 

and a very low discrimination rate might not be all too useful. For example, the National 

Capital cue in the German city set has a validity of 1, since Berlin is the capital and the 

largest city within Germany. However, the cue only applies to comparisons between 

Berlin and other cities and is useless in all other comparisons between these other cities. 

The cues are described in table 3.1. Appendix A lists a more detailed description of 

where the data was taken from and how the cue values were exactly determined for each 

of the cities (Appendix A, Table A). It also provides the complete German city 

environment as used for the study (Appendix A, Table B). 
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Table 3.1. Definitions of the cues 
 

Cue Validity Discr. 

Rate 

Description 

National Capital 1.00 0.10 Is the city the national capital? 

 

Expositions 0.91 0.52 Are there international expositions in the city? 

 

Airport 0.90 0.52 Does the city have an airport? 

 

Train Station 0.89 0.10 Does the city have a train station where long-distance 

trains stop? 

Soccer Team 0.84 0.51 Does the city have a soccer team in the premiere league? 

 

Industry 0.84 0.51 Is there important industry in the city? 

 

University 0.75 0.19 Does the city have a university? 

 

Harbor 0.71 0.52 Does the city have an important harbor? 

 

Infrastructure 0.66 0.51 Does the city have an above-average infrastructure? 

 

State Capital 0.64 0.48 Is the city the capital of one of the 16 federal states? 

 

Tourism 0.61 0.51 Is the city visited by an above-average number of 

tourists per inhabitant? 
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3.1.2 Methods 

Design and Procedure. As mentioned before, the main purpose of the study was to 

assess the accuracy of people’s cue knowledge and to assess how fluently they retrieve the 

cues. The cue values people believe the cities to have and their fluency will then be used 

to simulate how good sequential decision strategies can be by ordering cues according to 

their fluency. Although therefore the cue knowledge was the main interest of the study, I 

additionally assessed other aspects of people’s knowledge about the cities. 

The study consisted of four parts: a recognition test, a cue knowledge test, an 

inference test, and a questionnaire about criterion knowledge, which were presented in this 

order to all of the participants. In the introduction, participants were informed that the 

purpose of the study is to find out what people know about German cities. In the 

recognition test that followed, participants were asked for each of the 20 cities whether 

they had seen or heard the name of the city before. The cities were presented in random 

order. Note that the purpose of the recognition test was mainly to control whether some 

knowledge about the cities could be expected, which would not be the case if many people 

did not even recognize the city names. My expectation was that a majority of people 

would recognize all of the city names. 

In the cue knowledge task, participants first learned about the eleven cues 

described above. They were given precise definitions of what the cues mean. If the cue 

was dichotomized at the median, they were told that having a positive cue value (e.g., 

having a good infrastructure) here means to have a higher value than the average German 

city. Furthermore, they were again given an overview of all the 20 cities to make the 

reference class clear to them. Then, participants were asked about each of the 220 city-cue 

combinations in the format “Does city X have cue Y?” The order of these city-cue 

combinations were randomized, so that participants could neither anticipate on which city 

nor on which cue they would be probed on the next trial. Furthermore, participants were 

instructed to answer as quickly as possible, but without making avoidable mistakes. Note 

that they could only answer yes or no. That is, if they did not know the cue value, they 

were forced to guess. The reason for that was that response times are likely to be cleaner if 

there are only two options, one for a finger of each hand. Including a third option (“do not 

know”) could have increased the noise on the response time data. 

The inference task consisted of complete paired comparisons between the 20 cities. 

That is, there was a total of 190 paired comparisons, in random order. On each 
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comparison, participants had to indicate which of the two cities was the larger one. This 

task was included to have people’s accuracy on that task as a benchmark for the 

simulations which will be described later. 

Finally, a questionnaire was given to participants to assess direct criterion 

knowledge. That is, participants were asked to indicate the number of inhabitants for those 

cities where they approximately knew it. Assessing people’s direct knowledge of the 

criterion (the size of the cities) was important because it was possible in principle that 

their criterion knowledge was better than their cue knowledge. If this were the case, they 

could use their knowledge about city size in order to estimate the cue values, which could 

pose a problem since I want to model the exact opposite (i.e., I want to use their cue 

knowledge to build models inferring city size). 

Participants. Forty-two participants (29 female) participated in the study. Their 

mean age was 25 years. The experiment lasted on average about one hour plus the time 

people spent on the questionnaire. Participants were paid 0.05 € for each correct answer in 

the cue knowledge and the inference task, and they earned on average about 16 €. 

3.1.3 Results and discussion 

Here I want to report global results and analyze which features of the cue 

knowledge retrieval-based strategies could potentially exploit to make good predictions. 

As expected, it was the case that people’s recognition of the cities was very high. The 

median recognition rate was 95% (i.e., 19 out of 20 cities). Only seven participants failed 

to recognize more than one city. Furthermore, their knowledge of cue values was quite 

good. On average, their cue knowledge was correct on 74.4% of the city-cue combination 

questions (SD = 4.1%). In the inference task, they correctly predicted which of two cities 

was larger in 79.9% of the paired comparisons (SD = 5.5%). Cue knowledge was 

positively correlated with the accuracy on the inference task, r(40) = .41, p = .008. 

The criterion knowledge as assessed on the questionnaire was very low. Out of the 

20 cities, the median number of cities participants specified some correct criterion 

knowledge about was only one, and that was Berlin in almost all cases. This suggests that 

criterion knowledge did not play an important role overall. 

In the introduction of this chapter I speculated about different ways a retrieval-

based strategy could successfully exploit the fluency of cues, which will be explored with 

global response time analyses in the following. Note that all subsequent analyses deal with 



Chapter 3 – An Ecological Approach to Memory-Based Heuristics 94 

the common (i.e., base 10) logarithm of the city sizes, since the distribution of city sizes is 

highly skewed. 

I have speculated that the fluency of cue values could be a function of the size of 

the city because one is more likely to encounter more information about larger cities. For 

each city, the median response time is computed on all participants’ response times 

generated on answers to questions about city-cue combinations of this city, separately for 

all answers, positive answers (i.e., indicating the belief of the presence of a certain cue), 

and negative answers (i.e., indicating the belief of the absence of a certain cue). As 

hypothesized, there was a correlation between city size and the mean logarithmized 

response time of all answers on questions about cue values concerning this city, r(18) = -

.446, p = .049. That is, the larger the city, the more fluent people’s cue knowledge about 

the city. I have speculated additionally that this correlation should exist mainly for 

positive answers, while it should be reversed for negative cue values. 

As hypothesized, there was an even stronger correlation between city size and the 

mean logarithmized response time of positive answers, r(18) = -.673, p = .001. The 

opposite is true for negative answers: the correlation between city size and the mean 

logarithmized response time of negative answers indicates slower answers for larger cities, 

r(18) = .615, p = .004. Figure 3.1 depicts the scatter plots of the relation between city size 

and the median response times of A) positive and B) negative answers. 

Another potential feature to be exploited by retrieval-based strategies is that the 

retrieval of correct cue values (i.e., correct answers to questions about city-cue 

combinations) might be faster than the retrieval of incorrect cue values (i.e., incorrect 

answers to questions about city-cue combinations). By relying on retrieval speed to order 

cues, retrieval-based strategies could be prevented from considering incorrect cue values. 

To test whether correct answers were indeed faster than incorrect ones, I computed the 

median response time on correct and incorrect answers for each participant. Those 

response times were then analyzed with a within-subjects t-test across all participants. As 

hypothesized, the median response times on incorrect answers were slower on average (M 

= 2173 ms; SD = 593 ms) than on correct answers (M = 1758 ms; SD = 347 ms), t(41) = 

8.48, p < .001. 
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Figure 3.1. The relation between the common (i.e., base 10) logarithm of the cities’ 
inhabitants and the mean logarithmized response times (across all participants) of A) 
positive answers, and B) negative answers. The line is the least squares line. 
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3.2 Simulating the Performances of Retrieval-based Strategies 

In this section, I want to use the cue fluencies as assessed in the Experiment to 

simulate the performance of retrieval-based strategies which use the cue fluencies to order 

cues. That is, the nature of this section is rather a prescriptive than a descriptive one. It 

attempts to answer the question of how successful people would be when relying on cue 

fluency to order cues, not the question of whether people actually do so.  

In addition to the participants’ performance on the inference task, two other types 

of benchmarks will be considered against which to test the performance of retrieval-based 

strategies. The first one is the performance of other strategies in the very same 

environment. The strategies I consider here are Minimalist, TTB, and multiple regression, 

which will be described below. The second benchmark will consist of comparing 

strategies relying on retrieval order to strategies that are identical except that they ignore 

the retrieval order and search for information in random order. This benchmark allows for 

the assessment of how much a strategy gains with regard to performance by assuming a 

search in order of retrieval. In the following section, the competing strategies will be 

described before turning to a description of retrieval-based strategies. 

3.2.1 The competitors 

Minimalist. On each paired comparison, this strategy searches cue values on one 

cue for both objects in random order. That is, it assumes a cue-wise comparison of objects 

by always comparing objects on the same cue. As soon as a cue is found that discriminates 

between the two objects, Minimalist stops searching and settles for the object favored by 

this cue. That is, Minimalist is similar to TTB in that it is noncompensatory, but it differs 

with regard to the search order. 

TTB. This strategy searches cue values on one cue for both objects in order of 

validity, starting with the most valid cue. Thus, it also assumes that objects are compared 

cue-wise. As soon as a cue is found that discriminates between the two objects, TTB stops 

searching and predicts that the object favored by this cue has the higher value on the 

criterion. 

Multiple regression. As the most demanding strategy in the set, multiple regression 

always takes all cues into account and linearly combines them to predict the criterion. It 

assigns weights to the different cues, which also take dependencies between cues into 

account, to minimize the least squares difference between a predicted and the true criterion 
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value. That is, it makes continuous predictions. The performance on the paired comparison 

task was assessed by counting on what proportion of the pairs the city which is predicted 

to be larger is also actually the larger one. 

After having described the competitor models, I now want to describe one class of 

retrieval-based strategies as an example,before then comparing the performances of these 

different strategies. 

3.2.2 DifferX – A class of retrieval-based strategies 

In total, I have studied three different classes of retrieval-based strategies. Since all 

of them are rather similar and also yield similar results, I will focus only on the most 

successful one here, for the sake of simplicity. The other two strategy classes and their 

results are reported in Appendix B. 

The common idea behind all of these strategies is that information is looked up in 

the order in which it is retrieved. That is, for each paired comparison, there is one vector 

generated consisting of 22 pieces of information (2 cities x 11 cues). These 22 cue values 

are then ordered by the response time as assessed from each participant on the cue 

knowledge test, starting with the shortest response time. Note that this results in an 

important difference to cue-based strategies such as TTB: While TTB assumes that objects 

are compared on each cue in a lexicographic order, the retrieval strategies dispense with a 

cue-wise search but instead gather evidence for and against each object until a threshold is 

reached. That is, the retrieval-based strategies assume that single pieces of information 

(i.e., cue values for one object) are retrieved sequentially so that objects are not 

necessarily compared on the same cues. For example, someone could quickly retrieve the 

fact that Hamburg has an airport and that Heidelberg does not have a soccer team in the 

premier league, and use this information to infer that Hamburg is the larger city. 

Furthermore, it is entirely possible that someone would retrieve plenty of cues for 

Hamburg, while at the same time nothing comes to his or her mind about Heidelberg, 

allowing for the same inference.  

This also has consequences for measures of frugality describing how many cues 

need to be looked up according to a strategy in order to make a decision. In Gigerenzer et 

al. (1999), looking up one cue for both objects was counted as one cue that was looked up. 

In the following, this is counted as two pieces of information because one cue value is 

looked up for each of the two objects. This is important to keep in mind when comparing 
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the frugality of the retrieval-based strategies to the frugality of the heuristics described in 

Gigerenzer et al. and related papers. 

Note that in the class of strategies described here (and also in the other strategies 

described in Appendix B), negative information about one object counts as information 

favoring the other object. That is, negative information about object B favors object A 

identically, as does positive information about object A. 

The class of strategies I will describe in more detail is labeled DifferX. These 

strategies require a fixed difference in pieces of favoring information between the two 

objects before they stop searching and decide. That is, this strategy continues to look up 

information until this information difference is reached. The X in the label DifferX 

specifies the decision threshold (here: the difference required to stop search). A Differ2 

strategy, for example, requires that the difference between the objects A and B with regard 

to the number of pieces of favoring information is two. In this example, the difference 

would be two given one positive piece of information about object A and one negative 

piece of information about object B. The difference would also be two with two positive 

pieces of information for object A, or with two negative pieces of information for object 

B. Should all pieces of information be looked up before the decision threshold is reached, 

the strategy settles for the object that is favored by more pieces of information. Should 

there be a tie, the strategy guesses. 

3.2.3 Methods 

All of the strategies were used to predict which of two cities is larger on the 190 

paired comparisons which were also presented to participants in the Experiment. The 

models could rely on up to all of the 11 cues (see table 3.1) per city, depending on their 

stopping rule.  

An important distinction needs to be made here between ecological cue values and 

individual cue values. The ecological cue values refer to the true cue values in the 

environment (i.e., those reported in Appendix A, Table B). The individual cue values refer 

to the cue values as indicated by the 42 participants in the Experiment. Therefore, models 

using individual cue values were simulated separately for the 42 participants and then 

averaged across them. 

Models were tested both on the ecological cue values as an upper benchmark and 

on the individual cue values for each participant separately. When relying on the 

individual cue values, for TTB and multiple regression it is additionally important to 
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differentiate how they rely on them (i.e., how they order or weight them). The order of 

cues for TTB and the cue weights for multiple regression were first determined on the 

ecological cue values, and then the strategies could apply the individual cue values using 

the ecological cue order or the ecological cue weights to make predictions (which would 

be a type of crossvalidation). Alternatively, the order of cues for TTB and the cue weights 

for multiple regression were determined on each participant’s individual cue values 

separately, which is a more extensive fitting procedure. Then, the strategies could apply 

the individual cue values using the individual cue order or the individual cue weights to 

make predictions. 

For Minimalist, there were 100 different cue orders randomly determined, 

separately for each of the 42 participants. This was done similarly for the random cue 

order strategies that are counterparts of the retrieval-based strategies (i.e., that are identical 

to the retrieval-based strategies except that they ignore the retrieval order and use a 

random order instead): There were 100 different cue orders simulated randomly, 

separately for each of the decision thresholds, for each of the pairs and for each of the 42 

participants. 

3.2.4 Results 

The competitors’ performances. Performance of the competitor strategies on the 

city environment is depicted in Figure 3.2. Note that performance using ecological cue 

values and performance using individual cue values are also included. Furthermore, for 

TTB and multiple regression, if individual cue values are used, there is a further 

differentiation depending on whether they are ordered or weighted based on ecological cue 

values or based on each participant’s individual cue values. The participants’ average 

performance on the inference task is depicted as well.  

The frugality of the different strategies is also included in the figure. Note that the 

frugality of a strategy did not depend on whether the strategy relied on ecological or on 

individual cue values, except for very minor differences. Hence, only one frugality 

measure per strategy is reported. Further note that this measure of frugality is slightly 

different from the frugality measures reported in Gigerenzer et al. (1999). While 

Gigerenzer et al. counted it as one if one cue was looked up for both objects, I count this 

here as two, since two different pieces of information have been looked up – one cue value 

for object A and one cue value for object B. This is important in comparing the 
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competitors’ frugalities with the retrieval-based strategies, because those dispense with the 

idea of always comparing objects on the same cue (see section 3.2.2). 
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Figure 3.2. Predictive accuracy as percentage of correct inferences in all 190 paired 
comparisons of the 20 cities, depicted for the participants and the different strategies. 
Error bars, where existent, are two standard errors of the mean representing variation 
between the 42 participants. There are no error bars if the ecological cue values were used 
because here there is no variation between participants. 

 

What can be seen in Figure 3.2 is firstly that the performance of the participants is 

well in the range of many of the strategies. The upper benchmark is given by TTB and 

multiple regression using the ecological cue values both to determine the cue order (TTB) 

or the cue weights (multiple regression) and to make predictions. Both perform equally 

well, but suffer as soon as the individual cues are used. But they suffer differently. While 

for TTB it does not matter whether the cue order is determined on the ecological cue 

values or on each participant’s individual cue values, the performance of multiple 

regression drops much more strongly when the cue weights were determined on the 

ecological cues and are then applied to the individual cue weights. Then it performs worse 
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than all instantiations of TTB using individual cue values. If, however, cue weights are 

fitted to each individual, multiple regression outperforms TTB using individual cue 

values. Note, however, that this is a far more complex strategy taking much more 

information into account. While TTB only uses on average 5.1 pieces of information, 

multiple regression always looks up all 22 pieces of information and weighs them in a 

much more complex manner. Minimalist only looks up 3.2 pieces of information on 

average, and its performance is worse than the performance of TTB and multiple 

regression. Interestingly, for Minimalist it does not matter whether it relies on ecological 

or individual cue values. 

What do these performances of these strategies indicate for the performance of 

retrieval-based strategies? First of all, the upper overall benchmark is 85%, which 

describes the performance of both TTB and multiple regression given the ecological cue 

values. Since the retrieval-based strategies need to rely on individual cue values, a more 

realistic benchmark is the performance of the strategies given the individual cue values. 

These are somewhere between 73.1% (multiple regression with ecological cue weights 

and individual cue values), 74.5%-75.8% for the two variants of TTB using individual cue 

values (either with individual or ecological cue orders), and 80.3%, as achieved by 

multiple regression using cue weights fitted to each individual and individual cue values. 

The performance of DifferX. The performance of DifferX and its random 

counterpart is depicted in Figure 3.3. The X-axis plots the decision threshold, while the Y-

axis plots either the predictive accuracy or the frugality. The Y-axis plotting predictive 

accuracy is limited to 85%, which is the upper benchmark performance of either multiple 

regression or TTB using ecological cue values. 
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Figure 3.3. Comparison of the retrieval-based strategy DifferX on A) predictive accuracy 
and B) frugality to their counterpart strategies using a random cue order. The accuracy and 
frugality of the competitors using individual cue values are indicated by the solid 
horizontal lines. 
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The four different curves depicted represent all four combinations of cue order 

(retrieval-based vs. random) and of cue values (individual vs. ecological). The horizontal 

solid lines represent the performances of the competitors using individual cue values. The 

predictive accuracies of multiple regression are further differentiated depending on 

whether multiple regression uses ecological cue weights or individual cue weights (for 

frugality this does not make a difference). For TTB, there is no difference between an 

ecological and an individual cue order, since the predictive accuracies of those two are 

very close to each other (75.8% vs. 74.5%). Therefore, for TTB, the average of those two 

predictive accuracies (75.15%) is depicted. 

The most striking result that can be observed is that the DifferX strategy using the 

retrieval order is much better than its equivalent using a random cue order, as long as not 

too many pieces of information are looked up. The difference is especially pronounced 

(5% to 10%) when only very few pieces of information are taken into account. Only if at 

least two thirds of the information is looked up, the random order is as good as the 

retrieval-based order. 

When looking up information in the order of retrieval, looking up one single piece 

of information is already as successful as Minimalist, which looks up 3.2 pieces of 

information on average. Furthermore, a Differ2 strategy (i.e., a DifferX strategy with a 

decision threshold of 2) is as successful as TTB with only looking up as many pieces of 

information as Minimalist (i.e., approximately two pieces less than TTB) and without any 

knowledge about cue validities (or about their order).  

Congruent with the hypothesis that using the retrieval order might protect people 

from relying on incorrect cue values (which are retrieved more slowly), the retrieval-based 

strategy does not benefit much if the ecological instead of the individual cue values are 

employed. While for the random order strategies using the ecological cue values is already 

beneficial when only a few pieces of information are considered, DifferX only benefits 

from the ecological cue values when approximately at least half of the information 

available is taken into consideration. Thereby, it is much more robust against incorrect cue 

values as TTB or multiple regression, both of which suffered from a large drop in 

predictive accuracy if the individual instead of the ecological cue values were used (see 

Figure 3.2). 

These results are similar to the results of other classes of retrieval-based strategies 

which are reported in Appendix B. They are slightly less successful, in that they cannot be 
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as accurate as TTB while at the same time being more frugal. All of the strategies are as 

good as or better than multiple regression with ecological cue weights with a decision 

threshold which is equal or larger than 2. However, none of the strategies can be as 

accurate as multiple regression if its weights are fitted to each individual. Nonetheless, 

they come reasonably close with taking only a fraction of the information into account and 

without considering the importance of this information. 

With regard to frugality, DifferX is the only strategy which is slightly more frugal 

when relying on a retrieval order rather than a random order. For the other strategies (see 

Appendix B) this is not the case. 

It is somewhat surprising that even DifferX as the most successful retrieval-based 

strategy falls slightly short of the participants’ average performance on the inference task 

(which was almost 80%). Although the general level of criterion knowledge (i.e., knowing 

approximately how many inhabitants a city has) was low, it is possible that people have 

some idea about the order of the cities with regard to city size. For some of the paired 

comparisons people thus might not have needed to retrieve any cues but could answer 

more or less directly, which could explain why they outperformed cue-based strategies. 

For example, people might simply know that Cologne is one of the largest cities in 

Germany and is thus larger than Trier, without being able to specify an approximate 

number of inhabitants, but also without having to retrieve any cues. Additionally, they 

could have also relied on cues that were not assessed by the study. 

3.3 General Discussion 

In the introduction of the chapter I have speculated that sequential cue-based 

strategies could exploit the reflection of the environment in their memory system by 

relying on the fluency of cues to order them. I have hypothesized that there are certain 

features of these fluencies which such strategies could exploit. First, I expected that 

positive cue values (i.e., cue values indicating the presence of a cue) should be more 

fluently available for large objects. For negative cue values (i.e., cue values indicating the 

absence of a cue), this should be exactly reversed: They should be more fluently available 

for small objects. Furthermore, I speculated that correct cue knowledge should be more 

fluently processed than incorrect cue knowledge. This could benefit a strategy that orders 

the cues by their fluency because it makes such a strategy more robust against incorrect 

cue knowledge – it will often not consider incorrect cue knowledge at all. 
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The goal of the Experiment was to assess the fluency of different cues for different 

objects, which was done using an environment consisting of 20 German cities described 

by 11 cues. The Experiment assessed response times to questions regarding cue 

knowledge of the kind “Does object X have cue Y?” The assumption was that the more 

quickly a person could respond to these questions, the more fluently she or he will have 

retrieved the cue value for that particular object. The global analyses of the Experiment 

broadly confirmed the hypotheses about features of fluency that a strategy that orders 

information by fluency could exploit. 

In a second step, the fluencies assessed in the Experiment were used to simulate 

the performance of such strategies using fluency to order information. I have called those 

strategies retrieval-based strategies. To summarize the results, looking up cues in order of 

retrieval largely benefits heuristic inferences in the environment of German cities. The 

retrieval order resulted in better performance than otherwise equivalent strategies that look 

up cues in random order. Also congruent with the hypotheses, the retrieval-based 

strategies did not suffer from applying individual (and thus sometimes incorrect) cue 

values. Comparing the retrieval-based strategies to the other competitors revealed that the 

retrieval order can fuel strategies to perform as well as TTB without having any 

knowledge about cue validities. A Differ2 strategy could even match TTB with looking up 

less information. The comparison with multiple regression is somewhat more difficult. 

Retrieval-based strategies could easily outperform multiple regression if its weight were 

determined on the ecological cue values and then applied to the cue values of each 

individual. However, if the weights were fitted to the cue values of each individual, 

multiple regression outperformed all retrieval-based strategies by some percentage points. 

In sum, the results show that the fluency with which people retrieve cues could 

potentially be used successfully to order information. What has been often considered to 

be a bias due to the “availability heuristic” that relies on what comes to mind first or more 

easily (e.g., Tversky & Kahneman, 1973, 1974) actually proves to be useful if regarded 

from an ecological perspective. In the introduction to the famous book by Kahneman, 

Slovic, and Tversky (1982), Tversky and Kahneman (1982) themselves wrote that in 

“general, these heuristics are quite useful, but sometimes they lead to severe and 

systematic errors” (p. 3). However, after having said this, their work focused almost 

exclusively on instances where the heuristics did not work, often leaving their readers with 

the impression that cognitive illusions and biases are the rule rather than the exception. 
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In contrast to this view, I believe that it is important to study when and why (and 

not if) certain heuristic principles can be successful, and when not. To be able to evaluate 

a cognitive process conclusively one therefore needs to consider the match between the 

cognitive process and the environment in which it operates (Gigerenzer et al., 1999; 

Simon, 1990). Thus, to evaluate ideas more broadly that have their origin in the 

availability heuristic and that were precisely defined here as the fluency of cues, I have 

tried to apply Brunswik’s (1956) ideas of representative design in this chapter, which is 

probably best defined in his following quote: "Generalization of results concerning…the 

variables involved must remain limited unless the range, but better also the 

distribution…of each variable, has been made representative of a carefully defined set of 

conditions" (Brunswik, 1956, p. 53).  

Although I investigated a real world environment here, the conclusions and 

generalizations I drew from the results certainly remain limited. So far, I have only shown 

that the fluency of cues could successfully fuel strategies in one environment. Naturally, 

this can be only a first step, and an obvious next step is trying to extend these results to 

other environments. Furthermore, the question remains open whether people actually do 

use such retrieval-based strategies. This chapter did not deal with this descriptive question 

but rather focused on the prescriptive question of whether people, in principle, could 

successfully use retrieval-based strategies. There were two reasons for that. 

First, there exists a huge body of literature following the seminal work by Tversky 

and Kahneman (1973) demonstrating that what comes to mind first actually has a major 

impact on people’s decisions. Second, and more importantly, it could be argued that the 

design of the Experiment in this chapter does not really allow one to decide conclusively 

which strategy someone is using because the set of objects was chosen to represent the 

real environment, not to differentiate optimally between different strategies. 

I believe this to reflect a more general trade-off that often has to be made between 

representative and controlled design. If one focuses on a representative design that allows 

for processes to be evaluated, one often loses the ability to describe precisely what people 

are doing. In the Experiment described in this chapter, I used real objects described on real 

cues. That is, I studied what people have learnt outside of the laboratory, which is 

important if one wants to make an ecological argument. In turn, with regard to the 

question how people actually make inferences, it cannot be ruled out that they use further 

knowledge not assessed in the study. Furthermore, a representative set of comparisons 
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between objects as used in the Experiment in this chapter will rarely coincide with a set of 

comparisons that allows for discriminating between strategies. 

In Chapter 2, I used a controlled design which was not necessarily representative 

of decision-making outside a laboratory setting. Participants learnt everything they needed 

to answer the questions in the experiments within the laboratory. The comparisons were 

designed to discriminate well between different strategies. This allowed for showing that 

many people used simple heuristics in memory-based decisions and that they process 

information sequentially. But it did not enable an evaluation of whether these heuristics 

are useful or not.  

In sum, I strongly believe that it is important to regard the principles of controlled 

and representative design to be complementary in nature. One needs controlled design to 

understand and describe cognitive processes, and one needs representative design to 

evaluate them. Hopefully, the interplay of Chapters 2 and 3 has contributed both to the 

understanding and the proper evaluation of cognitive processes in memory-based multi-

attribute decisions. 
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Summary and Conclusion 

 

The starting point of the dissertation was the question how people search for 

information in memory when they make decisions. Following the perspective of 

ecological rationality (e.g., Gigerenzer et al., 1999), successful decision strategies are 

anchored both in the human mind and in the environment. Adaptive decision making thus 

requires that people adapt their strategies both to the structure of the environment and to 

the limitations of the cognitive system. In this regard, I am sympathetic to the view put 

forward for example by Schooler and Hertwig (2005) that these limitations may be 

functional. Among other functions, they shape how people search for information in 

memory by facilitating certain ways of searching for information, but hindering others. 

In Chapter 1, I have explored the counterintuitive finding that people with a lower 

short-term memory capacity outperform people with a higher short-term memory capacity 

in a correlation detection task (Kareev et al., 1997). The task consisted of predicting, on 

many trials, which of two objects (X or O) an envelope (which was either red or green) 

contained. There was a correlation between the color of the envelope and the probability 

of encountering the objects. For example, there were more Xs in red envelopes and more 

Os in green envelopes. Detecting this correlation thus helps people to improve their 

predictions. 

I have disentangled two potential explanations for this interesting finding of a low 

capacity advantage, both of which share the idea that people search for information in 

memory and that this search is constrained by capacity limitations. Kareev et al.’s original 

explanation, the small sample hypothesis, was that low digit spans based their estimates of 

the correlation on smaller samples from the environment and thereby perceive it as more 

extreme and detect it earlier. This hypothesis builds on the statistical finding that small 

samples tend to overestimate correlations. 

However, small samples also bear a higher risk of false alarms, making it unclear 

whether they are really advantageous in this regard (R. B. Anderson et al., 2005; Juslin & 

Olsson, 2005). Furthermore, correlation estimates have been observed to increase with 

sample size (e.g., Clément et al., 2002; Shanks, 1985, 1987), which is the opposite of what 

would be expected by the small sample hypothesis.  
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Looking for an alternative explanation, I recognized that Kareev et al.’s task was 

very similar to classical binary choice probability learning tasks which are as simple as it 

can get: people have to predict one of two events with a different probability of occurring. 

For example, event E1 could occur with a probability of p(E1) = .75, while event E2 only 

occurs with p(E2) = 1 – p(E1) = .25. Given that the succession of events is conditionally 

independent, the best people could do is always predicting the more frequent event E1. 

This strategy is called maximizing and would yield an average accuracy of 75%. However, 

the modal strategy is probability matching, that is, to predict the events in proportion to 

their probability of occurrence, with an expected accuracy of only 62.5% on average 

( 22 25.75. + ). 

Why do people fail to see the optimal solution in such a simple task? The typical 

assumption is that people are not smart enough (e.g., West & Stanovich, 2003). In contrast 

with that view, however, there is convergent evidence showing that beings who have 

lower cognitive capacities, such as children, pigeons, or people who are distracted by a 

secondary task, are more likely to behave “rationally” and maximize than the average 

human adult (e.g., Weir, 1964; Wolford et al., 2004). These results that lower cognitive 

capacities actually foster maximizing instead of preventing it invited a different view: 

Probability matching is the result of a more complex strategy – people explore the space 

of hypotheses how to improve performance on the task. One hypothesis people typically 

have in those tasks is that there are patterns in the sequence, and any reasonable pattern 

tends to match the probabilities. Since there are no patterns, however, searching for 

patterns is counterproductive. Therefore, people who do not search for patterns, for 

example because of capacity limitations, are more likely to settle on maximizing and will 

be more successful. 

Thus, the low capacity advantage described by Kareev et al. (1997) could be the 

same kind of phenomenon as the less-is-more effect in probability learning. People with 

lower cognitive capacities make simpler predictions, which are more successful in this 

task. I modeled this alternative hypothesis, which I have called predictive behavior 

hypothesis, and Kareev et al.’s original small sample hypothesis of an exaggerated 

perception of correlations in ACT-R, a cognitive architecture developed by Anderson and 

colleagues (e.g., J. R. Anderson et al., 2004). The models predicted that simpler 

predictions impair performance if the environment changes, while a more exaggerated 

perception of correlation is advantageous to detect a change. 
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Congruent with differences in the way participants make predictions, two 

experiments revealed a low capacity advantage before the environment changes, but a 

high capacity advantage afterwards. Similarly, a third experiment could show that people 

who maximize more strongly because they are distracted by a secondary task have trouble 

adapting to a changing environment. The less-is-more effect comes with a price in an 

unstable environment. Furthermore, it comes with the price that people are more prone to 

false alarms, which was additionally predicted by the model implementation of the 

predictive behavior hypothesis and was supported by a fourth experiment. 

So probability matching may not be as stupid as it initially appears. First of all, it 

seems to be a good strategy in situations where the individual is not alone (Gallistel, 1990; 

Thujisman et al., 1995). Furthermore, the process underlying probability matching, 

searching for patterns, is usually smart, because often the cost of missing a non-random 

sequence could well be higher than the price of detecting patterns where there are none 

(Lopes, 1982). But it looks stupid in stationary binary choice tasks with conditions that 

rarely hold outside of psychological laboratories and casinos (Ayton & Fischer, 2004). 

Probability matching, or its underlying process, is smarter than it appears at first glance. 

Many decisions we have to face, however, will neither be as simple as the binary 

choice paradigm nor depend on such a dearth of information. Therefore, Chapter 2 dealt 

with memory-based decisions in a more complex environment with several cues. The 

work in this chapter was inspired by the work of Bröder and Schiffer (2003b, 2006) who 

implemented the idea of memory search in cue based decisions by introducing a cue-

learning paradigm. Here, participants had to learn cue values about several objects prior to 

decisions about which of two objects is larger on a criterion. During the decision phase, no 

cues were visible, which required participants to retrieve them from memory. 

With this paradigm, Bröder and Schiffer (2003b, 2006) provided a method of 

studying memory-based decisions, which were assumed to be the rule rather the exception 

by many (e.g., Gigerenzer & Todd, 1999), but were only investigated rarely. Instead, most 

research focused on inferences from givens where information is provided by the 

experimenter, for example on the computer screen. Congruent with the findings reported 

in Chapter 1 that memory demands may increase the prevalence of simple decision 

strategies, the results from Bröder and Schiffer show that that the need to retrieve cue 

information from memory induced the use of simple decision strategies, in particular when 

working memory load was high. 
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Contrary to studying inferences from givens, however, studying inferences from 

memory comes with the problem that the decision process is not observable directly. To 

classify people according to the different strategies they assumedly use, Bröder and 

Schiffer (2003b, 2006) thus have relied solely on the outcome of the decisions. Therefore, 

I reanalyzed response times in the data from five experiments conducted by Bröder and 

Schiffer to investigate whether they convergently supported the outcome-based strategy 

classification. I also conducted one new experiment to disentangle a potential confound. 

The idea behind the response time analyses was that the different strategies make different 

qualitative predictions about patterns of response times. A noncompensatory lexicographic 

strategy such as Take The Best (TTB) makes the prediction that people process cues in 

order of their validity and stop as soon as the first cue discriminates between the two 

objects. Thus, for people who apply TTB, paired comparisons where the most valid cue 

discriminates should be quicker than paired comparisons where only the 2nd, 3rd, or 4th 

valid cue discriminate. Compensatory strategies (which include Franklin’s rule, FR, and 

Dawes’s rule, DR), in contrast, do not predict an increase in response time that depends on 

the position of the most valid discriminating cue, since they assume that people always 

look up all cues for both objects (although also compensatory strategies can make use of 

validity order; see Rieskamp & Otto, 2006). 

The response time patterns nicely fitted the outcome-based strategy classifications: 

TTB users showed the largest increase in response times depending on how many cues 

needed to be looked up according to TTB, while there was either no or only a weak 

increase for users of compensatory strategies. Furthermore, people classified as using the 

more complex FR were slower than people classified as using the simpler DR, and people 

who were classified as guessing were fastest. Some people applied a one-reason decision 

making strategy similar to TTB, but did not apply the validity order. Instead, they 

processed cues in the order in which this was easiest to accomplish, namely the order in 

which they were learnt. 

In other words, these people relied on the fluency with which they retrieved the 

cues to order them. In this experiment, the fluency of retrieving information depended 

only on the learning order, and thereby was not informative. Outside of the laboratory, 

however, the fluency of retrieving information is informative because it strongly depends 

on the frequency and recency of encountering information in the environment (J. R. 

Anderson & Schooler, 1991). In many domains, objects with larger criterion values will 
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be more often mentioned in the media, which could be for example shown for 

geographical objects such as cities (Goldstein & Gigerenzer, 2002), but also for political 

parties (Marewski, Gaissmaier, Dieckmann, Schooler, & Gigerenzer, 2005). Congruently, 

Schooler and Hertwig (2005) could show that the fluency of recognizing an object (here: a 

German city) could be used to infer this object’s size. 

In Chapter 3, I extended the idea that fluency is informative to the level of cues. In 

particular, I addressed the question whether people could in principle use the fluency with 

which they retrieve cues to order those cues in cue-based strategies similar to TTB. This is 

important because simple cue-based heuristics such as TTB owe much of their success to a 

correct order in which cues are considered (here: by cue validity). This prerequisite of 

TTB makes it a more difficult strategy than it appears to be at first glance (Juslin & 

Persson, 2002). 

I conducted an experiment to assess the accuracy of people’s cue knowledge 

concerning real world objects (here: German cities), and to assess how fluently they 

retrieve the cues. People were asked questions about attributes of German cities, all of 

which had the format “Does city X have cue Y?” The assumption was that the faster 

people will be able to answer this question, the more fluently available this cue value is to 

them. 

The results of this experiment revealed that the fluency with which cues about 

objects come to mind is indeed informative. People retrieved positive cue values (i.e., cue 

values indicating the presence of a cue, such as, e.g., an airport) more quickly for larger 

cities. This is presumably the case because they have encountered more pieces of 

information about larger cities in the environment. For negative cue values (i.e., cue 

values indicating the absence of a cue), this was exactly the other way around: Negative 

cue values were more fluently available for smaller cities. Furthermore, retrieving 

incorrect cue values was slower on average, which is congruent with findings in the 

memory literature that giving incorrect answers often takes longer (e.g., Ratcliff & Smith, 

2004).  

All of these findings could be exploited by strategies using the fluency of cues to 

order them (which I have called retrieval-based strategies): If a person is asked to infer 

which of two cities is larger, this person will, on average, more quickly come up with 

positive cues favoring the city which is actually larger. Moreover, this person will, on 

average, more quickly come up with negative cues speaking against the city which is 
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actually smaller. Furthermore, ordering cues by fluency will move incorrect cue values 

backwards in the order. This could additionally fuel the success of retrieval-based 

strategies because it prevents those strategies from considering incorrect cue values. 

In a next step, I have used these cue fluencies to simulate how well retrieval-based 

strategies would perform in an inference task. The inference task consisted of all possible 

paired comparisons between the cities about which cue knowledge was assessed in the 

experiment. The basic principle behind all of the retrieval-based strategies is that they 

accumulate evidence for or against the cities in order of cue fluency (starting with the 

most fluent one) until a decision threshold is reached (e.g., that one city is favored by three 

pieces of information). These retrieval-based strategies were compared to strategies that 

are structurally identical except that they looked up cue values in a random order. They 

were also compared to competitor models such as TTB and multiple regression. 

The results of the simulations showed that the retrieval order largely benefited the 

decision strategies. All of the retrieval-based strategies were much more accurate than 

their counterparts using a random order, at least as long as less than two thirds of all 

available information was considered. The difference was most strongly pronounced for 

low decision thresholds and thereby very frugal strategies. The comparison to the 

competitor models showed that the retrieval-based strategies can be as successful as TTB 

or even outperform TTB; one of the retrieval-based strategies (DifferX) could achieve the 

same accuracy as TTB while at the same time being more frugal. Moreover, all of the 

retrieval-based strategies could outperform one version of multiple regression in which 

some kind of crossvalidation was applied (for the details, see section 3.2.3); and while 

only taking a fraction of the information into account, the retrieval-based strategies even 

came close to another version of multiple regression in which the weights were 

extensively fitted to each individual separately. 

These results demonstrate that people do not need to know how important different 

cues are to order them successfully. They can let the environment do the work and rely on 

how the environment is reflected in their memory by simply considering cues in the order 

of fluency with which they are retrieved. I believe that the retrieval-based strategies 

discussed in Chapter 3 are thereby good examples of decision strategies that are both 

anchored in the environment and in the human mind.  

More generally, I hope that my dissertation has contributed to show that humans 

do neither need complete information nor unlimited time to make good judgments. The 
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strategies they use are well adapted both to the environment and to the human mind and 

can thus be successful and simple at the same time. The memory system can help by 

shaping the way people search for information they have stored. It can guide the search 

towards useful information and can prevent people from searching too much information, 

which could be unnecessary or even detrimental. 

In the view of William James (1890) the limitations of memory are thereby one 

important instance of the mind’s selectivity, and since he already formulated this thought 

nicely more than 100 years ago, he shall have the final words of my dissertation: 

 

This peculiar mixture of forgetting with our remembering is but one instance of our 

mind's selective activity. Selection is the very keel on which our mental ship is 

built. And in this case of memory its utility is obvious. If we remembered 

everything, we should on most occasions be as ill off as if we remembered nothing. 

It would take as long for us to recall a space of time as it took the original time to 

elapse, and we should never get ahead with our thinking. (James, 1890, p. 680) 
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Appendix A 

Table A. Definitions of the cues. 
 
Cue Description and Reference 

National / 

State Capital 

The cue “Capital” was divided into “National Capital” (i.e., Capital of 

Germany) and “Federal State Capital” (i.e., Capital of one of the 16 

federal States within Germany). 

 

Expositions  On an exposition database on the internet (Messen.de, 2006) I searched 

for international expositions taking place in 2006 and 2007. All cities in 

which at least one such international exposition took place during that 

period were counted as having international expositions. 

 

Airport This cue assesses whether a city has an airport or not. Since a city might 

have a very minor (e.g., sports) airport, only airports were considered 

about which the “Statistisches Bundesamt” collects data in monthly 

brochures (Statistisches Bundesamt, 2006). In answer to an email 

request, a representative of the “Statistisches Bundesamt” clarified the 

criteria for including airports in the brochures:  In 2006, the brochures 

included those 25 German airports with at least 150 000 passengers per 

year, a threshold defined by the EU. These airports represent almost 

100% of all (international) passenger traffic in Germany. 

 

Stations I focused on major train stations; that is, train stations where ICE trains 

(fast long distance trains) stop (Deutsche Bahn, 2006). 

Soccer  This cue assesses whether a city had a soccer team in the “Bundesliga” 

(premier league) in the season 2005/2006 (Bundesliga, 2006). 
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Industry The defining criterion of whether a city is an important industrial city 

was whether a city was mentioned in the MSN-Encarta (2006) in the 

subsection about industry in Germany. 

 

University The “Higher education compass” on the web contains a university 

search function (Hochschulkompass, 2006). For each of the 35 German 

cities from the Urban Audit database, I looked up whether the city had a 

university or not. Note that only universities were considered, not arts or 

music schools, and also “Fachhochschulen” (universities of applied 

science) did not count. 

 

Harbor This cue assesses whether a city has a harbor or not. Similar to the 

airport cue, only harbors were considered that the “Statistisches 

Bundesamt” considers being “the most important harbors” in Germany 

for inland water transport and for ocean shipping (Statistisches 

Bundesamt, 2004, 2005). 

 

Infrastructure As an indicator for the quality of the infrastructure I used the Urban 

Audit indicator “Multimodal Accessibility”, which assesses how 

accessible a city is in different ways such as by air, by train, and by car 

(Urban Audit, 2006a). For the purpose of the study, this continuous 

indicator was dichotomized at the median multimodal accessibility of all 

the 35 German cities for which data were available on Urban Audit. 

 

Tourism As an indicator for the amount of tourism in each city, I used the Urban 

Audit indicator “tourist overnight stays per resident population” (Urban 

Audit, 2006a). This indicator divides the number of tourist overnight 

stays by the number of inhabitants. That is, it assesses whether a city is 

visited by many tourists relative to its size. For the purpose of the study, 

this continuous indicator was dichotomized at the median multimodal 

accessibility of all the 35 German cities for which data were available 

on Urban Audit. 
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Appendix B 

In the following, I will describe two other variants of retrieval-based strategies that 

are similar to the DifferX strategy described in Chapter 3. Instead of requiring a fixed 

information difference between the two objects, these strategies either require a fixed 

amount of total information or a fixed amount of information favoring one object. Note 

that these two strategies and the DifferX strategy reported in Chapter 3 are identical for a 

decision threshold of 1. 

As with the DifferX strategy, these strategies look up information in order of 

retrieval. Negative information about one object counts as information favoring the other 

object. That is, negative information about object B favors object A identically, as does 

positive information about object A. 

TallyX – Fixed total information. These strategies are tallying strategies 

comparable to Dawes’s rule (without the assumption of cue-wise comparisons). They 

assume that people retrieve a fixed amount of total information, that is, a fixed number of 

pieces of information. As soon as this total information threshold is reached, the strategy 

simply counts which object is favored by more pieces of information and infers this object 

to be larger. If there is a tie, the strategy guesses. These strategies will be called TallyX in 

the following, with X specifying the decision threshold (here: the total number of pieces of 

information the strategy considers before it stops to search for further information). For 

example, Tally3 would look up three pieces of information and then decide for the option 

favored by more pieces of information. 

TakeX – Fixed information favoring one object. These strategies are evidence 

accumulation strategies that stop searching for information as soon as one object is 

favored by enough information, independent of how much information favors the other 

object. These strategies will be called TakeX subsequently, with X again specifying the 

decision threshold (here: number of information pieces that have to favor one object 

before the search for information stops). For example, Take3 would search for information 

until one object is favored by three pieces of information, independent of whether there 

are zero, one, or two pieces of information favoring the other object. Should all pieces of 

information be looked up before the decision threshold is reached, the strategy settles for 

the object that is favored by more pieces of information. Should there be a tie, the strategy 

guesses. 
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Deutsche Zusammenfassung (German Summary) 

Der Ausgangspunkt der Dissertation war die Frage, wie Menschen nach 

Informationen im Gedächtnis suchen, wenn sie Entscheidungen treffen. Nach der 

Perspektive der ökologischen Rationalität (z.B. Gigerenzer et al., 1999) sind erfolgreiche 

Entscheidungsstrategien sowohl im menschlichen Geist als auch in der Struktur der 

Umwelt verankert. Adaptives Entscheiden erfordert folglich, dass Menschen ihre 

Strategien der Struktur der Umwelt und den Beschränkungen des kognitiven Systems 

anpassen. In dieser Hinsicht teile ich die Ansicht, die zum Beispiel von Schooler und 

Hertwig (2005) vertreten wird, dass diese Beschränkungen funktionell sein können. Neben 

anderen Funktionen formen sie, wie Menschen nach Informationen im Gedächtnis suchen, 

indem sie bestimmte Arten des Suchens nach Informationen erleichtern, aber andere 

erschweren. 

In Kapitel 1 bin ich dem kontraintuitiven Befund nachgegangen, dass Menschen 

mit einer niedrigeren Kapazität des Kurzzeitgedächtnisses besser bei einer 

Korrelationsentdeckungsaufgabe abschneiden als Menschen mit einer höheren Kapazität 

(Kareev et al., 1997). Die Aufgabe bestand darin, in vielen Durchgängen jeweils 

vorherzusagen, welches von zwei Objekten (X oder O) sich in einem Briefumschlag, der 

entweder rot oder grün war, befindet. Hierbei bestand eine Korrelation zwischen der Farbe 

des Umschlags und der Auftretenswahrscheinlichkeit der Objekte, beispielsweise war X 

häufiger in roten Umschlägen und O häufiger in grünen Umschlägen. Diese Korrelation zu 

entdecken war folglich hilfreich, um die Vorhersagen zu verbessern. 

Ich habe zwei mögliche Erklärungen für diesen interessanten weniger-ist-mehr 

Befund gegeneinander getestet, die beide auf der Idee basieren, dass Menschen bei dieser 

Aufgabe nach Informationen im Gedächtnis suchen und dass diese Suche durch 

Beschränkungen der Gedächtniskapazität begrenzt wird. Kareev et al.' s ursprüngliche 

Erklärung, die Stichproben-Hypothese, bestand darin, dass Personen mit niedrigerer 

Gedächtniskapazität ihre Schätzungen der Korrelation auf kleineren Stichproben der 

Umwelt gründeten. Statistisch gesehen neigen kleine Stichproben dazu, Korrelationen zu 

überschätzen. Daher, so wurde angenommen, sollten Personen mit niedrigerer 

Gedächtniskapazität Korrelationen als extremer wahrnehmen und sie früher erkennen. 

Jedoch bergen kleine Stichproben auch ein erhöhtes Risiko eines falschen Alarms, 

wodurch unklar ist, ob sie in diesem Zusammenhang wirklich vorteilhaft sind (R.B. 



Appendix 

 

137 

Anderson et al., 2005; Juslin & Olsson, 2005). Außerdem gibt es Untersuchungen, die 

zeigen, dass die Einschätzung von Korrelationen eher mit einer zunehmenden Zahl an 

Beobachtungen ansteigen (z.B., Clément et al., 2002; Shanks, 1985, 1987), was der 

Stichproben-Hypothese exakt entgegensteht.  

Auf der Suche nach einer alternativen Erklärung stellte ich fest, dass Kareev et al.'s 

Aufgabe klassischen binären Wahlaufgaben sehr ähnlich war, die folgendermaßen 

aussehen: Probanden müssen Durchgang für Durchgang tippen, welches von zwei 

Ereignissen E1 oder E2 als nächstes auftreten wird. Beide Ereignisse haben hierbei 

üblicherweise eine unterschiedliche Auftretenswahrscheinlichkeit. Zum Beispiel könnte 

Ereignis E1 mit einer Wahrscheinlichkeit von p (E1) = .75 auftreten, während Ereignis E2 

nur mit p(E2) = 1 - p(E1) = .25 auftritt. Angenommen, die Ereignisreihenfolge sei zufällig. 

Dann ist das Beste, was Menschen tun können, immer das häufigere Ereignis E1 

vorherzusagen. Diese Strategie wird Maximierung genannt und würde eine 

durchschnittliche Genauigkeit von 75% erbringen. Jedoch ist die am häufigsten 

beobachtete Strategie, dass die Ereignisse im Verhältnis zu ihrer 

Auftretenswahrscheinlichkeit vorhergesagt werden. Diese Strategie wird als „probability 

matching“ bezeichnet und hat nur eine erwartete Genauigkeit von 62.5% ( 22 25.75. + ). 

Warum schaffen es Menschen nicht, die optimale Lösung in einer solch einfachen 

Aufgabe zu finden? Die typische Annahme ist, dass Menschen nicht intelligent genug sind 

(z.B., West & Stanovich, 2003). Im Gegensatz zu dieser Ansicht gibt es jedoch 

konvergente Evidenz, die zeigt, dass eine niedrigere Gedächtniskapazität bei dieser 

Aufgabe zu „rationalerem“ Verhalten führt: So schneiden Kinder, Tauben oder Menschen, 

die durch eine Zweitaufgabe abgelenkt werden besser ab als der durchschnittliche 

menschliche Erwachsene (z.B., Weir, 1964; Wolford et al., 2004). Diese Resultate führten 

zu einer anderen Erklärung von „probability matching“: Es scheint nicht das Ergebnis von 

mangelnder Intelligenz zu sein, sondern das Resultat einer komplizierteren Strategie, 

nämlich der Exploration von Hypothesen, wie sich die Leistung bei der Aufgabe 

verbessern ließe. Eine typische Hypothese, die Menschen in diesem Zusammenhang 

haben, ist die Annahme, dass es Muster in der Abfolge der Ereignisse gibt. Jedes 

einigermaßen plausible Muster muss beide Ereignisse proportional zu deren 

Auftretenswahrscheinlichkeiten beinhalten. Da es jedoch in Wirklichkeit keine Muster in 

der Abfolge gibt, ist die Suche nach Mustern kontraproduktiv. Folglich ist es für 
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Menschen, die nicht nach Mustern suchen, z.B. aufgrund von Kapazitätsbeschränkungen, 

wahrscheinlicher, die Maximierungsstrategie anzuwenden und erfolgreicher zu sein. 

Der Vorteil einer geringen Kurzzeitgedächtniskapazität bei der 

Korrelationsentdeckungsaufgabe (Kareev et al., 1997) könnte daher ein ähnliches 

Phänomen sein wie der weniger-ist-mehr Effekt bei binären Wahlaufgaben. Menschen mit 

niedrigerer kognitiver Kapazität treffen einfachere Vorhersagen, die in dieser Aufgabe 

erfolgreicher sind. Ich modellierte diese alternative Hypothese der einfacheren 

Vorhersagen und Kareev et al.'s ursprüngliche Hypothese der extremeren Wahrnehmung 

von Korrelationen in ACT-R, einer kognitiven Architektur von Anderson und Kollegen 

(z.B., J. R. Anderson et al., 2004). Die Modelle sagten vorher, dass einfachere 

Vorhersagen zu schlechteren Ergebnissen führen, sobald die Umwelt sich verändert, 

während eine extremere Wahrnehmung von Korrelationen vorteilhaft ist, um die 

Veränderung zu entdecken. 

Übereinstimmend mit meiner Alternativhypothese, dass niedrigere Kapazität zu 

einfacheren Vorhersagen führt, konnten zwei Experimente zeigen, dass die niedrige 

Kapazität nur solange von Vorteil ist, bis sich die Umwelt verändert, während sie 

anschließend nachteilig ist. Übereinstimmend damit konnte ein drittes Experiment zeigen, 

dass Menschen, die aufgrund der Ablenkung durch eine Zweitaufgabe stärker 

maximierten,  sich nur schwerlich einer veränderten Umwelt anpassen konnten. Der 

weniger-ist-mehr Effekt hat seinen Preis in einer instabilen Umwelt. Außerdem hat er den 

Preis, dass Menschen mit geringerer Kurzzeitgedächtniskapazität eher zu falschen 

Alarmen neigen, was ebenfalls durch das Modell der Hypothese einfacherer Vorhersagen 

vorhergesagt wurde und in einem vierten Experiment bestätigt wurde. 

Folglich ist „probability matching“, oder der Suchprozess, der dazu führt, 

vermutlich doch nicht so dumm sein, wie es zunächst erscheint. Erstens scheint es eine 

gute Strategie in den Situationen zu sein, in denen das Individuum nicht allein ist 

(Gallistel, 1990; Thujisman et al., 1995). Außerdem ist der darunter liegende Suchprozess 

nach Mustern in vielen Situationen intelligent, weil häufig die Kosten des Verpassens 

einer nicht-zufälligen Abfolge höher sind als der Preis des Entdeckens eines Musters, wo 

es eigentlich keines gibt (Lopes, 1982). Es erscheint nur wie ein irrationales Verhalten in 

Situationen wie der binären Wahlaufgabe, die Bedingungen aufweisen, wie sie außerhalb 

von psychologischen Labors und Kasinos nur selten vorzufinden sind (Ayton & Fischer, 

2004).  
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Viele Entscheidungen, denen wir gegenüberstehen, sind jedoch weder so einfach 

wie die binären Wahlaufgaben, noch zeichnen sie sich durch einen solchen Mangel an 

Informationen aus. Folglich beschäftigte sich Kapitel 2 mit gedächtnisbasierten 

Entscheidungen in einer komplizierteren Umwelt, in der es mehrere Informationen gab, 

die für die Entscheidungen eine Rolle spielten. Die Arbeit in diesem Kapitel wurde durch 

die Arbeit von Bröder und Schiffer (2003b, 2006) inspiriert, die die Idee der 

Gedächtnissuche bei Entscheidungen in einem Lernparadigma untersuchten. Hier mussten 

Teilnehmer Informationen über einige Objekte lernen, bevor sie diese Objekte paarweise 

miteinander bezüglich eines Kriteriums vergleichen sollten. Während der 

Entscheidungsphase waren keine Informationen über die Objekte sichtbar, so dass die 

Teilnehmer diese aus dem Gedächtnis abrufen mussten. 

Übereinstimmend mit den Befunden aus Kapitel 1, dass eine begrenzte 

Gedächtniskapazität zur Verwendung einfacherer Strategien führt, zeigen die Resultate 

von Bröder und Schiffer (2003b, 2006), dass die Notwendigkeit, Informationen aus dem 

Gedächtnis abzurufen, den Gebrauch von einfachen Entscheidungsstrategien förderte, 

insbesondere wenn die Gedächtnisbelastung hoch war.  

Das Untersuchen von gedächtnisbasierten Entscheidungen weist jedoch das 

Problem auf, dass der Suchprozess nach Informationen nicht direkt beobachtbar ist – im 

Gegensatz zu Entscheidungen, bei denen die Information am Bildschirm abgerufen 

werden kann. Zur Klassifikation von Menschen hinsichtlich der unterschiedlichen 

Strategien, die sie vermutlich verwendeten, haben Bröder und Schiffer (2003b, 2006) 

daher nur die Entscheidungen selbst berücksichtigt. Um diese Ergebnisse konvergent zu 

unterstützen, habe ich Antwortzeiten in den Daten von fünf Experimenten von Bröder und 

Schiffer reanalysiert. Ein neues Experiment war zusätzlich notwendig, um eine 

konfundierte Variable zu entwirren. 

Die Idee hinter den Antwortzeitanalysen war, dass die unterschiedlichen Strategien 

unterschiedliche qualitative Vorhersagen über das zu erwartende Muster an Antwortzeiten 

machen. Eine nichtkompensatorische lexikographische Strategie wie „Take The Best“ 

(TTB) macht die Vorhersage, dass Menschen die Informationen in der Reihenfolge ihrer 

Wichtigkeit (Validität) verarbeiten und die Suche beenden, sobald eine Information 

zwischen den zwei Objekten diskriminiert. Für Menschen, die TTB anwenden, sollten 

Vergleiche zwischen Objekten, in denen bereits die wichtigste und daher erste Information 

diskriminiert weniger Zeit in Anspruch nehmen, als Vergleiche, in denen erst die 2., 3. 
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oder 4. Information diskriminiert. Kompensatorische Strategien wie zum Beispiel 

„Franklins Rule“ (FR) oder „Dawes Rule“ (DR) gehen dagegen davon aus, dass immer 

alle Informationen berücksichtigt werden. Daher ist ein Anstieg der Antwortzeiten wie bei 

TTB für Personen, die diese Strategien verwenden, nicht zu erwarten. 

Die vorgefundenen Antwortzeitmuster passten tatsächlich genau zu den auf den 

Entscheidungen beruhenden Strategieklassifikationen: Benutzer von TTB zeigten die 

größte Zunahme der Antwortzeiten in Abhängigkeit davon, wie viele Informationen TTB 

für eine bestimmte Entscheidung benötigte, wohingegen es für Benutzer von DR oder FR 

keine oder nur eine schwache Zunahme der Antwortzeiten gab. Außerdem waren Benutzer 

der komplizierteren FR insgesamt langsamer als Benutzer von DR, da FR zusätzlich zu 

dem Addieren von Informationen auch noch das Gewichten von Informationen erfordert. 

Am schnellsten waren Personen, die anscheinend geraten haben und somit gar keine 

Informationen berücksichtigen mussten. Einige Menschen wendeten eine 

nichtkompensatorische Strategie an, die TTB ähnlich ist, die aber Informationen nicht in 

der Reihenfolge der Wichtigkeit verarbeitet, sondern in der Reihenfolge, in der dies am 

einfachsten ist, nämlich in der Reihenfolge, in der die Information gelernt wurde. 

Das heißt, diese Menschen nutzten die Flüssigkeit, mit der sie Informationen 

abrufen konnten, um diese zu ordnen. In diesem Experiment hing die Flüssigkeit des 

Abrufens von Informationen nur von der Lernreihenfolge ab und war daher nicht 

informativ. Außerhalb des Labors jedoch ist die Flüssigkeit des Abrufens von 

Informationen informativ, weil sie stark davon abhängt, wie häufig und wie kürzlich man 

dieser Information in der Umwelt begegnet ist (J. R. Anderson & Schooler, 1991). In 

vielen Domänen tauchen Objekte mit größeren Kriteriumswerten häufiger in der Umwelt 

(z.B. den Medien) auf. Dies gilt beispielsweise für geographische Objekte wie Städte 

(Goldstein & Gigerenzer, 2002), aber auch für politische Parteien (Marewski, Gaissmaier, 

Dieckmann, Schooler & Gigerenzer, 2005). Damit übereinstimmend konnten Schooler 

und Hertwig (2005) zeigen, dass die Flüssigkeit des Erkennens eines Objektes (hier: einer 

deutschen Stadt) dazu benutzt werden kann, um die Größe dieser Stadt zu erschließen.  

In Kapitel 3 erweiterte ich die Idee, dass Flüssigkeit informativ ist, auf die Ebene 

von Informationen über Objekte. Insbesondere adressierte ich die Frage, ob Menschen die 

Flüssigkeit, mit der ihnen Informationen über Objekte in den Sinn kommen, prinzipiell 

verwenden könnten, um diese Informationen zu ordnen. Die Reihenfolge, mit der 

Informationen berücksichtigt werden ist für Strategien wie TTB von großer Bedeutung, da 
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ein großer Teil des Erfolges dieser Strategien auf eine gute Reihenfolge zurückzuführen 

ist. Diese Vorbedingung von TTB macht daraus in den Augen einiger Forscher eine 

schwierigere Strategie, als es auf den ersten Blick erscheint (Juslin & Persson, 2002). 

Um zu erheben, wie genau und wie flüssig Probanden verschiedene Informationen 

über verschiedene Objekte parat hatten, führte ich ein Experiment durch, in dem ich sie 

über deutsche Städte befragte. Die Fragen bezogen sich auf insgesamt elf verschiedene 

Attribute, die jede von 20 ausgewählten Städten entweder aufwiesen oder nicht (z.B., ob 

eine Stadt einen Flughafen hat oder nicht). Die Annahme war, dass die Probanden diese 

Fragen umso schneller beantworten konnten, je flüssiger die Informationen vorhanden 

waren. 

Die Ergebnisse dieses Experimentes zeigten, dass die Flüssigkeit, mit der den 

Probanden Informationen über die Städte in den Sinn kamen, in der Tat informativ ist. 

Positive Informationen (d.h., das Vorhandensein bestimmter Attribute, wie beispielsweise 

eines Flughafens) hatten sie schneller parat für größere Städte, vermutlich, weil ihnen 

Informationen über größere Städte häufiger in ihrer Umwelt begegnen. Für negative 

Informationen (d.h., für  das Fehlen eines Attributs), war dies genau umgekehrt: Negative 

Informationen konnten flüssiger für kleinere Städte abgerufen werden. Zusätzlich war der 

Abruf falscher Informationen (d.h., das falsche Beantworten einer Frage) im Durchschnitt 

langsamer als der Abruf korrekter Informationen, was mit vielen Befunden der 

Gedächtnisliteratur übereinstimmt (z.B., Ratcliff & Smith, 2004). 

Diese Ergebnisse könnten nützlich sein für Strategien, die Informationen nach der 

Flüssigkeit ordnen. Wenn eine Person gebeten wird, vorherzusagen, welche von zwei 

Städten größer ist, werden dieser Person im Durchschnitt schneller positive Informationen 

über die Stadt in den Sinn kommen, die tatsächlich größer ist. Ferner werden ihr schneller 

negative Informationen über die Stadt in den Sinn kommen, die tatsächlich kleiner ist. 

Zudem geraten inkorrekte Informationen in der Rangfolge nach hinten, da diese langsamer 

abgerufen werden, was eine Strategie davor schützen könnte, falsche Informationen 

überhaupt zu berücksichtigen.  

In einem nächsten Schritt habe ich die erhobenen Flüssigkeiten des 

Informationsabrufs dazu verwendet, um zu simulieren, wie gut einfache Strategien sein 

können, die Informationen nach dieser Flüssigkeit ordnen. Die Aufgabe bestand darin, in 

allen möglichen Paarvergleichen zwischen den 20 im Experiment verwendeten Städten 

vorherzusagen, welche der beiden Städte die größere ist. Das Grundprinzip hinter all 
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diesen Strategien ist, dass sie Evidenz für oder gegen die Städte akkumulieren, in der 

Reihenfolge der Flüssigkeit (beginnend mit der flüssigsten Information), bis eine 

Entscheidungsschwelle erreicht ist (z.B., wenn drei Informationen dafür sprechen, dass 

eine Stadt die größere ist). Diese Strategien wurden mit Strategien verglichen, die 

strukturell identisch sind, außer dass sie Informationen in einer zufälligen Reihenfolge 

verwendeten. Ferner wurden sie auch mit anderen Entscheidungsmodellen wie TTB oder 

multipler Regression verglichen.  

Die Simulationen zeigten, dass das Ordnen der Informationen nach Flüssigkeit 

sehr erfolgreich ist: Strategien, die dies taten waren wesentlich erfolgreicher als 

Strategien, die die Informationen in einer zufälligen Reihenfolge verwendeten, 

insbesondere dann, wenn insgesamt nur wenige Informationen berücksichtigt wurden. Der 

Vergleich mit den anderen Modellen ergab, dass die Strategien, die die Informationen 

nach Flüssigkeit ordneten, genauso erfolgreich wie oder sogar erfolgreicher waren als 

TTB, zum Teil sogar oder unter Verwendung von weniger Informationen! Teilweise 

konnten diese Strategien sogar mit multipler Regression mithalten – und all das, ohne 

auch nur die geringste Ahnung von der Wichtigkeit der Informationen zu haben. 

Menschen können hier folglich einfach die Struktur der Umwelt, wie sie sich in ihrem 

Gedächtnis widerspiegelt, die Arbeit machen lassen und sich auf das verlassen, was ihnen 

als erstes in den Sinn kommt. 

Im Allgemeinen hoffe ich, dass meine Dissertation dazu beigetragen hat, zu 

zeigen, dass Menschen weder vollständige Informationen noch unbegrenzte Zeit brauchen, 

um gute Urteile zu fällen. Die Strategien, die sie verwenden, sind angepasst an die 

Strukturen der Umwelt und an den menschlichen Verstand und können daher erfolgreich 

und einfach zugleich sein. Das Gedächtnis kann helfen, indem es die Art und Weise formt, 

in der Menschen nach Informationen suchen, die sie zuvor gespeichert haben. Es kann die 

Suche in Richtung der nützlichen Informationen lenken und hindert uns daran, zu viele 

Informationen zu suchen, die nicht notwendig oder sogar schädlich sein könnten. Einen 

ähnlichen Gedanken hatte bereits Williams James (1890): Aus seiner Sicht, die ich voll 

und ganz teile, sind die Beschränkungen des Gedächtnisses ein wichtiger Teil der 

überlebenswichtigen Selektivität unseres Verstandes.  
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