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Abstract

Accurate quantifications of protein–ligand binding affinities by means of in silico methods in-
creasingly gain importance in various scientific branches including toxicology and pharmacol-
ogy. In silico techniques not only are generally less demanding than laboratory experiments
regarding time as well as cost, in particular, if binding assays or synthesis protocols need to be
developed in advance. At times, they also provide the only access to risk assessments on novel
chemical compounds arising from biotic or abiotic degradation of anthropogenic substances.
However, despite the continuous technological and algorithmic progress over the past decades,
binding free energy estimations through molecular dynamics simulations still pose an enormous
computational challenge owed to the mathematical complexity of solvated macromolecular sys-
tems often consisting of hundreds of thousands of atoms. The goals of this thesis can roughly be
divided into two categories dealing with different aspects of host–guest binding quantification.
On the one side algorithmic strategies for a comprehensive exploration and decomposition of
conformational space in conjunction with an automated selection of representative molecular
geometries and binding poses have been elaborated providing initial structures for free energy
calculations. In light of the dreaded trapping problem typically associated with molecular dy-
namics simulations, the focus was laid on a particularly systematic generation of representatives
covering a broad range of physically accessible molecular conformations and interaction modes.
On the other side and ensuing from these input geometries, binding affinity models based on the
linear interaction energy (LIE) method have been developed for a couple of (bio)molecular sys-
tems. The applications included a successful prediction of the liquid-chromatographic elution
order as well as retention times of highly similar hexabromocyclododecane (HBCD) stereoiso-
mers, a novel empirical LIE-QSAR hybrid binding affinity model related to the human estrogen
receptor α (ERα), and, finally, the (eco)toxicological prioritization of transformation products
originating from the antibiotic sulfamethoxazole with respect to their binding affinities to the
bacterial enzyme dihydropteroate synthase. Altogether, a fully automated approach to binding
mode and affinity estimation has been presented that is content with an arbitrary geometry of a
small molecule under observation and a spatial vector specifying the binding site of a potential
target molecule. According to our studies, it is superior to conventional docking and thermody-
namic average methods and primarily suggesting binding free energy calculation on the basis of
several heavily distinct complex geometries. Both chromatographic retention times of HBCD
and binding affinities to ERα yielded squared coefficients of correlation with experimental re-
sults significantly higher than 0.8. Approximately 85% (100%) of predicted receptor–ligand
binding modes deviated less than 1.53Å (2.05Å) from available crystallographic structures.





“In a time of universal deceit – telling the truth is a revolutionary act.”

George Orwell
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1 Introduction

One of the most prominent as well as challenging tasks tackled by molecular simulations
is the investigation of molecular interactions playing a crucial role in fairly all chemical
processes. Scientists from various areas of applied and life sciences including medicine,
pharmacy, chemistry, biology, and material sciences are eagerly interested in a reason-
able quantification of interactions between molecules. [1,2] In fact, it is due to molecular
interactions that life in the form we know it exists. The entire metabolism and morpho-
genesis of living cells from the very first contact of two gametes through to a matured
organism and beyond is quintessentially determined by interatomic and intermolecular
forces. Comprising way more than 10⁵ sorts of small molecules and macromolecules,
the extremely sophisticated dynamic and kinetic arrangement of human compounds
is primarily triggered by binding affinities between them. In vertebrates and other
highly developed organisms, these reversible association–dissociation processes partic-
ularly include signal transduction through hormones and neurotransmitters triggering
some biochemical reaction, chemical modifications of small compounds or proteins by
enzymes, gating small molecules or ions through cell membranes, and the elimination
of exogenous substances/antigens by antibodies. [3,4] What all those processes have in
common is the involvement of a host or target molecule that is typically a protein and
some small compound such as a hormone, neurotransmitter, substrate, or other ligand
which we will term guest molecule. Especially during drug discovery, one is frequently
interested in the determination of binding affinities for such host-guest complexes arising
from non-covalent association of the two components. That is because pharmaceutical
drugs are often intended for high affinity binding to particular target proteins either in
order to activate their biological function (acting as an agonist) or to suppress it (an-
tagonistic effect) where the latter type of drugs are often categorized as inhibitors. It’s
in particular the inhibiting effect on the binding of endogenous (natural) agonists that
affect human metabolism and lead to undesirable adverse effects. [5] Therefore and in
the light of development costs in the order of one billion US-$ for new drugs [6,7] one
is, prior to chemical synthesis, heavily interested in as much foreknowledge about po-
tential molecular interactions with human target structures as possible. At this point,
computational methods come into play and the whole story this thesis is about indeed



Chapter 1. Introduction

concerns the prediction of binding affinities for host–guest systems with the help of
computational tools also referred to as in silico methods. At a very early stage of target-
based drug discovery denoted as hit identification, possible lead compounds are filtered
from large digital libraries of small chemicals using rapid and, therefore, approximative
high-throughput virtual screening techniques. Upon subsequent lead optimization, the
resulting set of hits is further optimized and narrowed down to one or few candidates for
clinical development. This phase certainly requires much more accurate computational
methods that produce more reliable results at the cost of time. Although computa-
tional methods considerably save time and money needed for laboratory experiments,
the entire drug development process usually lasts a couple of years. [8] An as accurate
as possible estimation of host–guest binding affinities is not only strived after by the
pharmaceutical sector. For human and ecotoxicologists, in silico techniques often pro-
vide a convenient approach to toxicity assessment in addition to in-vitro and in-vivo
methods which are generally more expensive regarding time and money. [9] This partic-
ularly concerns the vast number of transformation products arising from biotic or abiotic
degradation of anthropogenic substances. Though many of them are detected by ex-
perimental methods, they are often not available for intensive risk assessment by means
of laboratory experiments due to lacking synthesis protocols. [10]

In terms of thermodynamics the host–guest binding affinity is related to the difference
∆G in Gibbs free energies associated with two more or less distinct states of the system
under investigation, namely the bound and the unbound one (see Figure 1.1). Later,
we will see that ∆G is composed of an enthalpic and entropic term. The former con-
tribution represents changes in the system’s inner energy that is energies due to atomic
motions and interactions. Temperature-dependent entropic contributions, in contrast,
quantify the loss of conformational flexibility upon binding. [11] As already indicated,
the pallet of common methods for binding affinity estimation that we will discuss in de-
tail in the next chapter range from very fast but less accurate similarity-based regression
models and scoring functions up to as accurate as computationally demanding physical
methods requiring a large number of molecular dynamics (MD) or Monte Carlo (MC)
simulations. [12,13] Thus, for the choice of a proper algorithm one generally needs to

Figure 1.1: Schematic illustration of a reversible and non-
covalent association/dissociation reaction of a ligand (green) and

target (red) molecule associated with binding energy ∆G.
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trade off computational costs against accuracy. Most strategies including particularly
the accurate ones try to calculate an estimate for those thermodynamic quantities which
is, for several fundamental reasons, a highly nontrivial task. On the one hand, more
or less accurate physical models referred to as force fields are required for the quantifi-
cation of atomic interactions due to repulsive or attractive forces. These models can
be arbitrarily fine-grained starting form quantum mechanical (QM) ab-initio meth-
ods that directly solve Schrödinger’s equation by taking into account the influence of
every single electron. However, even with several semi-empirical approximations in-
cluding the density functional theory, a quantum mechanical representation of solvated
biological systems consisting of thousands to millions of atoms such as a typical mem-
brane protein depicted in Figure 1.2 is absolutely impractical. [14,15] Not until an entirely
classical treatment of biological systems it was possible to mimic molecular dynamics

Figure 1.2: VMD snapshot of a rectangular explicit solvent simulation box contain-
ing approximately 10⁵ atoms: the µ-opioid receptor (represented by violet α-helical
secondary structure elements) embedded in a horizontal cell membrane (blue fatty

acid carbons with red oxygen atoms).
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Chapter 1. Introduction

and calculate thermodynamic energies within reasonable time. The term classical is at-
tributed to Newton’s classical mechanics which, contrary to QM, builds the fundament
for classical molecular mechanics force fields and MD simulations (discussed in detail in
Chapter 3). In the classical approximation, electrons are not considered explicitly any-
more but represented implicitly in the form of covalent bonds and partial charges that
are assigned to atomic nuclei. [15] Analogously, any type of interaction between particles
(nuclei) is modelled using preferably simple additive potential functions comprising
predetermined parameters provided by an empirical force field.

The first attempts of MD simulations by the end of the 1950s are attributed to Alder
and Wainwright on the repulsive interaction of hard spheres modelled by discrete func-
tions. [16,17] Only few years before, Metropolis and co-workers had already developed
and published the first Monte-Carlo (MC) approach to the simulation of hard spheres
which, in contrast to the deterministic MD method, performs some random walk
through conformational space. [18,19] These calculations were carried out on the MA-
NIAC I computer hosted at Los Alamos National Laboratory. Over decades, the molec-
ular systems under consideration grew, potential functions became continuous (and
more time-consuming) [20] and charge potentials [21] as well as condensed phase sys-
tems including macromolecules [22,23] came into play. Until today, classical MD simula-
tions of complex macromolecular systems surrounded by explicit water molecules have
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Figure 1.4: Time scale problem of MD simulations and periods of typical molec-
ular oscillations on the basis of biological systems.

evolved into ordinary day-to-day routines. The dynamics of protein–protein, protein–
DNA complexes, and protein-protein complexes embedded in cell membranes is eas-
ily investigated in particular due to the progress and interplay of parallel computing
strategies, intelligent algorithms and fast processors. [23,24] Figure 1.3 shows the per-
formance development of supercomputers measured in floating point operations per
second (FLOPS) and the size of typical MD systems over the past six decades. Unfor-
tunately, there is a technical limit to the degree of parallelization of MD simulations
since corresponding software inherently does not scale linearly. If the calculation of a
molecular system is distributed over too many computing cores, additional CPU time
due to increased communication between the cores referred to as overhead will, from
some number of cores on, outweigh the gain of time through parallelization. As a con-
sequence and despite of all the sophisticated enhancing techniques available today, the
real computational time required for the classical MD simulation of a virtual second
of typical biological systems amounts to thousands of years! The time-scale problem
associated with deterministic MD simulations is illustrated by Figure 1.4 on the basis
of a macromolecular 200k atoms system (to a great extent consisting of explicit space-
filling solvent molecules) MD run using 24 modern Intel Xeon Haswell computing
cores. The computational effort is mainly due to a tiny time step size in the order of
10−15 s = 1 fs used by the numerical MD integrator. This is a substantial requirement
for a sufficient sampling of the fastest molecular oscillations as are related to chemi-
cal bonds. Consequently, 10¹⁰ to 10¹⁵ are necessary in order to observe considerable
conformational changes in proteins (Figure 1.4). Applied to distances, that difference
in time scales is comparable to recirculating our solar system by making steps of 1 m
size. However, our simulations used for binding free energy estimations in upcom-
ing chapters will reflect virtual time in the order of 0.1 to 1ns which is sufficient for
reasonable energies averaged over side chain rotations. And indeed, such torsional pro-
cesses are mainly responsible for the conformational fit of a host–guest complex. This
brings us to the first of two related reasons why a rigorous calculation of free energies

5



Chapter 1. Introduction

actually implies a spacious sampling of the entire conformational space. [25–27] Bound
and unbound states are neither static nor clearly distinct but rather statistical entities
connected through a conversion process termed induced fit. The underlying molecular
recognition mechanism is characterized by mutually induced conformational changes
of the involved molecules upon binding. [28,29] Further, thermodynamic free energy dif-
ferences as determined by biological assays are related to distributions of a vast number
(typically in the order of 10²³) differing host–guest molecular geometries (conforma-
tions) which are present simultaneously. [15,24] It seems therefore reasonable to estimate
binding free energies statistically on the basis of properly distributed ensemble averages
of microstates instead of relying on a single geometry. Certainly, the question arises of
how many samples would be necessary in order to have the entire conformational (some
would say configurational) space covered. The answer brings us immediately to the next,
by means of computer simulations, challenging property of biological systems which is
related to the huge number of atoms. Not only does a system consisting of N atoms
require – for every single time step – a time-consuming computation of 3N partial
derivatives for conformational sampling purposes and about N 2 force field evaluations
for potential energy calculation if the interaction between any pair of two atoms is con-
sidered. [24] Apart from the complexity of the mathematical space it is in particular the
combinatorial number of possible conformers that drastically increases. For the sake
of illustration, consider the linear molecule n-butane consisting of four serial carbon
(indexed with 1-4) and ten hydrogen atoms depicted in Figure 1.5. As with any other
single bond that is not strictly embedded in a cyclic structure, this molecule is able to
rotate around (among others) the central C₂–C₃ bond resulting in various conformers
due to differing dihedral angles which are associated with different potential energies
U . The dihedral angle ϕ also referred to as torsion angle formed by four consecutively
connected atoms {C₁,…,C₄} serves as a measure for the rotational degree. In the con-
text of molecules, it corresponds to the angle between two planes which are defined by
{C₁, C₂, C₃} and {C₂, C₃, C₄}, respectively. The absolutely lowest energy conformer
denoted as anti with ϕanti = 180◦ (sketched in colors at the top of Figure 1.5) is at-
tributed to a maximum distance between the two terminal methyl groups accompanied
by minimum mutual steric hindrance. In contrast to the highest energy geometry in-
dicated by the Newman projection in the upper right corner with ϕ ≈ 0◦ = 360◦),
the anti conformation would correspond to the staggered case with the methyl group
in the foreground pointing downward. Since molecules tend to occupy states with low
energy, anti happens to be the most probable conformation. Due to two further stag-
gered conformations both denoted as gauche (ϕgauche = 180◦ ± 120◦) and associated
with slightly higher potential energies than the anti rotamer itself, the potential energy

6
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Figure 1.5: Potential of butane depending on the all-carbon dihedral angle.

surface (PES) projected on the central butane dihedral angle exhibits three energeti-
cally favorable conformations within 2π which are seperated by relatively high energy
barriers. [30] Free energy calculations of small molecules such as butane are feasible nowa-
days. Instead, imagine a molecule consisting of thousands of rotatable bonds. Already
the backbone atoms alone of a medium-sized protein consisting of 500 amino acid (AA)
residues form 1000 relevant dihedral angles. Theoretically, this yields a combinatoric
diversity of 3¹⁰⁰⁰ or circa 10⁴⁷⁷ local minima on the thousand-dimensional PES defined
on the protein backbone’s set of ϕ andψ angles. This mathematical problem also known
from other fields than molecular simulation is often referred to as curse of dimensionality.
Figure 1.6 illustrates the concept of these two dihedral angles using a tripeptide con-
sisting of AA alanine by way of example. The overall secondary and tertiary structure
of proteins is sufficiently described by its ϕ and ψ angles. Besides, in our complexity
calculations we have neglected rotatable dihedrals of AA side chains and the fact, that
both ϕ and ψ angles exhibit even more than three minima upon a complete cycle.

2

N–AA1 AA2 AA3–C

1 1 3 3

2

Figure 1.6: ϕ/ψ dihedral angles of protein and peptide
backbones illustrated using trialanine peptide.
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Despite the issues discussed above, several more or less accurate strategies (discussed in
Chapter 2) allowing for the estimation of free energies and biochemical binding affini-
ties have been developed. [26,27] What they have in common is that only a tiny portion
of space representing the most favorable host–guest complex is taken into account. On
that note, it is a matter of vital importance to have the native macromolecular 3D-
structure in the main available. Various methods developed for template-based or de
novo prediction of secondary and tertiary protein structure [31–35] certainly suffer from
the mathematical complexity as well and do not often yield sufficiently accurate re-
sults. [36,37] As a general rule, calculated binding affinities are the more reliable the less
approximations and predictions have been incorporated. Fortunately, more than 10⁵
3D protein structure files resolved experimentally by X-ray crystallography or nuclear
magnetic resonance (NMR) spectroscopy [38–40] are available online at the Protein Data
Bank [41] (PDB) organized by the Research Collaboratory for Structural Bioinformatics.
Many entries of the PDB include structural information about bound ligands, reveal-
ing host–guest binding modes and target binding sites. Without these specifications,
binding affinity estimations for protein–ligand systems would basically become a funny
guessing game without any award. Structural data of PDB does not only substantially
increasing the reliability of free energy estimations but is in turn useful for the develop-
ment of force field parameters and gives insight into structural properties and molecular
interactions. Figure 1.7 exemplarily shows the procaryotic enzyme dihydropteroate syn-
thase (DHPS) in complex with a biphosphorylated pteridine derivate on the left (PDB
entry 1AJ2) and with its exzymatic product dihydropteroate on the right (PDB entry
1TX0) which resulting from the replacement of bisphosphate by para-aminobenzoate

Figure 1.7: Secondary structure of the bacterial enzyme dihydopteroate synthase (PDB entry 1AJ2)
complexed with a substrate (left) and product (right, taken from PDB entry 1TX0) molecule.
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(PABA). [42] Since dihydropteroate serves as a precursor of the essential molecule folic
acid (vitamin B₉), the antibiotic sulfamethoxazole (SMZ) can be exerted in case of cer-
tain bacterial infections as a competitive antagonist of PABA in order to suppress its
synthesis. [43] We will further devote ourselves to this enzyme and further potential ag-
onists in Chapter 7.

Motivation and outline

This thesis primarily deals with the development of empirical models for the prediction
of binding affinities for various host–guest systems and purposes. Particular emphasis
is put on physical relevance and balanced trade-off between model accuracy and speed.
However, in order to achieve somewhat reliable results, a considerably larger value is
attached to accuracy. For these reasons, a method meeting these criteria and referred to
as linear interaction energy (LIE) provides the basis for all predictive models presented in
the following. Prior to specific applications, Chapter 2 summarizes the entire theoreti-
cal background in terms of phenomenological as well as statistical thermodynamics and
gives an overview over the state-of-the-art technology of average-based thermodynamic
binding affinity prediction. Afterwards, the theoretical basis of molecular modeling al-
gorithms used for molecular mechanics, MC, and MD simulations as well as for the
adaptation of physical and geometric constraints are elaborated in Chapter 3. In a first
application described in Chapter 5, we will investigate whether the LIE method origi-
nally designed for protein–ligand systems in combination with classical force field MD
simulations is practicable for chromatographic problems as well. Using the challeng-
ing example of a brominated cyclic flame retardant we will try to derive the elution
order and retention times of its six highly similar stereoisomers associated with high-
performance liquid chromatography. In Chapter 6 and using by way of example the
human estrogen receptor α, an extension of the originally two-parameter LIE model
is developed and evaluated. Among other modifications, the influence of various MD
settings and a recently published Monte Carlo approach to conformational entropies is
investigated. The final model will be compared to other state-of-the-art free energy esti-
mators. In a final application (Chapter 7) we will investigate whether the empirical LIE
model which originally needs a training set of molecules with known binding affinities
for parameter estimation is applicable to a toxicological prioritization of transformation
products (TP) without having been parameterized before. This is an important aspect
of this work since an accurate risk assessment of TPs emerging from abiotic or biotic
degradation of anthropogenic substances is more and more coming into view after hav-
ing been neglected for many decades. One of the very crucial steps of the entire process

9



Chapter 1. Introduction

of binding affinity estimation is related to the selection of one or more representative
binding modes. According to the time scale problem, no significant changes in the (rel-
ative) host–guest conformation can be expected during MD simulations of reasonable
duration. In Chapter 4 we will therefore develop and evaluate strategies for a system-
atic decomposition and exploration of the conformational space followed by a proper
choice of one or more representatives for free energy calculations. All in all, we want
to develop a fully automatized work flow that returns the desired affinity given a target
molecule along with the specification (spatial vector) of its binding site and a ligand
molecule under observation.

10



2 Theory and state of the art of
binding free energy calculations

In the following we will engage with existing methods for the purpose of binding affinity
(or, synonymously, binding free energy) estimations. This is an as central as challenging
task in computational biology and medicinal chemistry since molecular interactions of
proteins and ligands play a decisive role in biological functions and reactions includ-
ing enzyme catalysis and intracellular signal transduction. Hence, it is of great interest
for drug designers and toxicologists to be able to accurately predict host–guest binding
affinities. Computer-aided drug development substantially reduces the need for time
and money in drug discovery. [9] Though the structure of novel chemicals such as biotic
or abiotic transformation products (discussed in more detail in Chapter 7) may be de-
termined by spectroscopic methods, amounts sufficient for toxicity tests often cannot
be synthesized due to lacking protocols. In such situations, in silico methods come into
play as the only access to an critical assessment on novel substances allowing a prelimi-
nary prioritization for experimental investigations. The lack of an appropriate reference
state prohibits the calculation of absolute free energies. And even if we could in theory,
there are still practical difficulties since MD and MC simulations are not able to sample
the entire phase/conformational space (in particular high energy regions) of a molecu-
lar system in reasonable time. However, relative free energies (free energy differences)
with respect to two slightly different systems or system states can be estimated due to a
variety of methods. [44]

The methodological pallet for the task of affinity estimations ranges from exhaustive
thermodynamic perturbation methods demanding large sets of expensive MD trajecto-
ries up to substantially faster but generally less accurate quantitative structure-activity
relationship (QSAR) strategies and simple scoring functions as implemented in docking
programs. Obviously, the computational expense corresponds with the extent to which
the model copes with physical principles since accurate MD-based calculations require
the evaluation of a huge number of (pairwise) interatomic forces related to target as well
as ligand atoms. In contrast, QSAR methods are generally ligand-based and do require
neither MD simulations nor the consideration of the target molecule. The choice of
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method depends on at which stage of the drug discovery process it will be employed
and there is typically a trade-off between accuracy and efficiency. [45] However, before
elaborating common approaches to binding affinity calculation, we will, in what fol-
lows, first outline its physical basis including classical and statistical thermodynamics.
Molecular mechanical/dynamical aspects as well as algorithms applied to the modelling
and sampling of host-guest systems investigated throughout this thesis are discussed in
the subsequent Chapter 3.

2.1 Thermodynamic background of binding affinities

Thermodynamics deals with energetic processes in a macroscopic, i. e., experimentally
measurable sense. In particular, these processes include the role of heat and temperature
regarding energy, work and the transformation of one form of energy into another. Its
origin is tightly interwoven with the development and progress of steam engines during
the first decades of the 19th century which transformed heat into mechanical work [46]

at a very low efficiency. For the investigation of system properties it is necessary to
define its boundary permeability regarding energy, heat, and matter. Commonly used
thermodynamic systems are:

Isolated No interaction with surroundings at all.

Closed No exchange of matter, but of work and heat.

Adiabatic No exchange of heat and matter, but of work.

Open No limitation on exchange.

In terms of phenomenological thermodynamics, the current state of a physical system is
sufficiently described by a set of thermodynamic parameters denoted by state variables
or state functions which are path-independent, that is to say they do not depend on the
path having yielded the current state, but only on the given state itself. These state
variables are divided into extensive (e. g. various energy quantities, entropy, volume,
number of particles) that depend linearly on the system size and intensive state variables
(e. g. temperature, density, pressure) that do not change with the system’s size. This
characteristic makes intensive variables suitable for the comparison of thermodynamic
systems and the investigation of equilibrium properties. Whether a thermodynamic
change or chemical reaction requires energy input or evolves spontaneously releasing
energy and questions regarding the location of chemical equilibria can be answered
following the four principle laws of thermodynamics. [1] The zeroth law introduces the

12



2.1. Thermodynamic background of binding affinities

temperature T as the state variable that is equal for two systems if they are at thermal
equilibrium. The first law is derived from the law of energy conservation in isolated
systems and states that energy can neither be destroyed nor created. According to the
fundamental thermodynamic relation

dU = δQ+ δW = T dS−p dV +
∑
i

µi dNi , (2.1)

the system’s internal energy U (S, V,N) as a function of the entropy S, the volume
V , and the number N = {Ni} of particles of type i can only change due to an ex-
change of heat Q or work W across system boundaries. W might, for instance, refer
to pressure-volume work pdV , a change in volume caused by a pressure p, or chemical
reactions changing the amount Ni of some particle type i associated with the chemical
potential µi. [47] In contrast to state variables, heat Q and work W fall in the category
of path-dependent variables since their values depend on the path having leaded to a
given state. In a classical manner, U consists of the kinetic energy K = f (p) related
to the motion of bodies or, to be precise, on their momenta p including undirected
and temperature-dependent Brownian motion and the potential energy V = f (r) de-
pending on the particles’ spatial arrangement (atomic coordinates r) and describing
external forces acting on them due to interactions with each other or with external force
fields. Considering the right hand side of Equation 2.1, it appears that each product the
change of the thermodynamic potential U (S, V,N) is composed of incorporates one
extensive state variable multiplied with its conjugated intensive state variable such that
the change of the internal energy U can be expressed by differential changes in its (ex-
tensive) variables. Biological association reactions, however, are generally not entirely
isolated from external influences (e. g. heat). Thus, further thermodynamic potentials
with different sets of natural variables are derived from Equation 2.1 by a coordinate
transformation approach denoted as Legendre transformation using first derivatives of
U with respect to its extensive variables. These thermodynamic potentials completely
describe a physical system at its thermodynamic equilibrium where – once it is reached
– all state variables become constant. Depending on the underlying physical boundary
condition, this stationary state corresponds to the minimum of the respective thermo-
dynamic potential and a maximum entropy. [1] A common Legendre transformation
(along with their differential form) derived from U and useful as theoretical basis for
MD simulations of biological systems is the Helmholtz free energy

A = U − TS; dA (T, V,N) = −S dT −p dV +
∑
i

µi dNi .

It describes equilibrium conditions of closed systems with constant temperature T in
addition to constant particle numbersNi and volume V . It follows from the second law

13



Chapter 2. Theory and state of the art of binding free energy calculations

of thermodynamics that this potential’s change dA < 0 unless arriving at equilibrium
where dA = 0 andA reaches its minimum. If, in addition to the temperature, pressure
p as a second intensive state variable becomes a characteristic variable, we arrive at the
Gibbs free energy (free enthalpy)

G = U + pV − TS; dG (T, p,N) = −S dT +V dp+
∑
i

µi dNi (2.2)

as a further thermodynamic potential specified by constant (T, p,N) and its minimum
at equilibrium. A deviates fromG by the pressure-volume work pV solely and they be-
come equal if no pressure-volume work is done, pV = 0. This property is as well of rel-
evance for host–guest complexes solvated in incompressible fluids such as water. There
exist further thermodynamic potentials including the enthalpyH (S, p,N) and partic-
ularly the entropy. A system tends to, according to the second law of thermodynamics,
maximize its entropy and more entropy emerges at increasing temperatures, since the
system is able to occupy more energy levels and thus, more microstates. Accordingly,
the temperature-dependence of the entropy is formulated by the third law of thermo-
dynamics stating that upon approximating absolute zero, the entropy approaches zero,
limT→0 S = 0. Usually, fundamental state functions cannot be determined directly by
experiment. However, combining their first and second partial derivatives with results
of experimentally measurable quantities like pressure, temperature, volume, etc. permits
the determination of their values. [47]

From a thermodynamic point of view, the binding affinity of a molecular host–guest
system under atmospheric conditions (constant pressure and volume) is defined by a
macroscopic quantity denoted asGibbs free energy of binding ∆G. As sketched in Figure
1.1, the ∆ symbol is related to the system’s energy change upon association (dissocia-
tion) of the molecular complex under consideration

∆G = Gbound −Gunbound. (2.3)

Basically, the binding free energy is composed of enthalpic (∆H) and temperature T
dependent entropic (T∆S) contributions

∆G = ∆H − T∆S (2.4)

and becomes minimal at thermal equilibrium. [1] Hence, if the binding of some ligand
L to a protein P is considered as a chemical reaction

P + L
kon−−⇀↽−−
koff

P L

14



2.1. Thermodynamic background of binding affinities

with the on-rate kon and off-rate koff for forward and, respectively, backward reaction,
its binding constant as a special case of the equilibrium constant derived from the law of
mass action and valid for molecular systems at chemical equilibrium is defined as

Ka =
1

Kd
=
k

k′
.

Equilibrium constants associated with the subscripts “a” and “d” are called association
and dissociation constant, respectively, and quantify, in terms of concentration (indi-
cated by squared brackets) ratios the extent to which the system at equilibrium (“eq”)
is dominated by the bound or the unbound state [48]

Ka =
[PL]eq

[P]eq [L]eq
(2.5)

Binding constants, consequently referred to as binding affinities, are directly related to
the Gibbs energy difference according to

∆G = ∆G◦ −RT ln
[PL]
[P] [L]

(2.6)

where R stands for the gas constant and ∆G◦ denotes the standard change of the reac-
tion in Gibbs free energy that is the energy associated with the reaction under standard
conditions (defined temperature, pressure, and educt concentrations). At equilibrium,
i. e., when there is no net reaction flow (∆G = 0), Equation 2.6 becomes

∆G◦ = −RT lnKa = RT lnKd (2.7)

after little rearrangement and the quotient of concentrations (now at equilibrium) can
be substituted by an equilibrium constant such as Kd. In the special case of reactions
where exactly one molecule of each of the two components form one complex (such as
the association/dissociation of a protein-ligand pair), Kd equals that ligand concentra-
tion at which half of the total number of protein molecules is complexed. It should be
noted that the Kd value must be dimensionless in order to take its logarithm. Indeed,
the unit of Kd vanishes due to division of concentrations by a reference concentration
of usually one mol per liter. [48] Besides, uncertainties in the experimental binding free
energies are typically at least 2.0 kJ/mol andKd values are often derived from IC50 val-
ues using the Cheng-Prussoff relation. [49] In common literature dealing with binding
affinity estimations, one often encounters the equation

∆G = RT lnKd (2.8)

incorporating∆G instead of ∆G◦ that is used synonymously to Equation 2.7 although
no standard conditions were given during the in silico experiment. We will follow the
notation depicted in Equation 2.8 throughout this thesis.
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Chapter 2. Theory and state of the art of binding free energy calculations

2.2 Statistical thermodynamic background

Statistical thermodynamics also referred to as statistical mechanics can be considered
as a bridge between experimental observations on a macroscopic level described by phe-
nomenological thermodynamics on the one side and the underlying molecular processes
on a microscopic level on the other. It is used to derive macroscopic quantities of large
populations (typically in the order of O (1023) states) of a molecular system from a set
of individual microstates that are sufficiently described by Cartesian coordinates and ve-
locities of all system particles. With the aid of statistical mechanics, thermodynamic
state variables (state functions) are predicted in a statistical manner by investigating the
molecular mechanics and probability distribution of an ensemble of microstates. [1,50]

Conformational space and potential energy surface

Consider a many-body system consisting of N discrete atoms. Any spatial geometry
(conformation or configuration) of the entire system can be described by a vector ri =
(xi, yi, zi) of Cartesian coordinates per atom i. Putting all Cartesian coordinates of
the entire system into one variable yields a single vector r ∈ R3N specifying the given
geometry as a single point

r = (r1, . . . , r3N)
⊤

in the conformational space1 which becomes exceedingly high-dimensional when con-
sidering macromolecular systems along with explicit solvent molecules whereN > 104.
For reasons of practicability and simplification regarding the solution of equations of
motion, one got into the habit of using a mathematical transformation of r yielding gen-
eralized coordinates q and possibly a substantial reduction of dimensionality d = 3N . [47]

q might, for instance, include distances between atoms or angles spanned by them also
known as internal coordinates that are independent from an external coordinate system
and its origin. [24] Given a system consisting of two atoms, N = 2, of which we are
interested in the distance only, the dimensionality can be reduced from d = 3N = 6

degrees of freedom to d = 1 by neglecting three translational and two rotational degrees
of freedom without having influenced the systems internal state or energy. In general,
a system’s conformation/configuration as well as its potential energy are invariant un-
der translation and rotation such that six external degrees of freedom associated with
translations in three dimensions and rotations in three (or two in the special case of two

1In statistical mechanics, one would use the term configurational space instead which can be misleading
in a macromolecular sense with covalently bound atoms where, in contrast to the conformation, the
molecular configuration cannot change during a dynamic process.
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Figure 2.1: Potential energy surface of pentane reduced to its two all-carbon
torsional angles ϕ1 and ϕ2 and a contour plot at a particular energy level.

atoms, N = 2) dimensions can be neglected for many problems. However, general-
ized coordinates may also comprise Cartesian coordinates of each particle, q = r, in
particular, if no reduction is expected or possible. Assuming this,

q = (q1, . . . , q3N)
⊤

constitutes a single point in the Cartesian configurational space representing a sin-
gle conformation of the molecular system under consideration. Upon conformational
changes of the dynamic system over time t, the point q moves through configurational
space accordingly forming a time-dependent curve in R3N referred to as trajectory or
time series q (t). Each geometry q of a molecular system is associated with a potential
energy V (q) which is related to forces acting on the particles. The underlying inter-
actions originate from external force fields (gravitation, electro-magnetism) or internal
repulsive and attractive forces between atoms. In the classical limit of statistical ther-
modynamics, V (q) of an N -atomic system in 3N − 6-dimensional configurational
space gives a continuous potential energy surface (PES) of dimension 3N − 6 if external
forces are neglected. Since an additional dimension is required for the assignment of
a potential energy, the hyperplane is located in a 3N − 5-dimensional space. It can
be considered as an energy landscape on top of the space spanned by the system’s gen-
eralized coordinates. Figure 2.1 shows a two-dimensional PES defined neither on the
3N = 51 external nor on the 3N−6 = 45 internal but only on the two all-carbon dihe-
dral angles of pentane which consists ofN = 17 atoms. Neglecting all bonds and bond
angles (keeping them constrained) is an accepted approach to space reduction in the
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Chapter 2. Theory and state of the art of binding free energy calculations

field of molecular modelling since the conformation and physico-chemical properties
of pentane and in particular of organic molecules with a significantly higher complexity
are mainly attributed to their torsion angles. The energy landscape reveals several local
minima and saddle points that are helpful for the identification of favorable (stable)
conformations and, respectively, of transition states, reaction paths, and reaction rates.
The lowest energy and, thus, most likely conformation of pentane located in the middle
of the PES is associated with twice anti (180◦) regarding both torsion angles.

Phase space and ergodicity

A trajectory q (t) in configurational space may reveal intersections indicating identical
molecular geometries that emerged from different paths. In order to be able to differ-
entiate between these geometries and obtain unique states, it is necessary and sufficient
to additionally consider the coordinates’ conjugate momenta p ∈ R3N

p = (p1, . . . , p3N)
⊤

associated with theN particles of an instant geometry q. In a classical mechanical sense,
a thermodynamic microstate x ∈ R6N

x = (q, p) = (q1, . . . , q3N , p1, . . . , p3N)
⊤

is now completely and uniquely specified by a point (q, p) in the 6N -dimensional phase
space. [51] Considering the time-evolution

x (t) = (q (t) , p (t))

of deterministic phase space trajectories, one should be aware of the fact that two of
them with distinct initial conditions x (0) = (q (0) , p (0)) ∈ R6N will never intersect
in phase space. A phase space trajectory can be constructed using a computer simu-
lations on the basis of a convenient mechanistic framework (discussed in Chapter 3)
starting from an initial set x = (q, p) of atomic coordinates and conjugate momenta.
It is therefore, theoretically, possible to predict an isolated system’s deterministic evo-
lution (particle motion) in future as well as back in time. In practice, though, the
correlation between time steps will decrease quickly in time due to technical (machine
precision) and numerical (condition and stability) reasons besides many other approx-
imations regarding molecular modeling. Slightly varying initial conditions x (0) are
likely to yield substantially diverging trajectories. As a consequence, we cannot expect
long termmolecular dynamics (MD) simulations to provide us with useful informations
for the investigation of slow molecular processes such as receptor–ligand binding events
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2.2. Statistical thermodynamic background

or considerable conformational changes in a sense of in which direction the system
might evolve. All the more they are suitable for the statistical estimation of observable
averages. In contrast to an ordinary MD simulation, a typical macroscopic measure-
ment of a physical quantity O in the laboratory comprises a number of system copies
in the order of the Avogadro constant O (1023) yielding an average result for the un-
derlying statistical ensemble. Indeed, the basic idea behind MD simulations is that an
experimental ensemble average ⟨O⟩ can be approximated by some time average O (x (t))

of a long time series considered as a statistical ensembles, [52]

lim
t→∞

O (x (t)) = ⟨O⟩. (2.9)

This assumption strongly relies on the first postulate of statistical thermodynamics, which
is related to the ergodic hypotheses and states for an isolated many-body system with
constant total energy E that sooner or later every microstate in phase space will be
occupied if the system is observed for a sufficiently long time. [47]

Microcanonical ensemble

Statistical ensembles of microstates are always associated with a characteristic set of phys-
ical boundary conditions. A statistical ensemble of an isolated system specified by a
constant number of particles N , constant volume V , and in particular, constant total
energy E is denoted as microcanonical orNV E ensemble. Generally, a vast number of
different microstates or arrangements of a many-body system correspond to the same
internal energy E at a given set of (N, V ), a property that is referred to as degeneracy
of energy in quantum mechanics where energy is considered as a quantized quantity.
For the degeneracy of an NV E ensemble, i. e., for the number of possible microstates
with energy E we will use the quantity Ω. Since each microstate i of an NV E ensem-
ble is associated with the same magnitude of energy, the second postulate of statistical
thermodynamics stating that all microstates are equally likely to be occupied

Pi =
1

Ω
(2.10)

is fulfilled. As a consequence, the system under consideration will most likely adopt the
energy distribution with the largest number of microstates if more than one possible
distribution exists which holds for many-body systems in general. In analogy to the
second law of thermodynamics, this physical property is also referred to asmaximization
of entropy. From a microscopic perspective, the statistical entropy

S = −kB

Ω∑
i=1

Pi ln Pi = kB ln Ω (2.11)
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Chapter 2. Theory and state of the art of binding free energy calculations

can be expressed on the basis of the number Ω of microstates i and their probabilities
Pi

[47] where the Boltzmann constant kB = 1.38066× 10-23J/K serves as a proportion-
ality factor named after the Austrian physicist Ludwig Boltzmann, the (co-)founder of
statistical mechanics and in particular of the microscopic entropy formulation. Besides,
except for the logarithm’s basis, the formulation is equivalent to the Shannon entropy
known from information theory. Basically, it is the relation between the number of
available states and the entropy stated by Equation 2.11 that justifies the approach to
conformational entropies described in upcoming chapters for the sake of binding affin-
ity estimation.

In contrast to quantum mechanics, classical mechanics treats microstates and energies
as continuous quantities such that the definition of a microstate is associated with an en-
ergy range [E,∆E]. Then, the degeneracy Ω is replaced by the classical microcanonical
partition function

QNV E = Ω =
1

h3Nξ

∫
R6N

dq dp δ (H (q, p)− E) . (2.12)

measuring the volume of the integral spanned by the system’s 3N coordinates and 3N

momenta in the 6N -dimensional phase space and bounded by the energy hyperplane
defined on the subset of feasible states with constant energy E. The delta function
δ (H (q, p)− E)

δ (x) =

1 if x = 0,

0 else
(2.13)

makes sure that only microstates with a total energy of some particular value (or range),
H (q, p) = E, are considered by the integration. The total energyH (q, p) also referred
to as system Hamiltonian

H = H (q, p) = U (q) +K (p) . (2.14)

is composed of the potential energy U (q) as a function of atomic coordinates and the
kinetic energy

K (p) =
1

2
p⊤M−1p (2.15)

depending on momenta only. [24] We will discuss some special properties of the Hamil-
tonian particularly useful for MD calculations in Section 3.1. According to quantum
mechanics, the expression h3N in Equation 2.12 incorporating the Planck constant h
defines a minimal volume element of the phase space consisting of one single microstate
insofar as permitted by Heisenberg’s uncertainty principle related to the product of
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2.2. Statistical thermodynamic background

Table 2.1: Physical and statistical properties of common thermodynamic ensembles. Legend: number
of particles N , volume V , temperature T , energy E, chemical potential µ, and pressure p.

Ensemble Variables Isolation Thermodyn. potential Distribution of microstates

Microcanonical N,V,E Isolated Entropy S Uniformly
Canonical N,V, T Closed Free energy A exp(−βE) (Boltzmann factor)
Isothermal-isobaric N, p, T Closed Free enthalpy G exp(−β (E + pV ))

Grandcanonical µ, V, T Open Grandcan. potent. exp(−β (E − µN)) (Gibbs factor)

coordinates and momenta. It was introduced mainly due to the requirement of ex-
pressionlessness by certain mathematical transformations. Likewise in agreement with
quantum mechanical requirements is the additional normalization factor ξ

ξ =

N ! if consisting of one particle type only,∏k
i=1Ni! if consisting of k types of particles

(2.16)

related to the number of permutationsNi per particle type i and considering the indis-
tinguishability of particles of the same type. The partition function of an ensemble is
the central quantity in statistical mechanics from which all thermodynamic quantities
such as the entropy in Equation 2.11 as well as the average of any observable O

⟨O⟩NV E =
1

QNV E

N∑
i=1

Oi

can be derived. [47] Nevertheless it should be noted that an as accurate as possible com-
putation of Q for complex many-body systems is a challenging task not to mention
impossible even with modern supercomputers since it requires an exhaustive sampling
of the entire conformational space. Although the microcanonical ensemble appears ide-
alized in a sense, it serves as a basis for further ensembles that are more convenient for
real-world systems. Table 2.1 shows the most popular statistical ensembles along with
their degree of isolation, characteristic variables and the thermodynamic potential they
are related to. Due to the permeability properties of their physical boundaries regard-
ing heat (and mechanical pressure-volume work), most physical and, in particular, all
biochemical systems are associated with constant temperature (and constant pressure)
instead of constant energy which is specific only for isolated systems. Closed systems
are characterized by a new type of partition function and an uneven energy distribution.
In the following, we will engage with such statistical ensembles that are more conve-
nient for free energy calculations of (biological) host–guest systems under atmospheric
conditions.
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Chapter 2. Theory and state of the art of binding free energy calculations

Canonical ensemble

We first consider a thermodynamic constant-volume system that is not able to perform
mechanical work due to changes of its volume V but to exchange energy with its en-
vironment in the form of heat. If the surrounding reservoir is much larger than the
system under observation, it will act as a thermostat that keeps the system’s temperature
T constant either by absorbing its kinetic energy or transferring kinetic energy to it,
respectively, depending on which compartment is hotter. Such an exchange process
will inevitably result in maximum entropy and thermal equilibrium around which the
system Hamiltonian fluctuates with variance

σ2 = kBT
2CV (2.17)

proportional to the isochoric heat capacityCV. [1] According to the equipartition theorem
which postulates that the kinetic energy K (Equation 2.15) is approximately equally
distributed over the system’s degrees of freedom Nf, the temperature is related to the
average kinetic energy per degree of freedom by [24]⟨

1

2
miv

2
i

⟩
=

1

2
kBT (2.18)

and the system’s internal velocities obey a Maxwell-Boltzmann distribution [53]

P (vi) =

√
mi

2πkBT
exp
(
−miv

2
i

2kBT

)
. (2.19)

Equations 2.17 and 2.19 are relevant for temperature coupling and, respectively, the
generation of initial velocities regarding MD simulations as carried out in Chapters 5-
7. The energy distribution of the canonical or Gibbs ensemble, a thermodynamic system
with a given set of the characteristic variables (N, V, T ) at thermal equilibrium, is well
described by the Boltzmann distribution of probabilities

π (q, p) =
1

QNV T

exp (−βH (q, p)) (2.20)

of the classical HamiltonianH (q, p). [54] The unnormalized probability exp (−βH (q, p))

of a state (q, p) is also referred to as Boltzmann factor. In analogy to the microcanonical
ensemble, the classical canonical partition function

QNV T =
1

h3Nξ

∫
R6N

dq dp exp (−βH (q, p))

is defined as an integral (or sum) over (Boltzmann) weights of each microstate. Thus, it
serves as a normalization factor for the probability π (q, p) of a microstate x = (q, p),∫

R6N

dq dp π (q, p) = 1.
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ξ is defined according to Equation 2.16 and the inverse temperature at thermal equi-
librium is represented by β

β =
1

−kT
comprising either the Boltzmann constant, k = kB = 1.38066 × 10−23J/K, or the
gas constant, k = R = 8.31446 J (mol/K) depending on whether for energies the unit
J or, respectively J/mol is preferred. By the way, both natural constants are related to
each other by the fundamental Avogadro constant NA = R/kB. The thermodynamic
potential related to the NV T ensemble is referred to as Helmholtz or free energy

A = − 1

β
lnQNV T (2.21)

which becomes minimal at thermodynamic equilibrium. In a similar manner, all macro-
scopic thermodynamic quantities of the canonical ensemble can be computed through
the canonical partition function, [1] e. g., the internal energy

U = −kT 2

(
∂ lnQNV T

∂T

)
NV

,

the entropy S = k lnQNV T + U/T , and intensive state variables as well such as the
pressure

p = kT

(
∂ lnQNV T

∂V

)
NT

.

In analogy to Equation 2.21, one often finds in common literature the notation

A = − 1

β
lnZNV T

whereA is related to the configurational partition function ZNV T which is, in contrast to
the phase space partition functionQNV T , associated only with coordinates q and corre-
sponding potential energies V (q) but neither with momenta nor kinetic energies [44]

ZNV T =

∫
R3N

dq exp (−βV (q)).

Due to the exceeding phase space complexity of (biological) many-body systems, the
partition function cannot be calculated analytically. However, even with numerical
methods the phase space can only be sampled roughly in reasonable time. As a conse-
quence, the theoretical canonical ensemble average

⟨O⟩ =
∫

R6N

dq dpO (q, p) π (q, p)

23



Chapter 2. Theory and state of the art of binding free energy calculations

of an interesting observable O can only be roughly approximated from the time aver-
age

⟨O⟩ = 1

n

n∑
i=1

O (qi, pi)

of n states sampled using an MD or MC simulation provided that the sampled mi-
crostates follow the Boltzmann distribution of energies. A couple of thermostat al-
gorithms meeting that condition are available [53,55] and discussed in Chapter 3. The
Boltzmann ratio

π (qA, pA)

π (qB, pB)
=

exp (−βH (qA, pA))

exp (−βH (qB, pB))
= exp [−β (H (qA, pA)−H (qB, pB))]

of probabilities π (q, p) associated with two statesA andB is easily derived from respec-
tive Boltzmann factors without knowledge about integralQNV T in the denominator of
Equation 2.20 which cancels out. One should bear in mind that apparently small energy
differences can yield significant differences in the probabilities of occurrence. Given an
energy difference of ∆ABH = H (qA, pA) − H (qB, pB) = −20 kJ/mol at room tem-
perature (298 K) yields a exp (−β∆ABH) ≈ 3200 fold likeliness of state A over state B.
In general, the Boltzmann ratio in favor of a subspace against another can be used for
the calculation of the Helmholtz free energy difference

∆ABA ≈ −
1

β
ln
[
NA

NB

]
(2.22)

between two subsets A,B ∈ R6N of the system’s phase space. If the states sampled
during a molecular simulation process are distributed according to the Boltzmann dis-
tribution in Equation 2.20, ∆ABA can be approximated by the ratio of the numbers
NA andNB of states of the respective subspaces as stated by Equation 2.22. As a conse-
quence of the negligible statistical weights (probabilities of occurrence) associated with
high energy states it is often sufficient to consider low energy states or areas of the phase
space for the purpose of estimating free energy differences. The basic idea was already
pointed out in Chapter 1 in the context of crystallographic structure files of proteins as
representing their most preferential conformations.

Isothermal–isobaric ensemble

A thermodynamic system even more convenient for the description of natural processes
than the canonical ensemble is characterized by constant pressure in addition to con-
stant temperature. It describes nearly all biological systems since the earth’s atmosphere
itself provides these two constraints. The extensive natural variable V associated with
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the (micro)canonical ensemble is replaced by its conjugate extensive variable p resulting
in energy fluctuation with variance

σ2 = V kBTβT. (2.23)

where the fluctuation is, in analogy to the canonical ensemble, proportional to the
isobaric heat capacity cp [53]

σ2 = kBT
2cp. (2.24)

In conjunction with a constant number of particles we have specified the isothermal–
isobaric NpT ensemble also referred to as Gibbs ensemble. It is related to the thermo-
dynamic potential G (N, p, T ) denoted as Gibbs free energy of a closed system capable
of heat exchange as well as pressure-volume work as expressed by Equation 2.2. [1] As
pointed out by Hünenberger, the fixed values (p and T ) as well do fluctuate around
their corresponding macroscopic valus, though, the corresponding magnitudes will
vanish in the limit of a macroscopic system. [53] Since G (N, p, T ) differs from the
Helmholtz energy only by an amount representing pressure-volume work

G (N, p, T ) = A (N, V, T ) + pV ,

its probability distribution of states at thermodynamic equilibrium includes an addi-
tional energy term pV addressing the mechanical work

π (q, p) =
1

QNpT

exp (−β (H (q, p) + pV ))

As a consequence, its partition function

QNpT =
1

h3Nξ

∞∫
0

dV
∫

R6N

dq dp exp (−βH (q, p))

comprises an additional integral representing the variable volume. The Gibbs energy
can be derived from the partition function in analogy to Equation 2.21 for the canonical
ensemble using [1]

G = − 1

β
lnQN,p,T . (2.25)

Of course, there are further statistical ensembles coping with other boundary condi-
tions. Among these, the most popular one is the macrocanonical or (µ, V, T )-ensemble
representing systems with variable numbers Ni of particles due to chemical reactions.
Here, the extensive state variableN has been replaced by its conjugate intensive variable
µ, the chemical potential quantifying the potential of chemical reactions. In general, the
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set of natural variables for a thermodynamic potential must include at least one exten-
sive variable in order to yield a complete thermodynamic description of the underlying
physical system. [47] However, the canonical as well as the isobaric-isothermal ensemble
are the most suitable theoretical frameworks for the investigation of free energies and
binding affinities regarding host–guest systems. The reader might get the impression
in the following that both Helmholtz and Gibbs energies are interchangeable since, de-
pending on the reference literature used to describe free energy estimation methods, the
one or the other notation is used here. Although they are indeed not in theory, it has
been shown that, in practice, the difference in energies calculated with different statisti-
cal ensembles (canonical or isobaric-isothermal) vanish quickly with increasing system
size. [56] Furthermore, the difference between the two quantities amounting to the vol-
ume work p∆V is negligible in incompressible fluids such as water. As a consequence,
the difference of enthalpy ∆H reduces to a change in internal energy [49] which equals
the ensemble/time-average of the potential energy ∆U . Accordingly, the theoretical
fundamentals of the methods developed for the purpose of free energy estimation as
discussed in the following either make use of the Gibbs or Helmholtz formulation.

2.3 Thermodynamic path methods

Due to a strong reliance on thermodynamic principles and statistical mechanics, this
class of methods constitutes the most rigorous approach to the estimation of binding
free energies. Basically, they determine the thermodynamic work needed to transfer sys-
tem A to system B. [57] These two systems might, for instance, represent two well-defined
microscopic states or some differing macroscopic parameters such as the temperature
associated with the same Hamiltonian (same molecules involved in both systems). Fur-
thermore, A and B might include the same protein slightly differing due to a point
mutation (one differing amino acid position) or different ligands resulting in two dis-
tinguishable Hamiltonians. In terms of a thermodynamic cycle,

P + L
∆G1 P L

∆G4

P L′∆G2P + L′

∆G3

(2.26)

the former type of chemical change associated with unmodified Hamiltonians would
correspond to vertical arrows representing typical association/dissociation reactions and
yielding a binding free energy difference such as ∆G1 or ∆G2 following Equation 2.3.
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In contrast, the latter type of reaction associated with an alteration in the system Hamil-
tonian (system topology) is represented by vertical arrows in “Equation” 2.26. There-
fore, these changes are commonly referred to as “alchemical transformations” that are,
in general, not related to a real chemical event. As a consequence, such a calculation
scheme does not provide simple differences in free energies but differences in differences
in free energies between the two host–guest systems which are related to relative binding
affinities (RBA) [44]

∆∆G12 = ∆G2 −∆G1.

Hence, according to the thermodynamic cycle above, ∆G2 can be calculated on the
basis of data sampled from the two systems forming the bottom line (direct route) or,
alternatively, following the vertical reactions and given that∆G1 is known (or calculated
directly) since

∆G2 = ∆G1 +∆G4 −∆G3. (2.27)

Equation 2.27 associated with a thermodynamic cycle is valid because the Gibbs energy
is a state function which means that its value does not depend on the path in phase space
the system has taken. Using a thermodynamic path method, the chemical transforma-
tion corresponding to any of the arrows in 2.26 is split into several intermediate states
with overlapping distributions along a reaction path. These states are often specified by
a set {λi} of order (coupling) parameters along the path for which the thermodynamic
work is calculated. [57] What this class of free energy estimation methods essentially has
in common is the construction of a Potential of Mean Force (PMF) profile along that
coordinate. [58] The PMF profile notation is synonymously used for a free energy profile
due to the equality

∂

∂ξ
∆GA→B = −⟨Fξ⟩ξ (2.28)

which relates the average (mean) force acting on some coordinate ξ to the partial deriva-
tive of the free energy with respect to ξ. Equation 2.28 also quantifies the constraint
force required to fix the system’s reaction coordinate at a particular value.

Free energy perturbation

A popular thermodynamic approach to the estimation of free energy differences is
known as free energy perturbation published by Zwanzig in the middle of the last cen-
tury. [59] Basically, it was designed to compute the physical work needed for chang-
ing a reference system characterized by the Hamiltonian H0 (q, p) to a target system
H1 (q, p)

H1 (q, p) = H0 (q, p) + ∆H (q, p)
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where ∆H (q, p) consists of all discriminating energy terms. Then, the Helmholtz free
energy difference between the reference and target system (or state) is given as

∆A = − 1

β
ln
Q1

Q0
(2.29)

which is derived from the free energy definition according to Equation 2.21 and incor-
porating the canonical partition functionQ. As an alternative to the partition functions
used in Equation 2.29, one can use configurational integrals Z

∆A = − 1

β
ln
Z1

Z0
(2.30)

as defined on potential energies only. Both are considered equivalent if the particle
masses of both systems are identical (and the kinetic term of the Hamiltonian that can
be determined analytically cancels out) or if we are interested in the excess Helmholtz
free energy. According to Chipot et al., [56] this is usually the case and we will focus
on the potential energy in the following. It was shown [59] that ∆A can be calculated
using only a sampling of reference equilibrium configurations as depicted through the
fundamental and formally exact FEP formula

∆A = − 1

β
ln ⟨exp (∆U (q))⟩0 (2.31)

However, this direct strategy is only applicable if the probability distribution of mi-
crostates

P (q, p) =
exp (∆H (q, p))∫ ∫

exp (∆H (q, p)) dq dp
of both systems overlap sufficiently or, which qualitatively amounts to the same, if
the Gaussian-like probability distribution function P (∆H) or P (∆U) has low vari-
ance. [56] Since, in practice, this will most likely not be the case, one needs to apply a
stratification (staging) strategy by defining, in addition to the two end states, N − 2

proper intermediate states with sufficiently narrow distributions P (∆Ui,i+1) for any
pair of two consecutive states i and i + 1. These are not necessarily physically mean-
ingful. Using a coupling parameter λ with λi ∈ [0, 1] and i ∈ {1, . . . , N − 1} where
λ1 = 0 and λN−1 = 1 represent the reference and target state, respectively, correspond-
ing Hamiltonians take the form

H (λi) = λiH1 + (1− λi)H0 = H0 + λi∆H.

The final free energy difference is then given as a sum

∆A =
N−1∑
i=1

∆Ai,i+1 = −
1

β

N−1∑
i=1

ln ⟨exp (−β∆λi∆H)⟩λi
(2.32)
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of free energy differences between any two consecutive states where ∆λi = λi+1 − λi.
Clear statements about the choice of N and λi are not possible. It is assumed that, in
general, a high number of intermediate states increases the accuracy at the expense of
efficiency.

For the explicit purpose of binding free energy calculations, one might define an order
(coupling) parameter on the basis of the distance between the ligand and the binding
center and determine the change in free energy along the upper horizontal arrow of the
thermodynamic cycle addressed by Equation 2.26. In practice, though, this often turns
out to be complicated due to large conformational changes required between the bound
and unbound state. Thus, for the direct route, other thermodynamic methods described
below seem more convenient. [56] Nevertheless, as represented by the horizontal and
vertical arrows, FEP techniques have been successfully applied to the determination of
absolute and, respectively, relative host–guest binding free energies using classical MD
simulations. [60–62] The vertical routes yielding relative binding affinites are often called
alchemical transformations. In spite of their high computational costs due to usually tens
of MD trajectories along the coupling parameter, FEP binding free energies have mean-
while been determined on the basis of QM/MM time series associated with a fivefold
computational demand. [63] QM/MM methods are characterized by the combination
of a classical molecular mechanics force field (“MM” part) with a quantum chemical
representation of the active site and the guest molecule (“QM” part) allowing for the
modelling of chemical reactions (bond breaking/forming).

Thermodynamic integration

Another popular thermodynamic work-based approach to the rigorous estimation of
binding free energies referred to as thermodynamic integration (TI) was developed al-
ready in the 1930’s by Kirkwood. [64] Just as the FEP method, it rests on a phase space
decomposition (stratification) through an order parameter λ which, in contrast to FEP,
couples partial derivatives of the Hamiltonian with respect to λi. Thus, both FEP
and TI provide a free energy profile along a (generally unphysical) reaction coordinate.
However, by considering ∆A (λ) as a function of λ, TI evaluates it as the area

∆A =

1∫
0

⟨
∂U (q, λ)

∂λ

⟩
λ

dλ (2.33)
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under the curve of averaged partial derivatives of the potential energy with respect to
the reaction coordinate λ, ∂U/∂λ. We remember its relationship

⟨Fλ⟩λ = −
⟨
∂U (q, λ)

∂λ

⟩
λ

to the mechanical force acting on the reaction coordinate λ and averaged over all other
(generalized) coordinates qi at a fixed (addressed by the subscript notation of the clos-
ing angular bracket) λ value. For that reason, this procedure has a particularly obvious
relation to PMF. One should be aware of the fact that, in general, rather than deal-
ing with a real particle coordinate, λ may represent an arbitrary function of atomic
coordinates. [65] Concretely, the integral in Equation 2.33 would be approximated by
numerical methods such as the commonly used simple trapezoidal rule

∆A =

1∫
0

⟨
∂U

∂λ

⟩
λ

dλ ≈ 1
2

N−1∑
i

(λi+1 − λi)

[⟨
∂U

∂λi

⟩
λi

+

⟨
∂U

∂λi+1

⟩
λi+1

]

or other methods probably comprising more than two out ofN (intermediate) states at
a time. [66]

Bennett acceptance ratio

FEP and TI quickly yield large statistical errors in the free energy difference if the per-
turbations ∆U is not close enough to zero. Hence, on his way to a minimal statisti-
cal error, Bennett presented an alternative strategy denoted as Bennett Acceptance Ratio
(BAR) which, in contrast to the former methods, involves samplings from both states
equally. [67] He showed that the free energy difference between two (intermediate) states
i and j can be determined through

∆A = β−1

[
ln
⟨f (Hi −Hj + C)⟩j
⟨f (Hj −Hi + C)⟩i

]
+ C

on the basis of the two HamiltoniansH (or, alternatively, potential energies U ) and the
Fermi function

f (x) = [1 + exp (−βx)]

C is determined iteratively such that

⟨f (Hi −Hj + C)⟩j = ⟨f (Hj −Hi + C)⟩i

and the free energy difference between two overlapping states, i. e. j = i+1, is obtained
as [66]

∆Ai+1,i = β−1 ln
ni+1

ni

+ C.
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In particular if the number of frames ni and ni+1 of the two corresponding states are
equal, it becomes obvious that C approaches the free energy difference between these
two states. The overall energy difference ∆A between the two terminal states associ-
ated with the ends of the reaction path can then be expressed in terms of overlapping
intermediate states

∆A =
N−1∑
i=1

∆Ai+1,i

again. In the light of an obvious similarity with Equation 2.32, the BAR method can be
considered as a modification of the original FEP method. Comparative studies revealed
a higher robustness of the BAR method since it is both less demanding regarding the
number of intermediate states and less dependent on their distribution than TI. How-
ever, the latter algorithm is much more straightforward to implement and effectively
faster. [66]

Weighted histogram analysis method

So far, we have only elaborated free energy methods based on stratification techniques
that consider pairs (i, i+ 1) of states upon calculation of a free energy difference. A
popular multiple histogram-based strategy analysing all states at one go that is com-
monly referred to as Weighted Histogram Analysis Method (WHAM) was proposed by
Ferrenberg et al. as early as 1989. [68] Kumar et al. transferred it to alchemical constant
temperature simulations only few years later. That is the original equations were ex-
tended to molecular mechanics force potentials characterizing biomolecules and useful
for free energy profiles along coupling parameters and/or as a function of the temper-
ature. [58] The reaction path will most likely include conformational transition regions
with unfavourable energies that are hardly sampled during an MD or Monte-Carlo sim-
ulation resulting in a slow convergence of the probability distribution P (q) of coordi-
nates q. To remedy this problem one may start several simulations at different positions
i along the reaction path ξ = f (q) and bias the underlying potential U

U ′ (ξ) = U (ξ) + wi (ξ)

in order to sufficiently sample unfavourable regions as well. The weighting function
w (ξ) often taking a quadratic (“umbrella”) form

wi (ξ) =
kw
2

(ξ − ξi)2

penalizes deviations from the desired conformation ξi = ξ (qi) of any intermediate
state i along the chosen reaction path. [15] Such biasing techniques are denoted as Um-
brella Sampling (US) and generate non-Boltzmann (non-equilibrium) distributions. [69]
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Afterwards, a reweighting strategy is required so as to derive Boltzmann averages from
that data. This is where, among alternative methods, WHAM comes into play. It com-
bines sets of simulations of Nw discrete states with different biasing potentials wi (ξ)

and constructs histograms on the basis of bins [15] along ξ yielding biased individual
distributions ⟨ρ (ξ)⟩biased

i from which unbiased individual distributions

⟨ρ (ξ)⟩i = eβwi(ξ) ⟨ρ (ξ)⟩i e−βFi

are derived. The unbiased combined probability distribution is given by

⟨ρ (ξ)⟩ =

Nw∑
i=1

ni ⟨ρ (ξ)⟩i

Nw∑
j=1

nje−β[wj(ξ)−Fj ]

(2.34)

as a ξ-dependent weighted sum of Nw individual distributions. ni denotes the num-
ber of independent data points used to construct the biased distribution function of
state i. Respective free energies Fi are determined using the optimal estimate for the
distribution function

e−βFi =

∫
dξ e−βwi(ξ) ⟨ρ (ξ)⟩ . (2.35)

Since the quantities of interest, ρ (ξ) and Fi, depend on each other, Equation 2.34 and
2.35 must be solved in a self-consistent manner that is, in practice, iteratively. [70]

As we have seen, the free energy calculation methods discussed in this section require
stratification strategies likely in combination with enhanced sampling techniques due
to the quasi-nonergodicity of macromolecular biological systems. Often, multiple sam-
plings/trajectories of usually tens of initial states are carried out. As a consequence, the
implementation becomes difficult and the computations highly complex with regard to
time. Furthermore, the applicability of thermodynamic paths-based methods is limited
to sufficiently similar substances. [25,26]

2.4 Thermodynamic end point methods

In contrast to the previous class of approaches to the estimation of free energy differ-
ences, the methods discussed in the following consider (at most) two end states only,
mostly one bound and one unbound state of an association/dissociation process. In
contrast to many of the methods described in the previous section performing alchem-
ical transformations, these calculations are associated with horizontal arcs according
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2.4. Thermodynamic end point methods

to Figure 2.26. Since no intermediate states along some thermodynamic work path
are considered resulting in far less computation time, these methods are much more
appropriate for virtual screening and structure-based drug design. Nevertheless, these
techniques as well cope with thermodynamic principles as they are based on molecular
mechanical force fields describing physical interactions between atoms.

Molecular mechanics Poisson-Boltzmann surface area

A method referred to asMolecularMechanics Poisson-Boltzmann Surface Area (MM/PBSA)
combines force field-based molecular mechanics (“MM”) simulations with a solvation
term according to the Poisson-Boltzmann (“PB”) equation which describes electrostatic
interactions of particles and molecules in solution. Using the PB equation for the cal-
culation of solvation free energies implies that the solvent is represented implicitly as
a continuum rather than explicitly through specific atomic coordinates. However, the
original MM/PBSA protocol comprises explicit water molecular dynamics (MD) sim-
ulations of each system/component X ∈ {PL, P, L} (representing the protein–ligand
complex, protein, and ligand, respectively) from which the water molecules are removed
prior to the computation of free energies. [71] The corresponding functional form of the
free energy

⟨GX⟩Y = ⟨EMM⟩Y + ⟨EPBSA⟩Y + TSMM (2.36)

associated with a particular system X is composed of a couple of energy contributions
derived from MD trajectory (time series) Y : the molecular mechanical energy EMM

equating the sum of all bonded and non-bonded force field terms (discussed in more
detail in Chapter 3), is determined as a time-average (indicated by ⟨·⟩) of component
X . The third term on the right of Equation 2.36 is related to the solute’s conformational
entropy and typically determined by applying [45] the quasi-harmonic approximation [72]

or a normal mode analysis. [73] Finally, the solvation energy EPBSA (averaged as well) is
obtained

EPBSA = Epolar + Enonpolar

as the sum of a polar and nonpolar contribution which are responsible for hydrophilic
and, respectively, hydrophobic interactions of the solute (complex or single reactants)
with each other or with the solvent possibly including ions. Epolar is usually calculated
numerically for a set of Cartesian grid points through some finite-difference solver of
the Poisson-Boltzmann equation resulting in an electrostatic potential at grid points i
which are simply summed up

Epolar =
1
2

∑
i

zi
(
ϕ80
i − ϕ1

i

)
.
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zi and ϕi represent the charge and, respectively, the calculated electrostatic potential
at grid point i for the transfer from vacuum associated with permittivity ε0 = 1 to
water with the dielectricity constant (relative permittivity) ε = 80. [74] In contrast, the
nonpolar contribution

Enonpolar = γ SA + b

is simply derived linearly from the solvent accessible surface area (SASA; we will use SA
instead) using a surface tension amounting to γ = 20.9±2.9 J/

[
mol Å2] and an offset

at b = 3.6±0.4 J/mol fitted to small alkanes using least-squares. [74] Over time, various
other values for these two constants have been proposed. [45] According to

∆G =


⟨GPL⟩PL − ⟨GP⟩P − ⟨GL⟩L using 3 simulations {PL, P, L}, or

⟨GPL −GP⟩PL − ⟨GL⟩L using 2 simulations {PL, L}, or

⟨GPL −GP −GL⟩PL using 1 simulation {PL}.

(2.37)

the final binding free energy difference is calculated as the difference of energies between
the bound system (PL) and the two single reactants’ samplings (P and L). The first line of
Equation 2.37 characterized byX = Y corresponds to the original approach proposed
by Kollman where each system (PL, P, L) was simulated and averaged independently.
However, one might as well extract all averages from a proper subset of the complex
(PL) sampling only as represented by the last line of Equation 2.37. Indeed, it has
been shown that this simplification often yields more accurate results (associated with a
substantially lower standard error) from a single than from three distinct simulations. [45]

Considering, in addition, the ligands’ reorganization energy by performing a second
MD sampling consisting of ligand snapshots only can further improve the result. [75]

Molecular mechanics generalized Born surface area

The Molecular Mechanics Generalized Born Surface Area (MM/GBSA) based on an ap-
proximation to the exact Poisson-Boltzmann equation is another popular continuum-
solvation method for the estimation of binding affinities is called. As a consequence,
free energies

⟨GX⟩Y = ⟨EMM⟩Y + ⟨EGBSA⟩Y + TSMM (2.38)

are calculated in analogy to Equation 2.36 used for the MM/PBSA model. However,
another strategy for solvation energies

EGBSA = Ecav + EvdW + Epol
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was proposed. [76] Cavity formation and hydrophobic solute–solvent interactions are
quantified by

Ecav + EvdW =
∑
k

σkSAk

using the total SASA of atoms of type k and an empirical atomic solvation factor σk
that was preliminarily set to γ = 30.1 J/

[
mol Å2]. The solute-solvent electrostatic

polarization term Epolar is obtained through the generalized Born equation [76]

Epol =
1
8π

(
1
ϵ0
− 1
ϵ

) N∑
i,j

zizj√
r2
ij + aiaje−D

where rij is the distance between particles i and j, ai denotes the effective Born radius
defining a particles burial inside the solute, and [76]

D =

(
rij

2√aiaj

)2

.

Finally, binding free energies are determined in analogy to the MM/PBSA model ac-
cording to Equation 2.37.

Both elaborated continuum-solvation models MM/PBSA and MM/GBSA rigorously
decompose the binding free energy into contributions originating from different in-
teractions [77] and were shown to successfully reproduce and rationalize experimental
observations [45]. Moreover, they do not require any training set to fit parameter co-
efficients for different energy contributions. However, they are sensitive to the choice
of the solute dielectric constant which is, therefore, recommended to reflect character-
istics of the protein–ligand binding interface. According to Hou et al., though, and
depending on the target system, MM/PBSA tends to perform better than MM/GBSA
in estimating absolute but not necessarily regarding relative binding free energies. As
a consequence and due to its efficiency, they suggest the MM/GBSA model for the
ranking of inhibitors in drug design. [77] Genheden et al. have pointed out that, due
to its implicit representation, certain effects of water such a bridging hydrogen bonds
at the binding site are neglected. [45] From this point of view, these two methods seem
particularly inappropriate for systems comprising critical water molecules as we will see
in Chapter 6.

Linear interaction energy method

The Linear Interaction Energy (LIE) method as the last of this class of algorithms was
introduced by Åqvist et al. in the 1990s and differs in several aspects from the two
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previous ones. [78] It originates from the linear-response approximation which relates free
energy differences of binding (or solvation)

∆G ≃ 1
2

[ ⟨
Eelec⟩

PL −
⟨
Eelec⟩

L

]
(2.39)

to electrostatic molecular mechanical interactions between the ligand and its environ-
ment. Among other derivations, the approximation depicted by Equation 2.39 can
be obtained by expanding the exponent of Zwanzig’s FEP formula (Equation 2.31)
and truncating after the linear term (or after the second, assuming equal mean square
fluctuations of both potentials that would cancel out). Equation 2.39 states that the
electrostatic contribution to the free energy difference equals half of the corresponding
solute–solvent interaction energy. [78] In practice, interaction energies Eelec are averaged
over explicit water simulations of both the free ligand only, ⟨·⟩L, and the ligand in com-
plex with the target molecule, ⟨·⟩PL. The value of 0.5 for the factor in Equation 2.39
originating from the assumption of harmonic (parabolic) free energy curves was con-
firmed by several computational studies including FEP that had been applied to the
estimation of free energies of ionic solvation. [78] Obviously, hydrophobic effects due to
non-polar van-der-Waals (VDW) forces are not considered. It was, however, shown that
the solvation free energy of alkanes depends approximately linearly on their length. [79]

For that reason, the LRA equation was simply extended

∆G =
1
2

[ ⟨
Eelec⟩

PL −
⟨
Eelec⟩

L

]
+ α

[ ⟨
Evdw⟩

PL −
⟨
Evdw⟩

L

]
(2.40)

by a second term addressing, in analogy to the electrostatic contribution, hydrophobic
(VDW) interactions of the ligand molecule with its environment. Due to difficulties
with the theoretical derivation of α, the developers of the LIE method decided to cali-
brate its value empirically using an aspartic proteinase called endothiapepsin (EP) as a
test system. Several crystal structures of native EP as well as in complex with five differ-
ent inhibitors and experimental binding data had been available at that time. Having
fitted free energies using the entire set or various combinations of four inhibitors yielded
0.158 ≤ α ≤ 0.165. Later, it proved necessary to recalibrate α for each target system
under investigation and an additional empirical constant γ was introduced to the LIE
model

∆G = α
⟨
∆Evdw⟩+ β

⟨
∆Eelec⟩+ γ (2.41)

as well, though, it was often set to zero. [49] Aside from that, the coefficient for elec-
trostatic interactions denoted as β here was, in degoration from its original value, set
to particular values β ≤0.5 depending on the ligand’s charge and the number of hy-
droxyls. [80] Moreover, in recent applications, β was treated as an empirical parameter
to be calibrated just like α. [81,82] This progress illustrates the difficulty in developing a
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generalized LIE model with coefficients transferable to any target system. Obviously,
no consensus values for α, β, and γ can be determined. [49] instead, it seems necessary
to recalibrate them independently for every target system using a trainig set of ligands
with known binding affinities.

Further extension of the LIE model through an entropic or non-physical (structural)
descriptors has been investigated as well, [49,83] surely having inspired our research re-
garding the development of predictive models in subsequent chapters of this thesis. Due
to large fluctuations during an MD run, the calculation of conformational entropies re-
quires a large number of snapshots. On the other hand, longer MD simulations often
achieve worse results and the simulation length should be chosen carefully. [77] All in
all, results gained from (extended) LIE applications turned out to correlate very well
with experimental affinities. [83–85] Typical average errors of the LIE model between pre-
dicted and experimental free energies amount to approximately 4.0 kJ/mol which is
close to experimental errors of affinity measurements (about 2.0 kJ/mol). [49] In con-
trast to the two elaborated implicit solvation models (MM/PBSA, MM/GBSA), the
LIE method requires a training set with known affinities for the estimation of α, β, and
perhaps γ. However, taking into account the effect of water explicitly must be consid-
ered as an advantage (regarding hydrogen bonds, etc.). Furthermore the LIE method is
considerably easier to implement since the former two require in addition a numerical
Poisson-Boltzmann solver. Finally, some investigations reveal a better reliability of the
LIE method, [77] while others give the same statement in evidence about continuum-
solvation models. [71]

2.5 Molecular docking and scoring functions

Molecular docking algorithms are structure-based tools particularly designed for a quick
identification of physically reasonable binding poses (hence the term docking) followed
by a subsequent estimation of binding affinities on the basis of so-called scoring func-
tions. Their rise and popularity is inevitably accompanied by the increasing number of
protein structure determinations over the last decades which led to the development
of three-dimensional structure data bases such as the PDB. Using a given target struc-
ture, it became possible to quickly screen a large set of chemical compound. Aside from
protein–ligand complexes they have as well been applied to the investigation of protein–
protein or protein-nucleic acid interactions. [86–88] Due to an outstanding performance
compared to MD-based techniques described in previous sections, these methods are
particularly suitable for virtual screening of large compound libraries and hit identifi-
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cation (and sometimes lead optimization) during drug discovery processes within rea-
sonable time. [86,89] In particular, they have been attested to quickly and successfully
generate a series of useful binding poses to work with. However, neither in prioritizing
the natural pose nor in accurately calculating binding affinities, several critical studies
on docking methods revealed substantial reliability. [49,90,91] Therefore, and due to the
vast number of available docking tools, we will only give a short overview over basic
ideas rather than discussing the underlying algorithms in detail. The list of docking
techniques sketched in the following is, thus, far away from being complete.

To a large extent, the accuracy and computational expense depends on the degree of
representation of the involved molecules’ flexibility. In early days of molecular dock-
ing, that is in the beginning of the 1980s, all binding partners were considered rigid
resulting in the term rigid-body docking. Later, as denoted by semi-flexible docking, it
became more and more popular to take into account the flexibility of small molecules
(usually ligands). This strategy constitutes the most common nowadays and is particu-
larly suitable for lead optimization whereas rigid docking is usually carried out during
early stage of hit identification. [86] In more advanced and, consequently, much costlier
applications, target conformations are considered flexible as well (flexible docking). Pro-
tein flexibility is, however, often restricted to amino acids defining the active site or to
side-chain rotations on the basis of rotamer libraries with experimentally determined
preferential side-chain conformations. Alternatively, it is possible to map ensembles of
protein conformations onto a spatial grid which may as in case of the DOCK [92,93] algo-
rithm represent potential energies and subsequently score ligand conformations against
sets of grid values. [87] Since, in general, all docking approaches perform a combination
of two major steps, we will discuss the most common of these strategies in the follow-
ing.

Binding pose identification

In a first step, a set of binding poses/conformations are sampled at the target’s active
site for which various strategies and combinations of them have been developed. Due
to several internal (conformational) as well as external (in relation to the target) de-
grees of freedom even of simple ligand molecules, this stage is considered very chal-
lenging. Kitchen et al. roughly divided those strategies into the categories systematic,
random/stochastic, and molecular mechanical. [87]
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Shape matching As its name implies, this class of methods mainly considers shape
complementarity of two molecules, thereby, avoiding geometrical overlap between their
molecular surfaces and matching complementary pharmacophore properties. There-
fore, it is particularly suited for rigid-docking and limited in accuracy. A popular ex-
ample for this type of systematic methods is the rigid-docking tool ZDOCK. [88] How-
ever, flexibility can be emulated by using a set of predetermined conformations that are
docked in a rigid fashion. Basically, these methods are useful for binding site identifi-
cation as well. The flexible-docking tool DOCK for instance employs this technique in
a preliminary step in order to detect regions for the placement of ligand atoms. [86]

Incremental construction Ligands are decomposed to molecular fragments and re-
constructed at the binding site. Usually, the algorithm starts with placing rigid parts
serving as anchors that are incrementally connected by more flexible fragments possibly
containing rotatable bonds. By this means, molecular flexibility is considered and the
ligand is constructed in a de-novo manner at the active site. Popular tools of this class
with slightly differing incremental strategies are DOCK and FLEXX. [86] DOCK, for
instance, poses anchors according to steric complementarity and lets flexible side chains
grow bond by bond where each bond’s orientation space is explored systematically. In
contrast, the tactic implemented in FLEXX [94] is based on interaction geometries be-
tween fragments and receptor groups including hydrogen bond donator/acceptor or
hydrophobic interactions. Another tool termed Hammerhead [95] scores fragment poses
before connecting those associated with high scores where each linkage is followed by
an energy minimization procedure. [87]

Molecular mechanics This class of algorithms is grounded on molecular mechanics
and dynamics dealing with the motion of particles due to atomic interactions. Their
theoretical foundation are extensively discussed in Chapter 3. As a consequence, all
such methods generally fall into the category of flexible docking. At best, they per-
form an local energy minimization (EM) of an initially constructed pose as described
above in case of Hammerhead. DOCK as well carries out an EM routine after each
construction step and before evaluating the final pose by means of a scoring function.
Substantially more conformational motility is achieved by generating new poses using
MD simulations. Since, however, molecular flexibility during an MD run is hindered
by high energy barriers of the potential energy surface, one may elevate the system tem-
perature in order to flatten those barriers and reach a wider range of conformations and
poses. [87] Based on the same idea, the globally energy minimization method simulated
annealing (SA) systematically elevates and reduces the temperature in multiple cycles
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during an MD run. Such an exhaustive exploration of the conformational space is
certainly accompanied by an exceeding demand on computer resources. Nevertheless,
the popular AutoDock [96] tool, for instance, routinely utilizes SA in combination with
other random or stochastic algorithms that are discussed below. [86]

Random search New binding modes can be generated by randomly changing the
ligand geometry and/or its relative orientation with respect to the active site. Two ma-
jor strategies are known for that purpose: genetic algorithms and Monte-Carlo meth-
ods. [87] Methods of the former class are inspired by natural evolution where new pheno-
types/species are created through genotypic modifications, that is mutations or crossover
of existing genes, and selected according to their fitness. Translated to molecular dock-
ing, new poses are generated by re-combining structural properties of existing geome-
tries such as torsion angles or functional groups and evaluated through some scoring
function. For instance, DOCK and GOLD [97] belong to the class of GAs which are
principally designed to find the global energy minimum. A variant of GA denoted
as Lamarckian GA is implemented in AutoDock as well as its derivative AutoDock
Vina. [98] It performs an energy minimization after each genotypic change and maps
back the phenotypic result to the genotypic level. [86] In contrast, Monte-Carlo (MC)
methods discussed in Chapter 3 follow a slightly different idea. They explore the con-
formational space by directly and randomly changing a ligand’s external (atomic) or
internal (torsional) degrees of freedom. The new state’s fitness in relation to the previ-
ous one is assessed in accordance with the Boltzmann factor. AutoDock combines SA
with an MC approach to the generation of random poses during each SA cycle. [86]

Scoring functions

Having constructed binding modes by means of one or a combination of the described
strategies, an assessment is required in order to predict corresponding binding free en-
ergies, rank poses according to their probability of occurrence (binding free energies),
and, if desired, optimize them. As already stated, molecular docking tools usually em-
ploy scoring functions for that purpose. The actual task of these functions is to pick
those candidates, that are most likely to occur in reality. Their quality can be evaluated
by applying them to protein–ligand complexes of which crystallographic structures are
available as reference – a procedure that is referred to as redocking. To be more precise,
after a structural alignment (maximum atomic superimposition) of the crystallographic
target and the one used for redocking, the two corresponding ligand poses A and B
defined by N atoms are usually compared by means of a root mean square deviation
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(RMSD)

rmsd (q) =

√√√√ 1

3N

3N∑
i=1

(qA,i − qB,i)
2

of their 3N atomic coordinates qA and qB from each other. The best results of high-
quality algorithms are expected to achieve RMSD values below 1.5Å. [86] Many scoring
functions have been developed during the past decades. Some of them come standalone
whereas most are implemented in docking programs. Basically, three categories of scor-
ing functions are known most of which have in common an additive decomposition of
bindinding free energies

∆G =
∑
i

wi ∆Gi

to some number of physical and/or structural contributions representing, for instance,
changes in solvation, interaction energies, and conformations weighted through coeffi-
cientswi. In case of the two continuum-solvation methods (MM/PBSA and MM/GBSA)
described above, these weights are set to zero. In this respect, they resemble thermody-
namic end state methods discussed previously.

Force field methods This class of scoring functions incorporate functional terms
describing atomic interactions according to molecular mechanics force fields as used
for MD simulations. A prominent example for this category is the widely used tool
AutoDock. Its scoring function

∆G = ∆Gvdw

∑
i<j
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Aij

r12
ij

− Bij
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ij

)
+∆Ghbond
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ij

− Dij
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ij

)
+∆Gelec

∑
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zizj
ε (rij) rij

+∆GtorNtor + ∆Gsol

∑
i<j

(SiVj + SjVi) e−r2
ij/2σ

2

(2.42)

combines three molecular mechanical terms related to intermolecular interactions be-
tween atoms i and j with distance rij due to van der Waals forces (“vdw”), electrostatic
(“elec”), and hydrogen bonds (“hbonds”) with two terms quantifying conformational
(torsional) diversity (“tor”) by means of the numberNtor of rotatable bonds and, respec-
tively, desolvation (“sol”). Each free energy term is associated with a coefficient ∆Gx

determined empirically through linear regression analysis of a set of protein–ligand com-
plexes with known binding constants. [96] We will not discuss Equation 2.42 more thor-
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oughly since the concept of force field is detailed in Section 3.2. Further examples for
this class of scoring functions are, D-Score, G-Score, GoldScore, and DOCK. [87]

Empirical scoring functions Empirical scoring function reveal a functional form
similar to force field scoring functions. They, as well, calculate free energy differences
additively from weighted contributions. In contrast to the first category, however, these
contributions include counts of geometrical and/or structural properties rather than
force field potentials. In a pioneering work, [99] Böhm developed the first empirical
scoring function for the approximation of binding energies. This function was imple-
mented in the docking tools LUDI and FlexX [94]

∆G = ∆G0 +∆Gh-bonds

∑
h-bonds

f (∆R,∆α)

+ ∆Gionic-int

∑
ionic-int

f (∆R,∆α)

+ ∆Garo-int

∑
aro-int

f (∆R,∆α)

+ ∆Garo |Alipo| + ∆GtorNtor

using an additional term which accounts for aromatic interactions. Here, the coeffi-
cients ∆Gx are used for weighting counts of protein–ligand interactions (caused by
hydrogen bonds, electrostatic forces, and aromatic groups) as well as the hydrophobic
surface area Alipo and the number of flexible bonds Ntor. Deviations from ideal chem-
ical geometries (distances and angles) are quantified by a penalty function f . Other
popular empirical scoring functions are F-Score, ChemScore, and the standalone tool
X-Score [100]

Knowledge-based potentials Knowledge-based scoring function constitute a rather
different approach to the approximation of binding constants. They rely on statistical
distributions of intermolecular atomic distances determined on the basis of large sets of
three-dimensional protein–ligand complex structures mainly retrieved from PDB. The
idea behind this approach is that particular atomic interactions with a higher occurrence
than expected through a random distribution are assumed to be energetically favorable
and contribute stronger to the binding energy. The statistical data is used to derive
potentials of mean force (PMF) using radial distribution functions. According to the
PMF scoring function, [101] the score

PMF_score =
∑
ij

Aij =
∑
ij

[
−kBT ln

(
f j

Vol-corr (r)
ρijseg (r)

ρijbulk

)]
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is calculated as the sum of interaction free energies between any pair of a protein atom
type i and ligand atom type j with distance r. T and kB denote the absolute temperature
and Boltzmann constant, respectively. f j

Vol-corr (r) is the ligand volume correction fac-
tor, ρijseg (r) represents the number density of pairs of type ij in a structural database in
a particular range of radius indicated by “seg”, and ρijbulk is the reference distribution of i
and j if they are not interacting. The quotient of the latter two designates the pair corre-
lation or radial distribution function of the corresponding two atoms in the structural
database. [101] Further scoring functions falling into the category of knowledge-based
potentials are the standalone tool DrogScore and SMoG. [87]

According to a great many studies, predestination of a scoring category that outweighs
the others in most cases seems very unlikely. However, it has been shown that the in-
corporation of conformational (rotational) entropy and solvation terms (even if quick
and inaccurate) significantly elevates success rate. Nevertheless, it appears impossible
“to develop scoring functions that perform equally well across many different protein
families, regardless of their complexity and sophistication”. [87] In recent years, attempts
have been made to combine results from two or more scoring functions in order to
balance individual errors. This strategy is known as consensus scoring and often fur-
ther improves prediction accuracy. [87] Due to the involvement of molecular mechanics
terms, force field-based scoring functions obviously resemble thermodynamic ensemble
methods described in previous sections. Since, furthermore, many critical evaluations
show that thermodynamic average-based methods mostly yield significantly better re-
sults than docking tools, [49,83–85,90,91] it seems, for the purpose of accurate binding free
energy predictions possibly upon lead optimization or toxicity estimations, more rea-
sonable to consider statistical ensembles of conformations/poses rather than relying on
the score of a single binding mode only. Many aspects including solvation effects,
induced-fit changes, and explicit water molecules are still not (sufficiently) treated by
docking programs although developers strive to. [63,102] Thus, for accurate toxicological
risk assessments or very late drug discovery stages, quick scoring functions are not suffi-
cient. For virtual screening of data bases consisting of thousands and more compounds
and hit identification, in contrast, they are definitely more practical.

2.6 Ligand-based QSAR methods

Quantitative structure–activity relationship (QSAR) sometimes as well referred to as quan-
titative structure–property relationship (QSPR) methods follow an entirely different phi-
losophy. In the context of binding affinity prediction for host–guest systems, the target
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molecule is not taken into account. Instead, variations in biological activity BA are
related to changes in some N suitable molecular properties pi of the ligand molecule
itself. That is why QSAR techniques first presented in the 1960s [103,104] are categorized
as ligand-based methods. The underlying assumption is that similar molecules should
have similar effects and that the properties under investigation determined by means of
computational or experimental methods are obtained more efficiently than their biolog-
ical activity using in-vivo or in-vitro experiments, probably after chemical synthesis. [105]

After having determined the required properties of a molecule under observation, the
relationship to its activity is generally described by a linear equation

BA = c0 +
N∑
i=1

ci pi

where the coefficients ci are calculated through a fitting procedure using statistical tech-
niques. Due to an outstanding speed, they are, just as docking tools, particularly suitable
for hit identification and possibly other early stages of drug discovery. Depending on
the choice of descriptors, a QSAR model is not only useful for predictive purposes but
as well for identifying and understanding molecular processes, suggesting new design
strategies, narrowing the dose range for a planned assay, and revealing chemicals that
deviate from the QSAR model. [105] A frequently used and one of the very first physic-
ochemical properties is the water octanol/water partition coefficient (logP ) which is
related to the compound’s hydrophobicity. Basically, all descriptors in those days were
determined through laboratory experiments or derived from the molecular topology
(2D structure) leading to the term 2D descriptors. Later, when it became technically
feasible and molecular modelling more and more popular, various 3D descriptors calcu-
lated on the basis of atomic coordinates were taken into account as well. [105] Examples
out of a huge number of descriptors available in data bases and coming into question
are either of a physicochemical, constitutional, functional, topological, or quantum me-
chanical type such as the number of atoms, hydrogen bond donors/acceptors, molecular
volume, SASA (polar and nonpolar), atomic partial charges, electronegativities, ioniza-
tion potentials, etc. [106]

In a preliminary step, a diverse set of training data with known activities defining
the chemical space and covering a wide range of values is collected. After having care-
fully compiled that training set of compounds ideally associated small errors, QSAR
model development performs two major steps: During feature selection, a set of de-
scriptors significantly correlating with the activity is either collected manually or often
extracted from large commercial data bases consisting of thousands of parameters by
using machine learning or genetic algorithms. Genetic algorithms as used in this con-
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text is related to recombining descriptors from two parent sets of descriptors, possibly
followed by a point mutation, and comparing the new activity correlation with that
of the two parents. Afterwards, the model is developed through linear (partial least
squares, multiple linear regression) or non-linear methods (neuronal networks, support
vector machines) used for mapping properties onto activities. Models (feature sets) that
correlate well with biological activity and have been attested high stability using for in-
stance leave-one-out cross-validation (LOOCV) are then chosen for the evaluation of
new compounds. [105]

Fragment-based 2D-QSAR

In fragment-based QSAR as a prominent member of the class of 2D-QSAR methods,
compounds are fragmented to a set of molecular substructures from which the activity
is derived. These methods rely on the assumption that the activity is linearly related to
fragment contributions to some molecular property. [105] Fragment-based QSAR meth-
ods show an obvious analogy to molecular fingerprints used for similarity searching in
compound data bases. In an early approach, for instance, the overall logP value

logP =
∑
i

ni ai

was determined from individual atomic logP contributions a where ni specifies the
number of atoms of type i. [107] In a modern approach denoted as hologram QSAR
(HQSAR), diverse structural fragments (linear, branched, cyclic, overlapping) of each
molecule are split into bins of an fixed-length array forming a so-called molecular holo-
gram. Corresponding occupancies of each of the N bins serve as compositional and
topological descriptors pij of any compound j for a QSAR model

BAj = c0 +
N∑
i

ci pij

with coefficients ci developed using the partial least squares (PLS) method. The prin-
ciple components-based PLS algorithm is particularly useful for model development
whenever the number of available independent parameters (descriptors) is larger than
the data set (number of molecules in the trainings set) which is as critical as typical for
QSAR models. However, due to its speed and reproducibility, HQSAR is well suited
for quickly prioritizing large sets of chemicals. [108]
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3D-QSAR

The class of 3D QSAR methods mainly differs from 2D techniques due to a 3D repre-
sentation of chemicals. They require atomic coordinates of reasonable conformers either
determined by experimental or molecular mechanics methods. Usually, a preliminary
knowledge-guided alignment of the compounds is required since the corresponding
descriptors encode location-dependent structural characteristics. [105] 3D QSAR tech-
niques are for these reasons significantly more expensive than 2D methods. One of
the (if not the) most popular algorithms of this class is the Comparative molecular field
analysis (CoMFA) first published by Cramer et al. by the end of the 1980s. It belongs
to the lattice-type of 3D QSAR models since structurally aligned ligands of the training
set are embedded in a 3D grid such that for each compound and grid point a steric
(van der Waals) and electrostatic (Coulombic) field is calculated using an sp3 carbon
atom probe with one positive charge adequately placed at the grid points. In fact, the
data set alignment is performed in order to maximize the superposition of these fields.
Afterwards, changes in these fields are related to changes in the activity using the PLS
method. CoMFA was successfully applied to many biological systems and proved to
be robust regarding partial charges and conformations of the training set. Rather, the
methods used to determine charges and geometries should be applied consistently to
the entire set of compounds. In contrast, the grid spacing as well as a proper data set
alignment have a significant influence on the robustness of lattice-based methods yield-
ing worse results if the grid was chosen too coarse (2Å spacing instead of 1Å). [105,109]

A recent and promising extension of the CoMFA model denoted as template CoMFA
comes up with an improved and automated alignment mode substantially reducing the
requirement for manual work. [110] Other 3D QSAR models such as the comparative
molecular similarity indices analysis (CoMSIA) basically differ in the type of descriptors
used to describe chemical structures. However, corresponding regression models are
commonly derived using PLS algorithms. [109]

QSAR technologies are continuously developed and applied to biological systems
yielding excellent as well as elusive results. [13,109,111] Regarding binding affinity estima-
tion of various host–guest systems, the best predictive results in terms of squared coef-
ficients q2 of LOOCV range between 0.6 and 0.7 in a study of Tosco et al. [13] which
is quite impressive in the light of being a ligand-based method. However, it seems
somewhat surprising that one of the squared coefficients presented in this work is neg-
ative indicating either a lapse or the usage of non-squared correlation coefficients. Var-
ious QSAR strategies (HQSR, CoMFA, CODESSA) applied to the estrogen receptor
yielded q2 values ranging between 0.5 and 0.7 depending on both the underlying data set

46



2.7. Summary

and QSAR model. [108,109] It should be noted, however, that the data set alignment was
guided by binding mode information available from several PDB crystal structures. [109]

Interestingly, the two correlation coefficients associated with model fitting on the one
hand (r2) and cross validation on the other (q2) diverge substantially in case of QSAR
models. In most cases, q2 is more than 30% less than r2 indicating an overfitted model.
Overfitting generally poses a great danger in QSAR studies since, usually, the number
of descriptors exceeds the number of compounds in the training set.

2.7 Summary

Apart from the physical basis of binding free energies by means of classical thermody-
namics and statistical mechanics we have elaborated a classification of popular methods
developed for their calculation. The common methodology ranges from very fast and
approximative up to accurate as well as costly techniques. In this respect, there is a fun-
damental trade-off between computational costs versus accuracy and different classes of
techniques are particularly convenient for different purposes.

In early drug discovery stages including hit identification and lead discovery, one
would typically screen large databases often consisting of thousand of chemicals with re-
spect to their binding affinity to some interesting target protein. Most convenient tech-
niques for this task are target-based molecular docking scoring functions and ligand-
based QSAR methods due to an outstanding speed, though they are known for less
accuracy. In contrast, promising lead candidates for further development are then bet-
ter examined by methods incorporating time averages from MD or MC simulations in
order to achieve more accurate results. From this class of methods we have discussed the
empirical LIE model as well as two continuum-solvent strategies. Just as QSAR models,
LIE requires a set of training data used for weighting one or both interaction potentials
and possibly further terms whereas MM/PBSA and MM/GBSA do not. However,
both strategies are based on MD samplings from the binding reaction’s end states only
making them impractical for virtual screening. Many publications have attested them
substantial reliability in terms of lead optimization as well as toxicity estimation. Even
more accuracy is commonly accepted for thermodynamic work/path methods. They
have in common extensive samplings of many additional intermediate states lining a
chemical reaction path. According to a thermodynamic cycle, these non-parametric
methods are able to directly provide relative binding free energies associated with al-
chemical transformations. Their suitability for processing large libraries, in contrast, is
(still) extremely limited due to computational and time complexity.
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Insofar, end state sampling methods yield an optimal trade-off between accuracy and
speed. In the framework of this thesis, particular emphasis is set on the development and
application of high-quality LIE models for a couple of host–guest systems and purposes.
Chapter 5 describes the prediction of the elution order regarding HPLC using a simple
LIE approach. A similar approach to the prediction of protein–ligand binding affinities
will be presented in Chapter 6. This LIE model was extended by an Monte-Carlo
entropy estimator published recently and further constitutional descriptors as known
from QSAR technologies. In a final application (Chapter 7) the LIE model descriptors
are used for a toxicological prioritization of transformation products despite (and due
to) the lack of training data.

All these calculations presume the presence of one or more reasonable binding poses.
And all binding affinity calculation is at most as performant as the exploration of the
space of binding poses. Significant changes in the (relative) conformation of a host–
guest complex are rare events during an MD simulation such that predetermined initial
binding poses ideally cover a wide range of space. Currently, docking algorithms pro-
vide (apart from few complex experimental methods) the only computational access to
binding pose prediction. Since mainly either a fragment-based growth mechanism or
some random pose generator is utilized, a simple systematic binding mode generator
and other approaches to both exploration and clustering of the conformational space
will be elaborated in Chapter 4.
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3 Methodological background of
atomistic force field simulations

During the second half of the 20’th century, in silico experiments and, in particular,
molecular mechanics simulations emerged as popular standard tools for the investiga-
tion and understanding of (bio)molecular structure, function and dynamics on a mi-
croscopic level. [112] In general, the classical atomistic simulation of many-body systems
is based on classical equations of motion describing interatomic forces also referred to
as molecular mechanics (MM) and, consequently, on the time-evolution of the consti-
tuting atoms using either deterministic methods like MD or stochastic techniques such
as Monte Carlo (MC) methods. From the collection of sampled geometries and respec-
tive potential plus kinetic energies one can derive many thermodynamic quantities as
well as structural observations. Since in macromolecular, biochemical systems struc-
ture determines functionality and due to the mechanism of molecular recognition, [113]

many biological tasks including protein (un)folding, ligand binding, signalling path-
ways, gene regulation and catalytic processes can be investigated on the basis of theo-
retical results. In particular, the possibility to quantitatively estimate binding affinities
of host–guest systems allows to significantly reduce the complexity of laboratory exper-
iments needed for virtual screening, drug design, and toxicological studies. [100,114,115]

Data obtained from MD simulations is useful for kinetic investigations of molecular
processes, too. After having determined metastable1 sets, i. e., almost invariant subsets
of the conformational space, [116] it is possible to compute transition rates between these
conformers. [117]

Classical simulations require a parameterization of the molecular system, i. e. the
assignment of predetermined parameters quantifying the strength of various types of
physical interactions between the particles under consideration. 3D coordinate files
of the involved molecules making the molecular topology evident are usually given as
input. A consistent set of force field parameters along with a functional form for the

1In contrast to other definitions, metastability throughout this thesis is associated with a stable (set of )
molecular conformation represented by considerable energetic minimum for which the probability
to switch to another metastable set is very small whereas the probability of remaining inside is high
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potential energy U (q) of a geometry specified by its atomic coordinates q is denoted
as empirical force field (FF). Low energy regions of the potential energy function are
expected to correspond to states populated preferentially at thermal equilibrium. Fur-
thermore, the energy gradient, that is partial derivatives of the energy function U with
respect to atomic coordinates, yields forces acting on the particles. [112] The combination
with a convenient concept of mechanics enables to predict and investigate atomic mo-
tion (molecular dynamics). Having introduced the mathematical basis of (molecular)
mechanics as well as empirical molecular mechanics FFs using by way of example the
popular Amber force field, this chapter will describe deterministic and random mod-
els for sampling molecular geometries from the Boltzmann distribution. In addition,
common algorithms used for energy minimization, molecular dynamics simulation, FF
parameterization including partial charge assignment, and any other purpose relevant
for this thesis will be thoroughly discussed. Insofar, this chapter must be considered
as the central methodological part of the entire thesis as most of the techniques are
employed in the one or other upcoming chapter.

3.1 Classical mechanics

Classical mechanics is a physical field concerning with the motion of bodies under the
influence of forces. Sir Isaac Newton was the first scientist to develop a rigorous math-
ematical framework for the investigation of such systems. Newton mechanics and, in
addition, some reformulations with practical relevance constitute the physical basis for
classical MD simulations. For this reason, the theory of classical mechanics is briefly
sketched in the following sections.

Newton mechanics

In the seventeenth century, Sir Isaac Newton carried out intensive studies of the motion
of bodies resulting in the laws of motion that are still fundamental for classical as well
as quantum mechanics. Using his theoretical framework, it was possible to predict the
spatial position r (t) = (x (t) , y (t) , z (t)) and motion of bodies (planets, cannon
balls, atoms, etc.) more or less accurately as a function of time t. [51] Furthermore, the
conservation of energy and (angular) momentum can be derived from Newton’s laws. In
principle, the acceleration a, equaling the second-order time-derivative r̈ of the position
of a body/particle with mass m, is considered proportional to the sum F (net force) of
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all conservative force vectors acting on it

F = ma = mr̈ = m
d2r

dt2
. (3.1)

Equation 3.1 belongs to the class of equations of motion that completely describe the
development of mechanistic systems in time and space. [51] Since r is most likely a vector
associated with, say, 3N dimensions, Equation 3.1 is better expressed in terms of the
potential’s gradient

ma = −∇qU (r) =

[
−∂U (r)

∂r1
, · · · ,−∂U (r)

∂r3N

]
(3.2)

that is partial derivatives with respect to coordinates ri. A uniform motion v (t) as ad-
dressed by Newton’s first law is characterized by zero acceleration, a = 0, due to zero
net forces, F = 0, resulting in a constant velocity v or time-derivative ṙ

v (t) = ṙ (t) =
dr
dt

= const

of the body’s position. An instant position would then be computed as the sum of a
term representing the uniform motion during time t and the initial position r (t0) at
the beginning t0 of the observation, [51]

r (t) = r (t0) + tṙ (t) . (3.3)

In contrast, if the forces do not sum up to zero, the body under consideration ex-
pierences an acceleration r̈ ̸= 0 proportional to F as stated by the second law. One
would observe a constantly accelerated motion where the position at time t is obtained
in analogy to Equation 3.3 but with an additional quadratic term accounting for the
acceleration

r (t) = r (t0) + tṙ (t0) +
t2

2
r̈ (t0) . (3.4)

Equations of motion are used in the field of molecular mechanics as well where the
evolution of a system’s microstate is determined by the change in atomic coordinates
and velocities or, equivalently, momenta p = mv. Equation 3.1 is a second-order
time-differential equation where time is considered in terms of the second derivative
t2

2
d2r
dt2 only. As a consequence, velocities are not considered directly, but need to be

derived from the microstate’s coordinates by integration. Consequently, the solutions
for t and −t are always equal satisfying the property of time-reversibility. However,
this property does not hold in general since some processes of an isolated system are
irreversible as stated by the second law of thermodynamics. For this and other reasons
some reformulations and generalizations of Newtons equation of motion shaped up as
more convenient when it comes to an MD sampling of microstates.
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Lagrangian mechanics

From a physical point of view, Newtonian mechanics is valid for all classical mechanistic
systems and particularly suitable in combination with Cartesian coordinates. However,
solving Newton’s equation of motion for other coordinate systems quickly becomes
cumbersome. Due to its independence from the underlying coordinate system, a refor-
mulation denoted as Lagrangian mechanics shapes up as much more universally usable
such as, for instance, regarding polar coordinates (angles). Apart from an easier deter-
minability of its equations of motion, it allows to include further physical/mathematical
constraints and is useful for other physical fields than classical mechanics including elec-
tromagnetism and relativity. [24,51] The central Lagrangian function

L (q, q̇) = K (q̇)− U (q) (3.5)

is expressed as the difference between kinetic K (q̇) and potential energy U (q) that
are depending only on velocities q̇ and, respectively, generalized coordinates q. The
Lagrange equations

d
dt

∂L
∂q̇i
− ∂L
∂qi

= 0 (3.6)

are derived from the principle of least action. Plugging the Lagrangian (Equation 3.5)
for some particular mechanistic system into Equations 3.6 and solving the latter yields
the desired equations of motion. [51] The SHAKE algorithm briefly sketched in Section
3.7 uses a Lagrangian for constraining covalent bonds.

Hamiltonian mechanics

The Hamilton formalism of mechanics developed by the Irish scientist William Rowan
Hamilton provides another elegant instrument particularly useful for the description of
a molecular system’s time evolution and mostly used for MD calculations. It is derived
from the Lagrangian reformulation of classical mechanics through a Legendre transfor-
mation. Therefore, the Hamiltonian formulation as well is compatible with any type
of coordinate system. [24] Time is taken into account, in contrast to Newton’s formula-
tion, already with the first derivative of the equations of motion. The central quantity of
the classical time-independent Hamiltonian formulation for a system consisting of N
particles is the total energy as the sum of kinetic and potential energy contributions

H (q, p) = U (q) +K (p) . (3.7)

The Hamiltonian of any system investigated throughout this thesis is of a time-inde-
pendent form. As usual, the potential energy depends on generalized coordinates q
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only whereas the kinetic energy is as a function of conjugated momenta p only. We will
discuss the construction ofU (q) for the purpose of MD simulations in detail in Section
3.2 when it comes to the concept of classical force fields. The kinetic energy is defined
through particle masses and momenta as sketched by Equation 2.15 or, equivalently,
using velocities v

K (v) =
1

2
Mv2 (3.8)

with the diagonal matrixM ∈ R3N×3N of massesmi of each atom i out ofN atoms [118]

M =



m1

m1 0
m1

. . .
mN0 mN

mN


. (3.9)

Partial derivatives of Equation 2.14 with respect to p and q yield the equations of mo-
tion, that is two first-order differential equations describing the change of q and, re-
spectively, p over time

q̇ =
dq
dt

=
∂H
∂p

; ṗ =
dp
dt

= −∂H
∂q

(3.10)

according to the Hamilton formulation. [24] Theoretically, a molecular system’s evolu-
tion in phase space could be calculated analytically using Equations 3.10. Unfortu-
nately, no general analytical solution is known for the integration of equations of mo-
tion for systems consisting of three or more coupled particles, an issue that is referred
to as three-body problem. [119] Hence, the integration of q and p over time for the con-
struction of trajectories requires numerical integrators such as leap-frog [120] or other al-
gorithms of the verlet class [121] that are introduced in Section 3.5. From the equations
of motion (Equation 3.10) of the time-independent form follows the conservation of
the Hamiltonian over time [24]

d
dt
H (q, p) =

∂H
∂q

q̇ +
∂H
∂p

ṗ =
∂H
∂q

∂H
∂p
− ∂H

∂p

∂H
∂q

= 0. (3.11)

The property of energy conservation copes with the first law of thermodynamics hold-
ing for isolated systems. In order to provide for that property, the numerical integrator
chosen for the MD sampling needs to be symplectic, that is to be able to preserve the
phase space volume (Liouville’s Theorem). [122] As a consequence of this property, all
microstates sampled during one MD simulation based on Hamilton dynamics are as-
sociated with the same total energy on average. This is depicted in Figure 2.1 by the
use of an isosurface, a constant energy contour plot integrated in the PES of pentane.
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Though, the contour plot is for the sake of illustration only, because Figure 2.1 repre-
sents the configurational space instead of the phase space including momenta. Since
the resulting trajectory remains on one isosurface in phase space preventing an exten-
sive sampling of the conformational space, modifications (discussed in Section 3.6) of
the equations of motion are required if one desires to obtain molecular geometries with
varying energies distributed in accordance with a particular constant temperature. Cor-
responding statistical ensembles associated with differing physical boundary conditions
such as constant temperature have been sketched in Section 2.2.

3.2 Classical molecular mechanics force fields

Several force fields have been developed during the past decades that are, among others,
characterized by different parameter sets, mathematical functions, or the type of sys-
tems they are convenient for. All-atom FFs (AMBER, [123,124] CHARMM, [125] OPLS-
AA [126], MMFF [127]) consider each atom explicitly whereas united atom FFs such as
OPLS-UA [128] and GROMOS [129] combine, for computational efficiency reasons, methyl(ene)
hydrogens with the carbon atoms they are bonded to resulting in one effective parti-
cle. Even more efficiency-driven abstraction of groups of atoms is provided by so-called
coarse-grained models such as the MARTINI [130] force field combining more atoms
to one effective particle. Some FFs take into account the polarizibility of atoms (X-
Pol [131], PIPF [132]) others do not. Some (MMFF [127]) are designed for the simulation
of small drug-like organic molecules in vacuum only [133] others for macromolecular
systems containing biopolymers (DNA, proteins), probably embedded in cell mem-
branes, and explicit water (AMBER, [123] GROMOS, [129] OPLS, [126] CHARMM [125]).
In principle, all empirical FFs are designed in a similar fashion largely representing the
same types of atomic interactions by similar mathematical functions. [112] Thanks to its
functional form,

U = f (q) ,

a FF can be considered as a definition of a potential energy surface in configurational
space as it provides the potential energy U as a function of coordinates q. Through-
out this thesis, the AMBER99SB force field [134] of a family of FFs denoted as Assisted
Model Building with Energy Refinement (AMBER) and the Merck Molecular Force Field
(MMFF) were used for all classical MD and, respectivly, MC simulations. This deci-
sion was encouraged by AMBER’s particular capability of biological condensed phase
systems including protein–ligand complexes [134] on the one hand and the suitability of
MMFF regarding small organic molecules such as typical ligands [127] on the other. On
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3.2. Classical molecular mechanics force fields

that account, the concept of classical FFs will be depicted based on AMBER. First of all,
chemical elements are distinguished with respect to their chemical context resulting in a
set of carefully defined atom types. In particular, these types are characterized by their or-
bital hybridization as well as the elements/atom types they are bound to. A double bond
between two sp2-hybridized carbon atoms, for example, is shorter in average than one
associated with two sp3-hybridized carbons, but longer than the double bond of a keto
group. Finally, the FF contains a predefined atomic van der Waals radius for each ele-
ment. Prior to the simulation process, partial atomic charges need to be calculated. We
will deal with common charge estimation methods in Section 3.3. Ensuing from these
basic specifications, a typical FF comprises a couple of simple mathematical functions
quantifying the interaction (potential energy) between two or more atoms that may
be covalently bound (bonded terms) or not (nonbonded terms). Parameters for these
functions (also referred to as potentials), mainly originate from X-ray crystallographic
and spectroscopic experiments as well as high-level quantum mechanical calculations
and were probably fitted in order to reproduce macroscopic physicochemical quantities
like density and heat capacity. [15,112]

Harmonic representation of bonds and angles

The most common (as in case of the AMBER FF) physical model for the representation
of a covalent bond between two atoms of type i and j oscillating around a reference
bond length rij is a harmonic oscillator best represented by a spring as depicted in Figure
3.1. [15] According to Hooke’s law

F = Kx, (3.12)

the force F extending/compressing the bond (spring) is linearly correlated with the de-
viation x = r − rij from the reference distance. The spring constant K serves as a
material-specific proportionality constant characterizing the spring’s stiffness. Integrat-

(a) bond (b) angle

Figure 3.1: Bond stretching and angle bending modelled
using a harmonic oscillator following Hooke’s law.
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ing Equation 3.12 over x yields the harmonic energy function

U bond (r) =
Kij

2
(r − rij)2 (3.13)

also denoted as bond potential in terms of molecular mechanics. U bond (r) quantifies
the potential energy taken up by the bond (in addition to the bond-dissociation energy
that is not considered by classical FFs). The force constantKij associated with the bond
stiffness and rij specifying the preferential interatomic distance are typical examples for
molecular mechanics FF parameters. [123] The angular oscillation frequency of the bond
length is defined as

ω =

√
Kij

µ
, (3.14)

with the reduced mass
µ =

mimj

mi +mj

and the masses mi and mj of the atoms forming the bond. [135] Figure 3.2 shows the
influence of the two force field parameters on the parabolic energy function. Large
force constants Kij yielding tighter parabolic shapes corresponding to stiffer/stronger
bonds (C − C single bond is weaker than C = C or C ≡ C bonds [15]). The con-
cept of reduced masses ensures that the oscillation frequency is particularly dependent
on the lighter atom and, thus, remains low unless the masses of both involved atoms
are large. That is to say, even if the light hydrogen atom which is associated with the
highest frequencies is covalently bound to a heavy atom (heavier than hydrogen itself in
terms of structural bioinformatics), the oscillation frequency of the resulting bond will
amount to a high value as expected for hydrogens. Besides, it is due to the relationship
depicted in Equation 3.14 that force constants Kij can be estimated on the basis of
experimental methods such as infrared or Raman spectroscopy by measuring molecu-
lar vibrational frequencies. [135] The energy minimum is associated with the reference
length rij which decreases from a single bond towards a triple bond (with respect to the
same pair of elements). Bond breaking and forming are not supported by the harmonic
oscillator [15]. Due to its symmetry properties, stretching a bond yields the same energy
penalty as compressing it by the same extent. However, this is not realistic since com-
pressing the distance of two atoms down to extremely low values close to zero would
unavoidably lead to nuclear fusion requiring significantly more energy than stretching
it which would result in a less energy-demanding bond breaking. From this perspec-
tive, a more realistic model for covalent bonds is constituted by the asymmetric Morse
potential implemented as an alternative to the harmonic oscillator in few FFs. [136–138]

Nevertheless, due to both its far less computational effort and a reasonable approxi-
mation of the Morse potential in the vicinity of the minimum, [15] most FFs including
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Figure 3.2: Harmonic bond potentials of carbon-carbon single, double, and triple
bonds as incorporated in classical molecular mechanics force fields.

Amber and MMFF have implemented the harmonic potential. On this account, the
Morse potential will not be discussed in more detail here, though, its functional form
is very similar to that depicted in Figure 3.7.

As signified by Subfigure 3.1(b), harmonic potentials are suitable for modelling angle
bending as well. In contrast to the harmonic bond representation, this potential

U angle (θ) =
Kijk

2
(cos θ − cos θijk)

2 , (3.15)

is a function of the angle θ spanned by the two bond vectors vij = vi − vj and vkj =
vk − vj defined by the three involved atoms (i, j, k) with respective position vectors
(vi, vj, vk). The inner product of these two bond vectors yields θ required by Equation
3.15 for energy calculation

cos θ =
⟨vij, vkj⟩
∥vij∥ ∥vkj∥

.

Proper and improper dihedral potentials

Due to steric hindrance caused by repulsive forces between atoms that approach each
other too much, the rotation about a chemical bond defined by two atoms j and k
(see left structure of Figure 3.4) is usually associated with rotational barriers requiring
additional energy. Regarding the central bond of butane this is illustrated by the New-
man projection in Figure 3.3. Eclipsed conformations of butane (methyl group in the
foreground of Figure 3.3 at 0◦, 120◦, or 240◦) are less favorable than staggered confor-
mations (methyl group at 60◦, 180◦, or 300◦) which are characterized by larger distances
from the binding partners of atom j to those of atom k as depicted in the left structure
of Figure 3.4. As a consequence, a complete 2π rotation reveals a typical periodic energy
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Figure 3.3: Newman projection of the central
butane dihedral in the eclipsed syn-conformation.

profile depending on both the number and types of neighbors covalently bound to the
atoms j and k. In order to meet these requirements, classical FFs utilize one or more
cosine expressions per torsional degree of freedom. A torsion (or dihedral) angle

ϕ = arccos
(
⟨vij × vjk, vjk × vkl⟩
∥vij × vjk∥ ∥vjk × vkl∥

)
is defined as the angle between two planes Pijk and Pjkl constructed on the basis of a set
of four consecutive atoms (i, j, k, l)which form three consecutive bonds (bond vectors)
vij , vjk, and vkl (see left structure of Figure 3.4 for illustration). Pijk is specified by the
bonds vij and vjk corresponding to the first three atoms and the second plane Pjkl by
vjk and vkl corresponding to the last three atoms of the quadruple. According to the
General Amber Force Field (GAFF) for small molecules, the torsional potential

U dihedral (ϕ) =
Kn

2
(1 + cos (nϕ− γ)) (3.16)

incorporates one cosine term and the force constantKn defining the potential’s height. [123]

The number of minima in the course of a complete 2π rotation and the phase shift are
adjusted by multiplicity n and, respectively, by γ. By way of example, the carbon–
carbon dihedral model ethane (H3C − CH3) revealing three torsional minima with

i

j

k l

Pijk Pjkl i

j

k

l



Figure 3.4: Left: Torsion angle ϕ of butane spanned by two planes Pi,j,k and Pj,k,l defined
by atoms (i, j, k) and (j, k, l), respectively. ϕ serves as a measure for the relative position
of the atoms i and l due to rotation about the j-k bond. Right: improper dihedral used to

achieve planarity of sp2-hybridized atoms.
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Figure 3.5: Torsion potentials with multiplicities equal to one (improper dihedral)
and three (proper dihedral), respectively. All minima (staggered conformations) of

ethane have the same height due to rotational symmetry.

equal energies separated by three barriers of equal height requires n = 3 and γ = 180◦.
Figure 3.5 shows the torsion potential of ethane. In contrast, the energy profile of bu-
tane is characterized by differing levels of minima and barriers due to the substitution of
one hydrogen for one methyl group regarding both ethane carbons. This requirement
cannot be fulfilled with one single cosine function but demands a sum of multiple
terms. In AMBER99SB optimized for protein simulations three terms are utilized per
dihedral [134]

U dihedral (ϕ) =
3∑

n=1

Kn (1 + cos (nϕ− γn)) ,

whereas other FFs might have implemented theRyckaert-Bellemans potential [139] propos-
ing six cosine terms with increasing power

U dihedral (ϕ) =
5∑

n=0

Cn (cos (ϕ))n .

In contrast to proper dihedrals, improper dihedrals are not related to rotations about a
bond but intended to force planarity regarding conjugated systems and sp2-hybridized
atoms as depicted for butene on the right of Figure 3.4. Planarity of the covalent en-
vironment of an sp2-hybridized atom j is achieved using a single cosine expression as
expressed by Equation 3.16 with exactly one minimum (n = 1) at γ = 180◦. The
potential of a typical improper dihedral is depicted by the finely dotted line with a high
energy barrier culminating at 0◦ = 360◦ in Figure 3.5.
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Nonbonded potentials

Due to combinatorics, the computationally most intensive type of atomic interplay is
related to pair-wise nonbonded interactions associated with atoms that are either not
covalently bound to each other or have at least three bonds in between. Given a molec-
ular system consisting of N atoms the simulation software has to deal with O(N2)

evaluations of pair potentials theoretically, though, this number can be reduced signifi-
cantly by using some algorithmic tricks such as neighbor lists. [24] Physical interactions
commonly modelled through nonbonded potentials mainly originate from electronic or
van der Waals forces that are basically either of a repulsive or attractive nature. Repulsive
electrostatic interactions between two particles i and j associated with partial charges zi
and zj are caused by identical charge signs whereas attractive forces are due to opposite
signs. Both electrostatic cases are taken into account by the Coulomb potential

UCoul (r) =
zi zj

4πεε0r
.

derived from Coulomb’s law which states that the force F acting on two interacting
particles due to (partial) charges is proportional to both the product of these charges
and the inverse square of their distance. The relative permittivity or dielectric constant
ε quantifies the amplifying or easing affect of the bulk medium on an electric field
compared to the permittivity ε0 = 8.85 C2 J−1m−1 of vacuum. Figure 3.6 shows a
monotonically decreasing plot (continuous line) of a repulsive Coulomb potential for
two point charges with identical signs (zi zj > 0) and a monotonically increasing plot
describing attractive electric forces (zi zj < 0) yielding (favorable) lower energies at
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Figure 3.6: Exemplary Coulomb potential of classical molecular
mechanics force fields.
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Figure 3.7: Lennard-Jones potential of classical molecular mechanics force fields.

small distances.

The Coulomb potential neither reveals an optimal distance nor does it take into ac-
count interactions due to other than electric forces. If there was, apart from the one
associated with this potential, no other force acting on two nonbonded particles, the
atoms would inevitably collide and share the same postion in space in case of oppo-
site signs. Conveniently, another pair potential for nonbonded interactions commonly
used in molecular mechanics simulations was proposed by John Lennard-Jones in the
year 1924. [140] The Lennard-Jones potential

ULJ (r) = ε

[(rm
r

)12
− 2

(rm
r

)6]
=
Aij

r12
− Bij

r6
(3.17)

is composed of two additive terms inversely proportional to some particular power of
the distance r between two atoms. Repulsive forces at short ranges due to overlap-
ping electron orbitals (Pauli exclusion principle) are usually expressed by the r−12 term,
whereas the r−6 term describes long-range attractive van der Waals forces arising from
induced dipole moments. [15] Both terms are sketched in Figure 3.7 along with their
sum ULJ (r). Slight modifications yield the expression on the right hand of Equation
3.17 where the two parameters specifying the optimal distance rm of atom i and atom
j and the potential energy ε associated with it were transformed into the AMBER force
field parameters Aij and Bij . As in case of any other pair potential parameter, they are
specific for the set of atom types (i, j) involved in the potential.
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Potential energy function

For a given set of generalized coordinates q representing a particular molecular geometry,
an additive force field expresses its potential energy

U (q) =
∑
bonds

Kij

2
(r − rij)2 +

∑
angles

Kijk

2
(cos θ − cos θijk)2+

∑
dihedrals

Kn

2
(1 + cos (nϕ− γ)) +

∑
pairs

[
zi zj

4πεε0r
+
Aij

r12
− Bij

r6

]
(3.18)

as the sum of all bonded (bonds, angles, dihedrals) and nonbonded potentials. [124] Dis-
tances r and angles ϕ/θ used in Equation 3.18 are functions of q as well. Equation 3.18
can be considered as a formal definition of the PES in the configurational space spanned
by the molecular system’s generalized coordinates q as described in Section 2.2.

During a typical conformational sampling process all types of potentials comprised
by U are taken into account. The molecular conformation itself, however, is almost
exclusively specified by dihedral angles since other bonded potentials (bond length and
angles) reveal only small variances around their reference values. [24] Already in the pre-
vious chapter we have seen that the two nonbonded potentials are additionally useful
for binding affinity estimations on the basis of atomistic MD time series regarding two
(or more) distinct molecules as in case of host–guest systems. Thus, we will further
deal with nonbonded interaction potentials in the context of binding affinity models in
Chapters 5-7.

3.3 Partial charge estimation

As we have just seen within the scope of force field potentials, the computation of
pairwise electronic interactions depends on partial atomic charges zi. The preliminary
determination of reasonable partial charges is a very crucial step in classical molecular
mechanics and conformational analysis since nonbonded interactions are mainly at-
tributed to electrostatic contributions. [141] Both structural and dynamical behaviour of
polar molecules are substantially affected by partial charges. In particular, this includes
the tertiary/quartery structure of biological macromolecules such as proteins and nucleic
acids as well as their interactions with ligands, the aquatic environment and dissolved
ions. [142,143]

However, one has to bear in mind, that the partial charge of an atom is no static
physical quantity that can be measured exactly but is derived from the distribution
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of electrons about a molecule’s atoms. Partial charges are dedicated to mimic certain
properties of the continuous electron distribution of a molecule such as the electro-
static potential (ESP), the molecular charge density, or the dipole and higher electric
moments. [141] The electronic distribution in turn strongly depends on the atom’s or,
respectively, molecule’s polarizability, chemical environment and conformation. Due
to a substantially higher electronegativity of oxygen compared to carbon, for example, a
hydrogen atom bound to an oxygen atom reveals a significantly higher (positive) partial
charge than a hydrogen bound to carbon. Nevertheless, as an approximation, partial
charges for the purpose of classical force field simulations are usually determined once
prior to the sampling process and kept constant during it. It is, therefore, advisable
to determine partial charges on the basis of dominant conformations with outstand-
ing statistical weights, preferably the global potential energy minimum conformation
of a molecule if assessable. An according strategy for the determination of favorable
geometries is therefore presented in Section 4.1.

Several computational techniques have been developed for the estimation of partial
charges that, according to Heinz et al., mainly fall into two general categories: quan-
tum mechanical ab-initio and semi-empirical methods. [142] The former type of methods
first performs an ab-initio calculation of the electron density, by applying the Hückel
theory, a Hartree-Fock-based method, or density functional theory, etc. followed by a
partitioning in atomic basins, e. g. using Mullikan’s population analysis [144] or Bader’s
gradient method. [145] According to Reynolds, [146] these traditional ab-initio charge es-
timation methods are either highly unreliable (Mullikan charges) or computationally
too expensive. In particular, they strongly depend on the QM wave function (basis set)
chosen. [142,147] The second group of partial charge estimation methods that is referred
to as semi-empirical charge equilibration by Heinz et al. [142] is attributed to a method
described by Rappé and Goddard in 1991. [148] Charge equilibration is related to elec-
tronegativity information of individual atoms which in turn depend on atomic ioniza-
tion potentials, electron affinities and atomic radii. Usually, the semi-empirical charge
equilibration method yields better results than ab-initio techniques. However, cova-
lent bonding contributions to the cohesive energy in organic molecules are not consid-
ered. [142] In contrast, Halgren’s bond topology-based approach as part of MMFF suit-
able for organic compounds makes use of precalculated bond charge increment (BCI)
parameters. [127] As a result, no quantum chemical calculations are required at all for par-
tial charge assignment upon parameterization of a compound [141] what makes the BCI
approach exceedingly fast and suitable for large virtual data base screenings. Another
purely empirical and fast approach to the assignment of partial charges that entirely
avoids quantum chemical computations was developed by Gasteiger by the end of the

63



Chapter 3. Methodological background of atomistic force field simulations

seventies. This method applies an iterative partial equilization of atomic electronegativ-
ities derived from ionization potentials and electron affinities regarding the atom under
consideration plus its neighbors and tries to approximate Mullikan charges. [147,149]

Due to an excellent reproduction of solvation free energies of organic molecules, [150,151]

charges fitted to the ESP calculated on the HF/6-31G* level for a large number of
grid points encompassing the molecule of interest emerge particularly suitable for con-
densed phase simulations. Unfortunately, ESP-fit charge monopoles strongly depend
on the molecule’s conformation [146] and show numerical unstabilities related to the
charge magnitude of buried atoms. On the latter issue one got a grip by restraining
the magnitude of partial atomic charges in particular of nonpolar groups, [151] thereby,
keeping the suitability for solvation free energy and intramolecular conformational en-
ergy calculation. [152] In order to fix the conformation dependency problem, the ad-
vocates of ab-initio ESP-based methods suggest using Boltzmann-weighted sums over
a wide range of conformations. [146] Again, this procedure substantially increases the
computational effort of charge estimation for new compounds already emerged from
the ab-initio calculation of ESPs. A significantly faster semi-empirical approach to the
estimation of ESP-based charges denoted as AM1-BCC was presented by Jakalian et
al. [141] The AM1 bond charge correction (BCC) model brings atomic charges from the
relatively fast semi-empirical AM1 method together with Halgren’s BCI approach and
the high ESP charge quality. It performs in two major stages: the first step consists
of an AM1 population analysis capturing formal charges and electron delocalization.
Afterwards, these charges are modified using a simple bond charge correction (BCC)
term per atom that only depends on the type of this atom and its immediate neighbors.
A training set of several thousand chemicals had been used in order to parameterize
BCC parameters against the ESP on the HF/6-31G* level. AM1-BCC charges seem
very convenient for condensed phase simulations of various polar, nonpolar, and aro-
matic systems [141] particularly in combination with the AMBER force field which was
incorporated for intensive validation and further fitting of BCC parameters. [153] Since
all condensed phase simulations of host–guest systems performed within the framework
of this thesis employ AMBER force fields, the AM1-BCC method puts itself for charge
assignment. In addition, partial charge estimation and topology parameter assignment
to new compounds is straightforwardly done in one go by the program Antechamber
included in the AmberTools package.
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3.4 Potential energy minimization

As stated before, scientists are often interested in critical points of the potential energy
landscape (PES) such as local/global minima and saddle points (illustrated by Figure
3.8). Since low energy states are more likely than states corresponding to higher en-
ergies, minima of the PES are related to conformations that are (locally) preferential.
In non-isolated systems, these geometries and, in particular, global energy minima are
associated with substantially higher statistical weights and, therefore, particularly rec-
ommended as initial structures for MD simulations. Moreover, a molecular system
assembled from single building blocks (macromolecule, ligand, solvent molecules, etc.)
will most likely result in an unphysical state that should to be relaxed beforehand. In
all such situations, it is always advisable to perform an energy minimization procedure
on the system under observation before starting the sampling process. Saddle points, in
contrast, blaze preferential reaction paths flagging a conformational change from one
favorable state (minimum) to another, since passing energetic barriers via saddle points
requires least energy uptake. They are therefore particularly useful for investigations of
molecular kinetics and possible reaction paths. From a physical point of view, molecular
conformers corresponding to critical points q in configurational space are characterized
by vanishing internal forces, F = 0, and consequently referred to as stationary points.
As already pointed out earlier, F is calculated as the potential energy gradient

F = −∇qU (q) (3.19)

that is the force vector comprising all partial derivatives of U with respect to (general-
ized) coordinates q. At a critical point, the slope of U (q) equals zero with respect to any
degree of freedom of the corresponding geometry (in direction of every spatial dimen-
sion of each atom if q is a vector of Cartesian coordinates). Since both minima as well
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Figure 3.8: Critical points of the potential energy surface of pentane
spanned by its two all-carbon dihedral angles.
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as maxima are characterized by this property, a critical point in some high-dimensional
space can be classified as a minimum (in each dimension), maximum (in each dimen-
sion), or saddle point (combination of minima and maxima, each associated with at
least one dimension). A categorization of some critical point q ∈ R3N is possible using
the Hessian matrix [154]

HU (q) =

(
∂2U

∂qi ∂qj
(q)

)
i,j∈{1,3N}

of all second-order partial derivatives of the potential energy function with respect to
q. It makes a statement about a function’s curvature at position q in configurational
space. According to the second-order criterion, a minimum q is associated with a positive
definite Hessian HU (q) which is characterized by positive eigenvalues only and

q⊤HU (q) q > 0,

whereas maxima result in a negative definite matrix with all-negative eigenvalues. In
contrast, the Hessian at a saddle point q characterized by positive as well as negative
eigenvalues is denoted as indefinite and yields [154]

q⊤HU (q) q = 0.

Technically, the energy minimization of a molecular geometry is equivalent with di-
recting the set of coordinates to a (most likely local) minimum. From a mathematical
point of view, the energy minimization is a matter of non-linear optimization since a
great many quadratic, trigonometric, and (higher-order) hyperbolic terms of the coor-
dinates q are involved in the potential energy function U (q) as illustrated by Equation
3.18. Unfortunately, no general analytical solution is known to the determination of
a minimum in particular for non-linear systems with multiple degrees of freedom. In-
stead, several numerical methods are established which approach a multivariate mini-
mum iteratively as illustrated by Figure 3.9 for the one-dimensional case. During the
iterative process, a given start conformer q0 ∈ R3N of a molecular system consisting of
N atoms is relaxed by directing its coordinates (positions) qk gradually towards the next
local minimum. Respective methods range from those that evaluate only the potential
function to those consulting first-order (gradients) or even substantially more expensive
second-order derivatives (Hessians). Typical questions arising upon the choice of a suit-
able algorithm address convergence properties and computational complexity. Both the
bisection and downhill simplex method [155] for instance belong to the former class of al-
gorithms that is characterized by minimal computational effort per iteration. However,
missing information about function derivatives usually protracts convergence towards a
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minimum by significantly increasing the number of necessary iterations. [154,156] At the
other end of the spectrum we find computationally challenging procedures like New-
ton’s method that require the determination of expensive second-order derivatives at
each iteration step. [154] Gradient-based minimization routines (GBMRs) constitute a
reasonable tradeoff regarding convergence and complexity. Indeed, most well-known
classical MD simulation packages (NAMD, GROMACS, AMBER, etc.) by default
provide tools for the purpose of energy minimizations based on gradients due to their
eminent suitability. Since, in addition, any minimization process performed through-
out this thesis are of this type, we will elaborate on their functionality in little more
detail. Basically, each iteration k of all GBMRs which belong to the class of line search
methods consists of two major steps: the calculation of a search direction dk ∈ R3N in
configurational space followed by some increment ∆qk of positions qk. Hence, what all
GBMRs have in common, in principle, is the calculation of first-order partial deriva-
tives during phase one and a subsequent line search. The algorithms mainly differ in
how they determine the values of dk and ∆qk. [154]

Steepest descent

According to the steepest descent algorithm also referred to as gradient descent, the search
direction

dk+1 = −gk = −∇qkU (qk)

of the next iteration step k + 1 is defined as the negative gradient −gk of the energy
function U with respect to the current position qk. As a consequence, the algorithm
having good sense to do so follows the direction along which U decreases most rapidly.
Accordingly, the next geometry of the molecular system is calculated through

qk+1 = qk + γkdk. (3.20)

where the step size γ may be determined, for instance, by a simple one-dimensional line
search in direction dk through qk. The steepest descent algorithm performs rapidly in
steep regions far away from the next local minimum. However, depending on the opti-
mized function, it often converges very slowly due to its zig-zag course in the proximity
of minima. [154] An alternative method devoid of this convergence issue is described in
the following.
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q0q1qmin q2

0d0

Figure 3.9: Iterative potential energy minimization routine starting with the green colored
initial conformation q0 and ending up with the red colored next local minimum qmin.

Conjugate gradients

Probably the most popular energy minimization algorithm in the field of MD simu-
lations is known as the conjugate gradients (CG) method. [157] In contrast to steepest
descent, the determination of the next search direction

dk+1 = −gk + βk+1dk

includes not only the current gradient gk but as well the preceding search direction dk
scaled by a factor βk+1. One well-known strategy of several convenient for a deter-
mination of βk+1 was presented by Fletcher and Reeves in the early sixties of the past
century [158] and uses the quotient of norms

βk+1 =
d⊤k+1 dk+1

d⊤k dk
.

of the two previous directions. In analogy to the steepest descent method, a new step
size γk can be calculated using a one-dimensional line search based on a golden section
or Fibonacci approach. [159] Afterwards, new coordinates qk+1 are computed according
to Equation 3.20. The CG algorithm is known to converge significantly faster to the
minimum in its vicinity than steepest descent. It often seems reasonable to combine
the two methods depending such that steepest descent is used at the beginning of an
minimization procedure and CG for fine tuning. [154]

Resilient backpropagation

Due to nested iterations, i. e. a one-dimensional line search procedure upon each itera-
tion step, the time complexity of the previously described GBMRs becomes very high
in particular regarding macromolecular systems. In contrast to CG, an adaptive learn-
ing algorithm denoted as resilient backpropagation (rProp) as proposed by Riedmiller
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and Braun by the end of the last century uses only the sign of a potential’s gradient.
In addition, it smoothens the potential energy surface resulting in lower minima. [160]

First, the next step size γk+1 ∈ R3n

γk+1 =


min (γk · η+, γmax) if gk gk−1 > 0,

max (γk · η−, γmin) if gk gk−1 < 0,

γk else.

is calculated where γmax/γmin and η+/η− are denoted as maximal/minimal step size and,
respectively, increasing/decreasing factor. Obviously and in contrast to the methods
described previously, no iterative procedure is applied to the calculation of γk+1 further
increasing the velocity of rProp. New coordinates are determined by

qk+1 = qk − γk sgn (gk) .

Any iterative numerical procedure requires a convergence test in order to terminate
when no further improvement of the minimization can be expected. Common conver-
gence criteria are the difference in energies or coordinates, and the gradient’s norm. If
no significant change in one or several of these conditions is met, the process is termi-
nated. [154]

Global minimization

The methods presented so far search for local minima. Since we were interested in global
minimum conformations of ligand molecules as initial structures, global optimization
strategies as well are briefly sketched here. As already indicated by the term curse of di-
mensionality in the introduction chapter, finding the global minimum of macromolec-
ular systems is a highly complex and probably impossible task due to the vast amount of
local minima in the exceedingly rough high-dimensional PES. Nevertheless, few strate-
gies such as simulated annealing and genetic algorithms have been developed addressing
this question. In principle, these methods perform in a similar manner as they mostly
generate a certain number of new conformations that serve as starting points for inde-
pendent local minimization routines. Figure 3.10 illustrates this concept. The simulated
annealing algorithm, for instance, periodically increases and decreases the temperature
resulting in temporarily high momenta that might be able to nudge the molecular sys-
tem across energetic barriers and direct it to new local minima possibly including the
global minimum. [161] Genetic algorithms, in contrast, produce new conformations by
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q0 qmin

Figure 3.10: Iterative potential energy minimization routine starting from an initial confor-
mation q0 and ending up at several minima possibly including the global minimum qmin.

combining coordinates from different geometries in order to approach unexplored re-
gions from which new local minima of the configurational space can be reached. [162]

Monte-Carlo sampling methods (MC, described below) as well are commonly used for
the localization of large numbers of minima. [163,164] However, due to its computational
complexity, even with supercomputers it is rather impossible to assess every minimum
of a PES associated with macromolecules within a reasonable time period. As a con-
sequence, no reliable and efficient approach to the identification of global minima is
known currently. Nevertheless, Section 4.1 describes and evaluates a simple approach
to global optimization of small molecules on the basis of MC samplings at artificially
high-temperatures.

3.5 Numerical integration of equations of motion

Classical MD simulations mimic atomic motions of a molecular system using Newton
mechanics. In the classical approximation of quantum mechanics, these particles con-
stitute atoms that underlie mutual interactions based on various types of forces acting on
each other and, thereby, resulting in an acceleration and effective momenta associated
with these atoms. As pointed out in Section 3.2, such interactions are commonly pa-
rameterized using classical force fields. The whole MD procedure ends up in sampling
a deterministic sequence of time-discrete snapshots (time steps) of a molecular system
along with corresponding potential and kinetic energies as well as other microscopic
thermodynamic quantities. Many average structural and thermodynamic properties can
be determined on the basis of these phase space trajectories which are constructed by
an iterative calculation of atomic positions and momenta as illustrated through Figure
3.11. The high dimensionality of the underlying molecular system usually consisting
of far more than two particles keeps off an analytical solution to the equations of mo-
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tion which is why numerical methods need to be applied. In general, such numerical
integrators include information about the equation’s derivatives. Some integrators in-
corporate expensive second-order derivatives (Hessian) whereas others are content with
the gradient only. Since, in principle, every popular MD simulation software for the
solution of Hamiltonian systems incorporates the latter type, we will shortly elaborate
two integration schemes.

Convenient numerical integrators are expected to satisfy a couple of important crite-
ria. On the one hand they should be as stable as possible in terms of the accuracy of
phase space trajectories. On the other they are expected to be, apart form conserving the
(angular) momentum, symplectic [122] and time-reversible in order to meet the thermo-
dynamic requirement of constant total energy in isolated systems (see Section 3.1) and
Newton’s laws (3.1), respectively. The symplecticity property is particularly required
for the solution of Hamilton’s equations of motion (Equation 3.10). [165] Starting with
a Taylor expansion of the solution to Newton’s equations (Equation 3.1) a couple of
numerical integration schemes have been developed meeting the aforementioned cri-
teria and incorporating atomic forces as first-order derivatives of the potential energy
function (Equation 3.19). This is achieved by a truncation of the Taylor series after the
quadratic term that is second-order partial derivatives of positions which are related to
forces. [166,167]

Velocity Verlet integrator

A popular class of numerical integrators of equations of motion denoted asVerlet integra-
tors is characterized by the sum of forward and backward propagation of the underlying

q1                            q2                           …                            qN
p1, F1                      p1, F1                   pN -1, FN -1

V1                            V2                           …                            VN

Time

Figure 3.11: Construction of a molecular dynamics time series illustrated
using pentane.
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Taylor series. [121] The velocity Verlet algorithm

q (t+∆t) = q (t) + ∆tM−1p (t) +
∆t2

2
M−1∇qV (q (t))

p (t+∆t) = p (t) +
∆t

2
V (∇qV (q (t)) +∇qV (q (t+∆t))) .

is probably the most prominent integrator in common MD simulation software. It
meets the requirement of time-reversibility and is characterized by an error in the or-
der O (∆t3) as well as a particularly low rounding error. As signified by Figure 1.4
in the introduction chapter, the discretized time step ∆t is commonly set to about
10-¹⁵ s in order to capture the fastest molecular oscillations that are related to covalent
bonds comprising hydrogen atoms. By applying bond constraints (described below)
∆t can be set to larger values resulting in longer trajectories at the same number of
energy/force evaluations. In the light of both the proportionality of velocity and mo-
mentum, v (t) = M−1p (t), and the equality of forces and potential gradients shown
by Equation 3.19, there is an obvious analogy to Newton’s solution to a conservative
and constantly accelerated system (Equation 3.4). As illustrated in Figure 3.11, the iter-
ative velocity Verlet algorithm typically provides a deterministic time series of pairwise
coordinates and momenta, (q (t) , p (t)) accompanied by potential energies.

Leap frog integrator

Another commonly used integrator coming into question for MD simulations is the
leap frog algorithm

q̇ (t+∆t/2) = q̇ (t) +
∆t

2
M−1∇qV (q (t)) (3.21)

q (t+∆t) = q (t) + ∆tq̇ (t+∆t/2) (3.22)

q̇ (t+∆t) = q̇ (t+∆t/2) +
∆t

2
M−1∇qV (q (t+∆t)) (3.23)

which is in theory equivalent to velocity Verlet. Both are characterized by the same prop-
erties regarding time-reversibility, rounding error and the order of the error. However,
in contrast to velocity Verlet, numerous implementations of the leap frog integrator do
not provide positions and velocities at the same time but with an offset of a half time
step. [15,120] However, one can apply the midpoint rule if they are desired at the time.

In their original formulation both integrators produce a microcanonical ensemble with
constant total energy which is not convenient for biochemical systems as investigated
in the framework of this thesis. [23,24] Thus, in order to yield other statistical ensembles
able to exchange heat (and work), modifications to the integration scheme are necessary
which we will discuss in the following section.
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3.6 Temperature and pressure coupling

Ordinary MD calculations on the basis of a symplectic integration scheme yield a mi-
crocanonicalNV E ensemble consisting of uniformly distributed microstates with con-
stant energy E besides constant number of particles N and constant volume V . How-
ever, these thermodynamic boundaries hardly satisfy realistic, natural systems that are
widely characterized by constant temperature T rather than constant energy E owing
to the exchange of heat with the surrounding. Moreover, if we want to model systems
under atmospheric conditions, we additionally need to switch to constant pressure p
in lieu of the volume. Most convenient for such ubiquitous systems is the canoni-
cal (NV T ) or isothermal–isobaric (NpT ) statistical ensemble. [53,168] In order to meet
these physical conditions, mathematical modifications to Newton’s equation of motion
and their solutions (integrators) as well as dynamics alternative to the Hamiltonian are
conceivable. Stochastic as well as deterministic methods have been developed for that
purpose. Algorithms designed for coupling the system temperature to a heat bath with
some particular value T0 are known as thermostats. Following Equation 2.18 derived
from the equipartition theorem, the instantaneous temperature

T (t) =
1

kBNf

3N∑
i=1

miv
2
i (t)

of an N -particle system with Nf = 3N − Nc − Nr internal degrees of freedom at
time t can be calculated from the velocities vi and the masses mi (according to their
matrix representation in Equation 3.9) associated with the i th degree of freedom. [24] The
degree of freedom is reduced by geometrical constraintsNc and depends on the system’s
boundary conditions via Nr which is set to Nr = 3 or Nr = 6 in case of periodic or
vacuum boundary conditions, respectively. In the presence of stochastic and frictional
forces Nr equals zero. [53]

First attempts to the constant temperature and/or constant pressure sampling were
made by Andersen in 1980. [168] He proposed a stochastic randomization through ran-
domly choosing a particle during simulation and generating its velocity from the Maxwell
distribution (Equation 2.19). Andersen’s method based on Hamiltonian equations
of motion in combination with stochastic collisions generates a Markov chain of mi-
crostates in phase space and requires the system to be ergodic. [53] Probably due to the
occurence of unphysical discontinuities in the trajectories, a poor efficiency and the
lack of conserved quantity to be relied on, this thermostat did not become popular in a
sense that it is less frequently implemented in current state-of-the-art simulation soft-
ware. However, it must be considered as a forerunner of thermostat algorithms sketched
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in the following. [169]

Berendsen thermostat

In the year 1984, Berendsen presented a popular thermostat denoted as weak-coupling
algorithm that is widely integrated in common simulation software. [170] Essentially, the
deviation of system temperature T from reference temperature T0 decays exponentially
according to the relation

dT
dt

=
T0 − T
τ

where the time or coupling constant τ steers the coupling strength. Starting with the
addition of a friction and a stochastic term to Newton’s formula (Equation 3.1) yielding
a Langevin equation, the approach finally ends up with a modified equation of motion

miv̇i = Fi +miγ

(
T0
T
− 1

)
vi.

Here, the strength of the heat coupling is determined through the damping (or friction)
constant γ chosen equal for each degree of freedom. In practice, velocities are scaled
according to a time-dependent scaling factor

λ =

[
1 +

∆t

τT

(
T0
T
− 1

)]1/2
describing the heat flow into or out of the system. A rigorous sampling from the canon-
ical ensemble is prevented by the method’s suppressive influence on fluctuations of the
kinetic energy (as expressed by Equation 2.17) which are associated with constant tem-
perature ensembles. However, for large systems (large N ) the error becomes negligible
since it scales with 1/N . [171] Furthermore, Berendsen’s method that is neither classi-
fied as stochastic nor as time-reversible quickly reaches thermal equilibration due to an
exponential relaxation. [53,169]

Velocity rescaling thermostat

The velocity rescaling scheme developed by Bussi et al. in the past decade mainly operates
like Berendsen’s thermostat, though, it is able to generate a correct canonical ensemble.
This is achieved through the presence of a Wiener (or Brownian) process dW as an
additional stochastic term which introduces a fluctuation on the kinetic energyK [169]

dK = (K0 −K)
dt
τT

+ 2

√
KK0

Nf

dW
√
τT

.
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The instantaneous kinetic energy K0 is defined by multiplying Equation 2.18 with the
number Nf of degrees of freedom

K0 =
Nf

2
kBT .

A validation of theNV T sampling as well as a reasonable choice of the integration time
step is possible on the basis of a conserved quantity denoted as effective energy H̃ and
corresponding to the heat flux between the system and its surrounding heat bath

H̃ (t) =

t∫
0

(K0 −K (t′))
dt′

τ
− 2

t∫
0

√
K (t′)K0

Nf

dW (t′)√
τ

.

Nevertheless, the velocity rescaling method according to Bussi et al. is classified as de-
terministic and does not cope with the physical requirement of time-reversibility. [53,169]

According to the developers, their method quickly reaches equilibrium just like Berend-
sen’s approach. Due to a first-order temperature decay, no oscillations are observed.
However, for small systems or when the observables of interest are dependent on the
fluctuations rather than on averages, this method cannot be used. [169] Almost all con-
stant temperature MD simulations accomplished within this thesis employ Bussi’s ve-
locity rescaling method due to its generation of the correct canonical ensemble and its
compatibility with several barostats (described below).

Other broadly used thermostats that produce the correct canonical ensemble partic-
ularly include the extended ensemble Nosé–Hoover scheme and Langevin dynamics. Re-
garding the former method, the capability of the correct canonical ensemble is due
to the thermostat’s deterministic nature and the lack of any stochastic influences. The
term extended ensemble reposes on two additional degrees of freedom associated with the
position and conjugate momentum of an imaginary heat reservoir where the velocity
update includes an additional force proportional to the velocity and commonly referred
to as friction term. [172] Probably due to its theoretical agreement with several physical
properties (time-reversible, deterministic, correct canonical ensemble), the thermostat
developed by Nosé and Hoover is widely used although it is not guaranteed to be ergodic
and only slowly reaches the desired temperature due to an oscillatory relaxation. [53,169]

However, further modifications of the equations of motion in association with multiple
heat baths referred to as Nosé–Hoover chain have been proposed in order to remedy this
problem. [173] In contrast, the Langevin dynamics also referred to as stochastic dynamics
approach was shown to be ergodic. [53] The Langevin approach is characterized by an
extension of Newton’s equation of motion about two additional terms accounting for
Brownian motion (steered stochastically by a white noise term) and for friction (drag
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due to collisions with particles), respectively. Besides, these random collisions implicitly
mimic solvent effects what makes this method suitable for implicit solvent simulations.
According to the fluctuation-dissipation theorem, the friction coefficient depending on
the solute’s geometric and the solvent’s physical properties such as viscosity is related to
the strength or variance of random fluctuations. [53,174]

Berendsen barostat

Regarding pressure coupling of our biological host–guest systems, mainly two meth-
ods came into question constructed similarly to thermostats and sometimes considered
as their mathematical counterparts. A popular example is Berendsen’s weak-coupling
scheme mentioned earlier in the context of temperature coupling. [170] Transferred to
pressure coupling, atomic coordinates and box vectors are scaled every (NPC) step(s)
according to a first-order kinetic relaxation of the pressure

dP
dt

=
P0 − P
τP

towards the reference temperature P0 with time constant τP. An instantaneous pres-
sure P is obtained as the sum of the kinetic energy and internal virial for pair-additive
potentials

P =
1

3V

[∑
i

p2i
mi

+
∑
i<j

rijFij

]
where rij and Fij denote the distance between particles i and j and, respectively, the
force exerted on particle i by particle j. Box vectors and coordinates and are then
adapted according to the scaling factor

µ =

[
1− βIC∆t

3τP
(P0 − P )

]1/3
making use of the isothermal compressibility βIC which becomes a tensor in case of
anisotropic triclinic systems. [170] The authors stated that the algorithm is most easily
incorporated into the leapfrog integrator. Reportedly, [171] Berendsen’s fast pressure
control algorithm does not produce the exact NpT ensemble.

Parrinello–Rahman barostat

The extended ensemble Parrinello-Rahman approach to constant pressure simulations [175]

exhibits technical similarities to the Nosé–Hoover extended system thermostat. Here,
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the system volume V = deth = a (b× c) defined on the basis of three box vectors
a, b, and c that constitute the column vectors of matrix h = (a, b, c) is taken as a
further degree of freedom. By way of a coordinate transformation according to h, the
position

ri = hsi = ξia+ ηib+ ζic.

of any particle i ∈ R3 is expressed in terms of the volume vectors and an additional
vector si = (ξi, ηi, ζi)

⊤. An appropriate Lagrangian serving as basis for the equations
of motion for a system with hydrostatic pressure p

L =
1

2

∑
i

miṡ
⊤
i Gṡi − VN (r) +

1

2
WTr

(
ḣ⊤i ḣi

)
− pV

is constructed using tensorG = h⊤h, potentialVN (r) and a stochastic termW steering
the relaxation time. [175] The barostat developed by Parrinello and Rahman allows to
change both size and shape of the box. It is useful whenever fluctuations in pressure or
volume are important and gives the true NpT ensemble. [171]

Practical considerations

It is strongly recommended to subject any complex molecular system assembled for
simulation purposes to an energy minimization followed by one or more successive
equilibration procedures. Constant temperature systemsNV T should initially undergo
an equilibration of particle velocities at constant volume in order to eliminate excess
heat and obtain homogeneous stress. If constant pressure is required as well (NpT
ensemble), a proper barostat algorithm is turned on afterwards. For rigorously correct
constant pressure ensembles, the velocity Verlet integrator is recommended. [171]

Depending on the purpose of an MD simulation, one or the other barostat and/or
thermostat suits better. For systems far from equilibrium Berendsen’s weak coupling
thermostat and barostat algorithms are recommended exhibiting a fast and smooth ap-
proach to equilibrium. However, they turn out to be less reliable at equilibrium. As
a consequence, for production runs targeting the prediction of thermodynamic prop-
erties of systems close to equilibrium the Parrinello-Rahman barostat in combination
with the Nosé–Hoover or velocity rescaling thermostat is recommended since they, at
least in theory, produce the correct ensemble. [171] Regarding our own MD simulations,
we followed these recommendations and utilized Berendsen’s thermostat/barostat for
equilibration and the feasible combination of Parrinello-Rahman and velocity rescaling
for the production of statistical averages.
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3.7 Boundary conditions and geometric constraints

Prior to an MD run of some molecular system, its shape and the nature of its sur-
roundings/boundaries must be properly defined. Depending on physical requirements,
one can choose between vacuum, rigid, or periodic boundary conditions. [53] While the
vacuum condition is not suitable for bulk biochemical systems surrounded by explicit
solvent molecules and the rigid type mostly introduces artefacts due to nonphysical
collisions, the periodic case enjoys great popularity in the biopolymeric MD commu-
nity [24,53] as well as in the context of our calculations justifying its description in little
more detail.

Cell unit and periodic boundaries

As indicated by Figure 3.12 for a quadratic simulation box in two dimensions, this
type of boundary condition is specified by a space-filling regular arrangement of an
infinite number of clones of a single unit cell containing the molecular system under
investigation. Consequently, any particle i with position ri of a simulation box defined
by the cell vectors a, b, and c and cell lengths L = (|a| , |b| , |c|) is copied into each cell
clone k = (α, β, γ)⊤ using a translation

r′i = ri + αa+ βb+ γc = ri +
∑
ζ

kζLζ .

The integer coefficients α, β, and γ specify the image cell’s displacement in direction
of respective box vectors. The major advantage associated with this approach is that
system particles at the boundaries interact with “real” particles rather than with a wall
yielding to artefacts. According to the minimum image convention, interactions of each
particle i represented by the red sphere in the Figure’s central unit are restricted only to
the nearest image (black spheres) of any other particle j. That is, the nearest image of
any other atom j exerting force Fi on atom i is determined as

kmin = (α, β, γ)⊤min = argmin
k

∣∣∣∣∣ri −
(
rj +

∑
ζ

kζLζ

)∣∣∣∣∣ .
The set of N − 1 nearest images are encompassed by the dotted line which has the
same shape and volume like the central cell unit, though, it is centered on atom j.
Furthermore, if a particle leaves the central cell towards one side, it instantly reenters at
the opposite side as illustrated by red arrows.

In practice, each vector of a simulation box is required to exceed 2Rc which is the
(maximal) cutoff distance for nonbonded potentials in order to avoid the interaction
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Figure 3.12: Periodic boundary condition: Central cell unit of a simulation box surrounded
by its own clones. Particles leaving the a cell instantly reenter on the opposite side (red arcs).
Minimum image convention: Only the nearest images (black spheres encompassed by dotted

line) of any particle j are considered for interactions with particle i (red sphere) upon MD.

of a particle with its own image or more than one copy of another. Several shape types
are known and often used for cell units that are compatible with periodic boundary
conditions in bulk MD simulations. Apart from the cubic cell used in Figure 3.12,
further special cases of triclinic such as truncated octahedral or rhombic dodecahedral
cells are available in diverse MD software packages including GROMACS, [171] which
was applied to all bulk simulations within the presented work. The latter two cells are
closer to a spheric shape and therefore particularly suitable for approximately spheric
molecules including all target molecules investigated throughout this thesis. In addi-
tion, these two cell types significantly save CPU-time (about 20-30 %) compared to a
cube that would be required for the same spheric solute. [171]

Geometric constraint algorithms

During an MD simulation, one often wants to keep certain geometric properties like
bonds and/or angles at some fixed value. This can be achieved through geometric con-
straint algorithms. The discretized time step ∆t is usually chosen small enough, about
∆t = 1 fs in classical systems, to yield sufficient resolution of the fastest oscillations
which typically correspond to covalent bonds. Constraining all bond length to their
reference values allows to increase the step size up to approximately 2 fs which in turn is
required for resolving angle bending. Ensuing from a twice as large time step, the con-
formational space is sampled with double speed. This procedure is commonly accepted
since the bond (and bond angle) contribution to energy as well as molecular confor-
mation is small. Accordingly, further acceleration is achieved if constraints are applied
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to bond angles as well. [24] Of course, one should be aware of the slight distortions of
system dynamics that are introduced by constraints and judge whether the oscillations
in question are necessary for the intended investigation or negligible. Most MD soft-
ware use constrained algorithms that are based on Lagrange multipliers [176] exemplarily
sketched in case of the SHAKE constraint algorithm. Within the scope of this thesis,
bond constraints have been applied to all explicit water simulations.

SHAKE The SHAKE algorithm performs constrained MD using a LagrangianL (q, q̇)
extended by r additional constraints according to

L∗ (q, q̇) = L (q, q̇) +
r∑

i=1

λiσi (q) .

Each constraint i of the type σi (q) = ξi (q)− ξi is associated with the Lagrange mul-
tiplier λi and required to become zero with ξi specifying the value to which ξi (q) is
fixed. Considering the leapfrog algorithm, Lagrange multipliers are determined itera-
tively right after the position update in Equation 3.22 of each numerical MD step until
all constraints |σi (q)| become smaller than some predefined tolerance. [177] The vector
of displacements

δj+1 = δj − J−1σj

of step j is then calculated as the difference between the previous displacement vec-
tor and a second term on the right incorporating the inverse Jacobi matrix J . Due
to the high computational demand of that quantity, SHAKE seems less suitable for
large macromolecular systems. Moreover, it is inherently serial and cannot be paral-
lelized. [176] Several extensions of the SHAKE algorithm have been developed including
a non-iterative version [178] and RATTLE. [179] RATTLE was presented by Andersen as
an alternative compatible with the velocity Verlet integrator which requires an addi-
tional constraining step. [180]

SETTLE The SETTLE constraint algorithm solves a system of non-linear equations
analytically for three constraints and can only be used for one type of molecule. It
is, therefore, particularly suitable for rigid water [176,181] and indeed applied to water
molecules by the Gromacs simulation suite when SHAKE was chosen as constraint
algorithm by the user. [171] The SETTLE algorithm is known to be fast and extremely
stable. [176]

LINCS The linear constraint solver LINCS is another popular algorithm often used
in MD simulations and published in 1997 by Hess and co-workers. [182] In contrast to
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the iterative approach implemented in SHAKE, it performs in exactly two steps [171]

and, in particular, quickly approximates the Jacobian J as a power series instead of
computing and inverting it. [176] After an unconstrained update, the projection of new
bonds to the old ones is set to zero followed by a correction of bond lengths. LINCS
is much faster than SHAKE, though, it is advisable not to use it with bond and angle
constraints if more than terminal angles including atoms with one binding partner only
(hydrogens, halogens, keto oxygens, etc.) are considered. Due to its superiority over
SHAKE regarding stability and efficiency, LINCS is set as default in GROMACS [171]

and was used for all bond constraints in this thesis. Consequently, the time step size
was increased to 2fs for any MD run.

3.8 Markov chain Monte Carlo sampling

Monte Carlo (MC) methods designed for the calculation of high-dimensional inte-
grals provide a completely different approach to the sampling of molecular geome-
tries. [18,183] In contrast to deterministic MD simulations based on the numerical inte-
gration of Newton’s equations of motion, MC methods perform some kind of random
walk through configurational or phase space. In the application area of molecular sim-
ulations the terminology random walk emerges from the consideration of states q(k) as
a random variable X sampled from some convenient probability distribution P (X).
In statistics a characteristic known as Markov property

P
(
Xk = q(k) | Xk−1 = q(k−1), · · · , X0 = q(0)

)
= P

(
Xk = q(k) | Xk−1 = q(k−1)

)
states that the conditional probability distributionP

(
Xk = q(k)

)
of a new state q(k) de-

pends (in case of a first order process) only on the immediately previous state q(k−1). The
Markov property is a necessary condition for a stochastic process generating a Markov
Chain of states. It is characterized by transition probabilities P (q → q̃) from one state
q to another q̃ and yields a non-deterministic time series

(
q(1) → · · · → q(N)

)
con-

sisting of N states. This class of methods that is, consequently, referred to as Markov
Chain Monte Carlo (MCMC) constructs a thermodynamic ensemble at thermal equi-
librium whose distribution converges against the Markov chain’s stationary distribution
π (q)with increasingN . [19,184] In order to meet the physical requirement of reversibility
given at equilibrium and thereby show the uniqueness of the stationary distribution, an
MCMC method must satisfy the detailed balance criterion

π (q)P (q → q̃) = π (q̃)P (q̃ → q) (3.24)

81



Chapter 3. Methodological background of atomistic force field simulations

Equation 3.24 says that, given state q, the conditional probability P (q̃ | q) of the tran-
sition from q to state q̃ must equal the conditional probability P (q | q̃) associated with
the reverse transition. [185]

Metropolis–Hastings algorithm

Within the scope of molecular sampling, most MCMC algorithms perform two major
steps. A new state is first proposed according to the underlying probability distribution
and, afterwards, either accepted or rejected according to some acceptance probability.
The Metropolis–Hastings algorithm from the class of MCMC methods was published
in the middle of the 19th century. [19] Reasonably, its developers chose a probability
distribution

π (q) =
1

Zq

exp (−βU (q)) (3.25)

in accordance with the Boltzmann distribution of potential energies U (q) derived from
Equation 2.20. Considering the transition probability

P (q → q̃) = PP (q → q̃) PA (q → q̃) (3.26)

as the product of a proposal (PP) and an acceptance probability (PA) and inserting Equa-
tions 3.25 and 3.26 into Equation 3.24 where the partition function Zq cancels out
yields the acceptance probability

PA (q → q̃) = min (1, exp (−β∆U)) =

exp (−β∆U) if U (q) < U (q̃) ,

1 else.
(3.27)

To be more precise, if a uniformly distributed random value r ∈ [0, 1] is less then
PA (q → q̃), one keeps the old state q and otherwise accepts the proposed state q̃. From
Equation 3.27 it becomes obvious that new states with less energy than the current one
are always accepted whereas the acceptance of higher energy states depends on chance.

In contrast to MD simulations that are often faced with trapping effects, MCMC
methods are able to alter energy isosurfaces due to their stochastic character and over-
come energetic barriers more easily. Their main disadvantage is the small step size in
conformational space as well as the loss of determinism. In addition, it often suffers
from low acceptance rates, in particular, in case of large and explicitly solvated systems
with large energy fluctuations. In the following, we will therefore engage ourselves with
a method combining the advantages of both deterministic as well as stochastic tech-
niques for molecular sampling.
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3.8. Markov chain Monte Carlo sampling

Hybrid Monte Carlo algorithm

Another popular MCMC approach introduced several decades after the Metropolis–
Hastings algorithm is the Hybrid Monte Carlo (HMC) method. [116,183] It combines
large MD steps in phase space with the stochastic character of MC methods which are
known for an efficient compensation of the trapping effect associated with MD tech-
niques. [23,183] Basically, each iteration of the MC procedure is accompanied by a short
MD simulation leading to state proposals that are physically more reasonable, thereby,
increasing their acceptance rate. In contrast to the original Metropolis–Hastings algo-
rithm, the hybrid approach incorporates not only the potential energy as a function of
coordinates but as well kinetic energies depending on velocities. Due to the resulting
Hamiltonian’s (Equ. 3.7) separability required by the HMC method, it is possible to
decompose the Boltzmann distribution of states depicted by Equ. 2.20 into two fac-
tors

π (q, p) =
1

Zq

exp (−βU (q))
1

Zp

exp (−βK (p)) = πq (q) πp (p)

representing the distribution of coordinates πq and momenta πp, respectively. Momenta
sampled from the Boltzmann distribution πp (p) of kinetic energies were shown to be
a good choice for the proposal probability

PP (q → q̃) = πP (p) = exp (−βK (p)) . (3.28)

A short MD simulation starting with the old geometry and the proposed momentum
yields a new point (q̃, p̃) in phase space that is accepted with some probability. Consid-
ering the reversibility criterion of a molecular system at thermal equilibrium met by the
Hamiltonian and given the equality πP (p) = πP (−p̃) and inserting it into the detailed
balance criterion depicted by Equation 3.24 yields the acceptance probability

PA (q → q̃) = min (1, exp (−β∆H)) =

exp (−β∆H) ifH (q, p) < H (q̃, p̃) ,

1 else.

As already stated, another major advantage of the HMC method over an ordinary
MCMC method is a significantly higher acceptance rate of about 80% for small molecules
which is due to velocities that are more physically distributed and therefore yielding an
improved sampling of the conformational space. Properties of the Hamiltonian crucial
for the use as an MCMC method are its reversibility yielding an invariant distribu-
tion, the energy conservation, as well as its symplecticity. [183] Setting the temperature
to an extraordinarily high value yields extreme momenta which easily negotiate most
energy barriers. As a consequence, the configurational space is explored more efficiently.
Within the framework of this thesis, the HMC method was, due to these advantages,
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applied to ligands under vacuum boundary conditions in order to obtain globally min-
imum energy conformers useful as initial structures for solvated MD simulations.

3.9 Third-party software and databases used in this thesis

All third-party software and databases used in this thesis are listed in Table 3.1.

Table 3.1: List of third-party software and databases used in this thesis.

Tool purpose and source

ACPYPE simplifies usage of the Ambertool Antechamber
http://www.ccpn.ac.uk/v2-software/software/ACPYPE-folder

Ambertools v1.4 [186] AMBER force field parameterization with Antechamber
http://ambermd.org/AmberTools14-get.html

Amira [187] inhouse molecular visualization tool
https://amira.zib.de/

AutoDock-Vina v1.1.2 [98] molecular docking
http://vina.scripps.edu/

PDB [41] protein structure database
http://www.rcsb.org/pdb/home/home.do

Epos Merck force field parameterization
ZIB inhouse software

FADO [188] molecular docking (Amira module)
ZIB inhouse software

g_mmpbsa v1.1 [189] free energy calculation according to MMPBSA method
http://rashmikumari.github.io/g_mmpbsa/

Gromacs v4.0.7/v4.5.5 [190] energy minimization and MD simulation
http://www.gromacs.org/

MarvinBeans v5.5.0.1 2D drawing and 3D export of ligands
https://www.chemaxon.com/download/marvin-suite/

Octave v3.2.4 numerical parameter estimation
https://www.gnu.org/software/octave/

Openbabel [191] cheminformatics toolbox
http://openbabel.org/wiki/Main_Page

VMD v1.9.1 [192] molecular visualization
http://www.ks.uiuc.edu/Research/vmd/

ZIBGridFree energy minimization and HMC simulation
ZIB inhouse software
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4 Development of systematic space
discretization strategies

The molecular modeling techniques and results presented in this chapter have to a no-
table extent been published in the following articles. A republication of its content in
the framework of this thesis was kindly permitted by the publishers: [193,194]

• M. Weber, R. Becker, V. Durmaz, R. Köppen: Classical hybrid Monte-Carlo
simulation of the interconversion of hexabromocyclododecane stereoisomers. Molec-
ular Simulation, 34(7):727–736, 2008.

• V. Durmaz, S. Schmidt, P. Sabri, C. Piechotta, M. Weber: A hands-off linear
interaction energy approach to binding mode and affinity estimation of estrogens.
Journal of Chemical Information and Modeling, 53(10):2681–2688, 2013.

Due to obstacles regarding MD time scale differences and, in particular, the trap-
ping in basins of the highly complex conformational space, an exhaustive sampling of
large macromolecular systems within reasonable time remains a difficult not to men-
tion impossible task. Nevertheless, there exist strategies to an extensive conformational
scanning especially of small molecules, and the space complexity issue can be tackled
using space discretization strategies. Since it is in the interest of all concerned scien-
tists to easily gain a quick overview over the conformational diversity of a molecular
system and identify suitable representatives for further investigations including bind-
ing free energy calculations, we will elaborate in the following a couple of convenient
algorithms. The first presented strategy is related to the identification of a single con-
formational representative associated with the highest statistical weight (global energy
minimum) of a chemical compound which served as initial structure for host–guest
binding analysis in upcoming chapters. The second part of this chapter describes the
development of an algorithm designed for clustering conformational ensembles with
intend to yield a minimal set of representatives per substance covering all regions of the
conformational space that are physically accessible. Finally, a simple approach to ligand
binding pose generation is presented based on an uniform decomposition of the space
of relative host–guest orientations. For an as reliable as possible in silico estimation of
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protein–ligand binding affinities, these aspects must be taken into account. Accord-
ingly, the methods presented here constitute preliminary steps generating geometries
that are used as structural basis for binding affinity models elaborated in subsequent
chapters. Altogether, a fully automated pipeline is presented describing the estimation
of binding affinities ensuing from a ligand geometry and the spatial position vector of
an active site.

4.1 High-temperature HMC approach to global minima

Significant conformational changes during a typical MD or MC simulation are rare
events. That is molecular conformations sometimes referred to as metastable subsets
within a molecular conformational space are typically separated by high energetic bar-
riers that are scarcely negotiated. Since within the framework of this thesis global min-
imum conformations are intended to serve as structural basis for subsequent binding
affinity estimations, we are interested in an efficient and reliable way to their identi-
fication. Consider the dihedral angle spanned by two vicinal bromine atoms of the
additive brominated flame retardant hexabromocyclododecane (HBCD) as illustrated
by Figure 4.1. During an HMC sampling, the torsional angle represented by the black
plot mainly resides in two small ranges around ±70◦. Even using HMC rather than
MD, the transition from one of these two metastable sets to the other occurs only once
per several thousands of iterations. If further dihedral angles are considered, combina-
tions of particular ranges of these angles become even rarer. Two major implications
follow from that observation: An extensive sampling of the entire conformational space

−180

−120

−60

 0

 60

 120

 180

0 50k 100k 150k 200k 250k

B
r−

B
r 

d
ih

e
d
ra

l

Monte Carlo step

Figure 4.1: Conformational trapping effect associated with MD and MC simulations: (−)-β-
HBCD dihedral sampled using an HMC scheme (black) and after CG minimization (red).
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4.1. High-temperature HMC approach to global minima

Figure 4.2: Six major HBCD stereoisomers: three diastereomeric pairs of enan-
tiomers. Reprinted from the original publication of Durmaz et al. 2012.

will most probably take more time than we are willing to spend. Ensuing from that, it
might often be advisable to focus on the most likely states that are associated with partic-
ularly low potential energies and, consequently, the by far highest statistical Boltzmann
weights.

In the light of these considerations, a proper choice of a preferential conformation of
the guest molecule is a key step to the estimation of binding affinities for host–guest
systems. For this reason we will, by taking the example of HBCD isomers, elaborate
in the following how global minimum conformations of small molecules for the pur-
pose of binding affinity calculations can easily be determined and verified. Until 2013,
HBCD was widely used in upholstery textiles and polystyrene foams, [195,196] though, it
was increasingly considered as an persistent organic pollutant (POP) that accumulates in
many environmental compartments as well as in biota including humans. [197–200] Con-
sequently, HBCD underwent a risk assessment commissioned by the European Chemi-
cals Agency that finally lead to its Annex A consideration for elimination by the Stockholm
Convention on POPs in the year 2013. [201]

Due to technical reasons, there exist six major HBCD isomers that are able to inter-
convert one into another. [199,200] As depicted in Figure 4.2, each of the three HBCD di-
astereomers α, β, and γ from left to right can appear in a form denoted as (−)-HBCD
or as its mirror-inverted (+)-enantiomer. HBCD stereoisomers are characterized by
three bromine pairs each forming a Br–Ci–Ci+1–Br moiety where i ∈ {1, 5, 9}. Ac-
cording to the absolute configuration associated with six HBCD stereo centers listed in
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Table 4.1: Absolute configuration and CIP nomenclature of the six major HBCD stereoisomers.
Reprinted from the original publication of Durmaz et al. 2012.

Stereoisomer CIP nomenclature Stereoisomer CIP nomenclature

(−)-α-HBCD 1R,2R,5S,6R,9R,10S-HBCD (+)-α-HBCD 1S,2S,5R,6S,9S,10R-HBCD
(−)-β-HBCD 1R,2R,5S,6R,9S,10R-HBCD (+)-β-HBCD 1S,2S,5R,6S,9R,10S-HBCD
(−)-γ-HBCD 1S,2S,5S,6R,9R,10S-HBCD (+)-γ-HBCD 1R,2R,5R,6S,9S,10R-HBCD

Table 4.1 along with their Cahn-Ingold-Prelog (CIP) nomenclature, every Br–C1–C2–
Br moiety shows either R-R or S-S chirality whereas the two other moieties associated
with C5–C6 and C9–C10 are of a mixed type (R-S or S-R). This system of stereoisomers
is particularly suitable for the evaluation of sampling as well as global energy minimiza-
tion routines due to several levels of symmetry that must be reflected by theoretical
energies if the sampling is supposed to be converged against the thermodynamic equi-
librium distribution. One the one hand the two enatiomeric counterparts (±) of any
HBCD diastereomer must yield analogous internal energy distribution. On the other
hand the distribution of states should reflect the radial symmetry given in case of α-
and γ-HBCD stereoisomers.

High-temperature HMC sampling and convergence diagnostics

The trace plot shown in Figure 4.1 is based on five 50.000 step MCMC chains resulting
from an HMC sampling of (−)-β-HBCD at 1500K. Setting the temperature to such
artificially high values yields large kinetic energies and momenta increasing the effi-
ciency of an conformational sampling. This idea resembles the key feature of the replica
exchange or parallel tempering method which performs several independent MC runs
at distinct temperatures and occasionally swaps configurations in order to improve the
dynamic properties of the sampling algorithm. [202] Moreover, Figure 4.1 indicates that
simulations comprising 50.000 iterations might be insufficient for a rigorous sampling
of drug-sized molecules, although the HMC method is known for its more efficient
conformational sampling compared to MD. [183] Substantial structural changes due to
large torsional flippings are observed few times only in Figure 4.1. Nevertheless, by us-
ing the HMC method, one is usually interested in the stationary distribution of states
that, once achieved, does not change significantly any more during further simulation.
Whether a sampling process has reached the stationary distribution or not can be evalu-
ated using mathematical tools for convergence diagnostics. The convergence evaluation
method applied here is attributed to Gelman and Rubin who proposed to monitor con-
vergence by running multiple MCMC chains and comparing within and between chain
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variances with respect to some parameter θ. [203,204]

Ensuing from the original paper, nine out of twelve dihedrals forming the cyclodode-
cane ring were chosen as basis for the convergence check. Due to the cyclic structure,
the ring geometry is unambiguously defined by those nine internal degrees of freedom.
In order to remedy issues with variances of cyclic entities, each dihedral ϕk was repre-
sented twice among the parameters, by its cosine and sine function

θ(k,sin) = sin (ϕk) ; θ(k,cos) = cos (ϕk)

resulting in a set of 18 parameters in total. Since cos (x) = cos (−x), using the cosine
expression enables to “close the circle” at±180◦ and, thus, to reduce the fallacious vari-
ance associated with cyclic dihedrals around 180◦. Indeed, a typical torsion potential
about a bond between two sp3-hybridized carbons as sketched for butane in Figure 1.5
reveals an energetically favorable dihedral at this critical value. The two other preferen-
tial conformations correspond to dihedrals at ±60◦ which holds for HBCD as well as
sketched in Figure 4.1. However, as a consequence of the cosine function’s axial sym-
metry, it would erroneously consider these two major conformations identical. This
type of error in turn is compensated by the sine expression which yields significantly
different function values for −60◦ and +60◦ but, fortunately, zero for angles around
180◦ where the cosine function is intended to dominate. Thus, the maximum of the
two trigonometric functions would provide a good indication of any dihedral’s variance.
Prior to the high-temperature HMC sampling, all compounds were parametrized ac-
cording to the Merck Molecular Force Field (MMFF) which was particularly designed
for small drug-sized molecules. [127] On the basis of m = 5 HMC Markov chains built
at T = 1500 K including n = 105 iterations with 30 MD steps per iteration, the con-
vergence of each parameter θ was investigated independently following the proposal of
Gelman and Rubin. Having calculated the mean within-chain variance

W =
1

m

m∑
j=1

1

n− 1

n∑
i=1

(
θij − θ̄j

)2 , (4.1)

which likely underestimates the true variance unless all points in the conformational
space are reached, and the variance between chains

B =
n

m− 1

m∑
j=1

(
θ̄j − ¯̄θ

)2
, (4.2)

the variance of the stationary distribution was estimated as a weighted average of Equa-
tions 4.1 and 4.2

V̂ar (θ) =
(
1− 1

n

)
W +

1

n
B
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Figure 4.3: HMC convergence diagnostics of the six major HBCD stereoisomers according to Gelman
and Rubin: PSRF trace plot using five Markov chains of 100 k steps each.

used to determine the potential scale reduction factor (PSRF)

R̂ =

√
V̂ar (θ)
W

which is interpreted as a relative distance from the stationary distribution. The larger
this value, for which a cutoff value in the range of 1.1-1.2 is recommended, the more
additional sampling is required for a proper convergence. Convergence was evaluated
after every 500 HMC iterations and separately for the 18 chosen parameters. At each
time, the largest PSRF representing the dihedral angle that more than any other prevents
from converging to the stationary distribution was determined. Figure 4.3 shows the
PSRF behaviour for the six HBCD stereoisomers under investigation. It leads to the
assumption that no significant improvement occurs anymore after about 50k HMC
steps and that we do well with at least that number of iterations for the purpose of a
global minimum search of small compounds. However, it should be noted that the
PSRF value can mislead. For instance, if all MCMC chains reside in the same tight
subdomain of space by collectively neglecting all other parts of space, they will still most
likely yield an erroneously promising value close to one which indicates convergence.

Global minimization and evaluation

At this point, symmetry properties of HBCD stereoisomers mentioned above come into
play as they offer an additional level for convergence diagnostics. To be precise, the en-
ergy distribution with respect to a particular internal coordinate should be similar to
that of another coordinate if both degrees of freedom are embedded in identical physical
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Table 4.2: Global potential energy minima of anti and gauche subspaces given in [kJ/mol]
with respect to all CiBr–Ci+1Br-moieties of the six major HBCD stereoisomers.

α β γ

Enantiomer Dihedral anti gauche anti gauche anti gauche

(−)
C1C2 253.7 238.7 263.6 249.5 256.7 256.7
C5C6 272.6 238.7 285.3 249.5 275.1 256.7
C9C10 272.6 238.7 276.2 249.5 275.1 256.7

(+)

C1C2 253.7 238.7 263.6 249.5 256.7 256.7
C5C6 272.6 238.7 285.3 249.5 275.1 256.7
C9C10 272.6 238.7 276.2 249.5 275.1 256.7

environments due to structural symmetries. Instead of comparing energy distributions
directly, one can as well select geometries representing particular critical points such as
“locally global” minimum conformations. For this purpose, all geometries generated
by the HMC algorithm underwent a conjugate gradient (CG) minimization with at
most 5000 iterations if the maximum force at some iteration step had not ended up be-
low the tolerance value of 2 kJ mol−1 nm−1 before. Figure 4.1 exemplarily shows how
the variance associated with one particular dihedral angle of (−)-β-HBCD is narrowed
down to less states (red plot) that are related to local minima compared to the broader
HMC sampling (black plot). Afterwards, these optimized geometries were divided into
different domains according to some internal coordinate (dihedral) and the lowest min-
imum energy conformation of each domain was identified. Table 4.2 shows a pair of
optimal potential energy values per stereoisomer and Br–Ci–Ci+1–Br-moiety denoted
as anti and gauche and resulting from the decomposition of each bromine-bromine di-
hedral ϕ into two subspaces representing anti (|ϕ| > 120◦) and gauche (|ϕ| < 120◦)
conformations, respectively. Obviously, the enantiomeric counterparts (+/−) of any
diastereomer correctly yielded identical optimal energies regarding all Br–Ci–Ci+1–Br-
moieties. Furthermore and as indicated by yellow blocks in Table 4.2, the radial sym-
metry given in case of α- and γ-HBCD is well reflected as well because anti/gauche
optima of both the Br–C5–C6–Br and Br–C9–C10–Br moieties yielded the same pair of
values, 272.6/238.7 kJ mol−1 for α-HBCD and 275.1/256.7 kJ mol−1 for γ-HBCD.
Both observations clearly confirm a sufficient sampling in terms of convergence. In-
terestingly, except for three values, all localized global minima presented in Table 4.2
based on 105 HMC iterations had already been calculated using 104 HMC steps only.
The exceptions were related to the Br–C9–C10–Br group of (−)-β-HBCD with 278.4
instead of 276.2 kJ mol−1 and of (±)-γ-HBCD with 289.5 instead of 275.1 kJ mol−1.
After the short sampling, the exceptional stereoisomers’ maximum PSRF value ranged
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Figure 4.4: Alignment of globally minimized major HBCD conformations to respective X-ray struc-
tures. Ensemble was parametrized according to the AMBER force field, sampled using HMC, and
minimized with the CG method. From left to right: α, β, γ diastereomer. Reprinted from the original

publication of Durmaz et al. 2012.

between 1.4 and 1.7.

Finally, for the three HBCD diastereomers (α, β, and γ) crystallographic data was
available in the Cambridge Structural Database (CSD) under the IDs 633325, 617557,
and 633326, respectively, [205] which were used for an evaluation of theoretical minima.
Figure 4.4 shows structural alignments of global minimum conformations of HBCD
diastereomers with respective crystallographic data. In addition to the visual inspection,
the similarity of predicted and crystallographic structures was quantified by means of
both Cartesian and torsional root mean square deviations (RMSD) as summarized in
Table 4.3. In general, the RMSD value is defined as

RMSD =

√√√√ 1
n

n∑
i=1

ξ2
i

where ξi was either equated with Cartesian coordinates directly or, in case of dihedral
angles, computed as

ξi =

 ϕsim
i − ϕ

exp
i if |ϕsim

i − ϕ
exp
i | ≤ 180◦,

360◦ − |ϕsim
i − ϕ

exp
i | if |ϕsim

i − ϕ
exp
i | > 180◦.

(4.3)

The case differentiation is necessary since any rotational distance can be expressed by
two values, ϕ and 360◦ − ϕ. Equation 4.3 guarantees that the smaller one (at most
180◦) of these two distances is used for similarity measurement. Both AMBER as well
as the Merck force field yielded comparably reasonable Cartesian RMSD values that
are particularly remarkable for β-HBCD evaluated as less than 0.2 Å. Indeed, this di-
astereomer displays perfect matching as depicted in Figure 4.4 whereas the other two
diastereomers show considerable deviations in certain regions. The visual observations
better correlate with the torsional measurement on the basis of AMBER. With MMFF,
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Table 4.3: Cartesian and angular RMS deviation of computed
global HBCD minima from crystallographic geometries.

Cartesian RMSD
[
Å
]

Angular RMSD [◦]

Diastereomer MMFF GAFF MMFF GAFF

α-HBCD 0.49 0.49 52.8 52.8
β-HBCD 0.08 0.16 2.0 5.0
γ-HBCD 1.23 0.73 95.8 40.3

a significantly worse conformational similarity of γ-HBCD to the corresponding crys-
tal structure was computed. All in all, the observations indicate a high suitability of
both force fields to the description of small organic molecules where AMBER achieves
slightly better results as a whole and, especially, regarding the high conformational com-
plexity due to many rotatable bonds coupled with an assumingly notable strain caused
by the cyclic sructure. The significant deviations associated with α/γ-HBCD may be
attributed to several causes, for instance, solvent or chemical effects during the crystal-
lization process or simply due to the fact, that crystallographic conformations do not
necessarily need to match those associated with global energy minima under solvation
or vacuum conditions.

4.2 Efficient clustering of molecular conformations

Sometimes, a single global minimum conformation as the only representative of a drug-
sized molecule is not sufficient for further analysis. One might be interested in an ex-
haustive sampling for the purpose of extensive conformational analysis or free energy
estimations regarding small molecules or large host–guest systems. As already pointed
out, complex systems hardly exhibit significant structural changes during MD simula-
tions. However, instead of running one trajectory for a very long time one could run
multiple time series simultaneously from a set of initial structures corresponding to sig-
nificantly differing regions of the configurational space. Cluster algorithms addressing
this task are commonly termed meshless discretization methods.

We will in the following elaborate an as simple as efficient centroid-based algorithm
for the generation of a k-split, the selection of a set C(k) of k cluster representatives cj
out of n states (geometries/frames) of a molecular trajectory/ensemble where k ≪ n.
The cluster centers cj are iteratively selected possibly from a high-temperature sampling
unless at least one of two termination criteria is met: either a particular preassigned
number k of centers is obtained or the Euclidean distance dcj (i) of every frame i to
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its nearest representative cj lies beneath a given torsional distance limit dmax. As a con-
sequence, every domain of the conformational space physically accessible at extremely
high temperatures is represented by some geometry regardless of its likeliness to occur
in a statistical ensemble. Favorable local minima as well as rarely sampled conformers
often associated with transition states are taken into account for further analysis possi-
bly including path reconstruction, molecular kinetics, and free energies. Insofar, this
approach is entirely contrary to clustering tools such as k-means that rather try to iden-
tify points amidst many others representing particularly dense domains. [206] Suitable
input for the presented strategy can be constructed from an extensive high-temperature
HMC or MD sampling as described in the previous section since it is likely to cover
most of the relevant conformational space.

Algorithmic details

Given an ensemble consisting of n molecular geometries, the algorithm’s central data
structure is a membership array Mj of length n updated with each cycle j of an itera-
tive process. Mj consists of torsional Euclidean distances dcj (i) of each frame i to its
currently nearest cluster center cj . The procedure is illustrated in detail by Figure 4.5
exemplarily using an eight frames subset of an HMC sampling of pentane. At the very
beginning, array M is initialized with extraordinarily large values, M0 := (∞). Gen-
erally, the frame associated with the largest value of Mj is chosen as next cluster center
cj+1. In the special case of the first iteration where M0 := (∞), an arbitrary state may
be selected. With no loss of generality, we decided for the first state of the ensemble,
c1 = 1. Afterwards, a vector dcj+1 of distances dcj+1 (i) from any frame i to the new
centroid cj+1 is calculated. An updated version Mj+1 is then constructed by taking
element-wise minima of the two vectors dcj+1 and Mj . In other words, if the current
cluster center cj+1 is closer to some state i than the closest of all the previous centers
{c1, · · · , cj}, then state i is assigned to cluster j + 1 represented by centroid cj+1 and
the corresponding distance dcj+1 (i) is allocated to the i th field of Mj . Certainly, the
values of M decrease monotonically along iteration j since

Mj (i) ≤Mj−1 (i) ∀ i ∈ {1, n} and ∀j ∈ {1, k}

Finally, after k iterations, the minimal array Mk contains for each frame the distance
to its nearest representative cj . Since during each iteration j the frame corresponding
to the maximum distance value of array Mj is chosen as next centroid, the presented
method will be referred to as maxdist algorithm in the following. Thus, by simply
selecting the frame with the largest distance to its nearest centroid as the next one,
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Figure 4.5: Meshless discretization strategy of maxdist algorithm: Vector Mj keeps track of each frame’s
Euclidean distance to its nearest centroid. It is constructed as the element-wise minimum of its prede-

cessor Mj−1 and frame distances dcj to the current centroid cj .

a complete representation of space in particular at complete disregard for physically
irrelevant domains is guaranteed.

Regarding the HMC sampling of pentane (Figure 4.5), the clusters have been iden-
tified on the basis of its two most relevant dihedral angles ϕ1 and ϕ2 and a maximal
torsional distance dmax set to π/3 ≈ 1.05. In analogy to butane sketched in Figure 1.5,
ϕ1 is related to the angle spanned by C1−C2−C3−C4 and, in addition, ϕ2 related to
C2−C3−C4−C5. First, M0 was initialized with infinity. To simplify matters we chose
the first frame (F1) as the first representative, c1 := F1 corresponding to the top row and
left-most blue-marked sample in Figure 4.5 and calculated dF1 afterwards. Taking the
element-wise minimum of M0 and dF1 yielded an updated array M1 which is identical
to dF1 since all of the calculated distances are less than the corresponding ones of array
M0 initialized with∞. Frame F6 (blue-marked sample in vector M1) associated with
the largest distance to the current (initial) center is then chosen as next representative c2.
Again, for each frame i its distance dF6 (i) to this new representative is computed and
element-wisely compared to the current arrayM1 of least frame-wise distances yielding
an once again updated array M2. After k = 4 iterations we arrived at a set of four rep-
resentatives, {F1, F2, F5, F6}, (yellow-colored fields in M4) to which all other frames
are assigned with some minimal distance below dmax = π/3. Figure 4.2 shows a scatter
plot of the same set of eight pentane samples within its conformational space projected
onto two internal dimensions (ϕ1 and ϕ2). If we had terminated the procedure after
k = 3 iterations (left subfigure), the maximum torsional distance between any pair of
representative and sample would have amounted to 2.1 radians which is related to the
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Figure 4.6: Meshless discretization strategy of maxdist algorithm illustrated by a 3-split (left) of eight
two-dimensional conformational objects plus one successive iteration cycle yielding a 4-split (right).

second frameF2 and its nearest center c3 (=F5). According to that 3-split, framesF1,F6,
and F5 were chosen as cluster centers. They are marked by red circles and surrounded
by grey-colored spheres defining the maximum torsional distance. Moreover, F2, the
righter one of the pair of points located above c3 at ϕ2 ≈ 3 right at the encompassing
circuit, constituted the next cluster candidate. With its selection during the final iter-
ation, all large encompassing circles immediately became significantly smaller namely
0.8 related to the distance between cluster c2 and the frame below. A naive look at the
3-split in Figure 4.2 might raise the question why the third representative c3 = F5 was
not selected earlier since the distance between the two previous centers, c1 and c2, is
smaller than their distances to c3. However, the visual appearance is deceiving because
we are dealing with periodic quantities that repeat every 360◦ in each dimension so that
the shortest circular distance between two points might be less than what the figure
suggests. In short, the algorithm performs as follows:

1. Initialize vector M0 of minimum distances per frame with∞.

2. Select next cluster center cj either as the frame associated with the largest value
in Mj−1 or, in the initial case only, arbitrarily from M0.

3. Calculate vector dcj (i) of distances between every frame i and the current rep-
resentative cj .

4. Update distances in vectorM with the element-wise minimum of the two vectors
computed previously, Mj = min

(
Mj−1, dcj

)
.

5. Repeat steps 2.-4. unless stopping criterion is reached.
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4.2. Efficient clustering of molecular conformations

Due to nk evaluations of distances and pairwise minima, the presented algorithm’s
time complexity is in the order ofO (nk). It can even be considered as linearly scaling,
O (n), since in realistic examples k ≪ n. However, the complexity may increase if
either only few states have been sampled or, depending on the stopping criterion and the
number of torsional degrees of freedom, a large number of clusters is required. In a worst
case scenario, if all frames are chosen as cluster centers (k = n), the time complexity
would amount to O (n2). In practice, though, given a large set of n geometries, k will
be negligible compared to n as illustrated by Figure 4.7 for n-pentane as a representative
for molecules with two torsional degrees of freedom. It shows the number of required
clusters depending on the number of frames randomly selected as input out of a 400k
step HMC sampling of pentane. For each input size ranging from 1 to 5000 states
the number of clusters was averaged over ten random sets. In addition, the rotational
distance cutoff dmax was varied from π/6 to π. With an increasing number n of samples,
the number of clusters seem to, sooner or later, converge against some value k which
clearly depends on dmax. The maximal number of clusters is indeed limited since from a
certain point on the entire conformational space (respectively all input frames) will be
covered by spheres encompassing the cluster centroids cj at radius dmax. Of course, large
dmax values enhance convergence as illustrated by lower plots in Figure 4.7). Regarding
space complexity, the entire procedure requires to keep track of only two arrays (Mj

and dcj ) consisting of n floating point values each.

Stopping criteria and convergence diagnostics

As already stated, a critical part of the cluster algorithm is related to the stopping cri-
terion for which maxdist offers two options. On the one side, one can predefine a
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according to maxdist algorithm: dmax=π/6 yields 57 representatives (left), dmax=π/2 yields 11 (right).

particular number k of clusters causing the algorithm to abort exactly after k iterations.
On the other side, it is possible to limit the maximum allowed distance between any
frame and its nearest cluster to a predefined value dmax. Which criterion suits more the
user’s needs is up to the problem. If one wants to be sure that no possible conformer
has an Euclidean distance to its representative larger than a particular value, he would
probably predefine a distance limit dmax. If, in contrast, the number of representatives
shall be limited, this is easily achieved by a proper setting. The two options do not ex-
clude each other. Rather, the same sequence of representatives is calculated (up to and
theoretically beyond the point where the first criterion is met). Again, we consider a
1500 K HMC sampling consisting of 400 k pentane conformers. As we already know,
the pentane conformation is well approximated by the two all-carbon dihedral angles
ϕ1 and ϕ2. Accordingly, each red dot of the 2D-scatter plot in Figure 4.2 is associ-
ated with a particular pentane geometry. The distribution of 2000 randomly chosen
states on the basis of five Markov chains as described earlier obeys the Boltzmann dis-
tribution of pentane energies since low energy of the potential energy surface (PES)
are covered more densely than unfavorable regions of higher energies. [207] At least nine
densely sampled regions have been identified which obviously correspond to the nine
major out of eleven known pentane conformations. Frames chosen as cluster represen-
tatives are marked through large dark dots and associated with a Voronoi cell in Figure
4.2. A 57-split and a 11-split were necessary in order to fulfill the dmax = π/6 (left
subfigure) and, respectively, the dmax = π/2 criterion (right subfigure). It should be
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4.2. Efficient clustering of molecular conformations

noted that the relationship

C(k) ⊂ C(l) ∀ k < l,

is valid for any two sets C(k) and C(l) of clusters corresponding to a k and, respec-
tively, l-split generated with maxdist. Consequently, 11-split representatives form a
subset of those associated with the 57-split. In any case every point is assigned to at
least one cluster centroid at a distance less than dmax. Obviously the maxdist Voronoi
partitioning does not tend to match a physical decomposition of space at constant tem-
perature (following the Boltzmann distribution). Since the intention of this algorithm
is to represent the entire conformational space rather than dense regions preferentially,
the two given domain decompositions seem more or less reasonable. Both related sub-
sets C(k) include lone geometries from low-density transition regions as well as geome-
tries located in quickly descending high-probability areas around local pentane minima.
However, the coarser decomposition on the right of Figure 4.2 exhibits at least one min-
imum (e. g. at 300◦,60◦) that is not satisfactorily represented. A distance limit set to
dmax = π/4 yielded 33 centers that sufficiently cover two dimensions associated with
torsional degrees of freedom by using much less centers than the 57-split. Considering
a typical periodic distribution of rotational barriers with a maximum either every 120
or every 180 degrees, it appears reasonable to choose a distance limit dmax less than half
the smallest possible periodic offset,

dmax ≤
π

3
= 60◦. (4.4)

With increasing dimensions, though, this algorithm quickly identifies a great many
number of clusters. Solid lines in Figure 4.9 representing maxdist results show possible
tradeoffs between the number of clusters k and the maximum allowed distance for a
couple of torsional degrees of freedomNf ranging from one to five. Each setting’s value
was averaged on the basis of ten maxdist runs on independent sets of 5000 states ran-
domly selected from the 500k high-temperature HMC sampling of HBCD. Torsional
angles used here originate from the cyclic carbon scaffold of (−)-β-HBCD as shown in
Figure 4.2. Obviously, the best up-rounded ⌈·⌉ approximation of k follows hyperbolic
functions

k =

⌈
1

(dmax/2π)
Nf

⌉
(4.5)

of the distance limit where the function order corresponds to the dimension Nf. The
progress of k calculated with Equation 4.5 and using five different degrees of freedom
is depicted in Figure 4.9 through dashed lines. The normalization of dmax by 2π is
necessary for the following reason: Due to its discrete nature, the function value (the
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number of chosen clusters) cannot be less than one, k ≥ 1. It evaluates approximately
as one for dmax values equal to or larger than 2π. Since all hyperbolic functions of
the type x−n intersect at (1,1), a scaling of the horizontal axis is necessary in order to
shift the intersection point (1,1) to (2π,1). For a dmax domain ranging from 0.01 to
2π, Equation 4.5 yields remarkable coefficients rNf of correlation: r1 = 0.986, r2 =

0.984, r3 = 0.999, r4 = 0.998, and r5 =0.987. However, with increasing function
values the hyperbolas’ (dashed lines) deviations from respective simulation results (solid
lines) grow increasingly, particularly affecting systems associated with higher degrees of
freedom. The consequent introduction of a correction factor (1− α) into the exponent
of Equation 4.5 yields a model

k =

⌈[
2π
dmax

]Nf (1−α)
⌉

(4.6)

that copes better with the algorithm’s results for large Nf as illustrated by dotted lines
if α = 0.06: r1 = 0.982, r2 = 0.989, r3 = 0.998, r4 = 0.999, and r5 = 0.991.
Intuitively, α might reflect structural and dynamic properties of the molecular system
under investigation. For instance, it could be considered as the deviance of the sam-
pling from an ideal distribution of geometries in the conformational space which might
be characterized by infinitely dense and uniformly spread points. That is, the smaller
the domain in space the internal molecular flexibility is restricted to the less cluster
will be required leading to a larger value for α. Either way, in order to be able to use
Equation 4.6 for an estimation of the expectable number of clusters given a particular
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4.3. Host–guest binding mode decomposition

Nf and dmax, α could, in advance, be parametrized generally or specifically using a set
of molecules with differing or, respectively, similar torsional flexibilities. An efficient
implementation of the linearly scaling algorithm is available within the framework of
the software ZIBgridree [208] which was designed for conformational analysis of small
as well as macromolecules. It should be noted that the clustering method focusses on
an exhaustive representation of the conformational space by few cluster centers rather
than iteratively choosing the optimal representative of each cluster as carried out by the
k-means algorithm which is widely used in spite of its poor time performance under
certain conditions. [206]

4.3 Host–guest binding mode decomposition

As already pointed out and illustrated through Figure 4.1, significant conformational
changes are rare events during an MD simulation. This observation is also valid regard-
ing the relative orientation of a host and guest molecule in complex systems including
receptor–hormone and enzyme–substrate complexes. It is therefore advisable, to de-
compose the conformational space for independent simulations in order to identify the
most preferential binding mode(s) for the purpose of affinity or conformational analysis.
In the following, we will describe a simple and straight-forward strategy to the decom-
position of conformational space and use respective representatives for the prediction
of quantitative or relative binding affinities in successive chapters. These are calculated
on the basis of either the most preferential mode that needs to be determined with
some convenient method or a weighted sum of all modes. The regular decomposition
is based on symmetry properties of an icosahedron consisting of twelve vertices and 20
faces. A rotational decomposition according to the icosahedron which is (besides its
dual, the dodecahedron) the Platonic solid with the highest order of symmetry yields
60 uniformly distributed orientations (binding modes) of the guest molecule at the host
molecule’s binding site. They serve as initial conformations for independent MD runs
of the molecular complex. Though this procedure highly increases the computational
effort, we are confident to snatch the preferential binding mode(s) in contrast to ordi-
nary molecular docking algorithms. Figure 4.10 illustrates the idea using the antibiotic
sulfamethoxazole depicted on the left as an example. We will be faced with this drug
again in Chapter 7. Of course, there have already been attempts to estimate the binding
affinity on the basis of multiple binding modes. [84] However, a systematic investigation
of the entire space of binding modes for automatization purposes if no experimental
information about the correct binding mode exists is still missing.
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Figure 4.10: 60 uniformly distributed rotational binding modes of sul-
famthoxazole (left) according to the icosahedron on the right providing

starting conformations for MD simulations

Algorithmic details

One of the possible ways to quickly generate a set of 60 uniformly distributed binding
modes entails in using rotation matrices Ri which are of dimension 3× 3 for our aim.
Any position vector v ∈ R can be rotated

v′ = Ri (α) v

by an angle α about some axis i resulting in a transformed vector v′. In analogy to the
concept of Euler angles, there exist three rotation matrices

Rx (α) Ry (α) Rz (α)︷ ︸︸ ︷1 0 0
0 cosα − sinα
0 sinα cosα


︷ ︸︸ ︷ cosα 0 sinα

0 1 0
− sinα 0 cosα


︷ ︸︸ ︷cosα − sinα 0

sinα cosα 0
0 0 1

 (4.7)

corresponding to the three spatial axes x, y, z. Successive rotations about axis i and
j (in this order) are achieved by multiplying vector v with one transformation matrix
after another from left

v′ = Rj (β) Ri (α) v.

One should bear in mind that temporarily, during any rotation process, the object
under consideration must be geometrically centered on the coordinate system’s origin
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4.3. Host–guest binding mode decomposition

since we want to keep its initial position in space, most likely the binding site. Now
considering any ligand molecule as an icosahedron, each pair (i, i∗) of two opposing
vertices provides one rotational axis Li, i ∈ 1, . . . , 6 (magenta-colored in Figure 4.10)
about which the object can be rotated in five 72 degree steps per full cycle. Having
chosen some axis as the first one, this yields five binding modes if we save a snapshot
of the molecule after each step. Five further orientations associated with the same axis
are gained after having swapped the two corresponding vertices through a respective
180 degree rotation of the icosahedron resulting in ten binding modes altogether per
rotational axis. Since there exist five further rotational axes defined by ten further ver-
tices where each axis provides ten further orientations we arrive at a total number of 60
binding modes as sketched within the icosahedron on the right of Figure 4.10. All that
has to be done is aligning one of these axes after another to the first axis in a convenient
way. Let us first define the (arbitrary) initial position according to Figure 4.11. It is
characterized by three assumptions:

• The icosahedron is geometrically centered on the point of origin.

• Both vertex 1 and its opposing vertex 1∗ lie on the x-axis serving as the central
rotation axis from which poses are sampled.

• Vertices 5 and 6 define a line parallel to the xy-plane at a unique negative z-value.

Algorithm 1 illustrates the detailed procedure in terms of pseudo code. As stated
above, before any rotation the molecule’s geometric center must be translated to the
point of origin (carried out in lines 4, 15, and 22) and moved back to the active site (lines
13 and 20) for binding pose sampling. Lines 7-10 are associated with the alignment
of any other axis i ∈ 2, . . . , 6 formed by two opposing vertices (i, i∗) to the first one
i = 1). Orientation 1 corresponding to the initial orientation is additionally sketched in
Figure 4.11. It graphically demonstrates rotations according to lines 8-10 in Algorithm
1 required to explicitly align the second axis L2 formed by vertices 2 and 2∗ to the
initial one L1 right after having sampled two times five rotations about the first x-
axis and arrived at the initial position again. Basically, this transformation expressed as
L2 → L1 is ensured by aligning vertices (2,6,4∗) to (1,5,6). Sampling from any other
rotation axis Li, i ∈ 3, . . . , 6 of the icosahedron requires only one preceding rotation
of (i− 1) · 72◦ (line 7 in Algorithm 1) about the x-axis in order to have it aligned
with L2. After this Li → L2 transformation one would perform the same steps as
associated with L2 → L1. The L2 → L1 transformation sketched by Figure 4.11 and
the determination of proper angles is described in more detail in the following.

First, according to the blue-colored lines and coordinate axis (z) in Figure 4.11, the
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Figure 4.11: Alignment of the next rotational icosahedron axis (represented by the vertices {2-6-4*})
to the initial (x) axis (vertices {1-5-6}) using three Euler rotations about the z (blue dashed lines), y

(green dashed lines), and x (red dashed lines, illustrative only) axis.

object was rotated by an angle αxy about the z-axis using matrixRz

(
αxy
)

until vertex 2
represented by its position vector v2 lied on the xz-plane (line 8 in Algorithm 1). The
respective angle

αxy = acos
⟨ex, Pxy (v2)⟩
∥Pxy (v2)∥

= −62.256◦

was determined using the normalized inner product ⟨ , ⟩ of the unit vector ex = [1, 0, 0]⊤

associated with the x-axis and the orthogonal projection Pxy (v2) of vertex 2 onto the
xz-plane (blue fine dotted arrow vxy in Figure 4.11). Any projection of a position vector
on some plane spanned by two coordinate axes was carried out by setting the compo-
nent associated with the third spatial axes (y in the given example) to zero. For the next
transformation sketched through green-colored lines and coordinate axis, the projected
image

v′2 = Rz

(
αxy
)
v2

of vertex v2 (referred to as 2′ in Figure 4.11) lying on the xz-plane was (certainly along
with all other vertices of the icosahedron) rotated about the y-axis onto the x-axis using
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4.3. Host–guest binding mode decomposition

matrix Ry (αxz). The respective angle αxy was determined as

αxz = acos
⟨ex, v

′
2⟩

∥v′2∥
= 16.047◦

(line 9 in Algorithm 1). Now, vertex 2 (and its opposite 2∗) is exactly aligned to vertex
1 (and 1∗) and a last adjustment was necessary in order to align vertices 6 and 4∗ to
vertices 5 and 6, respectively (line 10 in Algorithm 1). This was achieved by a final
rotation about the x-axis using Rx

(
αyz
)
. The angle

αyz = acos
⟨Pyz (v6) , Pyz

(
v′′4∗
)
⟩

∥Pyz (v6)∥ ∥Pyz
(
v′′4∗
)
∥
= −26.289◦

was determined on the basis of Pyz (v6) and Pyz
(
v′′4∗
)

representing yz-projections of
both vertex 6 and the second-order image

v′′4∗ = Ry (αxz) Rz

(
αxy
)
v4∗ .

of 4∗. For the sake of convenience, only the projection of vertex 6 onto the yz-plane re-
sulting in vector vyz is illustrated using red colors in Figure 4.11) whereas the projection
of the second-order image of vertex 4∗ is neglected.

The rotations elaborated here are necessary for the alignment of vertices (2,6,4∗) to
(1,5,6) in order to switch (lines 7-10 of the algorithm) to the next rotation line Li

from which 2×5 modes are sampled. The first five poses are produced through five 72◦

rotations (for-loop in lines 12-17) about the x-axis which is currently equivalent with
Li. As indicated earlier, before the second set of five poses can be sampled from Li (for-
loop in lines 19-24), the corresponding vertices i and i∗ need to be swapped through an
180◦ rotation about y (line 18) and revoked afterwards (line 25). After having processed
any axis Li, the icosahedron is first transformed back to its initial orientation (lines
27-30) before the next axis Li+1 is addressed. Preceding transformations of axes Li

with i ∈{3,4,5,6} to (the original location of ) L2 are achieved by the same 72 degree
rotational steps about x as used for sampling poses from Li.

Ensuing from Equation 4.3 any series of n successive rotations Ri ∈ R3 can be ex-
pressed by one single transformation matrix

R = Rn · · ·R1

performing a single rotation about a rotational axis that is specified by the eigenvector
associated with the eigenvalue 1. Using the tray tr (R) of matrixR, the respective angle
is calculated as

ϕ = acos
[1
2
(tr (R)− 1)

]
.
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Algorithm 1 Algorithm creating 60 uniformly distributed binding modes
1: procedure icosahedron(mol)
2: v ← geometric center of mol
3: T ← [ ] ▷ Initialize empty list of geometries
4: translate mol by −v ▷ Translate to origin before any rotation
5: for i = 1 to 6 do ▷ Loop over six icosahedron axes
6: if i > 1 then ▷ Align next axis to initial one
7: rotate mol by Rx ((i− 1) · 72◦)
8: rotate mol by Rz (−62.256◦)
9: rotate mol by Ry (16.047◦)

10: rotate mol by Rx (−26.289◦)
11: end if
12: for j = 1 to 5 do ▷ Loop over five symmetric rotations per axis
13: translate mol by v ▷ Translate back to original site
14: push mol to T ▷ Save current binding mode
15: translate mol by −v ▷ Translate back to origin
16: rotate mol by Rx (72◦)
17: end for
18: rotate mol by Rz (180◦) ▷ Swap for further five rotations per axis
19: for j = 1 to 5 do ▷ Loop over five symmetric rotations per axis
20: translate mol by v ▷ Translate back to original site
21: push mol to T ▷ Save current binding mode
22: translate mol by −v ▷ Translate back to origin
23: rotate mol by Rx (72◦)
24: end for
25: rotate mol by Rz (180◦) ▷ Swap back to initial orientation of current axis
26: if i > 1 then ▷ Retransform back to initial orientation
27: rotate mol by Rx (26.289◦)
28: rotate mol by Ry (−16.047◦)
29: rotate mol by Rz (62.256◦)
30: rotate mol by Rx (− (i− 1) · 72◦)
31: end if
32: end for
33: return T
34: end procedure
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4.3. Host–guest binding mode decomposition

Accordingly, a torsional 60×60 distance matrix between any pair of two vertices was
calculated and rounded after two decimals in order to get rid of machine precision
issues. A 30 bin histogram (Figure 4.12) of [0, 2π] reveals the discrete nature of all
3600 rotational distances. Distances to oneself associated with the main diagonal are
represented by the first bar at distance 0. In particular, several hundred pose distances
are located at small values like 63◦ and 72◦. They ensure that for any pair of two final
poses out of 60 a path possibly comprising further intermediate poses can be constructed
where no intermediate distance is larger than 72◦. In other words, the “true” binding
mode of some ligand is substantially less than 72◦ away from the next representative
if having decomposed its space of modes in the described manner. From that point of
view, the problem is related to the meshless discretization approach presented in the
previous section for which a maximum distance cutoff of 60-90◦ was recommended in
order to have the entire available (conformational) space represented.

Application to hormone receptors

The regular rotational domain decomposition method was evaluated on the basis of sev-
eral molecular systems with practical relevance. In any case, the binding modes served as
initial structures for atomistic MD simulations of molecular complexes and underwent
a prioritization according to physical properties. However, some results concerning
the evaluation of the rotational domain decomposition constitute the basis for bind-
ing affinity estimations of host–guest systems described in the following chapters and,
therefore, are presented along with those results. Nevertheless, an evaluation of the
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Figure 4.12: Histogram of rotational distances between 60
binding poses according to the symmetry of icosahedrons.
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method in terms of a binding mode prediction is presented in this section using the
prominent human estrogen receptor alpha (ERα) system by way of example.

The intracellular receptor ERα belongs to the family of nuclear hormones and is acti-
vated by the hormone 17-β-estradiol, also referred to as estrogen (E2). After activation,
the complex forms a homo or heterodimer (associated with a second type of the es-
trogen receptor (ER) denoted as ERβ and coded by another gene) which translocates
into the nucleus. Here, it acts as transcription factor that binds to the DNA in order
to regulate various different genes. [209] Thus, both types of ER are composed of several
sections including a ligand binding domain, DNA-binding domain as well as a domain
responsible for the dimerization. ER which plays a crucial role in cell differentiation
is expressed in various tissues. [210] Its expression level and activation pattern have been
shown to correlate significantly with various types of cancer and other diseases. [211–213]

In the face of these results and, in addition, high estrogenic activities of several synthetic
compounds, the risk of endocrine disruption by xenoestrogens has been elucidated in
the early eighties already. [214] For all these reasons, this target system has been undergo-
ing many investigations including the prediction of binding affinities. In the framework
of this thesis, a predictive model for binding affinities regarding ERαwas developed and
will be presented in Chapter 6. Here, we will only present the prediction of a favorable
binding mode which served as input for the affinity estimation. Many attempts have
been made for the prediction of binding affinities to biopolymers as we will see later. For
instance, on the basis of several host–guest systems, van Lipzig and co-workers achieved
excellent squared coefficients of correlation around 0.9±0.04 for ERα using classical
MD simulations refined with respect to the number of hydroxy groups of 19 ligands.
In advance, four ligand orientations had been chosen manually inspired by crystallo-
graphic data. [84] However, an automatized predictive model should abstain from any
preliminary information about the ligand’s orientation and, in particular, avoid any
manual or random choice of some favorable pose. From this point of view, a systematic
search of the preferential binding mode on the basis of a uniform decomposition seems
to be a necessary approach to the estimation of binding affinities.

Data preparation and computational methods

A reasonable structure file of ERα including a co-crystallized E2 molecule was retrieved
from the PDB under the ID 1GWR [215] providing structural information about the
protein’s ligand binding domain (LBD) ranging from amino acid (AA) 306 to AA 549
and the nuclear receptor box (AA 742-750). Due to missing residues (AA 332-334 and
AA 462-464) the structure underwent a protein building step described in more detail in
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4.3. Host–guest binding mode decomposition

Figure 4.13: X-ray structure of the estrogen receptor α in complex with the natural
binder 17-β-estradiol (white carbon scaffold) represented by its secondary structure
and clipped electrostatic solvent excluding surface. Reprinted from the original publi-

cation of Durmaz et al. 2013. [194]

Section 6.2. Six different molecules could be identified in the PDB that were available
as co-crystallized ligands at the LBD of ERα. For each of those ligands that are listed in
Table 4.4 the global minimum was determined as described in Section 4.1. To be more
precise, their structures had not been taken from the PDB but sketched, cleaned in 3D
and exported to the pdb file format using the program MarvinSketch v5.5 and subse-
quently provided with MMFF parameters. These served as input for a high-temperature
(1500K) HMC sampling with a convergence check on the basis of five Markov chains
consisting of 105 states each. Afterwards, all frames of each ligand underwent a CG
minimization procedure. The lowest energy frame was chosen as an estimate for the
global minimum conformation and served as initial structure for subsequent MD sim-
ulations. For the purpose of binding mode and affinity estimation, the ERα target
molecule retrieved from the PDB was parametrized according to the amber99sb force
field [134] which is particularly convenient for biopolymers such as proteins. In contrast,
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ligand force field parameters were determined on the basis of the General Amber Force
Field [123] (GAFF) using Antechamber from the AmberTools v1.4 package. [186] Charge
assigment was carried out with the am1bcc method [141,153] approximating restrained
electrostatic potential (RESP) charges. [151,152] Of each ligand’s global minimum confor-
mation 60 initial orientations were generated as described above and positioned at the
ligand binding site of 1GWR in such a way that their geometric centers were aligned to
that of the co-crystallized E2 molecule of 1GWR. Explicit water solvation was provided
by the Amber tip3p model [216] which is part of the Amber–Gromacs MD interface de-
noted as amber ports. [217] Using the Gromacs v.4.0.4 simulation package, [190,218,219] MD
simulation was performed in three essential steps: Initially, the complex underwent
7000 steepest descent energy minimization steps if the maximum force acting on any
atom had not ended up below 300kJ/(mol nm) before. During a subsequent 200ps
equilibration phase, all but solvent atoms and ions were restrained in their positions
and the pressure was coupled weakly using Berendsen’s algorithm. [170] Afterwards, the
entire system was simulated for 400ps without position restraints but with constraints
on all bonds according to the LINCS approach [182] allowing to set the discretized time
step size to 2fs. In accordance with human physiology, the simulation temperature
was coupled to 310K by stochastically rescaling atomic velocities. [169] Interaction en-
ergies were computed on the basis of smooth particle mesh Ewald summation [220] for
Coulomb potentials with a 10Å cutoff and a van der Waals cutoff set to 14Å.

Optimal binding mode identification and evaluation

An estimation of preferential binding modes of ligands within the LBD of ERα was
carried out on the basis of interaction enegies incorporating van der Waals and electric
contributions. These energies typically provided by classical force fields are particularly
suited for this purpose due to a physical quantification of pairwise atomic repulsions
and attractions. Since weighted averages of these two contributions to the potential
energy have been shown to significantly correlate with the binding affinity of host–
guest systems [84] they were as well applied to various systems described in upcoming
chapters accordingly. A considerable fraction of the time series generated by the MD
production run must be regarded as an equilibration phase and consequently ignored
upon average calculation because this run is the first entirely unrestrained one. It is
still to be clarified, to what extent the trajectory’s beginning shall be omitted. To that
end, we had a closer look at the dynamics of the drug tamoxifen in complex with the
protein which seems to be the most flexible and therefore, in terms of equilibration,
the most demanding compound of our set of ligands. For each of its 60 MD time
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Figure 4.14: Boxplot of tamoxifen RMS deviations from initial states during MD after according least
squares fit of protein backbone. Each time step is represented by the minimum/maximum as well as

the first, second (median), and third quartile regarding 60 independent trajectories.

series, the protein backbone of every other MD time step was least-squares-fitted to the
respective initial frame. Afterwards, we calculated root mean square (RMS) deviations
from corresponding initial poses during simulation for each of the trajectories. Figure
4.14 shows a boxplot summarizing RMS deviations of these 60 poses in the course
of the first 200ps. Thus, each point in time is associated with basic statistical values
of the entire set of modes including its minimum and maximum RMSD value (lower
and upper whiskers), first and third quartile (lower and upper bound of sticks), and in
particular its mean RMSD value (blue labels). Obviously, largest changes are related to
the maximum RMSD of each point in time which can be considered converged after
about 80ps (20%) of the MD run. For this reason, the first 80ps were excluded from
further analysis.

For the purpose of binding mode prediction, the interaction energy Ei of any time
step i was constructed in a couple of different ways: first, as the unweighted sum of van
der Waals EvdW

i and electronic Eelec
i contributions,

Ei = EvdW
i + Eelec

i ,

and in addition using each of the two energy terms solely. In combination with the
estimation of binding affinities, the highest correlation has been achieved on the basis
of electronic interactions only, Ei = Eelec

i . An comparative evaluation is therefore
presented in Chapter 6. Ensuing from this, the binding mode associated with the lowest
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Table 4.4: Heavy atom root mean square deviation of predicted from crystallographic binding modes
of after structural backbone alignment of respective PDB entries. Reprinted from the original publica-

tion of Durmaz et al. 2013 with slight modifications.

Compound Receptor PDB id RMSD

17-β-Estradiol ERα 1GWR 0.44
Bisphenol A ERα 3UU7 1.52
Estriol ERα 3Q95 0.51
Estrone ERα 3HM1 0.58
Genistein ERα 1X7R 1.22
(4-Hydroxy-)Tamoxifen ERα 3ERT 2.04
Ponasterone A EcR 1R1K 0.91

interaction energy

Eopt = min
j ∈ [1,60]

[
1

N − 200

N∑
i=200

Ei (qi,j)

]
(4.8)

averaged over N = 1000 time frames deducting the initial 80ps (200 frames) was
chosen as the favorable (most likely) one. As illustrated by Table 4.4, the predictive
model was evaluated by comparison with crystallographic structures from the PDB.
RMS deviations less than 1.5Å are considered acceptable. [86] This condition was met
by all ligands except of the particularly flexible molecule tamoxifen having yielded a
negligibly higher deviation. In particular, the natural binders E2, estriol, and estrone
yielded excellent RMSD values followed by the insect metamorphosis-regulating steroid
hormone ponasterone A. The latter’s binding mode was predicted against the ecdysone

Figure 4.15: Crystallographic tertiary structure of the ecdysone receptor originating from Heliothis
virescens (PDB id 1R1K) and including one co-crystallized ponasterone A molecule (light blue

carbon scaffold) as well as its optimal binding mode predicted using MD simulations (green).
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4.3. Host–guest binding mode decomposition

(a) 17-β-Estradiol (b) Bisphenol A (c) Estriol

(d) Estrone (e) Genistein (f ) Tamoxifen

Figure 4.16: Alignment of predicted binding modes (green carbon scaffold) to respective co-crystal-
lized (xeno)estrogens retrieved from the Protein Data Bank. Oxygens and nitrogens are colored red and

dark blue, respectively. Reprinted from the original publication of Durmaz et al. 2013.

hormone receptor (EcR) originating from the moth breed Heliothis virescens (PDB id
1R1K). In analogy to ERα, the ecdysone-inducible mammalian expression system is re-
sponsible for cell differentiation and metamorphosis. [221] However, a visual inspection
allows more reliable judgement of the achieved results (see Figure 4.16 and 4.15). Before
RMSD computation, the protein backbones of each simulation’s last time frame (green
carbon scaffold in both figures) had been aligned to protein backbones of respective
crystallized complexes (light blue scaffold). For all steroids as well as the phytoestrogen
genistein and ponasterone A, the native pose was successfully estimated as the prefer-
ential one. Due to the flexibility of ERα atoms during MD, slight deviations of these
ligands at the binding site have been expected, whereas bisphenol A and, in particular,
tamoxifen show considerable deviations from the natural binding mode. Note, that in
contrast to our simulations, the PDB entry 3ERT contains the 4-hydroxylated form of
tamoxifen. For this reason, the comparison of prediction and crystal data has a limited
validity. However, chemical properties and groups such as benzene or hydroxy groups
match well corresponding crystallographic groups. In the face of these results, it seems
likely that the prediction of compounds with increasing number of rotational degrees
of freedom will tend to produce wrong binding modes. Nevertheless, binding pose esti-
mates according to the presented strategy constitute a solid basis for host–guest binding
affinity estimations described in the next chapters.
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4.4 Concluding remarks

This chapter entirely addressed the decomposition of the conformational space which
is exceedingly complex for most molecular systems and, in particular, in case of explic-
itly solvated macromolecules including biological host–guest systems. Already the state
space of small drug-sized molecules with less than 100 atoms generates great compu-
tational effort when it comes to the determination of a globally geometry-optimized
initial structure for conformational analysis or further investigations including bind-
ing affinity estimation. In order to remedy the trapping problem associated with both
deterministic MD simulations as well as random Monte Carlo samplings, and calcu-
late the global energy minimum of such small molecules, we have elaborated a simple
two-stage strategy on the basis of the HMC method. After an extraordinarily high-
temperature HMC sampling a gradient-based local minimization routine was applied
to each geometry. The conformer associated with the lowest energy minimum was se-
lected as global minimum. Conformational analysis of the highly symmetric system of
six major HBCD stereoisomers exhibits the correct distribution and, thus, indicates a
sufficient spacious sampling from the “entire” space of HBCD using five separate 105

step Markov chains. According to the convergence criterion proposed by Gelman and
Rubin, convergence had already been achieved using only 5·104 steps per chain whereas
104 steps per chain did not result in a satisfying convergence as evaluated on the basis
of HBCD symmetry properties. A structural comparison of the three major HBCD
diastereomers with crystallographic data indicates excellent predictions for α and β-
HBCD and a less satisfying estimation in case of γ-HBCD. This visual observation is
by far better reflected by torsional instead of Cartesian RMS deviations. In the light
of the large number of rotational degrees of freedom and high energetic barriers due to
the strained cyclic structure of HBCD, the convergence and, in particular, the predic-
tion of globally minimum energy geometries by way of the presented method must be
considered as remarkable.

Sometimes, one is interested only in a small subset of a large sampling representing the
conformational space as largely as possible. Spacious representations are, for instance,
useful for investigations of molecular kinetics of conformational changes and binding
events that are often described by several (intermediate) states including unfavorable
conformers. We have presented the maxdist algorithm for the selection of k represen-
tatives out of an n-frames sampling such that the Euclidean distance of each frame to
the nearest cluster representative based on internal (torsional) coordinates is below a
particular limit dmax. Due to an expectedly high number of samplings and since usu-
ally k ≪ n, the quasi-linear algorithm’s time complexity must be categorized in the
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order of O (n). The choice of dmax is up to the user and recommended to be chosen
significantly less than 2π divided by the multiplicity of a typical torsion angle associated
with a rotatable bond between two sp3 hybridized carbon atoms, i. e. less than 120◦.
Thus, reasonable values for dmax might be 90◦ or even 60◦. The latter value substantially
increases k which is well approximated by a hyperbolic function of dmax. According to
the mathematical model, the number of torsional degrees of freedom defines the ex-
ponent of dmax. Using a 500k step HMC sampling of HBCD as a case example and
k values calculated on the basis of 29 different values for dmax ranging from 0.0005π
to 2π, the coefficient of Pearson correlation with the mathematical model amounts to
excellent values larger than 0.984 regarding one to five degrees of freedom. A higher
correlation in particular regarding increasing degrees of freedom and small values for
dmax is achieved if introducing a correction factor into the exponent. This quantity was
interpreted as a measure for the sampling’s deviance from an ideal (uniform) distribu-
tion due to structural restraints. As an alternative termination criterion, the straight
forward algorithm allows to set a certain number of cluster representatives instead of
the maximum allowed distance to the nearest one.

Finally, an as systematic as simple strategy to a rotational space discretization has been
presented that was used for the prediction of guest binding modes at ligand binding
sites of target molecules. Such systematic approaches are necessary in order to remedy
issues related to trapping effects during MD simulations. According to the symme-
try properties of the highest order Platonic solid, namely the icosahedron, the globally
minimum energy conformation of several ligand molecules were placed at the LBS of
ERα and, respectively, EcR in 60 uniformly distributed orientations. This resolution
guarantees, that the rotational distance of the “true” (or most likely) binding mode to
the nearest one of the 60 given modes is less than 72 degrees. Each of these complexes
served as an initial structure for an 400ps MD simulation of which the first 80ps were
omitted as they had to be considered as an unrestrained relaxation and equilibration
phase according to the ligand RMS deviation. On the basis of the remaining frames,
time averages of ligand interaction energies with its surroundings have been calculated
in order to predict a preferential binding mode. Electric interactions represented by
pairwise Coulomb potentials yielded results superior to van der Waals interactions as
modeled by a Lennard-Jones potential. An evaluation was possible by comparing pre-
dicted binding modes with crystallographic data of several receptor–ligand complexes
available at PDB. RMS deviations from these reference structures amounted to promis-
ing values below 1.5Å. Further evaluation of the described method is carried out in
upcoming chapters where those preferential binding modes are used for a quantifica-
tion of binding strength regarding various host–guest systems.
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5 Modeling chromatographic
separation of HBCD stereoisomers

The molecular modeling techniques and results presented in this chapter have to a no-
table extent been published in the following article. [164] A republication of related con-
tents in the framework of this thesis was kindly permitted by its publisher:

• V. Durmaz, M. Weber, R. Becker: How to Simulate Affinities for Host-Guest
Systems Lacking Binding Mode Information: Application in the Liquid Chro-
matographic Separation of Hexabromocyclododecane Stereoisomers. Journal of
Molecular Modeling, 18(6):2399–2408, 2012.

Within the frame of this thesis, this is the first chapter that brings together two major
parts elaborated during previous chapters: the uniform decomposition of conforma-
tional host–guest space for an estimation of preferential binding modes on one side
and, on the other, the prediction of corresponding binding affinities by developing a
suitable empirical linear model related to the LIE method. Albeit, the molecular system
under investigation is not about biological host–guest systems but concerning the in-
teraction of small chemical compounds with a material used by a method called High-
performance liquid chromatography (HPLC) for the separation of aqueous compound
mixtures. The major aim of this chapter was the development of an automated as well
as robust method to the prediction of HPLC results at a minimum number of manual
operations and decisions.

5.1 Introduction

HPLC is an analytical (and preparative) technique in chemistry that is used for the
separation of a mixture of compounds. Using reference chemicals, it is possible to de-
termine the structure as well as quantity of probes. In few words, a liquid mixture
(mobile phase) of the compounds under observation flows through a column filled with
some sorbent material (stationary phase). Due to different degrees of interaction with
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the stationary phase, substances dissolved in the mobile phase reveal differing flow rates
and, therefore, leave the column (elute from the column) after different retention times.
The retention time and in particular the elution order of compounds is mainly de-
termined by the choice of the two phases. Depending on the combination of those
phases, the separation of substances can be due to various physicochemical properties
such as their size, polarity, and formal charge. [222] A computational method for the es-
timation of the elution order must take several aspects into account. The compounds’
conformational flexibility has to be considered since their binding affinity to the sta-
tionary phase or host molecule strongly depends on conformational changes. As we
have already pointed out in Chapter 2, classical MD simulations on the basis of the
two reaction end states (bound and unbound) provide an acceptable tradeoff between
accuracy and computational expense. From a physical point of view, the chromato-
graphic elution order of analytes depends on the strength of their interaction with both
stationary and mobile phase and can be interpreted as a binding affinity. Further, we
have seen that in terms of thermodynamics the binding affinity is related to the con-
centration ratio of two states of a host–guest system at thermal equilibrium: the bound
and the unbound state. It can be derived from the free energy difference of these two
states comprising enthalpic as well as entropic contributions. Classical MD simulations
provide estimates for both of them. In the last years, a number of different methods
for the calculation of the elution order have been developed. A mathematical model
for estimating enantiomeric resolutions from molecular mechanics simulations of chiral
separations was developed by Zhang et al. [223] Issaraseriruk et al. [224] derived binding
free energies for enantiomeric separation with a combination of molecular docking us-
ing AutoDock [96] and semi-empirical Parametric Model 3 (PM3) [225] calculations where
the latter method had substantially more discriminating power than AutoDock ener-
gies. [224] Pérez-Garrido et al. achieved excellent correlations and cross-validation values
with a quantitative structure-activity relationship (QSAR) model used to predict com-
plexation of a series of organic molecules with β-cyclodextrin (β-CD). [226] Of course,
MD simulations as well have been employed in order to describe host–guest interac-
tions and separation phenomena. [227] However, these models suffer either from a man-
ual choice of (initial) binding mode or from the lack of explicit solvent molecules. That
is, in case of the latter issue, many strategies for the simulation of elution orders con-
centrate on modeling the interaction between the compound and the stationary phase,
though, neglecting explicit interactions with the mobile phase. This also holds for MD-
based investigations of chromatographic separation systems either modeled in gas phase
only [228] or incorporating an implicit solvent as published few years ago. [227] However,
apart from the crude simplification of solvent effects through implicit solvent, many
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solvents have not been modeled implicitly so far.

In this chapter, different aspects related to explicit solvent simulations of interactions
between chemicals and HPLC stationary phases are discussed. On the one hand, the
suitability of classical force fields and solvent models will be evaluated regarding the
estimation of a chromatographic elution order. If they are applicable, the simulated
data is supposed to comprise all necessary information describing the host–guest in-
teraction. To that effect, only physically meaningful force field terms will be extracted
from the data in accordance with thermodynamic principles. In the course of com-
paring several descriptors for the retention behaviour, we will in particular compare
energies averaged over certain MD time ranges with single-step energies as known from
ordinary molecular docking. Besides and in contrast to the mainstream trend, a high
value is set on consistency in the observed behaviour. Appropriate correlations of sim-
ulated with experimental results are supposed to be robust regarding the time range
under consideration, especially since pretending to simulate molecular systems at chem-
ical equilibrium. The procedure is illustrated using by way of example the separation
of HBCD stereoisomers on a chiral stationary phase. HBCD seems well suitable for
the predictive approach outlined in the following because it displays a complex cohort
of diastereomers and enantiomers and is therefore regarded as ideal starting point re-

Figure 5.1: Separation profile of the six major HBCD stereoisomers on a
chiral β-pmCD column. This figure was taken from [229] by courtesy of the
main author. Reprinted from the original publication of Durmaz et al. 2012.
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garding computational challenge and practical significance. [164] In addition, the entire
molecular system is substantially smaller than typical biopolymers such as enzymes and
receptors resulting in much less computational effort.

A separation of the six major HBCD stereoisomers (Figure 4.2) by HPLC was accom-
plished in the year 2007 on the basis of the technical mixture. The analytical challenge
was conclusively described with the assignment of the absolute configurations of the
enantiomers by Köppen et al. [229] In short, an analytical column packed with perme-
thylated β-cyclodextrin (β-pmCD) as an unpolar stationary phase (see Figure 5.2) was
combined with a polar solvent gradient consisting of water and acetonitrile (ACN). The
separation of enatiomeric pairs on that stationary phase is possible due to the chiral na-
ture of β-pmCD. Because of the hydrophobic character of HBCD, its interaction with
β-pmCD and, as a consequence, separation increases in contact with water. In con-
trast, the less polar co-eluent ACN reduces host–guest interactions and, thus, enhances
HBCD elution. Figure 5.1 shows the corresponding chromatogram with retention
times. [164]

5.2 Data preparation and computational methods

The β-pmCD crystal structure was retrieved from the Cambridge Structural Database
(CSD) [230] under the id COYXET20. [231] In analogy to HBCD stereoisomers, it was
parametrized according to the generalized AMBER force field (GAFF) using Antecham-
ber from the AmberTools v1.4 package. Prior to the determination of globally mini-
mum geometries of HBCD in accordance with the procedure described in Section 4.1.
charges were assigned using the am1bcc method. As described in the previous section
and illustrated by Figure 5.2, each of the 60 orientations of any HBCD stereoisomer
was placed inside the β-pmCD cavity such that host and guest were centered geomet-
rically. In addition, each system was solvated explicitly in two different ways: once in
pure water as provided by the Amber tip3p model [217] and once again in pure acetoni-
trile according to a model developed by Nikitin et. al. [232] Starting with these initial
complex structures and using Gromacs v.4.0.4, all systems underwent 5000 steepest
descent energy minimization steps unless the maximum force acting on any atom and
in any spatial direction had ended up below 100kJ mol−1 nm−1 before. During a sub-
sequent 400ps canonical equilibration phase, the positions of all but solvent atoms were
restrained. Afterwards, the whole system was simulated for at least 400ps without posi-
tion restraints but with constraints on all bonds according to the LINCS approach and
allowing to set the discretized MD step size to 2fs. In accordance with HPLC condi-
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Figure 5.2: Permethylated β-cyclodextrin stationary phase used for HPLC separa-
tion of HBCD stereoisomers. The icosahedron in the β-pmCD cavity represents 60
uniformly distributed rotational binding modes of HBCD providing starting confor-
mations for MD simulations. Reprinted from the original publication of Durmaz et

al. 2012.

tions, the temperature of the NpT ensemble was coupled to 310 ◦C by stochastically
rescaling atomic velocities, and the pressure was set to 25bar. [229] Interaction energies
were computed using the Gromacs setting PME-Switch on the basis of the smooth
partical mesh Ewald summation [233] for Coulomb potentials with a cutoff at 11Å and
the shift setting for van der Waals interactions within a dual range switched after 9Å
and a cut off at 10Å.

5.3 Optimal binding mode analysis

In analogy to the host–guest binding mode estimation in Section 4.3, the question arose
which part of the MD trajectories to use in the course of further interaction analysis. To
answer this question, center of mass distances between each HBCD stereoisomer and
β-pmCD during the MD simulations were calculated and smoothed using Matlab’s
filtfilt() function along with the Octave software. A distance trace plot of both
solvents, water (left plot) and ACN (right plot), is shown in Figure 5.3. HBCD ori-
entations shown here were approved as predominant for reasons specified below. Due
to high repulsive forces within the β-pmCD cavity caused by unfavorable atomic colli-
sions at the beginning, host–guest distances of all complex MD runs show a steep initial
increase until some equilibrium is reached after approximately 50ps. On that account,
the first 80ps of the time series were omitted again when it came to the computation
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of average interaction energies. After 80ps, host–guest distances behave substantially
differently regarding the two solvents. In case of water, comparatively little fluctuations
are observed such that the intermolecular distance of each β-pmCD–isomer complex
stays within a region of 1Å during the remaining trajectory. In contrast, MD runs of
HBCD solvated in ACN exhibit more inconsistent distances showing large jumps of up
to 1.5Å within few tens of picoseconds and even beyond 0.5ns. Moreover, these large
fluctuations are mostly directed from the host cavity outward, towards the solvent ACN.
This observation might be caused by the significantly larger size (molecular weight) and
smaller molar density compared to water. As a consequence, ACN dampens HBCD
collisions less uniformly than water which is able to form a smoother barrier.

Center of mass distances between HBCD and β-pmCD averaged over time, initial
binding modes and stereoisomers after 400ps were significantly larger in ACN amount-
ing to 8.0Å than in water with 5.2Å. This confirms on the one hand the hydrophobic
character of HBCD that would rather prefer to reside in the less polar solvent ACN and,
on the other hand, experimental observations implying that chromatographic separa-
tion (interaction with the stationary phase) is superior in water whereas solubility and,
therefore, HBCD elution rate is advanced by more hydrophobic solvents such as ACN.
These results are supported by interaction energies of HBCD with its surrounding
derived from MD simulations incorporating explicitly solvated HBCD stereoisomers
without the stationary phase β-pmCD. With −170.7kJ mol−1, ACN yielded substan-
tially lower interaction energies than water which amounted to −148.5kJ mol−1. Ac-
cording to this observation, HBCD prefers to reside in ACN rather than in water which

Figure 5.3: Center of mass distances between HBCD stereoisomers and β-pmCD in water
(left) and acetonitrile (right) during MD simulations. Reprinted from the original publica-

tion of Durmaz et al. 2012.
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5.3. Optimal binding mode analysis

Figure 5.4: Low energy conformations of (−)-γ-HBCD within the β-pmCD (represented by its
solvent-excluded surface) cavity with a mass center distance of 3Å on the left-hand and of (+)-β-
HBCD with a distance of 5.8Å on the right-hand fetched from the equilibrium region of an MD

simulation with explicit water. Reprinted from the original publication of Durmaz et al. 2012.

clearly copes with experimental results originating from HPLC separation. [229] Typical
low energy modes of (−) -γ-HBCD (smallest distance) and (+) -β-HBCD (largest dis-
tance) isomers within β-pmCD simulated in water are depicted in Figure 5.4. At equi-
librium, about half of each isomer’s surface is encompassed by C2- and C3-methoxy
moieties of β-pmCD glucopyranose units. Despite that, HBCD interactions concern
the entire cyclodextrin molecule since nearly all intermolecular carbon distances are
below the smallest chosen cutoff distance that is 10Å in case of van der Waals forces.

An exhaustive sampling of the conformational space for the sake of computation of
binding free energy differences associated with host–guest complexes at chemical equi-
librium is generally hindered by high energetic barriers forming an extremely complex
energy landscape. This issue was to a large extent remedied by decomposing the space of
binding modes for 60 independent simulations. The major question arising from this
strategy concerns the derivation of a single value quantifying the host–guest interaction
probably along with the identification of a preferential binding mode. Several solutions
to this question come into consideration and have been compared on the basis of force
field energies E between HBCD and β-pmCD. A first reasonable approach that comes
into mind is related to the (single) lowest energy state

Emin = min
i∈ [1,N ]

(
min

j ∈ [1,n]
Ei (qij)

)
(5.1)

of N = 60 MD time series per isomer each consisting of n = 160k states with coor-
dinates q (after having omitted the first 40,000 steps). The idea behind Equation 5.1 is
comparable with that of molecular docking approaches as these typically quantify bind-
ing affinities on the basis of as well one preferential binding pose using some scoring
function. Alternatively, a favorable binding pose can be determined based on the lowest
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of 60 time-averaged energies

Emean = min
i∈ [1,N ]

(
1
n

n∑
j=1

Ei (qij)

)
. (5.2)

Obviously, Equation 5.2 better copes with thermodynamic principles since it clearly
reflects the inner energy as an average of a thermodynamic ensemble comparable with
in-vitro and in-vivo measurements. From this point of view, an even more rigorous ap-
proach would take into account the average not only of the most preferential binding
mode but of all of them for the quantification of host–guest interactions. Consequently,
this third ansatz was accomplished by summing up the 60 modes’ time-averaged ener-
gies weighted according to the Boltzmann probability distribution for canonical ensem-
bles and yielding

Eprob = −
1
β

ln

(
1
N

N∑
i=1

exp

(
−β
n

n∑
j=1

Ei (qij)

))
. (5.3)

β = [RT ]−1 represents the inverted product of the gas constant,R = 8.3145Jmol−1 K−1

and temperature T = 310K. Since this strategy does not directly identify a preferen-
tial complex geometry, the binding mode was predicted in accordance with the highest
statistical weight. As described in Chapter 2, this is equivalent with choosing the rep-
resentative by means of the lowest average energy of 60 trajectories just like in case of
Equation 5.2. Consequently, both Equations 5.2 and 5.3 propose the same preferential
binding mode.

5.4 Validation of physical descriptors

Besides defining strategies for selecting representative (favorable) orientations, those
energy terms needed to be determined that considerably contribute to the correlation
between the simulated and the experimental elution order. In a rigorously thermody-
namic manner, one would rather use the total inner energy of a molecular system for
the computation of free energy differences. However, due to the high number of water
molecules, the inner energy reveals high fluctuations among which the small contri-
butions of intermolecular interactions between the two core molecules would get lost.
For this reason, the inner energy is neither expected to be reproducible nor to correlate
well with the experimental elution order. A more convenient choice that better reflects
the interaction of interest related to β-pmCD and HBCD is concerned with force field
terms describing nonbonded molecular interactions. Typically, these are electronic and
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van der Waals forces modeled by classical force fields in terms of the Coulomb and
Lennard-Jones potential, respectively. In order to figure out which one or composition
of these two contributions correlates best with the elution order of HBCD isomers, the
individual values of these terms as well as their sum were fed to Equations 5.1-5.3. To
be precise, respective energy differences between the bound (including β-pmCD) and
unbound system (excluding β-pmCD) were assigned to E (qij) in order to compute
the enthalpic part of the free energy difference. This physically reasonable approach of
deriving free energy differences only on the basis of interaction energy terms has already
been successfully applied to the estimation of host–guest binding affinities. [234] Accord-
ing to thermodynamic studies on chromatographic retention behaviour, several ther-
modynamic quantities including the inverse temperature, enthalpy, and in particular
free energy scale linearly with the natural logarithm of HPLC capacity factors [235,236]

kξ =
tξ − t0
t0

. (5.4)

Thus, for evaluation purposes, kξ was calculated for each stereoisomer ξ on the basis
of its retention time tξ according to the chromatogram in Figure 5.1. The chromato-
graphic dead time t0 reflects technical and physical properties of the involved HPLC
system and buffers. [229] Table 5.1 shows averaged squared coefficients for the running
correlation of the natural logarithm ln (kξ) of experimental capacity factors with various
interaction energy compositions computed in accordance with the three scoring strate-
gies described above (Equations 5.1-5.3). In order to figure out the physical model’s
robustness, these coefficients were averaged over multiple time ranges starting at suc-
ceeding time frames with 20ps offsets and always ending at 360 ps. In addition, we
distinguished between both solvents and the discriminating power for both the entire
set of six stereoisomers (Iso.) as well as among each pair of enantiomers (Ena.) only.
The correlation coefficient associated with the enantiomer-specific separation was cal-
culated as R2 (Ena.) = 1

3

(
R2

α +R2
β +R2

γ

)
where subscripts address HBCD diastere-

omers. [164]

Taking the sum of both nonbonded energy terms, Coulomb and Lennard-Jones po-
tential representing electronic and, respectively, van der Waals interactions clearly pro-
vided the best overall separation performance (correlation). This particularly holds for
systems solvated with water for which all models (Equations 5.1-5.3) yielded excel-
lent R2 values between 0.8 and 0.87 in case of the entire set of stereoisomers (Iso.).
However, with squared coefficients around 0.86 and 0.87 both models based on statis-
tical averages in turn performed notably better than the one relying on a single isomer
state (evaluated as 0.8). Regarding only single pairs of enantiomers (Ena.), all mod-
els achieved R2 = 1, that is, the elution order among any pair of enantiomers was
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correctly predicted using the sum of both energy contributions. Considering only one
of these energy terms yielded substantially lower values for simulations in water. For
ACN as solvent, in contrast, significantly less correlation with experimental observa-
tions was encountered. The largest Pearson coefficients having achieved correlations
of 0.73 (Iso.) and 1 (Ena.) are associated with the minimum energy state out of the
pool of all 60 trajectories (Emin according to Equation 5.1). [164] However, since we are
particularly interested in the prediction of the correct elution order, a correlation of
R2 = 0.73 seems unsatisfactory for a predictive model as will be discussed below. All
in all, the solvent influence agrees very well with experimental HPLC observations since
better HBCD separation is indeed achieved with dominant water concentrations of the
eluent whereas elevated ACN concentrations rather reduce separation efficiency and
enhance elution of HBCD isomers. [229] For water systems and using the sum of both
interaction energy terms, the quality of all three models is showcased in Figure 5.5.
In order to get an impression of the models’ consistency, correlation coefficients have
been plotted against different ranges of the trajectories starting with 20ps offsets and
collectively ending frame t = 400ps. The left diagram reveals consistently high squared
correlation coefficients at about 0.8 associated with the minimum energy state (Emin) or
even better with about 0.85 using one of the average-based equations (Emean or Eprob).
By all models, enantiomer-specific separation (right diagram) in water was, nearly over
the full trajectory range, correctly estimated. On top of this, comparing the two latter,
average-based models indicates a satisfactory approximation of the Boltzmann-weighted
sum of all orientations (corresponding to Equation 5.3) by the preferential orientation

Table 5.1: Squared Pearson coefficients R2 of three approaches (columns) for the running
correlation of logarithmized experimental capacity factors with HBCD interaction ener-
gies regarding its chemical environment. It was distinguished between two solvents and
the discriminating power for all isomers (Iso.) and for enantiomers (Ena.) only. All coef-
ficients were averaged over successive 20ps MD time ranges. Reprinted from the original

publication of Durmaz et al. 2012 after modifications. [164]

⟨R2 (Emean)⟩ ⟨R2 (Emin)⟩
⟨
R2 (Eprob

)⟩
Force field potential Solvent Iso. Ena. Iso. Ena. Iso. Ena.

Coulomb
ACN 0.05 0.11 0.69 0.11 0.38 0.11
Water 0.09 0.11 0.71 0.11 0.45 0.11

Lennard Jones
ACN 0.66 0.11 0.72 1.00 0.70 1.00
Water 0.52 0.11 0.73 1.00 0.58 0.11

Coulomb. & L.-J.
ACN 0.64 0.31 0.63 0.11 0.67 0.11
Water 0.86 1.00 0.80 1.00 0.87 1.00
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5.5. Computation of the HPLC elution order

Figure 5.5: Running plot of squared coefficients for the correlation of HBCD HPLC capacity factors
with interaction energies from explicit water simulations depending on the running starting frame
with 20offsets. The HPLC elution order estimation for all stereoisomers (left) and, respectively, three
pairs of enantiomers only (right) was carried out using three models. Reprinted from the original

publication of Durmaz et al. 2012.

associated with the highest statistical weight (Equation 5.2). Apart from distortions
within the last 50ps, these results clearly approve the robustness of the ensemble-based
multi-mode approach over a wide time range – at least for this hydrophobic class of com-
pounds separated on a stationary phase associated with molecules that exhibit cavities
large enough for small compounds. The system’s thermodynamic equilibrium is well
reflected by coefficients of correlation which have a consistently high value independent
from the time range under consideration. Interestingly, according to another study [237]

on chiral separation using a β-cyclodextrin column, 20ns were necessary in order to
obtain the correct order of two enantiomers, though, the implicit solvation simulations
started with 15Å distance between host and guest rather than a guest directly nested in
the host molecule. It should be noted, that indeed the likeliness for randomly choosing
the pairwisely correct order among three independent pairs (separation of HBCD enan-
tiomers) is p = 0.53 = 0.125, whereas guessing the correct order of six stereoisomers
at once is about 100 times more unlikely with p = (6!)−1 = 0.0014. [164]

5.5 Computation of the HPLC elution order

A direct quantitative translation of force field energies into chromatographic retention
times is hard to realize since these depend on many physical and process parameters in-
cluding flow rate, temperature, pressure as well as the length, density and diameter of the
column. However, deriving a relative order of elution directly from host–guest interac-
tion energies is possible and provides the information needed by the analyst. Moreover,
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in the light of a linear dependency of capacity factors on energy/enthalpy [235,236] it seems
practicable to implement an empirical linear model on the basis of training data with
known capacity factors (retention times). Such a parametrized linear equation allows to
predict retention times for unknown substances separated under the same conditions
as the compounds building the training set. Consequently, the linear model was con-
structed for the most promising system that is the one solvated in water and evaluated
according to Equation 5.2 addressing the binding mode associated with the highest sta-
tistical weight. As justified by the mass center distances shown in Figure 5.3, all frames
within the time range from 80ps through 400ps of that binding mode were taking as
data basis for the development of a predictive model. First, we constructed a system of
n = 6 linear equationsln (k1)

...
ln (kn)


︸ ︷︷ ︸

≈

Emean, 1 1
...

...
Emean, n 1


︸ ︷︷ ︸

(
x1

x2

)
︸ ︷︷ ︸

y ≈ A x

(5.5)

associated with the six major HBCD stereoisomers and comprising the sum of both
interaction energy terms as well as a constant as parameters in matrix A. Ensuing from
that, weights x were fitted using the least-squares method

x =
(
ATA

)−1
ATy (5.6)

such that the squared deviation of simulated (Ax) from experimental capacity factors
(y) became minimal

min
x
∥y − Ax∥22 . (5.7)

In other words, optimal interaction energies were scaled and shifted in order to mini-
mize the deviation. We will briefly discuss the suitability of the least-squares method
to this type of matrices in Chapter 6. In any case, we obtained −0.015 mol kJ−1 and
−0.661 for x1 and x2. For the examined time range (80-400ps) and using these weights,
squared coefficients of the Pearson correlation between y andAx amounted to 0.86 and
0.85 considering the optimal average and, respectively, weighted sum approach which
are considerably higher than 0.77 achieved by the single step approach (see Table 5.2).
By the way, these squared coefficients would have increased to 0.92, 0.91, and 0.82,
respectively if having had fitted the energies to kxi instead of its logarithm which makes
no sense physically. The parameterized linear equation

ln (kξ) = −0.015
mol
kJ

Emean, ξ − 0.661 (5.8)
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is exemplified using energies Emean related to the optimal average approach which had
yielded the highest correlation. Equation 5.8 is easily rearranged in order to obtain an
estimate of kξ or, with the aid of Equation 5.4, the retention time

tξ = t0

[
1 + exp

(
−0.015

mol
kJ

Emean, ξ − 0.661
)]

(5.9)

of some substance ξ. Experimental (HPLC) capacity factors kξ and respective elution
orders [229] are listed in Table 5.2 along with those obtained by the fitting procedure.
The two average-based approaches not only yielded the highest Person correlation R2

of energy values but as well the same high rank correlation coefficient R2
s according to

Spearman which was calculated on the basis of the predicted elution order compared to
the experimental order. Table 5.2 illustrates that the elution order predicted by these
two models is correct except for one single exchange associated with the two adjacent
isomers (+)-α and (+)-β-HBCD. Indeed, the smallest difference in HPLC capacity
factors k between any pair of two stereoisomers is related to these two compounds and
amounts to ∆mink = 0.63. This observation also holds for force field energies possi-
bly explaining the only failure regarding the computed relative order of these two iso-
mers. If Emean (Eprob) of (+)-α-HBCD had just been calculated larger by 1.3 kJ mol−1

(0.5 kJ mol−1), the elution order would have been exactly predicted. The predictive
model’s quality was evaluated through leave-one-out cross-validation (LOOCV). In de-
tail, the capacity factor ln (kξ) of each “left out” isomer ξ was predicted on the basis
of parameter coefficients x that had been trained as described above (by least-squares
fitting) using the set of five compounds left over. This procedure guarantees that no

Table 5.2: Optimal interaction energies simulated using a β-pmCD stationary phase along with ca-
pacity factors and the corresponding elution order obtained from both HPLC experiment and through
least-squares-fitting of optimal interaction energies. Modified reprint of the original publication of

Durmaz et al. 2012. [164]

Interaction energy
[

kJ
mol

]
Capacity factor k Elution order

Isomer Emean Emin Eprob HPLC Emean Emin Eprob HPLC Emean Emin Eprob

(−)-α -200.2 -247.1 -28.6 10.01 10.83 11.42 10.84 1 1 2 1
(−)-β -201.9 -241.7 -29.1 10.80 11.11 10.60 11.39 2 2 1 2
(−)-γ -231.7 -275.6 -33.5 17.02 17.47 16.92 17.60 6 6 6 6
(+)-α -207.1 -255.6 -29.8 12.16 12.02 12.84 12.21 3 4 5 4
(+)-β -205.9 -247.6 -29.4 12.79 11.80 11.50 11.74 4 3 3 3
(+)-γ -209.3 -253.6 -30.1 13.62 12.43 12.49 12.58 5 5 4 5

Squared correlation coefficients: R2: 0.86 0.77 0.85 R2
s : 0.89 0.69 0.89

Leave-one-out cross correlation: R2
LOO: 0.81 0.69 0.81
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Figure 5.6: Correlation of Amber force field interaction energies (after least-
squares fitting) with HBCD stereoisomer capacity factors from chiral HPLC
separation. Reprinted from the original publication of Durmaz et al. 2012.

compound ξ contributes to the training set used for predicting compound ξ itself. The
resulting (squared) correlation coefficient R2

LOO describes the dependence of those en-
tirely predicted values on the experimental ones. In general and as indicated by Table
5.2, this coefficient is smaller than the one quantifying the correlation of fitted values
with experimental data which is denoted as R2 above. The LOOCV method confirms
on the one hand the suitability of the presented predictive method and, on the other,
what has already been indicated by Pearson’s correlation coefficient: ensemble-based
models exhibit significantly more predictive power in terms of thermodynamic systems
than algorithms that rely only on a single state. Figure 5.6 shows capacity factors kξ pre-
dicted on the basis ofEmean (with water as solvent) and plotted against respective HPLC
results. Interestingly, the extraordinarily high affinity was correctly estimated for (−)-
γ-HBCD which is indeed eluted a noticeable time period after all other stereoisomers as
sketched in the chromatogram (Figure 5.1). In explicit water, the enantiomer-specific
separation was estimated correctly with all approaches. However, it should be noted,
that the chromatographic separation in pure water or pure ACN does not yield differing
elution orders and does not lead to the separation of all six stereoisomers. Already for
this reason, we cannot expect an exact agreement from simulations using one pure sol-
vent. Regarding the three models handling multiple binding modes for affinity analysis,
statistical approaches on the basis of mean potential energies (inner energies) turn out
to be more convenient than single-geometry approaches as represented by Emin since
they better reflect the microscopic variability associated with thermodynamic ensem-
bles. [164]
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5.6 Concluding remarks

An empirical approach to in silico determination of elution orders as well as retention
times of HPLC runs on the basis of explicit solvent force field simulations has been pre-
sented. In order to remedy the trapping problem which is inherent to MD simulations,
the space of host–guest binding modes was uniformly decomposed as described in Sec-
tion 4.3. Prior to this, global minimum energy conformations of the guest molecules
had been determined according to the HMC approach sketched in Section 4.1. For
these reasons, the observations made in this chapter can be considered as an additional
successful evaluation of methods developed in the previous chapter.

Again, the system consisting of six major HBCD stereoisomers has been taken as an
example for which results of an analytical HPLC separation with a water/ACN gradi-
ent through a β-pmCD column were available for the purpose of comparison. Conse-
quently, calculations were carried out in each solvent. In addition, three physical model
descriptors have been investigated based on force field energies either of a single time
step, of the preferential binding mode’s time-average, and of the Boltzmann-weighted
sum of all orientations. The effect of various force field potentials particularly suitable
for the quantification of intermolecular interactions has been investigated as well. Par-
ticular emphasize was laid on consistency of the results regarding the time range of the
MD trajectories under consideration.

Having skipped the first 80ps of the time series due to equilibration events obvious
from center of mass distance calculations between host and guest molecules, the data
obtained from simulations in pure water achieved significantly better all in all correla-
tions with wet lab experiments than those associated with ACN. This particularly holds
for the sum of Coulomb and Lennard-Jones potentials which was compared to HPLC
capacity factors. Nevertheless, the results as well indicate that the host–guest interaction
is dominated by van der Waals rather than electronic forces. No reliable reproduction
of the HBCD elution order was possible with the solvent ACN. Moreover, regarding
distances of these two molecules in ACN, no steady state was achieved during 600ps of
simulation due to the occurrence of large jumps distributed over the entire time range.
In contrast, calculations incorporating water instead reveal a satisfying equilibration
reached after about 50 ps. Besides, the center of mass distance between host and guest
averaged over time, initial binding modes, and stereoisomers after 400 ps were about
60% larger in ACN and tendentially increasing. In addition, the simulation of HBCD
in pure solvent (without β-pmCD) clearly revealed significantly lower interaction en-
ergies concerning ACN than water. These observations indicate that HBCD prefers
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to reside rather in ACN than in water and consequently confirm experimental results.
For all these reasons, the calculations agree very well with wet lab results where in-
deed elevated concentrations of the highly polar solvent water at the beginning of the
eluent gradient enhance interaction between the two nonpolar substances β-pmCD
and HBCD and, thus, HBCD separation whereas an increasing fraction of the rather
hydrophobic solvent ACN favors the elution of analytes, specifically, in case of this
host–guest combination.

Considering MD simulations performed in water, all descriptive models achieved
very high correlations with HPLC results that were considerably consistent regarding
the underlying time range. All of them performed accurately in the prediction of an
enantiomer-specific elution order. In particular, for the two models based on statisti-
cal averages, exceptionally and similarly high squared Pearson coefficients of correlation
have been calculated. The elution order of the six HBCD stereoisomers estimated upon
these two models had the smallest possible combinatoric deviation from the correct
elution order since only the two compounds with the smallest difference in HPLC re-
tention times had been interchanged by the predictive models. This is well reflected by
high rank correlations according to Spearman. The strong correspondence of results ob-
tained from these two models clearly implies a sufficient approximation of the “entire”
conformational space (Boltzmann-weighted sum of 60 binding modes) by the repre-
sentative subspace associated with the lowest inner energy (preferential binding mode)
yielding a similar accuracy at substantially less computational costs. The approximation
makes even more sense since the respective scientist usually is interested in a picture of
one single preferential binding mode. All these results clearly serve as a positive valida-
tion of the previously described strategy dealing with a uniform decomposition of the
relative host–guest orientation. The method is highly suitable for molecular docking
to predefined binding sites of host molecules. However, as can be seen from the infe-
rior performance of the physical model based on only one single conformer instead of
time-averages, the estimation of binding modes as well as affinities benefit from infor-
mation of molecular dynamics. Indirectly, the successful reproduction of wet lab results
confirms the convenience of the AMBER force field for this type of organic solvated
systems.

An empirical linear model for the prediction of quantitative retention times was con-
structed by fitting of the sum of intermolecular force field interaction energies to HPLC
capacity factors. The resulting parameter coefficients can be used for the prediction of
retention times of substances that underwent an HPLC separation under exactly the
same conditions, i. e., that were part of the same mixture. The linear model’s predictive
quality and suitability for substances other than those comprising the training set was
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conclusively evaluated as very well by means of the LOOCV method. The strategy is
useful whenever experimental assignment of peaks to stereoisomers is impossible or for
selecting suitable stationary phases for a given mixture of compounds. However, the
presented approach is, due to the way binding modes are determined, only applicable
to host-like stationary phases.
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6 Novel ERα binding affinity model

The molecular modeling techniques and results presented in this chapter have to a no-
table extent been published in the following article. [194] A republication of related con-
tents in the framework of this thesis was kindly permitted by its publisher:

• V. Durmaz, S. Schmidt, P. Sabri, C. Piechotta, M. Weber: A hands-off linear
interaction energy approach to binding mode and affinity estimation of estrogens.
Journal of Chemical Information and Modeling, 53(10):2681–2688, 2013.

This chapter aims at the development of a physical model suitable for the prediction
of binding affinities associated with biological host–guest systems. Using, by way of
example, the estrogen hormone receptor alpha (ERα) already introduced in Section
4.3 and a series of diverse natural and synthetic ligands collected from various sources,
we will describe in detail how differences in binding free energies can be derived from
physical descriptors on the basis of classical force field simulations. The quantification
of the host–guest binding strength elaborated here constitutes the second major part
of a two-step procedure as it directly builds upon the determination of a preferential
ligand binding pose as devised in Section 4.3. In conjunction, these two methods are
supposed to provide, for some small molecule under observation, highly accurate bind-
ing affinities in a fully automatized fashion with no further a priori information than
a crystallographic structure file of the target molecule and a spatial specification of its
binding site.

6.1 Introduction

An as accurate as possible prediction of binding affinities related to biological protein–
ligand systems is still a challenging task in the area of pharmaceutical and toxicological
research. In particular, structure-based design of drugs was substantially accelerated due
to fast virtual screenings and lead optimization supported by in silicomethods. [238,239] In
this sense, in silico experiments often significantly reduce the setup of biological assay ex-
periments. Moreover, predictive computational methods turn out to be the only access
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to toxicity assessment on metabolites (transformation products) of anthropogenic sub-
stances if no structure determination or synthesis for experimental analysis is possible.
However, up to now and in spite of the vast (parallel) computing power available nowa-
days, the prediction of binding modes and affinities for complex host–guest systems
remains a time-consuming and highly non-trivial challenge. [194] In order to achieve re-
liable results, several computational tasks need to be carried out of which the complexity
increases drastically with the number of atoms. [240] And since upon the binding process
both molecules adopt a proper conformation, it is important to consider the flexibil-
ity of both protein and ligand. [238] Furthermore, it should be noted that the binding
affinity on its own does not necessarily make a useful statement about the ligand’s qual-
itative influence on metabolism. Relating to receptor proteins, the ligand may either
act as an agonist (activating the protein’s function) or an antagonist (inhibiting its func-
tion through competitively preventing the binding of natural ligand). We have already
discussed the theoretical background of biological association/dissociation reactions in
Chapter 2. Nevertheless, in any case such small molecules would be classified as en-
docrine disrupting chemicals (EDC) as they interfere with the hormone system and con-
sequently considered potentially harmful. [241] A prominent example of critical human
target proteins is the hormone receptor ERα shown in Figure 4.13. In the face of high
estrogenic activities of several synthetic compounds, the risk of endocrine disruption
by xenoestrogens has already been elucidated in the early eighties. [214] Consequently,
this target system has been undergoing many investigations regarding the prediction
of binding affinities by means of computational methods. As already stated in Section
4.3, van Lipzig and co-workers achieved impressive coefficients of correlation around
0.9±0.04 for ERα using an extended LIE model with 19 structurally similar ligands. [84]

In advance, however, four ligand orientations had been selected manually inspired by
crystallographic data. High squared coefficients q2

Loo of leave-one-out cross-validation
up to 0.71 was achieved with pure 3D-QSAR methods investigating ERα and xenoe-
strogens with initial conformations selected through comparison with known binding
modes. [109] Using a QSAR model along with partial least square regression on affinity
prediction for ERα, Wang and co-workers achieved a correlation of r2

Train = 0.92 and
r2

Test = 0.84 for the training and test set, respectively, but poor cross-validation with
q2

Loo = 0.43 which seems somewhat surprising in comparison with the test set’s cor-
relation. [242] Many other models for the estimation of host–guest affinities do either
yield poor cross-validation values or include the manual selection of an initial binding
mode. [243,244]

In case of cross docking, the binding affinity estimation is preceded by the determi-
nation of a favorable host–guest binding mode. As pointed out in Chapter 2, common
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methodology for the second step ranges from extensive perturbation approaches (FEP
and TI) using large sets of MD simulations up to much faster but less accurate QSAR
methods. Besides their high computational cost, TI and FEP cannot be applied to
highly diverse compounds. In the light of these considerations and due to a moder-
ate computational effort in conjunction with its proven satisfactory accuracy, [83–85] an
extension of the original LIE model [78] on the basis of classical force field simulations
was opted for all binding affinity calculations presented in this chapter. Besides, this
method copes well with physical principles since it considers ensembles of Boltzmann-
distributed microstates and, therefore, the involved molecules’ flexibility. Only two
ensembles representing the two endpoints of the binding process are required for an
affinity estimation: the unbound ligand in a solvent box on the one side and the ligand
in complex with the target molecule, solvated as well, on the other side. Again, we want
to point out that an ideal predictive model should abstain from any preliminary infor-
mation about the ligand’s orientation and in particular, avoid the manual or random
choice of some favorable pose. Using a suitable thermodynamic model of a particular
active site, the majority of all compounds coming into consideration and representing
a wide range of affinities and structural properties should, ideally, be covered by the
same parameter and training set. Consequently, we are going to develop an as simple as
efficient predictive linear model that is, in conjunction with the systematic sensing of
the space of binding modes described earlier, able to estimate highly accurate binding
affinities of some chemical compound in a fully automatic manner starting from a crys-
tallographic protein structure and a binding site definition in terms of three Cartesian
coordinates.

6.2 ERα modeling and force field simulations

As ensuing from the preferential binding mode prediction described in Section 4.3, all
binding affinity calculations presented in the following base on the same PDB entry
1GWR [215] of ERα available in the PDB data base and particularly comprising the lig-
and binding domain in complex with its natural binder 17β-estradiol (E2). Initially,
all components except for amino acid (AA) atoms of chain A were removed from the
coordinates file. Due to an incomplete resolution of chain A corresponding to the
ligand binding domain, this PDB entry is missing atomic coordinates associated with
AA residues Asp332, Pro333, and Thr334 as well as Leu462, Ser463, and Ser464. For
the sake of structure completion, the PDB entry 3ERD [245] served as a template con-
tributing coordinates of two respective sequences: Ala322-Ala340 and Ile452-Leu469.
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Figure 6.1: ERα protein model based on PDB entry 1GWR (grey secondary structure) originally
complexed with the natural hormone 17-β-estradiol (green carbon scaffold) and completed using
two substitutes (Ala322-Ala340, Ile452-Leu469) originating from PDB file 3ERD after a backbone

alignment of both crystal structures.

Model building is illustrated in Figure 6.1 using the secondary structure of 1GWR
(grey) and red-colored sequences originating from 3ERD after a structural alignment
of both backbones. In order to avoid the usage of loose end coordinates associated with
those incomplete regions, the two 3ERD substitutes included a couple of additional
vicinal AAs such that a satisfactory overlap with 1GWR characterized by a minimal
atomic deviation was guaranteed. We want to refer to the fact that the minimal dis-
tance between any atom of E2 and the substitute amounts to 6.2Å which is related to
the hydroxy-hydrogen attached to the aromatic ring of E2 and one of the hydrogens at-
tached to a primary carbon atom of AA Leu327. As already pointed out, the complete
coordinate file was provided with amber99sb force field parameters before being CG
energy-minimized and used in complex with ligands for explicit solvent MD simula-
tion.

A set of 31 ligands (depicted in Figure 6.2) including diverse scaffolds and associated
with respective binding affinities to ERα spread over 107 magnitudes served as train-
ing as well as cross-validation set for the empirical model. They were collected quasi-
randomly from three different sources (Table 6.1): twelve compounds originated from
Kuiper’s set, [246] another ten compounds had been published by Blair et al., [247] and
binding affinities of further eight substances had been determined by the Federal Insti-
tute for Materials Research and Testing (BAM) in Germany using binding assay stud-
ies. [194] In order to be able to compare binding affinities from different sources, relative
binding affinities (RBAs) were derived from pharmacological IC50 (inhibitory constant)
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6.2. ERα modeling and force field simulations

Figure 6.2: Training and model evaluation set of compounds originating from three different sources with known
(relative) binding affinities to the estrogen hormone receptor ERα.
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Table 6.1: Training and model evaluation set of compounds originating from three different
sources.

Kuiper et al., 1997 Blair et al., 2000 BAM, 2010–2011

17-β-Estradiol (E2) 17-α-Estradiol 17-α-Ethinylestradiol
17-β-D-glucuronid-E2 19-Nortestosterone 2-Hydroxy-E2

3-17-Disulfat-E2 5-Androstenediol 4-Hydroxy-E2

3-β-D-Glucuronid-E2 5-α-Dihydrotestosterone 1-Nonylphenol
3-β-D-Gluc.-17-sulfat-E2 β-Zearalenol Coumestrol
16-Epiestriol Bisphenol A Dienestrol
17-Epiestriol Clomifene Estrone
Benzylbutylphthalate Estriol Hexestrol
Dibutyl phthalate Genistein Norethynodrel

Methoxychlor Tamoxifen
Moxestrol
Norethindrone

values in relation to the natural binder E2 which obtained the value RBA (E2) = 100.
Consequently, the RBA value of any other compound L was expressed in terms of the
IC50 values of E2 and substance L,

RBA (L) = RBA (E2)
IC50 (E2)

IC50 (L)
= 100

IC50 (E2)

IC50 (L)
.

Basically, the system setup and molecular simulations of ERα with the set of 31 lig-
ands followed the protocol in Section 4.3. In short: each ligand was subjected to a
hybrid Monte Carlo sampling from which the global energy minimum (as described
in Section 4.1) was selected as input geometry for a series of host–guest molecular me-
chanics simulations. After explicit solvation and charge neutralization, each of the 60
target–ligand complexes per ligand underwent a local geometry optimization as well
as an MD simulation for equilibration and unrestrained production purposes accord-
ing to the description in Section 4.3. [194] During an additional production run for the
sake of comparison, the backbone atoms of ERα experienced position restraints keep-
ing fixed the tertiary structure retrieved from PDB. Finally, the most favorable binding
mode associated with the lowest time-averaged interaction energy (according to Equa-
tion 4.8) was chosen out of the set of 60 orientations per ligand for further analysis
and model development. The limitation on the state with the highest statistical weight
had been justified in the previous chapter regarding the HPLC elution order of HBCD
stereoisomers. That is, results obtained with the likeliest state were nearly identical to
the Boltzmann-weighted sum of all binding modes.
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6.3. Monte Carlo approach to conformational entropies

6.3 Monte Carlo approach to conformational entropies

As we have already learned in an earlier chapter, the Gibbs free energy G (N, p, T ) not
only depends on enthalpic but as well on temperature-dependent entropic contributions
of the molecular system under observation. In other words, apart from repulsive and
attractive atomic interactions, the number of possible system manifestations at a given
temperature influences the value ofG, too. The multiplicity of possible states is mainly
attributed to the conformational diversity as well as solute–solvent arrangements. A
couple of studies revealed some linear relationship between the system’s enthalpy and
certain entropic contributions obtained from MD simulations. [248,249] This relation is
commonly referred to as entropy–enthalpy compensation. In spite of that and in contrast
to most LIE applications, we decided to explicitly include and investigate an entropy es-
timate representing conformational diversity within the statistical ensemble of a ligand.
An auspicious theoretical framework for calculating conformational entropies on the ba-
sis of MD trajectories has recently been proposed by Weber et al. [250,251] Essentially, the
method is about a Monte Carlo approach to the estimation of conformational entropies
S based on the variance of internal atomic coordinates (conformers) qi ∈ R3N over
time frames i. We will, in the following, have a detailed look at its implementation in
the context of binding affinity calculations using the LIE method. The central idea is to
express S through the fraction of conformers qi, whose RMSD value rij to some prop-
erly chosen reference states qj is beneath a certain cutoff value rref. In other words, one
expects that stiff compounds prefer residing in close vicinity of some reference whereas
flexible ones are supposed to spread widely (Figure 6.3). Since all entropy calculations

qref

rref
qref

rref

Figure 6.3: Monte Carlo estimator for conformational entropies exemplified for a two-di-
mensional case: the entropy is derived from the fraction of MD states (given in internal
or external coordinates) with an RMS deviation larger than a certain cutoff rref from some
reference state qref which has approximately average energy. The system on the left is associ-

ated with higher entropy.
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presented here are related to ligand molecules only, it was necessary to omit all other
components from the trajectories of complex (B) as well as unbound (U) production
runs. Potential energies U were recalculated for each time step i of the remaining NL

ligand atoms associated with coordinates q′i ∈ R3NL . Hence, given such a narrowed
MD trajectory in the form of a set (indicated by curly brackets)

T = {q′i} ∀ i ∈ [1, n]

of n frames along with a list of corresponding ligand potential energies U (q′i), the
implemented algorithm first determines the time-averaged geometry

q′ =
1
n

n∑
i=1

q′i

and its RMS deviation
ri = rmsd

(
q′i, q

′
)

from every frame i. Afterwards, the cutoff distance

rref =
σU + σB

2
(6.1)

valid for the entire set of 61 (60 bound and one unbound) simulations per compound
was expressed in terms of two standard deviations: one

σU = σ
({
rU}

U

)
representing the uncomplexed system and its counterpart

σB =
1
60

60∑
l=1

σ
({
rB}

l

)
associated with RMSD values component-wisely averaged over 60 complex binding
modes. The functionality of rref is demonstrated by Figure 6.3 for a two-dimensional
case. A system with a higher conformational entropy value would be less restrained and
consequently exhibit a higher variance of coordinates. Such a system would correspond
to the distribution on the left characterized by larger RMS deviations from some ref-
erence states qref. In contrast, a bound ligand molecule residing at the binding site of
a target molecule would be substantially restrained and yield a lower conformational
entropy which is represented by the distribution on the right. In practice, k = 10
representatives

q′j ∈ T ∀ j ∈ [1, k]
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with approximately average potential energies [250]

U
(
q′j
)
≈ ⟨U (q′i)⟩i

(states associated with lowest deviations from the average energy) had been selected out
of n = 50, 000 frames (200ps) as illustrated by black circles in Figure 6.4. Afterwards,
for each such representative qj the number nj ∈ [1, n]

nj =
∣∣ { q′i , rmsd

(
q′i, q

′
j

)
< rref

} ∣∣
of states qi characterized by RMS deviations from the reference states less than rref was
calculated. Using the fraction nj/n averaged with respect to k representatives, the
estimated conformational entropy derived from an MD trajectory amounts to

S ≈ −R ln

(
1
k

k∑
j=1

nj

n

)
.

R denotes the gas constant used instead of the Boltzmann constant kB which is pro-
posed in the original paper. The entropy value clearly depends on nj ∈ [1, n] and
consequently ranges from S = −R ln (1/n) in case of maximum entropy (nj = 1)
to −R ln (1) = 0 if no variance at all is given (nj = n). It should be noted that in
the original publication of the extended LIE model for estrogens, [194] the reference dis-
tance calculated according to Equation 6.1 was equated with the standard deviation
of the unbound system only, rref = σU. However, since we are interested in entropy
differences ∆S between the bound and each of the 60 bound ensembles, it seems more
appropriate to consider all the 61 standard deviations in Equation 6.1. As an acceptable
consequence, one obtains a highly pronounced entropy discrimination of all involved
trajectories. That is, binding mode samplings associated with the limits nj = 1 (max-
imal entropy, all points except for reference state itself outside the circle in Figure 6.3)
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Figure 6.4: Selection of reference states associated with approximately average energy for the
Monte-Carlo estimation of conformational entropies.
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or nj = n (zero entropy, all points within the circle) are expected to appear less fre-
quently. We want to point out, that theoretically rref could have as well been set to
any proper constant with a highly discriminating power. Another modification of the
original entropy model concerns the type of coordinates used for RMSD calculations.
Rather than on the basis of internal coordinates defined by torsion angles and related to
conformational changes only, we decided to comprise external (Cartesian) coordinates
in order to include translational/rotational degrees of freedom in addition.

6.4 Extended LIE model and cross-validation

We had published [194] a first LIE-based predictive model not only on the basis of clas-
sical interaction energy terms but of structural descriptors as well. To be more precise,
our finalm = 6 parameter LIE model incorporated four extra parameter terms in addi-
tion to time-averaged van der Waals ∆

⟨
EvdW

⟩
and Coulomb ∆

⟨
Eelec

⟩
contributions:

average potential energy differences ∆
⟨
ULig

⟩
(strain energy taken up upon binding),

the conformational entropy TSconf of the ligand derived from the unbound system and
multiplied with temperature T . Finally, the model comprised two boolean structural
descriptors, δbenz ∈ {0, 1} and δphen ∈ {0, 1}, indicating the presence of a benzene
ring and, respectively, of a hydroxy phenyl group which would be typical for QSAR
methods. Due to physical reasons, however, it seems more convenient to use entropy
differences instead of entropies of the unbound ligand because the related entropy loss is
more significant in terms of thermodynamics (see Equation 2.4). Using a combination
of these descriptors, the new functional form of the linear model looked like

∆Gcomp =x1∆
⟨
Eelec⟩+ x2∆

⟨
Evdw⟩+ x3∆

⟨
U lig⟩+ x4T∆S

conf

+ x5δ
benz + x6δ

phen
(6.2)

where ∆ accounts for the difference between any ligand’s bound and unbound sam-
pling. According to the original LIE model based on thermodynamic principles, the
first two summands of Equation 6.2 address all pairwise intermolecular force field inter-
actions involving ligand atoms. These are ligand-target and ligand-solvent interactions
in the bound case and, respectively, solely ligand-solvent interactions in case of the
unbound system. Following the procedure described in Chapter 5 regarding HPLC
retention times, the coefficients xi where calculated on the basis of n = 31 ligands.
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Consequently, a system of 31 linear equations∆G
exp
1

...
∆G

exp
n


︸ ︷︷ ︸

≈

∆
⟨
Eelec

1
⟩

∆
⟨
Evdw

1
⟩

. . . δ
phen
1

...
... . . . ...

∆
⟨
Eelec

n

⟩
∆
⟨
Evdw

n

⟩
. . . δ

phen
n


︸ ︷︷ ︸

x1
...
xm


︸ ︷︷ ︸

y ≈ A x

(6.3)

was constructed resulting in a vector y ∈ Rn of experimentally determined free energies
of binding and a matrix A ∈ Rn×m consisting of structural descriptors and MD aver-
ages weighted by x ∈ Rm. While the empirical model of the underlying publication [194]

comprised decadic logarithms of RBA values for the construction of y, we decided, this
time, to operate on the correct physical formulation of binding free energies

y = ∆Gexp (L) = RT ln
[
Kd (E2)

RBA (E2)

RBA (L)

]
(6.4)

which had been derived for each ligand L from its RBA value. The expression inside the
logarithm of 6.4 is related to dissociation constants Kd amounting to 0.2 nM. Apart
from its physical relevance, results obtained through this strategy are better comparable
with other published methods. All values accounting for matrix A are listed in Table
6.2 where overall uncertainties

uO =

√(
∂O

∂OB

)2

σ2
OB

+

(
∂O

∂OU

)2

σ2
OU

=
√
σ2
OB

+ σ2
OU

of any time-averaged parameter O have been propagated on the basis of standard devi-
ations σOB and σOU corresponding to bound (B) and unbound (U) ligand simulations.
In the recent journal publication [194] of the presented LIE approach, each column of A
representing a particular descriptor was normalized by subtracting its mean and dividing
by its standard deviation. For reasons stated above in association with RBA values and
since the LIE model in its original formulation and most extensions and applications
do not carry out this step but rather directly fit Ax to y, we omitted normalization as
well in the following yielding slightly different results. Nevertheless, x was determined
through a least-squares approach using normal equations

x =
(
A⊤A

)−1
A⊤y. (6.5)

The weights are identical with those obtained throughQR decompositionwhich is known
to perform better on ill-conditioned matrices. [252] Table 6.3 shows directly fitted weights
x for the entire six-parameter model as well as two descriptor subsets yielding a four and
two-parameter model. Regarding the number of empirical parameters, the latter model
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Table 6.2: Calculated and structural (boolean) descriptor values of matrix A used for fitting coeffi-
cients of an empirical six-parameter LIE model. Uncertainties were propagated on the basis of standard

deviations associated with bound and unbound ligands.

Ligand ∆
⟨
Eelec

⟩
∆
⟨
Evdw

⟩
∆
⟨
U lig
⟩

T∆Sconf δbenz δphen

17-β-Estradiol (E2) 2.1± 26.6 -50.8± 24.6 -7.5± 21.5 -4.33 1 1
17-α-Estradiol -9.7± 26.7 -48.4± 24.5 2.9± 21.9 -3.19 1 1
17-α-Ethinylestradiol -4.4± 26.5 -75.7± 24.4 -4.5± 22.8 -9.97 1 1
2-Hydroxy-E2 -41.5± 34.2 -35.5± 31.6 15.7± 24.8 -6.27 1 1
4-Hydroxy-E2 -50.2± 30.3 -33.6± 27.9 37.0± 23.0 -6.70 1 1
17-β-D-glucuronid-E2 145.8± 94.2 384.3± 55.2 -22.1± 35.4 -6.13 1 1
3-17-Disulfat-E2 160.5± 54.6 395.1± 47.0 19.5± 25.9 -1.71 1 0
3-β-D-Glucuronid-E2 115.7± 61.1 355.3± 48.8 38.4± 35.6 -5.37 1 0
3-β-D-Gluc.-17-sulfat-E2 180.5± 74.0 587.8± 54.0 30.3± 33.8 -4.20 1 0
16-Epiestriol -12.8± 34.5 -24.4± 28.5 29.3± 23.6 -5.26 1 1
17-Epiestriol -0.1± 35.2 -28.0± 29.8 12.8± 26.0 -2.78 1 1
19-Nortestosterone 17.0± 24.0 -73.2± 22.4 7.8± 23.2 -8.64 0 0
1-Nonylphenol -6.5± 20.5 -86.3± 19.4 13.8± 22.5 -6.94 1 1
5-Androstenediol 3.8± 29.3 -70.3± 25.4 2.1± 24.0 -3.04 0 0
5-α-Dihydrotestosterone 21.7± 23.9 -79.6± 22.3 4.0± 26.1 -8.18 0 0
Benzylbutylphthalate 18.8± 18.7 -92.2± 19.2 20.8± 22.9 -4.22 1 0
β-Zearalenol -7.0± 28.9 -53.3± 26.5 72.6± 25.0 -4.85 1 1
Bisphenol A 6.0± 26.9 -10.7± 24.1 2.1± 19.8 -5.26 1 1
Clomifene 41.1± 19.8 -176.5± 21.1 5.5± 28.2 -6.88 0 0
Coumestrol -17.2± 30.0 8.6± 26.3 -1.6± 16.8 -2.52 1 1
Dibutyl phthalate 29.4± 21.4 -91.1± 18.9 50.3± 22.6 -6.07 1 0
Dienestrol 9.6± 27.4 -23.1± 25.2 8.3± 21.3 -2.69 1 1
Estriol 14.7± 33.5 -0.4± 29.4 -6.6± 24.3 -5.39 1 1
Estrone 5.8± 23.7 -57.5± 22.0 2.5± 21.6 -5.72 1 1
Genistein 5.7± 29.3 3.2± 26.9 2.4± 19.8 -3.36 1 1
Hexestrol 15.3± 30.4 -42.2± 25.3 11.9± 22.8 -3.65 1 1
Methoxychlor 21.1± 14.3 -131.8± 15.2 4.3± 20.8 -5.09 1 0
Moxestrol 11.0± 26.8 -65.3± 25.5 14.0± 24.8 -6.69 1 1
Norethindrone 22.3± 24.7 -101.6± 23.5 9.2± 23.8 -8.81 0 0
Norethynodrel 17.7± 25.0 -96.7± 22.4 4.6± 24.6 -10.68 0 0
Tamoxifen 31.0± 28.5 -141.1± 21.7 -1.6± 28.3 -5.99 1 0

resembles the original LIE method [78] which proposes a fixed value of xelec = 0.5 for
the electrostatic (elec) term and some fitted weight around xvdw = 0.16 for van der
Waals (vdw) contributions. However, fitting only both interaction terms yielded 0.33
and, respectively, 0.74 as optimal coefficients. Their signs are always positive due to the
corresponding parameters’ positive relation with ∆G in Equation 6.2. That is, small
values of both interaction energies on the one hand and ∆G on the other are associated
with higher binding affinities. In contrast to any energy contribution, the entropy term
is negatively correlated with the Gibbs free energy since a high loss of conformational
flexibility upon binding most likely correlates with lower binding affinity. In addition,
all entropy differences listed in Table 6.2 obtained negative signs confirming the gen-
eral loss of conformational entropy during an molecular association process. From that
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6.4. Extended LIE model and cross-validation

Table 6.3: Least-squares weights x for a 2, 4, and 6-parameter LIE model
fitted directly to experimental ∆G and, in case of the 6D model, after norma-
lization and along with mean and standard deviations (std). Reprinted with

major modifications from the original publication of Durmaz et al. 2013.

Descriptor
Normalized fit Direct fit

Mean std x(6)′ x(6) x(4) x(2)

∆
⟨
Eelec⟩ 21.42 49.75 1.55 0.27 0.38 0.33

∆
⟨
Evdw⟩ -67.98 16.84 2.02 0.77 0.91 0.74

∆
⟨
U lig⟩ 12.20 18.70 0.36 0.18 0.27 –

TSconf 12.02 2.05 -0.68 -0.91 -1.27 –
δbenz 0.56 0.28 0.47 6.37 – –
δphen 0.40 0.35 -1.60 -16.28 – –

point of view, all parameter coefficients seem reasonable. We will further engage with
the meaning of weight signs in the subsequent chapter where toxicities are estimated
relative to some chemical using a LIE model for targets without training sets. The nu-
merical condition κ associated with the squared matrix A⊤A calculated with version
3.8.1 of the Octave function cond() on the basis of theoretical observables consider-
ably increases with the model’s size. While remaining between 3 and 20 if taking into
account energy contributions only (the first three parameters), it quickly exceeds 10³
and, further, 10⁵ when including the entropy difference and, particularly, both boolean
chemical descriptors. The results imply that A is very sensitive to small errors in free
energies (y) and particularly ill-conditioned regarding δbenz and δphen. That is, even
small errors in y might cause large errors in x. Under such conditions it is generally
advisable to use some more stable method such as the QR decomposition [252] which,
however, had yielded identical weights x. Rather for illustration purposes, Table 6.3
comprises weights x(6)′ along with descriptor-wise mean values and standard deviations
according to the normalized approach. [194] The significance of a descriptor is better re-
flected by its coefficient if it has been normalized in advance. Both interaction energy
terms, for example, and the indicator for carbolic acid δphen achieved the highest weights
in x(6)′ . This observation implies that these descriptors highly correlate with ∆G and
that corresponding physical properties might therefore play a central role in binding.
Indeed, a structural analysis of the underlying PDB file reveals a particularly complex
arrangement of hydrogen bonds partially mediated by a water molecule residing nearby
and including several atoms of two polar AAs (Glu353, Arg394) as well as the phenolic
hydroxyl group. Once having trained weights x, the best fit

ŷFit = ∆GFit = Ax
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6.4. Extended LIE model and cross-validation

of binding free energy differences associated with the training set or some new com-
pound is easily obtained from the inner product of its descriptor values A and coeffi-
cients x. If no other compounds with known binding affinity than those included in
the training set are available, it is, for the judgement of an empirical model’s predic-
tive power, necessary to carry out some cross-validation. That is, no chemical should
be involved in the training of weights used for its own assessment. In practice, each
compound’s binding affinity was predicted using coefficients that had priorly been fit-
ted with respect to the remaining 30 substances by using Equations 6.3 and 6.5. We
had already successfully employed this approach commonly denoted as leave-one-out
cross-validation (LOOCV) for the validation of HPLC retention times in Chapter 5.
The procedure yields an additional list of 31 binding affinities which we can interpret
as predicted binding energies. Table 6.4 shows Gibbs free energy differences calculated
using the MM/PBSA method as well as the popular docking tool Autodock-Vina in ad-
dition to three LIE models associated with different parameter sets as demonstrated by
Table 6.3. Each of the LIEm models with dimensions ranging fromm=2 (LIE₂, resem-
bling the original two-parameter LIE model) via m=4 (LIE₄) to m=6 (LIE₆, optimal
extended model) is accompanied by two sets of theoretical ∆G values one originating
from parameter fitting (Fit) and an additional set of predicted values through LOOCV
(Cal). In contrast, MM/PBSA and Vina which we have applied for comparison pur-
poses are only associated with predicted (Cal) free energies since no fitting by the user is
required. Aside from that, for each of the five models absolute deviations dCal from ex-
perimental (Lab) Gibbs energies are specified, too. Lab ∆G values (listed under the tab
LIE₆ in Table 6.4) have been derived (according to Equation 6.4) from relative binding
affinities gathered from three different sources (column RBALab) and using the relation
between KD=0.2 nM and RBA=100 of E₂. In order to gain a better intuition for
differences in KD values, fitted and cross-validated RBA values related to the optimal
six-parameter LIE model are given as well. Using this LIE model (without data normal-
ization as contrary to the reference publication [194]) yielded RBA values (RBAFit6 and
RBACal6) that in parts strongly deviate from experimental RBALab. The deviation is gen-
erally more pronounced in case of cross-validated relative binding affinities (RBACal6)
and sometimes more than by one order larger or less than the laboratory result. The
largest deviation about a factor of 100 was calculated for 1-nonylphenol, 2-hydroxy-E₂,
dienestrol, and the two sulfate derivates of E₂. However, converted into binding free
energies associated with columns named Lab, Fit, and Cal of LIE₆, corresponding devi-
ations dFit and dCal usually amount to few kJ/mol only. Mean absolute deviation MD

(mean absolute error) for these columns are given at the bottom of Table 6.4 along with
a squared coefficients of ordinary (PearsonR2) and Spearman’s rank correlation (R2

S) for
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Chapter 6. Novel ERα binding affinity model

fitted and cross-validated energies. Both correlation coefficients are extremely correlated
regarding all models. Highest correlations amounting toR2

Fit=0.86 andR2
Cal=0.78 and

sketched in Figure 6.5 are associated with the two theoretical coefficients for fitted (Fit)
and cross-validated (Cal) free energies of LIE₆. Corresponding mean absolute errors ac-
count for 3.8 and 4.8kJ/mol. These results are only negligibly poorer than those gained
from normalized input data but still remarkable in light of the fully automatic approach
to binding mode (Chapter 4) and affinity prediction. Neglecting the two structural pa-
rameters according to LIE₄ yielded considerably less correlation, R2

Fit=0.67 for fitted
and R2

Cal=0.58 associated with cross-validated (predicted) energies. However, the cor-
relations are still significantly better than those of the original two-parameter LIE model
having achieved R2

Cal=0.45 which considerably increased to R2
Cal=0.53 if additionally

taking into account the ligand’s strain energy only. In particular, all LIE models in-
vestigated here perform substantially better than MM/PBSA and Vina which attained
R2

Cal=0.27 andR2
Cal=0.22. For MM/PBSA calculations a Gromacs implementation by

Kumari et al. denoted as g_mmpbsa [189] was applied to the same set of 60 complex tra-
jectories as had been used for LIE models, though, the mode associated with the lowest
overall MM/PBSA binding energy ∆G instead of lowest interaction energy was further
evaluated. In contrast, feeding MM/PBSA with favorable binding modes according to
interaction energies yielded even worse results (R2

Cal=0.1). One should, however, note
that all MM/PBSA calculations have been carried out on the basis of host–guest com-
plexes rather than using the unbound ligand in addition. The state of the art docking
tool AutoDock-Vina [98] was utilized with largely analogous settings (60 modes, same
partial charges, grid box centered on the geometric center of the co-crystallized ligand
E2 and large enough to capture all ligands of the training set) and with a high exhaus-
tiveness value of 100. These results clearly confirm the superiority of average-based
MD methods on the basis of systematically chosen initial binding modes over single
step methods (docking) with randomly proposed and evaluated binding modes even
though the computational effort increases substantially. [49,57,90,91] Moreover, consider-
ing thermodynamic end state methods only, any LIE equation performs considerably
better than the continuum-solvation model thereby confirming recent studies. [77]

Regarding the evaluation of our LIEm model’s predictive power, we have been rely-
ing on the LOOCV method. In related literature, the (squared) coefficient of cross-
validation we have termedR2

Cal due to Table 6.4 is usually denoted as q2
Loo. Some scien-

tists regard the use of it with suspicion if the model has not been applied to further test
sets. [253] Nevertheless, meeting a couple of criteria substantially increases its reliability:
the size of the training set (here amounting to 31) is recommended to be a manifold
of the number of descriptors (six in the presented model) and the set itself should vary
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6.4. Extended LIE model and cross-validation

strongly in both chemical scaffolds as well as binding affinities in order to be capable for
substantially differing compounds. For the given set of ligands, it ranged over nearly
107 magnitudes. Apart from a high value of the coefficient R2

Cal of cross-validation, a
reliable predictive model is characterized by a regression line that hardly diverges from
the bisecting line (regarding both slope and intercept) since the two plotting axes repre-
sent the same entity ∆G as depicted in Figure 6.5. [253] By these means and particularly
considering the automated beforehand prediction of an optimal binding mode, the
overall performance of this six parameter model is much more than satisfying, though,
for isolated chemicals, strongly erroneous predictions were made. For instance, the
relative binding affinity of one of the most flexible ligands, 1-Nonylphenol, equipped
with eight freely rotatable bonds as well as a hydroxyphenyl functionality was estimated
about a hundred times higher than what is known from laboratory experiments. Hav-
ing omitted 1-Nonylphenol would have increased the cross-validated LIE₆ correlation
up to R2

Cal=0.81. Instead, the original two-parameter LIE model (LIE₂) incorporat-
ing only van der Waals and electric interaction energies yielded less than R2

Cal=0.5. A
substantial increase to R2

Cal=0.67 was achieved by simply adding the hydroxyphenyl
indicator. [194] The most reasonable cause coming into question for both poor predic-
tion of 1-nonylphenol as well as the significance of the hydroxyphenolic indicator is

−60 −50 −40 −30 −20 −10

∆GExp
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Figure 6.5: Correlation of both fitted and cross-validated versus experimental binding free energies
(given in [kJ/mol]) associated with 31 chemical compounds and ERα using a six-parameter empir-
ical linear interaction energy-based approach. Corresponding regression lines and bisecting lines are

sketched as well.
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Chapter 6. Novel ERα binding affinity model

the absence of a water molecule acting as bridge for several hydrogen bonds with the
target-specific phenolic hydroxy group and two AAs during MD simulation. Since
this notable physical effect is not properly considered, the boolean hydroxyphenolic
indicator becomes overestimated regarding its weight. In turn, the binding affinity of
compounds (such as assumed for 1-nonylphenol) which most likely do not reveal the
typical complex hydrogen bonding network as known in case of all steroid-based lig-
ands equipped with a respective hydroxy group is overvalued. As already stated, other
LIE or QSAR type predictive models for the estimation of binding affinities to ERα
either yielded poor cross-validation coefficients [242] or included the manual selection of
an initial binding mode (or according to crystal structures). [84,109,243]

6.5 Evaluation of MD Settings and Parameters

The above presented linear model incorporates non-physical parameters related to struc-
tural properties. Thus, the model cannot be considered as entirely physical relying on
statistical averages only. If one prefers a purely physical approach such as

∆Gcomp = x1∆
⟨
Eelec⟩+ x2∆

⟨
EvdW⟩+ x3∆

⟨
U lig⟩+ x4T∆S

conf (6.6)

after having omitted the two additional structural descriptors as incorporated by Equa-
tion 6.2, the model’s predictive power decreases significantly toR2

Cal=0.58 which is still
an acceptable value. As already stated, the considerable decrease is most likely caused
by the absence of a water molecule at the binding site usually forming several hydrogen
bonds. Consequently, its effect is compensated by the phenolic hydroxy indicator re-
vealing an increased significance. On the basis of two independent MD runs (indicated
by solid and dashed lines, respectively) of the entire set of compounds and according
to the purely thermodynamic model represented by Equation 6.6 we want to briefly
investigate the effect of few MD parameters on R2

Cal. Interestingly, as illustrated by
Figure 6.6, correlation coefficients of the two independent runs (solid and dashed lines,
respectively) starting from the same initial state develop very similarly. This is well re-
flected by a squared coefficient of 0.8 regarding the correlation of the two sets of R2

Cal

values. The average deviation between any two corresponding values was only 0.026.
What one may conclude from this observation is that, possibly due to steric constraints,
the dynamics of a host–guest system starting from a favorable binding mode and ob-
served for less than 1ns is likely to repeat regarding host–guest interaction. Further,
the influence of the evaluated MD time range was moderate in case of MD simulations
without position restraints (indicated by the string “noPR”) in combination with an
optimal binding mode selection according to Coulomb interactions only (indicated by
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Figure 6.6: Running squared coefficients of leave-one-out cross-correlation depending on MD settings
and calculated upon two independent runs (represented by solid and dashed lines) associated with the
same initial modes: Cα atoms either positionally restrained (PR) or not (noPR), preferential bind-
ing mode selected either according to Coulomb (C) or, in addition, van der Waals (C-LJ) interaction

energy terms.

the letter “C”) as carried out for the linear models represented by Equations 6.2 and
6.6 (blue lines). A similar trend within a similarly narrow range of R2

Cal values cor-
responding to red lines was observed for optimal binding modes chosen according to
Coulomb and van der Waals interactions (indicated by “C-LJ”) out of 60 systems per
ligand simulated with PR (“PR”). Interestingly, the plots of both strategies (PR/C-LJ
and noPR/C) starting at relatively high values exhibit an initial decay followed by a rise
during the second half of the abscissa. In contrast, a contrary trend was observed if hav-
ing combined “PR” with “C” (black lines) or, respectively, “noPR” with “C-LJ” (green
lines). These two approaches are characterized by an initial rise followed by a decay dur-
ing the second half of the abscissa. Moreover, R2

Cal values of the latter two approaches
are spread over a significantly larger range (up to approximately 0.25) showing large
changes whereas values in case of the former two strategies (red and blue lines) range
within approximately 0.15. In light of these results, there seems to be some correlation
between the analytic strategies. If planning to apply PR to an MD production run, its
seems, during the first 150ps, more appropriate to determine optimal binding modes
according to the sum of Coulomb and van der Waals interaction energies, whereas dur-
ing the subsequent approximately 150ps, it seems better to neglect van der Waals forces
upon binding mode selection. If, in contrast, the application of PRs is not planned, the
effect of the set of interaction energy terms used for binding mode selection turns to the
opposite. However, further investigations including much more simulations would be
necessary in order to figure out whether the relationship described here is based rather
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on coincidence or causality. It should be noted that the application of PRs on certain
particles as implemented by the Gromacs software does not entirely prevent their mo-
bility. Rather, their masses are increased by a factor amounting to 1000 per default
such that corresponding particles are substantially less affected by interatomic forces.
Figure 6.7 illustrates the effect of PRs associated with Cα atoms on the time-dependent
RMS deviation of all ERα atoms (averaged over the entire set of 31 ligands as well as
all binding modes). Qualitatively, both RMSD curves (with and without PRs) reveal
the same progress following the root function, though, the red curve associated with
unrestrained systems grows significantly faster. In turn, RMSD values of the restrained
system are delayed in time.

Nevertheless, for each of the four investigated analytical approaches (regarding the
presence of PRs in combination with particular energy contributions chosen for the
binding mode identification), R2

Cal of the LIE₄ more or less consistently exceeds 0.45
in contrast to the original LIE approach itself. The latter yielded respective squared
coefficients ranging between 0.29 and 0.48 (not shown in Figure 6.6) that are always
below corresponding LIE₄ values. Using a state of the art docking tool, we have con-
firmed that average-based MD methods on the basis of systematically chosen initial
poses are superior over random single step methods. Nevertheless, for the purpose of
saving computational time, we considered the question whether binding pose estima-
tion solely on the basis of the lowest interaction energy out of 60 local energy minima
(used as initial structure for MD runs) yields similar results as the one incorporating
MD trajectory averages presented above. However, it turned out that for most ligands
these optimal binding modes did not well agree with the average-based approach as
illustrated by Figure 6.8 in case of the E2–ERα complex. It shows, on the one hand,
that each of the four subsequent time ranges (colored lines) of 100ps length yielded an-
other favorable mode (lowest of 60 interaction energies) as represented by a circle that
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Figure 6.7: Root mean square deviation of protein backbone during MD with and without position
restraints.
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averaged energies associated with four different MD time ranges, circles: optimal binding modes

according to MD time ranges.

is colored in accordance with the respective time range. Already this observation indi-
cates difficulties with the selection of a single representative mode. Considering on the
other hand minimal energies of respective modes obtained from the preceding energy
minimization procedure reveals significant discrepancies. That is two, namely mode
2 (green circle, range 220-320ps) and mode 22 (blue circle, range 120-220ps), of the
four binding modes suggested by averages of four consecutive MD time ranges were far
away from the lowest minimal energy binding structure which is associated with mode
53. However, the latter mode related to the lowest MD energy average of the first time
range 20-120ps (red circle) as well as mode 58 (magenta, range 320-420ps) correspond
to the two lowest energy minima among the 60 binding modes. Nevertheless, the order
of local energy minima does not necessarily (and sufficiently) correlate with the order of
lowest MD averages. On the basis of a set of optimal binding modes selected according
to energy minima, for no combination of parameters as addressed by Figure 6.6, a R2

Cal

value larger than 0.3 was observed.

6.6 Concluding remarks

This chapter dealt with the development of an empirical linear model for the predic-
tion of ERα host–guest binding affinities based on classical MD simulations. As both
methods analyze the same trajectory data, an LIE-based affinity model constitutes the
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consequent next step of the preceding binding mode estimation described in Section
4.3. Model development and parameter fitting were carried out on the basis of 31 highly
diverse ligands associated with reaction constants ranging over 10⁷ magnitudes. Due to
the large range of affinities and chemical scaffolds and since the size of the training set
exceeded the number of model parameters by its fivefold, overfitting must be considered
minimal. The strategy basically extending the original one/two-parameter LIE method
incorporates two additional physical and two structural parameters apart from interac-
tion energy terms. Both squared coefficients for the fitted data and the more meaningful
leave-one-out cross-validation of predicted energies were elevated up to values around
0.8 in case of normalized as well as unnormalized data which is remarkable in light of
a fully automated process. In this regard, it is superior to most other predictive models
for the estimation of binding affinities to ERα which suffer either from poor cross-
validation coefficients, a manual selection of initial binding modes, or a less divers set
of scaffolds. Using the original LIE parameter set (Coulomb and Lennard-Jones poten-
tial) yielded a squared LOOCV coefficient significantly less than 0.5. However, on the
given set of compounds and poses all LIE models performed substantially better than
MM/PBSA as a representative of the continuum-type of end state methods.

One of the additional physical model parameters is related to conformational en-
tropies. For a rough estimation of a ligand’s entropy loss upon target binding a Monte-
Carlo approach to the variance of atomic coordinates was implemented that had been
published few years before. Considering conformational entropies significantly in-
creased the original LIE model’s predictive power. Choosing the coordinates’ standard
deviation on the basis of both bound and (the mean of ) 60 unbound modes as an RMSD
cutoff ensures a high discrimination of their conformational entropies. In contrast to
the original entropy model, no internal but Cartesian coordinates had been used such
that, beside conformational changes, translational and rotational degrees of freedom
were captured by this entropy method as well. The second additional physical descrip-
tor significantly increasing the model’s predictive power is related to ligand strain energy
that is the potential energy uptake upon binding. The introduction of two indicators
for the presence of a benzene and, particularly, hydroxyphenyl functionality had further
improved the model. Indeed, the functional group associated with the latter descriptor
is involved in several hydrogen bonds partially mediated by a water molecule nearby
such that its absence during simulation is compensated by the significant phenolic hy-
droxy group.

Neglecting both structural descriptors and considering only thermodynamic parame-
ters still yields significantly higher coefficients of cross-validation exceeding 0.5. Inter-
estingly, a comparison of running coefficient values of two entirely independent MD
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runs reveals some kind of robustness of the presented average-based model insofar that
their trends emerge very similarly with an absolute average deviation of R2

Cal values less
than 0.03. Considering the first 300ps of host–guest MD trajectories, there seems to be
some relationship between two MD parameters: the presence of position restraints on
the one side and the choice of an initial binding mode on the other. The trend of runs
lacking PRs but associated with binding modes selected according to the Coulomb po-
tential is analogue to the trend of simulations with PRs and orientations chosen on the
basis of both Coulomb and LJ potentials (C/LJ). Both trends start with an initial decay
followed by an increase. An opposing trend (growth first, then decrease) was observed
in case of an inverse setting combination, namely for PRs combined with C/LJ bind-
ing modes as well as an for MD runs without PRs but binding modes on the basis of
Coulomb interactions. In addition, cross-validated correlation coefficients of the latter
pair of approaches are spread over a significantly larger range. Whether this observed re-
lationship is based on coincidence or not requires further and systematic investigations
using many copies of independent MD trajectories.

Much worse results have been achieved using methods relying on a single state of the
molecular complex. Taking into account only geometries associated with the lowest
minimal energy out of 60 local energy minimizations per ligand, mostly lead to binding
mode propositions different from MD average results and an insufficient correlation
with experimentally determined binding affinities. Having chosen analogous settings
(number of modes, identical partial charges, position of the grid box), the AutoDock-
Vina docking software resulted in a squared correlation coefficient less than 0.25 which
is acceptable neither for drug design (primarily avoid false positives) nor for toxicity
estimations (primarily avoid false negatives). These results highly conform with other
critical evaluations of molecular docking techniques. Of course, the computational
effort of less than one minute per ligand for 60 binding modes on six modern CPU cores
is negligible compared to approximately 20 minutes for 60 MD trajectories using about
1500 CPU cores. As a consequence, for a reliable prediction we strongly recommend
any free energy of binding calculation on the basis of several as heavily as systematically
distinct complex geometries, although this is accompanied by massive calculations. By
the way, due to a permanent progress in terms of computer hardware, parallelism, and
software development we can expect that the time required by an MD simulation as
described above will drop from 20 to one or two minutes within the next ten years.

As already pointed out in Section 4.3, the comparison of predicted ligand orienta-
tions with crystallographic data retrieved from the Protein database pdb.org revealed
remarkably reliable binding mode predictions. Hence, this chapter serves as an ad-
ditional evaluation for that strategy since high correlations between experimental and
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predicted binding affinities as achieved with the six-parameter model as well imply that
binding modes were chosen correctly. All told, a promising hands-off approach to the
prediction of highly accurate binding modes and affinities for molecular host–guest sys-
tems has been presented that will be capable for high-throughput screenings in a couple
of years. [194] Similar to easy to handle docking tools, the algorithm does not require
other manual operations than the definition of a spatial vector specifying a particu-
lar target’s binding site and an arbitrary set of coordinates representing the drug-sized
compound.
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7 Risk assessment on sulfamethoxazole
transformation products

We became acquainted in the previous chapter with an accurate predictive model use-
ful for estimating absolute binding affinities to ERα. However, the purely empiri-
cal approach requires training data that is not inevitably available for arbitrary target
molecules. Nevertheless, for reasons stated above one might prefer an extended LIE
model over other binding free energy or docking methods. In this short chapter we will
therefore elaborate a simple strategy enabling us to use the entirely physics-based four-
parameter LIE₄ model (Equation 6.6) presented in the previous chapter without having
trained any weight coefficients in advance. As a consequence, rather than calculating
absolute binding free energies the presented method was used to prioritize chemical
compounds with respect to their protein binding affinities in relation to some reference
substance. All calculations have been carried out on the basis of a set of 29 documented
transformation products (TPs) arising from biotic or abiotic degradation of the antibiotic
sulfamethoxazole (SMZ) which served as reference.

7.1 Introduction

Over the past century, considerable amounts of various anthropogenic compounds in-
cluding drugs, synthetic materials, and other chemicals have been released to the en-
vironment via the route of waste and waste water. Here, many of them accumulate
due to their persistent character, probably after metabolization through biotic or bi-
otic processes. They have been measured in many ecological compartments particu-
larly including drinking water. [254–256] Certainly, industrial products have to undergo
an environmental risk assessment in order to obtain approval, but the risk arising from
metabolites is typically not accounted for during this process, although, the endocrine
potential of wastewater [257] as well as growth-inhibiting effect of drinking water [258]

have already been reported on the basis of in vivo tests. However, in recent years,
first and higher order TPs as well increasingly attracted human and ecotoxicologists’
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Figure 7.1: The antibiotic sulfamethoxazole and several documented transformation poducts arising
from biotic or abiotic degradation.

attention. [259] Dozens of degradation products have been detected for some chemicals
such as SMZ [260–263] or carbamazepine. [264–268] Some of them arise from elimination of
the parental substance in sewage treatment plants or from biodegradation in humans.
Anyways, an ensuing potential increase in the substance’s environmental risk cannot
be entirely ruled out. [258,259] Often, the amounts detected in the environment are too
small for the sake of conventional laboratory screenings such that, as pointed out earlier,
computer-aided risk assessment provides the only access to toxicity estimation for such
newly discovered metabolites. Furthermore, the applicability of conventional methods
is technically limited by the vast number of possible interactions between TPs and bi-
ological target structures (receptors, enzymes, ion channels etc.) coming into question.
The task’s complexity further increases if including TPs whose formation was predicted
by in silico methods. [259]

In the following we will use an LIE-based method for the toxicological prioritization
of TPs derived from the antibiotic SMZ (center molecule in Figure 7.1). SMZ belong-
ing to the class of sulfonamides is directed towards Gram-negative and Gram-positive
microorganisms and made use of since the middle of the 20th century. The suppres-
sive effect on bacterial synthesis of folic acid is due to its structural analogy to para-
aminobenzoic acid (PABA) resulting in a competitive inhibition of PABA binding to the
enzyme dihydropteroate synthase (DHPS) which is not expressed in humans. As a con-
sequence, DHPS looses its ability to synthesize the folic acid precursor dihydropteroic
acid by covalently connecting PABA with dihydropteroate diphosphate. Since folic acid
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Table 7.1: SMILES notation and CAS number of SMZ (000) and 29 transformation products (001-
029) documented in various publications. N/A: not available.

Nr. transformation product SMILES notation CAS number

000 Sulfamethoxazole (SMZ) CC1=CC(NS(=O)(=O)C2=CC=C(N)C=C2)=NO1 723-46-6
001a 5’-Hydroxy-SMZ C(O)C1=CC(NS(=O)(=O)C2=CC=C(N)C=C2)=NO1 34245-10-8
002b N4-Hydroxylamino-SMZ CC1=CC(NS(=O)(=O)C2=CC=C(NO)C=C2)=NO1 114438-33-4
003a N4-Acetyl-SMZ CC1=CC(NS(=O)(=O)C2=CC=C(N(C(=O)C))C=C2)=NO1 21312-10-7
004a N4-Acetyl-5-hydroxy-SMZ C(O)C1=CC(NS(=O)(=O)C2=CC=C(N(C(=O)C))C=C2)=NO1 75144-40-0
005c N4-Ethoxyacetyl-SMZ CC1=CC(NS(=O)(=O)C2=CC=C(NC(=O)COCC)C=C2)=NO1 21662-79-3
006b N4-Nitroso-SMZ CC1=CC(NS(=O)(=O)C2=CC=C(N(=O))C=C2)=NO1 131549-85-4
007c N4-Glycolyl-SMZ CC1=CC(NS(=O)(=O)C2=CC=C(NC(=O)CO)C=C2)=NO1 51729-63-6
008a N1-Acetyl-SMZ CC1=CC(NS(=O)(=O)C2=CC=C(N)C=C2)=NO1 18607-98-2

009a SMZ N1-glucuronide
CC1=CC(N(C2C(O)C(O)C(O)C(OC)O2)S(=O)(=O)C2=CC=C
(N)C=C2)=NO1

14365-52-7

010d SMZ-2’-glucuronide
CC1=CC(NS(=O)(=O)C2=CC=C(N)C=C2)N(C3C(O)C(O)C(O
)C(OC)O3)O1

16854-34-5

011e SMZ-2-glucuronide
CC1=CC(NS(=O)(=O)C2=C(OC3C(O)C(O)C(O)C(OC)O3)C=
C(N)C=C2)=NO1

37393-49-0

012f N4-chloro-SMZ CC1=CC(NS(=O)(=O)C2=CC=C(NCl)C=C2)=NO1 151928-89-1
013f o-chloro-SMZ CC1=CC(NS(=O)(=O)C2=CC=C(N)C(Cl)=C2)=NO1 151928-90-4
014f N-chloro-p-benzoquinoneimine C1(=NCl)C=CC(=O)C=C1 637-61-6
015g Benzenesulfonamide CC1=CN=C(NS(=O)(=O)C2=CC=C(N)C=C2)O1 51821-47-7
016g Butanimidamide CC(=O)C=C(N)NS(=O)(=O)C2=CC=C(N)C=C2 210241-73-9
017g C₁₀H₁₃N₃O₄S CC(=O)C(O)C(=N)NS(=O)(=O)C2=CC=C(N)C=C2 N/A
018g C₁₀H₁₃N₃O CC(=O)CC(N)=NC1=CC(N)=CC=C1 N/A
019h 2-Hydroxy-SMZ (Int.1) CC1=CC(NS(=O)(=O)C2=C(O)C=C(N)C=C2)=NO1 N/A
020h 3-Hydroxy-SMZ (Int.1) CC1=CC(NS(=O)(=O)C2=CC(O)=C(N)C=C2)=NO1 N/A
021h C₁₀H₁₃N₃O₅S (Int.2) CC1(O)C(O)C(NS(=O)(=O)C2=CC=C(N)C=C2)=NO1 N/A
022h 3-Isoxazolamine (Int.3) CC1=CC(N)=NO1 1072-67-9
023h C₁₀H₁₃N₃O₅S CC(=O)C(O)C(=NO)NS(=O)(=O)C2=CC=C(N)C=C2 N/A
024h C₁₀H₁₂N₂O₅S CC(=O)C(O)C(=O)NS(=O)(=O)C2=CC=C(N)C=C2 N/A
025h C₆H₇NO₃S OS(=O)(=O)C2=CC=C(N)C=C2 N/A
026h C₄H₈N₂O₃ CC1(O)C(O)C(N)=NO1 N/A
027h 2-Benzenesulfonic-acid OS(=O)(=O)C1=C(O)C=C(N)C=C1 146117-42-2
028h 3-Benzenesulfonic-acid OS(=O)(=O)C1=CC(O)=C(N)C=C1 53819-11-7

029f Azo-SMZ
CC1=CC(NS(=O)(=O)C2=CC=C(N=NC3=CC=C(S(=O)(=O)N
C4=NOC(C)=C4)C=C3)C=C2)=NO1

97254-40-5

a Vree, 1995
b Sanderson, 2007
c Kaplan, 1973
d Ueda, 1967
e Ueda, 1972
f Dodd, 2004
g Mohatt, 2011
h Hu, 2007
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is essential for the reproduction of microorganisms, only bacterial strains capable of an
alternative route to its synthesis would resist SMZ. [269,270] A graphical representation
of DHPS in complex with a substrate as well as a product molecule is available in the
introduction (Figure 1.7). Its sub-therapeutic occurrence not only in drinking water
during the past decades might have caused the increased bacterial resistance associated
with Escherichia coli (E. coli) and Staphyllococcus aureus (S. aureus) strains observed
by the end of the last century. [271] Anyhow, as a generally accepted rule it is necessary
to minimize SMZ exposition to the environment in order to mostly avoid additional
increase and development of resistances. Certainly, this holds true for TPs revealing the
same bacteriostatic effect. Thus, from a toxicological point of view, it is not sufficient
to eliminate only parental substances such as SMZ in sewage treatment plants but also
potentially risky TPs. An obvious approach to toxicity assessment entails estimating the
free energy of binding to DHPS using in silico methods. Substances yielding a theoret-
ically higher binding affinity than SMZ are expected to cause the same inhibiting effect
on DHPS. Hence, this chapter aims at a qualitative estimation of TP binding affinities
in relation to SMZ. According to the calculations, all metabolites were categorized and
prioritized for both toxicological reasons and follow-up laboratory experiments often
including the costly development of chemical synthesis protocols. Table 7.1 shows a
list of SMZ TPs gathered from numerous publications [260–263,272–275] and investigated
throughout this chapter.

7.2 Data preparation and force field simulations

Apart from few deviations described below, target and small molecules underwent the
same molecular modeling procedure as described for ERα and estrogens in Chapter 6.
Crystallographic structure files of five DHPS proteins originating from different species
and listed in Table 7.2 were retrieved from PDB. In order to have knowledge about the
substrate binding site, we restricted ourselves only on those PDB entries that included
either some co-crystallized substrate or product molecule. After having removed all but
protein atoms of the first complete chain (if more than one was available), the enzymes
were parametrized in accordance with the AMBER99sb force field that is particularly
convenient for explicitly solvated biological systems. SMZ as well as its TPs were, in
contrast, sketched, cleaned in 3D, and exported as PDB files using MarvinSketch v5.5.
The AmberTool Antechamber was used for the assignment of physical parameters and
partial atomic charges according to GAFF and, respectively, the AM1BCC method.

A structural alignment of the five selected enzymes on the basis of a superposition of
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Table 7.2: Bacterial origin and PDB id of crystallographic DHPS structures retrieved from the Protein
Data Bank and used as targets for molecular dynamics binding calculations of SMZ and its transforma-
tion products. The last column is related to the presence of SMZ resistance where +/− indicates that

resistant as well as sensitive strains of the corresponding microorganism exist.

Protein source PDB id SMZ resistance

Staphylococcus aureus 1AD4 [269] +/−
Streptococcus pneumoniae 2VEG [276] −
Bacillus anthracis 3TYE [277] +

Escherichia coli 1AJ2 [278] −
Yersinia pestis 3TYZ [277] +/−

their substrates’ pteridine ring system is depicted in Figure 7.2. Each of the two vici-
nal DHPS binding sites are occupied by a substrate molecule/analog. The one on the
right (background) appearing vertically aligned comprises the deeply buried pteridine
system at the top and a less buried diphosphate group (associated with violet phosphor
atoms) at the bottom attached to it. This co-crystallized substrate stems from one of
the underlying PDB entries. At the PABA binding site on the cavity’s left (in the fore-
ground) we find a biotic SMZ TP denoted as N4-acetyl-SMZ where it was positioned
in place of PABA by means of an alignment of their benzene rings. All other metabo-
lites (including SMZ) were placed following the same rules and resulting in an initial
binding mode per compound. Ensuing from this initial mode, 59 further poses were
generated according to the icosahedron-based procedure described in Section 4.3 in or-
der to capture the most favorable host-guest binding mode. It should be noted, that all
simulations were carried out without the dihydropteroate diphosphate substrate since
its presence is not required for the sake of inhibition. Prior to MD simulations, the
complex was put in a 10nm simulation box and explicitly solvated with the tip4pew
water model. Formal charges were neutralized by adding a corresponding number of
sodium or chlorine ions, respectively. Apart from these 60 bound configurations, one
unbound system was generated consisting of the metabolite (along with counterions if
charged) and solvent molecules only.

Just like in the previous chapter, a multistage MD simulation was performed, though,
using Gromacs in the version 4.6.5. First, the complex underwent 7000 steepest de-
scent energy minimization steps if the maximum force acting on any atom had not
ended up below 300 kJ mol−1 before. Host and guest molecules were positionally re-
strained during a subsequent 200ps equilibration phase in order to achieve a physical
temperature-specific distribution of the liquid phase. The simulation temperature was
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Figure 7.2: Secondary structure depiction of a structural alignment of five isoforms of the enzyme
DHPS originating from different bacterial species: S. aureus (green), S. pneumoniae (yellow), B. an-
thracis (red), E. coli (violett), and Y. pestis (blue). The binding site shows N4-acetyl-SMZ on the left
in place of PABA and, considerably deeper inside DHPS, the natural substrate dihydropteroate diphos-
phate on the right. Atom colors: carbon (green), oxygen (red), nitrogen (blue), sulphur (yellow),
phosphor (violet), and hydrogen (grey). Both ligands are partially overlapping with respect to the

amino nitrogen of N4-acetyl-SMZ.

coupled to 293K by stochastically rescaling atomic velocities. Finally, another 200 ps
simulation was carried out as a production run without position restraints but with
constraints on all bonds according to the LINCS approach and allowing to increase the
discretized time step size from 1 to 2fs. During this final run, the pressure was coupled
weakly using Berendsen’s algorithm. Regarding the calculation of interaction energies,
cutoff values for Coulomb and Lennard Jones potentials were set to 10 and 14Å, respec-
tively, where the former was determined according to the smooth particle mesh Ewald
summation.
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7.3 Prioritization of transformation products

Following the approach described in previous chapters, the favorable one ξ out of 60
binding modes associated with different initial binding modes of each compound was
determined on the basis of respective MD time-averages (indicated by angular brackets)
of both interaction energy terms

ξ = argmin
i∈[1,60]

[
∆
⟨
Eelec⟩

i
+∆

⟨
Evdw⟩

i

]
.

An estimation of TP binding affinities to DHPS isomers relative to the parental com-
pound SMZ was carried out on the basis of four thermodynamic quantities derived
from MD trajectories ξ: protein–ligand interaction energies due to electric, Eelec, and
van der Waals forces, Evdw, as well as the ligand molecule’s potential (strain) energy, U ,
and conformational entropy (loss) upon binding, S. Each descriptor X was expressed
as a difference ∆X = Xξ − Xunbound between the unbound and the optimal bound
system ξ. In case of the unbound simulation, the set of atoms surrounding the ligand
mainly consists of water whereas the bound system particularly includes an additional
target molecule. As illustrated by the two previous chapters, regarding both the binding
mode identification as well as the choice of descriptors, the applied strategy had shaped
up as robust and significant.

The basic idea behind the prioritization of TPs using a non-parameterized LIE model
is illustrated by Table 6.3 in Chapter 6. The sign of a weight coefficient xi tells us
whether the binding affinity is negatively or positively related to the corresponding
descriptor. Considering, for instance, only thermodynamic parameters with coefficients
x(4) associated with the purely physical 4-parameter LIE model (LIE₄), we notice that all
terms except for the entropy carry a positive sign. Applied to the respective free energy
model in Equation 6.6

∆Gξ = x1∆
⟨
Eelec⟩+ x2∆

⟨
EvdW⟩+ x3∆ ⟨Epot⟩+ x4TS

conf

which is what was actually used for the prioritization of TPs, this observation implies
that if one of those three energy differences (“bound” energy minus “unbound” energy)
increases, the free energy difference ∆G between bound and unbound grows, too. As
we already know, states associated with low energies are more favorable than high-energy
states according to thermodynamics. In contrast and as expected, the coefficient of the
conformational entropy parameter yielded a negative sign in Table 6.3 indicating that
high values associated with a high loss of conformational flexibility correlate with lower
binding affinities. The observation copes well with the thermodynamic formulation of
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Table 7.3: Code for the toxicological prioritization of SMZ transformation
products for further assessment according to calculated energies and confor-
mational entropies in relation to SMZ. A plus sign indicates higher binding

probability than SMZ according to the corresponding energy contribution.

Toxicological priority ∆
⟨
Eelec

⟩
∆
⟨
Evdw

⟩
∆ ⟨U⟩ T∆S

− ± ± ±
None

± − ± ±
Low + + − −

+ + + −
Medium

+ + − +

High + + + +

the Gibbs free energy comprising enthalpic and entropic contributions (Equation 2.4).
Thus, if some degradation product yields lower energy differences and a higher entropy
difference (lower entropy loss) than SMZ, it will most likely bind with a higher proba-
bility than SMZ itself. This situation is demonstrated by the bottom line of Table 7.3
representing chemical compounds associated with highest priorities (red). In general,
a + symbol in a particular column indicates a higher binding probability compared to
SMZ in terms of the corresponding parameter. Another category corresponding to
the lowest priority (yellow) is characterized by both interaction energy terms in favor
of a higher TP affinity (+) and both ligand-based parameters in favor of SMZ (−). If,
in addition, exactly one of the two latter descriptors, ∆ ⟨U⟩ or T∆S, militate for TP
binding, we arrive at medium priority (orange). Due to two reasons, all priority levels
require both interaction energies to favor TP binding: Apart from providing the basis
for the original LIE model they have achieved, which is of much greater import, the

Figure 7.3: Sensitivity matrix for the prioritization of 29 SMZ transformation products (40 corresponding
columns if considering stereoisomerism) with respect to their predicted binding affinity to DHPS originat-
ing from five bacterial species (rows) that are either SMZ resistant (green), sensitive (red), or strain-dependent
(black). Matrix colors: red (highest priority), orange (medium), yellow (lowes), white (no priority since at least

one interaction energy term in favor of higher SMZ binding probability).
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Figure 7.4: Highest priority degradation products of SMZ regarding DHPS binding.

by far highest weights (1.55 and 2.02) of all physical parameters regarding the normal-
ized fitting in Table 6.3. With every additional ligand-based descriptor favoring some
TP (associated with a plus symbol), its binding probability and, consequently, priority
for a risk assessment increases. Hence, if at least one interaction energy term had fa-
vored the reference compound SMZ for binding, the TP was categorized as harmless
(green) and no further investigation of bacteriostatic activities in regard to DHPS is
recommended.

In practice and depending on the four observable values, all TPs characterized by both
interaction energies lower than those of SMZ were considered potentially harmful and
distributed over the three categories listed in Table 7.3. This was done with respect to
each DHPS target as depicted in Figure 7.3. Across all enzyme isoforms, the sensitiv-
ity matrix reveals only seven TPs falling into the category associated with the highest
priority. Figure 7.4 shows the chemical structures of these compounds which are rec-
ommended for risk assessment with higher priority than any other SMZ TP. For two of
them high binding probabilities with respect to DHPS of two different species have been
calculated, namely, S. aureus and E. coli in case of N1-acetyl-SMZ (TP-8) and S. au-
reus and Y. pestis in case of a stereoisomer of a compound with the chemical formula
C₁₀H₁₃N₃O₄S (TP-21). These three species are the only ones theoretically affected by
metabolites of the highest category. And since each of them either is sensitive to SMZ
(E. coli) or comprises resistant as well as sensitive strains (S. aureus and Y. pestis), it is
of particular interest to minimize the exposition of such potential binders to the envi-
ronment in order to reduce the formation of resistances to a minimum. A well-known
example for such critical species are multi-resistant strains of S. aureus often found in
hospitals and grocery stores. The treatment of increasing resistances to many antibi-
otics is becoming more and more challenging. [269] According to the presented results,
S. aureus indeed seems sensitive to more SMZ metabolites than any other species inves-
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tigated in this chapter. Interestingly, DHPS of the only entirely SMZ-resistant species
B. anthracis is characterized by the lowest number of high and medium priority (orange)
binders. For the sake of completeness, another nine and five compounds fell into the
second and, respectively, lowest category considering at least one DHPS isomer where
TPs already categorized with higher priorities have been excluded. A comprehensive
evaluation of the computational results is currently not possible for lack of laboratory
experiments.

7.4 Concluding remarks

Due to an increasing number of novel transformation products a risk assessment and
prioritization by means of in silico methods becomes more an more indispensable. The
limited resources of time-consuming and expensive laboratory experiments including
the development of a synthesis protocol as well as in vitro and in vivo tests for toxicity
quantification can then be restricted on metabolites that are most likely to affect critical
biological targets. Due to structural similarities between parent compounds and their
low order degradation products, one is typically interested in the question whether TPs
are able to bind to the same targets as known for the parent compound.

In light of these considerations we developed an MD average-based model for priori-
tizing degradation products of the antibiotic SMZ with respect to their binding affinity
to its bacterial target DHPS. SMZ prevents this enzyme from forming a precursor of
folic acid that is essential for folic acid synthesis. Certainly, microorganisms tend to de-
velop resistances against antibiotics when repeatedly exposed to them in sub-therapeutic
trace amounts. For that reason, it is of great importance to minimize environmental
contamination with potentially bioactive anthropogenic substances. The task was to
identify TPs of SMZ that are likely to mimic the DHPS-suppressive characteristic of
SMZ.

Due to its high accuracy at moderate computational costs we again decided in favor
of the entirely physical four-parameter LIE model presented in the previous chapter.
From 60 MD time series associated with different initial binding modes as described
earlier the favorable binding mode was chosen according to the minimal sum of both in-
teraction energy terms. Lacking training data with known binding affinities to DHPS,
no parameter coefficients could be calculated which would have been necessary for pre-
dicting absolute binding affinities. However, since we were primarily interested in the
prioritization of TPs relative to their parent compound SMZ rather than in absolute
affinities, we easily refrained from weight coefficients. The central idea was to first com-

168



7.4. Concluding remarks

pare a TP’s observable values (the content of matrixA) the entirely physical LIE₄ model
comprises of with those determined for SMZ. A categorization of each TP was depen-
dent on which and how many of those parameters were in favor of TP binding rather
than of SMZ. That is, whenever one of its energy differences was less or entropy differ-
ence was larger than that of SMZ. For all categories of potentially harmful degradation
products, both interaction energy differences had to favor TP binding. If only one of
these two contributions that particularly correlate with binding free energies had been
in favor of SMZ, the TP was classified as harmless.

Accordingly, seven TPs of the highest category (highest risk) have been identified
particularly affecting DHPS of the (partially) sensitive species S. aureus, E. coli, and
Y. pestis. Some of those highest priority compounds were predicted to bind to sev-
eral DHPS isoforms, but interestingly none of them seems to bind to the only re-
sistant species under investigation, B. anthracis. According to our calculations, four
high-priority metabolites are directed towards S. aureus of which critical multi-resistant
strains are known that are hard to suppress with common antibiotics. Hence, one is
greatly interested in an as wide as possible elimination of SMZ as well as critical analogs
already in properly upgraded sewage plants before they reach ground water. From this
point of view, degradation products of the highest priority are strongly recommended
for toxicological risk assessment through thorough laboratory tests. Currently, the lack
of analogous laboratory results makes the extensive evaluation of computational results
difficult.
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8 Conclusion and Outlook

The accurate quantification of biological host–guest binding affinities plays an increas-
ingly important role in various scientific fields. Among other applications, toxicologists
and drug developers are often interested in binding constants for association/dissociation
reactions of novel chemical compounds and biological target molecules. And indeed
systematic investigations on transformation products reveal a growing number of novel
chemical structures arising from degradation of anthropogenic substances which need
to undergo a risk assessment as well. Besides well-established in vivo and in vitro labora-
tory experiments, one regularly employs in silico methods nowadays that are usually less
demanding regarding both time and cost. Despite continuously exponential technolog-
ical and algorithmic advances over the past decades, molecular simulations still pose a
big computational challenge owed to the mathematical complexity of biological macro-
molecular systems often consisting of hundreds of thousands of atoms. This particularly
holds for accurate binding affinity methods based on the time-average over an ensemble
of states. As a general observation, the reliability of theoretical results is largely correlated
with the demand for computing resources. In Chapter 2 we became acquainted with
various fast as well as costly approaches to the estimation of (relative) binding affinities
and met some general ideas for the creation of reasonable binding poses. Due to its ex-
ceeding complexity, a thorough exploration of some macromolecular conformational
space by means of MD simulations is impossible within an acceptable time period. One
is therefore strongly reliant on one or more energetically favorable representatives of a
host–guest complex in order to obtain plausible free energies. The major goal of this
thesis concerns the development of an automatized strategy for an accurate prediction
of host–guest binding modes and affinities. Accordingly, the subgoals of this thesis can
roughly be divided into two categories dealing with two different aspects of the calcu-
lation of host–guest binding affinities derived from classical force field trajectories. On
the one side we engaged with the decomposition of conformational space followed by
the selection of representative molecular geometries serving as input for free energy cal-
culations. In particular, we focussed on a more systematic generation of binding poses
covering a broad range of possible molecular interaction modes and, thereby, render-
ing the dreaded trapping problem obsolete. On the other side and ensuing from these
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input geometries, we developed binding affinity models for a couple of (bio)molecular
systems based on the linear interaction energy (LIE) method.

Algorithms and results dealing with conformational space discretization for the pur-
pose of binding affinity estimation were presented in Chapter 4. All methods mainly ad-
dress the trapping problem typically accompanying MD simulations of complex macro-
molecular systems. Since there is no way to sample the entire conformational space of
large systems within reasonable time, it is all the more necessary to particularly care-
fully select initial geometries representing energetically most favorable states associated
with largest statistical weights. Following a simple two-stage procedure, the first part of
that chapter proposed the determination of global minima structures of small molecules
such as the six major HBCD stereoisomers. HBCDs are characterized by cyclic struc-
tures associated with large energetic barriers and two (topological and stereoisomeric)
symmetry levels. Ensuing from an HMC sampling at an artificially high temperature
of 1500K for the sake of easily overcoming even high energetic barriers, each geom-
etry was locally minimized and the one associated with the lowest energy was chosen
as global energy minimum conformation. Regarding HBCD stereoisomers, all sym-
metry levels were perfectly reflected by these global energy minima indicating that five
Markov chains with at least 50k steps (better 100k) each are sufficient for most drug-
sized molecules consisting of up to 50 atoms in order to achieve an extensive sampling of
the conformational space. At least two global minimum geometries of the three HBCD
diastereomers match respective crystal structures very well.

If more than one representative of a molecule (e. g. a small subset of an HMC sam-
pling) is desired for further analysis, the novel linearly scaling maxdist cluster algorithm
provides an as fast as simple way to identify multiple heavily distinct (related to tor-
sional distances) conformations widely representing the entire conformational space.
Insofar, it differs from existing cluster algorithms such as k-means which are particu-
larly designed to identify cluster centers located in densely populated areas. Due to
its successive selection of representatives, two stopping criteria are conceivable with
maxdist depending on the user’s preferences and yielding the same sequence of centers:
a predefined number of clusters and/or a maximum allowed reference distance dmax of
any frame to its nearest representative. However, regarding the trapping issue associ-
ated with MD simulations, one would rather decide in favor of a maximum torsional
distance criterion approximately amounting to π/3 in order to achieve considerably
overlapping ensembles of states if using those representatives as initial geometries for
samplings. Such independent samplings are in turn useful for free energy reweighting
and the investigation of molecular kinetics. The expected number of representatives can
be roughly estimated through a hyperbolic function of dmax whose power is specified by
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the number of torsional degrees of freedom minus some value of α. α was interpreted
as a measure for the deviation from an ideal distribution due to molecular constraints
since a large value decreases the number of centers necessary to meet the maximum
distance requirement. A way to a rigorous calculation of α was not in the focus of this
thesis and remains a task for the future. On the basis of pentane and HBCD, the num-
ber of centers predicted by the hyperbolic model achieved remarkable coefficients of the
correlation with the actually clustered number.

A last space-decomposing strategy intended to remedy the trapping issue is related to
simulations of host–guest complexes. In contrast to state-of-the-art docking tools as
the only current access to the automatized generation of binding poses, the presented
approach systematically decomposes the space of binding modes into 60 more or less
uniformly distributed rotational poses of the global minimum geometry which serve as
initial conformations for MD runs. Again, the underlying idea is to cover the most of
the space of binding modes for the purpose of free energy estimations, thereby striving
after some overlap between the distributions of two neighboring poses. Using exactly
60 modes in accordance with the icosahedron’s order of symmetry guarantees that the
rotational overall distance between any two neighboring poses remains close to π/3 and
that no significant domain of the binding mode space is slipped. Thus, compared to
ordinary docking tools, the presented algorithm exhibits two major differences: first,
the optimal binding mode is chosen on the basis of time-averages rather than on a sin-
gle frame. Secondly, proposed poses are, in contrast to docking, constructed without
knowledge about the ligand binding site such that unphysical atomic collisions between
host and guest are most likely to occur depending on the shape and size of both cavity
and ligand. However, since one is usually interested in the most favorable binding mode
according to energy averages, unphysical states associated with extraordinarily high en-
ergies quickly become irrelevant. Using crystallographic structure files of the hormone
receptors ERα and EcR available at PDB and in complex with seven different ligands
yielded excellent predictions. Considering only the optimal binding mode proposal
for each ligand, more than 50% of them achieved RMS deviations from corresponding
reference structures mostly far below one Å. Only the largest and most bulky ligand
tamoxifen yielded an RMSD value significantly higher than 1.5Å that is regarded as a
common limit for excellent predictions. In spite of its computational demand regarding
numerous MD simulations per host–guest combination, the promising approach seems
reasonable for binding pose prediction in particular since the produced conformational
data serves as basis for binding affinity calculations as well. However, the computational
demand can be significantly reduced if the number of initial binding modes is narrowed
in advance regarding symmetric and physically intractable poses.

173



Chapter 8. Conclusion and Outlook

A first application of the space discretization strategies developed in Chapter 4 was
described in Chapter 5 where an LIE-based model as originally designed for protein–
ligand systems has been transferred to high-performance liquid chromatographic (HPLC)
separation of highly similar HBCD stereoisomers on a chiral stationary phase denoted
as β-pmCD. Using this barrel-shaped matrix which exhibits molecular cavities large
enough for drug-sized molecules, we mainly focussed on the prediction of the elution
order and corresponding retention times of HBCD isomers. Instead of simulating a sol-
vent gradient comprising the two solvents water and acetonitrile (ACN) used for HPLC
separation, all calculations were carried out once in each solvent. Average host–guest
center of mass distances, steady state characteristics as well as consistency analysis clearly
indicate that HBCD prefers to reside in ACN rather than in water. The observations
are in very good agreement with HPLC results where indeed elevated concentrations of
water at the beginning enhance β-pmCD–HBCD interaction and separation whereas
an increasing fraction of ACN favors the elution. Accordingly, the correct elution order
was nearly perfectly reproduced with pure water on the basis of electric and Lennard-
Jones interactions, whereas ACN simulations failed with any combination of energy
contributions. The elution order turned out to be best approximated by time-averages
rather than a single lowest-energy frame of each stereoisomer. The results also reveal
that averaged energies associated with the optimal binding mode out of 60 are slightly
superior to the Boltzmann-weighted sum of all 60 averages which in turn implies that
the space of binding modes was sufficiently decomposed and explored using 60 initial
poses. Their predicted overall elution order deviates from the correct one to the smallest
possible extent, that is, the two isomers associated with the smallest energy difference
were swapped. Enantiomeric separation was correctly predicted by each of the three
strategies (regarding water as solvent). Moreover, the results are consistent with respect
to the time range under consideration. The presented empirical linear model is useful
whenever the experimental assignment of peaks to chemical compounds is impossible or
for the optimization of suitable stationary phases for a given mixture of compounds.

A similar approach was undertaken in Chapter 6 in the course of the development
of a novel estrogen receptor α (ERα) model that complements the optimal binding
mode identification presented in Section 4.3. The original two-parameter LIE model
comprising only interaction energy terms was extended by two additional physical and
two structural parameters resulting in an LIE-QSAR hybrid. Fitted and, particularly,
predicted binding free energies of the resulting six-dimensional model (LIE₆) yields ex-
cellent correlations with experimental binding affinities that are remarkable in the light
of the fully automated process. The LIE₆ model must be considered robust noting high
coefficients of cross-validation and due to the set of 31, a multiple of the number of
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model descriptors, highly diverse ligands associated binding constants ranging over as
many as 107 magnitudes. It is superior to other predictive models for the estimation
of binding affinities to ERα which suffer either from poor cross-validation coefficients,
a manual selection of initial binding modes, or a less divers set of scaffolds. Having
extended the original LIE descriptor set by two additional thermodynamic parame-
ters, the ligand’s uptake on strain energy and entropy loss upon association, signifi-
cantly increased the model’s predictive power. Taking in addition into account two
ERα-specific structural parameters addressing the presence of a benzene and particu-
larly hydroxyphenyl functionality further improved the model. Since the latter group
is involved in several hydrogen bonds partially mediated by a water molecule in close
vicinity, it is safe to assume that this parameter compensates the absence of that water
molecule during MD simulations. Both extended models (with and without structural
descriptors) yielded an outstanding agreement with lab results particularly outperform-
ing the original LIE method, MM/PBSA, AutoDock-Vina, and an own single state
approach based on 60 minimum energy conformations. Insofar, these observations
serve as an additional evaluation for the binding mode estimation strategy since high
correlations between experimental and predicted binding affinities as achieved with the
six-parameter model as well imply that binding modes were chosen correctly.

For the special case of TPs arising from biotic or abiotic degradation of anthropogenic
substances and increasingly detected in various environmental compartments, the en-
tirely thermodynamic LIE₄ model was adapted to their toxicological risk assessment
in relation to the parent molecule. Their inherent structural similarity with the parent
compound suggests a similar mode of undesirable biological interaction. Thus, in order
to figure out whether subtherapeutic amounts of certain TPs of the antibiotic SMZ are
likely to cause bacterial resistances against SMZ, qualitative binding affinities of a set of
30 documented TPs of the antibiotic SMZ to its biological target DHPS have been de-
termined. A convenient training set of DHPS ligands for the estimation of LIE weights
was missing. The weights’ signs, however, can be deduced from thermodynamic re-
lationships. Thus, depending on which and how many LIE descriptors attested a TP
binding probability higher than in case of SMZ itself, all TPs were divided into three
groups with increasing priority. Across five DHPS isoforms associated with different
bacterial species, seven high affinity TPs have been identified that fall into the highest
category (all parameters attest TP binding). Interestingly, all affected DHPS isoforms
originate from species comprising SMZ-sensitive strains such as S. aureus against which
four metabolites are directed and of which critical multi-resistant strains are known that
are hard to suppress. These highest priority TPs, that are likely to mimic the DHPS-
suppressive characteristic of SMZ and therefore exert selection pressure on respective
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strains, are primarily suggested for toxicological risk assessment such that critical can-
didates can be early eliminated before spreading in the environment.

From a toxicological point of view and during late drug development stages, as reli-
able as possible binding free energies are required, but accurate computational results are
only possible at the expense of time. Nevertheless, in silico methods are generally faster
and less expensive than laboratory experiments, in particular, if binding assays or syn-
thesis protocols need to be developed. Moreover, in light of the continuous exponential
progress in computer hardware and algorithms, MD simulations as described here will
soon become a matter of a minute. Accordingly, we strongly recommend any binding
free energy calculation on the basis of several heavily distinct complex geometries. In
combination with the presented ERαmodel, a fully automated approach was developed
that requires no more manual operations than a spatial vector specifying the binding
site of a target and an arbitrary geometry of a small molecule under assessment.
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Appendix A

List of Abbreviations

β-pmCD Permethylated β-cyclodextrin

AA Amino acid

ACN Acetonitrile

ADMET Absorption, distribution, metabolism, elimination, and toxic-
ity

AMBER Assisted model building with energy refinement

BAM Federal Institute for Materials Research and Testing (Bunde-
sanstalt für Materialforschung)

BAR Bennett acceptance ratio

CIP Cahn-Ingold-Prelog

CoMFA Comparative Molecular Field Analysis

CSD Cambridge Structural Database

DHPS Dihydropteroate synthase

E₂ 17-β-Estradiol

EcR Ecdysone receptor

EDC Endocrine disrupting chemical

EP Endothiapepsin

ERα Estrogen receptor α

ESP Eletrostatic potential

FEP Free energy perturbation

FF Force field

FLOPS Floating point operations per second

GAFF General AMBER force field



Appendix A List of Abbreviations

GBMR Gradient-based minimization routine

HBCD Hexabromocyclododecane

HMC Hybrid Monte Carlo

HPLC High-performance liquid chromatography

LBD Ligand binding domain

LIE Linear interaction energy

LJ Lennard-Jones

LOOCV Leave-one-out cross-validation

LRA Linear response approximation

MC Monte-Carlo

MCMC Markov chain Monte Carlo

MD Molecular dynamics

MM Molecular mechanics

MM/GBSA Molecular mechanics generalized Born surface area

MM/PBSA Molecular mechanics Poisson-Boltzmann surface area

MMFF Merck molecular force field

NMR Nuclear magnetic resonance

PABA para-Aminobenzoic acid

PDB Protein Data Base

PES Potential energy surface

PLS Partial least squares

PMF Potential of mean force

POP Persistent organic pollutant

PR Position restraints

PSRF Potential scale reduction factor

QM Quantum mechanics

QSAR Quantitative structure–activity relationship

QSPR Quantitative structure–property relationship

RBA Relative binding affinity

RESP Restrained eletrostatic potential

RMS Root mean square

RMSD Root mean square deviation

202



Appendix A List of Abbreviations

SA Simulated annealing

SASA Surface accessible surface area

SMZ Sulfamethoxazole

TI Thermodynamic integration

US Umbrella sampling

VDW Van-der-Waals

WHAM Weighted histogram analysis method

203





Appendix B

List of Symbols

β Inverse product of Boltzmann constant and temperature
γ Coupling parameter
δ Delta function
µ Chemical potential
ξ Normalization factor of phase space partition function (Section 2.2)
ξ Reaction coordinate (Section 2.3)
π Boltzmann factor
σ2 Statistical variance
ϕ ϕ angle of amino acids
ψ ψ angle of amino acids
Ω Degeneracy of microstates
∇ Nabla operator
d Dimension
h Planck constant
kB Boltzmann constant
p Conjugate momenta
p Pressure
q Generalized coordinates
r Cartesian coordinates
rij Distance between atoms i and j
v Velocity
vij Bond vector between two atoms i and j
x Point (coordinates and momentum) in phase space (Chapter 2)
x Weight coefficients
zi Charge of atom i

A Helmholtz energy
E Energy



Appendix B. List of Symbols

G Gibbs energy
G◦ Standard Gibbs energy
H Enthalpy
H Hesse matrix (Section 3.4)
H Hamiltonian
K Kinetic energy
Ka Chemical association constant
Kd Chemical dissociation constant
L Ligand
L Lagrangian
M Diagonal matrix of atom masses
N Number of particles
Nf Number of degrees of freedom
O Observable
P Probability
P Protein
Q Heat
Q Phase space partition function
R Gas constant
S Entropy
T Temperature
U Internal energy (Section 2.1)
U Potential energy
V Volume
W Work
Z Configurational space partition function

206



Appendix C

List of Figures

1.1 Chemical association/dissociation reaction of host–guest systems . . . 2
1.2 Explicit solvent simulation box of a membrane protein . . . . . . . . 3
1.3 Evolution of MD system size and computer performance since 1950 . 4
1.4 Time scale problem of MD simulations . . . . . . . . . . . . . . . . 5
1.5 Torsional potential of butane . . . . . . . . . . . . . . . . . . . . . 7
1.6 Phi/psi dihedral angles of protein and peptide backbones . . . . . . . 7
1.7 Secondary structure representation of the bacterial enzyme dihydopteroate

synthase in complex with substrate/product . . . . . . . . . . . . . . 8

2.1 Potential energy surface of pentane represented by its two all-carbon
torsional angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Spring representation of covalent bonds and angle bending . . . . . . 55
3.2 Harmonic potential of classical mechanical force fields . . . . . . . . . 57
3.3 Newman projection of butane . . . . . . . . . . . . . . . . . . . . . 58
3.4 Torsion angles/improper dihedrals of butane/butene . . . . . . . . . . 58
3.5 Torsion potential of classical mechanics force fields . . . . . . . . . . 59
3.6 Coulomb potential of classical mechanics force fields . . . . . . . . . 60
3.7 Lennard-Jones potential of classical mechanics force fields . . . . . . . 61
3.8 Critical points of the potential energy surface . . . . . . . . . . . . . 65
3.9 Local potential energy minimization . . . . . . . . . . . . . . . . . . 68
3.10 Global potential energy minimization . . . . . . . . . . . . . . . . . 70
3.11 Construction of a molecular dynamics time series illustrated using pen-

tane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.12 Periodic boundary condition and minimum image convention . . . . 79

4.1 Conformational trapping effect associated with MD and MC simulations 86
4.2 Six major HBCD stereoisomers . . . . . . . . . . . . . . . . . . . . 87



Appendix C. List of Figures

4.3 HMC convergence diagnostics of the six major HBCD stereoisomers . 90
4.4 Alignment of crystal an simulated global minima . . . . . . . . . . . 92
4.5 Meshless discretization strategy of maxdist algorithm . . . . . . . . . 95
4.6 Meshless discretization according to maxdist illustrated using pentane . 96
4.7 Number of centroids vs. number of frames using the maxdist algorithm 97
4.8 Meshless space discretization in two torsional pentane dimensions ac-

cording to maxdist . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.9 Maximum number of clusters vs. distance cutoff usingmaxdist algorithm100
4.10 60 uniformly distributed rotational binding modes of sulfamthoxazole

according to the icosahedron . . . . . . . . . . . . . . . . . . . . . . 102
4.11 Alignment of the next rotational icosahedron axis to the initial axis . . 104
4.12 Histogram of rotational distances between binding poses . . . . . . . 107
4.13 X-ray structure of the estrogen receptor α in complex with 17-β-estradiol109
4.14 Boxplot of tamoxifen RMS deviation from initial state during MD . . 111
4.15 Crystallographic tertiary structure of the ecdysone receptor originating

from Heliothis virescens . . . . . . . . . . . . . . . . . . . . . . . . 112
4.16 Alignment of crystal an simulated global minima . . . . . . . . . . . 113

5.1 Separation profile of the six major HBCD stereoisomers using HPLC . 119
5.2 Permethylated β-cyclodextrin stationary phase used for HPLC separa-

tion of HBCD stereoisomers . . . . . . . . . . . . . . . . . . . . . . 121
5.3 Center of mass distances between HBCD stereoisomers and β-pmCD

during MD simulations . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 Low energy conformations of (−)-γ-HBCD within the β-pmCD (rep-

resented by its solvent-excluded surface) cavity . . . . . . . . . . . . . 123
5.5 Running correlation of HPLC capacity factors with interaction energies 127
5.6 Correlation of least-squares-fitted AMBER interaction energies with

HPLC capacity factors . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 ERα protein model building using two PDB crystal files . . . . . . . 138
6.2 ERα training and model evaluation set of estrogens . . . . . . . . . . 139
6.3 Monte Carlo estimator for conformational entropies . . . . . . . . . . 141
6.4 Selection of reference states for the Monte-Carlo approach to confor-

mational entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.5 Correlation of calculated versus experimental binding free energies re-

garding ERα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.6 Running squared coefficients of leave-one-out cross-correlation depend-

ing on MD settings . . . . . . . . . . . . . . . . . . . . . . . . . . 153

208



Appendix C List of Figures

6.7 Root mean square deviation of protein backbone during MD with and
without position restraints . . . . . . . . . . . . . . . . . . . . . . . 154

6.8 Comparison of energy minima and average MD energies regarding 60
binding modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1 Chemical structures of sulfamethoxazole and several transformation
poducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.2 Structural alignment of five isoforms of the enzyme DHPS . . . . . . 164
7.3 Sensitivity matrix for the prioritization of SMZ transformation prod-

ucts with respect to DHPS . . . . . . . . . . . . . . . . . . . . . . . 166
7.4 Highest priority degradation products of SMZ regarding DHPS binding167

209





Appendix D

List of Tables

2.1 Physical and statistical properties of common thermodynamic ensembles 21

3.1 Software and databases used in this thesis . . . . . . . . . . . . . . . 84

4.1 Absolute configuration and CIP nomenclature of HBCD stereoisomers. 88
4.2 Global potential energy minima for anti and gauche subspaces with

respect to CiBr–Ci+1Br-moieties of HBCD stereoisomers . . . . . . . 91
4.3 RMS deviation of theoretical global HBCD minima from crystal struc-

tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4 Heavy atom root mean square deviation of predicted from crystallo-

graphic binding modes . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Running correlation of HPLC capacity factors with HBCD interaction
energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Predicted HPLC capacity factors and elution order . . . . . . . . . . 129

6.1 Training and model validation set of compounds . . . . . . . . . . . 140
6.2 Matrix of descriptor values used for parameter fitting forr an empirical

six-parameter LIE model . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3 Least-squares weights x for a 2, 4, and 6-parameter LIE model . . . . 147
6.4 Experimental and predicted ERα binding affinities and corresponding

absolute deviations using LIE, MM/PBSA, and Autodock-Vina . . . . 148

7.1 SMILES notation and CAS number of SMZ and 29 documented trans-
formation products . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2 PDB crystallographic DHPS structures used as targets for molecular
dynamics binding calculations of SMZ and its transformation products 163

7.3 Code for the toxicological prioritization of SMZ transformation products166





Appendix E

Index

A

Agonist . . . . . . . . . . . . . . . . . . . 1, 9, 138
Alchemical transformation . . . . . 27, 29
Antagonist . . . . . . . . . . . . . . . . . . . 1, 138
Association constant . . . . . . . . . 15, 151
Avogadro constant . . . . . . . . . . . . . . . 19

B

Bennett Acceptance Ratio . . . . . . . . . 30
Binding affinity . . . . . . . 14, 137, 147 f.

relative . . . . . . . . . . . . . 27, 140, 167
Boltzmann

constant . . . . . . . . . . . . . . . . . . . . 20
distribution. . . . . . . . . . . . . . . . . .23
factor . . . . . . . . . . . . . . . . . . . . . 23 f.
ratio . . . . . . . . . . . . . . . . . . . . . . . . 24

C

Canonical ensemble . . . . . . . . . . . . . . 22
Capacity factor . . . . . . . . . . . . . . . . . 127
Charge equilibration . . . . . . . . . . . . . 65
Chemical potential . . . . . . . . . . . . . . . 13
Coarse-grained model . . . . . . . . . . . . 56
Comparative molecular field analysis46
Configurational space . . . . . . . . . . . . .16
Conjugate gradients . . . . . . . . . . . . . . 70

Conjugate momenta . . . . . . . . . . . . . . 18
Constraint algorithms . . . . . . . . . . . . 81
Convergence . . . . . . . . . . . . . . . . . . . . 68
Coulomb potential . . . . . . 62, 146, 155
Critical point . . . . . . . . . . . . . . . . . . . . 67
Curse of dimensionality . . . . . . . . 7, 17

D

Degeneracy of energy . . . . . . . . . . . . . 19
Delta funcion . . . . . . . . . . . . . . . . . . . 20
Detailed balance . . . . . . . . . . . . . . . . . 83
Deterministic sampling . . . . . . . . . . . 18
Dielectric constant . . . . see Permittivity
Dihedral

improper . . . . . . . . . . . . . . . . . . . . 61
proper . . . . . . . . . . . . . . . . . . . . . . 60

Dissociation constant . . . . . . . . . . . . . 15
Dynamic system . . . . . . . . . . . . . . . . . 17

E

Endocrine disrupting chemical . . . .138
Energy minimization . . . . . . . . . . . 67 f.
Entropy

conformational . . . . . . . . . . . . . 143
statistical . . . . . . . . . . . . . . . . . . . . 20
thermodynamic . . . . . . . . . . . . . . 13



Appendix E Index

Entropy–enthalpy compensation . . 143
Equilibrium constant . . . . . . . . . . . . . 15
Equipartition theorem. . . . . . . . .22, 75
Ergodic hypotheses . . . . . . . . . . . . . . . 19
Extended ensemble . . . . . . . . . . . . . . . 77

F

Force . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
attractive . . . . . . . . . . . . . . . . . . . . 62
repulsive . . . . . . . . . . . . . . . . . . . . 62

Force field. . . . . . . . . . . . . . . . . . . . . . .13
empirical . . . . . . . . . . . . . . . . . . . . 52
parameterization . . . . . . . . . . . . . 51
parameters . . . . . . . . . . . . . . . . . . 57

Free energy perturbation . . . . . . . . . . 28

G

Generalized coordinates . . . . . . . . . . . 17
Genetic algorithm . . . . . . . . . . . . 40, 71
Gibbs free energy . . . . . . . . . . . . . 14, 25

of binding . . . . . . . . . . . . . . 14, 147
Global minimization . . . . . . . . . . . . . 71
Gradient descent . . see Steepest descent

H

Hamiltonian . . . . . . . . . . . . . . . . . . . . 21
Harmonic oscillator . . . . . . . . . . . . . . 57
Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Helmholtz energy . . . . . . . . . . . . .13, 23
Hessian matrix . . . . . . . . . . . . . . . . . . .68
High-performance liquid chromatogra-

phy . . . . . . . . . . . . . . . . . . . . 119
Hit identification . . . . . . . . . . . . . . . . . 2
Hooke’s law . . . . . . . . . . . . . . . . . . . . . 57

I

Induced fit . . . . . . . . . . . . . . . . . . . . . . . 6

Initial conditions . . . . . . . . . . . . . . . . .19

K

Kinetic energy . . . . . . . . . . . . . . . . . . . 13

L

Langevin equation . . . . . . . . . . . . . . . 76
Lead compound . . . . . . . . . . . . . . . . . . 2
Lead optimization . . . . . . . . . . . . . . . . . 2
Least-squares fitting . . . . . . . . . . . . . 130
Leave-one-out cross-validation . . . . 131
Legendre transformation . . . . . . . . . . 13
Lennard-Jones potential . . . . . . 63, 155
Line search . . . . . . . . . . . . . . . . . . . . . . 69
Linear Interaction Energy . . . . . . . . . 36
Linear-response approximation . . . . 36

M

Macroscopic . . . . . . . . . . . . . . . . . . . . .16
Markov Chain . . . . . . . . . . . . . . . . . . . 83
Markov Chain Monte Carlo . . . . . . . 83
Markov property . . . . . . . . . . . . . . . . . 83
Mechanics

Hamilton mechanics . . . . . . . . . .54
Lagrangian mechanics . . . . . . . . 54
Newton mechanics . . . . . . . . . . . 52

Meshless discretization . . . . . . . . . . . . 95
Metastable subset . . . . . . . . . . . . . . . . 88
Microcanonical ensemble . . . . . . . . . 19
Microscopic . . . . . . . . . . . . . . . . . . . . . 16
Microstate . . . . . . . . . . . . . . . . . . . . 6, 16
Minimum image convention . . . . . . 80
Molecular docking . . . . . . . . . . . . . . . 38
Molecular dynamics . . . . . . . . 2, 19, 72
Molecular mechanics . . . . . . . . . . . . . 51
Molecular Mechanics Generalized Born

Surface Area . . . . . . . . . . . . . 35

214



Appendix E Index

Molecular Mechanics Poisson-Boltzmann
Surface Area . . . . . . . . . . . . . 33

Molecular simulation
classical force field . . . . . . 4, 19, 72

Molecular topology . . . . . . . . . . . . . . 51
Molecule

configuration . . . . . . . . . . . . . . . . 16
conformation . . . . . . . . . . . . . . . . 16

Monte Carlo . . . . . . . . . . . . . . . . . . . . 83
Monte Carlo simulation . . . . . . . . . . . 2
Monte-Carlo sampling . . . . . . . . . . . . 72

N

Newman projection . . . . . . . . . . . . . . 59
Newton

laws of motion . . . . . . . . . . . . . . . 52
Numerical condition . . . . . . . . . . . . . 19
Numerical integrator . . . . . . . . . . . . . 73

Leap frog . . . . . . . . . . . . . . . . . . . . 74
Velocity Verlet . . . . . . . . . . . . . . . 74
Verlet integrators . . . . . . . . . . . . . 73

P

Pair potential . . . . . . . . . . . . . . . . . . . . 62
partial charges . . . . . . . . . . . . . . . . . . . 64
Partition function

canonical . . . . . . . . . . . . . . . . . . . . 23
isobaric-isothermal . . . . . . . . . . . 26
microcanonical . . . . . . . . . . . . . . 20

Pauli exclusion principle . . . . . . . . . . 63
Periodic boundary condition . . . . . . 80
Permittivity . . . . . . . . . . . . . . . . . . . . . 62
Phase space . . . . . . . . . . . . . . . . . . . . . .18
Potential . . . . . . . . . . . . . . . . . . . . . . . . 57
Potential energy . . . . . . . 13, 17, 54, 56
Potential energy surface . . . . . . . . 18, 67
Potential of mean force . . . . . . . . . . . 27

Q

Quantitative structure–activity relation-
ship . . . . . . . . . . . . . . . . . . . . 44

R

Radial distribution function . . . . . . . 43
Random walk . . . . . . . . . . . . . . . . . . . 83
Reaction path . . . . . . . . . . . . . . . . . . . 27
Resilient backpropagation . . . . . . . . . 70
Retention time . . . . . . . . 120, 122, 127

S

Scoring function . . . . . . . . . . . . . . . . . 41
Simulated annealing . . . . . . . . . . 40, 71
State function . . . . . . . see State variable
State variable . . . . . . . . . . . . . . . . . 12, 16

extensive . . . . . . . . . . . . . . . . . . . . 12
intensive . . . . . . . . . . . . . . . . . . . . 12
path-dependent . . . . . . . . . . . . . . 13
path-independent . . . . . . . . . . . . 12

stationary distribution . . . . . . . . . . . . 83
Stationary point . . . . . . . . . . . . . . . . . 67
Stationary state . . . . . . . . . . . . . . . . . . 13
Statistical ensemble . . . . . . . . . . . . . . . 19
Statistical mechanics . . . . . . . . . . . . . . 16
Statistical thermodynamics . . . . . . . . 16

first postulate . . . . . . . . . . . . . . . . 19
second postulate . . . . . . . . . . . . . 20

Statistical weights . . . . . . . . . . . . . . . . 25
Steepest descent . . . . . . . . . . . . . . . . . . 69
Strain energy . . . . . . . . . . . . . . . . . . . 146
Stratification . . . . . . . . . . . . . . . . . . . . 29
Symplecticity . . . . . . . . . . . . . . . . 55, 73

T

Temperature . . . . . . . . . . . . . . . . . . . . .13
instantaneous . . . . . . . . . . . . . . . . 75

215



Appendix E Index

Thermodynamic
boundary . . . . . . . . . . . . . . . . . . . 12
equilibrium. . . . . . . . . . . . . . . . . .13
fundamental relation . . . . . . . . . 13
laws . . . . . . . . . . . . . . . . . . . . . . . . 12
potential . . . . . . . . . . . . . . . . . . . . 13
systems . . . . . . . . . . . . . . . . . . . . . 12

Thermodynamic cycle . . . . . . . . . . . . 27
Thermodynamic integration . . . . . . . 30
Thermostat . . . . . . . . . . . . . . . . . . 22, 75

weak-coupling . . . . . . . . . . . . . . . 76
Three-body problem . . . . . . . . . . . . . . 55
Time series . . . . . . . . . . . . see Trajectory
Time-reversible . . . . . . . . . . . . . . . . . . 53
Torsional angle . . . . . . . . . . . . . . . . . . 60
Trajectory . . . . . . . . . . . . . . . . . . . . . . . 17
Transformation product . . . . . . . 2, 161
Transition probability . . . . . . . . . . . . .83

U

Umbrella Sampling . . . . . . . . . . . . . . . 32

V

Van der Waals
force . . . . . . . . . . . . . . . . . . . . . . 62 f.
radius . . . . . . . . . . . . . . . . . . . . . . . 57

Velocity rescaling. . . . . . . . . . . . . . . . .76
Virtual screening . . . . . . . . . . . . . . . . . . 2

W

Weighted Histogram Analysis Method
31

Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
chemical . . . . . . . . . . . . . . . . . . . . 13
pressure-volume . . . . . . . . . . . . 13 f.

216







Acknowledgements

Hereby I want to express my thanks to everyone having contributed to the completion
of this thesis. Above all, I am indebted to my supervisor Marcus Weber for his con-
tinuous support and encouragement during all ups and downs. I would also like to
thank Paul Wrede for additional supervision of this thesis and his always helpful hints.
Apart from many other ZIB members and alumni, I want to thank my former ZIB col-
leagues Bernd Kallies, Frank Cordes, and, in particular, my longtime room mate (and
I dare to say friend) Alexander Bujotzek for their always open ear and friendly support
in any technical and scientific as well as personal matter. Special thanks go to a couple
of cooperation partners: Roland Becker, Christian Piechotta, and Sebastian Schmidt
from the Federal Institute for Materials Research and Testing (Bundesanstalt für Mate-
rialforschung, BAM) for providing me with biochemical insights, and Harald Mückter
from the Ludwig Maximilian University of Munich for fruitful scientific discussions as
well as stimulating social events beyond research. Regarding financial support I would
like to thank BAM for several interesting projects, the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG) for funding the SFB-765 joint project, and
the German Federal Ministry of Education and Research (Bundesministerium für Bil-
dung und Forschung, BMBF) for funding both the TransRisk and BB3R joint projects.
Finally, I want to thank my better half Marie for her patience and loving support during
these sometimes stressful months.





Eidesstattliche Erklärung

Hiermit erkläre ich alle Hilfsmittel und Hilfen angeben und auf dieser Grundlage die
Arbeit selbständig verfasst zu haben. Zudem versichere ich, dass die vorliegende Arbeit
in keinem früheren Promotionsverfahren eingereicht worden ist.

Ort, Datum Unterschrift





Zusammenfassung

Insbesondere für die toxikologische Risikobewertung und den pharmakologischen Wirkstoff-
entwurf gewinnt die rechnergestützte Vorhersage exakter Bindungsaffinitäten für Protein-Ligand-
Systeme nach wie vor zunehmend an Bedeutung. Der Einsatz sogenannter in-silico-Methoden
schont nicht nur zeitliche wie finanzielle Resourcen, sondern bietet zudem oft die einzige Mög-
lichkeit zur Bewertung neuartiger Substanzen, die beispielsweise aus der Metabolisierung an-
thropogener Chemikalien hervorgegangen sind. Dem kontinuierlichen technologischen wie al-
gorithmischen Fortschritt der vergangenen Jahrzehnte zum Trotz stellt die Bestimmung freier
Bindungsenergien mithilfe moleküldynamischer Berechnungen aufgrund der hohen mathema-
tischen Komplexität biologischer Wirt-Gast-Komplexe eine gewaltige Herausforderung dar. Die
Ziele dieser Dissertation lassen sich in zwei Kategorien einteilen. Auf der einen Seite wurden al-
gorithmische Strategien zur weiträumigen Abtastung und Zerlegung des Konformationsraums
sowie zur automatisierten Auswahl repräsentativer Konformere bzw. Bindungsmodi entwickelt.
Angesichts der für moleküldynamische Simulationen typischen langen Verweilzeit in metastabi-
len Konformationen lag das Augenmerk auf einer möglichst umfassenden Repräsentation physi-
kalisch zugänglicher Bereiche des Konformationsraums. Ausgehend von diesen Eingangsgeome-
trien wurden auf der anderen Seite für eine Reihe von (bio)molekularen Systemen empirische
Vorhersagemodelle entwickelt, die im Kern auf dem Verfahren der linearen Interaktionsener-
gie (LIE) beruhen. Dabei handelte es sich hauptsächlich um eine Abschätzung flüssigchroma-
tographischer Retentionszeiten sowie der Elutionsreihenfolge von Stereoisomeren des Flamm-
schutzmittels Hexabromocyclododecan (HBCD) und ein neues Modell der Bindungsaffinität
zum humanen Estrogenrezeptor-α (ER-α) basierend auf einem LIE-QSAR-Hybriden. In einer
letzten Anwendung diente eine nichtparametrisierte Abwandlung eines rein physikalischen ER-
α-Modells zur toxikologischen Priorisierung von Transformationsprodukten des Antibiotikums
Sulfamethoxazol im Rahmen einer Risikobewertung bezüglich ihrer Bindungswahrscheinlich-
keit an das bakterielle Enzym Dihydropteroat-Synthase. In ihrer Gesamtheit beschreibt die-
se Dissertation eine neuartige sowie vollständig automatisierte Prozedur zur Bestimmung von
Bindungsgeometrien und -affinitäten, die sich mit der räumlichen Angabe der Bindestelle und
einer beliebigen Ligandengeometrie begnügt. Im Vergleich mit etablierten Dockingroutinen
bzw. thermodynamischen Methoden wurden deutlich verlässlichere Resultate erzielt, was nicht
zuletzt den systematischen Raumzerlegungstrategien geschuldet ist. Sowohl bei den Retentions-
zeiten von HBCD als auch den Bindungsaffinitäten an ERα betrug die quadrierte Korrelati-
on mit Laborwerten mehr als 0,8. Etwa 85% (100%) der vorhergesagten Bindingsmodi von
Protein-Ligand-Komplexen wichen um weniger als 1,53Å (2,05Å) von Kristallstrukturen ab.
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