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Chapter 1

Introduction

They say one should begin a dissertation with a sentence of the kind “this work does that”
stating the result up front. For the second part (Chapter 6), such a sentence reads: this
work presents monads of finitely additive probabilities. It generalizes a result by Giry
[1981] which proved the existence of a probability monad, using Kolmogorov’s axioms of
probability. Finitely additive probability generalizes these by dispensing with the axiom of
countable additivity. Much less used in probability theory, finitely additive probability has
been studied, but in connection with category it seems not to have been explored so far.

For the first part, which is a work about – rather than in – mathematics, such a sentence
would have to be very long. Instead, the following picture provides an impression of how
this work links the method formalization, the concepts vulnerability and probability, and
mathematical models of these concepts.

A formal framework of vulnerability, developed by the FAVAIA group at the Potsdam
Institute for Climate Impact Research within the European ADAM Project, motivates this
dissertation. The framework itself is motivated as follows.

In 1992 the United Nations Framework Convention on Climate Change (UNFCCC) set
out to prevent dangerous anthropogenic interference with the climate system [UNFCCC,
1992]. In the subsequent scientific efforts to understand how climate change might affect
natural and social systems, and to identify and evaluate options to respond to these effects,
‘vulnerability’ emerged as a central concept. According to the UNFCCC, the needs of
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2 CHAPTER 1. INTRODUCTION

“Parties that are particularly vulnerable to the adverse effects of climate change” should
be given full consideration, and they should be assisted in meeting costs of adaptation
[UNFCCC, 1992].

Hence, immediate questions in climate change related research are which parties are par-
ticularly vulnerable and, first of all, what is meant by ‘vulnerable’. The Intergovernmental
Panel on Climate Change (IPCC) defines vulnerability as

the degree to which a system is susceptible to, and unable to cope with adverse effects of
climate change, including climate variability and extremes. Vulnerability is a function
of the character, magnitude, and rate of climate change and variation to which a system
is exposed, its sensitivity, and its adaptive capacity. [Parry et al., 2007]

While prominent in the climate change community, this definition is not the only one;
on the contrary, there seem to be almost as many definitions of vulnerability as studies
with this topic. The glossary by Thywissen [2006] collects 35 of them. In addition, many
other concepts are used in vulnerability related research. The list ‘susceptibility, sensitivity,
exposure, resilience, adaptive capacity, coping range, adaptation baseline, risk, hazard, . . . ’
is far from complete and each of these concepts is again defined in various ways.

Studies of vulnerability to climate change are generally interdisciplinary, and researchers
from such diverse fields as climate science, development studies, disaster management,
health, social science, and economics have no common scientific language to resort to. There-
fore, the language used in an assessment is often generated ad hoc and is specific to the case
under consideration. It is thus not surprising that the terminology around vulnerability
has been compared to the Babylonian confusion. A large amount of conceptual literature,
including glossaries and frameworks, has been compiled over the last decades. However, up
to now, the much desired common understanding has not been attained, and the search for
a coherent, flexible and transparent common language is ongoing.

The formal framework of vulnerability proposes to build this language based on mathe-
matics. It has been developed using the method of formalization, in short, translation into
mathematics. A more detailed account of this method and of some benefits it is hoped to
yield is given in Chapter 2. The framework itself is presented in Chapter 5 with a focus
on the task of concept clarification. It is applied to this task for scientific definitions of
vulnerability as well as some conceptual work on it and further to risk assessment in the
context of natural hazards.

Different presentation styles that have been used in communicating the framework to
different audiences are introduced. The communication aspect is important when working
in interdisciplinary groups, and especially the task of communicating mathematics to non-
mathematicians was an interesting enterprise accompanying the framework development.
This work is certainly influenced by that enterprise. Translating concepts used in a field
rooted in the social sciences into mathematical concepts expressed by formulae and then
re-translating into diagrams for an audience that prefers these to formulae, the question
what exactly is ‘mathematics’ in such a formerly formal framework arises. Chapter 2 also
deals with this question.

In the picture, three routes starting at the formal framework can be taken to introduce
the concept probability into the work at this point. The first route is via formalization:
probability, a concept used to describe information about uncertainty, can be found as a
prime example for illustrating benefits of formalization in the literature. The concept has a
history of several hundred years in which different interpretations and mathematical models
appear. When the classical calculus of probability became insufficient to function as foun-
dations for probability theory, Kolmogorov’s axiomatization of probability was perceived as
greatly clarifying matters. Chapter 4 introduces these two mathematical models of probabil-
ity, and two others, finitely additive probability and coherent probability assignments. Also,
the concept itself and some interpretations of it are discussed. The so-called frequentist and
subjective interpretations are important here. They show different ranges of applicability of
the concept: while the frequentist interpretation presupposes repeatable events, the use of
subjective probability, defined as a degree of belief, can be justified for much more general
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cases. There is no one-to-one correspondence between mathematical models and interpre-
tations of probability. The two purposes of the chapter can be summed up as providing the
mathematical basis about probability needed in Chapter 6, and providing some insights on
formalization by means of the example probability.

The second route is via vulnerability: uncertainty is inherent in the concept vulnera-
bility, which describes a future possibility of being harmed. Mathematically, uncertainty is
often described by means of probability. Concerning the use of probability in vulnerability
questions, a subjective interpretation of probability becomes relevant, because the applica-
tion of the frequentist interpretation may not be warranted in the climate change context.
Also, the much older conceptual discussion of probability suggests some points which may
be relevant for vulnerability.

The third route is a technical one: the formal framework contains mathematical concepts
from category theory to represent descriptions of an uncertain future in a very general
fashion. Probability measures defined according to Kolmogorov’s axioms are an instance of
these concepts, a functor and a monad of probability measures exist. This mathematical
model of probability thus can be set to work in the formal framework of vulnerability.
The question arises whether this is also true for the more general mathematical models of
probability, finitely additive probability and coherent probability assignments. It constitutes
the motivation for the results in Chapter 6.

A short remark is due before getting into the matter. Residing on the borders between
mathematics, social sciences (for vulnerability) and the humanities (for the rather philosoph-
ical questions about concepts and interpretations), three different conventions concerning
citations were available. Mathematics, which can generally do without literal quotes, offers
the plainest style. In this work, a hybrid between the other two alternatives is chosen. Lit-
eral quotes are more frequently present than usual in the vulnerability literature because,
as common in the humanities, we deem the original words of authors (or at most transla-
tions) important in conceptual questions. The citation style, however, corresponds to the
standards in the vulnerability literature, that is, works are cited in brackets in the text, not
in footnotes.
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Chapter 2

Formalization and mathematics

. . . it demeans mathematics to justify it by appeals to work, to getting and spending. Mathe-
matics is above that – far, far above. Can you recall why you fell in love with mathematics?
It was not, I think, because of its usefulness in controlling inventories. Was it not instead
because of the delight, the feelings of power and satisfaction it gave; the theorems that inspired
awe, or jubilation, or amazement; the wonder and glory of what I think is the human race’s
supreme intellectual achievement? Mathematics is more important than jobs. It transcends
them, it does not need them.
Is mathematics necessary? No. But it is sufficient. [Dudley, 1997, p. 364]

Formalization is one of the topics linking vulnerability and probability in this work. This
section introduces the vocabulary needed, without however going into the respective theories
of linguistics etc., and the method of formalization, translation into mathematics (Sections
2.1-2.3). Mathematics as a language, and how via the characteristics of this language,
formalization can yield benefits, are considered in Section 2.4. We then locate the concepts
of interest with respect to formalization: probability, having been variously formalized, can
serve as an example concept. Vulnerability, on the other hand, seems to suggest itself for
being formalized; the confusion in the terminology is set out in some detail (Section 2.5).
We conclude the chapter by considering some difficulties of communication in the language
mathematics.

2.1 Concepts and theoretical definitions

In this work, different types of languages are distinguished: natural language comprises or-
dinary language used in everyday communication and scientific language, used in scientific
fields, containing technical terms and specific phrases etc. Languages have as their building
blocks concepts, that is, words together with their meaning. When a word of a scientific
language is considered without the attached meaning it is called a term here. An expression
may be an ordinary language word or a scientific language term. A distinction between con-
cepts and expressions is not always made explicitly, for example in the conceptual literature
on vulnerability ‘term’ and ‘concept’ are sometimes used interchangeably. The scientific
language around a certain concept will also be called its terminology.

In ordinary language, the meaning(s) attached to a word can be looked up in a dictio-
nary, however, very many words are intuitively clear to the speakers of a language. It is a
characteristic of ordinary language that concepts are not precisely defined.

In scientific language, technical terms have a more specific and more precise meaning
than words in ordinary language. Hinkel [2008, see p. 16] outlines the introduction of a
scientific language as using some basic concepts, or primitives and defining more abstract
concepts upon them. The primitives are undefined but must be intuitively clear to the
users of the language. When all definitions use only primitives and other already defined
concepts, every concept can be defined in terms of the primitives alone by substituting in the

5



6 CHAPTER 2. FORMALIZATION AND MATHEMATICS

definition any already defined concept by its definition. This is the case for the introduction
of mathematical concepts. Moreover, different definitions of the same concept, such as ‘a
function’, given for example by different authors, can be considered the same definition.
Minor differences in the formulation of the definition do not matter. However, scientific
concepts are not always introduced in this way. It will be shown (see Sections 2.5.2 and 5.2)
that problems in the vulnerability terminology derive among other things from the fact that
it is introduced in a less consistent manner.

The same term may be associated with different meanings, for example, in the scientific
languages used in different disciplines. This occurs especially for scientific concepts which
are based on a concept from ordinary language. The ordinary language word is chosen as a
technical term because the meaning of the ordinary language concept conveys a basic idea
that the scientific concept is supposed to convey. Then, the meaning is refined, for example,
by a definition that attaches a more precise meaning to the technical term, producing a
scientific concept. When the same concept is refined in different ways, multiple meanings for
the same term are created. Different refinements of the same ordinary language concept are
sometimes referred to as different scientific concepts. Considering the underlying meaning
from ordinary language important, we prefer here to speak of one concept, such as ‘the
concept vulnerability’ and ‘the concept probability’. The different refined meanings attached
to the same term will be referred to as different interpretations1. When an ordinary language
concept has different aspects, different interpretations may for example arise from the fact
that more emphasis is put on a certain aspect in one interpretation and on another one in
another interpretation.

In the literature, one also finds the terms conceptualization or definition for interpreta-
tions in this sense. The term definition is in this work reserved for the statements made
to attach a meaning to a term. In particular, theoretical definitions state the meaning of a
new concept in terms of other concepts.2 A theoretical definition decomposes the defined
concept into the defining concepts. If a scientific language is introduced as Hinkel [2008]
describes, more abstract concepts are decomposed into less abstract concepts, which are a
step closer to the primitives. The defining concepts are also referred to as components of a
concept in this work.

The relations between a concept, its interpretations and its definitions are not always
clear. It would stand to reason that an interpretation is at an intermediate level of generality
between the concept and the definitions, that is, for one concept, there may be several
interpretations and for each interpretation there may be several definitions. This, however,
need not be the case. For vulnerability, it will be seen that similar definitions are proposed
with rather different interpretations. An explanation lies in the emphasis on different aspects
of a concept in different interpretations: a theoretical definition tries to capture the concept
with all its aspects, and, being a short statement, it generally does not reveal which aspect
the emphasis is on in the given interpretation.

2.2 Measurement and operational definitions

Vulnerability and probability are concepts that are being assessed or measured. Studies
are undertaken to attach a number to the probability of an event, and a number, several
numbers, or some qualitative but comparative value (like the colour of a pixel in a map,
where red is ‘worse than’ green) to the vulnerability of an entity. A case study that uses

1The term interpretation is not without controversy. For example, with reference to probability, Hàjek
[2007] notes:

‘Interpreting probability’ is a commonly used but misleading name for a worthy enterprise. The
so-called ‘interpretations of probability’ would be better called ‘analyses of various concepts of
probability’, and ‘interpreting probability’ is the task of providing such analyses. [p. 1].

However, he then follows “common usage” and discusses “different interpretations of probability”. Here,
the choice is explicitly against considering these as different concepts, but for one concept with different
interpretations.

2We distinguish theoretical and operational definitions, the latter are introduced later.
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measurements to obtain ‘the vulnerability of an entity’ is called a vulnerability assessment.
The configuration of methods used in an assessment is referred to as a methodology [e.g.
Hinkel, 2008].

In the measurement context, we encounter operational definitions, which state the mean-
ing of a concept by giving a rule how to measure it. Concerning probability, de Finetti is a
vehement advocator of these:

In order to give an effective meaning to a notion – and not merely an appearance of
such in a metaphysical-verbalistic sense – an operational definition is required. By this
we mean a definition based on a criterion which allows us to measure it. [de Finetti,
1974, p. 76]

Any vulnerability assessment can be considered an operational definition, because by mea-
suring vulnerability it shows (one way) how to measure it, for the special case under con-
sideration. In most cases, operational definitions are more precise than theoretical ones,
however, they are less general. One of the merits of the mathematical definitions in the
formal framework presented in Chapter 5 will be that they allow to be general and precise
at the same time.

In the vulnerability literature, theoretical definitions are often referred to simply as
‘definitions’, while the operational definitions used in an assessment are called ‘operational-
izations’ of the definitions. One also finds this distinction referred to as ‘definiton’ and
‘use/usage’ of the concept. In this work, when the term definition is used without a quali-
fying adjective, it refers to a theoretical definition.

For operational definitions of vulnerability, one can observe similarities between some
assessments. Assessments have been classified according to such similarities in the literature.
A class of similar assessments will be referred to as an assessment approach. Here, the
obvious nesting in terms of generality is given: the one concept vulnerability is assessed
using different approaches and for each approach there are many operational definitions,
differing in minor points but sharing a common structure in the methodologies used.

Assessment approaches can be seen
as the operational counterpart of in-
terpretations as the diagram illus-
trates. While the relations between
theoretical definitions and interpreta-
tions are not necessarily clear, the op-
erational definition does provide in-
formation about the assessment ap-
proach used. Hence, it generally
reveals the interpretation of a con-
cept more clearly than the theoret-
ical definition. De Finetti’s state-
ment about operational definitions giv-
ing “an effective meaning” is thus con-
firmed.

We conclude this section with a remark on the measurement of probability and vul-
nerability in general. Measurements in physics and other experimental sciences are often
undertaken to confirm or refute a given theory. Henshaw [2006] gives the example of New-
ton’s laws of motion, which due to experimental confirmation involving measurement have
become the generally accepted theory. Given such a theory, indirect measurements can be
made. Henshaw’s example is the mass of the earth, which cannot be measured directly but
needs to be inferred “from the earth’s ‘performance’ (in particular as it relates to the grav-
itational forces the Earth exerts).” [p. 94]. Henshaw contrasts this with the measurement
of intelligence. While the mass of the Earth can be deduced based on Newton’s theory,
“deducing intelligence from observed performance is more difficult - there is no universally
accepted theory of intelligence analogous to Newton’s theories of motion.” [p. 94]. Vulnera-
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bility assessments can be considered similar to intelligence measurement in that they do not
follow one generally accepted theory of vulnerability, and cannot, simply because no such
theory exists. This and other aspects of the measurement of vulnerability will be considered
in Section 5.4.4.

Further, both concepts probability and vulnerability are related to uncertainty: proba-
bility describes further information about possibilities, vulnerability describes a possibility
of future harm as will be amply discussed in the respective chapters. The concept possibility
has implications for measuring probability and vulnerability and validating measurements,
deriving from the fact that an ex-post observation does not determine the ex-ante possibility
(see, for example, Section 5.1.1).

2.3 The method of formalization

Formalization is the translation of natural language concepts or statements into mathemat-
ics, or into a formal language. Ionescu and Botta [2008] discuss different uses of the term
formalization. In a strict sense, which is used in logic, formalizing something means setting
up a formal system together with an interpretation to that thing. Formal systems consist
of so called valid objects and rules for producing other valid objects. Since these rules can
be implemented on a computer, and therefore can be checked mechanically, formal systems
provide a firm standard of proof. In a weaker sense, formalization means expressing an idea
mathematically. Ionescu and Botta refer to this as semi-formalization or mathematization.
It is commonly used for example in the natural sciences, where formalization means the
translation of ideas from the discipline into mathematics. Even in mathematics itself, one
mostly encounters semi-formalization rather than the strict version of formalization. It is
considered sufficient that it is clear how one could express the concepts by a formal system,
if necessary. Formal proofs are rarely found outside logic in mathematics, because they do
not portray the ideas behind the proofs.

In this work, formalization is used in the latter sense of translating natural language into
mathematics. The result of formalizing a concept is a mathematical model of it. We will
use ‘formalization’ to refer to the process or the activity of translating into mathematics and
‘mathematical model’ (occasionally only ‘model’) for the result of this process. In the case
of the concept probability, the term axiomatization also occurs frequently in the literature.
While it also refers to expressing something mathematically, the emphasis is on the rules,
the axioms, which some mathematical concepts have to fulfill rather than on the translation
of natural language concepts into mathematical concepts.

In an idealized scheme, the activity of formalization can be described by the following
three steps:

1. Analysis of the concept: the aim is to
identify the primitives that the concept
is defined upon and the relations be-
tween these in building the concept.

2. Translation of the primitives: the prim-
itives are expressed by mathematical
concepts.

3. Definition: the mathematical primitives
obtained in Step 2 are used to mathe-
matically define the concept, reproduc-
ing the relations between the primitives
found in Step 1.

This procedure will be carried out in detail for the formalization of the ordinary lan-
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guage concept vulnerability in Section 5.1. For the scientific concept, the formalization is
here presented without going into these steps in detail. When developing the framework,
definitions of vulnerability were considered in Step 1 to make use of the decomposition of
the concept already provided by these. Theoretical and operational definitions, as well as
previous conceptual work were consulted.

2.4 Mathematics and benefits of formalization

The formalization process outlined contains a translation step. Any translation activity
requires first of all to gain an understanding. While a rough understanding may do for many
purposes, in order to reproduce something in another language, one needs to understand it
well. Conversely, trying to reproduce something is generally a good criterion for checking
whether one has understood it.

In formalization, the target language in the translation step is mathematics. Rényi [1965]
explains how building a mathematical model leads to a better understanding of a situation.
In a fictitious “Dialogue on the Applications of Mathematics” he has Archimedes say:

even a crude mathematical model can help us to understand a practical situation better,
because in trying to set up a mathematical model we are forced to think over all logical
possibilities, define all notions unambiguously, and to distinguish between important
and secondary factors. [p. 10].

This describes a benefit experienced by the person carrying out a formalization. More
generally, Polya [2004] notes similar benefits of using mathematical notation:

Mathematical notation appears as a sort of language, une langue bien faite, a language
well adapted to its purpose, concise and precise, with rules which, unlike the rules of
ordinary grammar, suffer no exception. [p. 135].

Here, ‘mathematical notation’ takes the place of a language. Mathematics has its own
notation, or more correctly many notations, specific to the different branches of mathematics,
that can easily be recognized due to the use of formulae. These consist of symbols which
are mostly not part of our everyday alphabet.

However, we have described formalization as ‘translation into mathematics’, not as ‘trans-
lation into mathematical notation’. In Chapter 5, the formal framework will also be pre-
sented in a form that does not contain mathematical notation. Formulae are not what
constitutes mathematics, or “the uniqueness of the [mathematical] discourse is not only due
to a privileged symbolic system” [Sarukkai, 2001]. An example is a theorem by Gale and
Shapley [1962]3 with a proof which does not use any formula, nor even technical terms.
Assuming that

any mathematician will immediately recognize the argument as mathematical, while
people without mathematical training will probably find difficulty in following the ar-
gument, though not because of unfamiliarity with the subject matter [p. 15],

they arrive at the old question ‘what is mathematics?’.
This question has been asked and answered in many and very different ways, from not

necessarily serious one-sentence-answers4 to detailed philosophical analyses. Courant and
Robbins [1941], in a book titled ‘What is Mathematics’, claim:

For scholars and layman alike it is not philosophy but active experience in mathematics
itself that alone can answer the question: What is mathematics? [p. xix]

Nevertheless, many authors have written in non-mathematical but popular scientific fashion
on what mathematics is. Two examples are Beutelspacher [1996], starting with a chapter

3The article discusses matching in the context of college admission and as an example of one-to-one
matching considers marriage.

4These can be searched in databases of mathematical quotes on the internet, e.g., the Furman University
Mathematical Quotations Server at http://math.furman.edu/˜mwoodard/mqs/mquot.shtml
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titled precisely with this question, and Rényi [1967] who provides answers to this question
in three fictitious dialogues, involving Socrates, Archimedes and Galilei, respectively.

A definition of mathematics seems hard to give, and in fact is often declined from the out-
set. Sometimes answers to the question what mathematics is not are given instead. Among
Beutelspacher’s examples are the statements that mathematics is not a natural science, not
the art of solving logical puzzles, and not a belief. We should add that ‘mathematics is not
quantification’, ‘not just numbers’ or as Gale and Shapley [1962] formulate “mathematics
need not be concerned with figures, either numerical or geometrical” [p. 15]. While obvious
to people doing mathematics, this is not always clear in the vulnerability context.

Like of all concepts discussed in this work, different interpretations of mathematics exist
[see, e.g. Sarukkai, 2005]. Here, we take the point of view that mathematics is a language.
This is of course convenient, given that by formalization we mean translation into mathe-
matics, and one usually translates from one language into another. Moreover, it is not a new
interpretation of mathematics. In fact, it goes back to Galilei’s famous statement about the
book of nature being written in the language of mathematics, “echoed by such figures as
Newton, Einstein and Feynman” [Sarukkai, 2005] throughout the history of mathematics.
Beutelspacher [1996] describes mathematics as a language for formulating problems, where
a good description of the problem entails that the solution can also be formulated in this
language. In the ideal case, the problem description even provides hints for the solution.
Sarukkai [2005] sums up: “mathematics is a product of human imagination, is grounded in
our experience with the world and functions like a language.” [p. 417].

A point supporting the interpretation of mathematics as a language is its communicative
aspect. Contrarily to the stereotype of the mathematician as a loner sitting over his piece of
paper thinking all day, mathematics is a communicative discipline. Many concepts are in-
vented and proofs discovered, to plagiarise Renyi’s Socrates5, by groups of people discussing
a problem. Even in the case of the proverbial solitary mathematician compiling a proof all
by himself, the validity of the proof can only be checked by having other people understand
the proof. This presupposes communication, and explanation, of every detail and every step
carried out. In mathematics, things are true only in being explained and can be understood
only by being explained6. Except for the case of computer generated proofs (which are not
accepted as proofs by some mathematicians), the criterion to establish whether a mathe-
matical statement is true is whether other people assert that it is true. Others being able
to follow and reproduce every detail is of much bigger importance in mathematics than for
example in experimental sciences, where it is not necessary to reproduce a lab experiment
to accept its results.

A famous example is Fermat’s Last Theorem.7 As in this case, it may happen that due
to the complexity of a proof, very few people are actually able to follow it through and
establish its validity. While such people are needed, the criterion is not a subjective one, in
other words the verification of a proof does not ask for any subjective judgment. Rényi’s
Socrates confirms this:

the mathematicians of different countries can usually agree about the truth, while about
questions concerning the state, for example, the Persians and the Spartans have quite
opposite views from ours in Athens . . . [Rényi, 1964, p. 30].

And, Beutelspacher [1996] points out that mathematics treats its objects of study in an
“objectively reproducible way” [p. 4]. Innermathematical questions are not normative ques-

5In the Socratic Dialogue, the mathematician is described as an “inventor” of concepts but at the same
time as a “discoverer” of theorems [see Rényi, 1964, p. 30].

6As Günter Ziegler, at the time president of Deutsche Mathematiker Vereinigung, The German National
Mathematical Society, stated in a TV discussion about mathematics in everyday life: “Fernseh-Talk ‘Kluge
Köpfe’ im rbb-Fernsehen: Alles, was zählt! Mathematik im Alltag. Jörg Thadeusz diskutiert mit Vince
Ebert (Physiker und Kabarettist), Martin Grötschel (Mathematikprofessor), Klaus Kinkel (Vorsitzender der
Telekom-Stiftung), Brigitte Lutz-Westphal (Professorin für Mathematikdidaktik) und Günter M. Ziegler
(Mathematikprofessor)”. Broadcasted: RBB, 13 Nov 2008 at 22.35 and 15 Nov 2008 at 12.00.

7See Singh [1997] for an accessible account of the 358 year story of the proof of Pierre de Fermat’s
conjecture that no non-zero integer solutions to the equation xn = yn + zn exist for n > 2.
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tions. These may arise, however, over which mathematical formulation is best suited to
describe a real-world phenomenon, and may be fought over vehemently, as will be seen in
the chapter on probability.

Objectivity is an important characteristic of mathematics, which Suppes [1968] includes
among the benefits of formalization for being valuable in “areas of science where great
controversy exists about even the most elementary concepts.” [p. 655]. Vulnerability can
certainly be seen as such an area of science, as discussed in Section 2.5. Objectitvity can be
described with the following sentences by de Finetti:8

statements have objective meaning if one can say [. . . ] whether they are either TRUE
or FALSE. [. . . . There is] one condition - do not cheat. To cheat means to leave in the
statement sufficient confusion and vagueness to allow ambiguity, second-thoughts and
equivocations in the ascertainment of this being TRUE or FALSE. This instead must
always appear simple, neat and definitive. [de Finetti, 1974, p6]

The criteria “neat” and “definitive” as well as the exclusion of “ambiguity, second-
thoughts and equivocations” reconnect back to characteristics of mathematics encountered
before: unambiguously defined notions and precision occured in the quotes from Renyi and
Polya on page 9.

Precision is considered a defining feature of mathematics by Gale and Shapley [1962].
Their answer to the old question is, in fact, “any argument which is carried out with sufficient
precision is mathematical.” [p. 15]. Precision arises from the way definitions are posed.
While often using words from ordinary language, mathematical concepts avoid ambiguity by
“restricting the semantic possibilities of some words used” [Sarukkai, 2001, p. 665]. Further,
mathematical concepts are always defined before, or at the latest when9, they are used for
the first time. The introduction of mathematical concepts is well described by the process of
introducing a scientific language, sketched in Section 2.1. The primitives are often standard
mathematical concepts such as numbers and sets. In a system of concepts which are all
defined upon (some of) the same primitives, the relations between concepts are clearly
defined, as all concepts can be traced back to the primitives. This consistency is described
and praised by Rényi’s Socrates:

I think the source of the success of the mathematicians lies in their method: the high
standards of their logic, their striving without the least compromise to the full truth;
their habit of starting always from first principles, defining every notion used exactly,
and avoiding self-contradictions. [Rényi, 1964, p. 36, our emphasis].

Let us consider two further descriptions of mathematics from this dialogue. It is stated
that mathematics studies non-existing things but finds out the full truth about them. This
seeming paradox is then resolved by considering that mathematical objects are precisely what
one thinks of them, unlike real-world objects which are never identical with the incomplete
and approximate picture one has of them. An example illustrates the situation nicely:
Socrates and his interlocutor cannot establish whether a (to them) real-world woman who
is accused of murder is guilty, while they have no doubt about the guilt of Clytemnestra,
“who is a character figuring in a play and who probably never existed” [p. 28]. Further,
mathematics is described as a map of the real world, which aids orientation because it “does
not show us every detail, but only the most important things.” [p. 36].

In this sense, mathematical concepts are abstractions. A simple example is the concept
of a set. A set has elements, but from the mathematical point of view it is of no importance
what the elements of the set are. Consider in comparison an example from ordinary language:
different words are used for sets of different animals. There is a flock of sheep and a flock of

8The remark is taken out of context: de Finetti here speaks not about innermathematical statements but
about real-world events, for which it must be possible to “say, on the basis of a well-determined observation
(which is at least conceptually possible), whether they are either TRUE or FALSE.” However, the idea of
not cheating can be applied equally well to mathematical statements.

9Strictly speaking, the definition may occur after the first use of a concept, however, then it immediately
follows this use, usually in the form “where . . . is defined as . . . ”.
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birds, but a murder of crows, a herd of cattle, a school of fish, a swarm of bees and a pack of
wolves. The notion of a set incorporates what all these have in common. Of course, in such
an abstraction some information is lost, for example, that the pack has a leader in the group.
However, the extra information relating to the different animals does not always seem to be
universal. Considering in comparison the German words for sets of animals (in the same
order: eine Herde Schafe, ein Schwarm Vögel, ein Schwarm Krähen, eine Herde Rinder, ein
Schwarm Fische, ein Schwarm Bienen, ein Rudel Wölfe), an interesting difference between
the languages arises for birds. In German, the same word is used for fish, insects and birds
(the underlying intuition being that of the group’s movement) while a different word is used
for sheep and cattle. The English ‘flock’ draws a connection between a group of birds and
a group of sheep, in fact, birds are called a flock “especially when on the ground” as an
online dictionary informs10. The word flock is used especially for geese, whom one sees on
the ground as a group more often than smaller singing birds for example. The German word
‘Schwarm’ illustrates an intermediate degree of abstraction and generality. Much less general
than a set, it describes a group of small animals usually seen in a certain kind of movement,
abstracting away from the question whether these animals are birds, fish or insects. It is
however more general than the three different words for these groups used in Italian, where
‘stormo’, ‘sciame’ and ‘banco’ refer to a group of birds, insects and fish, respectively.

Abstraction makes mathematical concepts universally applicable. Renyi’s Socrates de-
scribes the benefit obtained by abstracting from “the number of sheep, ships or other existing
things” to the numbers themselves:

what the mathematicians discover to be true for pure numbers is valid for the number
of existing things too [. . . ] the mathematician finds that seventeen is a prime number.
Does it not follow that you can not distribute seventeen living sheep among some
persons so that each should get the same number in any other way than giving seventeen
persons one sheep each? [p. 32].

The generality of mathematical concepts allows to reuse these to describe different real-
world objects, bringing out commonalities. It is also among the benefits of formalization
listed by Suppes [1968] because generality “often provides a means of seeing the forest in
spite of the trees” [p. 654]. Mathematics not only uses general concepts, but also looks
for general solutions. Euler’s solution to puzzle of the “Seven Bridges of Königsberg”11 is
a prime example of the generality that mathematics obtains. The city of Königsberg has
four parts, connected by seven bridges, and at Euler’s time it was a pastime to try walking
through the city crossing every bridge exactly once. Euler proved the impossibility of such
a walk by abstracting from the map of Königsberg to a graph, thus laying the foundation
of graph theory, and solving the problem for graphs. A walk of this type, now called Euler
walk, is possible only when all parts of the city except two, which would be the starting
and the end points, have an even number of bridges connecting them to other parts, which
is not the case for Königsberg. The theory can now be applied to any other city, and by a
simple counting of bridges for each part, one can immediately check whether an Euler walk
through any city exists.

Having portrayed mathematics as a language, characterized by precision, abstraction,
generality, and objectivity, let us compare it to natural languages. The differences due to
precise definitions and notation are arguably not as large or as absolute as often stated.
Sarukkai [2001] points out that, while the meaning of a term is restricted by a mathematical
definition, the term itself could not be exchanged by other terms arbitrarily: although
mathematically defined terms have a fixed meaning and function like names in sentences,
they are not “devoid totally of meanings other than those derived through ‘naming’.” [p.
667]. On the contrary, the meaning known from natural language, with all its ambiguity,
is important to get across an idea that underlies the mathematical concept. For example,

10http://www.thefreedictionary.com/flock+
11An accessible description for non-specialists can be found e.g. in Singh [1997].
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“mathematics wants to hold on to the semantic image inspired by the word ‘continuous’
as it occurs in non-mathematical talk.” [Sarukkai, 2001, p. 668]. Much as precision is a
characteristic of mathematical concepts, an intuitive meaning associated to a concept, often
based on its meaning in natural language and hence possibly ambiguous, is of considerable
importance in doing mathematics.

The emphasis on intuition in mathematics is present also in some mathematical text-
books. De Finetti [1974], for example, prefers to make everything “simple, intuitive and
informal” [p. 3]. He explicitly wants to avoid being “limited to lifeless manipulations in
technical terms, or to heavy indigestible technical language.”[p. 5]. Good [1977], in a review
of de Finetti’s Theory of Probability12, appreciates:

He also likes to give intuitive reasons for theorems, their “wherefore” (II, p. 218), which
he rightly regards as more important than their formal proofs. It is a pity that this
opinion is not universally taken for granted.

Even for the symbolic notation, Sarukkai [2001] argues a similarity between mathematics
and natural language by saying that mathematical symbols “first and foremost refer to
words in natural language” [p. 667]. This means the symbols function as abbreviations.
The reader immediately translates these back into natural language, adapting if necessary
the grammatical form. For example, the symbol ∈ is translated as ‘belongs to’ or ‘belonging
to’ depending on the grammatical construction of the sentence in which it is used.

However, the symbolic notation system does constitute an important difference between
natural language and mathematics. Operations can be performed on the symbols, which
cannot be done with natural language words. In some contexts the symbolic notation has
a power of expression that natural language does not reach. A description of complex
physical phenomena shows this power: for example, fluid dynamics would be very hard, if
not impossible, to describe verbally to some detail, while mathematics provides means to
not only describe but further to study the dynamics.13

The symbolic notation is very concise, slowing down communication. Consider the num-
ber of pages read in an hour of a mathematical and a non-mathematical text in comparison.
To communicate mathematical results successfully (and not just give an overview) means
that the listener or reader understands the argument. Understanding the operations carried
out with the symbols in the symbolic notation in most cases means reproducing them, or at
least following when seeing them produced.

Even in face to face communication of mathematics, writing has an important role.
Sarukkai [2001] even states that “mathematics is writing” [p. 669].14 In the age of slide
presentations and beamers, mathematicians still use the old blackboard and chalk in order
to explain their mathematics to others. A slide presentation with a slide full of formula
manipulation would not decrease the time needed to go through each step, and one may
just as well write the formulae in real time. Finding a balance between intuition and the
precision of formula manipulation is a very important issue in communicating mathematics.
As discussed in Section 5.6 such balancing acts occured in presenting the formal framework
to non-mathematical audiences.

A further benefit of formalization, immediately linked to the possibility of performing
operations on symbols in formulae, arises in the computational context. All computer pro-
grams “presuppose a series of models which act as a bridge between the dull precision of
the computer and the real world, ever changing and hard to define.” [Todesco, 2009, p. 163].
To formalize means to provide such bridges. Many vulnerability assessments make use of
a computer to run models, evaluate measurements, aggregate information and the like. A
general mathematical formulation of concepts, as provided by formalization, can be reused
in different assessments and filled in with the specifics of the assessment under consideration.

12Both volumes, de Finetti [1974, 1975].
13A book illustrating an expressive power of mathematics and images, that natural language does not

have, is Markowich [2007].
14Euler, who was still a very productive mathematician after having gone blind, is certainly an exception.
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At some point in such an assessment, a translation of concepts into a language that the com-
puter can work with has to occur, and a mathematical model resulting from formalization
is a step closer to a language the computer understands than natural language.

Benefits of formalization have been discussed in the literature in more general fashion.
A prominent work is “The Desirability of Formalization in Science” by Suppes [1968]. The
author considers formalization as a tool to “clarify conceptual problems and to make explicit
the foundational assumptions of each scientific discipline.”[p. 653]. We will consider some
further benefits listed by Suppes in relation to vulnerability in Section 2.5.4. Let us therefore
turn to the concepts considered, probability and vulnerability.

2.5 Formalization of probability and vulnerability

Probability has been variously formalized over the last few hundred years. In mathematics,
it is nevertheless considered a young discipline because the mathematical foundations for
probability theory that are in use today were laid only at the beginning of the twentieth cen-
tury. In many mathematical disciplines, mathematical models are studied rather detached
from what they represent. In probability theory, ordinary language concepts like probability,
likelihood and independence play an important role. The focus on how the mathematics
connects to what it represents entails an interest in the topic of formalization itself. This is
found for example in probability textbooks, like in Loeve’s introduction to his “Probability
Theory”:

Probability theory is concerned with the mathematical analysis of the intuitive notion
of “chance” or “randomness”, which, like all notions, is born of experience. The quan-
titative idea of randomness first took form at the gaming tables, and probability theory
began, with Pascal and Fermat (1654), as a theory of games of chance. . . .
A theory becomes mathematical when it sets up a mathematical model of the phenom-
ena with which it is concerned, that is, when, to describe the phenomena, it uses a
collection of well-defined symbols and operations on the symbols. As the number of
phenomena, together with their known properties, increases, the mathematical model
evolves from the early crude notions upon which our intuition was built in the direction
of higher generality and abstractness.
. . . the inner consistency of the model of random phenomena became doubtful, and
this forced a rebuilding of the whole structure in the second quarter of this century,
starting with a formulation in terms of axioms and definitions. Thus, there appeared
a branch of pure mathematics - probability theory - concerned with the construction
and investigation per se of the mathematical model of randomness. [Loeve, 1977, p. 1]

Concepts such as randomness, chance, or probability itself, used in relation with uncertainty
in everyday situations, are not easy to grasp. This may be a reason for the interest in the
connections between these concepts and their mathematical models. Suppes [1968] considers
the formalization of a family of concepts “one way of bringing out their meaning in an
explicit fashion” and names probability as “a good example of what can be hoped for in this
direction” [p. 654]. His further statements that

the formalization did not end discussion and philosophical analysis of the concept of
probability. Rather, it helped to raise the discussion to a new level. [Suppes, 1968, p.
654].

will be discussed in Chapter 4.

In the context of vulnerability, formalization is a rather new idea. The formal framework
of vulnerability to climate change (presented and discussed in Chapter 5) contains two
mathematical models of vulnerability, a basic model of the ordinary language concept, and
a refined version for the scientific concept. The remainder of this section introduces the
vulnerability terminology with its problems, and the state of the art in conceptual work to
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define the scope of this formalization and identify possible benefits of formalization in this
particular case.

2.5.1 Origins of ‘vulnerability to climate change’

Occuring in the UN Framework Convention on Climate Change, the concept vulnerability
has been of importance from the beginning of the internationally institutionalized consid-
eration of climate change. The choice of a technical term that is familiar from ordinary
language suggests that the scientific concept is based on the working understanding people
have of ‘vulnerability’. There is a “long history of vulnerability assessments developed in
other contexts, such as food security, livelihoods, natural disasters, and risk management in
general” [Füssel and Klein, 2006, p. 302]. Cutter [1996] lists for example global change and
environment and development studies, geography, political ecology, and human ecology as
areas in which vulnerability is studied.

In the climate change context, the introduction of the concept vulnerability is usually
described along the following lines: climate change related research and policy efforts have
been divided between the two goals of mitigation, that is, the reduction of greenhouse gas
emissions to avoid climate change, and adaptation to the “remaining climate change”. While
mitigation is targeted at the global climate system, adaptation actions are mostly of a local
or regional scope and deal with the smaller scale effects of global climate change. In a first
moment, mitigation questions were the main focus of climate change related research. Füssel
and Klein [2006] provide reasons for the traditionally greater attention towards mitigation in
climate change research and policy, for example, the “polluter pays principle”, the relative
ease of monitoring greenhouse gas emissions and the global scope of mitigation actions.
Impact assessments were being conducted to set mitigation targets based on the investigation
of consequences of (unmitigated) climate change.

Then, a shift from impact assessment to vulnerability assessment is observed (for exam-
ple in the focus of the IPCC’s second working group) and is commonly attributed to the
recognition that climate change is already taking place, which increases the importantance
of adaptation. This implies a changing purpose in the assessments made in climate change
research, from informing mitigation decisions at the international level to aiding decision-
makers at national and local levels in adaptation questions. In fact, Füssel and Klein [2006]
who distinguish four prototypical assessment stages, note a development from impact assess-
ments to vulnerability assessments, and later to adaptation policy assessments, which serve
different purposes. The general development of assessments is one from a narrow focus on
estimating potential impacts of climate change to considering climate change in a broader
context. Including economic, political and social factors, assessments become more and more
interdisciplinary. Concepts used in other research fields, such as food security, disaster risk
reduction, poverty and livelihoods are introduced into climate vulnerability research. That
is, with the shift from impact to vulnerability assessments, disciplines that have been using
the concept vulnerability before gain influence in climate change research.

The interdisciplinarity of studies of vulnerability to climate change implies that in most
cases researchers from the different disciplines do not have a common technical language
to resort to. Therefore, the language used in an assessment is often generated ad hoc and
is specific to the case under consideration.15 (Re-)definining concepts anew for each case
study implies an enormous production of concepts and definitions. In fact, the abundance
of concepts, and of definitions for each concept, in the vulnerability terminology is one of
its problems.

2.5.2 (Too) many definitions

There seem to be almost as many theoretical definitions of ‘vulnerability to climate change’
as studies assessing it. These definitions generally decompose the concept vulnerability

15See e.g. Hinkel [2008] on transdisciplinary assessments in the climate change vulnerability context.
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into several other concepts, for which again there are many definitions each. Brooks [2003]
observes a “sometimes bewildering array of terms” [p. 2].

While in Section 2.1 the introduction of a scientific language was described as a proce-
dure of defining all concepts upon the intuitively clear primitives and other already defined
concepts only, in definitions of vulnerability and related concepts, this procedure is generally
not followed. Vulnerability assessments state theoretical definitions for the most important
concepts used, decomposing them into other concepts. Most articles presenting assessment
results contain a section on definitions of the concepts used. However, the defining concepts
are not necessarily themselves defined or intuitively clear. Many concepts from ordinary
language are used in definitions without having restricted their meaning so far as to make
them unambiguous. Thus, the definitions presented generally leave quite a bit of room for
interpretation.

Similarly, definition efforts of more general scope do not base all definitions on primitives
and previously defined concepts. An example is the IPCC glossary of terms proposed with
the Third Assessment Report16: an analysis of the concept vulnerability and its defining
concepts in this glossary is presented by Hinkel [2008]. The most basic concepts found are
not intuitively clear, as for example “ability to adjust”, “statistical reference distribution”,
“ability to cope” and “significant climate variations”. What is the difference between the
ability to cope and that to adjust, one might ask, or when is climate variation to be judged
‘significant’?

Theoretical definitions decompose vulnerability to different levels of detail, and in general
the level of detail increases from theory to practice with the purpose of the definition.
Definitions which may be considered somewhere between theoretical and operational are
given by guidelines to vulnerability assessment [see, e.g. Buckle et al., 2001; Twigg, 2004].
These practically oriented texts sometimes explicitly avoid theoretical definitions, follow
“common usage” [e.g., Twigg, 2004] or keep definitions “broad” [e.g., Buckle et al., 2001]
and as general as possible. For example:

The following definitions are offered as a starting point, to clarify the discussion be-
low. Please avoid getting concerned about the particular definitions used, and instead
concentrate on their general meaning. [Kuban and MacKenzie-Carey, 2001].

Then, these guidelines present detailed lists of factors contributing to vulnerability which
should be taken into account in assessments. These (theoretical) generalized rules for as-
sessment make a step towards operational definitions without however giving precise rules
how to practically measure vulnerability.

Another hybrid between the theoretical and the operational level, which also defines vul-
nerability, consists of ‘frameworks for vulnerability assessment’. These propose a theoretical
foundation for the practical task of assessing vulnerability. Often, they also provide an
intermediate level of detail, as for example the “framework for vulnerability analysis in sus-
tainability science” of Turner II et al. [2003] that decomposes the concept vulnerability into
“broad classes of components and linkages that comprise a coupled system’s vulnerability
to hazards.” [p. 8076].

Finally, there are operational definitions, given for example by any vulnerability assess-
ment, as explained in Section 2.2. Each of these definitions is specific to the case under
consideration. It is common to find different operational definitions accompanied by the
same theoretical definitions of concepts, such as the frequently cited definitions from the
IPCC glossary. The prominent IPCC definition of vulnerability quoted in the Introduction
is an example that has been operationalized in many ways. This confirms that the defini-
tions leave room for interpretation: each assessment uses it own “reading” of the definition
[see also Ionescu, 2009, who provides an analysis of studies that use the IPCC definition].

16It can be found under http://www.ipcc.ch/glossary/index.htm. For the Fourth Assessment Report,
there are three glossaries by the different working groups. Each intended for use with the corresponding
chapter, they differ in which terms are defined and do not necessarily propose the same definitions for the
same terms.
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Thus, the terminology is characterized by a multitude of concepts, each equipped with a
host of definitions of different kinds, from the general but imprecise theoretical to the precise
but case-specific operational ones. Some of these definitions may be inconsistent with one
another, and in any case definitions are not easily compared. To provide a random example,
what is the relation between “vulnerability, the degree to which a system is susceptible
to a hazard” and “vulnerability, the exposure of a system to a hazard, combined with its
capacity to react”? Is there an essential difference? What exactly is meant by susceptibility?
Can it be interpreted as a combination of exposure and capacity? Are the definitions not so
different after all? Often, the concern that “one definition does not fit all cases” is expressed,
or the question whether one single definition of vulnerability is possible, and whether it is
needed or should be avoided is posed.

Answers shall be provided with the help of formalization in Chapter 5. In the spirit
of de Finetti’s statement that “mathematics is interesting as an instrument for condensing
concepts, which by their own right, without mathematics would still be what they are”
[de Finetti, 2008, p. 1], the framework will provide general but precise mathematical defini-
tions of vulnerability and related concepts, “condensed” out of the many definitions given
in the literature.

2.5.3 State of the art in work about the concept

The just described situation in the vulnerability terminology has been referred to as ‘Baby-
lonian confusion’ and has been the motivation of much conceptual work from a meta-
perspective. Thus, in addition to conducting vulnerability studies, researchers have studied
the concepts used in these studies [see Hinkel, 2008].

As early as 1981, Timmerman starts “A Review of Models and Possible Climatic Appli-
cations” from the premise that “it is hard to say just what ‘vulnerability’ and ‘resilience’
are”. More than 20 years later, the literature still asserts problems: “. . . the fact remains
that the word ‘vulnerability’ means different things to different researchers” [O’Brien et al.,
2007]. The relations between the many concepts used are not clear, and for example Gal-
loṕın [2006] warns: “If care is not used, the field of human dimensions research can become
epistemologically very messy.” [p. 301].

Lists of concepts related to vulnerability become longer: for example, Füssel and Klein
[2006] add “exposure, sensitivity, coping capacity, and criticality” to the list they quote
from Liverman [1990] that already contains “concepts such as resilience, marginality, sus-
ceptibility, adaptability, fragility, and risk”. Likewise, the lists of previous conceptual work
lengthen in each new work. Füssel [2007], who claims to “provide the much-needed concep-
tual clarity”, refers the reader to eleven works for “general reviews of the conceptualization
of vulnerability” and mentions eight further publications “focussing on the conceptualization
of vulnerability in climate change research”.

A complete list of conceptual vulnerability literature would probably be be so long as
to be no longer useful. Here, we concentrate on some examples of what conceptual work
has to offer: Füssel and Klein [2006] analyse the evolution of conceptual thinking in climate
change vulnerability assessments; O’Brien et al. [2007] discuss “how two interpretations of
vulnerability in the climate change literature are manifestations of different discourses and
framings of the climate change problem” and provide a “diagnostic tool for distinguishing
the two interpretations” [p. 73]; Adger [2006] “reviews research traditions of vulnerability to
environmental change” [p. 268]; and Galloṕın [2006] uses “a systemic perspective to identify
and analyze the conceptual relations among vulnerability, resilience, and adaptive capacity
within socio-ecological systems” [p. 293]. Glossaries of terms have been assembled [e.g.
Thywissen, 2006], and different frameworks17 related to vulnerability describe assessment
approaches or propose how vulnerability should be assessed.

The conceptual work has not shown the effect of clarification in the terminology, but

17Again, lists could be very long. As a selection, let us cite Cutter [1996]; Jones [2001]; Brooks [2003];
Turner II et al. [2003]; Luers [2005].
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hope has not been given up. Still, in the 2006 special issue of Global Environmental Change
on “Resilience, vulnerability and adaptation” the editors “experienced a Tower of Babel in
hearing the diverse definitions made of core concepts” [Janssen and Ostrom, 2006, p. 237]
but state that “efforts should be made to develop clear (and hopefully, mutually compatible)
specifications of the concepts for use in abstract and field studies of ecological and social
systems.” [p. 238]

Introducing one more meta-level, it has been discussed why the conceptual work did
not succeed. Hinkel [2008] states that “the meta-perspective activities themselves suffer
from conceptual difficulties” [p. 13], for example, in that meta-concepts for speaking about
different definitions are themselves left undefined. An example here could be Füssel [2007],
who uses ‘interpretation of vulnerability’, ‘different vulnerability concepts’, ‘terminologies
and classifications of vulnerability’ and ‘conceptualization of vulnerability’ in the range of
5 sentences [p. 159] without having made explicit how these relate to each other. The
difference between interpretations, concepts and conceptualizations, if any, is unclear.

In particular, most conceptual work does not distinguish between theoretical and oper-
ational definitions, nor between interpretations and assessment approaches. Interpretations
can often most clearly be observed from assessment approaches but theoretical and oper-
ational definitions are not as closely related. One important source of the confusion, the
gap between these, is left out of consideration. Glossaries, which consider only theoretical
definitions, lack the perspective on the operational side of the concept.

Finally, formulations in conceptual work are not always clear. At least to a mathemati-
cally minded, it seems that, for consistency, in the statement

The word ‘vulnerability’ is used in all three discourses; thus it is often difficult to ‘place’
a study within a discourse and framing based on the presence or absence of this word.
[O’Brien et al., 2007, p. 78],

the words ‘often difficult’ should be replaced with ‘impossible’.

2.5.4 Why formalize vulnerability

Having seen some general benefits of formalization and the situation in the vulnerabil-
ity terminology, characterized by an over-abundance of definitions of all kinds, the use of
formalization is easy to motivate. Brooks [2003] expresses the aim that researchers from
different backgrounds

must develop a common language so that vulnerability and adaptation research can
move forward in a way that integrates [the] different traditions in a coherent yet flexible
fashion, allowing researchers to assess vulnerability and the potential for adaptation
in a wide variety of different contexts, and in a manner that is transparent to their
colleagues. [p. 2, our emphasis].

An argument why mathematics can produce transparency is explicitness. Not only does
the translation step require to state assumptions clearly. Also when already given, the
mathematical formulations, unlike their natural language counterparts, do not carry implicit
connotations which differ according to the disciplinary background of the users. The desired
coherence can be provided by mathematics due to the consistent introduction of precise
concepts and the absence of exceptions (see the quote by Polya on page 9). Flexibility is
supplied by generality: general mathematical concepts can be filled with different content
according to the situations in vulnerability assessments. Janssen and Ostrom [2006] add
“clear (and hopefully, mutually compatible) specifications of the concepts” [p. 238] to the
list of desiderata. Clarity and compatibility also follow from consistently introducing precise
definitions. Recalling the characteristics of mathematics described in Section 2.4, these two
quotes almost seem to call for a mathematical definition of concepts.

The multitude of definitions for the same concepts suggests that a necessary first step is
understanding what these have in common, proverbially speaking, see the forest in spite of
the trees. This is the goal of the analysis step: uncover the common structure of the many



2.6. COMMUNICATION DIFFICULTY 19

similar definitions by identifying the primitives. According to Beutelspacher, mathematics
is an attempt at discovering logical structures.18 Taking this literally, even the analysis step
in the formalization process, when applied to many definitions of the same concept, can
be considered mathematics. Formalizing several concepts from one domain, some primitives
recur and some concepts might be the primitives of other concepts. Tracing back all concepts
of interest to one set of primitives renders obvious the relations between the concepts,
uncovers the structures between them.

Moreover, having mathematized a given definition of a concept, analysing further defini-
tions becomes easier by comparing whether the same primitives and relations between them
can be found. Thus, formalization helps understand the meaning of concepts for which
confusingly many similar definitions are found. The general but yet precise mathemati-
cal definition serves as the foundation upon which different definitions can be compared,
for example, by expressing them as special instances of it. Formalization can therefore be
expected to yield benefits in the confused terminology around vulnerability.

The question whether one single definition is needed will be answered “yes and no” for
definitions at different levels of detail. We consider an agreed basic understanding a necessary
foundation for unambiguous communication about the details of each case [see also Hinkel
and Klein, 2007]. Without such a common starting point, successful communication seems
rather impossible. The benefit to be expected from formalization lies in the very general
mathematical definition for the ordinary language concept vulnerability (in Section 5.1): it
can serve as this starting point.19

One further benefit discussed by Suppes [1968] is not immediately obvious for the formal-
ization of vulnerability. Standardization, that should “make communication easier across
different scientific disciplines” [p. 654] would be an important aim for vulnerability research
because of the many disciplines involved. While this may work between natural sciences,
communication in mathematical language cannot be taken for granted in the context of vul-
nerability studies. Difficulties relating to the communication of mathematics are considered
in more detail in the following section. However, via a retranslation of the mathematical
framework into a graphical framework as presented in Section 5.5, the structures found in
the analysis can still be presented in a clearer fashion than encountered in much previous
conceptual work. Independent of the use of formulae, the framework remains an abstract
and general description of concepts, obtained by a mathematical way of thinking, and aiming
at enhancing clarity.

2.6 Communication difficulty

The non-formal representation of the formal framework in Chapter 5 serves a simple pur-
pose: making the framework readable for non-mathematicians, and increasing its acceptance
by researchers from the vulnerability community who are often social scientists, not trained
to use mathematical notation. A very first step sometimes needed is to clear up the misun-
derstanding that “translation into mathematics means quantification”. Having experienced
a certain hostility towards a framework presented in terms of formulae, a less and less math-
ematical representation of the framework has been developed, and is discussed in Section
5.6 of the chapter on vulnerability.

Problems of communicating mathematics to non-mathematicians are well known and
both mathematicians and non-mathematicians have written about them. For example, En-
zensberger [1999] describes mathematics as a cultural anathema and investigates reasons
for the tacit consensus in the public’s attitude toward mathematics, where hatred and “no
talent” are stated “with a remarkable blend of defiance and pride” [p. 9]. Mathematics has
been described as the ivory tower science par excellence, as for example in this summary by
Sarukkai [2003], who later however challenges this view.

18The German original says “Mathematik ist der Versuch, logische Strukturen zu entdecken. [Beu-
telspacher, 1996, p. 5].

19The answer “no” will be given in Section 5.2.
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In creating its image, mathematics has turned out to be very successful. By projecting
itself as an extremely hard discipline, mathematics has built a fortress around it, inac-
cessible to intrusions from unfriendly people and disciplines. The process of seclusion
is strengthened by the contention that mathematics is a formal, axiomatic, deductive
and logical system, which is concerned only with a platonic world and whose connec-
tion with our real world is only incidental and perhaps even mysterious. It has also
been consistently claimed that mathematics is universal, acultural and ahistorical. Fur-
ther, this image serves to guard mathematics against the perceived vagaries of verbal
languages. [p. 3648].

Teaching is in part held responsible for the rejection of mathematics by many people.
Enzensberger [1999] complains that rather than mathematics only arithmetics is taught in
the first years of school. An instruction based on “mind-numbing routines” and a “cookbook
of formulas”, not only has nothing to do with mathematical thinking, it “ultimately fosters
mathematical illiteracy.” [see p. 35,37].

There are by now a large number of efforts to change the public image of mathematics
portrayed above and to improve the teaching of mathematics, such as a “Year of Mathemat-
ics”20 in 2008 in Germany; 11 years of conferences “Mathematics and Culture”21 in Venice,
Italy; projects to improve mathematics teaching like the Germany wide “SINUS-Transfer”22;
as well as many popular scientific publications playing with mathematics23, just to mention
a selection.

The literature has also seen many refutations of an overly formal description of mathe-
matics, for example by Courant and Robbins [1941] who plainly state that if mathematics
really was merely a system of deductions as described above, “mathematics could not at-
tract any intelligent person” [p. xvii]. That there is a connection with the real world in
mathematics is pointed out via a comparison with poetry by Renyi’s Socrates: mathematics
is not at the arbitrary choice of the mathematician because in that case “there would be as
many mathematics as mathematicians”, while “mathematicians living far from each other
and having no contact discover the same truths independently. I never heard of two poets
who wrote the same poem.” [Rényi, 1964, p. 30].

The fact that, as described above, communication of mathematics is only successful
when the reader/listener understands the mathematics presented, constitutes a difficulty for
its acceptance. Independently of the notation, understanding mathematics generally asks
a high level of concentration and patience. Mathematics teaches humility because hardly
ever are all problems solved by the end of the day.24 Gale and Shapley [1962], who expect
the non-mathematical reader to have difficulty in following their formula-free proof, state
(somewhat unfriendly) that

the reason that your friends and ours cannot understand mathematics is not because
they have no head for figures, but because they are unable to achieve the degree of
concentration required to follow a moderately involved sequence of inferences. [p. 15].

Enzensberger attributes “a certain isolation”, the “déformation professionelle” of the math-
ematician, for one part to the fact that the mathematician’s “occupation demands above all
intense and sustained concentration” [p. 15].

A superficial reading of mathematics does not do. The fact that some people may not
have the time or be willing to engage into a deeper reading creates a barrier to commu-
nicating mathematics independently of the notational system chosen. In fact, concerning
the formal framework of vulnerability presented later, avoiding formulae is rather a psy-
chological choice, to not scare people off from the beginning. The diagrams used present a

20http://www.jahr-der-mathematik.de/
21http://www.mat.uniroma1.it/venezia2009/
22http://sinus-transfer.uni-bayreuth.de/
23A particularly pleasant book is the analysis of “La Mathematique du Chat” by Justens [2008], investi-

gating what the Belgian comic strip cat by Philippe Geluck has to say about mathematics.
24As Martin Grötschel said in the previously mentioned TV discussion on mathematics, see Footnote 6.



2.7. CONCLUSIONS 21

simplified version of the framework, which contains only mathematical concepts at the level
of high school mathematics. Thus, those who engage into reading and understanding the
diagram presentation would most probably also understand the corresponding presentation
in formulae (see Section 5.6).

2.7 Conclusions

This chapter has introduced the method of formalization as translation into mathematics.
Mathematics itself is here considered as a language, which is more precise, general and
abstract then natural languages are. Its specific notation has the advantage that it allows
to carry out operations on symbols. Results can be deduced and computers may be used.

The current situation in the terminology of vulnerability and conceptual work on it was
outlined. The main finding is confusion: a multitude of different kinds of definitions of many
concepts can be found. The relations between different concepts and different definitions are
unclear. In short, general definitions in the vulnerability terminology, that is, theoretical
definitions, remain vague or ambiguous (as shall be further seen in Section 5.2). Precise def-
initions, that is, operational definitions, are case specific. Since mathematical definitions are
general and precise at the same time, some clarity can be expected from a translation into
mathematics in this situation. Further, such a translation forces one to make assumptions
explicit and the mathematical definitions produced do not carry implicit connotations dif-
fering with the users’ backgrounds. The stage has thus been set for formalizing vulnerability
in Chapter 5.

It was also pointed out that mathematical notation, but also the precision of mathe-
matics, can be (perceived as) a barrier to communication. The formalization of vulner-
ability will include balancing acts to raise accessibility of the formal framework for the
non-mathematically trained.

Probability, having a history of formalizations, can be an example of what formalization
achieves and was seen to be even considered a paradigmatic example. What it tells about
formalization will be seen in the next but one chapter, because first some mathematical
preliminaries have to be provided.
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Chapter 3

Mathematical preliminaries

This chapter establishes notation for mathematical concepts used and states some results
needed at different places throughout this work. Selected basics from measure theory and
category theory are dedicated a section each. Parts of this chapter can be considered a work
of reference, for example, Section 3.1 can be skipped without losing content in reading this
work. The measure theory section also outlines the problem of the extension of measures
which causes a main mathematical difference between probability measures and finitely ad-
ditive probabilities in the following chapter. The category theory section, apart from basics,
provides the definition and some discussion of the monadic dynamical systems intoduced by
Ionescu [2009] for the formal framework of vulnerability.

3.1 Sets, functions, algebras . . .

Sets will be denoted with capital letters, A,B etc., in the probability context often Ω,Ω′,
sets of states also S. For sets of sets, mostly calligraphic letters are used. For a non-empty
set Ω, its powerset, that is the set of all its subsets, is denoted P(Ω). If Ω is finite, so is its
powerset: with |Ω| = n, where |.| denotes the cardinality of a set, one has |P(Ω)| = 2n. R
denotes the set of real numbers, R̄ the so called extended real numbers, R ∪ {−∞,∞}.

Functions will be denoted by small letters or, in the vulnerability formalization by words
starting with small letters. The notation f : A −→ B means that the function f is defined
on A and takes values in B, where both A and B are sets. When f is applied to an element a
of A, it outputs an element of B, denoted . . . differently in the two branches of mathematics
brought together in this work, probability and category theory, or rather in category theory
and the rest of mathematics. The choice is between f(a), commonly used in mathematics,
and f a, more usual in category theory. The choice in this work tries a compromise between
legibility issues. In the chapter on probability, we stick to “the good old notation” used
in probability theory. For functions on sets and probabilities, that is functions on sets of
subsets of a set, the classical notation with brackets will be used. For the category theoretical
concept of a functor (and some others), brackets will be omitted to avoid too many of them
in a row. These notations are explained at first use. Function composition is denoted ◦, the
dot · denotes multiplication.

In category theory, the set A is referred to as the source, B as the target of f . Together,
the information f : A −→ B is called the type of f . We also refer to A as the domain of
definition of a function, as is common use in mathematics.

Dealing with probability and measures, sets of sets with the following structures are
going to be used.

Definition 3.1.1. A ⊆ P(Ω) is an algebra (of subsets of Ω) or algebra over Ω, if it contains

23
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Ω and is closed under finite intersection and complementation. In formulae,

Ω ∈ A
A ∈ A ⇒ Ac ∈ A
A,B ∈ A ⇒ A ∩B ∈ A

It follows by induction that the intersection of finitely many elements of the algebra is
again one of its elements, however, this is generally not true for infinite intersections. From
A∪B = (Ac∩Bc)c, one concludes that an algebra contains also finite unions of its elements.

Similarly, a σ-algebra is defined requiring closure under countable intersections:

Definition 3.1.2. F ⊆ P(Ω) is a σ-algebra (of subsets of Ω) or σ-algebra over Ω, if

Ω ∈ F
A ∈ F ⇒ Ac ∈ F

A1, A2, . . . ∈ F ⇒
∞⋂

i=1

Ai ∈ F

Any σ-algebra is an algebra but the converse is not true. The powerset P(Ω) is a σ-
algebra over Ω, and hence also an algebra.

Given a non-empty set Ω, a partition is a set of subsets {A1, A2, . . .} of Ω with two
properties: any two sets Ai and Aj with i 6= j are disjoint, that is Ai ∩ Aj = ∅, and their
union

⋃∞
i=1 Ai = Ω is the whole set. For further reference:

Definition 3.1.3. Given a non-empty set Ω and an algebra A on Ω, a finite partition of Ω
in A is a partition of Ω into finitely many sets, say {A1, A2, . . . , An}, where all sets of the
partition belong to A, that is, Ai ∈ A for all i = 1, . . . , n (and analogously for σ-algebras).

For a set of subsets E ⊆ P(Ω) which is not itself an algebra, an important concept is the
algebra generated by E .

Definition 3.1.4. Given E ⊆ P(Ω), the algebra generated by E , denoted a(E), is the smallest
algebra over Ω which contains E .

The intersection of (arbitrarily many) algebras is an algebra, wherefore one can intersect
all algebras which contain E to obtain a(E). At least one algebra which contains E exists for
any E ⊆ P(Ω), because the powerset itself is an algebra. Hence a(E) exists for any E .

Any set in a(E) can be constructed from sets in E using three simple steps. Define

F1 = {A ⊆ Ω|A = ∅ or A = Ω or A ∈ E or Ac ∈ E}
F2 = {∩n

j=1Aj |n ≥ 1, A1, . . . An ∈ F1}
F3 = {∪n

j=1Bj |n ≥ 1, B1, . . . Bn ∈ F2 disjoint},
then F3 = a(E) [see e.g. Bogachev, 2006, p. 5].

On the interval [0, 1], the algebra generated by the intervals (a, b) with a, b ∈ [0, 1] and
a ≤ b will be of importance in Chapter 6. It is denoted1 by J [0, 1]. It contains all open,
closed and half-open intervals and points: open intervals by definition, closed intervals via
complements, half-open intervals as intersections of open and closed ones, points simply by
taking a = b. One can also use the following set of intervals as generator for this algebra:

{[0, a], [0, a)|a ∈ [0, 1]}.
This generates all open intervals: an open interval [a, b] can be obtained as [0, b)\[0, a].

A concept that will be important in Section 4.5.4 is the set of constituents of a finite E .
1Its importance in the construction of the so-called Jordan-measure suggests the initial to be used.
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Definition 3.1.5. Given E = {E1, . . . , En}, the constituents of E are all sets of the form
E∗

1 ∩ . . .∩E∗
n 6= ∅ with E∗ ∈ {E, Ec}. The set of constituents is denoted C, the constituents

C1, . . . , Cm.

The constituents partition Ω and each Ei ∈ E can be written as a disjoint union of
constituents. There are m ≤ 2n constituents.

Remark 3.1.6. The set of constituents C of E generates the same algebra as E does.

Similar to the generated algebra, one can consider the σ-algebra generated by a set of
subsets E ⊆ P(Ω).

Definition 3.1.7. Given E ⊂ P(Ω), the σ-algebra generated by E , denoted σ(E), is the
smallest σ-algebra over Ω which contains E .

It is the intersection of all σ-algebras over Ω which contain E . In general, it is not possible
to construct its elements in countably many steps from the elements of E [see e.g. Billingsley,
1979, p. 26].

The commonly used σ-algebra on R is the Borel-σ-algebra, denoted B(R) here, which is
the σ-algebra generated by the open subsets of R. It can be shown that this σ-algebra is
strictly smaller than the powerset of the real numbers, that is, non-Borel-measurable sets
exist, though “every subset of R which you meet in everyday use” [Williams, 1991, p. 17]
is a Borel set. All intervals are contained in the Borel-σ-algebra, and it can also be shown
that the set of intervals {(−∞, x]|x ∈ R} generates the Borel-σ-algebra on R. The Borel-σ-
algbra on R̄ is denoted by B̄, that on the interval [0, 1] by B[0, 1].

Given sets that are equipped with algebras, and functions that have sets as source and
target, it will be of interest what functions can do with the algebras. Here, the following
concepts are needed. Consider a function f : Ω −→ Ω′ and sets A ⊆ Ω, A′ ⊆ Ω′. The image
of A under f is the set

f(A) = {f(ω)|ω ∈ A} ⊆ Ω′.

The inverse image of A′ under f is the set of all points whose image is in A′:

f−1(A′) = {ω ∈ Ω|f(ω) ∈ A′} ⊆ Ω.

One can consider the inverse image as a mapping between the powersets, f−1 : P(Ω′) −→
P(Ω). It exists for any function f and is not to be confused with an inverse function. With
a slight (but in measure theory commonly used) abuse of notation, we denote the image of
a set of sets B ⊆ P(Ω′) under the inverse image mapping by

f−1(B) = {f−1(B)|B ∈ B}.
The inverse image has the very important property that it preserves the set operations union,
intersection and complementation.

f−1
( ⋃

ι∈I

Bι

)
=

⋃

ι∈I

f−1(Bι)

for an arbitrary index set I and Bι ⊆ Ω′ and similarly for intersections and complements.
These properties are meant when the inverse image is referred to as “well-behaved”. Due
to these properties, the inverse image maps algebras on Ω′ to algebras on Ω, and moreover
one has the following

Lemma 3.1.8. Given f : Ω −→ Ω′ and an algebra A = a(E) on Ω′, the inverse image of E
generates the algebra f−1(A) on Ω, that is

a(f−1(E)) = f−1(a(E)).
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Remark 3.1.9. In proofs in Chapter 6, this lemma will often be used to simplify the task
of showing that the inverse image of an algebra B on Ω′ is contained in a given algebra A
on Ω. If B = a(E), then for showing that f−1(B) ∈ A for any B ∈ B, it suffices to show
that this is the case for the sets in the generator E . When f−1(B) ∈ A for all B ∈ E ,
also their intersections and complements are in A because this is an algebra. Therefore,
a(f−1(E)) ⊆ A. But this means that f−1(B) = f−1(a(E)) = a(f−1(E)) ⊆ A.

The analogous lemma for the generated σ-algebra is also true. The lemma can be used
to equip a set Ω with a (σ-)algebra when a function f : Ω −→ Ω′ and a (σ-)algebra on Ω′

is given. One uses the inverse images of all sets in that (σ-)algebra. This is also the idea
underlying the initial σ-algebra on a set which is not equipped with a σ-algebra a priori,
which will be needed in Chapter 6.

Definition 3.1.10. Consider given a set Ω, an index set I, sets with algebras (Ωι,Fι) and
functions fι : Ω −→ Ωι for ι ∈ I. The initial σ-algebra on Ω with respect to the family (fι)ι

is the σ-algebra

F = σ

(⋃

ι∈I

f−1
ι (Fι)

)

Anticipating Definition 3.2.3 of a measurable function from the next section, the initial σ-
algebra is the smallest σ-algebra F on Ω that makes all fι : (Ω,F) −→ (Ωι,Fι) measurable.
If the σ−algebras Fι have generators Eι respectively, then

E =
⋃

ι∈I

f−1
ι (Eι)

generates F [see Elstrodt, 1999, p. 112].

3.2 Measure theory

The mathematical concept of a measure generalizes such everyday measures as length, area,
volume etc. We will here just sketch the results needed later, details and proofs can be found
in textbooks on measure theory. We additionally mention Elstrodt [1999], who provides a
historical account of the problems encountered, and Ulam [1943], who nicely summarizes
the developments in measure theory in an almost formula-free description.

The idea behind the definition of a measure is described by Ulam [1943] as follows:

There is given a collection (class) of sets situated in the Euclidean space. This class
contains the elementary figures and is large enough to include all sets that can be
obtained by the processes usually employed in analysis; in particular the complement
of a set that is in the class also belongs to the class, and the union of any denumerable
number of sets in the class yields sets belonging to this class (the denumerable union of
sets corresponds to the process of summing infinite series). One has to attach to every
set in the class a non-negative, real number, called its measure, so that the following
postulates will be satisfied:

(i) All sets of a specific subclass should have measure, for example, all sets consisting
of a single point.

(ii) The measure of a set should coincide with its ordinary value in the case when the
set is an elementary figure.

(iii) The postulate of additivity: two forms, a weaker and a stronger form are possible.
This requires that the measure of a finite (or in a stronger form, denumerably
infinite) sum of mutually disjoint sets should be equal to the numerical sum of
the measures of the individual sets.
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(iv) The invariance or congruence postulate: This requires that sets congruent in the
sense of elementary geometry, should have equal measure. [p. 598]

We will here use the term “countable” instead of “denumerable”, later, “σ-additivity” also
refers to countable additivity. The “sum” of sets referred to in axiom (iii) is their union.
The finite and the countable additivity condition will be referred to as (iiia) and (iiib),
respectively.

Lebesgue constructed a measure for Rn, now carrying his name, that satisfies conditions
(i) where each point gets measure zero,(ii) in that to a “cube” inRn it associates the product
of the lengths of its sides, (iiib), and (iv). Lebesgue measure is denoted as Λ later. The class
of subsets for which this measure is defined is referred to as the set of Lebesgue measureable
sets. It contains the important σ-algebra of the Borel sets, but, as was shown first by Vitali
in 1905, it is impossible to define this measure on all subsets of Rn [for a proof see e.g.
Elstrodt, 1999, p. 96].

Several generalizations of this non-existence result, but also some existence results for
“measures” on the powerset of the real numbers exist. A fundamental difference is seen
between requiring finite and countable additivity, that is, between (iiia) and (iiib). A
complete overview over these results seems not easy to get, because measure theory textbooks
often state the non-existence result only for Rn with the congruence postulate. For example,
the results given by Elstrodt [1999] are [adapted, see pp. 4-6]:

• “Das Inhaltsproblem”: problem statement: find a function m : P(Rn) −→ [0,∞] that
satisfies conditions (iiia), (iv), and a norming condition corresponding to (ii).

• This problem cannot be solved for Rn if n ≥ 3 (Theorem by Hausdorff, 1914).

• This problem has a (non-unique) solution for n = 1 and n = 2 (Theorem by Banach,
1923).

• The so called Banach-Tarski paradox “dramatically” illustrates that the problem can-
not be solved for n ≥ 3: given any two bounded sets with non-empty interior in Rn

with n ≥ 3, it is possible to “cut the first set up” into finitely many subsets, move
these subsets and reassemble them into the other set.

• The seeming absurdity of this result is remarked by quoting Galilei’s statement that
when a body is divided into finitely many pieces, it is doubtlessly impossible to re-
assemble these in such a way that they should occupy more space than before.

• An explanation for the counterintuitive result by Banach and Tarski is that the pieces
into which the first set is cut can be very complicated. They are constructed by means
of the axiom of choice.

• “Das Maßproblem”: The corresponding problem statement with condition (iiib) in-
stead of (iiia).

• Vitali’s result: this problem cannot be solved.

• The corresponding Banach-Tarski paradox: in this case one may have to cut the first
set into countably many pieces.

• The conclusion drawn is that it does not make sense to require measures to be defined
on the whole powerset of Rn.

• A remark is added that the restriction to Rn has turned out unneccessary. Using
a general set is useful for such branches of mathematics as functional analysis and
probability theory.
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Then, measure theory is developed for general sets instead of Rn, and supposing the
stronger additivity condition (iiib) implying the use of a σ-algebra as the domain of definition
of a measure. Algebras and finitely additive functions are simply not further considered,
being discarded as “not rich enough” [Elstrodt, 1999].2

Generally, measure, measure space and a measurable space are defined along the lines of
the following definition that will be used in this work.

Definition 3.2.1. Let F be a σ-algebra over Ω. A function m : F → [0,∞] is a measure
on (Ω,F) if it satisfies

(i) m(∅) = 0

(ii) m(
⋃∞

i=1 Ai) =
∑∞

i=1 m(Ai) for disjoint sets Ai ∈ F .

In this case (Ω,F ,m) is called a measure space. The pair (Ω,F) alone is also referred to
as a measurable space. A measure is said to be normed, when it takes values in a bounded
interval [0, a] ⊂ [0,∞].

A case of special importance in probability theory is that of a = 1, as will be seen in
Section 4.3. When a fixed measure space is considered, sets which are assigned the value
0 by the measure m are called null sets and are often considered to be of no importance.
The expressions ‘almost everywhere’ and ‘almost surely’ are used to say ‘except for a set of
measure zero’. For example, apart from the usual notions of convergence, such as pointwise
or uniform convergence, in measure theory almost sure convergence is of interest, meaning
pointwise convergence except on a null set.

Returning to the more general setting, there are further results scattered in the literature.
For example, the conditions (ii) and (iv) have been dropped from the problem statements
above. Banach and Kuratowski [1929] show the non-existence of a measure on the whole
powerset, where the set considered is the interval (0, 1), the function is supposed to assign
positive measure to some set, but measure zero to any single point, and further conditions
are used. Banach [1930] generalizes this (again under further conditions) to arbitrary sets
of the same cardinality and measures that can take negative values. Ulam [1930] weakens
the further conditions, to give some examples.

The version of Vitali’s result stated by de Finetti [1972] is probably best adapted for this
work, in terms of generality. Translated to our terminology, it states that

Theorem 3.2.2. A countably additive measure m : E −→ [0, 1] (that is, normed to 1) does
not exist when E is the powerset of an infinite set, unless it is concentrated in a finite number
or a countably infinite number of points in Ω, with values summing to 1.

Finitely additive functions defined on algebras can be found in the literature under the
name of charges, see for example Bhaskara Rao and Bhaskara Rao [1983], who, however, do
not discuss the problem of extending charges to the powerset of the underlying set. The term
content is also to be found for these functions. In this work, a result on the extendability of
finitely additive functions will be stated in the context of de Finetti’s mathematization of
probability in Section 4.5.

Having defined measures only on certain σ-algebras of subsets of a given set, a restriction
is introduced for the functions that are taken into consideration in measure theory. Func-
tions from a measurable space to another need to be compatible with the σ-algebras in the
following sense:

Definition 3.2.3. A function between the two measurable spaces (Ω,F) and (Ω′,F ′), that
is f : Ω −→ Ω′, is measurable, or more precisely F-F ′-measurable, if

f−1(A′) ∈ F for all A′ ∈ F ′.
2“Für den Aufbau einer fruchtbaren Maßtheorie erweisen sich Ringe und Algebren als nicht reichhaltig

genug, da sie nur bez. der Bildung endlicher Vereinigungen abgeschlossen sind.” [p. 13].
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We denote measurable functions f : Ω −→ Ω′ or f : (Ω,F) −→ (Ω′,F ′) depending on
whether the emphasis is on the function itself or on its measurability.

Measurable functions can be used to construct a measure on the target measurable space
from a given measure on the source measurable space:

Definition 3.2.4. Given a measure space (Ω,F , m) together with a measurable function
f : (Ω,F) −→ (Ω′,F ′) to a measurable space, the induced measure mf on (Ω′,F ′) is defined
by

mf (A′) = m(f−1(A′)) for all A′ ∈ F ′.
This construction will be important for the monads in Chapter 6.
Measurable functions from an (Ω,F) to the measurable space (R,B(R)) are of special

importance, for example, with regard to integration. We list some properties:

Lemma 3.2.5. Let f1, f2, . . . be (F-B(R))-measurable functions from Ω to R.

(i) f1 + f2 is a measurable function.

(ii) For any α ∈ R, the function αf1 is measurable.

(iii) If h : R→ R is a continuous function, then h ◦ f1 is measurable. In particular, |f1| is
measurable.

(iv) supn∈N fn and infn∈N fn are measurable functions.

(v) If fn → f (pointwise convergence) for a function f : Ω −→ R, then f is measurable.

An important class of measurable functions are the so called simple functions. To denote
these, we need the notation for the characteristic or indicator function of a set A ⊆ Ω.

1A : Ω −→ {0, 1}

1A(ω) =
{

1 if ω ∈ A
0 if ω ∈ Ac.

Definition 3.2.6. Given (Ω,F), a function f : Ω −→ R is called simple if it can be written
in the form f =

∑n
i=1 ci1Ai for some n ∈ N, c1, . . . , cn ∈ R and a partition {A1, . . . , An} of

Ω in F .

Their importance derives from the fact that

Lemma 3.2.7. Any non-negative measurable function f : Ω −→ R is a monotone pointwise
limit of simple functions.

This fact is used in Lebesgue’s integral construction, which, roughly speaking, works as
follows: The integral of a simple function (in the above notation) with respect to a measure
m is defined as

∫
fdm =

n∑

i=1

cim(Ai). (3.1)

First, non-negative measurable functions are considered. For such a function f , the integral
is defined as the limit of the integrals for a sequence of simple functions converging to f .
It can be shown that these integrals of simple functions converge to a value which does,
moreover, not depend on the particular sequence chosen, so that this defines the integral
of a non-negative measurable function unambiguously as a real number or the value ∞.
For general measurable functions, the positive and negative parts are integrated separately:
f = f+−f− with f+ = max(f, 0) and f− = max(−f, 0), so that

∫
fdm =

∫
f+dm−∫

f−dm.
If both terms in this last sum are infinite, the function is said to be not integrable. The
Lebesgue integral is the integral obtained from this construction when the measure used is
the Lebesgue measure.

Two convergence results are used in many proofs in measure theory:
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Theorem 3.2.8 (MON, monotone convergence theorem, or Theorem of B. Levi). For a
monotonically increasing sequence of non-negative measurable functions fn : (Ω,F) −→
(R̄, B̄):

∫ (
lim

n→∞
fn

)
dm = lim

n→∞

∫
fndm

Theorem 3.2.9 (DOM, dominated convergence theorem, or Lebesgue’s convergence the-
orem). Let fn : (Ω,F) → (R̄, B̄) be measurable functions, which converge almost surely to
the function f . Let g : (Ω,F) −→ (R̄, B̄) be an integrable function with finite integral, and
let |fn| ≤ g almost surely (under Lebesgue measure), for all n.
Then, f is integrable with finite integral value and

∫
fdm =

∫ (
lim

n→∞
fn

)
dm = lim

n→∞

∫
fndm

The procedure of measure theoretic induction uses either of these two. Often a result
which involves showing the equality of two integrals is easy to show for simple functions. It
is then extended to measurable functions by writing the measurable function as the limit of
a sequence of simple functions and then switching limit and integral using MON or DOM.

3.3 Category theory

Category theory provides very general descriptions of mathematical concepts. The formal
framework of vulnerability presented in Chapter 5 makes use of this generality. This section
introduces the concepts needed. The first definitions given here are taken or adapted from
Bird and de Moor [1997, see pages 25-35], who say that “one does not so much learn category
theory as absorb it over a period of time” [p. 25].

Definition 3.3.1. A category, denoted C, is an algebraic structure consisting of a class of
objects and a class of arrows (also called morphisms) with three total operations (source,
target and identity) and a partial operation (composition) which satisfy the rules below.
Objects are denoted A,B and so on, arrows f, g and so on.

The operations source and target each assign an object to an arrow: denoted f : A −→ B,
and read “f is an arrow from A to B”, here A is the source of f , B is its target. The notation
HomC(A,B) refers to the set of all arrows from A to B in the category C. The third total
operation takes an object A to an arrow idA : A −→ A, the identity (arrow) on A.

The partial operation, composition, takes two arrows f : A −→ B and g : B −→ C to
an arrow g ◦ f : A −→ C, read “g after f”. Composition

• is associative, that is, for f : A −→ B, g : B −→ C and h : C −→ D one has
(h ◦ g) ◦ f = h ◦ (g ◦ f), and

• has the identity arrows as units: given f : A −→ B, one has idB ◦ f = f = f ◦ idA.

The category Fun of sets and functions This is the most well-known example: Objects
in the category Fun are sets. We denote these by Ω, Ω′ and so on as usual in the probability
context. An arrow f : Ω −→ Ω′ is simply a function. Its source is Ω, its target Ω′. Each
object has an identity arrow, the identity function on the set, that is idΩ : Ω −→ Ω defined
by idΩ(ω) = ω. Composition is the usual composition of functions. Take f : Ω −→ Ω′ and
g : Ω′ −→ Ω′′, then g ◦ f : Ω → Ω′′ is given by (g ◦ f)(ω) = g(f(ω)). Since composition is
associative and it has the identity arrows as units, Fun is a category.

Further, the category Mes of measurable spaces and measurable functions is used in this
work. It is introduced in Section 6.3.
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Definition 3.3.2. A category C is a subcategory of another category D if all objects of C
are also objects of D and similarly all arrows of C are also arrows of D. We call C a full
subcategory of D, if given two objects A and B in C, all arrows between them in D are
already arrows in C.

The formal framework uses the concept of a functor to describe and work with sets
equipped with a structure containing further information (such as probabilities). These
structures will serve to express uncertainty: all elements of a set are considered possible, the
structure gives further information about the possibilities, for example their probabilities.
“Work with” more specifically means apply functions to such sets in a way that maintains
the extra information structure. Given some structure over a set, one wants to apply a
function to the elements of the set, so that the structure is preserved and the application of
the function occurs “inside” it, as in the case of an induced probability measure, for example.

Definition 3.3.3. A functor is a mapping from a category C to a category D, consisting
of a mapping for objects and one for arrows. Both are denoted by the same F . As rather
common for category theory, we will not use brackets to denote functor application.3 For
example, F A is the object of D obtained by applying the functor to the object A of C.
A functor has to satisfy F f : F A −→ F B whenever f : A −→ B. Further, it needs to
preserve identities and composition, in formulae

F idA = idF A for every object A of C, and

F (g ◦ f) = F g ◦ F f for arrows f : A −→ B and g : B −→ C of the category C.

A functor from a category to itself is called an endofunctor. The identity is a functor
on every category, denoted IdC, or Id only, if the category is clear. The composition of two
functors F : C −→ D and G : D −→ E is a functor itself, denoted G ◦ F .

Example 3.3.4. An example which is important for this work is the powerset functor,
denoted P here. It associates to a set the set of all its subsets and lifts a function f : A −→ B,
so that Pf : PA −→ PB, by the definition: PfA = {f(a)|a ∈ A}.

The importance of this functor derives from the fact that sets can be used to represent
uncertainty. In the so called non-deterministic description of uncertainty, a set of possibilities
is given without any further information4.

There are further mappings between functors which we need: transformations, and in
particular, natural transformations which are in some sense compatible with the functors.

Definition 3.3.5. Given two functors between the same categories, F : C −→ D and
G : C −→ D, a transformation from F to G is a collection of arrows φA : FA −→ GA, one
for each object A of the two functors’ source category C. The transformation φ is natural if
for every arrow f : A −→ B of C, one has Gf ◦φA = φB ◦Ff , as expressed by commutativity
of the diagram:

FA GA

FB GB

-φA

?

Ff

?

Gf

-
φB

Again, the identity is a natural transformation from any functor F to itself, which we de-
note idF . Also, the composition of two natural transformations φ : F −→ G and η : G −→ H
is a natural transformation itself, denoted η ◦ φ. A natural transformation φ : F −→ G can

3Strictly speaking, this causes a clash of notation with the common notation of multiplication, where no
symbol is used. While it should be clear from the context, whether functor application or a multiplication
of numbers in meant, whenever there might be a doubt, multiplication will therefore be denoted with the
explicit ·.

4See Section 4.5 for such a description of uncertainty, which preceedes the assignment of probabilities.
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be applied to compositions of functors: for a functor H of the appropriate type, we denote
by φH : F ◦H −→ G ◦H the corresponding transformation. Vice versa, a functor can be
used to “lift” a transformation by applying it to each arrow in the transformation. Denoted
H φ, this yields a transformation from H ◦ F to H ◦G.

Next, we need certain functors with natural transformations which allow to get back and
forth between several “levels” of functor application, F , F 2 etc., that is, F is composed with
itself.

Definition 3.3.6. A monad on a category C is a triple (F, η, µ) where F is an endofunctor
on C, and the natural transformations η : Id −→ F and µ : F ◦F −→ F satisfy the following
conditions:

µ ◦ ηF = idF = µ ◦ Fη

µ ◦ µF = µ ◦ Fµ

These conditions can again be expressed by commutative diagrams:

F F 2

F 2 F

-ηF

?
Fη

@
@

@R

id

?
µ

-
µ

F 3 F 2

F 2 F

-µF

?
Fµ

?

µ

-
µ

Monads are interesting for the formal framework of vulnerability because they can be
used to produce dynamical systems which combine the possibility of iteration known from
classical dynamical systems with the possibility of representing uncertainty given by functors.
Ionescu [2009] introduces a monadic dynamical system to describe in one general model
different types of systems, such as non-deterministic and probabilistic systems. The details
can be found in Chapter 5 of that work. Here, a sketch of the idea, an adapted definition and
a brief description of trajectories of the system must suffice. The monadic dynamical system
is the motivation for our monads in Chapter 6, however, for the presentation of the formal
framework as a tool for literature analysis, the rather involved technical work of Ionescu is
not so relevant. Hence, restating it would not make sense here.

Consider the simplest example of a dynamical system: given a set S called the set of
states (or state space) and an endofunction on it, f : S −→ S called the transition function,
one can take a starting state s ∈ S and compute the trajectory of the system starting in
that state by repeated application of f . The system evolution is given by this trajectory,
s, f(s), f(f(s)), . . ..

Now, to represent uncertainty, one would like the transition function to output not a
single next state but, for example, a set of possible next states or a probability distribu-
tion over possible next states. The general description would be given by a functor. The
transition function would be of type S −→ FS. However, it is not obvious how to iterate
such a function. A possibility would be to apply the lifted function to the result of a first
application, that is, consider a trajectory of the form s, f(s), F f(f(s)), . . .. However, the
output would accumulate levels of functor application, which is not desired. For example, in
the case of probability, one would like to obtain a probability over states in every iteration,
not a probability over states in the first step, a probability over probabilities over states in
the second step and so on. Here, the monad can help.

Associated to a monad on a category C, there is the so called Kleisli-category of the
monad.

Definition 3.3.7. The Kleisli-category KF of a monad F on a category C is constructed
as follows:

• Objects are the objects of C.
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• Arrows f : A −→ B in KF are arrows of the form f : A −→ FB in C. These are
also referred to as Kleisli-arrows. HomK(A,B) abbreviates HomKF

(A, B) when the
monad is clear.

• For any object A, the identity arrow in KF is given by ηA.

• Kleisli-composition, denoted ¦, works as follows. Take arrows f : A −→ B and g :
B −→ C in KF . That means, there are the corresponding arrows f : A −→ FB and
g : B −→ FC in C. Define g ¦ f in KF by the following operations in C:

g ¦ f = µ ◦ Fg ◦ f

The illustration by diagram, with g ¦ f given by the dotted arrow, is

A B C

FB FC

F 2C

@
@
@Rf

p p p p p p p p p p p p p p p p pj

@
@
@R

g

@
@@RFg

6µ

In C, the composed arrow is of type A −→ FC, thus, in KF , we have g ¦ f : A −→ C.

Considering an arrow of type A −→ FA in C, Kleisli-composition allows the repeated
application desired for the dynamical system. Thus, having a functor for uncertainty de-
scription which is also a monad, one can take as transition function a Kleisli-arrow. Fortu-
nately, the powerset functor seen above forms a monad, and there is a monad of probability
measures. That this is also the case for finitely additive probabilities is shown in Chapter 6.

The description given here was simpler than the definition by Ionescu [2009], because
only discrete time dynamical systems were considered. The definition generalizing this, for
example to continuous time, involves a monoid, that is, a set together with an associative
operation and a distinguished element from the set that works as unit for the operation.
In the more general dynamical system, a monoid (T, +, 0) represents time. The Kleisli-
category construction yields another monoid: for a fixed object A, the set HomC(A,FA),
or HomK(A,A), together with the operation Kleisli-composition and the unit ηA forms a
monoid because Kleisli-composition is associative and has η as unit. Consider given an
object S of a (locally small5) category, fixed as the state space, and a monad with the
corresponding Kleisli-category. Then,

Definition 3.3.8. A monadic dynamical system with state space S is a monoid morphism
sys from a monoid (T, +, 0) to the monoid (HomK(S, S), ¦, ηS).

In the discrete time case, the time monoid consists of the natural numbers with addition
and 0, and sys is determined by a transition function: denoting sys(1) = f , one has sys(n) =
fn for all n ∈ N. Here, f : S −→ FS in C. Let us consider the trajectories of this system.
Given a starting state s ∈ S, an application of the transition function yields a result of type
FS. As discussed above, this can represent uncertainty over the next state. In the cases
of interest here, it is a set of possible next states, possibly together with some information
about these, such as their probability.

Making two steps means applying f ¦ f : S −→ FS. The result is again of type FS,
and still represents uncertainty as viewed from the starting state s, but now referring to
the possible states after two steps. The sequence of elements of type FS is called a macro-
trajectory by Ionescu. One can also consider what he calls micro-trajectories by forming all

5Again, see Ionescu [2009] for details.
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possible sequences of states that the system could go through given a macro-trajectory. Let
us illustrate for the non-deterministic example6:

Consider two transitions of a non-deterministic system given by a transition function
f : S −→ P(S). The possible states after two steps are computed by first computing the
possible states after one step and then applying one further step to each possible state.
The union over all the sets obtained from the second step transitions is the result. System
iteration thus means making new sets out of sets, without choosing a new starting state to
“start anew” in the intermediate steps. This captures the idea that uncertainty increases
as the time horizon shifts further into the future. The macro-trajectory here consists of
two sets: the result of the first step and this latter union. The micro-trajectories are all
sequences of the form s, s1, s2, where s is the given starting state, s1 is an element of the set
f(s) and s2 ∈ f(s1). Micro-trajectories can be seen as a description of the system evolution
when time actually passes.

6The formal description by Ionescu [2009] is very computationally focussed and goes beyond the scope
of this work.



Chapter 4

Probability

Geluck [2008]1

This chapter on probability serves two purposes. First, it introduces the concept (Sec-
tion 4.1) and several mathematizations of probability to provide the basis for the monads
presented in Chapter 6. The mathematizations are: classical probability (Section 4.2), the
well-known axiomatization proposed by Kolmogorov in his Grundbegriffe der Wahrschein-
lichkeitsrechnung [Kolmogorov, 1933] in Section 4.3, finitely additive probability (Section
4.4), and a mathematical model of (subjective) probability based on work by de Finetti
(Section 4.5). In this order, each mathematical model generalizes the previous one. The
different models provide some insights on the method of formalization.

Second, different interpretations of the concept probability are sketched (Section 4.6).
Together with the different mathematical models, these are discussed in relation to formaliza-
tion (Section 4.7). The concept probability thus provides an example of what formalization
can do and what it does not do. Essentially, the statement by Suppes [1968] quoted in Sec-
tion 2.4 will be confirmed: formalization does not end the debate but raises the discussion
to another level. Finally, Section 4.8 considers probability in the context of climate change
research as an example of how the concept is used (or avoided) before Section 4.9 concludes.

4.1 The concept probability

Probability is defined as “the quality or state of being probable; the extent to which some-
thing is likely to happen or be the case” [Soanes and Stevenson, 2005] by the Oxford Dictio-
nary of English. In ordinary language, we use phrases like ‘something is probable’ or ‘more
probable than another thing’. In “our ‘unconscious reasoning’ in making decisions under
uncertainty” Diaconis [2007a], probability serves to express additional information about
different possibilities, as described by de Finetti [1974]:

There are no degrees of possibility: it is possible (equally possible) that it snows on a
winter or summer day. [. . . ] Faced with uncertainty, one feels . . . a more or less strong
propensity to expect that certain alternatives rather than others will turn out to be
true. [p. 71].

1With kind permission of the author.
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A basic idea underlying the concept probability is that in the long run more probable things
happen more often. This aspect of the concept is referred to when probability is linked to
statistical regularities, as for example by Botts [1969]:

Probability theory is the study of mathematical models for random phenomena. A
random phenomenon is an empirical phenomenon whose observation under given cir-
cumstances leads to various different outcomes. [. . . ] the various possible outcomes
appear to occur with what is called “statistical regularity”. This means that the rela-
tive frequencies of occurence of the various possible outcomes appear to approach def-
inite limiting values as the number of independent trials of the phenomenon increases
indefinitely. [p. 123]

A standard example to explain what is meant by probability is that of tossing a coin.
Persi Diaconis, professor of statistics and mathematics as well as magician2, has somewhat
invalidated this example by showing that, if thrown under the same conditions, a coin al-
ways lands on the same side, and by, moreover, learning to toss the coin deterministically
by hand [see Landhuis, 2004]. However, assuming a less well-trained tosser, one for example
asserts that “a coin is fair” and expresses this by saying that in one toss the probability of
heads and that of tails are each 1/2. It is unclear what exactly this means for a single toss,
but in a long series of repetitions of the coin toss, one expects both sides to appear with
more or less equal frequency. The ‘more or less’ is where the everyday use of the concept is
hard to make precise. It seems “built into the very notion of probability” that “misleading
results”, as when a fair coin lands heads 9 out of 10 times, can occur [see Hàjek, 2007, p.
16]. Alleged coincidences [see, e.g. Spizzichino, 2009] and debates such as the one about the
famous Monty Hall problem illustrate that intuitions about probability are often contrary
to long-run observations; basic concepts such as ‘chance’ are unclear for example to stu-
dents confronted with probability theory [see Sill, 1993]. Also, psychological studies show
that people commonly violate basic rules of mathematical probability [see Kahneman et al.,
1982]. The concept thus seems far from clear in its everyday use.

Literature on the history of probability tries to explain the late emergence of the concept
in the seventeenth century.3 Hacking [1975], who traces the “emergence of probability”,
expresses a duality of the “Janus-faced” concept probability as follows.

On the one side it is statistical, concerning itself with stochastic laws of chance pro-
cesses. On the other side it is epistemological, dedicated to assessing reasonable degrees
of belief in propositions quite devoid of statistical background. [Hacking, 1975, p. 12].

For ‘statistical’ he also uses the terms ‘aleatory’ and later ‘physical’, we will use the terms
frequency and belief to refer to the two aspects of probability.

Hacking lists a number of attempts at separating these aspects into two concepts4 and
claims that “there is something wrong about” the duality of probability: “Why all these
frantic gropings for a terminology to make distinctions?”[p. 12]. Let us sketch his description
of how probability emerged. He first of all points out an old meaning of the concept probable,
deriving from Latin ‘probabilis’, which corresponds to ‘approvable’ or ‘worthy of approba-
tion’. The dictionary entry quoted above similarly gives the origin of the word probable
as: “late Middle English (in the sense of ‘worthy of belief’)” [Soanes and Stevenson, 2005].
Then, Hacking describes a Medieval distinction between knowledge and opinion, which treat
different objects: knowledge, aspired in the high sciences, concerns universal truths or can be

2The following biographical hints can be found for example in Aldous and Diaconis [1986]: Persi Diaconis
left High School at an early age to earn a living as a magician and gambler, only later to become interested
in mathematics and earn a Ph.D. at Harvard. After a spell at Bell Labs, he is now Professor in the Statisitcs
Department at Stanford. . . .

3There is literature on early ideas related to probability which we will not go into. For example, Franklin
[2001] investigates “The science of conjecture, evidence and probability before Pascal”, and Mǎıstrov [1974]
dedicates a chapter to the “prehistory of probability theory”.

4Carnap’s probability1 and probability2 are probably best known; others have suggested to distinguish
using for example the French words chance and probabilité or facilité and motiv de croire.
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established by demonstration, whereas opinion, occuring in the low sciences, “tends to refer
to belief which results from by reflection, argument, or disputation” [p. 21] by alchemists,
astrologers, miners and physicians. Such opinions are “probable when they are approved by
authority, when they are testified to, supported by ancient books.” [Hacking, 1975, p. 30].

Hacking further discusses the lack of the concept of evidence as used today and explains
the concept of sign that was in use instead. Signs could be “anything by which we may
make a prognosis” [Hacking, 1975, p. 28], for example, in a medical diagnosis not only the
symptoms observed, but just as well the constellation of the planets. The concept of evidence
emerges when a distinction is being made between natural and conventional signs, such as
signs of language.

A new kind of testimony is accepted: the testimony of nature which, like authority,
was to be read. Nature now could confer evidence, not, it seemed in some new way,
but in the old way of reading and authority. Thus: to call something probable was
still to invite the recitation of authority. But: since the authority was founded on
natural signs, it was usually of a sort that was only ‘often to be trusted’. Probability
was communicated by what we should now call law-like regularities and frequencies.
Thus the connection of probability, namely testimony, with stable law-like frequencies
is a result of the way in which the new concept of internal evidence came into being.
[Hacking, 1975, p. 44].

In conclusion, the two aspects, degree of belief and frequency, are inherently linked in the
concept probability, or, the other way around,

Aleatory probabilities have to do with the physical state of coins or mortal humans.
Epistemic probabilities concern our knowledge. [. . . ] the word ‘probability’ was an-
nexed to this pair of concepts only after 1662. [Hacking, 1975, p. 123].

While there are previous works, which from today’s point of view can be related to the
concept probability, the beginnings of probability theory are generally dated with the famous
correspondence between Pascal (1623-1663) and Fermat (1601-1665) in 1654 (published in
1679) about questions related to gambling. One finds gambling problems in earlier works,
for example in Cardano’s ‘De ludo aleae’, written around 1550, but printed only in 1663,
where the concept proclivity and the ‘ability’ to throw various combinations with several
dice occur. Galilei wrote about dice games5, observing that in throwing several dice “some
numbers are more easily and more frequently made than others” [as cited by Hacking, 1975,
p. 52].6 Further, in the work of Hobbes, which discusses conjectural signs, with more or
less assurance “according as they have often or seldom failed”, in 1650, probability “has
emerged in all but name” [Hacking, 1975, p. 48].

The term probability itself (respectively an adequate translation) occurs neither in the
letters between Pascal and Fermat, nor in the first printed textbook of probability by Huy-
gens [1657], which is inspired at the problems discussed by Pascal and Fermat. Huygens
uses the concept expectation for the fair price of a lottery.

A theoretical definition of probability is given by Jakob Bernoulli (1654-1705) in Ars
Conjectandi that was published posthumously in 1713: “Probabilitas enim est gradus certi-
tudinis, & ab hac differt ut pars á toto.” – “Probability is a degree of certainty, and differs
from certainty as a part from a whole” [as cited and translated by Shafer, 1996, p. 7].
Bernoulli also describes the “art of conjecturing” itself as

the art of measuring the probability of things as exactly as possible, to be able always
to choose what will be found the best, the more satisfactory, serene and reasonable for
our judgements and actions. [Bernoulli, 2005].

That is, the aim of this art is to support decision-making. Reasoning about uncertainty with-
out a calculus was perceived to be difficult. Bernoulli, for example, points out “a mistake
into which it would have been easy to fall, nisi nos calculus aliud docuisset” [Todhunter,

5Sopra le Scoperte dei Dadi.
6See also Chapter 5 in Mǎıstrov [1974].
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1949, p. 63]. The calculus of probability is directly referred to by the original name of
the mathematical discipline in several languages, e.g. the German ‘Wahrscheinlichkeitsrech-
nung’ for which Kolmogorov introduced his foundations. It has been dubbed the ‘logic of
uncertainty’, suggesting the comparison with logic, a “suitable superstructure” to support
intuition in reasoning [see de Finetti, 1974, p. 25].

The original mathematical superstructure, or model, to support reasoning with uncer-
tainty is today referred to as classical probability. This calculus, developed and used from
Pascal and Fermat’s times on7, shall be considered in the following section, because it gives
some insight into the concept probability itself (at least for simple cases). It thus confirms
the hypothesis that formalization can clarify the meaning of concepts.

4.2 The classical calculus of probability

A historical description of the theory of chance can be found in the work of Laplace8:

The theory of chance consists in reducing all the events of the same kind to a certain
number of cases equally possible, that is to say, to such as we may be equally undecided
about in regard to their existence, and in determining the number of cases favorable
to the event whose probability is sought. The ratio of this number to that of all the
cases possible is the measure of this probability, which is thus simply a fraction whose
numerator is the number of favorable cases and whose denominator is the number of
all the cases possible.

Probability as taught in high school today comes close to the classical calculus of proba-
bility. The basic idea is to consider a Fundamental Probability Set [Neyman, 1950], a finite
set of equally probable possibilities, here Ω. With |Ω| = n, each possibility is assigned
a probability of 1

n . Events are subsets of the set of possibilities. To all events A ⊆ Ω a
probability is associated by the rule

P (A) =
number of favourable cases
number of possible cases

=
|A|
n

. (4.1)

Laplace’s formulation above has been read as a (theoretical) definition of probability and
accused of circularity due to the “equally possible” cases:

The notion of “equally possible” cases faces the charge of either being a category
mistake (for ‘possibility’ does not come in degrees), or circular (for what is meant is
really ‘equally probable’). [Hàjek, 2007].

Recall9 the quote from de Finetti [1974] stating that there are no degrees of possibility and
asserting an equal possibility of snow on a winter and a summer day. This is not what is
meant by ‘equally possible’ in classical probability. In fact, most people would not describe
snow on a winter and on a summer day as ‘equally possible’ in the sense of Laplace’s quote,
where ‘equally probable’ is meant.

The challenge of circularity is however invalidated by Rényi [1969], partly in disguise as
Pascal10. While ‘equally possible’ and ‘equally probable’ means the same thing, a circularity
of definition is avoided if one considers the statement as a rule to establish the numerical
value of probabilities in particular cases only, that is, an operational, and not a theoretical
definition. In fact, Laplace defines “the measure of this probability” here, not the meaning of
the concept probability. Rényi considers this as given by Bernoulli’s definition, probability
as the degree of certainty. To show that there is no circularity of definition, he lets Pascal

7A detailed history of probability from the times of Pascal to that of Laplace has been published as early
as 1865 by Todhunter.

8English translation as cited by Hàjek [2007, p. 7].
9See page 35.

10Rényi [1969], titled “Letters on Probability”, presents four fictitious letters by Pascal addressed to
Fermat that provide a semi-popular and semi-historical account of classical probability. The argument here
is given by “Pascal” in the second letter as well as by Rényi in a letter to the reader concluding the book.
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conclude equal probability of all faces of a die by an argument of symmetry: it would not
be noticed if the faces were secretly renumbered. For this conclusion, it is not necessary to
measure numerical values of the probabilities beforehand, just as one can decide whether two
items are equally heavy by weighing them with a double pan balance without measuring the
weight in grams. Having established that the cases are equally probable, the measurement
of the numerical value of the probabilities reduces to a computation, the simple division of
1 by the number of cases, so that each face of the die has the degree of certainty 1

6 .
In this simple setting, the assignment of equal numbers, adding up to one, represents

the intuition that exactly one of the possibilities will turn out true while all possibilities
are considered equivalent or “equally possible”. This intuition can be considered a “clear
interpretation” of the concept:

What does probability mean? The earliest clear interpretations of probability [were]
simple gambling problems where symmetry or the open physical process of drawing
from an urn make the basic equally likely outcomes intuitively clear. [Diaconis, 2007b].

Probability here occurs as a primitive: in the simple case ‘equal probability’ is intuitively
clear. The mathematical definition (4.1) makes the degree precise, and hence, in this simple
case, the measured probabilities clarify the meaning of the concept. Once given numbers,
probabilities of events can be compared also where the symmetry argument does not apply:
consider, for example, events from two different games. Within this setting, mathematical
conclusions can be and have been drawn for several centuries. As just one relatively simple
example consider the famous question treated in the Pascal-Fermat correspondence: “In
throwing two dice, how many tosses are needed to have at least an even chance of getting
double-six?”[as in Hacking, 1975, p. 75]. Answers to such questions can be considered sup-
port for reasoning with uncertainty for the people who intend to play these games.

However, the great interest in gambling problems, rather than truly practical, seems to
be motivated from theoretical considerations: games, and probably only games, provide situ-
ations with intuitively equivalent possibilities. Of course, the assumption that, for example,
a die is fair is extramathematical.11 Classical probability has been criticized for example be-
cause it is generally unclear how to obtain the equivalent possibilities to which the concept
can be applied in situations other that simple games. Possibilities are judged equivalent
given symmetrically balanced evidence or in the absence of evidence. The latter “principle
of indifference”, assuming the equality of probabilities for lack of information, has been ac-
cused of “extracting information from ignorance” [Hàjek, 2007, p. 10] and can be used in
incompatible ways.12 Gnedenko rejects the principle of indifference for a non-symmetrical
coin.

Clearly one should not say that in the first, or second, or any toss of the coin the
probability of a certain side is 1

2
, it is simply unknown. Its determination or estimation

should be made not by doubtful means which deprive the notion of probability of its
objective role as a numerical characteristic of definite real phenomena. [As cited by
Mǎıstrov, 1974, p. 145].

Nevertheless, it seems easy enough to accept the basic assumption of a given Fundamental
Probability Set in order to do some mathematics. The slightly more general mathematical
model where different probabilities may be assigned to the finitely many given possibilities
has also been studied extensively, generally without however making explicit an operational
definition that would yield such probabilities. The very inventors/discoveres of classical
probability see a connection between the games studied and a theory of probability. While
Huygens merely hopes his reader notices the “foundations of a new theory” underlying his

11At first sight, the example of an urn from which coloured tickets are drawn seems clearer: looking at
the number of tickets of each colour in the urn, probabilities seem more intuitive than those of certain faces
of a die, which might be invisibly loaded. However, the assumption that any ticket is drawn from the urn
with equal probability is just as basic as that of the fairness of the die.

12See, for example, Hàjek’s [2007] comments on Bertrand-style paradoxes.
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treatment of games13, Bernoulli explicitly states that the games are purposefully constructed
in such a way that classical probability applies:

We thus see that for correctly conjecturing about some thing, nothing else is required
than both precisely calculating the number of cases and finding out how much more
easily can some of them occur than the others. Here, however, we apparently meet
with an obstacle since this only extremely seldom succeeds, and hardly ever anywhere
excepting games of chance which their first inventors, desiring to make them fair, took
pains to establish in such a way that the number of cases involving winning or losing
were determined with certainty and known and the cases themselves occurred with the
same facility. [Bernoulli, 2005]

At the beginning of the eighteenth century, Montmort even points out that games are a
pretext, having in mind “the enjoyment of the mathematicians and not the advantages of
the players; it is our opinion that those who waste time on games fully deserve to lose their
money as well.” [As cited by Mǎıstrov, 1974, p. 77].

While games are considered the most intuitive examples, even here the Fundamental
Probability Sets are not necessarily obvious. Again, the example of tossing several dice is
illustrative and long since considered. For tosses of three dice, Galilei explains that “some
numbers are more easily and more frequently made than others, which depends on their
being able to be made up with more variety of numbers” [as cited by Hacking, 1975, p. 52].
A distinction has to be made between partitions and permutations: throwing a sum of 3 or
4 with three dice, both numbers can be made up by one partition, the 1-1-1 for 3 and the
1-1-2 for 4. However, the latter arises from three permuations, 1-1-2, 1-2-1, and 2-1-1, while
there is only one permutation making up 1-1-1. It seems obvious today that the equally
probable alternatives here are the permutations, but even “Leibniz once made the mistake
of supposing that with dice partitions (rather than permutations) form the Fundamental
Probability Set.” [Hacking, 1975, p. 52]. For example, for photons and electrons this set has
to be obtained differently. The case for dice is merely a well established example by now:

It is not obvious that permutations rather than partitions are equally probable. Indeed
it is arguably an empirical fact about dice that can only be learned from observation.
[Hacking, 1975, p. 51].

In fact, Galilei’s explanation is motivated by the fact that “it is known from long obser-
vation that dice players consider 10 and 11 to be more advantageous than 9 and 12.” [as
cited by Hacking, 1975, p. 51]. Here, the frequency aspect of probability becomes explicit.
This aspect is not immediate in classical probability. There is, for example, no obvious Fun-
damental Probability Set for a coin that is not ‘fair’. With the generalization that different
probabilities may be attached to the two possibilities ‘heads’ and ‘tails’, a model of an unfair
coin suggests itself, however, how to choose the numbers is then a question that cannot be
answered within the mathematical model. That this question is still up to debate will be
seen in Section 4.6.

Nevertheless, applications of classical probability to statistical questions were carried out
right from the beginning. Huygens was the first to apply methods of probability theory to
demographic statistics in 1669, and Euler in the 1760s posed and solved many problems that
later became the basis of mathematical demography [see Mǎıstrov, 1974]. Hacking [1975]
states that already at Galilei’s times “the probability calculus is a calculus of frequencies.”
[p. 53] and indicates the years 1675/76 as the time by which “it seems, problems about
dicing and about mortality rate had been subsumed under one problem area” [p. 109].

A first mathematical result that explicitly clarifies the connection between classical prob-
ability and the frequency aspect of probability is Bernoulli’s law of large numbers stating
that, when given probabilities, relative frequencies converge to these in a simple setting.

13“I would like to believe that in considering these matters closely, the reader will observe that we are
dealing not only with games but rather with the foundations of a new theory.” [As cited by Mǎıstrov, 1974,
p. 58].
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Bernoulli calls upon common sense to make this connection work the other way around: he
wants to measure probability values from relative frequencies in long sequences:

what we are not given to derive a priori, we at least can obtain a posteriori, that is, can
extract it from a repeated observation of the results of similar examples. Because it
should be assumed that each phenomenon can occur and not occur in the same number
of cases in which, under similar circumstances, it was previously observed to happen
and not to happen. [. . . ] This empirical method of determining the number of cases
by experiment is not new or unusual. [. . . ] note also that it is not enough to take one
or another observation for such a reasoning about an event, but that a large number
of them are needed. Because, even the most stupid person, all by himself and without
any preliminary instruction, being guided by some natural instinct (which is extremely
miraculous) feels sure that the more such observations are taken into account, the less
is the danger of straying from the goal. [Bernoulli, 2005, p. 18]

This is an operational definition of probability of frequentist type as will be seen in Section
4.6.1. Problems with this a posteriori measurement of an a priori probability are also
discussed there. The search for a means to

determine the probability of a future or unknown event not on the basis of the number
of possible combinations resulting in this event or in its complementary event, but
only on the basis of the knowledge of order of familiar previous events of this kind
[Condorcet, 1785, as cited by Todhunter, 1949, p. 377]

is ongoing. As soon as one leaves the situation of equally probable alternatives, the measure-
ment question for probability is not answered by the mathematical model. It is, however,
considered fundamental, for example, by Boldrighini [2009] who points out that the ques-
tion how to obtain numbers from a situation of uncertainty seems to be implied by the
Italian and French names of the discipline (“calcolo delle probabilità”, respectively “calcul
des probabilités”) which literally translate to “calculation of probabilities” [see p. 256]. Ha-
jek14 uses ‘ascertainability’, the requirement that there be some method for obtaining values
of probabilities, that is, measure them, as a criterion in the discussion of interpretations of
probability.

At the same time it is considered essential to distinguish the meaning from methods of
measurement, for example, by Coletti and Scozzafava [2002], who claim that

ignoring this distinction would be analogous to identifying the concept of temperature
with the numbers shown by a thermometer, [so that one would not be] entitled to speak
of temperature in a room without a thermometer [p. 24].

The questions of meaning and measurement were seen to be closely related for classi-
cal probability. In the vulnerability context, it will be mostly measurement that clarifies
meaning. We will return to these questions and to the development from classical probabil-
ity to today’s standard probability theory in Section 4.7. Here, we jump directly into the
mathematics in the following section.

4.3 “Standard” mathematical probability

This section presents some basics of what is today found in most probability textbooks.15

The axioms go back to Kolmogorov’s formalization of probability, which “has achieved the
status of orthodoxy”[Hàjek, 2007].

4.3.1 Kolmogorov’s axioms

Kolmogorov’s axioms embed probability into measure theory. Since the functions associating
probabilities to events in this model are measures, the term probability measure will be used.

14Based on Salmon [1966].
15The selection of presented material is driven by what is required in Chapter 6. It does not aspire

completeness in any sense.
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Definition 4.3.1. A probability measure is defined as a measure with unit mass, that is, a
function P : F → [0, 1] defined on a measurable space (Ω,F), with

(i) P (Ω) = 1 and

(ii) For disjoint sets A1, A2 ∈ F , P (A1 ∪ A2) = P (A1) + P (A2). (additivity or finite
addivity16)

(iii) P (
⋃∞

i=1 Ai) =
∑∞

i=1 P (Ai) for disjoint A1, A2, . . . ∈ F (σ-additivity or countable ad-
divity).

The triple (Ω,F , P ) is called a probability space, Kolmogorov’s term ‘probability field’ is not
used anymore.

From the first two axioms one can immediately deduce that P (∅) = 0, P (Ac) = 1−P (A)
for all A ∈ F , and P (

⋃n
i=1 Ai) =

∑n
i=1 P (Ai) for any finite number n of disjoint A1, . . . , An ∈

F , in fact, finite additivity is often stated in this form. Another immediate property of (prob-
ability) measures is “monotonicity”: if A ⊆ B then P (A) ≤ P (B).

The mathematical concepts come with an interpretation along the following lines. The
non-empty set Ω represents the possible outcomes of a random experiment, where ‘experi-
ment’ is to be understood in a very general sense, it might be any situation with more than
one possible outcome depending on chance. The ω ∈ Ω are referred to as elementary events.
Ω is also known as the sample space and its elements ω as sample points. Mathematically,
the only restriction on Ω is that it is not empty. Otherwise, it may be arbitrary, in particular
infinite and uncountably so. When representing an experiment, it is of no harm to include
impossible outcomes in Ω, however, all possible outcomes should be included.

Events are represented by subsets of Ω. An event is a statement the validity of which
depends only on the outcome of the experiment. The analogy between events and subsets
derives from the fact that for each outcome one can decide whether an event has taken place
or not, and likewise, for each ω, one can decide wether ω ∈ A ⊆ Ω, or ω 6∈ A for a given set.

The σ-algebra F over Ω consists of the events under consideration. Its use is mainly
motivated from measure theory. For didactical reasons, Rényi [1970] introduces the σ-
algebra as the set of observable events, pointing out that due to the degree of precision
with which the outcome is measured “not every subset of Ω corresponds in this way to an
event which can really be observed and which is of interest.”[p. 2]. Closure under the set
operations union and complement may be probabilistically motivated by the fact that if one
can observe some event, one can certainly also observe that it has not occured, i.e. observe
its complement, and for a sequence of events one can also observe whether “at least one” of
them has occured, i.e. their union is an event as well.

The function P associates to each event its probability. That the certain event has
probability 1 is a norming convention, one could use 100 and express probabilities in percent
etc. However, that P (Ω) is finite is required to express a degree, fitting Bernoulli’s theoretical
definition of probability as a degree of certainty.

4.3.2 Basic properties

If the sample space is finite, say Ω = {ω1, . . . , ωn}, a probability measure is well-defined by
assigning each ωi ∈ Ω a probability P ({ωi}) = pi ≥ 0 with the condition that

∑n
i=1 pi = 1.

The probability of any subset of Ω is defined as the sum of the probabilities of its elements

P (A) =
∑

i:ωi∈A

pi. (4.2)

16Often, only the condition of σ-additivity is stated. It includes finite additivity because, except for a
finite number of sets, all sets in the sequence can be the empty set. The latter is disjoint of itself, since, not
having any elements, it does not share any elements with itself.
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The σ-algebra on which P is defined can be (and by default is) chosen as the powerset of
Ω. Additivity and the norming condition P (Ω) = 1 follow immediately from the definition
of P in (4.2), while countable additivity is vacuously satisfied. There are no (truly) infinite
sequences of disjoint sets in P(Ω), which, Ω being finite, is itself finite. In fact, on a finite set
Ω, all probabilities are of this form.17 A special case is that of classical probability, where all
ωi are asigned equal probability, that is 1

n . As was seen, computing the probability of a set
reduces to counting its elements and dividing by the number of elements of the sample space.
Many probability textbooks, and also Kolmogorov’s Grundbegriffe, introduce probability for
finite sample spaces first. In such treatments of “elementary probability theory” the axiom
of finite additivity is given instead of the countable version.

Somewhat more generally, the same construction holds when the (σ-)algebra under con-
sideration is finitely generated. Again, a probability measure (finitely additive, and vacu-
ously countably additive) is fully determined by assigning probability values to the sets in
the partition which generates the algebra, the constituents.

Remark 4.3.2. If A is generated by a finite partition {A1, . . . , An} of Ω, then P (A) =∑
Ai⊆A P (Ai) for all A ∈ A. That means, a probability measure on a (σ-) algebra that

is generated by such a finite partition is completely determined by the values given to the
elements Ai of the partition.

An analogous construction of probability measures can be carried out when the sample
space Ω is countably infinite, say Ω = {ω1, ω2, . . .} (or, again, the σ-algebra is generated by a
countable partition). One assigns values pi to the elements ωi of Ω, now under the condition
that

∑∞
i=1 pi = 1, and defines P on P(Ω) via formula (4.2). According to Theorem 3.2.2,

this probability measure can be defined on the whole powerset. The resulting P is countably
additive. Probability measures of the above types are called discrete probability measures.

When the set Ω is uncountable, for example, when Ω = R, measure theory starts playing
a role. As seen in Section 3.2, probability measures on the whole powerset of Ω can be
defined only when they concentrate the mass on at most countably many points in Ω. For
all other cases, smaller σ-algebras are needed. OnR it is common to work with the σ-algebra
of the Borel-sets B(R).

A continuous, that is, not discrete, probability measure P on (R,B(R)) can be charac-
terized by its distribution function F : R → [0, 1], defined by F (x) = P ((−∞, x]) for all
x ∈ R. A probability measure is also referred to as a probability distribution in the literature,
and sometimes the terms probability measure/distribution on the one hand and distribution
function on the other are used interchangeably without considering that values in [0, 1] are
assigned in the first case to sets and in the second case to real numbers. A sloppy use of the
terms can be somewhat excused by the following result.

Theorem 4.3.3. The distribution function F : R→ [0, 1] of any probability measure P on
(R,B(R)) has the following properties:

1. it is increasing, that is, for x ≤ y, F (x) ≤ F (y),

2. it is right-continuous, that is, limh↓0 F (x + h) = F (x), and

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Conversely, for any function F : R→ [0, 1] with these properties there is a (unique) proba-
bility measure P on (R,B(R)) with F (x) = P ((−∞, x]) for all x ∈ R.

Here, the term probability distribution will be used in a rather non-technical sense to refer
to a function assigning probabilities to events, where it is not specified whether a probability
measure or a finitely additive probability is considered. The intuition is that of probability
as a mass which is distributed over the different possibilities.

17Technically speaking, one could choose a smaller σ-algebra, but this is rarely or never seen.
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4.3.3 Further concepts

This section introduces some mathematical concepts that are needed elsewhere. Mathemat-
ical detail is skipped where it is not required.

Concerning functions, contemporary probability theory uses a terminology and notation
which is rather far from standards in many other branches of mathematics. This is probably
due to the late introduction of Kolmogorov’s axioms, which use functions for a concept that
had long been studied but not precisely defined. Only in this axiomatization it came to be
associated with functions defined on an underlying sample set: random variables. Nowadays,
random variables are measurable functions with target18 (R,B(R)). The term “random
variable” for a (non-random) function of a “random” argument may be unfortunate, but
is widely accepted.19 It is now common to denote random variables with capital letters
X,Y, . . .20 unlike in other branches of mathematics where small letters are used to denote
functions. We will stick to this convention here.

Measurability of a random variable X : Ω → R means that for all x ∈ R, the set
X−1((−∞, x]) is an element of F , which in probability texts is denoted as {X ≤ x} ∈ F ,
abbreviating {ω ∈ Ω|X(ω) ≤ x} ∈ F .

Because a random variable is a measurable function, it induces a probability measure on
(R,B(R)). This is referred to as the distribution of the random variable and denoted PX .
It is defined for Borel-sets B ⊆ R by

PX(B) = P (X−1(B)) = P ({ω|X(ω) ∈ B}) also written as P (X ∈ B).

Its distribution function is denoted and defined FX(x) = P (X ≤ x) for x ∈ R.
The expected value of a random variable is defined as an integral of Lebesgue type.

E(X) =
∫

XdP.

For discrete probability measures, this reduces to the weighted sum of values the random
variable takes, where the weights are the probabilities. When the probability measure is
to be emphasized, the notation EP (X) is chosen. The operator itself is also known as
expectation.

Finally, for a simple model of vulnerability in Chapter 5, the concept of a Markov chain
is needed. It will be introduced for a simple special case only.21

Definition 4.3.4. Consider for simplicity22 a finite set S, called the state space of the
Markov chain. Consider its elements numbered from 1 to n. The underlying idea is that of
a dynamical system which can be in any of the n states and which, when in a given state at
a certain point in time, makes its transition to a next state at the next time point according
to a probability measure over the n states. The further assumption that this probability
measure does not depend on the time point will for simplicity be used here, such Markov
chains are called homogeneous in time.

A stochastic matrix, the transition matrix provides the transition function. Each row
contains a probability measure over the n states, that is, all entries are elements of [0, 1] and

18Sometimes all measurable functions are referred to as random variables, and the real valued ones as real
random variables.

19Some probability textbooks provide pedestrian explanations to help getting used to the term, as e.g.
Jacod and Protter [2000]:

A random variable represents an unknown quantity (hence the term variable) that varies not
as a variable in an algebraic relation (such as x2 − 9 = 0), but rather varies with the outcome
of a random event. Before the random event, we know which values X could possibly assume,
but we do not know which one it will take until the random event happens. This is analogous
to algebra when we know that x can take on a priori any real value, but we do not know which
one (or ones) it will take on until we solve the equation x2 − 9 = 0 (for example). [p. 21].

20Kolmogorov [1956] uses small x-es.
21The usual introduction of conditional probabilities and stochastic processes will be bluntly circumvented.
22A further advantage is avoiding the decision for or against countable additivity, see next section.
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the matrix has column sums 1. The probability measure in row i gives the probabilities of
next states when starting out in the state numbered i. The matrix entry pij in row i and
column j is the transition probability from state i to state j. The probability of a certain
sequence of states, or a trajectory of the system, can be computed from these values when
given an initial probability measure, which assigns each state the probability of starting
there. The probability of a given sequence s1, s2, . . . sk is simply the probability of starting
in state s1, multiplied with the probability of transiting from s1 to s2, which is ps1s2 , etc,
multiplied with psk−1sk

. A frequently used special case is that of a fixed starting state, then
the initial probability measure is the concentrated probability in that state.

4.3.4 Remarks on formalization

Kolmogorov proposed his axioms for probability in a time where “probability was generally
not considered to be mathematics, and many people thought it was only partly possible to
mathematise probability” [Boldrighini, 2009, p. 255]. However, Kolmogorov claims:

The theory of probability, as a mathematical discipline, can and should be developed
from axioms in exactly the same way as Geometry and Algebra. [Kolmogorov, 1956,
p. 1].

His focus is on probability as a mathematical discipline, and he states the task he had set
himself as “putting in their natural place, among the general notions of modern mathematics,
the basic concepts of probability theory - concepts which until recently were considered to
be quite peculiar” [Kolmogorov, 1956, p. v]. This aim has been met, as e.g. Rényi [1969]
comments: Kolmogorov not only provided logically sound foundations for probability, but
also inserted it into the “blood circulation” of modern mathematics [see p. 84].

Kolmogorov aims at “the utmost simplicity both in the system of axioms and in the
further development of the theory”, wherefore he choses as the “most suitable” primitives the
concepts of a random event and its probability [Kolmogorov, 1956, p. 2]. Using these as the
undefined concepts implies that in this mathematical model the “question what probabilities
are and how they are calculated is left open, or better, is placed inside something that is
similar to a platonic archetype.” [Boldrighini, 2009, p. 257]. In fact, Kolmogorov himself
distinguishes the aim of his work from those formalizations23 of probability in which

the concept of probability is not treated as one of the basic concepts, but is itself
expressed by means of other concepts. However, in that case, the aim is different,
namely, to tie up as closely as possible the mathematical theory with the empirical
development of the theory of probability. [Kolmogorov, 1956, p. 2].

Kolmogorov is interested in the mathematical theory that sets in once probabilities are given.
This theory is developed in the framework of measure theory, based on “analogies between
measure of a set and probability of an event” [Kolmogorov, 1956, p.v], which he states have
been fully explained for the first time by Fréchet [see p. 8].

Kolmogorov is not concerned with justifying all axioms posed as necessary to describe
the concept probability. On the contrary, he explicitly states that the choice of the axiom of
countable additivity, “found expedient in researches of the most diverse sort”, is an arbitrary
choice, and that “it is almost impossible to elucidate its empirical meaning” [Kolmogorov,
1956, p. 15]. He also explicitly allows the mathematical theory to go beyond statements
which can be directly interpreted in terms of the concept probability. Considering finite
probability spaces an “image (idealized, however) of actual random events”, yet, infinite
spaces “will still remain merely a mathematical structure” [Kolmogorov, 1956, p. 17].

Kolmogorov’s answer to the objection of having made probability theory a part of mea-
sure theory was that

probability differs from measure theory in its intuitive-conceptual dimension, which
is not irrelevant in that it determines how problems are posed, and which to a great
extent derives from the old “logic of uncertainty”. [Boldrighini, 2009, p. 257].

23He uses the term “postulational systems” on page 2.



46 CHAPTER 4. PROBABILITY

However, the mathematical model is not as closely connected with the intuitive use of the
concept probability as will be seen in de Finetti’s model.

Answers to the questions what probability means and how it can be measured are pro-
vided elsewhere by Kolmogorov. For example, in the entry ‘probability (mathematical)’ in
the Encyclopedia of Mathematics, he gives the following theoretical definition of the concept
probability:

A numerical characteristic expressing the degree to which some given event is likely to
occur under certain given conditions which may recur an unlimited number of times.
[Kolmogorov, 1991, p. 301].

This definition places the concept immediately into a mathematical setting by defining it
to be a “numerical characteristic”. Instead of one operational definition for measuring this
“degree”, he proposes several measurement rules for different cases:

The numerical value of a probability may sometimes be obtained from its “classical”
definition [. . . ]. In other, more complicated cases, a statistical approach is needed to
determine the numerical value of a probability. [Kolmogorov, 1991, p. 302].

Further, Kolmogorov distinguishes cases where a “definite probability” exists from those,
where this is not the case:

The assumption that a definite probability (i.e. a completely defined fraction of the
number of occurrences of an event if the conditions are repeated a large number of
times) in fact exists for a given event under given conditions is a hypothesis which
must be verified or justified in each individual case. [Kolmogorov, 1991, p. 302].

However, he does not make more precise how to verify this hypothesis, that is, the domain
of applicability of the concept probability remains vague.

Kolmogorov’s probability axioms are differentially credited with some of the benefits of
formalization discussed in Section 2.4. Kolmogorov himself sees mathematical probability
as a tool that increases precision compared to the ordinary language use of the concept.

The mathematical probability may serve as an estimate of the probability of an event
in the ordinary, everyday-life sense, i.e. it may render more precise ‘problematic’ state-
ments usually expressed by the words ‘possibly’ , ‘probably’, ‘very probably’, etc. [Kol-
mogorov, 1991, p. 302].

However, mathematical probability, according to Kolmogorov, is not intended to clarify the
ordinary language concept as such, and is explicitly stated not to explain its meaning.

. . . neither [the] axioms nor the classical approach to probability nor the statistical
approach fully explains the real meaning of the concept of “probability”; they are
merely approximations to a more and more complete description. [Kolmogorov, 1991,
p. 302].

De Finetti formulates rather radically that he does not concede to Kolmogorov’s axioms,
which “abstractly talk about relations among undefined objects” [de Finetti, 2008, p. 2],
the benefit of clarifying the meaning of probability: “. . . some axioms for probability are
introduced [. . . ], without one being able to figure out, unless one knows it already, what
‘probability’ means.” [de Finetti, 2008, p. 2].

On the other hand, Suppes [1968] refers to Kolmogorov’s axioms of probability theory
as a paradigmatic example of how formalization brings out the meaning of concepts in an
explicit fashion, pointing out that previous to these axioms “there was much confusion about
even the most elementary properties of probability”. We will go into this in the discussion
section (4.7).

For now, we conclude that Kolmogorov’s axioms do not explain meaning and measure-
ment of probability, because the concept is considered a primitive. Nevertheless, the axioms
are perceived as providing some clarity in a situation of confusion. While this formalization
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of probability aims at providing the mathematical foundations for a mathematical theory,
the formalization in Section 4.5 puts the focus between concept and mathematics rather dif-
ferently. Before turning to this formalization, the concept of finitely additive probabilities,
generalizing probability measures, will be introduced and compared to these.

4.4 Finitely additive probability

This section introduces finitely additive probabilities. These generalize Kolmogorov’s prob-
ability measures and have been studied, for example by Dubins and Savage [1965], Dubins
[1974], Purves and Sudderth [1976]. They are, however, generally not taught in courses of
‘probability theory’. One reason may be that one cannot make use of convenient results
from measure theory.

In this section, the term probability is used also to refer to the function that assigns
probabilities to events. Since it will always be used together with the qualifyiers “finitely
additive”, there should not be any risk of confusion between the function and its values for
some events. The term probability measure is reserved for a countably additive function
defined on a σ-algebra throughout, which is also why finitely additive probabilities are not
referred to as ‘measures’ here. In Section 4.5 on de Finetti’s formalization of probability we
will use probability assignment to avoid confusion.

Definition 4.4.1. A finitely additive probability on (Ω,A) is a function P : A → [0, 1] from
an algebra A over Ω to [0, 1] that satisfies the two axioms:

A1 P (Ω) = 1

A2 for any A,B ∈ A such that A ∩B = ∅, P (A ∪B) = P (A) + P (B).

That is, comparing with Definition 4.3.1 of probability measures, an algebra substitutes
the σ-algebra, and the axiom of countable additivity is dropped. Since any σ-algebra is an
algebra and any countably additive function is finitely additive, probability measures are
finitely additive probabilities, but not vice versa.

It was already seen that in the case of a finite set Ω or a finitely generated algebra on Ω
the axiom of countable additivity is not needed, and hence in this case there is no difference
between probability measures and finitely additive probabilities.

A countable set Ω is the simplest case where differences arise.24 A discrete probability
measure can be defined on the powerset by assigning values summing to 1 to all ω ∈ Ω.
There are finitely additive probabilities for which the construction is not so simple. An
illustrative example is the uniform distribution on the natural numbers, Ω = N. A prob-
ability measure giving equal probabilities to all natural numbers does not exist: if the
value for each natural number were 0, the axiom of countable additivity would imply that
P (N) =

∑
n∈N 0 = 0 6= 1, which violates the norming condition. On the other hand, if the

value were any positive ε, any set with more than 1/ε elements would be assigned a prob-
ability > 1, which equally violates the norming condition. De Finetti criticizes countable
additivity as an axiom for probability theory, for example, by the following story about an
individual who wishes to evaluate probabilities for the events in a countable partition.

Someone tells him that in order to be coherent he can choose the pi in any way he likes,
so long as the sum = 1 (it is the same thing as in the finite case, anyway!)

The same thing?!!! You must be joking, the other will answer. In the finite case, this
condition allowed me to choose the probabilities to be all equal, or slightly different
or very different; in short, I could express any opinion whatsoever. Here, on the other
hand, the content of my judgements enter into the picture: I am allowed to express
them only if they are unbalanced . . . [de Finetti, 1974, p. 123].

24The same could be stated more generally for a countable partition of an arbitrary set Ω.
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In fact, countable additivity requires probability measures on N which assign positive prob-
ability to all n ∈ N to be heavily unbalanced: the sum converging to 1 means that for any
ε > 0 one finds a finite number of the n’s, which together have a probability > 1 − ε. De
Finetti comments in brackets:

(In such circumstances, I am tempted to say that the events ‘are not countably infinite’
but ‘a finite number – up to trifles’.) [de Finetti, 1974, p. 122].

Contrarily, in the finitely additive setting, one can consider a uniform distribution on N
that assigns all n ∈ N the same probability. The probability of each n still has to be zero,
however, the infinite sum is allowed to be zero in this case, because only finite additivity
is assumed. The uniform distribution assigns to a set A ⊆ N its “relative frequency”, for
example, the probability of the even numbers is 1

2 , that of numbers divisible by 3 is 1
3 , and

so on. More precisely, the probability of a set A is defined as follows: consider for each
n ∈ N the set {1, . . . n}, that is, the first n natural numbers, and let an denote the number
of elements of A contained in that set. Then, P (A) = limn→∞(an/n).

Especially being used to standard probability theory, it may first seem unintuitive that
the positive probability of an infinite set (such as the even numbers) cannot be obtained
by summing up the probabilities of its elements. Generally, in a countably infinite Ω, the
probability of a countably infinite set A ⊆ Ω is

P (A) ≥
∑

ω∈A

P ({ω})

while under the condition of countable additivity, equality would hold. However, a similar
effect occurs for the case of uncountably infinte sets and countably additive measures: the
probability of a set may not necessarily be deduced from those of its elements, it is bounded
below by their “sum”25 but may be strictly greater.

In fact, considering functions defined on a class of subsets of a given set Ω, one can
roughly say that these reduce to functions defined on the elements of that set

• both under the finite and the countable additivity condition for finite Ω,

• not under finite but under countable additivity for countably infinite Ω,

• and neither under finite nor under countable additivity for uncountably infinite Ω.

Roughly speaking, the finitely additive setting makes the same difference between finite
and infinite sample spaces that the countably additive setting makes between finite and
countable sample spaces on the one hand and uncountably infinite ones on the other hand.
This difference can also be stated as an answer to the question which kind of unions of
events with probability zero may have positive probability. Finite unions of zero probability
events always have zero probability for both additivity conditions, while countable unions of
zero probability events may have positive probability for finitely additive probabilities but
not for probability measures. Finally, uncountable unions of zero probability events may
have positive probability in both cases. A critique of the axiom of countable additivity by
de Finetti [1974] illustrates an interesting effect of countable additivity. In the context of
the uniform distribution on a countable set, one finds the following sentences:

. . . we suspect ‘Adhockery for mathematical convenience’ – because the distinction
between finite and infinite has without doubt a logical and philosophical relevance,
whereas it might seem strange to draw the crucial distinction between finite and non-
denumerable on the one hand, and countable on the other. [p. 121].

This distinction here is that between existence and non-existence of a uniform distribution,
which can be defined under countable additivity for finite and uncountably infinite sets,

25Leaving out of consideration the problem of defining uncountable sums here, since the statement is used
for intuitive illustration purposes only.
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but not for countably additive sets. The questions considered above, which unions of zero
events can have positive probability and whether a probability function is completely defined
by assigning values to the elements of the sample space, drew a different distinction under
countable additivity: finite and countably infinite versus uncountably infinite. This is found
in the German translation: “während es eigenartig erscheinen würde, die ganz wesentliche
Grenze zwischen endlich und abzählbar einerseits und nicht abzählbar andererseits zu set-
zen.” [de Finetti, 1981, p. 151]. Both distinctions seem more of an adhockery than the simple
distinction between finite and infinite. Which one was meant, was unfortunately not found
out, because the original was not available.

As illustrated by the above example, a finitely additive probability is not fully determined
by assigning values to the elements of Ω in the case where Ω is infinite. Assigning zero
probability to all elements n of N, one can conclude that the probability of any finite
subset of N is zero, but no restrictions follow for infinite sets. This is similar for continuous
probability measures on (R,B(R)), saying that each singleton set has probability zero does
not give any further information about the probability measure, this statement is already
contained in the qualifier “continuous”. According to Theorem 4.3.3, these probability
measures are fully described by distribution functions. This is not the case under finite
additivity, as extensively discussed by de Finetti [1974, Chapter 6]. This is one of the points
where mathematical complications arise for finitely additive probabilities as compared to
probability measures. Convenient tools for probability measures do not fully describe a
finitely additive probability. A corresponding tool for these does not seem to be available.

Further mathematical complications arise with respect to integration. Standard proba-
bility theory, being based on measure theory, can and does make use of Lebesgue’s integral,
yielding a unique well-defined integral value for all bounded measurable functions. For in-
tegration in the finitely additive setting, there is no correspondingly simply defined class of
functions which yields a definite integral value. De Finetti claims that “the case for con-
signing the Riemann integral to the attic now that the Lebesgue integral is available has not
itself been proved.” [de Finetti, 1974, p. 231]. In many cases where the Riemann integral
gives only an upper and a lower bound, the Lebesgue integral provides a well-defined value.
De Finetti [1974] criticizes “a preconceived preference for that which yields a unique and
elegant answer even when the exact answer should instead be ‘any value lying between these
limits’” [p. 231] and argues that the indetermincay of the Riemann integral “may very well
have an essential meaning” [p. 231]. Integration with respect to finitely additive probabilities
is considered in Section 6.4.

As stated in Section 3.2, countably additive measures cannot be extended to all subsets
of an infinite set unless they are discrete measures. The domain of definition of measures is
therefore restricted to a suitable σ-algebra of measureable sets. This measurability condition
for sets and functions is not perceived as a problem in applications, in fact, Williams [1991]
states that “although not all sets are measurable, it is always the case for probability theory
that enough sets are measurable” [p. 15]. De Finetti’s statement

Never mind, it might be argued: measurable sets will suffice. But from what point
of view? Practically speaking, the intervals themselves were perhaps sufficient. From
a theoretical standpoint, however, is there any justification for this discrimination be-
tween sets of different status: the orthodox which we are permitted to consider, and
the heretical which must be avoided at all costs? [de Finetti, 1974, p. 230]

could be seen as a direct response to this.
Unlike probability measures, finitely additive probabilities are extendable to the whole

powerset of any set. While the “convenience” of countable additivity is often pointed out,
this is one of the points where finite additivity proves to be more convenient. The extend-
ability result and its discussion are delayed to Section 4.5.3.

Countable additivity can be viewed as a form of continuity, due to the following result.
For a proof, see for example, Jacod and Protter [2000, p. 7].
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Theorem 4.4.2. For a finitely additive probability P : F −→ [0, 1] defined on a σ-algebra
F , the following are equivalent.

1. The axiom of countable additivity, see Definition 4.3.1 (iii).

2. If An ∈ F and An ↓ ∅, then P (An) ↓ 0.

3. If An ∈ F and An ↓ A, then P (An) ↓ P (A).

4. If An ∈ F and An ↑ Ω, then P (An) ↑ 1.

5. If An ∈ F and An ↑ A, then P (An) ↑ A.

where the notation An ↓ A means that An+1 ⊆ An for all n ∈ N, and ∩∞n=1An = A, and
similarly, An ↑ A means An ⊆ An+1 for all n ∈ N, and ∪∞n=1An = A.

That is, for probability measures, one may take limits which for finitely additive probabil-
ities one cannot always take. Finitely additive probabilities are, however, “mathematically
convenient” in a different continuity question. Limits of finitely additive probabilities are
finitely additive probabilities, while limits of probability measures need not be probability
measures (they are still finitely additive probabilities, of course). As discrete masses can
become diffuse in the limit, countable additivity may not be preserved in this limit. An
example is given by a sequence of probability measures assigning a probability of 1

n to each
of the first n numbers in N. The limit of these uniform distributions on finite sets is the
above discussed uniform distribution on the natural numbers, which was seen not to qualify
as a probability measure. Roughly speaking, for probability measures one may take limits
at the level of events, or “within” the measure, while for finitely additive probabilities one
may take limits at the level of the probability distribution itself.

Further mathematical differences are discussed in the literature, but are beyond the scope
of this work. As some references, we mention de Finetti [1972] and Seidenfeld [2001], see
also references in the latter.

Finally, countable additivity has one big advantage in applications: it is established
simply by what is taught. As an example, Markov chains and processes in the σ-additive
setting are standard in any basic probability course and thus textbook. On finitely additive
Markov chains there are some works [e.g. Ramakrishnan, 1980, 1981], but these cannot be
considered basic probability knowledge. Having extensively quoted de Finetti already, let
us now come to his formalization of probability.

4.5 De Finetti’s probability

This section presents a simplified version, adapted to the needs of this work, of the mathe-
matical model of probability proposed by de Finetti [1974]26.

De Finetti distinguishes

theories which [. . . ] axiomatize the formal properties of probability as a real-valued
function defined on entities called “events”, without reference to any concrete inter-
pretation, [from theories] that attempt to express axiomatically particular concrete
interpretations of probability. [de Finetti, 1972, p. 68].

While Kolmogorov’s axioms belong to the first group, de Finetti’s formalization of proba-
bility is of the second kind: he formalizes the subjective interpretation of probability. This
considers probability not as a property of some process in the real world such as coin tossing,
but as a subjective estimate in a situation of uncertainty. (Subjective) probability is defined
as “the degree of belief in the occurence of an event attributed by a given person at a given
instant and with a given set of information.” [de Finetti, 1974, p. 3]. It always refers to a

26This book sums up de Finetti’s work on probability, published in many works from the late 1920s on.
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fixed (real or fictitious) reference person. This person is traditionally referred to as ‘You’ in
subjective probability texts.

De Finetti’s formalization provides an answer to the question “where the probabilities
come from”. In fact, the author gives an operational definition of probability, a rule how
to measure the probabilities assigned to events by a reference person. He further stresses at
every opportunity that

To me, mathematics is an instrument which should conform itself strictly to the exigen-
cies of the field in which it is to be applied. One cannot impose, for his own convenience,
axioms not required for essential reasons, or actually in conflict with them. [de Finetti,
1974, p. 3].

4.5.1 From possibility to probability, and events

Before considering the concept probability, de Finetti [1974] focusses on the “preliminary
logic of certainty”, emphasizing that a clear distinction between possibility and probability
is fundamental. In this logic,

there exist only:
TRUE and FALSE as final answers;
CERTAIN, IMPOSSIBLE and POSSIBLE as alternatives, with respect to the present
knowledge of each individual. [p. 11].

While according to this state of knowledge, several alternatives may be possible, the under-
lying idea is that exactly one of the possibilities will turn out to be true. The term random
is used by de Finetti in this sense as well:

the meaning that we give to ‘random’ [. . . ] is simply that of ‘not known’ (for You),
and consequently ‘uncertain’ (for You), but well-determined in itself [. . . ,] it must be
specified in such a way that a possible bet (or insurance) based upon it can be decided
without question. [de Finetti, 1974, p. 28].

A random quantity has “instead of a unique certain value, two, or several, or infinitely many
possible values” [p. 12], depending on the state of ignorance of the individual for whom the
quantity is unknown. By equating “true” with 1 and “false” with 0, de Finetti can consider
random events as particular random quantities with only these two possible values. The
notion of ‘possible’ constitutes “a third attitude” toward an event, but not a third truth
value, as de Finetti [1995] emphasizes: “This third attitude does not correspond to a distinct
third value of yes or of no, but simply to a doubt between yes or no . . . .” [p. 182].

For the important concept of an event, we will depart from de Finetti’s model. We
denote events by E and E1, E2 etc. Considering a set of events, denoted E , the “state of
information” of the reference person may include some knowledge about relations between
some events, for example that an event E1 ∈ E implies another event E2 ∈ E , which means
that if the former is true, also the latter is.

To represent events mathematically,

we have to assume that a meaning has been assigned to the sure and the impossi-
ble events, to the negation of an event [. . . ], to the logical product or intersection of
two events [. . . ], and therefore to their union [. . . ], either by equating “events” and
“propositions” or, at any rate, by assuming analogous formal properties for the events
as abstract entities. The task of explicating the notions of event and of logical opera-
tions on events would then be left to theories dealing with the meaning of probability.
[de Finetti, 1972, p. 70].

De Finetti (as many others working with subjective probability) prefers equating events and
propositions rather than representing events by sets as seen in Kolmogorov’s model. The
elements of Ω, the elementary events, are artificial concepts in many cases. However, with-
out this representation, the mathematical model is generally not made completely explicit,
neither for propositions nor for representing the state of information of the reference person.
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While in propositional logic, propositions are defined as well-formed formulae over a fixed
set of atomic propositions, here, a proposition is loosely defined as a statement that can be
true or false. An attempt of describing propositions formally as in propositional logic within
the mathematical model of probability turned out to overly complicate matters.27 Also,
while it is sometimes stated that two propositions may describe the same event [see e.g.
Coletti and Scozzafava, 2002, p. 17]28, for example “today is Wednesday” and “tomorrow
is Thursday”, it is generally not made explicit how these are to be treated when “equating
events and propositions”, for example, that propositions describing the same event should
be assigned the same probability. It is considered intuitively clear what propositions are and
how they represent events.

However, even when considering propositions as events, a set representation can be used
as a preliminary step to make explicit the state of information of the reference person. This
is done by mapping propositions to subsets of any convenient but fixed set Ω. Mapping a
proposition to Ω means the reference person asserts this proposition to be certain, mapping
it to the empty set means asserting it to be impossible. All propositions that are mapped to
non-empty strict subsets of Ω are considered possible. The set Ω represents the information
given by the “preliminary logic of certainty”, cited above: Ω represents all possibilities
in a first step. The idea that “exactly one of the possibilities will turn out to be true”
is represented by considering one point ω ∈ Ω as the final state in a second step. Two
propositions which describe the same event map to the same subset. The mapping of
propositions to subsets also represents the fact that it depends on the state of information
whether two propositions describe the same event. A different state of information can
be represented by a different map. Another arbitrary example: the propositions “today
is the first Wednesday of November” and “today is November fifth” were the same event
given the state of information that “we are in 2008”; with the state of information “we
are in 2009” they are not. Defining the probability on sets, one has clearly separated
the “preliminary” description of the state of information of the reference person from the
statement of probability values.

To make a long story short, we represent events and the given preliminary state of
information of a reference person as subsets of a fixed set Ω. A given set of events E will in
the following be a set of subsets of this Ω. As for Kolmogorov’s formalization of probability,
an event hence turns out to be true if the “outcome” ω is contained in the subset representing
the event, and false if not, the certain event is Ω itself, the impossible event is the empty
set.

Having a mathematical representation of possibilities, the concept probability can be
introduced. Wheras “the possible has no gradation [. . . ,] probability is an additional notion
that one applies within the range of possibility, thus giving rise to gradations (‘more or less
probable’)” [p. 27]. These gradations are present in everyday life:

To any event in which we have an interest, we are accustomed to attributing, perhaps
vaguely and unconsciously, a probability: if we are sufficiently interested we may try
to evaluate it with some care. [de Finetti, 1974, p. 12].

27I thank the participants of the Cartesian Seminar at PIK in autumn 2008 for working with me on this
topic. Just a sketch of the attempt here: By defining propositions as in propositional logic, the description
of the “state of knowledge” becomes more complicated than when represented by sets. A partial valuation
function can be used to represent the state of knowledge, that is some relations between some events. For
example, if an event E1 implies an event E2, the valuation function v should assigning the value ‘true’ to the
implication E1 ⇒ E2. A representation of “the certain event” and “the impossible event” is less immediate
here than when working with sets. Next, probability can be considered a second valuation function, assigning
values from the interval [0, 1] to events. However, in this formulation, extra conditions for the probability
function have to be stated, such as: if v(E1 ⇔ E2) = true, then the probability assigned to E1 and E2

needs to be equal.
28In this book, for example, it is emphasized that propositions, not subsets are considered as events, but

then set theoretical standard notation is used without much further comment, for example E1 ⊂ E2 for “E1

implies E2”.
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4.5.2 Betting and coherence

De Finetti proposes an operational definition of probability based on a betting scheme that
has the purpose of evaluating probabilities, that is, finding out the numbers assigned by the
reference person to the event in a set E . Actually, the original betting scheme is more general
than the one presented here: random quantities are considered instead of events. What this
scheme elicits is the ‘prevision’ assigned to the random quantities under consideration by the
reference person, corresponding to the expectation under the subjective probability. The
mathematical description is more involved, for example, suprema are necessary instead of
the maxima used below, because of the possibly infinitely many possible values of a random
quantity, whereas an event has only two possible values. In the case of events, prevision
reduces to probability and only this case will be treated here.

De Finetti uses a fictitious betting situation as a simple situation of “decision-making
under conditions of uncertainty” because

It is precisely in investigating the connection that must hold between evaluations of
probability and decision-making under conditions of uncertainty that one can arrive
at criteria for measuring probabilities, for establishing the conditions which they must
satisfy, and for understanding the way in which one can, and indeed must, ‘reason about
them’. [de Finetti, 1974, p. 72].

Here, “must reason” is to be understood as a rationality criterion: an assignment of numbers
to events is not considered “a probability assignment” if it does not satisfy a coherence
condition. De Finetti describes the nature of this condition as follows:

Concerning a known evaluation of probability, over any set of events whatsoever, and
interpretable as the opinion of an individual, real or hypothetical, we can only judge
whether it is coherent. If it is not, the evaluator, when made aware of it, should modify
it in order to make it coherent. In the same way, if someone claimed to have measured
the sides and area of a rectangle and found 3 metres, 5 metres and 12 square metres, we,
even without being entitled, or having the inclination, to enter into the merits of the
question, or to discuss the individual measurements, would draw his attention to the
fact that at least one of them is wrong, since it is not true that 3× 5 = 12. [de Finetti,
1974, p. 9].

The rationality criterion is expressed for the betting situation, and serves to avoid bets with
consequences which are “manifestly undesirable (leading to certain loss)” [de Finetti, 1974,
p. 72]. From this restriction on the “real-world” decision side, mathematical consequences
for probability assignments are derived.

The betting situation is first explained for a single event.

Given a random event E, You are obliged to choose a value α(E), on the understanding
that, after making this choice, You are committed to accepting any bet whatsoever with
gain c(1E(ω)−α(E)), where c ∈ R is arbitrary (positive or negative) and at the choice
of an opponent. [de Finetti, 1974, p. 87, adapted].

This means the reference person pays c · α(E) to gain c if the event E is true, and to gain
nothing if E is false. The value c is referred to as the stake. If c is negative, bookmaker and
bettor switch roles: the reference person gets |c · α(E)| from the opponent, having to pay
back |c| if E is true, and nothing otherwise.

In real-world decision making where phenomena such as risk aversion play a role, the
unit of this gain would be important, however, de Finetti prefers to disregard this aspect for
simplicity in the study of probability. He refers the reader to the works by Ramsey [1926]
and Savage [1954] and assumes the amounts of money involved in the bets to be sufficiently
small to avoid the problem. Thus,

accepting as practically valid [. . . ] the identity of monetary value and utility within
the limits of ‘everyday affairs’, [i.e.] transactions whose outcome has no relevant effect
on the fortune of an individual, [de Finetti, 1974, p. 82]
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he chooses for “setting aside [. . . ] the notion of utility, in order to develop in a more
manageable way the study of probability” [p. 80].29

The coherence condition only becomes relevant when several events are considered simul-
taneously. Consider a set of events E , that is, a set of subsets of some Ω, representing the
state of information of the reference person. The betting situation is extended from one to
several bets as follows: the reference person is asked to state probabilities for all events in E ,
that is, to specify a function30 α : E → [0, 1]. Then the opponent may choose a combination
of a finite number of bets to be played simultaneously, that is, the same “final value” is
observed to decide all bets together. Mathematically, the opponent chooses a number n
of events and stakes c1, . . . , cn to be played on these events. The reference person’s gain
G : Ω → R for such a combination of bets is

G = c1(1E1 − α(E1)) + . . . + cn(1En
− α(En)) (4.3)

for one ‘experiment’, one verification of “the true ω”.
Coherence is the assumption “that You do not wish to lay down bets which will with cer-

tainty result in a loss for You”, corresponding to the “manifestly undesirable consequences”
mentioned above. Given the extended betting scheme, this means a probability assignment
α is coherent if it does not allow a choice of n ∈ N and c1, . . . cn ∈ R such that for all ω ∈ Ω,
the gain G(ω) defined in formula (4.3) is negative31 or, in other “words”,

max
ω∈Ω

{c1(1E1(ω)− α(E1)) + . . . + cn(1En(ω)− α(En))} = max
ω∈Ω

G(ω) < 0.

We can sum up into the following (equivalent, only positively formulated)

Definition 4.5.1. Given a set of events E , a function α : E → [0, 1] is a coherent probability
assignment, if for any n ∈ N, any c1, . . . , cn ∈ R and any choice of events E1, . . . , En ∈ E ,

max
ω∈Ω

n∑

i=1

ci(1Ei(ω)− α(Ei)) ≥ 0.

The operational definition of the probability (according to You) of the event E given by
de Finetti is the value α(E) chosen (by You) in this setting.

Remark 4.5.2. No structure was assumed for the set of events E . In particular, it need not
be an algebra, or even σ-algebra. One can assume an assignment known for an arbitrary
set of events. The set E can be infinite. However, the coherence condition is stated in terms
of combinations of finitely many bets. This definition is equivalent to stating the definition
for a finite E , with the n in the definition equal to the number of its elements (since all bets
with less than n events are included by choosing the corresponding stakes c = 0), and then
defining coherence for an infinite E via coherence for any finite subset of E . In the literature
this procedure is often found [see Coletti and Scozzafava, 2002; Borkar et al., 2004, for
example].

29In this section, one finds the statement:

We accept that once we are in the area of mathematical idealization we can leave out of
consideration adherence to reality in every tiny detail: on the other hand, it seems rather too
unrigorous to act in this way when formulating that very definition which should provide the
connection with reality. [p. 80].

While the first part refers to the utility question, where a concession is made for the simplicity of the theory,
the second sentence refers to the definition of probability itself, for which he does not accept any axioms
chosen for mathematical convenience.

30A function with target R would be sufficient. That the assigned values must lie in [0, 1] follows from
the coherence condition as will be shown in the following section.

31Here, for example, the formulation in terms of random quantities is more involved: it needs the extra
qualification that uniformly negative gains are to be avoided and thus the original uses a supremum instead
of the maximum. This coherence condition is weaker than others found in the literature, but de Finetti
provides explanatory examples argueing why, in certain cases, bets which can only lead to a loss, which is
however arbitrarily small, are to be accepted as coherent, see p. 118. Here, since the values of the indicator
functions are always 0 or 1, and the sum has finitely many terms, with all other numbers fixed (the c’s and
the values of α), the supremum is a maximum.
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As a consequence of the interpretation of probability as a personal judgement about
possibilities, de Finetti does not admit “unknown probabilities”. The arbitrary extension
of the assignment can be considered as all those events for which probabilities have been
evaluated. The idea is that other events have not been taken into consideration. If they are,
their probability may not remain unknown. In the betting scheme, when asked about the
probability of an event, the answers ‘I do not know’, ‘I am ignorant of what the probability
is’, ‘in my opinion the probability does not exist’ do not make sense and are not admitted:

Probability (or prevision) is not something which in itself can be known or not known:
it exists in that it serves to express, in a precise fashion, for each individual, his choice
in his given state of ignorance. To imagine a greater degree of ignorance which would
justify the refusal to answer would be rather like thinking that in a statistical survey
it makes sense to indicate, in addition to those whose sex is unknown, those for whom
one does not even know ‘whether the sex is unknown or not’. [de Finetti, 1974, p. 84].

4.5.3 Coherent assignments and finitely additive probabilities

Coherent probability assignments are closely related to finitely additive probabilities. With-
out going into detail for proofs of the general theorems, we rather concentrate on providing
the intuition about this relation. To be a coherent probability assignment, an assignment
α has to satisfy additivity for disjoint events, and α(E) has to be chosen in [0, 1] for all
E ∈ E32. This can easily be shown by constructing a “certain loss situation” if the condi-
tions are violated. Assume there are in E two disjoint events E1 and E2, and E3 = E1 ∪E2,
that have been assigned values where α(E1) + α(E2) 6= α(E3). Denoting αi = α(Ei), sup-
pose α1 + α2 < α3, the opposite case can be treated analogously. The opponent can choose
a bet of the form

c1(1E1(ω)− α1) + c2(1E2(ω)− α2) + c3(1E3(ω)− α3)

The possible gains for this bet are:

G(ω) =





c1(1− α1) + c2(0− α2) + c3(1− α3) if ω ∈ E1

−c1α1 + c2(1− α2) + c3(1− α3) if ω ∈ E2

−c1α1 − c2α2 − c3α3 if ω ∈ Ec
3

If the opponent chooses c3 = c and c1 = c2 = −c for some c > 0, this is

G(ω) =




−c + cα1 + cα2 + c− cα3 if ω ∈ E1

cα1 − c + cα2 + c− cα3 if ω ∈ E2

cα1 + cα2 − cα3 if ω ∈ Ec
3



 = c(α1 + α2 − α3) < 0

that is, the possible gains for this bet are all negative.
Similarly, if some α(E) is chosen outside [0, 1], it suffices for the opponent to chose a bet

on that event. c(1E(ω)− α(E)) has the possible gains c(1− α(E)) and −cα(E) depending
on whether ω ∈ E or not. For negative α(E) these are both negative if c is negative, while
if α(E) > 1, any choice of c > 0 makes all possible gains negative. The condition also
implies that the certain event Ω needs to be assigned the probability 1, because any choice
of α(Ω) < 1 would allow the opponent to choose any bet c(1Ω − α(Ω)) with c < 0 to yield
a certainly negative gain c(1− α(Ω)).

Thus, if E is an algebra, a coherent probability assignment α automatically is a finitely
additive probability on (Ω, E). The converse can also be shown rather easily: a finitely
additive probability on (Ω, E) (for E algebra) is a coherent probability assignment. Assume

32Here, this condition is anticipated in the definition of α as a function with target [0, 1]. In the more
general case of a random quantity X, the restriction is that α(X) must lie between the infimum and the
supremum of the possible values the quantity can take and is hence an actual restriction.
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it is not coherent, then there exists a choice of n, c1, . . . , cn and E1, . . . , En ∈ E such that

max
ω∈Ω

n∑

i=1

ci(1Ei
(ω)− α(Ei)) < 0, that is,

n∑

i=1

ci(1Ei
(ω)− α(Ei)) < 0 for all ω ∈ Ω, or

c11E1(ω) + . . . + cn1En
(ω) < c1α(E1) + . . . + cnα(En).

Consider the constituents of the events E1, . . . , En, say C1, . . . , Cm. Since any Ei is a disjoint
union of some constituents, and the finitely additive probability assigns to each Ei the sum
of the probabilities assigned to these constituents, one can rewrite the inequality as

c∗11C1(ω) + . . . + c∗m1Cm
(ω) < c∗1α(C1) + . . . + c∗mα(Cm)

where the c∗i are obtained from the ci by distributivity and sorting according to constituents.
This, however, is in contradiction with the assignment being a finitely additive probability:
since the constituents partition Ω, the left hand side reduces to one of the values c∗i for each
ω. This cannot be strictly smaller than the right hand side for all ω, because the latter is a
weighted average of the values c∗i . Thus, when defined on an algebra, coherent probability
assignments are nothing but finitely additive probabilities.

However, it is an important point in de Finetti’s mathematical model of probability that
no particular structure for E is assumed. If E is not an algebra, the two axioms for finitely
additive probabilities alone are not sufficient for coherence. As in the following example33,
the additivity condition may be vacuously satisfied when there are no disjoint events in E
whose union is also in E .

Example 4.5.3. Let {F, G,H} be a partition of Ω. Consider E = {E1, E2, E3,H, Ω} with
E1 = F ∪G,E2 = F ∪H, E3 = G ∪H. Consider the assignment α : E ∪ Ω → [0, 1] defined
by

α(E1) =
4
9
, α(E2) =

4
9
, α(E3) =

2
3
, α(H) =

5
9
, α(Ω) = 1.

α satisfies the axioms A1 and A2, however, it is not coherent. A bet with certain loss is, for
example, −c(1E2 − α(E2)) + c(1H − α(H)) with c > 0. Possible gains of this are

G(ω) =




−c(1− α(E2)) + c(1− α(H)) = c(α(E2)− α(H)) < 0 if ω ∈ H
−c(1− α(E2))− cα(H) = c(α(E2)− α(H)− 1) < 0 if ω ∈ E2\H = F
cα(E2)− cα(H) = c(α(E2)− α(H)) < 0 if ω ∈ Ec

2 = G

that is, all negative. The assignment would not be intuitively accepted as a probability as-
signment because while H is a subset of E2, the latter is assigned a smaller value than the
former. As the subset relation represents implication, here, “if H takes place then also E2

takes place”. The degree of belief in E2 should therefore not be smaller than that in H.

What is however sufficient for coherence, is the condition that the assignment can be
extended to a finitely additive probability on an algebra. It can be shown that

Theorem 4.5.4. For an arbitrary set E of non-empty subsets of Ω with a(E) the algebra
generated by E, a function α : E → [0, 1] is a coherent probability assignment if and only if
there exists a finitely additive probability P on (Ω, a(E)) that agrees with α on E.

The extension P of α need not be unique. A rather accessible proof can be found in
Borkar et al. [2004], who first show the result for a finite E , using the fact34 that a coherent

33Adapted from Coletti and Scozzafava [2002].
34They refer the reader to Rockafellar [1970].
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probability assignment can be interpreted as a point in the closed convex hull of the possible
“points” in terms of the indicators, that is, of the set {[1E1(ω), . . . ,1En

(ω)]|ω ∈ Ω}. Then,
this result can be used for the general case, because a coherent assignment for an infinite E
is defined via coherence for any finite subset.

The incoherence of the assignment in example 4.5.3 can easily be illustrated using this
coherence condition.

Example 4.5.3 (contd). Even when deleting H and considering the assignments for the
other events only, there is no possibility of extending α to a finitely additive probability P
on A(E) = {∅, F, G,H, E1, E2, E3,Ω}. Such an extension would have to satisfy

P (F ) + P (G) =
4
9
, P (F ) + P (H) =

4
9
, P (G) + P (H) =

2
3
, P (F ) + P (G) + P (H) = 1.

But then summing the first three equations and dividing by 2 yields 1 = P (Ω) = P (F ) +
P (G) + P (H) = 7

9 < 1.

In de Finetti [1974], the result of the theorem follows among other things from the
fundamental theorem of probability [adapted, p. 112]:

Theorem 4.5.5. Given the probabilities α(Ei) for i = 1, . . . , n of a finite number of events,
the probability α(E), of a further event, E, either,

(a) turns out to be determined (whatever α is) if E is linearly dependent on the Ei (that
is, E can be written as a union of some constituents of the Ei); or

(b) can be assigned, coherently, any value in a closed interval p′ ≤ α(E) ≤ p′′ (which can
often give an illusory restriction, if p′ = 0 and p′′ = 1, or even, in limit cases for
particular α, give a well-determined result p′ = α(E) = p′′). [. . . ]

Next, de Finetti treats extensions of coherent probability assignments to an infinite
(countable or uncountable) number of events. Via transfinite induction35, he shows that a
coherent probability assignment on a given set of events E can be extended to any set (of
subsets of Ω) containing E , maintaining coherence. In particular, it can thus be extended
to the generated algebra. Together with the above observation that if defined on an algebra
a coherent probability assignment is a finitely additive probability, this implies the extend-
ability of a coherent probability assignment on E to a finitely additive probability defined
on a(E), as stated in Theorem 4.5.4.

This possibility of extension is an important difference between coherent probability
assignments or finitely additive probabilities on the one hand and countably additive prob-
ability measures on the other hand as stated in Section 4.4. Therefore, let us provide a
flavour of the idea in the proof via transfinite induction [see the Appendix in de Finetti,
1974, p. 335–338]. The important point is that the conditions of coherence always refer to
finite subsets. The assignment is extended event by event. Making an infinite number of
steps is not of importance in the setting of coherent probability assignments: if a contra-
diction to coherence arose for the step of a number that has no antecedent, such as the
first ordinal which comes after the natural numbers, “a contradiction would derive from the
comparison between two finite linear combinations” [de Finetti, 1974, p. 337]. Therefore,
the contradiction would already have occured at the finite step involving all events in the
linear combinations that caused trouble.

For comparison, de Finetti [1974] gives the example of Lebesgue measure:

Lebesgue measure, too, can be extended, preserving countable additivity, to an arbi-
trary non-measurable set, and hence to an arbitrary number of such sets, one at a time.
In this case, however, an infinite number of steps can lead to a contradiction without
any single step doing so (in the same way as a convergent series [converging to any
value 6= 1] remains such, if we replace the 1st, 2nd, 3rd,. . . terms with 1, and so on for
any finite number, but not if we replace an infinite number of terms). [p. 337]

35“. . . assuming, of course, the Zermelo Postulate” to well-order the random quantities under consideration.
[p. 337].
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The possibility of extending any coherent probability assignment to the whole powerset
of course entails the possibility of extending any finitely additive probability to the powerset
of the set its algebra lives on, mentioned as a mathematical difference between finite and
countable additivity in Section 4.4.

An example from the literature that uses this fact is “How to gamble if you must” by
Dubins and Savage. They define:

A gamble is, of course, a probability measure γ on subsets of fortunes. In the tradition
of recent decades, such a measure would be defined only on a sigma-field if subsets of
[the set of fortunes] F and required to be countably additive on that sigma-field.
If this tradition were followed in this book, tedious technical measurability difficulties
would beset the theory from the outset. [. . . ] Experience and reflection have led us to
depart from tradition and to assume that each γ is defined for all subsets of F and not
to assume that γ is necessarily countably additive. [Dubins and Savage, 1965, p. 8]

To deal with gambles that are defined only for a subclass of P(F ), rather than to “carry a
concept of measurability and integrability throughout the discussion”, they decide

to consider all extensions of each such incompletely defined gamble to the class of all
sets of fortunes. According to the Hahn-Banach theorem, such extensions exist in
abundance, though in a very nonconstructive sense. If, for example, a gambler starting
from $ 1,000 can reach $10,000 with probability .07 in every completion of an originally
incompletely defined problem, is it not a sensible interpretation to credit him with
at least that much in connection with the problem as originally specified? Likewise,
if there is something he cannot acchieve (or approach) under any extension, it ought
not to be regarded as achievable in the original problem. Finally, if something can
be approached for some extensions and not others, then the original problem must be
recognized as not sufficiently specified to yield a definite answer. [Dubins and Savage,
1965, p. 9].

Thus, while measure theory is often credited with “mathematical convenience”, here mea-
surability is perceived as complicating matters. The first monad of finitely additive prob-
abilities presented in Chapter 6 will assume finitely additive probabilities to be defined on
whole powersets in this spirit. In that context it will also be seen that measurability ques-
tions complicate matters, especially when a less powerful concept than true measurability is
used. Before concluding this section on de Finetti’s mathematical model of probability with
remarks on formalization, a short description of a computable coherence condition will be
included.

4.5.4 Coherence computable

While the previously given definitions of coherence are not computable, Coletti and Scoz-
zafava [2002] provide a computable condition equivalent to coherence. We shall here consider
only the finite case, that is, a finite set of events E , for simplicity.

Consider the special case where the sets in E are a partition of Ω and recall that in
this case a finitely additive probability is specified by assigning numbers adding to 1 to the
sets in the partition (Remark 4.3.2). Here, a coherent assignment is automatically already
extended to the whole powerset. For coherence of the assignment, the values for the Ei have
to add up to 1, and this can easily be checked.

For general E , the idea is to find a partition that is related to E , which allows a similar
check. It is given by the constituents from Definition 3.1.5. In fact, the coherence condition
which can be checked computationally combines Remarks 4.3.2 and 3.1.6: coherence amounts
to the existence of an assigment for the constituents which adds up to 1 and is compatible
with the given assignment on E .

Coherence of an assignment α is thus equivalent to the solvability of the following system
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of equations:




∑
r:Cr⊆Ei

xr = α(Ei) i ∈ {1, . . . , n}
∑m

r=1 xr = 1
xr ≥ 0 r ∈ {1, . . . ,m}.

Any solution can be interpreted as an assignment of probabilities to the constituents:
xr = P (Cr) is the probability assigned to the r-th constituent. Given the last equation
together with the inequalities for non-negativity, this determines a finitely additive proba-
bility P on a(C). The first n equations ensure the compatibility with α: by axiom A2, the
probability assigned to Ei ∈ E is the sum of the probabilities assigned to the constituents
whose union Ei is. Since a(C) = a(E) (Remark 3.1.6), the finitely additive probability P
determined by the solution of the system is an extension of α.

Example 4.5.6. In the assignment from Example 4.5.3, replace α(E2) = 8
9 for the 4

9
assigned before. Then α is coherent. The constituents are F,G and H (with probabilities
denoted xF , xG and xH), and the system is





xF + xG = P (E1) = 4/9
xF + xH = P (E2) = 8/9
xG + xH = P (E3) = 2/3
xF + xG + xH = 1
xr ≥ 0 r ∈ {F, G,H}

The system is solved by xF = 3
9 , xG = 1

9 and xH = 5
9 and the solution is unique.

The solution of the system corresponding to a coherent assignment need not be unique,
confirming the non-uniqueness of the extension mentioned above. In general, a coherent
assignment on E is the restriction of many finitely additive probabilities defined on a(E).

Remark 4.5.7. In particular, if the number of constituents is maximal, i.e. m = 2n, then
any assignment on E is coherent because there are no restrictions for distributing a proba-
bility of 1 to the constituents.

4.5.5 Remarks on formalization

De Finetti defines subjective probability (theoretically) as the degree of belief which a certain
individual assigns to some events under a given state of information. Then, he provides an
operational definition in terms of a betting scheme, that is, a simple situation of decision
making under uncertainty. Degrees of belief that would lead to a “manifestly undesirable
outcome”, a certain loss, are not accepted as coherent probability assignments. The betting
scheme allows to, at least in principle, measure the degrees of belief of a person. There is
work addressing the question whether the values elicited by the betting scheme actually are
the personal probabilities, and answering negatively, such as Seidenfeld et al. [1990]. Also,
de Finetti has in later works used a penalty criterion instead of the betting scheme [see, e.g.
de Finetti, 2008]. However, this topic is beyond the scope of this work.

The definition of a coherent probability assignment (Definition 4.5.1) is more general than
that of a probability measure given by Kolmogorov: any probability measure is a coherent
probability assignment, the converse is not true. The definition of coherent probability
assignments is also more general than that of finitely additive probabilities, because no
restrictions are made for the domain of definition, E .

The different mathematical models of probability arise from different goals pursued with
the formalization. In a chapter “On the Axiomatization of Probability Theory” de Finetti
[1972] summarizes different purposes of axiomatizing probability theory. The purpose of
“listing explicitly the formal properties which are taken as the starting point for a complete
and rigorous construction and development of probability theory considered as a formal
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theory” is the one Kolmogorov’s model can be ascribed to. The formalization seen here
serves a different purpose: “to attain greater precision in a conceptual discussion” [de Finetti,
1972, p. 67].

De Finetti considers the subjective interpretation of probability, that is, attaches the
meaning of ‘degree of belief’ to the term probability, and wants to express this mathemati-
cally, introducing axioms parsimoniously. This can be seen for example when he states that
the coherence condition used should be

the weakest one if we want it to be the strongest one in terms of absolute validity. In
fact, it must only exclude the absolutely inadmissible evaluations; i.e. those that one
cannot help but judge contradictory . . . [de Finetti, 1974, p. 10].

From the meaning of the concept probability, he does not arrive at the axiom of count-
able additivity. On the contrary, he has often argued against this axiom, whose “success
owes much to the mathematical convenience of making the calculus of probability merely
a translation of modern measure theory”, while “no-one has given a real justification of
countable additivity (other than just taking it as a ‘natural extension’ of finite additivity).”
[de Finetti, 1974, p. 119]. De Finetti considers countably additive probability measures an
important special case, and frequently uses the example of continuous functions, compared
to all function, as a comparably important special case. This comparison is warranted by the
fact that given the axioms of finitely additive probability, the extra assumption of countable
additivity is equivalent to assuming the continuity conditions stated in Section 4.4.

Kolmogorov’s model of probability, supposed to build the foundations of a mathematical
theory, considers the concept probability a primitive. Kolmogorov does not discuss its
meaning, nor how to measure it. He uses an additional axiom that allows to draw more
conclusions in the mathematical setting. When making an interpretation of the concept
explicit, Kolmogorov gives a definition based on repeatable events, that will be similarly
encountered in Section 4.6.1 on the frequentist interpretation.

In short, one of the mathematical models is not supposed to clarify the meaning of
the concept and the other one translates just one interpretation into mathematics. Before
engaging into the dicussion of formalization based on the example of the concept probability,
let us briefly present some other interpretations in the following section.

4.6 Interpretations of probability

This section sketches some interpretations of probability which have been described and
discussed in the literature. As stated in Section 2.2, interpretations of a concept are closely
linked to operational definitions, in fact, the interpretations of probability can also be distin-
guished as different assessment approaches. Different interpretations may arise from different
aspects of a concept being emphasized. The duality of the concept pointed out by Hacking
[1975] will play an important role here.

“Classical probability” has been considered an interpretation of the concept, as seen in
the quote by Diaconis on page 39. This interpretation is based on an operational definition
that allows to measure numerical probability values in the simple case where a finite set
of possibilities is considered and these are (for whatever reason) judged to be equivalent.
In this simple setting, the notion ‘equally probable’ is taken as intuitively clear, it is a
primitive. The operational definition makes the intuition behind the theoretical definition,
a degree of certainty, precise. What is today called a Fundamental Probability Set arose
from assumptions such as the principle of insufficient reason, thus focusing on the belief
aspect of probability, and was confirmed by long sequences of observations in dice games,
fostering the assumption that the die falls on each of the sides equally easily. Even in cases
where this seems much less obvious, Fundamental Probability Sets were applied:

If we consider only games it is natural to have a theory founded on a set of equally
likely alternatives. But as soon as we get real life statistics, we expect the model to
be inadequate. However, the statistics actually available chiefly concern the mortality
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curve. Far from displacing the model of equal chances they actually confirm it. Thus
by what one is tempted to call an accident, both a priori and a posteriori considera-
tions made the model of a Fundamental Probability Set of equal chance definitive of
probability. [Hacking, 1975, p. 121].

For the belief aspect of the concept we should note that in the early times of probability
theory, the question who was expressing this belief was not considered. The classical prob-
abilists from Pascal to Laplace had a deterministic world view. Uncertainty was considered
to derive only from incomplete knowledge, while nothing would be uncertain for “Laplace’s
demon”. An intellect that at a certain point in time knew the exact positions of all items
and all forces in the universe and could analyse these, would not be uncertain about any-
thing, past, present or future. However, incomplete knowledge here is to be understood as
the knowledge of humanity as a whole, what single people knew or did not know in specific
situations was not an issue. The belief aspect in the classical interpretation is also discussed
by Hacking [1975] in a chapter on “probability and the law” about the work of Leibniz.
Hacking points out that the study of conditional rights leads Leibniz “to a theory of what
we might now call ‘partial implication’.” [p. 87]. Leibniz’s work De conditionibus shows
similarities to (conditional) probability theory, but we will not go into detail here.

As soon as one leaves the simple setting of finitely many equivalent possibilities, the
question how to assign numbers to probabilities is not answered by the mathematical model
itself. Here, different interpretations of probability arise, together with different assessment
approaches and operational definitions. A basic distinction is made between “objective” and
‘subjective’ probability approaches. While, as was seen in section 4.5, subjective probability
is considered the degree of belief of a person, ‘objective’ interpretations “locate probability
in the world” [Hàjek, 2007, p. 20]. De Finetti [1972] describes these as “theories which hold
that the value of probability is uniquely determined by objective conditions of a logical,
statistical, physical or any other nature” [p. 84]. This attitude was seen in the quote from
Gnedenko’s work on page 39, where the notion of probability is said to have an “objective
role as a numerical characteristic of definite real phenomena”.

Objective interpretations can be further subdivided into logical interpretations, propen-
sity interpretations and frequentist interpretations. The first two shall be mentioned without
going into any detail here. The logical interpretation views probability as a generalization
of deductive logic. It has been studied systematically for example by Carnap. The propen-
sity interpretation considers probability as a physical propensity that certain outcomes are
produced in experiments. A name connected to this interpretation is Popper. The interpre-
tation has been accused of “giving empty accounts of probability” and being “metaphysical
rather than scientific” [Hàjek, 2007]. Since the frequentist interpretation is most commonly
used, it will be sketched in an extra section.

4.6.1 Frequentist probability

The frequency aspect of the concept probability is the focus of frequentist interpretations of
probability, which can again be further subdivided into an empirical (or finite frequentist)
and an asymptotic (or infinite frequentist) probability interpretation. The underlying idea,
seen in the long quote by Bernoulli on page 41, is to identify the probability of an event
with its frequency in a sequence of independent trials.

In the empirical approach, long but finite sequences are considered, and the probability
of an event is operationally defined as the number of occurences divided by the number of
trials. For example, Venn, when discussing the proportion of births of males and females,
states “probability is nothing but that proportion”36. It is not made explicit how many
observations make a sequence a “long sequence”, but the importance of this qualification
is pointed out already by Bernoulli: “some natural instinct” makes one “feel sure” that
the numbers obtained improve with the length of the sequence used (again, see the quote

36See Hàjek [2007].
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on page 41). The empirical operational definition of probability shows a similarity to the
classical one in that cases are counted, however, here the counting is done in a sequence of
actual outcomes instead of an abstract space of possibilities.

Hajek lists some problems of this definition, for example, the “problem of the single case”
that in a sequence of length one, an event can only have probability 0 or 1. Generally, in a
sequence of length n, relative frequencies occur only in steps of 1/n, which for example “rules
out irrational probabilities; yet our best physical theories say otherwise.” [Hàjek, 2007]. Also,
a sequence could be considered as one trial in an experiment producing sequences. Then,
the sequence that has occured would always have probability 1, contrary to the intention
with which this operational definition is used.

The empirical approach is used not only for sequences of repeated trials, but also for
sets. For example, sets of people who have or do not have a given disease are considered
to determine the probability of a person having this disease. Here, the set of people used
to evaluate the probability is referred to as the “reference class”. It implies the so called
“reference class problem”: the probability depends on the reference class chosen. In the
disease example anything form ‘the population of the whole world’ to ‘people from a certain
area, of a certain age and sex, etc.’ could be chosen. This illustrates that the assumption
of objective probabilities existing “in the world” is problematic: which reference class gives
this one objective probability, or, at least, gets close to it? Kolmogorov’s hypothesis that
a definite probability exists seems easily refutable by this reference class problem in many
cases.

For measuring probability in the empirical sense there further is the following

. . . problem: if one stops at a finite number of experiments, it is not entirely correct
to say that the frequency one obtains is an approximation of the “true probability” in
the same sense as in a measurement of a length with a certain degree of precision. In
fact, [. . . ] the frequency is close to the probability only with a certain probability which
again depends on the “true probability”. [Boldrighini, 2009, p. 256],

as can be deduced within the mathematical model of standard probability theory (con-
sidering the “true probability” given) from the laws of large numbers. Moreover, Hàjek
[2007] notes that, similarly to “ill-calibrated thermometers”, one wants to allow for the case
where observed frequencies produce misleading results [see p. 16], and that, contradicting
an intuition about measurement,

according to the finite frequentist, a coin that is never tossed, and thus yields no actual
outcomes whatsoever, lacks a probability for heads altogether; yet a coin that is never
measured does not thereby lack a diameter. [p. 16]

Distinguishing ‘counting favourable outcomes in a given sequence’ and ‘counting favourable
cases in a given set’ as two operational definitions, together these can be considered one as-
sessment approach, due to the similarity of methods used.

In the asymptotic approach, probability is defined as the limiting frequency in an infinite
sequence, thus requiring that the trials may be repeated an infinite number of times. Here,
as for the empirical case, the reference class problem occurs. There further is a “reference
sequence problem”: even sticking to the same sequence, reordering may change the limit.
Probabilities operationally defined as limits cannot actually be measured, because a limit
cannot be observed in any (however long) finite sequence. In fact, finite sequences do not
provide any constraint for the limit. A formalization of this interpretation was given by von
Mises, however, it is basically out of use.

4.6.2 Subjective probability

Section 4.5 on de Finetti’s mathematical model of probability has shown one example of
a subjective interpretation, together with an operational definition, the betting scheme.
The subjective probability interpretation gives up the idea of a ‘true probability’, as for
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example Diaconis [2007c] expressivley states: “Coins don’t have probabilities, people have
probabilities.”

Other operational definitions are betting schemes with different detailed assumptions.
For example, some authors use a regularity condition which entails that only impossible
events (mathematically the empty set) may be assigned the probability zero. De Finetti
argues against this choice37 but we will not go into the details here. One also finds cases in the
literature where a mathematical model using countable additivity is proposed together with
a subjective interpretation. Jeffrey [2004] provides a betting scheme argument for countable
additivity. The coherence condition expressed by bets is referred to as a ‘Dutch Book
argument’ in the literature. Hàjek [2007] discusses limitations and problems of measuring
probabilities by betting schemes.

For example, you may have reason to misrepresent your true opinion, or to feign having
opinions that in fact you lack, by making the relevant bets (perhaps to exploit an
incoherence in someone else’s betting prices). Moreover, as Ramsey points out, placing
the very bet may alter your state of opinion. Trivially, it does so regarding matters
involving the bet itself (e.g., you suddenly increase your probability that you have just
placed a bet). Less trivially, placing the bet may change the world, and hence your
opinions, in other ways (betting at high stakes on the proposition ‘I will sleep well
tonight’ may suddenly turn you into an insomniac). And then the bet may concern an
event such that, were it to occur, you would no longer value the pay-off the same way.
(During the August 11, 1999 solar eclipse in the UK, a man placed a bet that would
have paid a million pounds if the world came to an end.) [p. 25].

However, the problems “stem largely from taking literally the notion of entering into a bet”
and may be avoided by considering the probability assigned as “the betting price you regard
as fair, whether or not you enter into such a bet.” [Hàjek, 2007, p. 25].

To avoid these problems, there are operational definitions that use a penalty criterion.
However, the general methodology in the operational definitions is to ask a person to state
degrees of belief with the understanding that the stated numbers will enter into a game
played afterwards, where the reference person may lose (and sometimes also win) something,
and a condition of coherence decides whether an assignment is accepted as a probability.
Thus, these can be considered the same assessment approach, corresponding to the subjective
probability interpretation.

Obviously, this subjective interpretation focuses on the belief aspect of the concept prob-
ability. As was seen in Section 4.5, any probability assignment which satisfies certain rules
(coherence) is accepted as a probability assignment some person could give. No judgement
is made about whether an assignment is better than another38 by the mathematical model,
because no ‘true’ probability is looked for. In fact, de Finetti [1974] states right up front in
the preface, and in all capital letters, “PROBABILITY DOES NOT EXIST” [p. x].

Important works in this field are, for example, those by Ramsey [1926] and Savage [1954].
Axioms of subjective probability are discussed for example by Fishburn [1986], references
therein provide further literature. A seminal work is also the collection of articles by Kyburg
and Smokler [1980]. The closely related topics of preferences and utility (not discussed here)
are found in these works. When the focus is on updating a given subjective probability with
data observed, one also finds the term “Bayesian” probability. We will not go into this
either.

The operational definitions given for subjective probability are more generally applicable
than for example the frequentits ones, in that probabilities can be assigned without supposing
repeatable events. This makes subjective probability an interesting concept for vulnerability
to climate change (see Section 4.8). Having thus sketched interpretations, it will be discussed
in the following section how the mathematical models help provide clarity.

37See for example de Finetti [1974, p. 120].
38Of course, this has been investigated. See, for example, Chapter 3 “Does it Make Sense to Speak of

‘Good Probability Appraisers’?” in de Finetti [1972]. An experiment on probability assignments concerning
the results of football matches was carried out at the University of Rome, considering weekly probability
assignments made by a group of mostly students for the matches of the Italian soccer championship.
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4.7 Discussion: interpretations and mathematizations

Hàjek [2007] concludes his discussion of interpretations of probability saying that

. . . there is still much work to be done regarding the interpretation of probability. Each
interpretation that we have canvassed seems to capture some crucial insight into it, yet
falls short of doing complete justice to it. Perhaps the full story about probability is
something of a patchwork, with partially overlapping pieces. [p. 31]

Similarly, Diaconis [2007a] states that “the discovery processes of uncertain reasoning is far
from over.”

For probability, at least a frequentist and a sujective interpretation still coexists. Peo-
ple maintaining one interpretation often voice disapproval of the other and not always in a
neutral fashion. Kolmogorov [1991], for instance, dismisses subjective probability as “erro-
neous” in his encyclopedia entry. He discusses a weather example: considering the statement
that on the 23rd March 1930 “snow probably still covered the fields” around Moscow, he
stumbles about a quasi-subjective interpretation:

As regards such estimates, it must be borne in mind that if they are applied to a
statement which, by its very nature, can only be true or false, the estimate of its
probability can only have a temporary or a subjective meaning, i.e. it merely reflects
our attitude in the matter. [Kolmogorov, 1991, p. 302].

However, he considers the statement justified only by a “valid general rule” reflecting “the
objective characteristics of the climate around Moscow” and hastens to add that the state-
ment must be modified as soon as one finds out the actual climatic conditions from that
year: “the snow on the fields near Moscow had vanished already on March 22” [Kolmogorov,
1991, p. 302]. That at this point the concept probability becomes superfluous, is not taken
into consideration. Rather, Kolmogorov insists that rules (as about climate conditions)
expressed in probabilistic terms “do have an objective meaning”, and concludes that

. . . the calculation of mathematical probability in order to arrive at a degree of reliability
of certain statements concerning individual events is no longer a mere expression of the
subjective belief that the event will or will not take place. Such an idealistic, subjective
understanding of the sense of mathematical probability is erroneous. If pursued to its
logical conclusion, it would result in the absurd claim that valid conclusions about
the world around us can be arrived at in complete ignorance, by merely analyzing
subjective, more or less reliable opinions. [p. 303]

A caricature of the subjective interpretation found in the book by Mǎıstrov [1974] shows
that not all participants in the debate are well-informed about all interpretations. First,
Borel is quoted as follows:

Imagine a thousand Parisians passing by a seven story immovable property; they all
agree to call it a house; however, they refuse to call a stone structure serving as a
shelter to two rabbits and three hens a house. Let us consider an average structure (of
these two); here opinion may be divided; if 748 out of 1000 voters call this structure a
house, it would therefore be correct to assert that the probability that this structure is
a house is 0.748 and the opposite probability is 0.252. [as cited by Mǎıstrov, 1974, p.
242].

Mǎıstrov comments: “Such an arbitrary interpretation of probability could have arisen only
as a result of the ambiguity and vagueness of this notion.” [p. 243] The translator S. Kotz
adds in a footnote the remark: “We note, however, that this type of argument is basic for
a subjective definition of probability.” The “probability” as sketched by Borel, an average
in the ‘yes’ or ‘no’ answers from 1000 people, is far from the same “type of argument” of
probability considered the degree of belief of a single fixed person. In the example, the single
persons do not express any uncertainty, each person states a certain ‘yes’ or a certain ‘no’.
The only idea in common with subjective probability seems to be that a question may be
answered (subjectively) differently by different people.
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Also the frequentist, or more generally, objective interpretations are being described in
rather unfriendly manners. De Finetti [1974], for example, considers definitions of ‘objective’
probability “useless per se” [p. xii] and “irredeemably illusory” [p. 4]. Galavotti [2008] adds
that objective probability is “an obstacle to a correct understanding of probability.” [p.
xviii]39.

While these two interpretations each put the emphasis on one of the two aspects in
Hacking’s “duality” of the concept probability, belief and frequency, both cannot leave out
of consideration the other aspect. Kolmogorov was just quoted referring to estimates which
have a subjective meaning. He seems to struggle with the (subjective) belief aspect coming
to the fore unwantedly. “De Finetti’s Theorem”40 establishes (in a mathematically rigorous
fashion) a connection of subjective probability to the frequency aspect and can be used for
updating subjective probabilities of a “repeatable” event, when some trials of the experi-
ment under consideration are observed.

Meaning and measurement of the concept probability are closely linked. For classical
probability, it was seen that the theoretical definition of probability as a degree of certainty
is made precise by the operational definition, which then illustrates the intuitive meaning
of probability.

The objective interpretations propose operational definitions, and in the obvious exam-
ples, such as tossing a (biased) coin, again, the operational definition illustrates the meaning
of the concept probability. The focus in the meaning here is on the frequency aspect: the
measurement simply is a frequency. However, since repeatable events are required for the
existence of a definite probability, the interpretation cannot deal with many questions involv-
ing uncertainty, such as single events. The question when exactly a (frequentist) probability
exists is left open.

For the subjective approach, the existence of probabilities is more clearly defined. A
degree of belief of a person exists for anything the person is uncertain about, it was seen
that de Finetti does not admit unknown probabilities. Concerning the measurement of these
probabilities of a person, reservations are stated in the literature as to whether the betting
scheme actually measures subjective probability. However, again, the measurement can be
considered an illustration of the meaning of the concept: it is intuitive that a person would
pay less for a bet that she thinks to “probably” lose than on one where the chances of win-
ning seem better. The fact that operational definitions provide the meaning of a concept in
a rather concrete manner, and thus provide information about the interpretation used, will
be important in the vulnerability context in the next chapter.

What does mathematics have to add to an analysis of a concept and its interpretations?
First of all, mathematics has been used fruitfully in working with the concept itself, which
turns out counterintuitive at times. The classical calculus of probability was a first math-
ematization that helped answer questions too complicated to treat using natural language
only. Even with the mathematical model of probability, some results remain unintuitive,
such as a simple game with four dice in which to each one there exists another one having
a probability of 2/3 of scoring the higher number (that is, the intuitively expected property
of transitivity is found lacking).41 It has been argued that the basic ideas in probability

39Galavotti here comments on de Finetti’s statement that “probability does not exist”, concluding that
de Finetti’s “radical empiricism” deems objective probability thus.

40This theorem is not further discussed in this work, see e.g. Heath and Sudderth [1976], or Chapter 11
in de Finetti [1974].

41The game can be found for example at the museum of mathematics “Mathematikum” in Giessen, which,
as an attempt at making mathematics interesting to a wider audience, connects back to Chapter 2. The
game works as follows. There are four dice, labelled

A 3 on all faces

B four faces 4 and two faces 0

C three faces 5 and three faces 1

D four faces 2 and two faces 6
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theory are not natural to classical mathematics [Kol’man, 1936, as cited by Mǎıstrov, 1974]
and there are famous examples of “pitfalls and delusions encountered by far from second-
rate mathematicians” [Mǎıstrov, 1974, p. 133] in probability theory42. Nevertheless, about
120 years after the Pascal-Fermat correspondence, Euler writes43 that he intends to solve
some “difficult problems on the basis of the long well-known principles of the calculus of
probabilities”.

Classical probability remained the foundation of the mathematical theory of probability
which was much further developed for several centuries44. On the mathematical side, many
results were established, for example limit theorems, and probability was being applied in
the natural sciences, requiring “additional development of the mathematical techniques and
tools of probability theory” [Mǎıstrov, 1974]. All this occured without making progress in
the foundations of the theory [see, e.g. Rényi, 1969].45

Also, the area of applicability of probability theory had never been clearly outlined.
Many applications were unfounded or were thus considered. Mǎıstrov [1974, see Chapter
V] describes a case where probability theory was (mis)used for political purposes in Russia.
As a result, probability was not considered mathematics, or not mathematics only, and, by
the time that many areas of mathematics were being set on an axiomatic basis, probability
theory acquired a rather dubious reputation.46 Many people expressed the need for an
axiomatization of probability theory. While the classical calculus of probability had provided
the basic mathematics to solve some problems, the further development of probability theory
as a mathematical discipline left the field where classical probability could be applied, the
finite sets of possibilities. Neither the foundations of the mathematical theory nor the
interpretation of concepts were clear at that point.

Enter Kolmogorov’s axioms. These have been widely accepted as the solution to the
problem of confusion: “The intuitive correctness of Kolmogorov’s formalization was recog-
nized almost at once, and is now universally adopted” [Suppes, 1968, p. 654]. These axioms,
taking the concept probability as a primitive, do not explain its meaning and even less
provide one universally accepted interpretation of the concept. The mathematical theory
has clear foundations in these axioms, but they exclude certain examples, as seen for the
uniform distribution on the natural numbers.

It is therefore not surprising that, in addition to the interpretation, also the question
‘what is the best mathematical model of probability?’ is up to debate. This debate produces
just as fervent remarks as the one on interpretations. A textbook example is Williams [1991],
whose introduction to probability theory is interspersed with (partly derogatory) comments
on any attempt at considering probability without measure theory.47

Two players play, the first one chooses a die, the second one chooses a die knowing which one the first player
has chosen. With the chosen dice, both roll simultaneously 10 times in a row. At each roll, the player scoring
the higher number gets a point. The player who has more points at the end wins. For a single toss, A wins
over D, D wins over C, C wins over B, and B wins over A with probability 2/3 each. The game is unfair in
that the second player, seeing the die chosen by the first player, always has the possibility to choose a die
which, with probability 2/3 scores better on the single toss.

42A frequently mentioned example is D’Alembert with his calculation of the probability for obtaining
heads at least once in two consecutive throws with a fair coin as 2/3. He considered the alternatives ‘heads;
tails, heads; and tails, tails‘ as the Fundamental Probability Set.

43“Solutio quarundam quaestionum difficiliorum in calculo probabilium”, 1785, here in the translation
found in Mǎıstrov [1974, p. 104].

44See, for example, Todhunter [1949] and chapters IV and V in Mǎıstrov [1974].
45“Obwohl zahlreiche neue Ergebnisse erzielt und die Anwendungen in Naturwissenschaften und

Wirtschaftsleben zu grosser Bedeutung gelangten, wurde in Richtung der Grundlagen der mathematischen
Theorie der Wahrscheinlichkeitsrechnung im Grunde kein wesentlicher Fortschritt erreicht.” [p. 83]

46“. . . haben zu Anfang des 20. Jahrunderts die meisten Mathematiker die Wahrscheinlichkeitsrechnung
nicht als organischen Bestandteil und noch weniger als gleichrangiges Kapitel der Mathematik angesehen,
sondern eher als einen zwischen Mathematik und Physik bzw. Philosophie stehenden ziemlich fragwürdigen
Zweig betrachtet.”[Rényi, 1969, p. 83]

47Interestingly, he seems to think that this is done only by philosophers, whom he does not seem to take
seriously anyhow. An example:

Something to think about. Some distinguished philosophers have tried to develop probability
theory without measure theory. [. . . ] The moral is that the concept of ‘almost surely’ gives us
(i) absolute precision, but also (ii) enough flexibility to avoid the self-contradictions into which
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For the axiom of countable additivity, some of de Finetti’s objections, not always pre-
sented in a neutral fashion, have been given in the previous sections. The articles de Finetti
[1930c], Fréchet [1930a], de Finetti [1930a], Fréchet [1930b] and de Finetti [1930b] portray
the debate between the two authors about this axiom in the year 1930. An interesting point
about the confused situation and the adoption of one or the other mathematization of the
concept probability, that is, requiring finite or countable additivity, is made by de Finetti
[1972]:

For a long time the opposing viewpoints have been applied indiscriminately [. . . ]. If no
contradictions seemed to arise, or at least, to be felt, this was largely due to the discon-
nected character of the applications. However, when the time came to place probability
theory on unambiguous foundations, the following dilemma became inescapable: either
to exclude problems of the type of an integer chosed at random (and then give reasons
why such problems should not be considered), or else, to forego conclusions based on
[countable] additivity (and then be ready to accept some technical complications). [p.
87].

This “dilemma” is one that obviously cannot be solved by mathematics: the choice of
axioms is extramathematical. In this case, the advantages are general applicability for the
finitely additive versus mathematical conclusions from measure theory for the countably
additive choice. As measure theory has been established at the beginning of the twentieth
century and has become rather common knowledge in mathematics since, some time later
finite additivity could be considered mathematically more interesting: “some of the new
problems that the finitely additive approach does introduce are of mathematical interest in
themselves.” [Dubins and Savage, 1965, p. 8]. Gangopadhyay and Rao [1997] describe:

Whether there is a need to develop probability in a finitely additive setting, is a de-
batable question. One must go back to the writings of de Finetti to see the spirit. At
a purely mathematical level, this exercise seems to have some interesting points. [p.
644].

One other point to be considered here is the representation of events as subsets of a
given set and random variables as functions on this set. In fact, it could be considered
cheating to present de Finetti’s work on probability using this set representation which he
has vehemently objected to. However, not only does de Finetti’s approach take quite some
getting used to, at this point it simply appears less clear.48 De Finetti provides the intuition
about a random quantity that first is unknown but later is known via several possible values
and one true value, which must be one of the possible values. The relation between the
true values of several random quantities does not appear obvious.49 When several random
quantities (or events) are considered at the same time, as in the betting scheme, it is not
immediately clear how the true values of these relate to each other.

The set representation fixes the relation between the true values of the random quantities
in a clear way, as they are all functions of the same outcome of an underlying experiment.
In the case of events, de Finetti also speaks of their indicator functions. The question what
the domain of definition of these indicators is seems to remain open. The set of constituents
of a given set of events (which can equally be defined when events are propositions, not
subsets) can be used: one constituent will be the true constituent in the end and determine
the values of the indicators of all events. This description, provided also by de Finetti, is
similarly clear, probably because it is not very far away from the set representation. In fact,

those innocent of measure theory too easily fall. (Of course, since philosophers are pompous
where we are precise, they are thought to think deeply . . . .) [p. 25].

48This may or may not be due to the habit of standard probability theory for the intuitive point of view.
That without set representation more axioms for probability would be needed in a fully formal description
was pointed out in Footnote 27.

49Again, this may be a question of habit. The discussions of possible points and the “linear ambit” of
several random quantities at least seems more complex than the standard representation. Examples provided
are clear, and geometric illustrations add to the intuition, however, these concern simple special cases, such
as events instead of random quantities and three dimensions only.
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it is now hard to imagine probability theory without such a representation. Here, Suppes’
statement about Kolmogorov’s axiomatization being intuitively accepted has been found
warranted.

Let us return to different interpretations of probability. Given one or more mathematical
models, these can be discussed “at another level” as Suppes pointed out. Interpretations of
probability may be compared on the background of a given mathematical model. The crite-
rion of ‘admissibility’ of an interpretation proposed by Salmon [1966] contains the statement
that a “fundamental requirement for probability concepts is to satify the mathematical re-
lations specified by the calculus of probability”.50 For example, Hàjek [2007] states for each
interpretation which of the axioms proposed by Kolmogorov it satisfies. That coherent prob-
ability assignments are finitely additive (and when defined on algebras are finitely additive
probabilities) and only finitely so, has become clear above. However, Kolmogorov’s axioms
and the interpretation proposed by Kolmogorov in the encyclopedia are not as closely re-
lated as one might expect. Relative frequencies in finite sequences are finitely and (trivially)
countably additive, but limits of relative frequencies are not necessarily countably additive
[see, e.g. de Finetti, 1972, Section 5.19].

Vice versa, in the debate about the different mathematical models, interpretations may
be used to argue for or against a model. This has been seen in the section on de Finetti’s
probability, where he refutes countable additivity on the basis of the subjective interpreta-
tion. He even uses interpretations he does not adhere to for this purpose. In a discussion of
both different interpretations and different mathemtical models [de Finetti, 1972], he argues
against an algebra structure for the domain of definition of probability functions and against
countable additivity from a frequentist point of view. The fact that limiting frequencies are
not necessarily countably additive and the fact that given two events for which limiting
frequencies exist, this need not be the case for the intersection, according to de Finetti, are
reasons for giving up these axioms. Jumping to the conclusion that Kolmogorov’s position in
the debate is weakened, would however be rash. Kolmogorov was explicitly not concerned
with the interpretation in setting up his axioms and considered probability a primitive.
While objecting to subjective probability, he considers both classical and frequentist mea-
surements as warranted in some cases. The formal framework of vulnerability presented
in the following chapter will also leave open the question “where concrete numbers come
from”. However, vulnerability will not be a primitive as the framework aims at clarifying
the meaning of the concept.

Before concluding this chapter on probability, we take a look at how this concept is used
(or avoided) in the climate change context, as an example that further has implications for
vulnerability assessments.

4.8 Probability in climate change research

Climate change decision making mostly is decision making under uncertainty, in that it
concerns future climate. Probability suggests itself as a tool to be used, however, its use
is debated. The mathematical model of probability used is generally that from standard
probability theory. Both the frequentist and the subjective interpretation of probability can
be found.

The frequentist interpretation seems to dominate, however, it is sometimes problematic.
Single events, for example, are of importance in the climate change context. Questions like
‘What does a frequentist probability mean for the tipping of the thermohaline circulation?
Which are the regularities warranting the existence of a definite probability of such an event,
and how can one obtain a number for this probability?’ reveal that the frequentist inter-
pretation does not always make sense in the climate change context. Even for events where

50What is meant by the calculus of probability of course has to be specified in this case. Salmon’s axioms
differ from Kolmogorov’s, see Salmon [1966, p. 59].
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long data records are available, such as paleoclimatic temperature records over hundreds of
thousands of years obtained from ice-cores, the fact that one is considering anthropogenic
climate change implies that these records may not be useful to deduce probabilities of future
events from past records of climate, where most data come from a time before the industrial
revolution. Also, when the object of study is the global climate system, one cannot use a
common technique to produce frequentist probabilities: making experiments.

Schneider [2002], who advocates the use of subjective probability, explains that

the probability of some level of future climate change is not determinable directly by
any set of frequency experiments – so-called frequentist probabilities – and instead will
rely to some degree on scientific judgments based upon as much empirical observation
as is possible. [p. 444]

Schneider describes these subjective judgments made as “essentially Bayesian judgments
about the plausibility of the assumptions and structure of the systems model” [p. 444].
The fact that “any such estimates will be highly subjective and often carry a fairly low
confidence” [p. 443] is perceived as problematic in climate change research.

Some problems seen with the frequentist interpretation do not apply to the subjective
interpretation: single events, as well as events for which no frequencies are available can,
at least theoretically, be ascribed subjective probabilities. The actual measurement, for
example by expert elicitation, is another question that shall not be discussed here, see for
example Morgan and Henrion [1990]. Considering probabilities given by experts, de Finetti’s
coherent probability assignments could be an advantageous mathematical model because the
extension of the probability function is arbitrary. Coherent assignments can be defined for
any set of events, one can

assume or suppose [an assignment to be] defined or known for all (and only) the ran-
dom quantities (or, in particular, events) belonging to some completely arbitrary set
[. . . ]: for instance those for which we know the evaluation explicitly expressed by the
individual under consideration. [de Finetti, 1974, p. 84].

This individual under consideration could be the expert, the model seems convenient for the
situation of an elicitation.

However, subjective probabilities are equally controversial as frequentist ones. In fact,
probability is sometimes rejected in the context of uncertainty about future climate, future
emissions etc., without specifying an interpretation.

A central issue in the debate about the use of (subjective) probability are the IPCC
SRES scenarios of future emissions [Nakićenović and Swart, 2000]. 40 scenarios have been
developed, based on four qualitative storylines differing in demographic, social, economic,
technological and environmental developments. There are six groups of scenarios (as one
storyline is further subdivided), and for each group a so called illustrative scenario is identi-
fied. The scenarios are described as “equally sound” and all of them “are equally valid with
no assigned probabilities of occurrence.” [Nakićenović et al., 2000, p. 4].

Schneider [2001] tells that in the scenario development, participants of a preliminary
meeting he attended could not agree on likelihoods of the storylines. Therefore, “in an
attempt to avoid endless disputes” [p. 18], no probabilities were assigned to scenarios. He
criticizes the “probability vacuum” resulting from this decision:

In the risk-management dilemma that constitutes climate-change policymaking, I would
definitely put more trust in the probability estimates of the SRES team - however
subjective - than those of the myriad special interests that have been encouraged to
make their own selection. [p. 19]

That decision makers will use (their own) probability estimates is inevitable. According
to Pittock [2001], even adaptation and mitigation strategies such as increasing robustness
or resilience “tacitly assume some estimates of likelihood . . . ” [p. 249]. In a certain sense,
implicit probabilities are assigned by any consideration of (some of) the 40 scenarios. One
may consider them all in the same way or make some differences, but to avoid an implicit
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relative weighting of scenarios is not possible. For a finite number of scenarios, a weighting
immediately translates to a probability measure, as also suggested by Schneider [2001] re-
ferring to “the relative likelihood of each scenario” [p. 19]. From the subjective probability
point of view, where probability is a degree of belief, one might argue that probabilities
cannot not exist. Similar to de Finetti’s statement that there are no unknown probabilities
(see page 55), there are no non-existent probabilities for a given individual facing a decision
under uncertainty.51 Experts’ probabilities have the advantage that established techniques
to control biases in subjective judgements can be used in the elicitation process, apart from
the fact that experts are knowledgeable on the respective subject.

For non-experts, the assignment of equal probabilities strongly suggests itself, given the
description of the scenarios as “equally sound”. The formulation is very similar to the
expression ‘equally possible’ that, in classical probability, was reduced to ‘equally probable’.
Immediately the reference class problem arises: does one choose the 4 storylines, all 40
scenarios or the 6 illustrative scenarios as the equally probable alternatives? That the answer
is unclear may have the benefit of discouraging this simple use of classical probability, but
the problem how to obtain probabilities for risk management questions is not solved.

Equal probabilities are not what is intended by the makers of the SRES scenarios.
Grübler and Nakićenović [2001], in a one-page reply to Schneider [2001], explain that

‘dangerous’ levels of climate change will need to be identified by research into the
adverse impacts on natural and human systems, independent of the question of how
likely they are to occur, and covering the full range of scientific uncertainty.

While they consider “assigning subjective probabilities of occurrence” neither appropriate
nor feasible, they later interpret probability in a frequentist sense and confine its use to the
natural sciences. The subjective interpretation of probability is not further discussed in this
reply. A main concern of the authors is “a danger that Schneider’s position might lead to a
dismissal of uncertainty in favour of spuriously constructed ‘expert’ opinion.”

There is a mismatch between the actual concern and the question whether probabilities
should be assigned to scenarios or not. Scenarios are described as projections, and explicitly
as not being predictions [see, e.g., Carter et al., 2007], and one often finds the terms ‘deep
uncertainty’ associated to future descriptions in climate change research. At the same time
probability is unduly associated with prediction, for example by phrases like “predicting the
future in terms of probabilities.” [Dessai and Hulme, 2004, p. 113]52.

The idea that probability reduces uncertainty is sharpened in the subtitle of Grübler
and Nakićenović [2001]: “We need to research all the potential outcomes, not try to guess
which is the likeliest to occur.” This much stronger description, in that assigning probabilities
does not necessarily mean concentrating on the likeliest possibility only, seems to capture the
authors’ concern about the full range of uncertainty better. They want to avoid that decision-
makers, when given probabilities, dismiss all but the most probable scenarios as irrelevant.
A similar concern is expressed by Lempert et al. [2004], who consider two frameworks for
decision making. The “Predict-Then-Act Approach” ranks policy alternatives “on the basis
of their expected utility, contingent on the probabilities” [p. 2], while the “Assess-Risk-of-
Policy” framework starts with available policy options and assesses uncertainties associated
with these. The authors support the latter as the framework which “may provide more
policy relevant results” [p. 7]. According to the authors, the Predict-Then-Act framework
“can suggest implicit criteria that scientist and analysts do the best job when they reduce
uncertainty as much as possible” [p. 6]. That probability reduces uncertainty is suggested
also when they describe probability as providing “factual statements about the world” [p.
4], and as suggesting “a single, correct answer” [p. 5].

Rather than a problem of the concept probability, this is a problem of how probabilities
are used. If one assumes that when given probabilities, decision-makers will automatically

51The question could be discussed more thoroughly in Decision Theory, which however we do not go into
here.

52According to these authors, analysis based on large data sets and aggregated numbers, and the increase in
computational power have “arguably led to the emergence of predicting the future in terms of probabilities.”
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use only aggregate information like an expected value and consider it as certain, it may
indeed be useful to refrain from assigning probabilities. However, the close link between
probabilities and prediction established by some works means misunderstanding the concept
probability, and especially subjective probability according to de Finetti. The problem is
not new:

There will be many and frequent occasions to warn against errors, misunderstanding,
distortions, obscurities, contradictions and the other endless troubles which are so diffi-
cult to avoid when dealing with probability, and which are always essentially the result
of ignoring the same warning: prevision is not prediction! [de Finetti, 1974, p. 98].

Here, prevision corresponds to expectation, which is even a more aggregate information
than probability itself. De Finetti explains the differences at length, describing prediction
as trying to guess among the possibilities the one that will occur, while prevision, and
thus probability, “acknowledges that what is uncertain is uncertain” [p. 71] and merely
expresses a person’s attitude of expecting something rather than something else to happen
or a quantity to be small rather than large53. The fact that “the future is unknown” is
by no means contradicted by the concept probability. The description of the second role
of probability, given by Lempert et al. [2004], “a coherent mathematical framework for
summarizing information” is much closer to these ideas. It seems unfortunately not as
widespread in the discussion about attaching probabilities to scenarios.

The non-assignment of probabilities to the SRES scenarios has consequences for vulnera-
bility assessments as seen in the following chapter. Many assessments deduce possible future
evolutions from the IPCC SRES scenarios and thus do not use a probabilistic description of
the uncertain future. This is different for risk assessments in the context of natural hazards,
where the “classical definition of risk: probability times consequence” [Schneider, 2002, p.
443] is applied.54

Let us conclude this section with a summary and recommendation by Dessai and Hulme
[2004]:

Probabilities of climate change will remain subjective – there is no such thing as ‘true’
probabilities – so it is extremely important for researchers to be as explicit as possible
about their assumptions.

Of course, this recommendation should hold for science in general. As subjective proba-
bilities are admittedly subjective, they are generally regarded more suspiciously than other
scientific descriptions of uncertainty.

4.9 Conclusions

This chapter has introduced the concept probability and several mathematizations of it.
These are classical probability, Kolmogorov’s (now standard) probability model, finitely
additive probabilities, and coherent probability assignments. As presented in this work
each model is a generalization of the previous one. Classical probability can be seen as
a special case of the standard model, where the sample space is finite and all elementary
events are assigned equal probability. The standard model, where a countably additive
probability measure is defined on a σ-algebra over an underlying set, is generalized by finitely
additive probabilities, defined on an algebra over a set, and dropping the axiom of countable
additivity. Lastly, coherent probability assignments were presented as functions defined on
an arbitrary set of subsets55 which can be extended to finitely additive probabilities on the
algebra generated by the domain of definition.

The different mathematizations were seen to serve different purposes. Kolmogorov’s
axioms build mathematical foundations for a mathematical theory that was already devel-

53See also the quote on page 35 about this attitude which goes beyond the mere assertion of possibility.
54See Section 5.5 for the use of “uncertainty” in that context.
55The original work by de Finetti does not use the set representation of events.
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oped to some extent. Taking the concept probability as a primitive, the mathematization
does not explain what probability means nor how it can be measured. De Finetti gives an
operational definition that allows to measure probabilities. He wants to use mathematics
explicitly to clarify concepts and is thus concerned with the connection between the mathe-
matical theory and the meaning of the concept. The example of probability has thus shown
that according to the different purposes that formalization is used for, it produces rather
different results. While all results are mathematical models, their relation to the concept,
in terms of clarification of the meaning and measurement of it, can be very different.

As discussed in Section 4.7, the debates about what probability means, how it can be
measured and which mathematical model best represents it are not conclusively answered
as yet, and probably never will be. Frequentist and subjective interpretation co-exist, con-
sidering probability a characteristic of uncertainty deriving from statistical regularities or
a degree of belief of a person, respectively. These interpretations each emphasize one as-
pect of the duality of the concept made out earlier, a frequency aspect and a belief aspect
inherent to probability. Formalizing concepts was shown to have some of the benefits pro-
posed in Chapter 2. For example, the set representation makes explicit in a clear fashion
how different random quantities relate. Given a mathematization, different interpretations
can be discussed more clearly, but also vice versa, interpretations are used to justify some
mathematical axioms or reject them.

Finally, an application of probability was looked at: probability in climate change re-
search, in particular the example of the IPCC SRES scenarios. The debate about whether
the uncertain future should be described in probabilitistic terms or not again illustrated that
the concept probability is far from clear. A misunderstanding encountered here is that prob-
ability serves to reduce uncertainty, while it merely serves to describe it. This problem may
derive from how probabilities are being used, there seems to be a fear that decision-makers
usually throw away all information and consider the most likely alternative as certain. It
was also seen that the subjective interpretation of probability is not as well-established
as the frequentist one. The meaning of probability in this interpretation seems less clear
and its subjectivity is heavily opposed while subjectivity of other scientific descriptions of
uncertainty, such as scenarios, is much less discussed.

A misunderstanding about formalization often encountered in the vulnerability context
should have been dispelled in this chapter: formalization does not mean providing the one
and only “correct” definition in a conceptual debate. On the contrary, for probability it has
led to different mathematical definitions in addition to the different interpretations. These
however could be used to discuss interpretations more clearly, confirming Suppes’ statement
that formalization may raise the discussion to another level.



Chapter 5

Vulnerability

You have to wait until tomorrow to find out what tomorrow will bring.
[Murakami, 2009, p. 104]

The topic of this chapter is the formalization of vulnerability, which was motivated by the
confusion in the terminology discussed in Chapter 2. Proposing mathematics as a language to
clarify concepts, a formal framework of vulnerability to climate change has been developed
by the FAVAIA research group1 at the Potsdam Institute for Climate Impact Research
(PIK), as part of the ADAM project2. This framework has evolved over several years and
has been published in different stages of its development [Ionescu et al., 2005, 2009; Wolf
et al., 2007, 2008; Hinkel, 2008; Ionescu, 2009; Wolf, 2009]. The formal framework consists
of two mathematical models of vulnerability, one of the ordinary language concept and one
of the scientific concept.

The mathematical model of the ordinary language concept is presented in detail in Sec-
tion 5.1. In a nutshell, vulnerability is defined mathematically as a measuring function of
the possible future harm that may occur to an entity. This definition serves as a basis for
the analysis of theoretical scientific definitions of vulnerability in Section 5.2. The mathe-
matical model of the scientific concept vulnerability developed by Ionescu [2009] is presented
and adapted to our purposes in Section 5.3. Given the general and precise mathematical
definitions, in Section 5.4, different vulnerability assessment approaches are identified and
explain part of the confusion: the same term is used for different kinds of assessment results.
The assessment approaches are also related to interpretations of vulnerability identified in
previous conceptual literature. Another source of confusion is explained by using the formal
framework to analyze risk assessments in the context of natural hazards in Section 5.5.

Throughout this chapter, the formal framework of vulnerability is displayed in three
forms, from a mathematical description via a semi-mathematical diagram to a box-and-
arrow-diagram closer to what is commonly used in conceptual work on vulnerability. The
different modes of presentation, which owe to the fact that the formal framework’s primary
audience are non-mathematicians, are discussed in Section 5.6. Finally, Section 5.7 bridges
back to the previous chapter before Section 5.8 concludes.

5.1 A mathematical model of vulnerability in ordinary
language

This section serves an introductory purpose in two respects: first, it demonstrates the formal-
ization process to some detail, and second, the result of this process – a general mathematical
model of vulnerability – is the basis for an analysis of scientific definitions of vulnerability
later. Ordinary language was chosen as a starting point for the framework development

1www.pik-potsdam.de/favaia
2http://adamproject.info/
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because a common language in this interdisciplinary field must be very general to point out
the commonalities and differences of approaches to vulnerability from different disciplines.

The formalization process outlined in Section 2.5 is followed here: the ordinary language
meaning of vulnerability is analysed to identify the primitives in Section 5.1.1. An example
mathematical model in a probabilistic setting illustrates some ideas in Section 5.1.2. The
primitives are translated into mathematics in a more general setting, and vulnerability
is mathematically defined in Section 5.1.3. While this formalization is very general and
introductory, of course the focus is directed towards vulnerability to climate change. Hence,
reference to the scientific concept will be made; most examples refer to scientific vulnerability
assessment. This context provides natural examples, because the aspect of measurement will
be prominent in the mathematical model. When referring to the meaning of the concept
vulnerability, terms like ‘assessing’ vulnerability are used without reference to a real-world
vulnerability assessment, but rather to an abstract description how vulnerability could be
evaluated. In fact, the formal framework of vulnerability is not to be confused with a
framework for assessing vulnerability: it does not provide guidelines how to conduct an
assessment. Nevertheless, taking it into consideration may help start an assessment in a
systematic manner, for example, by making explicit what the primitives of vulnerability,
identified in the following section, are in the situation under consideration.

5.1.1 Analysis

The first step in the formalization process is an analysis of vulnerability as used in ordinary
language. In ordinary language people have a working understanding of words and precise
definitions are rarely needed. The analysis in this section identifies primitives of the concept
vulnerability in its working understanding, supported by a glance at the etymology of the
word and by a dictionary definition.

‘Vulnerable’ has Latin origins: ‘vulnerare’ literally translates as “to inflict a wound on,
wound; to damage (things)” and further “To wound (mentally or emotionally), hurt, distress;
to damage the interests of” [Glare, 1982]. The suffix -able (Latin: -abilis) conveys the notion
of possibility: ‘being wounded’ may (but need not) happen at a later point in time.

These elements are explicit in the Oxford Dictionary of English3 entry “vulnerable”
[Soanes and Stevenson, 2005]:

exposed to the possibility of being attacked or harmed, either physically or emotionally:
[. . . ] small fish are vulnerable to predators.

The adjective “vulnerable” is ascribed to somebody or something, that can be very
generally described as an entity. An entity is vulnerable (now) if there exists a possibility
that it is attacked or harmed (later). To decompose the concept vulnerability into primitives,
we consider the notions of possibility and harm separately.

The property “vulnerability” is ascribed to an entity at a certain point t in time on the
basis of information about the future relative to t. In the following, t will also be referred
to as the present, and the future is to be understood as relative to t. Since information
about the future is required at time t, it involves uncertainty; quotes along the lines of “The
future is, of course, unknown.” [Adger, 2006, p. 276] are ubiquitous in the vulnerability
literature. Viewed from time t, there is not one certain future evolution of the entity but
several evolutions are considered possible. In de Finetti’s terms, we consider a range of
possibilities or, similar to a random quantity that has several possible values, a random
evolution4.

Uncertainty is essential in the concept vulnerability. An entity that is going to be harmed
for certain is not the prime example of a vulnerable entity. Reconsidering the present
vulnerability of an entity at a later point in time t1, when time has passed and the evolution

3This definition is used as one representative choice. The everyday usage of the word “vulnerability ” is
sufficiently clear for the present purpose without a detailed analysis of different dictionary definitions.

4See Section 4.5.
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of the entity after the present time t has been observed, the vulnerability at time t is not
necessarily determined by this observed evolution. When no harm has happened, one cannot
conclude that the entity was not vulnerable, it might just have been lucky. One observed
evolution generally does not carry enough information about the possibility of harm that
was given at t. In the literature this is summed up for example by Blaikie et al. [1994],
“vulnerability is a hypothetical and predictive term” [p. 58], or by Calvo and Dercon [2005]
“vulnerability is used as the magnitude of the threat [...], measured ex-ante, before the veil
of uncertainty has been lifted.” [p. 2].

The ordinary language use of statements like “someone is more vulnerable than someone
else” reveals that the adjective vulnerable has the grammatical property of comparison,
that means the degree to which the modifier modifies its complement can be distinguished.5

Consequently, the abstract noun vulnerability, constructed with the noun-forming suffix
‘-ity’ describes a property that admits degrees. This property is asserted at the present but
involves a view of the uncertain future. We will refer to present and future as the time
aspects of the concept, which become important in the discussion of the scientific concept.

We have identified

• the entity,

• its uncertain future evolution, and

• the notion of harm

as the primitives of vulnerability. The relation found between these primitives can be sum-
marized as follows: imagine viewing the uncertain future of the entity by seeing several
possible future evolutions, and assuming that these are all possibilities. The entity is vul-
nerable if in some possible future evolution harm occurs to it. And, roughly speaking, it is
more vulnerable if more harm is possible. This basic idea is made precise by the formal-
ization in the following sections: vulnerability is a monotonic aggregation of possible future
harm.

An important grammatical construction for discussing “vulnerability to climate change”
is “vulnerability to something” as seen in the dictionary’s example sentence “small fish are
vulnerable to predators”. This something (the predators in the example sentence) is con-
sidered a cause of harm to the entity. It is a further primitive for this case and will be
referred to as the stimulus. The uncertain future evolution considered in this case comprises
the entity and the stimulus in interaction. In order to describe this interaction, a descrip-
tion of the entity’s environment is needed, where environment is understood as anything
distinct from the entity taken into consideration in the description. According to Galloṕın
[2006], “vulnerability becomes a property of the relationship between the system and its
environment” [p. 296] where the system is our entity while, when no stimulus is considered,
vulnerability is “a property of the target system” [p. 297].

The construction ‘vulnerability to something’ can also be found with a different use, as
is the case for ‘vulnerability to poverty’, where the complement refers to the kind of harm
considered instead of the stimulus causing harm. While not as important in the climate
change context, this construction will be considered briefly in Section 5.3.

The example probability suggests some similar questions as discussed in the previous
chapter to be asked for the concept vulnerability: when, if at all, does a “true vulnerability”
exist? Can Kolmogorov’s hypothesis of the existence of a definite probability6 also be
considered for vulnerability, in other words, does the hypothesis that “a definite vulnerability
exists” have to be “verified or justified in each individual case”? Or is vulnerability a
subjective estimate that can be measured only with respect to a given reference person?
While some definitions of vulnerability (“vulnerability is a perception”, see the definition

5An example of a non-comparative adjective, a special case from the English literature excepted, is ‘equal’.
6See Section 4.3.4.
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by Kuban and MacKenzie-Carey [2001] in the table on page 85) can be understood in
this direction, this discussion is not as prominent for vulnerability as for probability (see,
however, Section 5.4.4).

A further conceptual question for vulnerability could be whether one also finds the duality
observed for the concept probability. This seems likely because Hacking [1975] finds a similar
duality contained already in the concept possibility itself. “It is possible that” refers to
something that might or might not be the case, but one does not know; thus, possibility has
a knowledge aspect. The second aspect occurs in the formulation “it is possible for someone
to do something”. This physical aspect of possibility describes “actual abilities independent
of our knowledge of them” [Hacking, 1975, p. 123]. Comparing to probability, this aspect is
similar to the “facility” with which a die was said to fall with a certain face up, see also the
quote on page 37. The interpretation of possibility as ability will be found in vulnerability
in the concept capacity, see Section 5.2.2.

As an aside, looking up “expose” in the same edition of the Oxford English Dictionary,
one finds the construction “expose someone to” which is used in the above definition of vul-
nerability (“exposed to the possibility . . . ”). This construction is defined as “cause someone
to be vulnerable or at risk” [Soanes and Stevenson, 2005]. Such (partial) circularities in
definitions are often hidden in ordinary language and may add to the confusion.

5.1.2 Probability suggests a simple mathematical model

Having to translate an entity and its uncertain future evolution into mathematical concepts
after a chapter on probability theory, a probabilistic model of vulnerability suggests itself.
We will sketch the vulnerability basics in a simple probabilistic model before going into the
more general mathematization of vulnerability in the following section.

Some preliminary remarks are necessary: to avoid repeating the ‘the entity, or the entity
and its environment’ we will in the following refer to ‘the system’ as containing the entity
and its environment as far as under consideration in order to assess the entity’s vulnerability
(to the stimulus). Moreover, in all of the following, we consider a fixed time point t as a
reference time point at which the entity’s vulnerability is assessed and a finite time horizon
th > t as the scope of the assessment. The further evolution after that time is not taken
into consideration for assessing the vulnerability of the entity at time t. We assume that
[t, th] ⊂ R, achieved for example by an appropriate mapping of real-world dates to real num-
bers. The time difference between t and th considered in vulnerability assessments varies,
from for example one year, typical in studies of vulnerability to poverty, to a hundred years
in climate change studies.

A natural simple probabilistic model for describing a system and its uncertain future
evolution is a homogeneous Markov chain on a finite state space7 (see Definition 4.3.4). The
situation of the system at a fixed time point is described by a state, denoted s, an element of
the state space of the Markov chain, S. A state collects all the relevant information about
the entity and its environment at that point in time. The uncertain future for one time step
is described by a probability distribution over states, that is, possible next situations of the
system. In the homogeneous Markov chain model this probability distribution depends only
on the given state.

Consider a starting state s0 = s ∈ S fixed, where the lower index denotes the time step,
from which the system makes a number of say h transitions up to the time horizon th. The
possible future evolutions of the system considered to assess the entity’s vulnerability in
state s are the trajectories of h steps, s, s1, . . . , sh with sj ∈ S for all j = 1, . . . , h. Their
probabilities can be computed as described in Section 4.3.3. Denote the resulting probability
distribution over the trajectories by P (s).

7We choose the simplest model since the aim is to illustrate some features of vulnerability, not to give
a maximally general probabilistic model. Also, the finite state space exempts us from the decision for or
against countable additivity.
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An entity is considered vulnerable if harm is possible in its uncertain future evolution.
In this model, this suggests an evaluation of harm for each of the trajectories describing a
possible future evolution. Let us look at the mathematical representation of harm in more
detail.

Excursus on the primitive harm

The notion of negative effects or harm presupposes a notion of comparability, interpreted as
‘worse than’. The mathematical representation chosen in the formal framework is a partial
strict order ≺, that is, an anti-reflexive and transitive binary relation:

• nothing is worse than itself, or ∀x ¬(x ≺ x), and

• if x is worse than y and y is worse than z, then x is worse than z, or (x ≺ y) ∧ (y ≺
z) ⇒ (x ≺ z).

The possible partiality of the order accounts for the fact that problems of non-comparability
easily arise in vulnerability assessments. The mathematical model should thus allow for the
result that some situations are not comparable and require (further) value judgement that
lies outside of the mathematical framework.

Denote the set of trajectories representing evolutions by Ev and its elements by ev. Then,
the mathematical representation of the harm evaluation is a function h : Ev −→ H, where
H is a partially ordered a set of harm values. The prime example of a partially odered H in
vulnerability assessments is a set of tuples with a (total) order on each component, where
the components record different phenomena such as ‘people affected’, ‘monetary damage’,
etc. Often, total orders on the tuples are derived by weighting the components, where
choosing the weights of course involves value judgement. For example, indices are created
from several indicators by weighting these. In the following we will consider H = Rn for
simplicity, with the standard partial order given by the Euclidean norm.

While the function h is applied to trajectories of states of the whole system, the inter-
pretation is that it measures harm which occurs to the entity under consideration. In the
case of vulnerability to a stimulus, the interpretation is even more specific: the function h
measures “harm to the entity that is due to the stimulus”. This could be made explicit in
the notation: e.g., hstimulus could be replaced for h everywhere in the formulae to follow.
However, the formalization does not change for this case.

For further reference, and in order to not confuse with measures in the sense of measure
theory, we define:

Definition 5.1.1. Functions that take values in a partially ordered set will be referred to
as measuring functions.

Back to vulnerability

From the Markov chain representation of the system’s future evolution, we have a probability
measure over trajectories. The evaluation of harm is represented by a measuring function on
these trajectories. Vulnerability tells something about possible future harm as viewed from
the starting state. This suggests to aggregate the harm values of the possible evolutions.
The first aggregation that comes to mind in a probabilistic context is the expected value.

The harm function h : Ev −→ Rn can be considered as a random variable (n-dimensional)
on Ev. The probability measure P (s) is defined on Ev, wherefore the expected value can be
computed.

A possible definition of vulnerability is expected harm:

Definition 5.1.2 (vulnerability as expected harm). v(s) = EP (s)(h) =
∫

hdP (s)

Varying the starting state s, vulnerability mathematically is a measuring function on
states, v : S → Rn. Note that the order on vulnerability values for different states can again
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be partial, because, while each component is totally ordered, there is no default order on
Rn. One could again choose the Euclidean norm. The value v(s) associated to a state is
of course to be interpreted as the vulnerability of the entity in state s, or, if harm due to a
stimulus was considered, the vulnerability of the entity to the stimulus in state s.

The expected value as the vulnerability aggregation is just one possibility out of many.
However, not all aggregation functions that can be applied to a probability distribution
over harm values and produce values in a partially ordered set are necessarily sensible
aggregations in this vulnerability model. Ionescu [2009] gives as a counterexample the most
likely harm value, which, when used to aggregate, may produce unintuitive results. Roughly
speaking, an entity is considered more vulnerable when more harm is possible. The most
likely harm value as aggregation allows examples where this is not satisfied. Keeping the
same probability distribution and increasing some harm values in it may lead to a lower
vulnerability value as in Ionescu’s example consisting of the harm values 10, 0 an 1, with the
probabilities 0.4, 0.3 and 0.3, respectively, and the non-decreasing function

g(n) =
{

1 if n = 0
n otherwise.

If g is applied to the harm values above, these become 10, 1 and 1. Therefore, the most likely
harm value changes to 1, which has a probability of 0.6. An aggregation like this, for which
the vulnerability of a given situation is higher than that of the modified situation in which
no harm value has decreased and some have increased, seems contrary to the working un-
derstanding of vulnerability in ordinary language. Conditions that an aggregation function
has to satisfy in order to be admissible in the vulnerability definition will be discussed in the
following section, where the general mathematical definition of vulnerability is introduced.

5.1.3 A general mathematical definition

The previous section has shown a possible mathematical definition of vulnerability in a
probabilistic setting, illustrating its basic elements. Borrowing from the theory of dynamical
systems, the system under consideration at a given point in time is described by a state.
This should contain all relevant information for assessing vulnerability about the situation of
the entity and its environment at that time. States are collected in the set of states S. The
system’s uncertain future evolution as viewed from that state at that time requires a more
general mathematical translation than in the probabilistic case. This will be given below.
Then, the harm measuring function, which remains as above, is again applied to all possible
future evolutions provided by the description of the uncertain future, and vulnerability will
result by aggregating. Again, mathematically, vulnerability will be a property of a state,
v(s), meaning the vulnerability of the entity (to the stimulus) in state s. Let us consider the
more general mathematical description of the uncertain future evolution of the system.

Uncertain future evolution

There are various ways of describing the uncertain future as seen from the perspective of a
state at a fixed point in time. Which one is most useful depends on the available information
in each concrete case. The Fourth Assessment report by the IPCC (Chapter 2 by Working
Group II) lists artificial experiments, analogues, projections, sensitivity analysis, scenarios
and storylines, and probabilistic futures as characterisations of future conditions [Carter
et al., 2007]. While probability is a well-established mathematical method of capturing
some information about uncertainty, its use in the climate change context is debated, as
seen in Section 4.8.

The use of scenarios, which are “not predictions or forecasts [. . . ] but alternative images
without ascribed likelihoods of how the future might unfold” [Carter et al., 2007], is quite
common in studies of vulnerability to climate change because many make use of the SRES
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scenarios, which come without probabilities. Mathematically, such a future description is
given by associating a set of possible future evolutions to a given state. It is referred to
as non-deterministic description. A further mathematical description of uncertainty is the
fuzzy one, used for example to represent qualitative expert judgement. There is a common
structure in these examples, given by the fact that sets of possible future evolutions are
considered. While in the non-deterministic description this is all the information, in both
the probabilistic and the fuzzy description further information about the elements of the set
is given. In the case of discrete sets, numbers are attached to the possible future evolutions,
probabilities in the probabilistic case, degrees of membership in a given set in the fuzzy case.
The general mathematical concept that captures all three examples is a functor, defined in
Section 3.3. Generalizing from the probabilistic case, where one has probability distributions
over a set, we will refer to the result of applying a functor to a set as the set of uncertainty
distributions.

First, however, we need to define future evolutions of the system mathematically. Since
the situation of the system at a given time is described by a state, an evolution of the
system mathematically is a trajectory of states that the system “passes through in time”.
The time interval under consideration for assessing an entity’s vulnerability is [t, th] ⊆ R,
as introduced in the previous section. Let T be the set of time points considered, that is,
a sequence of say n discrete time steps, t = t0 < t1 < . . . < tn = th, or, for a continuous
evolution of time, T = [t, th], the interval itself. An evolution of the system is a function
from time to states, ev : T → S associating with each point in T the state that the system
finds itself in at that particular point in time. In the probabilistic example, Ev denoted
trajectories starting in the fixed starting state. To define a vulnerability measuring function
v on S, let Ev be the set of all evolutions ev, regardless of their starting point. Not all
evolutions in this set need to be considered possible evolutions of the system, in particular,
a possible future evolution viewed from state s at time t has to start in s. However, only
possible evolutions will occur in the descriptions of the uncertain future as viewed from the
starting state. In in this abstract model, we will consider, for example, the harm measuring
function h defined on the whole set Ev. That this may be too strong a requirement for
practical purposes is not of importance here. In fact, most vulnerability assessments will
find out only v(s) for one state, namely the given situation. Yet, to clarify its properties,
the mathematical definition will again be a measuring function.

To translate into mathematics the first two primitives, an entity and its uncertain fu-
ture evolution, we again look back to the probabilistic case in the previous section. There,
a probability distribution over evolutions, P (s), was associated with a starting state s to
describe the uncertain future of the system as viewed from that state. Here, instead of the
probability distribution, an uncertainty distribution over possible future evolutions of type
F Ev gives the corresponding description, where F is the functor chosen to represent un-
certainty. Since this description depends on the starting state, we consider given a “future”
function f : S −→ F Ev that to a state s associates f(s) of type F Ev, the uncertain future
evolution of the system as viewed from state s at time t.

In the computational model of vulnerability given by Ionescu [2009], this function f ,
which supplies the uncertainty distribution over possible future evolutions when given a
starting state, is computed as the structure of micro-trajectories of a monadic dynamical
system. Here monadic dynamical systems are of advantage:

The computation of possible evolutions is complicated by the need to model the in-
teractions between different types of systems: non-deterministic systems representing
scenarios, deterministic models of physical processes or stochastic systems resulting
from data analysis. [Ionescu, 2009, p. 46].

Ionescu provides combinations of monadic dynamical systems, but we will not go into any
details here.
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Back to vulnerability

Having generalized the probabilistic future description to a functorial one, the following
steps in defining vulnerability are very close to those described in the previous section.

Taking advantage of the functor, the application of the harm measuring function h can
be concisely written as F h : F Ev −→ F H. This means the harm function is applied
to each possible future evolution within the uncertainty distribution, while the latter does
not change, providing an uncertainty distribution over harm values. This generalizes the
probability distribution induced by a random variable.

Note that the functorial description of the uncertain future evolution of a system allows
the application of any measuring function for harm defined on Ev. The separation of the
primitives means that in a vulnerability assessment one of these two components could be
exchanged without having to make any changes to the other one. There are no restrictions
imposed on either component by the other one, except for the type Ev. In a computational
assessment using this structure, the two components could be constructed independently.
An especially useful case may be that of exchanging a harm measuring function by a new
one, that may result for example from stakeholder involvement. Also, vulnerability could be
computed for several measuring functions to show the consequences of different evaluations
of harm.

As in the probabilistic example, vulnerability is defined as an aggregation over the un-
certainty distribution over harm values. Having seen that aggregation functions can produce
examples which do not reflect the ordinary language intuition about vulnerability, some ag-
gregations will be considered appropriate, while others will not. What makes an aggregation
function appropriate will however be discussed further below.

Definition 5.1.3. Consider given a function f : S −→ F Ev representing the uncertain
future of a system as viewed in each state, two partially ordered sets H and V , a measuring
function for harm, h : Ev −→ H, and an appropriate aggregation function g : F H −→ V .
The vulnerability of the entity under consideration in state s is

v(s) = g(F h(f(s))).

Thus, v : S −→ V is a measuring function defined on states.

A simple but illustrative example is that of a non-deterministic uncertainty description,
so that f(s) ∈ P(Ev), and a harm function that only takes two values, indicating that
‘harm has occured’ or ‘no harm has occured’ for every element of the set f(s). That is, h is
a predicate, which is the simplest case of a measuring function. Denoting ‘harm has occured’
by the value 1 and ‘no harm has occured’ by the value 0, one can define vulnerability as the
predicate ‘harm has occured in a possible future evolution’.

Definition 5.1.4 (vulnerability as a predicate).

v(s) =
{

1 if there is an evolution ev ∈ f(s) with h(ev) = 1
0 otherwise

Ionescu [2009] uses the notation of the functional programming language Haskell, where
the aggregation function just used is predefined under the name any. Further, instead of f ,
Ionescu uses possible as name for the function supplying the future description to a state.
He writes the above definition (point-free and without brackets for function application) as

vulnerable = any harm ◦ possible

which reads just like the ordinary language description: an entity is vulnerable if harm is
possible in the future. In the general case, the yes/no distinction typical of a predicate is
too rough to capture vulnerability, which admits degrees. Let us turn to the question which
functions qualify as aggregation functions.
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Aggregation

So far, only the type of aggregation function was fixed, g : F H −→ V . The aggregation
function takes an uncertainty distribution over harm values and aggregates into a vulner-
ability value, so this is a crucial point where assumptions about the concept vulnerability
can be made explicit.

A first condition for making an aggregation appropriate involves the idea of monotonicity.
The general intuition is very clear: more harm should mean more, or at least not less
vulnerability. It is however not easy to make this idea precise in natural language. What
exactly does “more harm is possible” mean, when several future evolutions, possibly with
probabilities or other further information attached, are considered at the same time? In a
statement like “more harm is likely”, one could additionally change the word order to get
“harm is more likely”. What should vulnerability do in this case?

In the mathematical setting, a minimal monotonicity condition can easily be stated
taking advantage of functoriality once again: if the uncertainty distribution stays the same
and “inside” it the single harm values increase or stay constant, but do not decrease, the
vulnerability value that the aggregation function outputs should certainly not decrease.

Condition 5.1.5 (Monotonicity). For any non-decreasing function α : H → H, and any y
of type F H (i.e. any uncertainty description over harm values),

g(y) ≤ g(Fα(y)).

Only functions g with this property qualify as aggregation functions. This monotonicity
condition provides a first sensibility check for candidate functions in vulnerability assess-
ments. The aggregation which chooses the most likely harm value, discarded as unintuitive
in the previous section, in fact violates this condition, as shown above. Without this check a
seemingly natural aggregation such as the most likely harm value could lead to unintuitive
vulnerability evaluations.

The above posed questions involving the word ‘likely’ cannot be discussed in this very
general setting, because further uncertainty information than the mere possibilities is nec-
essary. Thus, other properties for the aggregation function may hold only for some type
of uncertainty distribution. Calvo and Dercon [2005], for example, discuss vulnerability
axioms in the probabilistic setting, where they can pose requirements such as “probability-
dependent effect of outcomes” [p. 10]. Adding conditions for certain types of uncertainty
distribution may imply that the same aggregation function qualifies with some types of un-
certainty distributions but not with others. Maximum possible harm is an example that
could be used to aggregate in the non-deterministic case, representing an application of the
precautionary principle, but not in the probabilistic case if dependence on the probability
measure is required.

Of course, properties of the aggregation may be argued about. An interesting question
might be a dependence of the vulnerability measuring function on the time horizon chosen. If
the harm measurement is such that it can also be applied to shorter evolutions, theoretically,
vulnerability can be measured for any time horizon before th. At the least, this reveals that
a clearer notation could be useful: with the definitions made so far, all measurement results
would simply be ‘the vulnerability’ of the entity in the same starting state. However, the
results by no means have to be the same, when a different time horizon is considered. To
enhance clarity, the time horizon could be explicitly attached to the term vulnerability,
as for example ‘10-year vulnerability’. Further, one could ask whether the vulnerability
measurements for the same starting state should behave in a certain way in relation to the
time horizon considered, for example whether harm should be somehow “discounted” in the
further future.

A discussion of mathematical properties that an aggregation function for vulnerability
should satisfy can also help uncover assumptions concerning the uncertainty distribution,
not only the aggregation itself. An example is the idea that “having more possibilities should
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not make an entity more vulnerable”. Consider an entity with several possible futures and
add one more possibility for which the harm measuring function yields very bad values.
The question whether the aggregation function should satisfy the above statement may be
answered in two ways, following different lines of argumentation. Considering an entity
which can make an informed choice, the entity could simply disregard the new possibility,
nothing should change. When the possibilities are, however, considered as alternatives that
can happen, it would make sense to let the vulnerability measurement increase when the
new possibility is added. The different assumptions about how possibilities are considered
here correspond to the physical and the knowledge aspects, respectively. These can become
explicit in a discussion about formal properties of elements of the formalization.

5.1.4 Remarks on formalization

In the probability chapter, formalization was seen to help raise the discussion in a situation
of confusion to another level. The same can be said already at this point for vulnerability.

The concept as used in ordinary language was analyzed into primitives: an entity in
a given state, a description of the uncertain future evolution, a notion of harm, and for
‘vulnerability to something’, a stimulus causing this harm. Vulnerability was mathematically
defined as a measuring function, reflecting that the property vulnerability admits degrees.
This measuring function is obtained by aggregating an uncertainty distribution over harm
values in possible future evolutions of the system. It is rather difficult to state properties
that all vulnerability aggregation functions must necessarily satisfy. Still, the (rather weak
but not vacuous) monotonicity condition could be stated at this level of generality.

The debate about properties that vulnerability aggregation functions should satisfy can
be carried out more clearly than discussing properties of vulnerability using natural language.
Also, the precise description of the structure of vulnerability encourages to investigate the
working understanding one has of vulnerability: which aggregation function would represent
a certain view on vulnerability best? By trying to come up with a mathematical description
(especially by choosing the aggregation function), a more precise understanding may be
reached. The debate is hence raised to another level.

The precision of the mathematical definition may seem exaggerated for vulnerability
as used in ordinary language: here, people will rarely think about explicit possible future
situations or specify the evaluation of harm they have in mind. Also, the everyday usage of
vulnerability lacks the measurement aspect that is present in the formal definition. When
using the word vulnerability in ordinary language, people are generally not concerned with
measuring vulnerability, although the property admits degrees. One uses statements like
“someone is more vulnerable than someone else”, when this is obvious. However, the problem
of finding out “who of these two is more vulnerable?” is rather unfamiliar in everyday
situations. This mismatch is not a problem, since the formalization of the ordinary language
term was not meant as an end in itself.

Both the high level of precision and the accentuation of the measurement aspect, which
led to the fact that examples from the scientific context came in very naturally, show that
the basic mathematical model presented lends itself for investigation of the scientific concept
vulnerability. It will be the common background against which the structure of scientific
definitions of vulnerability are analysed in the following section. There, the ‘mathematical
model of vulnerability’ will always refer to the model presented here.

5.2 Scientific theoretical definitions of vulnerability

This section presents an analysis of a list of scientific definitions8 of vulnerability from the
literature, reported in the table on pages 83 to 86. In the table, the definitions can still be
read line by line when one skips the blank spaces, therefore it was not deemed necessary

8We include “descriptions” like “vulnerability refers to . . . ” rather than only definitions stating “vulner-
ability is . . . ”.
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to report the definitions again as simple text. The table can be considered the result of a
first step in the analysis: the definitions have been sorted into a common scheme guided
by the mathematical model of the ordinary language concept. In the formalization process,
this section belongs to step 1, concept analysis. The selected definitions are taken from the
field of global change, that is, together with definitions of ‘vulnerability to climate change’,
also definitions of the more general ‘vulnerability to environmental change’ are included in
the list. Scientific use of the concept vulnerability in the fields of, for example, computing
science or medicine is however not considered. The choice of definitions was supported by
review articles as for example Adger [2006] and O’Brien et al. [2007] as well as by a list
provided under www.vulnerabilitynet.org/definitions. The present list is not supposed to
be comprehensive. Many more pages could be filled with vulnerability definitions from the
literature, starting for example with the 35 definitions collected by Thywissen [2006].

5.2.1 Mapping expressions to the formalization

The scientific concept is defined before the background of the working understanding of
vulnerability that people have. If it were not based on the ordinary language use of the word,
there would have been no reason to use the term vulnerability. According to the hypothesis
that the scientific concept refines the ordinary language concept vulnerability, we use the
mathematical model presented in the previous section as a basis for the analysis here. The
scientific definitions listed are mostly longer than the ordinary language definition and also
seem more complex in that they contain other concepts such as impact, hazard, capacity
and so on. The following analysis will show that the scientific definitions generally fit the
structure of the basic mathematical definition and refine it. The table groups expressions
used in the definitions according to the primitives identified for vulnerability in ordinary
language and adds some further columns. This immediately shows that there is a common
structure shared by the definitions in the table, and shared with the mathematical definition.
The analysis proceeds column-wise. For the most important columns, the expressions used
in the definitions are listed here.
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The primitive entity is present in most definitions.9 The expressions used in the defini-
tions can be divided into two groups: those referring to an abstract description of the entity
as a ‘system’ etc, and those referring to a real-world entity such as ‘people’. All expressions
in the column qualify as entities in the sense of the above formalization, the more abstract
ones even suggest a model in terms of a dynamical system. Wanting to study the vulnerabil-
ity of, say, ‘a community’ presupposes a description of this community (no matter whether
quantitative or qualitative)10. Mathematically, such a description of the situation is a state.

The primitive harm occurs as the expression ‘harm’ itself or is paraphrased by expressions
such as ‘(adverse) effects’ and ‘contingencies’. Other expressions specify a certain kind of
harm, such as ‘poverty’, ‘loss’, or even more specifically ‘loss of property or life’. Different
aspects are emphasized by the expressions used, but they can all be represented by the harm
measuring function in the mathematical model of vulnerability. Whether one considers ‘loss
of property or life from environmental hazards’ or ‘adverse effects of climate change’, one
provides an evaluation (again, quantitative or qualitative) of ‘harm to the entity triggered
by the stimulus’. The mathematical representation should thus take values in a partially
ordered set to allow a comparison of some values.

Since the definitions considered are special cases of the construction ‘vulnerability to
something’, also a stimulus is given. Two groups of expressions can be made out: a neutral
description, such as a ‘(discrete or identifiable) event’, ‘a natural phenomenon, or ‘climate
change and variation’, and a description with negative connotation, such as ‘a perturba-
tion or stress/stressor’. Some expressions in the second group also convey a possibility of
something negative, such as ‘a hazardous event’, ‘a threat’, ‘a natural hazard’. The ISDR
defines

Hazard: a potentially damaging physical event, phenomenon or human activity that
may cause the loss of life or injury, property damage, social and economic disruption
or environmental degradation. [UN/ISDR, 2007].

Two of the neutral expressions from the stimulus column recur in this definition: the hazard
may be an ‘event’ or a ‘phenomenon’. In the mathematical model, harm (occuring to the
entity) is measured in the possible future evolutions of the whole system, confirming the
often stated fact that a hazard is not determined by the (natural) event per se, but by the
interaction of the event and the entity [e.g., Burton et al., 1993]. The mathematical model
also reveals that within a definition of vulnerability it is redundant to call the event a hazard.
A substitution of the hazard definition into the vulnerability definition renders a statement
of the form: “Vulnerability is the possibility of harm from a potentially damaging event that
may cause harm.”

Expressions found in these three columns suggest to translate the scientific concept vul-
nerability into mathematics in a similar way as done for ordinary language vulnerability.
For the primitive uncertain future, the situation is different. Here, the decomposition of
the concept vulnerability into other concepts will be seen. Some expressions are already
captured by the mathematical model of vulnerability. Certainly, ‘uncertainty’ is, and ‘the
occurence’, which refers to the possibility of something happening, could be represented by a
non-deterministic future description with the two possibilities of occurence or non-occurence
of the event under consideration. Further, ‘the potential’ is a general description of possibil-
ity, hence captured by the mathematical model, whereas ‘the likelihood’ and similar entries
(‘is likely to experience’, ‘the likelihood and scale of’) refer to a probabilistic description of
uncertainty that is also already present in it. However, other expressions in this column
deserve a closer look because other scientific concepts from the vulnerability terminology
such as exposure and capacity appear. We postpone the analysis in order to deal with some
more straightforward remaining columns first.

9The definitions which do not specify an entity describe the property abstractly, as in the dictionary
definition. This property is, however, attributed to an entity when the concept vulnerability is used.

10The same is true even for ‘someone’s life and livelihood’.
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The columns in the table which do not refer to primitives of vulnerability group expres-
sions which play similar roles in the definitions. The column titled risk collects expressions
which combine two of the primitives into a single word that could thus not be taken apart
and sorted where the parts would have belonged: ‘risk’ (‘is put at risk’) and ‘threat’ contain
both the uncertain future and a notion of harm. In the case of risk, probabilistic information
about the uncertainty is usually assumed. The relationship between the concepts vulnera-
bility and risk is treated in Chapter 5.5. The column other was added to collect parts of
definitions that do not fit into any group. It will not be discussed.

The column (graded) property can be directly interpreted in terms of the mathematical
model of vulnerability: the scientific concept is defined as a property by the expressions
‘the state’, ‘the conditions’, the ‘characteristics’, ‘a human condition or process’ and ‘a
perception’. This suggests a mathematical representation as a predicate like in Definition
5.1.4. The following expressions additionally state that the property can be measured: ‘a
measure’, ‘an aggregate measure’, ‘a measure of the degree and type’, ‘the degree’, ‘the
extent’and ‘the magnitude’. Therefore, defining vulnerability as a measuring function as in
Definition 5.1.3 seems more useful. Theoretical definitions can be read as defining v(s), the
result of applying this measuring function to a given state.

The expression ‘a perception’, found in the definition by Kuban and MacKenzie-Carey
[2001], recalls the discussion in Section 5.1.1: the information that a property is perceived
adds a subjective element, in that a reference person who perceives it is needed. Subjectivity
in relation to vulnerability is not generally discussed as a characteristic of the concept, but
for its measurement, see Section 5.4.4.

Thus far, the mapping of the table to the mathematical model of vulnerability has
been quite straightforward, and the differences between expressions did not yield essentially
different definitions. For example, the concept vulnerability does not seem to change much
depending on whether harm is described as an ‘impact’ or ‘loss’. Even when vulnerability
is defined diversely as a ‘property’ or a ‘degree’, which could be formalized by the different
vulnerability definitions 5.1.4 and 5.1.3 respectively, one would rather formalize both cases
using the more general Definition 5.1.3. In fact, no definition using the term ‘property’
states that the property is not comparative, so that the definition as a predicate seems too
restrictive. Anyhow, the predicate is a special case of a measuring function.

5.2.2 Uncertainty refined

Apart from the already discussed expressions that are captured by the mathematical model
of vulnerability, in the column uncertain future evolution one finds specific concepts from the
vulnerability terminology such as exposure and capacity, and the expression susceptibility
which is related to the scientific concept sensitivity.

A glance at the ordinary language meaning of these terms reveals that an uncertain
future evolution is a common primitive of exposure, susceptibility and capacity: an entity
is ‘exposed’ to something if this might (but need not) happen to it and ‘susceptible’ if it
may be affected by something happening in the future. ‘Capacity’ specifies a positively
connoted possibility that refers to the entity’s actions. Each of the concepts further specifies
the uncertain future evolution of entity and stimulus in interaction by considering a certain
aspect of it. Here, the refinement of the scientific concept (compared to the ordinary language
one) occurs.

The scientific concept is decomposed to explain “how vulnerability comes about”. The
most basic decomposition of vulnerability is given by Chambers [1989]:

Vulnerability has thus two sides: an external side of risks, shocks, and stress to which
an individual or household is subject; and an internal side which is defencelessness,
meaning a lack of means to cope without damaging loss. [p. 1].

Both sides explain why an entity might be vulnerable. Considering that vulnerability arises
from the interaction of an entity and a stimulus in the entity’s environment, the external
side focusses on the stimulus, while for the internal side, the focus is on the entity. Having
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made such a distinction of two sides of vulnerability, the concept is then defined in terms of
concepts that correspond to these sides. In the definition by Chambers (see table, page 83),
the two sides occur as ‘exposure’ and ‘difficulty in coping’. Other definitions in the table
use other expressions which correspond to an external and an internal side of vulnerability
in this sense or, in other words, to a focus on the stimulus and a focus on the entity. The
respective concepts ‘exposure’ and ‘capacity’ (and also ‘susceptibility’ and ‘sensitivity’) are
discussed in brief extra sections in the following. First, however, a preliminary remark is
due.

In studies of vulnerability to environmental change, “a consistent focus on the social-
ecological system” [Adger, 2006], is observed. This common object of study is generally
abbreviated SES and also referred to as coupled human-environment system [e.g., Turner II
et al., 2003]. It specifies the form of the states under consideration. In most studies, the
system of interest contains a social and an ecological component that interact. Further,
in many cases, the entity is part of the social system while the stimulus manifests in the
ecological system, for example in the case of the vulnerability of a community to climate
change. This need not always be the case but a general association of this kind prevails.
This has consequences for the two sides of vulnerability distinguished by Chambers: each
side shows a focus on the component of the SES predominantly considered when studying
stimulus or entity respectively.

Exposure

The concept exposure shows structural similarities to the concept vulnerability. Apart from
the circularity between the definitions of ‘vulnerable’ and ‘exposed to’ found in the Oxford
Dictionary of English (see Section 5.1.1), the same grammatical construction is used and
the concepts share a primitive.

Definitions in the table use the grammatical construction ‘exposure to’ either as ‘exposure
to a stimulus’, for example Turner II et al. [2003]: “exposure to a hazard”, or as ‘exposure
to harm due to a stimulus’, for example Adger [2006] “exposure to stresses associated with
environmental and social change”. Within the definition of vulnerability, exposure thus
describes the external side, being closely related to the stimulus.

Just as the concept vulnerability, exposure has the uncertain future as a primitive: “ex-
posure to the stimulus” at a time t describes a future possibility of the stimulus manifesting.
Recalling11 the duality of the concept possibility made out by Hacking [1975], possibility
here contains both the knowlegde and the physical aspect. It is physically possible that the
stimulus manifests, but one does not know whether or when this will be the case. In the
mathematical model of vulnerability, exposure can be described as the information contained
in an uncertainty distribution of stimulus values or an aggregation thereof.

Only when considering the status in the vulnerability literature is there a big difference
between vulnerability and exposure. While most authors define vulnerability, exposure is
rarely defined as a scientific concept. For example, neither the ISDR glossary nor the IPCC
glossary of Working Group II for the Fourth Assessment Report have an entry ‘exposure’.
Thywissen’s [2006] glossary contains 7 definitions of exposure, one fifth of the number of
vulnerability definitions. The IPCC definition from the Glossary of Terms of the Third
Assessment Report, “Exposure: The nature and degree to which a system is exposed to sig-
nificant climatic variations.” [McCarthy et al., 2001], is not actually a definition of exposure,
which it paraphrases by using the associated adjective. One thus has to assume the meaning
of the term ‘exposed’ given by its working understanding in ordinary language, and this is
not precisely determined.

Capacity

The concept capacity occurs in the definitions in the table as ‘capacity’ and ‘capability’,
in the negatively formulated ‘lack’ and ‘absence of capacity’ (with ‘difficulty’ as a weaker

11See Section 5.1.1.
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negative formulation), as well as in the verb ‘can’ and the negative counterpart ‘is unable
to’. The ordinary language meaning of capacity given by the Oxford Universal Dictionary
[Onions, 1959] contains the following points:12

• the power, ability or faculty for anything in particular

• capability, possibility

• position, condition, character, relation.

In Hacking’s duality of the concept possibility, capacity corresponds to the physical aspect
of possibility, more precisely to actions an entity is able to undertake. Capacity generally
has a positive connotation. If negatively formulated, as in a lack of capacity for example,
the concept corresponds to the internal side of vulnerability because it focuses on the entity.
The present capacity of an entity refers to future actions which the entity is (physically)
able to do. Since one does know what it will do, capacity has an uncertain future as a
primitive similar to exposure and vulnerability. One could thus try to describe capacity via
an uncertainty distribution over an entity’s actions.

The third point in the dictionary definition uses an expression that was found in vulner-
ability definitions: a ‘condition’ describes capacity as a property. The conceptual literature
emphasizes this present property aspect of the concept capacity, for example Galloṕın [2006]:
“Capacity of response is clearly an attribute of the system that exists prior to the perturba-
tion” [p. 296]. The uncertain future inherent to the concept, however, often remains implicit.
Mathematically, capacity will be a measuring function, but without using an explicit uncer-
tainty distribution.

Often, capacity is further specified in vulnerability definitions. One finds the concepts
adaptive capacity, coping capacity, capacity of response and resilience (the latter has been
formalized by Hofmann [2007] but is not treated in this work). Definitions of these concepts
often state what is meant by the qualifying adjective, while the term “capacity” itself is rarely
defined explicitly. An example is the Parry et al. [2007] definition of adaptive capacity:

The ability of a system to adjust to climate change (including climate variability and
extremes) to moderate potential damages, to take advantage of opportunities, or to
cope with the consequences. [p. 869].

Here “capacity” is paraphrased using “ability”, the meaning of both terms has to be inferred
from ordinary language.

The present property aspect of capacity is emphasized also in definitions as “Capacities
are the characteristics of communities and people which can be used to respond to and cope
with disasters.” [Moench and Dixit, 2007]. This definition has the same structure as the
vulnerability definitions, in fact, it can be (and was, see page 86) sorted into the table. It is
proposed, however, not for a component of vulnerability, but for a concept complementary to
it. In the table some vulnerability definitions include capacity while others do not. In some
cases, keeping the concepts separate is an explicit aim. For example, the ISDR definition,
after the part reported in the table, refers the reader to the definition of capacity: “For
positive factors, which increase the ability of people to cope with hazards, see definition of
capacity.” [UN/ISDR, 2007]. And the ProVention Consortium states in this regard

vulnerability and capacity cannot always be seen as two ends of a spectrum. [. . . ] For
the sake of clarity, we therefore propose to confine all the resources and capabilities of
communities under the term “capacity” and to restrict the word vulnerability to factors
that contribute to putting people at risk. [Davis et al., 2004].

This means the concept capacity, while used as a component of vulnerability in some def-
initions, is used as a concept on equal footing with the concept vulnerability here. Being

12Another part of the dictionary entry refers to a measure of volume or content, which is not of interest
here.
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considered a concept like vulnerability but “under a change of sign” in the mathematical
sense, it is not surprising that this definition fits into the table. Galloṕın’s [2006] conclusion
that concepts “are related in non-trivial ways” [p. 301] is confirmed here. One finds the
same concepts declared complementary in one case and one declared a component of the
other in another case.13 Moreover, from a given definition of the concept capacity alone,
one cannot deduce whether it is used as a component of vulnerability or a complementary
concept to it in that instance.

Having made distinctions between vulnerability and capacity as negative and positive
sides of a coin, or between exposure and capacity as external and internal sides of vul-
nerability, a question that arises is how these interact. There are further concepts in the
vulnerability definitions which address some kind of interaction between entity and stimulus:
susceptibility and sensitivity.

Susceptibility and sensitivity

The concepts susceptibility and sensitivity are used to describe an interaction between entity
and stimulus in some definitions of vulnerability. While for sensitivity as a scientific concept,
often definitions are provided, this is generally not the case for susceptibility. Again one is
left with the ordinary language meaning, and this proves insufficient for clear conclusions.
Sensitivity and susceptibility can be found as synonyms, for example, in online dictionaries.
However, one also finds an important difference between the two concepts: ‘susceptibility’
defined as the ‘likelihood of being affected’ comprises a notion of uncertainty. ‘Sensitivity’ on
the other hand, does not refer to uncertainty14 when it is defined as an if-then-relationship
or a degree of being affected, as in the IPCC definition: “Sensitivity is the degree to which a
system is affected, either adversely or beneficially, by climate variability or change.” [Parry
et al., 2007, p. 881]. ‘Being affected’ happens at the time when the stimulus occurs (or later
in case of inertia), and sensitivity is plainly a measure of this, it does not have a predictive
quality.

Within the vulnerability of an entity to a stimulus at time t, sensitivity throughout each
possible future evolution, that is from t to th, is of interest. Sensitivity thus plays a role
similar to the harm measuring function, as will be seen in the formalization of the scientific
concept. It does not show the same structure as vulnerability, capacity and exposure, which
contain an uncertain future evolution and hence (could) contain an uncertainty distribution.

The concept susceptibility remains rather unclear. It is not considered a scientific con-
cept, but supposed to be intuitively clear from ordinary language. It is defined neither
theoretically nor operationally and seems to occur in some theoretical definitions without
further thought as to what it is precisely meant to mean. In the definitions in the table,
susceptibility plays different roles. Consider the definition by Adger [2006] and by the IPCC
on page 86. In Adger’s definition, susceptibility appears at the same level as vulnerability,
and seems to derive from exposure and capacity. The IPCC definition decomposes vulner-
ability into susceptibility and the ‘inability to cope’. The second sentence of this definition
describes vulnerability as a function of three components. It should be uncontroversial to
associate the inability to cope with the (in this case, adaptive) capacity of the entity. This
suggests that susceptibility is determined by “the character, magnitude, and rate of climate
change and variation to which a system is exposed” and sensitivity. Here, the concepts sus-
ceptibility and capacity seem to be on equal footing, while only together they combine into
vulnerability. The lacking definition of the concept susceptibility thus cannot be inferred
from the role played by the concept in definitions of vulnerability.

5.2.3 Vulnerability composed

Two further columns in the table have to be discussed. Expressions in the column action
mostly specify capacity, similar to the way in which the stimulus specifies harm. Again,

13For vulnerability and risk, each can be found as a component of the other, see Section 5.5.
14This is why it was sorted in an empty column in the table.
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there are general terms such as ‘deal with’, ‘react adversely’ and ‘defend’. Other terms
express a timing relation with an event: ‘cope with’ refers to a short-term reaction, ‘adapt’
implies a longer time scale, while ‘recover’ relates to the time after harm has taken place.
In the list ‘anticipate, cope with, resist and recover’ all these time scales, plus one that
lies before the event under consideration, are gathered. One exception is the definition
by Kates [1985], where the ‘capacity to suffer harm’ shows an unfamiliar use of the usually
positively connoted term capacity. A more established formulation would be the “possibility
to suffer” harm. Grammatically a verb in the active form describing what the entity does
(and therefore found in this column), the meaning of ‘suffer’ describes the entity as passively
experiencing harm, and it could also be sorted into the column harm.

Finally, the column dimensions provides more practically oriented information. It spec-
ifies which ‘factors or processes’ to take into account in the system description of a vulnera-
bility assessment, with ‘physical’ and ‘environmental’ referring to the ecological subsystem
and ‘social, economic, political’ and ‘institutional’ to the social part of the system.

The preceding analysis has identified common elements of the various vulnerability defi-
nitions and related these to the mathematical model of vulnerability. In fact, these elements,
found in the column headings, are the primitives of vulnerability (entity, stimulus, uncer-
tain future and harm), a combination of two primitives (risk), further specifications for
some primitives (dimensions, action), and the formalization result of putting the primitives
together (graded property). While not all definitions use all elements, all definitions fol-
low the basic structure “vulnerability is a property of an entity consisting in the fact that
future harm caused by a stimulus is possible”, or, wanting to emphasize the comparabil-
ity, “vulnerability is an aggregate measure of possible future harm due to a stimulus.” The
hypothesis that the ordinary language concept vulnerability is a common denominator of
scientific definitions of vulnerability is thus confirmed.

Relation between expressions in definitions

How the different elements are linked to each other within each definition also plays a role.
Again, the only essential difference seems to be found in the column ‘uncertain future’.
There are definitions which are at the level of generality of the mathematical model for this
primitive: the oldest definitions reported, by Timmerman [1981] and UNDRO [1982], as
well as Cutter et al. [2000], UNDP [2004] and Calvo and Dercon [2005] do not specify the
uncertainty with an emphasis on either of the entity and the stimulus.

When several concepts are mentioned for this primitive in one definition, these may be
considered as being at the same level, as in Chambers [1989]: exposure and difficulty, Parry
et al. [2007]: susceptible and unable to15, and Bohle et al. [1994] where ‘exposure’ and
‘capabilities’ are used in two separate sentences16.

In other cases, capacity is subordinated to exposure, which “includes” the “degree to
which they can recover” in the definition17 by Blaikie et al. [1994], or subordinated to a
general uncertain future description by statement in brackets: “(related to their capacity to
...)” [Twigg, 2004]. Adger [2006] subordinates both exposure and capacity to susceptibility
to harm.

In some definitions, only one of the concepts exposure and capacity occurs under the
primitive uncertain future. It is clear that capacity does not occur in the definitions of
vulnerability by the authors who explicitly want to separate the two concepts, as for example
UN/ISDR [2007]. However, other definitions seem to focus on the “external side” or mention
the general possibility of harm, without explicitly naming capacity for no obvious reason.

15A previous version of this definition, given by McCarthy et al. [2001], differs from this one in one word:
where the 2007 definition reads “susceptible to, and unable to cope with”, the 2001 version was “susceptible
to, or unable to cope with”. In the old version, susceptibility and lack of capacity to cope could be understood
as alternative definitions, the change of ‘or’ into ‘and’ was made to emphasize their interplay.

16Note that while under www.vulnerabilitynet.org/definitions the two sentences appear as one definition,
in the source these sentences are separated by a about a page.

17The three sentences actually constitute two definitions. The first two sentences can be found on page 9,
the third sentence on page 57 of Blaikie et al. [1994].
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An example in the table is the definition by Turner II et al. [2003]. Vulnerability may also
be defined in terms of capacity only, as here present with the definitions by Dow [2003] and
Kuban and MacKenzie-Carey [2001]. These differences without a clear motivation enhance
the confusion in the terminology.

5.2.4 Conclusions

We draw the following conclusions from the analysis of theoretical definitions of vulnerabil-
ity: the hypothesis that the everyday language definition represents a common denominator
for scientific definitions of vulnerability is confirmed. The same primitives occur and vul-
nerability is considered a measurable property consisting in the fact that future harm is
possible. Different definitions further specify this common basis in various ways. Many of
the more specific expressions still allow for a representation by the mathematical model of
ordinary language vulnerability.

One particularly important specification is given by splitting the uncertain future into
other scientific concepts such as exposure and capacity. In a formalization of the scientific
concept vulnerability these should be taken into account. A first step would be to analyze
these concepts. Unfortunately, scientific definitions that one could base an analysis on are
not necessarily available. Also, the role they play in the vulnerability definition does not
provide the necessary information for a formalization. The concept capacity even occurs as
a component or as a complementary concept to vulnerability, meaning that it plays very
different roles, although similar definitions are proposed for both cases.

That theoretical definitions were found to be similar does not allow any conclusion about
how vulnerability is assessed, since “in many assessments the theoretical definition put
forward is far away from the methodology applied” [Hinkel, 2008, p. 41].

Considering

• the residual ambiguities in the definitions,

• the fact that theoretical definitions are taken out of context in such an analysis (here
as in glossaries)

• and the fact that, as was seen for probability, the interpretation of a concept used can
be more easily, and sometimes only, deduced from operational definitions

one can agree with Buckle et al. [2001] who want to “avoid pedantic debate” [p. 7] about
definitions. A myriad of detailed theoretical definitions of concepts is around and has not
helped to clarify the confusion. One might even argue that by adding another tree to the
proverbial forest, each new definition contributes to the confusion. Theoretical definitions
leave one with a sense of arbitrariness and seem to be quite irrelevant to the policy context.
In this sense, there is no need for one single definition of vulnerability.

The mathematical model of the scientific concept vulnerability presented in the following
section is based on operational definitions instead.

5.3 A mathematical model of vulnerability to climate
change

This section sketches the formalization of vulnerability based on computational assessments,
presented by Ionescu [2009]. It then proposes small modifications to better connect the
mathematical model to the conceptual literature on vulnerability and clearly discuss of
assessment approaches, respectively interpretations of vulnerability. Also, a diagram used
for presenting the mathematical model to a non-mathematical audience is given. In this
section, words are used to name the newly introduced functions. This convention, more
common in computing science than in mathematics, here helps to recall what the many
functions stand for.
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5.3.1 Ionescu’s formalization

Ionescu [2009] introduces the formalization of vulnerability from a computational point of
view.

[. . . ] there is a tantalizing similarity underlying the definitions and the usage of “vulner-
ability”, at least in those studies which are attempting to “project future conditions” by
using computational tools, and which can thus be termed computational vulnerability
assessment. [p. 2]

Comparing to the activity of writing computer programs, where “one finds oneself using the
same computational patterns over and over again, with small yet important differences” [p.
2], he transfers the task of “inventing the proper concepts and tools for describing these
patterns as instances of the same structure” [p. 2] to the problem of capturing the com-
monalities found in computational vulnerability assessments. He hopes for computational
benefits such as “more robust design, better code, and code reuse”, but also - and this is the
more interesting benefit from the point of view of this work - “to gain a better understanding
of the concept of vulnerability itself” [p. 3].

Apart from definitions, Ionescu analyzes three computational vulnerability assessments,
that operationalize the IPCC definition of vulnerability: Metzger and Schröter [2006],
O’Brien et al. [2004] and Luers et al. [2003]18. While differences in interpretation are pointed
out, uncovering the common structure of the various assessments is the main goal of the
analysis. At the case study level, where vulnerability measurement methods are described,
one encounters operational definitions of vulnerability. These being in mathematical form al-
ready, the problem of residual ambiguity, observed for theoretical definitions in the previous
section, is essentially eliminated.

Ionescu presents a refined mathematical model of vulnerability for the scientific concept
which captures the commonalities found in the analysis. It incorporates mathematical con-
cepts for sensitivity and adaptive capacity. Sticking to the notation used in this work, these
are added to the model of ordinary language vulnerability as follows.

To represent that “the estimate of the harm suffered by the entity considered is no longer
just a function of the impacts, [. . . ] but also of the sensitivity to the stressor associated with
those impacts” [p. 39], separate measuring functions are considered and then combined into
the measuring function for harm, h : Ev −→ H.

impacts : Ev −→ I and sensitivity : Ev −→ Q are combined, that is
h(ev) = impacts(ev)¯ sensitivity(ev) with ¯ : Q× I −→ H (5.1)

A translation of the dictionary example sentence “small fish are vulnerable to predators”
illustrates. Two predicates on the set of possible evolutions are given

wounded : Ev −→ Bool and predators : Ev −→ Bool

where the first checks whether the small fish have been wounded and the second whether
the wounds have been caused by the predators. Then, harm is defined as the conjunction of
the two predicates:

h(ev) = impacts(ev)¯ sensitivity(ev),
where impacts = wounded, sensitivity = predators,¯ = and so that

h(ev) = (wounded(ev)) and (predators(ev))

Further examples show how the measurements made in the analyzed case studies can be
expressed as instances of (5.1). In two studies, the measuring function harm is computed
directly out of that for sensitivity, while in the third study, just as in the dictionary exam-
ple, harm is a commutative combination of the two measurements impacts and sensitivity.

18This last study does not actually put forward the IPCC definition of vulnerability but a definition that
“accords with the IPCC definition” [Ionescu, 2009, p. 30]. See, however, Section 5.3.2.
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Ionescu [2009] points out that the “symmetry between impact measurements and sensitivity
measurements is very similar to the symmetrical way in which the expression ‘vulnerability
to’ is used” [p. 42] and concludes that “in a certain sense, the model of sensitivity out-
lined [. . . ] justifies, or at least serves to explain, this usage.” The formalization hence has
explained one of the “conceptual ambiguities” listed by Füssel and Klein [2006]: whether
vulnerability “should be defined in relation to an external stressor such as climate change,
or in relation to an undesirable outcome such as famine” [p. 305].

The second new element added to the formalization is a mathematical description of
adaptive capacity. It is introduced from a computational perspective by Ionescu [2009].
Seeing the difficulty that “the set of possible evolutions is usually not computable” [p. 43],
he proposes “thinning the set of results produced by f(s), by considering the evolutions
from the point of view of the entity under consideration.” [p. 43, adapted].

The analyzed assessments “make use of the assumption that there are a number of
‘standard’ scenarios which describe the possible evolutions of the climate” [p. 43], derived
from the SRES scenarios and/or from statistics. These describe possible evolutions at a
macro scale. Ionescu considers the case where each possible evolution can be represented as
a modification of a standard evolution depending on the entity’s action. He represents the
possibilities of action of the entity by a function

doable : S → G Actions

where G is a functor and Actions denotes the type of actions the entity might take. Then,
he constructs the function associating the possible evolutions to a state by

f(s) = (standard(s))⊗ (doable(s))

where standard is a function giving the standard evolutions for a state, possibly returning
a different type of uncertainty distribution, but the details are not important here. The
operation ⊗ combines the uncertainty distributions over standard evolutions and doable
actions.

Then, vulnerability is computed according to the formula from the previous section with
this new structure of the function f , starting:

v(s) = g(Fh(f(s)))

= g
(
Fh

(
(standard(s))⊗ (doable(s))

))

It is then assumed that the harm measuring function and the aggregation function distribute
over the operation ⊗, and yield

g
(
Fh

(
(standard(s))⊗ (doable(s))

))

= g1

(
Fh(standard(s))

)⊕ g2

(
doable(s)

)

for aggregation functions g1, g2 and an operation ⊕ resulting from distributivity. Thus,
if distributivity is given, one finds that vulnerability is “a measure of the potential harm
registered along standard evolutions, combined with the measure of the local effects due to
the actions of the entity” [Ionescu, 2009, p. 44]. This description of the second term warrants
to denominate it “adaptive capacity”. Thus, with

stdV ulnerability = g1 ◦ Fh ◦ standard and
adaptiveCapacity = g2 ◦ doable

one has

v(s) =
(
stdV ulnerability(s)

)⊕ (
adaptiveCapacity(s)

)
.
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In the following, we refer to the stdV ulnerability measurement as ‘macro-vulnerability’.
This formula will be the basis of the diagram presented in Section 5.3.4. The derivation of
the adaptive capacity term here will be discussed in relation to the vulnerability literature in
Section 5.3.3. Ionescu [2009] further asserts consistency of the definition of “adaptive capac-
ity as a measure of the influence of the actions or courses of action of the entity considered on
vulnerability” with the IPCC definitions of vulnerability and adaptive capacity. He remarks
that in the climate change community, “adaptive capacity is used to account for the lack of
predictive models for the complex systems (especially the social systems) involved” [p. 45]
and justifies its use also from the computational point of view: “adaptive capacity is what
allows us to actually compute the vulnerability by reducing the set of possible evolutions to
manageable proportions.” [p. 45].

The formalization clearly presents the refinement of the ordinary language concept vul-
nerability into the scientific concept that includes the concepts sensitivity and adaptive
capacity. The definition is in fact a refinement because it was derived from the definition
of the ordinary language concept by considering within this definition a more specific struc-
ture for the function f . The decomposition of the vulnerability measurement into the two
measurements of macro-vulnerability and adaptive capacity emerged from the mathematical
model of the ordinary language concept, and is justified under few additional assumptions,
the new structure of the evolutions and a distributivity condition. This gives a possible
explanation, which is clear and tangible, for decompositions of vulnerability including these
concepts seen in the theoretical definitions in the previous section. In order to include also
the concept exposure found there, we will in the following section present what is mostly a
different interpretation of the definitions given above.

5.3.2 Exposure and a stimulus measuring function

As a small change to the formalization seen above, we will reinterpret the impacts function.
In Ionescu’s model, the stimulus only enters the definition of vulnerability via the sensitivity
function. While this is sufficient to represent the computational assessments considered, the
stimulus needs to enter more prominently when we want the mathematical model to capture
the decomposition of vulnerability seen in the theoretical definitions and especially in risk
assessments (in Section 5.5).

In fact, the stimulus climate (change) appears already in the future evolutions: scenarios
describe the possible evolutions of the climate, before harm is taken into consideration. In
some assessments, the evolutions are even given in terms of the stimulus only.19 Otherwise,
one can consider the presence of the stimulus for each single possible future evolution within
the uncertainty distribution, for example by a function stimulus : Ev → D, that, when
applied to an evolution extracts the information about the stimulus. Here, D is a set of
stimulus values, and can be assumed partially ordered. For example, descriptions of the
climate system are often given in terms of variables such as global mean temperature. In
an assessment of vulnerability to climate change an example might be taking the SRES
emissions scenarios as possible future evolutions and then using a climate model which
computes the state of the climate system on the basis of given emissions. Then the function
stimulus is constructed by comparing for each scenario the climate model output with some
reference climate system state (to obtain climate change). The set of the climate change
values for all scenarios represents “exposure to climate change”.

In the general case, one can describe exposure mathematically as the uncertainty distri-
bution over the stimulus values, obtained by applying Fstimulus to the given uncertainty
distribution over evolutions (or an aggregation of it). In the case where possible future evo-
lutions are given completely in terms of the stimulus, the identity can be used as stimulus
function.

19See, for example, Section 5.5.2.
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Ionescu’s example of impacts and sensitivity for the small fish and the predators from
the dictionary suggests to measure harm by measuring impacts and then discarding those
impact values which were not influenced by the stimulus. This procedure cannot be found,
for example, in the description of assessments of vulnerability to climate change by Kelly
and Adger [2000]:

The assessment of vulnerability is the end point of a sequence of analyses beginning
with projections of future emissions trends, moving on to the development of climate
scenarios, thence to biophysical impact studies and the identification of adaptive op-
tions. At the final stage, any residual consequences define levels of vulnerability . . . [p.
327].

Here, the procedure is to first compute levels of the stimulus and – from these – compute
impacts. This may occur via sensitivity, as will be seen in Section 5.5.

The formalization by Ionescu is based partly on studies of vulnerability to poverty via the
consideration of the work by Calvo and Dercon [2005]. It is there that the consideration of
impacts and sensitivity seems to originate. In fact, what Ionescu classifies as impacts in the
study by Luers et al. [2003] comes from a measure of well-being, a concept typically enoun-
tered in the literature on vulnerability to poverty, and much less frequently so in climate
change vulnerability studies. Closeness of the study by Luers et al. [2003] to assessments of
vulnerability to poverty is also suggested by the use of the construction “vulnerability to”:

Luers et al., who have both impacts and sensitivity, use “vulnerability to stressors”
whose effects are measured by sensitivity most of the time, but slip without comment
into “vulnerability to poverty” or “vulnerability to food insecurity” when relating their
work to existing literature. [Ionescu, 2009, p. 42].

For describing some studies of vulnerability to climate change and later also risk as-
sessments, we suggest to replace the impacts function by a stimulus function as described
above. Since both are (not further specified) measuring functions, the mathematical defi-
nition does not actually change, but the interpretation does. The small fish and predators
example can be translated to this setting by replacing the impacts predicate wounded with a
stimulus predicate predators, and use for sensitivity a predicate which establishes whether
the predators have wounded the small fish, that is, the degree to which the small fish are
affected by the predators. The two predicates thus switch roles.

Still, predators : Ev −→ Bool and wounded : Ev → Bool, but
h(ev) = stimulus(ev)¯ sensitivity(ev) where
stimulus = predators, sensitivity = wounded, and ¯ = and which however yields

h(ev) = (wounded(ev)) and (predators(ev)).

This is the same harm definition as before, showing that merely a reinterpretation has taken
place. Harm is still defined as the conjunction of the two predicates. Now, however, the
emphasis is different: sensitivity “filters” the cases where the small fish have been wounded
by the predators out of those where predators where present, and not out of all cases where
the small fish were wounded.

A general model should contain a general measuring function, joker, which can be
used for the stimulus or the impacts depending on necessity. This makes the focus on
stimulus or impacts in the concepts vulnerability to climate change and vulnerability to
poverty, respectively, more prominent in the mathematical model.

In both cases, the measuring function for harm is combined out of the measuring function
for sensitivity and the joker function. The image of symmetry between sensitivity and
impact measurements given by Ionescu [2009] can be adapted. There now is a symmetry
between stimulus and impacts. One of them is focused upon and, so to say, comes first:
in the uncertainty distribution over joker function values. Then, sensitivity is applied to
determine ‘harm due to the stimulus’ by computing impacts out of given stimulus values, or
by computing the influence of the stimulus in the given impacts. That is, sensitivity plays
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the role of what was not the joker function. Then, the symmetry is given between the joker
and the non-joker, stimulus and impacts, in this order or the other way around.

5.3.3 Capacity

In the formalization of vulnerability by Ionescu [2009] the concept adaptive capacity is used,
as in the IPCC definition of vulnerability and many vulnerability assessments. Closely
related concepts in the literature are for example coping capacity, and capacity of reponse.
We will here refer more generally to capacity. To describe a given assessment, this can be
further specified as necessary.

Considering macro-vulnerability and adaptive capacity in relation to the conceptual liter-
ature, a difference appears. While both concepts are themselves defined by further concepts
in the mathematical model, these are of interest for macro-vulnerability but irrelevant for
adaptive capacity. The components of macro-vulnerability are similar to the primitives of
ordinary language vulnerability, mathematically, an uncertainty distribution and a harm
measuring function. These primitives also occur in vulnerability assessments.

The components of adaptive capacity do not have a direct interpretation in assessments.
Doable actions and a function that aggregates into a measurement on the present state can
be motivated from ordinary language definition of capacity given in Section 5.2.2, where
“possibility” and “ability” as well as the reference to the present state, “condition”, oc-
cured. In fact, ordinary language might have suggested a formalization similar to that of
vulnerability, using an uncertainty distribution over possible future actions and aggregating
this into the measurement on the present state. However, a formal definition of capacity
which emphasizes these components would miss the point of most if not all vulnerability as-
sessments that treat capacity: this concept is virtually always measured only on the present
state.20 The measurement occurs, for example, via indicators such as GDP per capita, lit-
eracy rate and labour participation rate of women (which are examples from the ATEAM
project). They measure the state a system is in, “to capture society’s ability to implement
planned adaptation measures.” [Metzger and Schröter, 2006]. Of course, these indicators
are chosen because they provide some information about the possible future evolutions and
possible actions. A range of the possibilities of action is delimited by measuring criteria
that make actions possible. One of Ionescu’s examples is capital as an indicator of possible
future investments: the level of capital that an entity has at its disposal provides an upper
bound to (and, taking zero to be the lower bound, thus a range of) possible investments.
The indicator measurement provides the boundaries to the range of possibilities an entity
has. However, doable actions and an aggregation do not occur explicitly in assessments.

This is obvious already in Ionescu’s [2009] text: the functions doable and g2 are not used
when considering the concept adaptive capacity in the case studies.

In the study of O’Brien et al., “adaptive capacity” was a measure of the current state
of the farming units under consideration from the point of view of their ability to adapt
to future impacts, thus, a measure of the actions or courses of action available to them.
[. . . ]
In the study conducted by ATEAM, “adaptive capacity” was measured in a similar
manner to the O’Brien study, therefore a measure of the “doable” actions. [p. 45].

Also, the descriptions of adaptive capacity as a “characterization of the initial state from
the point of view of the actions available to the entity and their influence on the potential
harm” shows that actions and their influence on the future evolution are implicit in the
concept, which explicitly is a characterization of the present state.

The mathematical concepts used to derive adaptive capacity as a component of vulnera-
bility in the mathematical model, the functions doable and g2 are, so to say, for internal use
during the formalization only. Once adaptive capacity is established, they become obsolete,
for example, when using the mathematical model for literature analysis. While within the

20There are measurements of capacity for modelled future states, but these then are measurements of the
future capacity as for example in the ATEAM study, see page 103.
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formalization, “This usage of “adaptive capacity” is justified if the distributivity condition
given above is fulfilled.” [Ionescu, 2009, p. 46], such a condition cannot be checked in actual
vulnerability assessments, in which the elements for which the distributivity could hold do
not even exist.

Also, a statement like “adaptive capacity is introduced in order to make possible evolu-
tions computable” might not be agreed with by people from the vulnerability community.
The concept does not originate from computational assessments, but rather is adopted into
them when groups conducting assessments become more interdisciplinary. It serves to shift
the emphasis from stimulus focussed assessments towards the entity as described for example
by Füssel and Klein [2006] and is motivated by work on vulnerability in the social sciences.

When the concept capacity is used not as a component of vulnerability but as a comple-
mentary concept, still the primitives do not become explicit. We return to measurements of
this type in Section 5.4.1.

5.3.4 Representation by a diagram

Over the course of the development of the formal framework of vulnerability to climate
change, different representations where used to present the framework to different audi-
ences. A diagram has been developed for non-mathematical audiences. The basic idea
is to represent the uncertainty distribution by the following sketch of a non-deterministic
description, yielding the simplest possible diagram:

ev1

s ev2

ev3

´́3-
QQs

(5.2)

The interpretation is that from the state s, the system can take one of the three evolutions
ev1, ev2, ev3. This simplistic example is useful to illustrate functoriality. The application
of a function to all evolutions inside the uncertainty distribution can easily be sketched by
denoting a function application in all nodes on the right-hand side.

The diagram for the scientific concept vulnerability follows in a very general version.
The use of Greek letters as placeholders avoids introducing yet new terms in the already
overloaded terminology. It is used later to compare different assessment approaches. For
illustrating the structure of one approach only, the Greek letters can be replaced by function
names such as impacts and sensitivity as used above.
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ε(s) (5.3)

The first step, producing two states sECO and sSOC illustrates the foci on one component
in the social-ecological system in each part of the assessment (see Section 5.4.1). This
step is not essential for interpreting assessments in terms of the framework, as one can set
s = sECO = sSOC for assessments where all measurements are made starting with the same
state, and the other way around, in assessments where one finds two parts using different
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starting states, here interpretable as sECO and sSOC , an interpretation in terms of one single
s could be to consider them together as one state. In that case, each part of the assessment
uses only a part of that s. The idea that parts of an assessment can be carried out using
different descriptions of the same system, that is descriptions from different points of view,
is emphasized by this choice.

α, β and δ are measuring functions, with the respective domains of definition. ¯ combines
values of the types which α and β output. γ is an aggregation function, that is, a measuring
function defined on uncertainty distributions, over the output type of this combination. ε is
a measuring function defined on a tuple, with types of the results of γ and δ. Curly braces
represent aggregations. These as well as the symbols ⊕,⊗ and ¯ are used for generality.21

Interpretations for the Greek letters are:

α: the joker function, that is, a characterization of the stimulus, respectively of impacts,
measured in every possible future evolution. If a stimulus function is used, the un-
certainty distribution over the values of α corresponds to the exposure of the entity to
the stimulus.

β: the sensitivity measuring function
The combination ¯ of α and β constitutes the harm evaluation in each possible future
evolution.

γ: an aggregation of harm values in possible future evolutions.

δ: a measurement on the present state, that implicitly concerns an uncertain future
(hinted at by the dotted arrows). Above, this is capacity and thus implicitly further
contains a notion of action of the entity and is positively connoted. In the following
section, this measurement occurs also with a negative connotation.

ε: a (purposefully very general) combination of γ and δ.

In the following, we use the abbreviation “ε-assessment” to describe “a vulnerability
assessment, with a methodology which can be described by the steps leading to a result of
the kind ε in Diagram 5.3”. In the next section, different approaches to assessing vulner-
ability will be distinguished by description in terms of different parts of this mathematical
model/diagram and interpretations will be mapped to these. That is, the formal framework
will be applied to analyze vulnerability literature.

5.4 Concept clarification

Many vulnerability assessments can be described as special instances of the mathematical
model of vulnerability from the previous section. Ionescu [2009] shows this for some assess-
ments which operationalize the IPCC definition. Other than the assessment approach found
in the analysed case studies, there are two approaches which do not contain all the above
measurements but can be described in terms of γ or δ only.

5.4.1 Three assessment approaches

The first assessment approach, producing a result of type γ, is the traditional one in studies
of vulnerability to climate change, also referred to as impact assessment [see e.g. Füssel
and Klein, 2006]. A description of assessments of this type by Kelly and Adger [2000] has
been quoted on page 98, the main points were that vulnerability is assessed by projecting
future emissions trends, developing climate scenarios, and studying biophysical impacts and
adaptive options. The residual consequences that, according to this description, define levels
of vulnerability in the mathematical model correspond to the harm measurements for the

21Also, we want to avoid implicit assumptions that symbols familiar in everyday mathematics may lead
to, see Sections 5.5 and 5.6.
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different evolutions. These may be aggregated into one level of present vulnerability, but
this last step is not always made in assessments. In the case of scenarios, that is, a non-
deterministic uncertainty description, where the uncertainty distribution simply is a set,
formally, the identity function can serve as an aggregation function, when one reinterprets
the set as a tuple. Since the harm values for each scenario are (partially) ordered, this yields
partially ordered vulnerability values.

The reference to the present state may not be explicit without the aggregation step,
but via the identity as aggregation, the formal definition of γ also contains impact assess-
ments as a special instance. A focus on the stimulus is observed in these assessments,
where models are constructed to project climate change, while the description of the entity
receives less attention. For example, the entity might enter the assessment via a roughly
specified assumption about adaptation, such as the metaphorical ‘dumb’, ‘typical’, ‘smart’
or ‘clairvoyant farmer’ described by Füssel and Klein [2006], ranging from no reaction to
climate conditions via adjusted management practices to perfect foresight and unrestricted
implementation of adaptation.

Because the primitives figure explicitly in the assessment steps when vulnerability is
determined from levels of harm in projected possible future evolutions of the system, the
mathematical model describes this assessment approach to some detail.

This is different for vulnerability assessments producing a result of type δ. The assess-
ment is conducted by taking measurements on the present state of the system. Often, these
are indicators or indices, that is, weighted combinations of indicators. This approach can
be seen as a pendant to the measurement of adaptive capacity as described in the previous
section, where now the connotation of what is measured is negative. As discussed before,
a separation of the primitives within the measurement is not feasible. In fact, vulnerability
indicators are supposed to provide information about vulnerability, that is, ‘possible future
harm’ and are not separable into ‘possible futures’ and ‘harm’.

The same indicator may occur in measurements with positive or negative connotation
when the order is reversed, for example, a high level of GDP may be used to indicate a high
level of adaptive capacity or a low level of vulnerability.

While for γ a focus on the stimulus was observed, measurements of type δ, both with
positive and with negative connotation, focus on the entity. Vulnerability is here sometimes
stated to exist “independently of external hazards” [Brooks, 2003, p. 4], or is at least denom-
inated “generic”, see for example the “generic vulnerability” in Brooks et al. [2005] or the
ATEAM study’s “generic index of macro-scale adaptive capacity” [Metzger and Schröter,
2006, p. 209].

At the same time, however, it is often pointed out that also the measurement δ depends
on the stimulus, for example by Luers et al. [2003]:

Many factors may determine a system’s ability to modify its vulnerable conditions,
including the rate of change of the disturbing forces, and the social and natural capital
of the system. For example, if the average temperature increases gradually, farmers
may be able to adapt by changing crops or management practices that result in a shift
in the well-being function, which would result in lower vulnerability. However, if the
temperature change was rapid the same farmers might be limited in their abilities to
adapt the changing conditions. [p. 259]

A difference in the motivation of γ- and δ-assessments will be discussed in Section 5.4.4. Be-
fore, however, let us sketch the third approach and consider distinctions of interpretations
made in the conceptual literature, because these provide further information.

Assessments which produce a result of type ε integrate the two above approaches. Exam-
ples (with a positively connoted δ in the measurement of adaptive capacity) are the studies
analyzed by Ionescu [2009]. The combination of results of type γ and δ may occur by first
aggregating the harm results from future scenarios and then combining this with the (present
time) measurement of adaptive capacity, as done in the study of O’Brien et al. [2004].
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A different type of combination occurs in the ATEAM study by Metzger and Schröter
[2006], where also for the adaptive capacity index the future evolution is estimated using
the SRES scenarios. Maps are created to provide a visual combination of potential impacts
(represented by hue) and adaptive capacity (represented by saturation). Different maps are
built for different time slices and for the different SRES scenarios, that is, no true aggrega-
tion γ over the different possible futures, the scenarios, takes place before the combination
ε with the adaptive capacity measurement δ is carried out. The result can be considered
as several vulnerability assessments for the different time slices, each providing a result ε in
which the information for the different scenarios is not aggregated but presented separately
by the maps for the different scenarios.

The fact that in all three assessment approaches the term vulnerability is used for the
assessment result, immediately makes one source of the confusion asserted in the terminology
obvious.

5.4.2 Vulnerability interpretations

In this section, we briefly sketch four examples from the conceptual literature which distin-
guish different interpretations of vulnerability. The examples are the (conceptual part of
the works by) Kelly and Adger [2000], Brooks [2003], O’Brien et al. [2007] and parts from
Füssel and Klein [2006]. For details, the reader is referred to the respective original works.22

Then, the three pairs of different interpretations found will be related to the assessment
approaches identified previously.

Starting point and end point vulnerability Kelly and Adger [2000] distinguish inter-
pretations (their term: definitions or conceptualisations) of vulnerability to environmental
stress according to whether vulnerability assessment is considered the end point, focal point
or starting point of a study. They describe the distinction in terms of assessment methods.

The description of the first case was quoted on page 98: emissions are projected, impacts
analyzed and adaptive options identified. In this setting “the level of vulnerability is deter-
mined by the adverse consequences that remain after the process of adaptation has taken
place” [p. 327].

Vulnerability as the focal point of an assessment is found in the food insecurity and
natural hazards literature as well as in some climate change studies. It is considered an
overarching concept that comprises “the exposure to stress and crises, the capacity to cope
with stress, and the consequences of stress and the related risk of slow recovery” [Watts and
Bohle (1993) as cited on p. 327].

The vulnerability interpretation that “represents a potential starting point for any impact
analysis” [p. 327] focuses on the social dimensions: Kelly and Adger quote the definition
by Blaikie et al. [1994] (reported in Table, page 84 as the first sentence), which defines
vulnerability in terms of the human dimension alone. They further refer to the usage of the
Late Latin vulnerabilis, a “term used by the Romans to describe the state of a soldier lying
wounded on the battlefield, i.e., already injured, therefore at risk from further attack” [p.
328]. Arguing that vulnerability is defined primarily by prior damage, not by the future
stress, they emphasize that

the vulnerability of any individual or social grouping to some particular form of natural
hazard is determined primarily by their existent state, that is, by their capacity to
respond to that hazard, rather than by what may or may not happen in the future. [p.
328].

With this interpretation vulnerability assessment “is not dependent on predictions of adap-
tive behaviour” [p. 327].

22Within each paragraph all pagenumbers refer to the work under consideration if not specified otherwise.
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This article provides one of the rare examples where the interpretation of vulnerability
can be identified reading the short theoretical definition alone. After having sketched the
three interpretations, and stated their adherence to the third one, the authors define vulner-
ability as “the ability or inability of individuals and social groupings to respond to, in the
sense of cope with, recover from or adapt to, any external stress placed on their livelihoods
and well-being.” [p. 328]. The definition, as well as the further description, shows a focus
on capacity and the social side, and, in fact, the concept is termed ‘social vulnerability’.

Biophysical and social vulnerability Brooks [2003] presents two interpretations (his
term: categories of vulnerability definitions). First, biophysical vulnerability, determined by
“hazard, exposure and sensitivity” [p. 4],

has arisen from an approach based on assessments of hazards and their impacts, in
which the role of human systems in mediating the outcomes of hazard events is down-
played or neglected. [p. 4].

Second, social or inherent vulnerability, described as the internal state of a system, is “deter-
mined by factors such as poverty and inequality, marginalisation, food entitlements, access
to insurance, and housing quality” and “is not a function of hazard severity or probability
of occurence” [p. 4]. The relation between the two interpretations, “social vulnerability may
be viewed as one of the determinants of biophysical vulnerability” [p. 4], is inconsistent
with the distinction made. If social vulnerability is considered in assessments of biophysical
vulnerability as a determinant, the social system should not seem neglected.

Outcome and context vulnerability O’Brien et al. [2007] base their distinction of out-
come and contextual interpretations of vulnerability (their term: interpretation, conceptual-
ization, definition) on the distinction by Kelly and Adger [2000]. They identify a difference
in assessments: “Outcome vulnerability is considered a linear result of the projected impacts
of climate change on a particular exposure unit (which can be either biophysical or social),
offset by adaptation measures.” [p. 75]. On the other hand, “contextual vulnerability [. . . ]
is based on a processual and multidimensional view of climate-society interactions.” [p. 76].
Different framings of the climate change problem, “products of different discourses on cli-
mate change - discourses that represent distinct world views and approaches to science” [p.
78] are considered the sources of the different interpretations. The problem in conceptual
work that clear cuts in the distinctions made are often lacking is illustrated here: the authors
point out the difficulty in assigning institutional analysis to either side of their distinction
because it can be found in assessments with both interpretations of vulnerability.

An Evolution of Conceptual Thinking Füssel and Klein [2006] distinguish three
schools of thought that each have their own interpretation of vulnerability (their term: model
for conceptualizing and assessing vulnerability). First, in the risk - hazard framework , vul-
nerability is the dose-response relationship between an exogenous hazard to a system and
its adverse effects. This will be treated in Section 5.5. Second, the social constructivist
framework regards (social) vulnerability as an a priori condition of a household or a com-
munity that is determined by socio-economic and political factors. Finally, a third school of
thought, prominent in global change and climate change research, considers vulnerability an
integrated measure, which includes an external and an internal dimension. Examples of the
third approach are the IPCC definition of vulnerability as well as Cutter’s [1996] ‘hazards of
place’ model, which aims to integrate biophysical and social determinants of vulnerability.

Concerning the evolution of assessments, Füssel and Klein [2006] distinguish prototyp-
ical assessment stages and illustrate these by diagrams. Impact assessments “superimpose
future climate scenarios on an otherwise constant world to estimate the potential impacts
of anthropogenic climate change on a climate-sensitive system” [p. 324]. (Climate) vulner-
ability assessments, further classified into first- and second-generation vulnerability assess-
ments, still have a descriptive purpose. While first-generation assessments include some
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non-climatic factors and consider adaptation potential, in second-generation vulnerability
assessments the focus is shifted to the ability of a system to adapt to climate change. These
assessments consider climate change and the potential response options in a wider context.
Finally, adaptation policy assessments

are characterized by the intensive involvement of stakeholders, by a strong emphasis
on the vulnerability of a population to current climate variability, by the formulation
and evaluation of response strategies that are robust against uncertain future devel-
opments, and by the integration of adaptation measures with existing policies. [p. 324].

5.4.3 Correspondence: interpretations and assessment approaches

This section relates interpretations of vulnerability to assessment approaches. Three dis-
tinctions just sketched, starting-point and end-point vulnerability, biophysical and social
vulnerability, and outcome and contextual vulnerability, can be mapped to the distinction
made here between the two assessment approaches: assessments of end-point, biophysical
and outcome vulnerability produce a result of type γ while starting-point, social and con-
textual vulnerability assessments can be described in terms of δ.

Assessment methods and time aspect

With the mathematical model of the scientific concept vulnerability, assessments can be
distinguished by their structure, that is, the steps undertaken and methods applied. A
result of type γ is obtained by projecting possible future evolutions, measuring harm for
each of these and (possibly) aggregating. In such an assessment, the focus is on the future
time aspect of vulnerability. Obviously, for the measurement on the present state, δ, the
focus is on the present time aspect.

The three distinctions of vulnerability interpretations under consideration all mention
the difference between assessment methods as well as the focus on one time aspect for each
interpretation. The qualifyers “outcome and contextual” chosen by O’Brien et al. for the
two interpretations hint at both criteria: future outcomes are projected, or a present context
is analyzed in the assessments of the respective types. Füssel and Klein [2006], in their list
of “conceptual and semantic ambiguitites”, pose the question whether vulnerability “is an
inherent property of a system or contingent upon a specific scenario of external stresses and
internal responses” [p. 305]. An “inherent property” would suppose a measurement of type
δ, while the measurement result γ is “contingent” upon the scenarios used in modelling the
uncertain future.

The future time aspect dominates in assessments of end-point, biophysical and outcome
vulnerability, as clearly expressed for example by O’Brien et al. [2007] for outcome vulner-
ability: it “directs attention towards future impacts of climate change, rather than towards
present vulnerability” [p. 80]. For starting-point, social and contextual vulnerability, on the
other hand, it is emphasized that vulnerability is a property of the entity at the present
time. For example, Kelly and Adger [2000] highlight the fact that vulnerability of peo-
ple to a hazard is “determined primarily by their existent state, that is, by their capacity
to respond to that hazard, rather than by what may or may not happen in the future”
[p. 328]. The present state is the object of analysis, which entails a “shift of focus away
from the speculative future.” [Kelly and Adger, 2000, p. 329]. However, that the future
is implicitly considered is obvious for example when Eriksen and Kelly [2007] suggest “a
process-based approach to indicator studies” of vulnerability instead of “aggregating static
indicators of local conditions” [p. 496]. A process cannot be defined on one single point in
time, and clearly, the time of interest in a process-based indicator of vulnerability is the
future, because indicators of vulnerability should be indicators of possible future harm.
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Entity, stimulus, and components of the SES

The two assessment approaches producing results of type γ and δ have as focal points in
assessments the stimulus and the entity, respectively. They can thus be mapped also to
the two sides of vulnerability in Chambers’ 1989 distinction, γ to the external and δ to the
internal side. Since, in studies of vulnerability to climate change, the stimulus manifests
in the ecological component of the SES, while in most cases the entity under consideration
is part of the social component, these focal points coincide with a focus on the ecological
system for γ-assessments and on the social system for δ-assessments. The qualifying adjec-
tives chosen by Brooks, “biophysical” and “social”, highlight these focal points in the two
interpretations of vulnerability.

End-point, biophysical and outcome vulnerability are said to emphasize the ecological
component of the system and the stimulus, here the hazard:

The hazards and impacts approach typically views the vulnerability of a human system
as determined by the nature of the physical hazard(s) to which it is exposed, the
likelihood or frequency of occurrence of the hazard(s), the extent of human exposure
to hazard, and the system’s sensitivity to the impacts of the hazard(s). [Brooks, 2003,
p. 4]

This occurs at the expense of the social aspects and the the human dimension, “rather
neglected in past studies...” [Kelly and Adger, 2000, p. 328], or in the formulation of O’Brien
et al. [2007], “the focus is disproportionately on nature [. . . , while] society is typically
represented as one box . . . ” [p. 76].

The social system is the focus of starting-point, social and contextual vulnerability. “In
this formulation, vulnerability is something that exists within systems independently of
external hazards.” [Brooks, 2003], or, in less explicit terms, “[v]ulnerability is considered to
be influenced not only by changing biophysical conditions, but by dynamic social, economic,
political, institutional and technological structures and processes [. . . ]” [O’Brien et al., 2007,
p. 76]. Here, the stimulus merely “sets the context for the study” and it is not considered
necessary “to define precisely the nature of the potential impact” [Kelly and Adger, 2000,
p. 328].

Interpretations are here distinguished in terms of focal points of assessments. Rather
than by an exact criterion, the difference is made by the degree of detail to which stimulus
and entity, or the respective parts of the social-ecological system, are represented, and by
their (relative) importance in the assessment. The separation cannot be strict because the
interaction between stimulus and entity is essential for determining the entity’s vulnerability
to the stimulus. Hence, it is frequently acknowledged in the conceptual literature that the
point which is not focussed upon cannot be completely disregarded. Even for assessment
results of type δ, “it is intrinsic to the definition that vulnerability must always be linked
to a specific hazard or set of hazards” [Kelly and Adger, 2000, p. 327]. Similarly, results
of type γ are “contingent on assumptions about concurrent socio-economic developments”
[Füssel and Klein, 2006, p. 306], that is, the social system.

Two combinations

Having seen two different levels at which the distinctions between interpretations of vulner-
ability are made in the conceptual literature, theoretically, four combinations of focal points
would be possible: stimulus-future, entity-future, stimulus-present and entity-present. How-
ever, only the first and last one exist: a focus on the stimulus and the future aspect of
vulnerability corresponding to results of type γ, and a focus on the entity and the present
time aspect, corresponding to results of type δ.

The two interpretations of vulnerability related to these have been ascribed to different
“framings of the climate change problem” by O’Brien et al. [2007]. These authors embed
outcome vulnerability in a scientific and contextual vulnerability in a human-security fram-
ing. Differences between the framings show in “prioritized questions, focal points, methods,
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results and proposed responses.” [O’Brien et al., 2007, p. 78]. Different disciplinary back-
grounds and problem contexts such as natural hazards or food security have been mentioned
as sources of the different interpretations of vulnerability.

Without going into detail on the origins of these interpretations here, the mathemat-
ical model provides one simple explanation for the given association of focal points: the
difference between assessments producing a result of type γ or δ is in the methods delin-
eated. Possible future evolutions are made explicit only in the assessment approach with
a focus on the ecological component of the SES. For this component, accepted theories of
the system evolution, which can be implemented in models, are much more readily available
than in the case of the social system, and it may not even be desirable to project people’s
actions in assessments. In fact, social vulnerability, that is, the interpretation corresponding
to measurements of type δ, emerged in the context of disaster risk23 as the main concept
to explain the social causation of disasters [see Cannon, 1994]. Recognizing vulnerability
when considering the present state of a system is essential in this approach: the fact that
“it is vulnerable people who are the victims of disasters” [p. 17] is pointed out not to be a
tautology by Cannon [1994] who further explains:

The purpose is to demonstrate that there are particular characteristics of different
groups of people (derived from economic, social and political processes) which mean
that with the impact of a particular type of hazard of a given intensity, some avoid
disaster and others do not.” [p. 17]

In conclusion, the time aspect focused upon appears clearly in the assessment methods
used. The methods again are closely linked to the focal system component of the SES:
for the ecological component and the stimulus, models are available, while for the social
component and the entity, measurements on the present state are preferred. That is, the
assessment approach describing the kinds of methods used can make the link between the
focal points observed together.

5.4.4 Measurement

Especially with the interpretation of vulnerability corresponding to the δ-assessment ap-
proach, measuring vulnerability has been described as problematic in the literature. Cannon
[1994] notes a “great difficulty in accurately determining levels of vulnerability” [p. 29] and
Adger [2006] states that researchers “struggle to find suitable metrics for vulnerability” [p.
274], for example. Luers et al. [2003] list some problems for vulnerability indicators, which
are measurements of kind δ:

While the indicator approach is valuable for monitoring trends and exploring conceptual
frameworks, indices are limited in their application by considerable subjectivity in the
selection of variables and their relative weights, by the availability of data at various
scales, and by the difficulty of testing or validating the different metrics. [p. 257].

Subjectivity connects back to the questions discussed in Section 5.1.1: here, the existence
of an objective vulnerability seems to be assumed, but it is clear that measurements are
subjective. Therefore these measurements are not considered adequate. For the case of
intelligence, Henshaw [2006] notes that measurement “provokes strong emotional reactions”
which are not mainly caused by the attempts at measurement themselves, “it’s how those
measurements are used.” [p. 89], namely in decisions involving high stakes, for example the
admission of a student to a certain school. Similarly, vulnerability measurements may be
used in decisions with high stakes, such as adaptation funding decisions. Measurements
which are perceived as more subjective than others are controversial in such contexts.

The “difficulty of testing or validating the different metrics” mentioned by Luers et al.
[2003] can, from a theoretical point of view, be attributed to uncertainty: vulnerability
measurements cannot be validated even in principle by observing the evolution of a system

23See also Chapter 5.5.
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due to the primitive possibility, as discussed in Section 5.1.1. The observation does not fully
describe the prior possibility. This would not be a practical problem here, because the actual
interest in vulnerability arises from the interest in future harm as seen in the quote by Cannon
[1994] on page 107. If by reducing whatever is measured under the label vulnerability,
disaster could be generally avoided, the interest in what the possibility of disaster was at the
time of the measurement can be expected to be minimal. The ‘a posteriori’ measurements of
harm, however, do not satisfactorily measure vulnerability ‘a priori’ in practical situations.
Luers et al. [2003], for example, state that

In certain case studies, depending on the type of stressor and outcome variables of
concern, the relative impacts of stressors in a region could be used as objective ex-post
measures of vulnerability. [. . . ] This simple approach, although useful, is not easily
applied to a greater variety of stressors and outcome variables. [p. 256]

Further, even considering that one is not interested in previous possibilities, measurements
of vulnerability to climate change are hard to test or validate. One cannot run laboratory
experiments, and the time horizons in climate change vulnerability assessments do not allow
to just wait for observations that would validate measurements.

Returning to vulnerability measurements in general, Eriksen and Kelly [2007] name two
criteria for indicator selection: theory and statistics. A generally agreed theory of vulnera-
bility is not available, but steps towards a theory of vulnerability have been made. These
are mostly found in connection with the δ-assessment approach. Vulnerability research with
focus on the present and the social system investigates “underlying causes” [O’Brien et al.,
2007] or “root causes” [Blaikie et al., 1994] of the aggregate property vulnerability.24 It aims
at developing a theory of vulnerability.

Using an indicator to measure vulnerability, the relation between the indicator and vul-
nerability is presupposed. For example, low values of wealth and education, but high values
of income inequality are generally associated to high vulnerability. Adger [2006] remarks
that “unless the variable and causal links are well established, the relationship may not
hold.” [p. 275]. This may be problematic: the fact that no generally accepted theory ex-
ists means precisely that causal links are not well established. While there seems to be
agreement that “certain factors [. . . ] are likely to influence vulnerability to a wide variety
of hazards in different geographical and socio-political contexts” [Brooks et al., 2005], and
these “generic” determinants of social vulnerability [Brooks, 2003] provide a step towards a
general theory of vulnerability, the differences between different cases is often emphasized
in the literature.

The mathematical model can be used to illustrate the problem: in indicator measure-
ments (or more generally, in δ-assessments), the primitives are implicit in the measurement.
Using theory or statistics to select an indicator, one adapts measurements from one case
to another or from the past to the future. However, the primitives are known to differ be-
tween cases. For example, O’Brien et al. [2007] point out that “what constitutes ‘damage’
or ‘negative effects’ varies across contexts and cultures.” [p. 77]. In the aggregate measure,
exchanging “gardening in England” for “skiing in Norway”, to use their example, may be
difficult.

These difficulties become apparent in many case studies: indicators or determinants
are proposed as measures of vulnerability but accompanied by counterexamples where the
causal links do not hold, or are even reversed. One of many instances is inequality, used as
an indicator of collective social vulnerability by Adger [1999] who at the same time points to
the fact that “it is argued that under certain circumstances inequality facilitates provision of
services for the good of communities by those with cumulated assets.” [p. 255]. Phrases like
“vulnerability changes from place to place” or “vulnerability can change over time” [Cutter,
1996] summarily acknowledge the problem: the point is not that levels of vulnerability differ
but that the causal structure of vulnerability does.

24See Section 5.5.2.
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In γ-assessments that use modelled futures, a theory about how the system is going to
develop is present. Together with a given evaluation of harm and an aggregation, vulnerabil-
ity can be deduced from the model results. However, since a model of the system evolution is
specific to each case, coming up with a general theory of vulnerability would exceed the pos-
sibilities of a single assessment. Knowledge about vulnerability “lying scattered” in different
case studies is an accurate description of the situation by Hinkel [2008].

We conclude this section with a remark on the formalization of γ- and δ-assessments: the
mathematical model describes the measurements made in γ-assessments to some degree of
detail, the primitives of vulnerability can be found in assessments. The refined mathematical
model accounts for the decomposition of harm into sensitivity and another component, the
characterisation of the stimulus or impacts. While the aggregation step may be missing in
assessments, in this case the identity can play the role of the aggregation function. For δ-
assessments, the description given in the mathematical model is very rough. The primitives
of vulnerability occur in the measurements undertaken only in an implicit manner. The
derivation of adaptive capacity by Ionescu [2009] explains the implicit primitives which
helps in concept clarification. However, the model does not provide information about how
measurements are undertaken, except that these are applied to the present state.

5.4.5 Confusion explained

The formalization of vulnerability has been useful in reducing six vulnerability interpreta-
tions to two, by linking them to assessment approaches. There are further smaller points
where it can help clarify issues, some examples are given in the following.

The distinctions made in the literature have not always been clear and consistent. Cri-
teria for distinguishing the interpretations concern focal points of assessments, thus the
distinctions often are not crisp. For example, Füssel and Klein [2006] refer to the four
assessment stages they distinguish as “prototypes” and note that “actual climate change
assessments may well combine features from more than one stage.” [p. 309]. Of course, also
a mathematical model cannot provide crisp cuts where there are none.

However, in some cases, the distinction can be made more precise. For example, O’Brien
et al. [2007] mention that in their distinction between outcome and contextual vulnerability

indicator approaches to vulnerability [. . . ] may be associated with either type of study.
Indicator studies can be used both to enhance understanding of the causes of vulnera-
bility and to quantify the extent of the problem. [p. 80].

Having made explicit the two time aspects of vulnerability, the mathematical model can be
used to distinguish where within a study an indicator is used. On the one hand, there are
indicators of harm, applied to measure harm in the possible future evolutions. An exam-
ple is provided by the DIVA tool [see Hinkel and Klein, 2007], a model which for different
choices of SRES scenarios and adaptation policies outputs values for many indicators such
as “people flooded”, “wetlands lost” etc, measured for the modelled possible evolution of the
system. These are the indicators used to “quantify the extent of the problem” in O’Brien
et al.’s formulation. On the other hand, indicators of vulnerability are applied to the present
state, as described previously. By considering what an indicator measures, namely in one
case harm (in a possible future evolution) and in another case a possibility of future harm
(in the present state), it can be associated to an assessment approach.

The borders between the interpretations are blurred by assessments from the integrated
approach, which use measurements of both type γ and δ. The attempt to classify an ε-
assessment, given the distinction of only two interpretations corresponding to γ- and δ-
assessments, poses a problem. The IPCC definition of vulnerability illustrates: O’Brien
et al. [2007] classify it as of type γ: “An example of an end-point definition can be found in
the IPCC Third Assessment Report . . . ”25. At the same time, for Füssel and Klein [2006],

25See footnote 15 about the connector ‘and’ in this definition.
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Vulnerability, according to the IPCC definition, is an integrated measure of the expected
magnitude of adverse effects to a system caused by a given level of certain external
stressors. [. . . ] Vulnerability, [. . . ] includes an external dimension, which is represented
here by the ‘exposure’ of a system to climate variations, as well as an internal dimension,
which comprises its ‘sensitivity’ and its ‘adaptive capacity’ to these stressors. [p. 306].

This describes a measurement of type ε. Interestingly, sensitivity is here classified into the
“internal dimension” of vulnerability, while in the long quote from Brooks [2003] on page
106, as well as in the mathematical model, it appears within the γ-part of the intergated
(that is, ε-) assessment, which corresponds to the external side.

The inconsistency identified in the conceptual framework by Brooks [2003] in Section
5.4.2 also seems to owe to the non-consideration of the integrated approach. The statement
“social vulnerability may be viewed as one of the determinants of biophysical vulnerability”
comes as a surprise after having mapped social vulnerability to our δ and biophysical vulner-
ability to our γ. The inconsistency can be avoided by considering social vulnerability (and
just as well biophysical vulnerability) as a determinant of vulnerability in ε-asssessments.
This is probably intended by Brooks [2003] who also states that “it is the interaction of [the]
hazard with social vulnerability that produces an outcome . . . ” [p. 4].

The formalization has made explicit the two time aspects of the concept vulnerability in
a present state s and possible future evolutions ev. Moving from left to right in Diagram
5.3, a step from the present to the projected future is made, but the aggregation yields a
result about the present state. That in some assessments the present vulnerability, v(s), is
measured based on projected future harm seems to cause some confusion with the intuition
that vulnerability causes harm. In the measurement, the order is reversed: projected harm
determines present vulnerability. Füssel and Klein [2006] explain their diagram representing
“first-generation vulnerability assessment”:

The arrow that points from impacts to vulnerability is different from most of the other
arrows. This thin arrow indicates that the potential impacts of climate change on a
particular system (in concert with its adaptive capacity [. . . ]) determine the vulner-
ability of that system to climate change. However, it does not suggest that impacts
cause vulnerability. We note explicitly that the direction of causation shown in [the
diagram] would be different if vulnerability to climate change were defined according
to the first or second school of thought . . . [p. 317].

The “schools of thought” that are referred to are the ones described in Section 5.4.2: the
risk-hazard framework with vulnerability as a dose-response relationship and the social con-
structivist framework with (social) vulnerability as of type δ. The fact that the authors
deem it necessary to explain this difference between how something is measured and the
direction of causation suggests that the diagram alone might be misunderstood by people
from the first two schools of thought.26 The multitude of diagrams found in the conceptual
literature on vulnerability has not been discussed in this work. It can be seen as source of
confusion similar to theoretical definitions, see for example Füssel and Klein [2006] for the
different (implicit) interpretations that can be given to arrows.

All these examples discussed interpretations and assessment approaches of vulnerability.
Adding theoretical definitions and the results from the analysis in Section 5.2 to the picture,
a basic result is a gap between the two, described by Hinkel [2008] as follows:

In most case studies, operational definitions are not derived systematically from the
theoretical ones and the relation between the two often remains obscure. [p. 46].

26The formulation of the last quoted sentence seems to suggest a difference concerning ‘the direction of
causation’ between the first two and “the third school of thought” in the climate change context. This is
unfortunate, since the point was not a difference between schools, but the difference between causation and
measurement within the third school. An “arrow of causation” would have the same direction for all schools.
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Theoretical definitions usually cannot be shown to correspond to one interpretation or as-
sessment approach of vulnerability as seen above for the IPCC definition. The conceptual
literature distinguishes interpretations in terms of focal points, between the future and the
present time aspect and related assessment methods, as well as between the stimulus and
the entity and the related component system of the SES. All aspects are present in all in-
terpretations, only the emphases differ. Theoretical definitions try to capture all aspects of
the concept. Being short statements, they do not provide the information which aspects are
emphasized in the interpretation of vulnerability a researcher has in mind.

Even when definitions of vulnerability use only one of the terms ‘capacity’ and ‘expo-
sure’, which, qua focal point, could be associated with a δ-like and a γ-like interpretation
of vulnerability, respectively, one cannot deduce that the definition corresponds to that in-
terpretation. Of course, one has to pay attention when reading a definition that explicitly
considers capacity apart from vulnerability, as often found in assessment guidelines and dis-
cussed in Section 5.2.2. However, a striking example that has nothing to do with this is a
definition by Adger [1999]:

Social vulnerability is the exposure of groups or individuals to stress as a result of social
and environmental change, where stress refers to unexpected changes and disruption
to livelihoods. [p. 249, our emphasis].

Theoretical definitions were seen to refine the ordinary language concept vulnerability.
This certainly contributes to their being similar, despite being used with different inter-
pretations. The similarity may actually blur or hide differences between interpretations
and assessment approaches by suggesting that a common understanding has been reached.
Here, the warning by Newell et al. [2005] to be “wary of superficial approaches to developing
‘better communication’ that only appear to remove conceptual confusion” [p. 301] seems
appropriate. While the same terms are used in definitions of vulnerability, when addressing
the different assessment approaches, “different speakers have different models and examples
in mind” [Newell et al., 2005, p. 301].

Imagine a quiz that consists of associating a theoretical definition of vulnerability with
the interpretation that it is used with. A person who is a little bit familiar with the litera-
ture on vulnerability to climate change would probably have great difficulties when presented
only the exact wording of the definition. Adding the author’s name would greatly simplify
the task.

A further source of confusion for both theoretical definitions and assessment approaches
of vulnerability is a certain arbitrariness arising in any of the classifications undertaken.
The concept vulnerability has been decomposed, into components in theoretical definitions
and into intermediate results in assessments. Different decompositions are not nested. The
three concepts exposure, sensitivity and adaptive capacity, for example, cannot be sorted
unambiguously into Chambers’ decomposition of vulnerability into an external and an in-
ternal side. This does not prevent authors of conceptual work from doing so, and, as was
seen for the example of sensitivity above, different authors choose different classifications.

Similarly, arbitrariness exists in relating observed phenomena and vulnerability compo-
nents. Füssel and Klein [2006] provide the example of

the vulnerability to flooding of a country that experiences significant internal migration
from the highlands into the flood plains. This migration changes the exposure of certain
population groups to flooding events. Aggregated to the country level, however, the
effects of migration represent changes in the sensitivity of the population to flooding
events. [p. 317].

Components of vulnerability distinguished at the theoretical level do not map unambiguously
to measurements in assessments at the operational level. Again, the gap is confirmed.
Operationally oriented documents such as assessment guidelines often do not even consider
the most basic decompositions of vulnerability at a theoretical level. Very detailed sub-
divisions of vulnerability into factors to be considered in an assessment are presented without



112 CHAPTER 5. VULNERABILITY

mentioning for example sensitivity by Twigg [2004], Davis et al. [2004] and Buckle et al.
[2001].

Lastly, the interpretation of a case study in terms of the mathematical model of course
is not free from arbitrariness either. An example is the ATEAM study, which by Ionescu
[2009] has been interpreted to have no impacts function but compute harm simply from
sensitivity. In the model presented here, where a stimulus function is used instead of the
impacts function, the interpretation could be revised. Harm is combined out of climate
change values and sensitivity, where the climate change part was included in the future
evolution in the interpretation by Ionescu [2009].

5.5 Risk

In this section, the concept risk as used in the the domain of natural hazards and disaster
management is related to the formal framework of vulnerability. It shall be seen that the
concept risk plays a role that is rather similar to the role of vulnerability in the climate
change context. The fact that both concepts occur as components in each other’s definitions
contributes to the confusion.

Natural hazards are one of the antecedent traditions of vulnerability [Adger, 2006], and
similarities exist not least in the common focus on the social-ecological system. The fields
of climate change adaptation and disaster risk management are growing closer as is docu-
mented e.g. by the Red Cross/Red Crescent [2008] Climate Guide. Efforts are made to bring
together researchers and practitioners working in the context of vulnerability and hazard
assessment to foster a “better integration of the concepts in order to strengthen the progress
towards sustainability” as could be read in the conference announcement27 of the confer-
ence ‘SHIFT07 – Shift in Thinking – Perspectives of Vulnerability and Hazard Assessment’.
Parts of this section were submitted for a Special Issue on this conference. In the article, the
focus was on clarifying the relations between approaches to assessing risk and vulnerability,
using a graphical framework based on the formal framework of vulnerability. Mathematical
formulations were explicitly avoided as a response to a review of a former version of the
article (see Section 5.6 for detail).

Here, the graphical framework is introduced by displaying the ordinary language concept
risk as an example. Then, this framework is used to analyse risk assessment approaches
using previous conceptual work and a case study in Section 5.5.2. Resulting similarities and
differences in the assessment approaches of the two research communities are discussed in
Section 5.5.3.

5.5.1 Graphical framework

Based on the formalization of vulnerability presented before, diagrams illustrate the elements
of the mathematical model of vulnerability. Comparing to Diagram 5.3, the form stayed the
same, but placeholders and mathematical symbols were replaced by words from ordinary
language, and braces were replaced by arrows. This formerly formal framework was then
presented as displaying how vulnerability (or risk) is assessed by representing steps that
are undertaken. In fact, as seen before, at least for some approaches, the formalization
primitives of vulnerability occured as elements in assessments, for example as intermediate
results. Therefore, the formalization also shows the structure of assessments.

In ordinary language, just as vulnerability, risk expresses a possibility of future harm.
The Oxford Dictionary of English [Soanes and Stevenson, 2005], for example, defines:

• a situation involving exposure to danger [. . . ]

• the possibility that something unpleasant or unwelcome will happen [. . . ] .

27http://www.pik-potsdam.de/events/scenario/conference-program.html
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The first sentence mentions the ‘present property’ aspect by describing risk as a “situation”,
while the primitives of vulnerability, an uncertain future and a notion of negativity, are found
in the second sentence. The circularity in definitions observed for ‘vulnerable’ and ‘exposed’
in this dictionary similarly applies to ‘risk’, which is here defined in terms of exposure. The
definition of ‘expose’ (“cause someone to be vulnerable or at risk”, see Section 5.1.1) is also
based on the understanding of the word risk.

The graphical representation of the concept risk is the following:

The diagram illustrates which steps can be undertaken to measure risk. Arrows represent
the steps, and their shafts are labelled with a name for the method applied in the step. The
arrows point from the input that the method is applied upon to the results of the method.
An arrow may branch out, meaning that a method produces several results from one input,
and several arrows may converge into the same head, which means that a method is applied
to several inputs and produces one result.

The added sketch of a probability distribution is included to represent the fact that risk
assessments usually consider a probabilistic representation of the uncertain future. This is
consistent with the concept risk as coined by Knight [1921] who distinguishes risk, in the
sense of a measurable probability, from uncertainty where no probability can be measured.
The interpretation of probability here must be an objective one, since for the subjective
interpretation, probability could always be measured.

In scientific contexts, risk encounters similar conceptual difficulties as vulnerability.
There are - no surprise here - various and quite different definitions of risk. They gen-
erally involve more mathematical terms than definitions of vulnerability, without however
being mathematical definitions. A large (and much older) body of literature on risk and
problems involved in measuring it [e.g., Knight, 1921; Adams, 1995] has not led to a general
agreement on precise definitions of the terms used. In the context of natural hazards, ‘risk’
is defined in terms of ‘probability’, ‘expectation’ or ‘probability and consequence’, and is
said to depend on ‘hazard, exposure and vulnerability’, or ‘hazard and vulnerability’ only.
However, it seems to be recognized as one and the same concept more easily than vulnera-
bility, and in spite of the Babylonian confusion that this component of risk is so generously
certificated.

5.5.2 Risk assessment approaches

Given the very similar point of departure, the mathematical model of vulnerability lends
itself to describing approaches to risk assessment. In the following, this is shown using
the graphical representation. We analyze the pressure and release (PAR) model by Blaikie
et al. [1994] (Section 5.5.2) and the Risk Triangle by Crichton [1999] (Section 5.5.2). Being
proposed as conceptual models, these can and will be interpreted as rather general descrip-
tions of how risk can be assessed. In the latter case, additionally to the short conceptual
description, a risk assessment which operationalizes the approach is considered in Section
5.5.2: the Flood Risk Maps developed by the Institute for Environment and Sustainability
at the Joint Research Centre [Barredo and de Roo, 2007].
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The PAR model

The “pressure and release” model describes disaster as the intersection of processes creating
vulnerability and exposure to hazards, described as pressures, while ‘release’ refers to reduc-
ing vulnerability. Risk is a “complex combination” of hazard and vulnerability, such that the
result is nil if one of the components is nil. Also, risk is said to arise from the interaction of
hazard and social conditions. This interchangeability of ‘vulnerability’ and (current) ‘social
conditions’ in the description of risk suggests that Blaikie and colleagues use ‘vulnerability’
with a strong focus on the social system and on the present state. In fact, Blaikie et al.
[1994] describe a progression of vulnerability from root causes (economic, demographic and
political processes that give rise to vulnerability) via dynamic pressures (which ‘translate’
the effects of root causes into the vulnerability of unsafe conditions) to unsafe conditions:
“the specific forms in which the vulnerability of a population is expressed in time and space
in conjunction with a hazard” [p. 25]. From the point of view of the formalization, vulnera-
bility is considered in its aggregated form while the primitives of vulnerability do not occur
individually. Thus, in terms of Diagram 5.3, vulnerability is of type δ. As was mentioned in
Section 5.4.3, the corresponding vulnerability interpretation originated here in the field of
natural hazard risk. Theoretical definitions of vulnerability provided by Blaikie et al. [1994]
were included in the analysis of theoretical definitions above. The table showed that they
have the same structure as most other theoretical definitions.

The other component of risk, the hazard, can be graphically represented by assessment
approach γ, specialised to the probabilistic case. Blaikie et al. describe the hazard as having
“varying degrees of intensity and severity” [p. 21] and refer to statistical likelihoods of haz-
ards obtained from long records. Here, the varying degrees of intensity are the descriptions
of several possible futures, with attached probabilities derived from statistics. This is an ex-
ample of a future projection step which concerns the stimulus only, identified as “exposure”
in Section 5.2.2. The notion of harm is contained in ‘severity’ which can be evaluated for
each hazard intensity inside the probabilistic uncertainty description. The risk-component
hazard as described by Blaikie et al. [1994] thus corresponds to γ in Diagram 5.3.

Risk could be assessed by assessing the two components hazard and vulnerability and
combining the results, as is also displayed by the formula RISK = Hazard+V ulnerability
contained in a diagram illustrating the PAR model [Blaikie et al., 1994, p.23]. The property
that risk is nil when one of the components is further specifies the combination step: combi-
nation operators that do not have this property are not appropriate since they would violate
this essential property of risk. This is an example of the benefits of expressing the structure
of a concept mathematically: even if expressed in words rather than formulae, “the result is
nil if one of the factors is nil” is a mathematical statement which makes assumptions explicit
in a clear fashion. The formula chosen to represent this statement is slightly unfortunate
because the symbol “+” is at first sight associated with addition, a combination that does
not have this property.

To do the authors justice, it should be mentioned that Blaikie et al. [1994] do not want
to actually assess risk in this way. They consider the PAR an oversimplified and static
model, because it “suggests [. . . ] that the hazard event is isolated and distinct from the
conditions that create vulnerability.” To overcome this separation of the hazard from social
processes, the ‘access model’ is proposed. We shall, however, not consider this model here,
but concentrate on the PAR model as a rough description that clarifies the concept risk.

The Risk Triangle

This approach is grounded in the insurance industry and extended to disaster management
by Crichton [1999]. The triangle is used to illustrate that and how risk depends on three
components: hazard, vulnerability and exposure. This mathematical metaphor constitutes
a first step towards a mathematical model which helps stating assumptions clearly. Thinking
of the size of risk as the area of the triangle specifies two properties of risk: it increases in
all three of its components, that is, if one component increases while the other two are kept
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constant, risk increases, and it is nil if any of the components is nil. The triangle metaphor,
however, cannot serve to actually compute risk from values of the three components. For
example, if the sum of two sides does not exceed the length of the third side, no triangle
area can be associated to the three lengths. A practical question would be how to reduce
the results from the components’ assessments to a length, that is, to a single number.

Again, risk can be assessed by assessing the components and then combining the results,
and the properties assumed for the concept translate into conditions for the combination.
While two of the components of risk used here have the same names as in the PAR model,
this approach, unlike the PAR model, does not contain a δ part. It can be graphically
represented in terms of the γ part of Diagram 5.3 only.

As before, the component hazard contains a probability distribution over possible futures:
“probability and severity of natural hazards is now being modelled in very sophisticated
ways” [Crichton, 1999, p. 103]. This concise description again includes a notion of harm
in ‘severity’. How the steps of providing possible evolutions and evaluating harm for each
of them can be undertaken shall be seen in the case study example below, since Crichton
does not go into detail on these steps. The other two components can be represented as
further steps in the harm evaluation of each possible evolution, as will also be shown for
the case study. The brief description by Crichton [1999] is very general: information about
vulnerability and exposure comes from large databases.

The term exposure is used as is customary in the insurance context: the maximum
exposure to losses is the value of the insured property. In ordinary language this would
be referred to as ‘exposed property’. Crichton [1999] admits that disaster management
practitioners may find the way in which insurers consider exposure unfamiliar, especially
because an insurer may reduce exposure by reducing the number of insured properties.
While for a country this is not an option, Crichton proposes examples such as discouraging
the development of housing and industry in hazard-prone areas.

The third component of risk, vulnerability, deserves a closer look: as an exceptional case
in the literature, its definition by Crichton does not mention any uncertainty about the
future. Vulnerability defined as “the extent to which [the property] will suffer damage or
loss” [p. 102, our emphasis] seems to call for the extension “if the stimulus is present”. It
can be interpreted as a dose-response relationship between stimulus and harm and has been
observed to correspond to sensitivity as used in the context of vulnerability to climate change,
for example by Füssel and Klein [2006] (see page 104). In fact, so defined, vulnerability is a
measuring function, used to transform stimulus values into harm values, which is precisely
how sensitivity was described in the mathematical model for the case where the “joker
function” represents the stimulus. Vulnerability thus plays a role like β from Diagram 5.3.
Vulnerability in the insurance context is property related, an example would be whether
building standards are satisfied. Crichton’s example for the disaster context are more general
“disaster preparedness measures” such as “contingency plans to help with rapid recovery
using local institutions, government resources such as the army, and stockpiles of emergency
food and shelters” [p. 102]. These hint at a component of type δ. However, in assessments,
no δ measurement is present, as shall be seen from the case study that we now turn to.

Case study: Flood Risk Maps

The anaysis presented here is based on Genovese et al. [2007]. Digital maps of risks from in-
land river floods at the European scale that identify monetary/economic losses are produced
by combining hazard, exposure and vulnerability where

• Hazard is the threatening natural event, including its probability/magnitude of
occurence;

• Exposure is the values/humans that are present at the location related to a given
event;

• Vulnerability is the lack of resistance to damaging/destructive forces (damage
function) [Genovese et al., 2007, p. iii].
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In the following, the three risk components used in the Flood Risk Maps will be spelt
with a capital initial, to reduce the probability of confusion.

The Hazard is described by characteristics which make a flood event measurable, such
as flood depth, discharge and duration. The description is spatially explicit: Flood hazard
maps (FHM in the diagram below), in which the territory is divided into different flood
hazard classes, are generated from catchment characteristics. A map can be seen as a
spatially explicit description of the stimulus function.

These maps come with a probabilistic uncertainty description given in terms of return
periods, derived from runoff statistics. The concept of return periods is a common but fre-
quently misunderstood probabilistic description of floods [see, e.g., Pielke, 1999]. The n-year
flood refers to a water level that has a probability of 1/n of being exceeded in any given
year, where the probabilities are assumed to be constant and flood occurences independent
for different years. The return period information relates to a distribution function in the
sense of probability theory as follows. Say the water levels associated to a few values like
n = 100, 50, 20 have been determined. If one uses these as the domain of a function which
associates to each water level the probability of non-exceedance, that is, 1 − 1/n for the
water level of the “n-year flood”, this function can be seen as a discretized version of a
distribution function, that is, values are given only for some water levels, not for all. Via
this transformation, and the fact that distribution functions and probability measures are
in one-to-one correspondence,28 we can consider the information given in a return period
description of floods as an uncertainty distribution. To make a long story short, the flood
hazard maps with the return periods are an uncertainty distribution over (spatially explicit)
stimulus values, corresponding to exposure in our mathematical model, here called Hazard.
One could also consider the flood hazard maps themselves as the possible future evolutions,
in this case given in terms of the stimulus only.

In further steps applied to each evolution, that is, to each flood hazard map, damages
are computed using a combination of the other two components.

Spatially explicit Exposure information is obtained using land use classes from the
Corine Land Cover project and a gridded population density of Europe dataset. Later,
monetary damage values are associated to Exposure classes.

Vulnerability is given by depth-damage curves, specific for each country and each land
use class. A curve expresses the degree of damage, a value in the interval [0, 1], as a function
of water depth. The curves are provided from results of another study.29 Together, these
curves can be viewed as a spatially explicit measuring function with the ordered target
[0, 1]: to a tuple (country, land use, water depth) this measuring function associates the
value that the depth-damage curve belonging to the respective country and land use class
outputs for the given water depth. Here, the country and land use information make the
spatial extension: within the maps, this information is used to choose the right depth-
damage function. The input of interest is the water-depth, that is, the stimulus value. If we
consider the flood hazard maps the possible evolutions, the Vulnerability measuring function
can thus be interpreted as a function of the evolution.

The combination of the two components Exposure and Vulnerability is given by a flood
damage database. The authors mention explicitly that the Risk Triangle structure is main-
tained by attaching monetary land values to the land cover layer representing exposure, and
building an information layer containing the “territorial-specific damage fraction (percent of
damage as a function of flood depth)” [Genovese et al., 2007, p. 39] which represents Vulner-
ability. The database of resulting potential monetary loss occuring for a given water depth,
specific per land use type and country, thus is a spatially explicit monetary dose-response
function. In the mathematical model of vulnerability to climate change, this corresponds
to the sensitivity measuring function, β. While in Section 5.2.2 it was stated that future

28Only in the “standard” approach to probability, but this is generally used.
29The study by the Joint Research Centre is cited as “not for disclosure”. Further analysis as to how far

the social system was considered in producing these functions etc. thus is not feasible here.
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sensitivity is of interest, here, this measuring function is assembled using past and present
data, which can be seen as an approximation.

The harm evaluation is then carried out in a procedure too involved to be described here
in a few words. However, in short, it can be described as functorial: the return periods
are kept as they are, while “inside” the uncertainty distribution the depth-damage function
obtained by combining Exposure and Vulnerability is applied to the water levels in each
flood hazard map. The resulting damage maps, referred to as Flood Risk Maps (FRM in
the diagram below), provide the levels of harm (still spatially explicit) for each return period.

Finally, a damage-probability curve is constructed from the damage maps for all return
periods together. This is a curve which is approximated by the damage values for the
given return periods and by linear interpolation between these. The “missing values” of the
distribution function (modulo transformation) are filled in, so to say.

Annual Average Damage is computed by an aggregation, corresponding to probabilistic
expectation. This can be interpreted as the aggregation step producing γ in Diagram 5.3.
In conclusion, we have seen a γ-assessment of risk, graphically:

Two remarks will conclude this section. The case study illustrates the correspondence
between Vulnerability in the Risk Triangle and sensitivity as defined by the IPCC. It even
occurs explicitly in the texts, when Genovese et al. [2007] state that the Vulnerability com-
ponent “of the risk assessment procedure is usually dedicated to describing how the exposed
people, goods, infrastructures and services are sensitive to damage from a given extreme phe-
nomenon.” [p.28, our emphasis]. Both terms refer to a dose-response relationship between
stimulus and harm.

Second and more importantly, the step in which the components Vulnerability and Ex-
posure are combined reveals that the theoretical decomposition of risk into components
is somewhat arbitrary. The potential monetary loss occuring for a given water depth, a
natural element of the given computation, does not fit cleanly into one of the specified
components of risk, but partly belongs to both Exposure and Vulnerability. Efforts have
to be made to keep these components separate in a first step. If in a similar assessment
monetary depth-damage curves were associated directly to the component Vulnerability, the
component Exposure would become superfluous in the computation of risk. This confirms
an observation for vulnerability from Section 5.4.5 equally for the concept risk: phenomena
considered in assessments do not map unambiguously to components of a concept at the
theoretical level.

5.5.3 Common structure – different terms, and vice versa

Given the social-ecological system as a common object of study in assessments of vulnerability
to climate change and risk of natural hazards, and the fact that natural hazards and disaster
management are one of the antecedent traditions of vulnerability [Adger, 2006], similarities
were to be expected between the assessment approaches used by the different communities.
In fact, it was shown that vulnerability and risk assessments are similar in structure, as
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revealed by the fact that risk assessments can be described as instances of the general
mathematical model of vulnerability. Again, some assessments do not contain all parts
mapped out in Diagram 5.3 and consequently different types of results are given the same
name, here ‘risk’.

The use of different terms for the same assessment structures may hide the similarity
between assessment approaches and thus hinder the comparability of results. Also, benefit-
ting from the work of the other community is rendered more difficult. Different terms and
their various definitions can be a barrier to the communication between the climate change
and the natural hazards communities.

The converse problem, using the same terms for different assessment structures, previ-
ously observed for vulnerability, was also confirmed for the concept risk. In the natural
hazards community, the term ‘risk’ may refer to a result of type ε (PAR model), or to γ
(Risk Triangle). The term ‘vulnerability’ is used for yet another element in assessments: in
the risk triangle, vulnerability refers to a dose-response relationship, β. It also occurs for δ
in the natural hazards community, as it did in the climate change community, where it was
additionally used for ε.

Mapping terms used for elements in assessments of “possible future harm” to the place-
holders in Diagram (5.3) and vice versa, one never obtains an injective map. This explains
some of the confusion asserted in the scientific terminology, both within each of the two
communities and between them. Moreover, risk occured in definitions of vulnerability (see
Table, page 83), and vice versa, vulnerability in definitions of risk, as given by the PAR
model, which certainly does not clarify matters.

Further, both concepts are decomposed into components in scientific approaches, and in
both cases this decomposition was shown to involve a certain arbitrariness. Similarities are
to be seen: for example, the decomposition of risk into hazard and vulnerability (the PAR
model by Blaikie et al. [1994]) resembles the decomposition of vulnerability into an external
and an internal side by Chambers [1989]. Even some of the components show similarities as
obvious from the fact that components of risk can be mapped to the formalized components
of vulnerability.

While in the context of risk, the approach producing a result of type γ is present, as
seen in the Flood Risk Maps case study, here a δ approach is not found under this term.
Approaches that focus on the social system and the present state here use the term vulner-
ability. The seminal work by Blaikie et al. [1994], coming from the disaster risk community,
is one of the “antecedents” influential also on the context of vulnerability to climate change.

Of course, there is conceptual work on both concepts together. Having seen the different
approaches to both concepts, the sensibility of statements made about the concepts may
depend on the assessment approach considered. For example, when considering a γ approach
to risk, but an ε approach to vulnerability, which includes a focus on the social system, a
statement like “vulnerability as a research-organizing concept is thus more complex than
risk . . . ” [Hochrainer et al., 2007] is warranted. However, when considering vulnerability
as the dose-response relationship in the risk triangle, the above statement would not make
sense. Therefore, care should be used when making such statements, and these should not
be quoted out of context, because the explanation which approach to risk and vulnerability
is taken is essential.

In conceptual work one finds seemingly contradictory statements, in which the concepts
vulnerability and risk occur in different ways as components of each other. The mathematical
model can in some cases help resolve the contradiction, as exemplified by the following two
statements:

Vulnerability [here ε] can [. . . ] be explained by a combination of social factors
[here δ] and environmental risk [here γ], where risk are those physical aspects of
climate related hazards exogenous to the social system. [Adger, 1999, p. 252].

and
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In evaluating disaster risk [here ε], the social production of vulnerability [here
δ] needs to be considered with at least the same degree of importance that is
devoted to understanding and adressing natural hazards [here γ]. [Blaikie et al.,
1994, p. 21]

These results suggest that, ideally, the conceptual barriers between the two communi-
ties could be overcome by setting aside the often emphasized conceptual differences. An
agreement on the very general meaning of the terms vulnerability and risk, as provided by
the everyday language concepts, can be taken for granted because otherwise there would
have been no reason to use precisely these terms for the scientific concepts. This general
meaning would serve as a basis for communication. Further, assessment approaches can
be specified on a case to case basis. Discussing assessments instead of definitions given in
natural language, one gains precision and explicitness. The graphical framework presented
could support such discussions, and especially the comparison of assessments, also across the
borders of the two communities. Whether such a ‘return to basics’ and giving up theoretical
conceptual issues would be feasible, is a different story.

5.5.4 Remarks on formalization

Having presented a formal framework of vulnerability, shown its applicability to the concept
risk, and applied it to clarify concepts, assessment approaches and associated interpretations,
some remarks on formalization relating back to the formalizations of probability are due.

Comparing the formal framework of vulnerability to the mathematical models of proba-
bility, one can consider it as ranging between Kolmogorov’s and de Finetti’s formalizations in
the following sense: Kolmogorov’s formalization considers probability a primitive and thus
does not explain its meaning. Here, vulnerability is decomposed into primitives, answering
to the purpose of concept clarification. De Finetti, whose formalization of probability also
aims at concept clarification goes a step further. He proposes an operational definition, while
the mathematical models of vulnerability do not establish how to measure vulnerability. On
the other hand, de Finetti formalizes one interpretation of probability. Here, the formal
framework can be considered as rather similar to Kolmogorov’s model of probability which
is independent of interpretations of the concept. In fact, the formal framework has been
used to discuss different interpretations.

While conceptual confusion is a common starting point in the formalizations of prob-
ability and vulnerability, the situations are rather different. The confusion Kolmogorov
addressed with his axioms was mainly that within the mathematical discipline. For vulner-
ability, a mathematical theory does not exist. The confusion to be addressed concerns the
meaning and the measurement of vulnerability. De Finetti’s aim of formalizing probability
was clarifying meaning and measurement of a concept, but the concepts themselves show an
important difference. Vulnerability describes a property of people which is judged undesir-
able, probability describes information about uncertainty in a neutral fashion. An important
question in studying vulnerability is “how does vulnerability come about?” because in the
end the aim of understanding vulnerability is to reduce it. This question does not seem to
make any sense in the context of probability.

5.6 Different representations of the formalization

The formal framework of vulnerability to climate change has been presented in different
forms, three of which were seen in this work. Mathematical formulae, embedded in text,
were used in Sections 5.1 and 5.3. In the formulae, details that may seem insignificant to a
mathematician, can make a difference for non-mathematicians reading them. A hint about
notation that was perceived as unintuitive came from a non-mathematician in the FAVAIA
group. The presentation by Ionescu [2009] denotes the set of harm values by V and the set of
vulnerability values by W . Later presentations changed the notation to H for harm values
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and V for vulnerability values, to avoid confusion from this notation. Even if seemingly
a very small difference, this change in notation comes a little bit closer to what Sarukkai
[2001] states about “holding on to the semantics”. H can be read as an abbreviation of the
primitive harm, so that this notation recalls the primitive that has been translated into the
measuring function taking values in H.

It was stated already that one cannot assume mathematics to function as lingua franca
in the vulnerability research community. This at first sight detracts from (or in the worst
case: eliminates) the benefits of formalization deriving from communication in mathematical
language. On the other hand, formulae are not what constitutes mathematics as argued in
Section 2.4. The formal framework represented by diagrams is still mathematical: it is
precise and general and encourages to make assumptions explicit.

An interesting experience was made with a representation of the formal framework in
terms of diagrams of the form of Diagram 5.3. These combined a graphical representation
of some of the mathematical concepts with formulae for others. The basic idea of sketching
a non-deterministic future evolution and the functorial application of measurements to the
uncertainty distribution has been explained in Section 5.3.4. Curly braces were used to
express an aggregation operation without restricting to specific functions. The symbols
⊕,⊗ and ¯ were chosen purposefully to avoid symbols which are familiar from everyday
use or primary school mathematics, in order to emphasize generality and avoid implicit
assumptions. In fact, we wanted to avoid situations like the one sketched in Section 5.5.2,
where in a diagram the symbol + denotes a combination that, in the text two pages earlier,
is specified to be nil if one of the components is nil.

An article presenting the formal framework and comparing the concepts risk and vulnera-
bility using these hybrid diagrams has been rejected by the Journal Regional Environmental
Change because “far too theoretical for REC”. In the present work only the most general
version of the diagrams in the article has been used, Diagram 5.3 with greek letters as place-
holders to be filled in with the different terms used in the different assessment approaches.
One example using words instead is the following diagram displaying the integrated assess-
ment approach, where CC abbreviates climate change, sens sensitivity.

CC(ev1)¯sens(ev1)
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vulnerability
to CC(s)

A comment about the article by an editor recalls the description of mathematics as a
cultural anathema by Enzensberger [1999]:

Either the mathematical formulations simply restate in mathematical terms rather
trivial relationships, or I am missing something (probably the latter). So it may be a
good paper in terms of theoretical mathematics, and if so, it should be submitted to
an appropriate journal in that field.

Similarly, after a presentation given using diagrams only, the remark “thanks for not having
shown formulas” was made. In both cases, the assumption that one did not or would not
understand mathematics comes easily. Too easily, in fact, in the former example. It is rightly
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observed that some of the relationships stated are rather trivial. The fact that vulnerability
describes a possibility of future harm is not a deep insight. However, precisely these “trivial
relationships” were supposed to be made explicit as a clear basis for communication instead
of jumping into vague descriptions of distinctions that are ‘often difficult’ to make.

The journal editor’s quote further shows that it is still unclear “what mathematics
is”. While there are mathematical results related to the formal framework, for example
on monadic dynamical systems in the work of Ionescu [2009], or the monads of finitely addi-
tive probabilities presented in the following chapter, the framework itself is not “theoretical
mathematics”. The plain mathematical description of structures found in vulnerability as-
sessments does not contain mathematical results in the sense of theorems and proofs, which
could be submitted to a mathematical journal.

The comment to the submitted version of the paper further contained the sentences:
“And this raises the question: who is the audience for this paper? It certainly doesn’t seem
to be practitioners or researchers in the field.” Because the formal framework is supposed
to be helpful for researchers in the field, a further version of the paper was produced. This
uses the diagrams as seen in this work in Section 5.5. These diagrams are closer to the “box-
and-arrow diagrams” common for presentation of conceptual frameworks and frameworks
for vulnerability assessment [e.g. O’Brien et al., 2007; Turner II et al., 2003]. This adapted
version has been informally commented by a colleague who had himself been struggling with
the too many definitions. Having found that the task of comparing (theoretical) definitions
of vulnerability from the climate change and the natural hazards communities seems futile,
this colleague stated that the framework was helpful to clarify ideas. This gives reason
to hope that some of the clarification experienced by those carrying out the formalization
process can be transferred.

That clarity can benefit from a mathematical description of concepts and assessment
approaches was observed also in works about the concept risk. Both Blaikie et al. [1994]
and Crichton [1999] use mathematical concepts to make their assumptions about the concept
risk explicit. Even where used only as metaphors, mathematical concepts are helpful to
illustrate properties of risk that would have been more difficult to state as concisely and
clearly without recurring to mathematics.

“Selling” mathematics however remains a balancing act. The formal framework has from
the beginning30 been accompanied by justifications and words of caution, as for example
the following.

First, the framework could be perceived as being overly prescriptive, limiting the free-
dom and creativity of researchers to generate and pursue their own ideas on vulnerabil-
ity. Second, it could be seen as being developed for illicit rhetorical purposes, namely to
throw sand in the eyes of those unfamiliar with mathematical notation. Inspite of these
caveats, we hope that the development of a formal framework of vulnerability will turn
out to be a worthy undertaking, offering an opportunity for rigorous interdisciplinary
research that can have important academic and social benefits. If this opportunity is
seized by many, the risks represented by the two caveats will be minimised. [Ionescu
et al., 2009, p. 2].

A hybrid presentation in another sense is in the making: a two tier paper which presents
simple mathematical formulae side by side with the last generation of diagrams. The paper
promises that the mathematical concepts used do not go beyond old high school acquain-
tances such as sets, functions or probability distributions, except for the carefully explained
concept of a functor (for the simple examples of discrete sets and probability distributions
only). Given that the mathematical concepts used are very basic, the following trick is rather
of a psychological nature, trying to overcome a fear of not understanding mathematics: the
paper purposefully indents the mathematical definitions and offers that they can be skipped
as the information is also given in the surrounding text and the diagrams. Reactions remain

30The publication process of the quoted paper has been rather long, the quote can also be found in a
working paper from 2005.
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to be seen.31 Before concluding this chapter, let us draw a link back to the previous chapter.

5.7 Probability, possibility and vulnerability

Throughout this chapter, the concepts probability and possibility occured in several places.
This section collects some relations of these concepts to vulnerability which allow to draw
conclusions on either side.

Probability can be used as a tool in vulnerability assessments, but it was seen that
studies of vulnerability to climate change make less use of probabilistic methods than risk
assessments in the context of natural hazards do. Also, studies of vulnerability to poverty
use probability more frequently, as can be seen for example from the synthesis work of Calvo
and Dercon [2005] which proposes a probabilistic setting. This difference can be traced back
to the non-assignment of probabilities to the SRES scenarios discussed in Section 4.8. The
assessments of vulnerability to climate change that use these in their description of the
uncertain future not only find no default probabilities to use with the scenarios. Also, the
debate, and especially the position of the authors of the scenarios, discourages from using
probabilities.

It was further discussed (see Section 4.8) that frequentist probabilities for future scenarios
are not appropriate in most cases. For studies of natural hazards and poverty, where the time
horizons involved are generally (much) shorter, deducing probabilities from past data seems a
more warranted approach. In climate change, one is left with subjective probabilities, or the
belief aspect of probability. This implies subjectivity of vulnerability when using probability.
While subjectivity of vulnerability measurements is criticized (seen in Section 5.4.4), the
understanding seems to be that measurements are simply not good enough to measure
vulnerability objectively. Subjectivity of the concept itself is not treated as frequently. As
mentioned in Section 5.4.4, using admittedly subjective measurements of concepts which
only have a subjective meaning in decisions with high stakes is very controversial.

The use or not use of probability in the context of climate change studies is, however,
more directly linked to the concept vulnerability than shown so far in this work. Lempert
et al. [2004], in their description of different frameworks for decision making, outline the
Assess-Risk-of-Policy framework which considers different policy options and for each of
these investigates the associated uncertainties. This framework, unlike the Predict-Then-
Act framework which they contrast it with, does not necessarily make use of probability.
Here, the concept vulnerability arises:

. . . climate-change policy-makers should understand various sources of vulnerability to
climate and focus on the technical and political actions that will reduce these vulnera-
bilities. These include improving the ability to respond to extreme climate events and
increasing the efficiency of society’s energy use regardless of any expectations about
climate change. [Lempert et al., 2004, p. 4].

The phrases ‘ability to respond’ and ‘regardless of any expectations about climate change’,
that is, about the future, show that the interpretation of vulnerability used here focuses on
the entity and the present time. The association of this vulnerability interpretation and a
‘no-probabilities’-approach is even more obvious in the work by Dessai and Hulme [2004].
These authors distinguish top-down from bottom-up assessments, which can be mapped to
our γ- and δ-assessment approaches, respectively. They state a “case for probabilities” for
γ-assessments but a case against them for δ-assessments. The δ-approach is described as

31The comment about the paper submitted to Regional Environmental Change also contained a categorical
rejection of formalization:

Do we really need such formalised definitions of terms that, in my view, can never (and should
never) be completely formalised? A good analogy is the term ”sustainability”. After 20
years, it still doesn’t have a single, formalised definition that is widely accepted. But this
certainly doesn’t prevent the term from being used. And most people certainly recognise an
unsustainable society when they see it! (even if they can’t give a precise definition).

In a scientific context, this seems best not to deal with at all.
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“tremendously useful for understanding society’s vulnerability to present-day climate and
also the underlying causes of vulnerability”, and its focus on people’s capacity is highlighted.
The authors state that not only probabilities, but even scenarios of climate change themselves
are not needed for climate adaptation policy using this approach.

The different views on the usefulness of probability in climate change research can thus
also be derived from the different interpretations of vulnerability. That in considering the
concept vulnerability as of type δ, one is not concerned with probabilities can further be
explained by returning to the duality of the concept possibility. This concept, inherent in
vulnerability, was found present also in the concepts exposure and capacity, corresponding
to a decomposition of vulnerability into an external and an internal side (see Section 5.2).
To the concept possibility two aspects were attributed, a physical and a knowledge aspect.
Exposure has both these aspects from the point of view of the entity: the stimulus has
the physical possibility of occuring, but the entity does not know whether it will happen.
Capacity on the other hand does not involve the knowledge aspect: a physical ability is
considered. Knowledge about whether something will happen or not (even an action of
the entity) is not taken into account in capacity assessments.32 Since both subjective and
frequentist probability are tools to describe information about uncertainty regarding the
question whether or not something will happen (or has happened, or is true, etc.), they are
not perceived as useful when dealing with this (only) physical possibility.

An investigation of the use of probability in vulnerability assessments has therefore re-
vealed also that the dualities found for the concepts probability and possibility do not simply
match. Probability is a tool in situations involving possibility with a knowledge aspect. As
seen in de Finetti’s work, this may be anything the reference person is uncertain about, that
is, anything the reference person does not know. A merely physical aspect possibility seems
not usefully described by probability. Since vulnerability in the δ-approach, respectively
capacity as the δ component of (ε-)vulnerability, considers a physical possibility, its assess-
ments do without probabilities. Different types of uncertainty have been described in the
literature, some of which would relate to this discussion. For example, Dessai and Hulme
[2004] discuss further distinctions of uncertainty in relation to climate change. Since there
is a vast spectrum of literature on uncertainty that would go beyond the scope of this work,
this chapter will be concluded here.

5.8 Conclusions

Conceptual clarification was the aim of using formalization in the context of vulnerabil-
ity to climate change, where confusion is present in terminology and conceptual literature.
As a starting point, vulnerability as used in ordinary language was analyzed, identifying
as primitives an entity (and a stimulus), an uncertain future evolution of the entity (and
the stimulus) under consideration, and a notion of harm. The mathematical definition of
vulnerability, in which the defining concepts are the mathematical translations of these prim-
itives, provides an abstract and precise description of what the word vulnerability means.
Discussing properties of the mathematical elements of the definition, intuitions about the
concept can be made explicit in a precise manner, as seen for example for the monotonic-
ity condition for the aggregation function. Vulnerability was mathematically defined as an
aggregate measure of possible future harm to an entity.

This definition was shown to be a common denominator of many slightly differing the-
oretical definitions of the scientific concept vulnerability, where the same primitives and
structure are found. Refining the ordinary language concept, the definitions decompose
vulnerability into related concepts such as exposure, susceptibility and capacity. These con-
cepts, often left undefined, leave room for interpretation in the concept vulnerability itself.
In the terminology, the scientific concept vulnerability is not introduded by starting out from

32Recall the statement that “what may or may not happen in the future” is not of primary interest for
capacity by Kelly and Adger [2000] quoted on page 103.
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intuitive primitives and defining all concepts unambiguously upon these and previously de-
fined concepts. Theoretical definitions alone turned out insufficient to base a formalization
of vulnerability and related scientific concepts upon them.

A more concrete understanding of the scientific concepts can be reached by considering
which steps are undertaken in vulnerability assessments. The mathematical model of the
scientific concept vulnerability, as derived by Ionescu [2009] from vulnerability assessments,
refines the mathematical definition of ordinary language vulnerability. It was here adapted
to take into account components of vulnerability found in the theoretical definitions. This
second model was used to describe vulnerability and risk assessment approaches, revealing
how these relate to each other. While one approach considers possible future evolutions of
the social-ecological system explicitly, in another approach, measurements are carried out
on the present state of the system. It was observed that the former approach predominantly
focusses on the ecological and the latter on the social component of the SES. A third approach
to assessing vulnerability comprises the first two and combines the results. In all three cases,
the assessment result is referred to as ‘vulnerability’, producing the equivocality that causes
a good part of the confusion in the terminology.

Interpretations of vulnerability that had been identified in the conceptual literature were
related to these assessment approaches, revealing three distinctions of two interpretations
each to describe the same distinction. In these interpretations, one time aspect of the present
property vulnerability that consists in the future possibility of harm occurring is emphasized.

A suggestion derived from this explanation of the confusion in the vulnerability termi-
nology is to refrain from proposing detailed theoretical definitions. Ironically, the confusion
may be considered self-enhancing: aiming for clarity, most vulnerability assessments first
provide theoretical definitions of the concepts used, adding new trees to the proverbial for-
est. An agreement on detailed theoretical definitions of concepts seems not only not feasible
because all the terms used in this context are already overloaded with meanings, but also
superfluous, given the imprecision inherent in natural language.

Spelling out the structure of concepts involved, one can consider the formal definition
as one definition which fits all cases, an entity whose existence seems impossible to many
researchers in the domain of vulnerability. The question posed by O’Brien et al. [2007]
“whether it is possible to integrate [the] two interpretations into a comprehensive and for-
mal framework for understanding vulnerability to climate change” [p. 84] however, deserves
careful consideration. One framework has here beed used to clarify the two interpretations
considered, but the phrase “understanding vulnerability to climate change” can and prob-
ably should be read as “understanding how vulnerability to climate change comes about”.
This question is not answered by the formal framework. It remains to the researchers work-
ing on vulnerability to answer this question. If the framework can help clarify ideas about
concepts and previous assessments for these researchers, it has made a contribution.

As an outlook on further applications of this framework, let us mention the development
of computational tools relating to it in the FAVAIA group. The basic architecture that
can be used for computational vulnerability assessment by plugging in different models as
well as evaluation and aggregation functions has the advantage that these elements are kept
separate. The possibility of exchanging a part without having to reprogram everything allows
a high degree of flexibility in assessments. A benefit of formalization stated by Ionescu et al.
[2009], to “allow modellers to take advantage of relevant methods in applied mathematics,
such as system theory and game theory” [p. 2], might be obtained.

The formalization of vulnerability has considered concepts only. Hinkel [2008] notes that
a “motivation for formalising statements is to analyse the consequences of these statements”
[p. 25]. The benefit of applying mathematical methods and results to vulnerability and
thus contribute to a theory of vulnerability would presuppose first of all the translation of
statements made about vulnerability. While probability theory before Kolmogorov’s axioms
was already a mathematical discipline, the theory of vulnerability as far as it exists to date
is non-mathematical and mathematical results seem out of reach for now. A formalization of
concepts is, however, a very first step towards aspiring mathematical results on vulnerability.



Chapter 6

Finitely additive probability
monads

This chapter treats probability functors and monads. There exists a monad of probability
measures, as shown by Giry [1981], and sketched in Section 6.3.

In climate change research, frequentist probabilities often are not avaliable (as discussed
in Section 4.8), and in vulnerability assessments one might want to use probability assign-
ments by experts. For the case where the expert’s assignment is not specified on a σ-algebra,
and is thus not a probability measure, it can be represented mathematically by a coherent
probability assignment.

The formal framework of vulnerability introduced in Chapter 5 uses a functor to represent
uncertainty. Therefore, a naturally arising question is whether the alternative mathematical
models for probability seen in Chapter 4 also yield functors for application in the framework.
They do, as will be shown throughout for finitely additive probabilities and in Section 6.7
for coherent probability assignments. The computational version of the formal framework
of vulnerability further employs monadic dynamical systems (see Section 3.3). In order
to use a monadic dynamical system, of course, a monad is needed. The next question
therefore is: are there monads of finitely additive probabilities and/or of coherent probability
assignments? The question is answered positively for finitely additive probabilities in this
chapter. Given that finitely additive probabilities were shown to generalize the σ-additive
Kolmogorov probabilities, the question arises whether such a monad can be defined as an
extension to the Giry-monad. It will also be answered with ‘yes’ in this chapter.

The first monad of finitely additive probabilities (Section 6.2) considers finitely addi-
tive probabilities which are defined on the whole powerset of the underlying set. It is the
technically least involved monad, and can be defined on the category Fun, because no mea-
surability questions arise. However, it is not very closely related with the Giry monad.
Therefore, Section 6.5 presents another monad, which is. This is defined on a category
which generalizes the category Mes of measurable sets and functions used by Giry. From
the construction of this monad, the question arises whether this monad can be slimmed
down for more generality. This question is addressed in Section 6.5.6. The chapter starts
out with a section providing the necessary mathematical armamentarium.

6.1 Integration with respect to finitely additive proba-
bilities

This section presents an integral for bounded real valued functions with respect to finitely
additive probabilities. It is based on the chapter about integration with respect to finitely
additive measures by Bhaskara Rao and Bhaskara Rao [1983], especially on their “S-integral”
that is defined in terms of upper and lower sums, similar to the Riemann integral.
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Throughout the section consider given a non-empty set Ω, an algebra A on Ω and a
finitely additive probability P on (Ω,A). We denote finite partitions {A1, . . . , An} of Ω in
A by Z in this section. Let Z be the collection of all these Z and define a partial order on
partitions in terms of refinement. Z1 ≤ Z2 if Z2 is a refinement of Z1, that is, each set in
Z1 is a union of sets in Z2.

Given a bounded function f : Ω −→ R and a partition Z = {A1, . . . , An} in Z, lower
and upper sums are defined as follows:

L(Z) =
n∑

i=1

( inf
ω∈Ai

f(ω))P (Ai)

U(Z) =
n∑

i=1

( sup
ω∈Ai

f(ω))P (Ai)

As f is bounded and P is a probability, these are real numbers.
The usual inequalities hold between the upper and lower sums of partitions Z1 ≤ Z2 ∈ Z,

because each set in Z1 is a union of sets in Z2:

( inf
ω∈Ω

f(ω)) ≤ L(Z1) ≤ L(Z2) ≤ U(Z2) ≤ U(Z1) ≤ (sup
ω∈Ω

f(ω))

In particular, for any two partitions Z1, Z2, it can easily be shown that L(Z1) ≤ U(Z2) by
considering a common refinement, whose lower and upper sum lie between these. Therefore,

∫

−
fdP = sup

Z∈Z
L(Z)

−∫
fdP = inf

Z∈Z
U(Z)

are well-defined numbers, because upper sums are bounded below (by any lower sum) and
vice versa lower sums are bounded above.

From the above inequalities it follows that

∫

−
fdP ≤

−∫
fdP (6.1)

Definition 6.1.1. A bounded function f : Ω −→ R is integrable, or more precisely integrable
under P , if the lower and the upper integral coincide, that is, if equality holds in (6.1). In
that case, the integral of f with respect to P is defined to be

∫
fdP =

∫

−
fdP =

−∫
fdP.

Having defined the integral, we list some (mostly well-known) properties of the integral
that are needed later.

For simple functions, the integral is the usual sum known from the Lebesgue integral
definition.

Lemma 6.1.2. For a simple function f : Ω −→ R with the representation f =
∑n

i=1 ci1Ai ,
the integral

∫
fdP is equal to

∑n
i=1 ciP (Ai).

Proof. Consider the partition {A1, . . . , An}, then on each Ai the function f is constant,
with value ci, wherefore infω∈Ai f(ω) = supω∈Ai

f(ω) and hence the lower and upper sum
coincide. Both are equal to

∑n
i=1 ciP (Ai), which is also the value of upper and lower integral,

since further refinement cannot change the values.
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In particular, the integral of a constant function with respect to a finitely additive prob-
ability is the constant itself, because a constant function is a simple function with only one
element in the partition, the set Ω itself, and P (Ω) = 1.

Example 6.1.3. A special case of this integral is the Darboux integral which is equivalent
to the very well-known Riemann integral. This means, a function is Darboux integrable if
and only if it is Riemann integrable, and the integrals, if they exists, coincide. Let Ω = [0, 1]
in R, with A = J [0, 1], the algebra generated by the intervals, and let the finitely additive
probability P be the Lebesgue measure restricted to A, weighting an interval with its length.1

The above construction for this case produces the Darboux integral of a bounded function.
For the Riemann integral, the construction involves the function value at a given point in
each interval instead of supremum and infimum. Due to the equivalence, however, some
authors define the Riemann integral using the construction seen here right away.

Riemann-integrable functions are well studied, some characterisations are:

• The set of discontinuity points of f is of Lebesgue measure zero.

• Šikić [1991] shows that a function f : [a, b] −→ R is Riemann integrable if an only if
there are F-simple functions which converge uniformly to f , where F is the algebra

F = {A ⊆ [a, b]|A is Lebesgue measurable and Λ(Fr(A)) = 0}
where Λ denotes the Lebesgue measure and Fr(A) is the frontier of the set A, that is,
the intersection of the closures of A and its complement, Fr(A) = Cl(A) ∩ Cl(Ac).

In the general case, one cannot give a characterisation in terms of, for example, continuity
because one does not necessarily have a topology on Ω. The set Ω is merely equipped with
an algebra. While in measure theory the integral with respect to a σ-additive probability is
by construction well-defined for all measurable functions, and non-measurable functions are
not taken into consideration, here, the question which bounded functions are integrable is
not unimportant. The following section provides some answers.

Integrability conditions

The definition of integrability with respect to a finitely additive probability is not very
insightful. Two main questions are: given an (Ω,A) and a fixed P , which bounded functions
f : Ω −→ R are integrable under P? Which functions are integrable under any P?

Lemma 6.1.4. Given (Ω,A, P ) and a bounded function f : Ω −→ R, the following are
equivalent:

(i) f is integrable under P (in the sense of Definition 6.1.1).

(ii) For every ε > 0, there exists a finite partition {A0, A1, . . . , An} of Ω in A, such that
P (A0) < ε and for i = 1, . . . , n one has |f(ω) − f(ω′)| < ε for every ω, ω′ ∈ Ai. For
further reference, a partition of this kind will be called an ε-partition for f .

(iii) There exists a sequence of simple functions fn : Ω −→ R which converges to f in the
following sense: for every ε > 0

lim
n→∞

P ∗({ω ∈ Ω : |fn(ω)− f(ω)| > ε}) = 0.

where the set function P ∗ : P(Ω) −→ [0, 1] is defined by

P ∗(B) = inf{P (A)|B ⊆ A,A ∈ A}
and called the outer probability induced by P . This notion of convergence can be found
as hazy convergence in the literature. It will be referred to as hazy convergence under
P when the finitely additive probability is not fixed in the context.

1We use the unit interval instead of an arbitrary interval [a, b] in R because we have introduced the
integral only for finitely additive probabilities, and we thus avoid having to renorm the Lebesgue measure.
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Proof. We show the equivalence of condition (ii) with both other conditions.2

(i)⇒(ii) If f is integrable with respect to P , for any ε > 0 one finds a partition Z such that
∫

fdP − L(Z) < ε2/2 and U(Z)−
∫

fdP < ε2/2 ⇒ U(Z)− L(Z) < 2ε2/2 = ε2, but

U(Z)− L(Z) =
n∑

i=1

( sup
ω∈Ai

f(ω))P (Ai)−
n∑

i=1

( inf
ω∈Ai

f(ω))P (Ai)

=
n∑

i=1

( sup
ω∈Ai

f(ω)− inf
ω∈Ai

f(ω))P (Ai).

This sum is bounded by ε2. Let us divide its summands into two groups. By renumbering if
necessary, let A1, . . . Ak be the sets in the partition for which supω∈Ai

f(ω)−infω∈Ai f(ω) < ε
holds. Then |f(ω)− f(ω′)| < ε for every ω, ω′ ∈ Ai for i = 1, . . . , k.
Take all those Aj , j = k + 1, . . . , n for which this was not the case, then

ε ·
n∑

j=k+1

P (Aj) ≤
n∑

j=k+1

( sup
ω∈Aj

f(ω)− inf
ω∈Aj

f(ω))P (Aj) < ε2

where the last inequality holds because all summands in the original sum are non-negative,
wherefore the sum of a part of them cannot exceed the whole sum. Thus,

∑n
j=k+1 P (Aj) =

P (
⋃n

j=k+1 Aj) < ε. Set A0 =
⋃n

j=k+1 Aj , then the partition that we looked for is given by
{A0, A1, . . . , Ak}.

(ii)⇒(i) Let ε > 0. Given condition (ii), one can show that

−∫
fdP −

∫

−
fdP < ε.

Since ε is arbitrarily small, this shows the integrability of f with respect to P . Let M =
supω∈Ω |f(ω)| and choose a finite partition Z = {A0, A1, . . . , An} with P (A0) < ε/4M and
|f(ω)− f(ω′)| < ε/2 for every ω, ω′ ∈ Ai (which exists by (ii)). Then,

−∫
fdP −

∫

−
fdP ≤ U(Z)− L(Z) =

n∑

i=0

( sup
ω∈Ai

f(ω)− inf
ω∈Ai

f(ω))P (Ai)

≤ 2M · P (A0) + ε/2
n∑

i=1

P (Ai) < ε/2 + ε/2 = ε.

(ii)⇒(iii) Again, consider condition (ii) satisfied. For each n, pick an ε-partition for
ε = 1/n and denote it by Zn = {An

0 , . . . , An
kn
}. Then, P (An

0 ) < 1/n and for all i = 1, . . . , kn,
one has |f(ω)− f(ω′)| < 1/n for all ω, ω′ ∈ An

i . Fix an ωi in each An
i and define the simple

function fn by

fn = 0 · 1An
0

+
kn∑

i=1

f(ωi)1An
i
.

These functions converge hazily under P to f . To see this, choose ε > 0 and m ≥ 1 such
that 1/m < ε. For n ≥ m, by construction, fn and f differ less than 1/n < 1/m on all sets

2Most of this proof is adapted from [Bhaskara Rao and Bhaskara Rao, 1983, Theorems 4.4.7 and 4.5.7].
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of the partition used to construct fn, except on the set An
0 . The set of ω for which fn and

f differ more than ε is thus contained in An
0 .

P ∗({ω ∈ Ω : |fn(ω)− f(ω)| > ε}) ≤ P ∗(An
0 ) = P (An

0 ) < 1/n < ε

and therefore, condition (iii) holds.
(iii)⇒(ii) If condition (iii) is satisfied, there is a simple function fn, say fn =

∑m
i=1 ci1Ai ,

such that P ∗({ω ∈ Ω : |fn(ω)− f(ω)| > ε/2}) < ε′ < ε. Consider the subset of Ω on which
f and fn differ more than ε/2, and denote it B = {ω ∈ Ω : |fn(ω) − f(ω)| > ε/2}. By the
choice of fn, we know that P ∗(B) < ε′. Since P ∗(B) = inf{P (A)|B ⊆ A,A ∈ A} < ε′,
there is a Z0 ∈ A with B ⊆ Z0 and P (Z0) < ε. For the other sets of the partition, we
define Zi = Ai ∩ Bc. On each of these sets, we have |fn(ω) − f(ω)| ≤ ε/2 as well as
|fn(ω′)− f(ω′)| ≤ ε/2. Since fn(ω) = ci = fn(ω′), it follows that for all i = 1 . . . m,

|f(ω)− f(ω′)| ≤ |f(ω)− ci|+ |ci − f(ω′)| ≤ |f(ω)− fn(ω)|+ |fn(ω′)− f(ω′)|
≤ ε/2 + ε/2 = ε for all ω, ω′ ∈ Zi.

Therefore, (ii) is satisfied.

This can be used to show a result “symmetric” to Lemma 6.1.2. Like for simple func-
tions (and any finitely additive probability) the integral has a special form for concentrated
probabilities and any integrable function.

Lemma 6.1.5. Let P on (Ω,A) be the probability concentrated in a point ω∗ ∈ Ω, that is
P (A) = 1A(ω∗). Then, if f is integrable under P , the integral is equal to the function value
at that point:

∫
fdP = f(ω∗).

Proof. If f is integrable under P , we have by Lemma 6.1.4 for each ε > 0 an ε-partition for
f . That means, the function changes less than ε on all sets in the partition, except possibly
on a set to which P gives less than ε probability. Considering the special form of P here,
in any finite partition {A0, A1, . . . , An} there will be one set Aj with P (Aj) = 1, namely
the Aj which contains ω∗. Thus the constraint translates to: for any ε, there is, in A, a
set Aε 3 ω∗ such that |f(ω1) − f(ω2)| < ε for any ω1, ω2 ∈ Aε. Since ω∗ ∈ Aε, one has
|f(ω)− f(ω∗)| < ε for any ω ∈ Aε. Then, letting Zε be the partition {Aε, A

c
ε}, we have

L(Zε) = ( inf
ω∈Aε

f(ω)) · 1 + ( inf
ω∈Ac

ε

f(ω)) · 0 ≥ f(ω∗)− ε, and similarly,

U(Zε) = ( sup
ω∈Aε

f(ω)) ≤ f(ω∗) + ε

As this holds for any ε > 0,

∫

−
fdP =

−∫
fdP = f(ω∗) =

∫
fd(1(.)(ω∗)) follows.

Also, Lemma 6.1.4 yields integrability for all bounded functions, when the algebra used
is the powerset of the underlying set:

Lemma 6.1.6. Consider a finitely additive probability defined on (Ω,P(Ω)). Any bounded
function f is integrable under P . Since this holds for all P , any bounded function is integrable
under any P on (Ω,P(Ω)).

Proof. One can show condition (ii) of Lemma 6.1.4 using the inverse image of the function.
Since f is bounded, one finds an M such that f(Ω) ⊆ [−M, M ]. For any ε > 0 we need
to construct an ε-partition. Choose an N such that 1/N < ε and partition [−M, M ] into
pieces of length 1/N . With 2M · N parts, this partition is finite; denote it {Z1, . . . , ZK}.
Consider the inverse images of the pieces, f−1(Zi) ∈ P(Ω) for i = 1, . . . , K. These are the
desired ε-partition: on each f−1(Zi) the function differs less than ε for any two points by
construction.
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Some useful properties of the integral are the following.

Lemma 6.1.7. Let f : Ω −→ R and g : Ω −→ R be bounded integrable functions.

(i) Given a continuous function h : R −→ R, the function h ◦ f is integrable.

(ii) The function f + g is integrable, and
∫

f + g dP =
∫

f dP +
∫

g dP .

(iii) Given α ∈ R, the function α · f is integrable and
∫

αfdP = α
∫

f dP .

(iv) The function |f | is integrable, and
∣∣∫ fdP

∣∣ ≤ ∫ |f |dP .

Proof. Let us make the function explicit in the notation of lower and upper sums, writing
L(Z, f) for the lower sum L(Z) as defined above.

(i) Since f is bounded, we can assume f : Ω −→ [−m,m]. On this compact interval, the
continuous function h is uniformly continuous. That means, for any ε > 0 there is
a δ ≤ ε such that for all s, t ∈ [−m,m] with |s − t| < δ, one has |h(s) − h(t)| < ε.
Fix ε and a corresponding δ > 0. Consider a δ-partition for f as in Lemma 6.1.4(ii),
that is, a partition {A0, A1, . . . , An} with P (A0) < δ and |f(ω) − f(ω′)| < δ for all
ω, ω′ ∈ Ai for i = 1, . . . , n. Then one can conclude from uniform continuity that
|h ◦ f(ω)− h ◦ f(ω′)| < ε for all ω, ω′ ∈ Ai for i = 1, . . . , n and P (A0) < δ < ε. Thus,
we have found an ε-partition for the function h ◦ f , which means that this function is
integrable, because ε was arbitrary.

(ii) For the lower sums of the function f + g one has

L(Z, f + g) =
n∑

i=1

( inf
ω∈Ai

(f + g)(ω))P (Ai)

≥
n∑

i=1

( inf
ω∈Ai

f(ω))P (Ai) +
n∑

i=1

( inf
ω∈Ai

g(ω))P (Ai) = L(Z, f) + L(Z, g).

Similarly, U(Z, f + g) ≤ U(Z, f) + U(Z, g) for all partitions Z. Therefore,

∫

−
fdP +

∫

−
gdP ≤ sup

Z∈Z
L(Z, f + g) ≤ inf

Z∈Z
U(Z, f + g) ≤

−∫
fdP +

−∫
gdP.

Since f and g are integrable, the left and right side have the same values. Thus,

∫

−
f + g dP =

−∫
f + g dP

and the claim follows.

(iii) This is trivial, as α ∈ R can be factored out in any single formula in the construction,
for negative α switching the upper and lower parts.

(iv) The function |f | is integrable due to (i) because the absolute value function is contin-
uous. Further,

∣∣∫ fdP
∣∣ ≤ ∫ |f |dP follows from the fact that

∣∣∣∣∣
n∑

i=1

( inf
ω∈Ai

(ω))P (Ai)

∣∣∣∣∣ ≤
n∑

i=1

( inf
ω∈Ai

|f(ω)|)P (Ai)

and similarly with the supremum, by the triangle equality, for all sums involved in the
integral construction.



6.1. INTEGRATION 131

While for the Lebesgue intergal the pointwise limit of integrable functions is integrable
because the pointwise limit of measurable functions is measurable, here this is not true in
general. Examples for the Riemann integral, which can be considered a special case of our
integral (via equivalence with the Darboux integral which is a special case, see Example
6.1.3) abound in the literature. The following one is taken from Gordon [2000].

Example 6.1.8. Consider a listing (rk)k∈N of the rational numbers in [0, 1]. Define the
functions

fn(x) =
{

1 if x ∈ {r1, . . . , rn}
0 else and f(x) =

{
1 if x ∈ Q ∩ [0, 1]
0 else

Then, fn → f and all fn are Riemann-integrable with an integral of 0, but f is the standard
example of a function which is not Riemann-integrable. Its upper and lower sums are 1 and
0 respectively for any partition considered in the definition of the Riemann-integral.

However, uniform convergence preserves integrability. We denote uniform convergence
by the usual double arrows.

Lemma 6.1.9. If a sequence of integrable functions fn : Ω −→ R converges uniformly to a
function f : Ω −→ R, denoted fn ⇒ f , then f is integrable and

∫
fdP = limn→∞

∫
fndP .

Proof. Fix ε > 0. Uniform convergence of the fn to f implies that there is an N ∈ N such
that for all n ≥ N and all ω ∈ Ω, fn(ω)− ε ≤ f(ω) ≤ fn(ω)+ ε. For a partition Z of Ω in A
(where m denotes the number of the sets in the partition, because n is used as the function
index),

L(Z, f) =
m∑

i=1

( inf
ω∈Ai

f(ω))P (Ai) ≥
m∑

i=1

( inf
ω∈Ai

fn(ω)− ε)P (Ai) = L(Z, fn)− ε and

U(Z, f) =
m∑

i=1

( sup
ω∈Ai

f(ω))P (Ai) ≤
m∑

i=1

( inf
ω∈Ai

fn(ω) + ε)P (Ai) = U(Z, fn) + ε.

Therefore,
∫

−
fndP − ε ≤ sup

Z∈Z
L(Z, f) ≤ inf

Z∈Z
U(Z, f) ≤

−∫
fndP + ε.

⇒
∫

−
fndP − ε ≤

∫

−
fdP ≤

−∫
fdP ≤

−∫
fndP + ε

Since for all ε > 0, there exists an N such that this holds for all n ≥ N , one concludes that

∫

−
fdP =

−∫
fdP and lim

n→∞

∫
fndP =

∫
fdP.

While the above results are standard in finitely additive integration, it is not very usual
to consider many finitely additive probabilities on the same (Ω,A) at the same time. This
is however necessary to construct a monad of finitely additive probabilities. We therefore
provide the following result inspired at Lemma 6.1.4.

Lemma 6.1.10. If a function f : Ω −→ [0, 1] is integrable under all P on (Ω,A), then

(i) for every ε > 0, there exists a finite partition {A1, . . . , An} of Ω in A, such that for
i = 1, . . . , n one has |f(ω)− f(ω′)| < ε for every ω, ω′ ∈ Ai.

(ii) there is a sequence of simple functions fn : Ω −→ [0, 1] that converges uniformly to f .
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Proof.

(i) As integrability of a function with respect to a finitely additive probability P is equiv-
alent to the existence of an ε-partition for each ε > 0, integrability with respect to all
finitely additive probabilities implies that for a given ε > 0 one finds an ε-partition for
any P . Choose an arbitrary P and consider an ε-partition, then one has

{A0, A1, . . . , An} such that for i = 1, . . . , n, |f(ω)− f(ω′)| < ε for all ω, ω′ ∈ Ai

Consider now any P̃ with the property that P̃ (A0) = 1. An ε-partition for this
P̃ partitions A0 further into sets B1, . . . , Bm with |f(ω) − f(ω′)| < ε for all ω, ω′ ∈
Bi, i = 1, . . . , m. The partition of Ω given by {A1, . . . , An, B1, . . . , Bm} is of the desired
form.

(ii) A uniformly converging sequence can be constructed like the hazily converging se-
quence was constructed for Lemma 6.1.4. For each n consider a partition of the just
established form for ε = 1/n, denote it by {Z1, . . . , Zkn

}, choose an ωi in each Zi and
let

fn =
kn∑

i=1

f(ωi)1Zi .

Then, for each ε = 1/M , there exists an N (in fact, any N > M is fine) such that for
all n > N , for all ω ∈ Ω:

|fn(ω)− f(ω)| =
∣∣∣∣∣

kn∑

i=1

f(ωi)1Zi − f(ω)

∣∣∣∣∣ = |f(ωi∗)− f(ω)| for the i∗ with ω ∈ Zi∗

< 1/n < 1/N < 1/M = ε.

From this Lemma follows

Corollary 6.1.11. Since any bounded function f : Ω −→ R is integrable under all P on
(Ω,P(Ω)), there is a sequence of P(Ω)-simple functions that converges uniformly to f .

While possibly unintuitive this can be explained from the fact that P(Ω)-simple functions
need not look very simple.

6.2 Monad: finitely additive probabilities on powersets

The simplest monad of finitely additive probabilities is the one where we assume all finitely
additive probabilities over a set to be defined on the whole powerset. This approach is found
in the literature, the example of Dubins and Savage [1965] who use this assumption to avoid
“tedious technical measurability difficulties” [p. 8] was given in Section 4.5.3. We define our
monad on the category Fun of sets and functions.

6.2.1 The functor

We denote the finitely additive probability endofunctor on the category Fun by F . It
associates to a set all finitely additive probabilities defined on its powerset. A task that will
occur frequently is that of showing the equality of two finitely additive probabilities. This
means showing the equality of two functions. Throughout the chapter, this will be done by
proving equality for an arbitrary (and thus any) element in the domain of definition, that
is, a set in the powerset or (later) in the algebra under consideration.
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Notation 6.2.1. In the following, the notation, as far as the use of brackets is concerned,
will be a hybrid between the standards in Category Theory which does not use brackets
for function application and Probability Theory, which does. The probability of a set A
is denoted by P (A), and simple function application by something like f(ω). In order
to avoid too many brackets hindering legibility, the application of functors and natural
transformations will be denoted without brackets. This notation is introduced at first use.

Objects For an object Ω of the category Fun, the object FΩ is the set

FΩ = {P |P is a finitely additive probability on (Ω,P(Ω))}.

We write FΩ without brackets, but also without the space that can be used to denote functor
application, to avoid notations like µF Ω later, where Ω does not seem to belong to µ and F .
Since all functors in this chapter are denoted by single capital letters of the Latin alphabet,
and objects they are applied to are denoted by Greek letters or are pairs (Ω,A) etc., this
should not cause confusion.

Arrows Given any function f : Ω −→ Ω′, one can map a finitely additive probability on
the powerset of Ω to one on the powerset of Ω′ by the standard procedure giving the induced
measure, see Definition 3.2.4. Measurability is not an issue here, because the inverse image
of any set in Ω′ is an element of the powerset of Ω.

Thus, for P in FΩ and any set A′ ⊆ Ω′,

Ff P (A′) = P (f−1(A′)).

Here, we use the space to denote the application of F to f and that of Ff to P . Function
application thus denoted associates to the left, that is FfP is as mentioned the lifted function
Ff applied to P . The term without brackets is one finitely additive probability which is then
applied to A. With brackets, ((Ff)(P ))(A) would clutter more complicated formulae later.
In cases where the finitely additive probability that Ff is applied to consists of several
symbols, as for example 1(.)(ω), brackets around it will be used of course: for example,
Ff (1(.)(ω)).

To show that F is a functor, three conditions have to be checked.

Lemma 6.2.2.

(i) Ff P ∈ FΩ′, that is, the definition really yields a finitely additive probability on
(Ω′, P(Ω′)),

(ii) F preserves identities, F idΩ = idFΩ, and

(iii) F preserves composition: for f : Ω −→ Ω′ and g : Ω′ −→ Ω′′, F (g ◦ f) = F g ◦ Ff .

Proof.

(i) One needs to check the axioms A1 and A2 on (Ω′, P(Ω′)). Both are satisfied because
the inverse image is well-behaved.

Ff P (Ω′) = P (f−1(Ω′)) = P (Ω) = 1 ⇒ A1.

Take two disjoint sets A′ and B′ in P(Ω′), then

Ff P (A′ ∪B′) = P (f−1(A′ ∪B′)) = P (f−1(A′) ∪ f−1(B′))

= P (f−1(A′)) + P (f−1(B′))
= Ff P (A′) + Ff P (B′) ⇒ A2.
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(ii) is easy: the inverse image of the identity function leaves subsets of Ω unchanged.
Therefore, for any P in FΩ and all A ⊆ Ω,

F idΩ P (A) = P (id−1
Ω (A)) = P (A) = (idFΩ(P ))(A)

because the identity on the right hand side is the function on FΩ which maps each P
to itself.

(iii) Take two functions f : Ω −→ Ω′ and g : Ω′ −→ Ω′′. Then, F (g ◦ f) is a function from
FΩ to FΩ′′, thus for a P ∈ FΩ, the finitely additive probability F (g ◦ f)P is defined
on P(Ω′′). For an A′′ ∈ P(Ω′′),

F (g ◦ f)P (A′′) = P
(
(g ◦ f)−1(A′′)

)
= P

(
f−1(g−1(A′′))

)

= Ff P︸ ︷︷ ︸
∈FΩ′

(
g−1(A′′)

)
= F g

(
Ff P )(A′′)

= (F g ◦ Ff)P (A′′).

All in all, F is an endofunctor on Fun.

6.2.2 The natural transformations

Together with the endofunctor F , two natural transformations η : Id −→ F and µ : F 2 −→ F
are required to construct a monad.

Definition 6.2.3. The transformation η associates to a set Ω the function ηΩ : Ω −→ FΩ
defined by

ηΩω(A) = 1A(ω) =
{

1 if ω ∈ A
0 if ω ∈ Ac for any A ⊆ Ω.

Here, both brackets and spaces for the application of the natural transformation are left
out. Due to the index that η has whenever it is applied, confusion should not arise between
the object to which the transformation’s arrow belongs, and the element of that object,
which this arrow is then applied to.

Again, the term without brackets is a finitely additive probability, which is applied to
the set A in the brackets, then. Each ηΩω really is a finitely additive probability on P(Ω),
because ηΩω(Ω) = 1 since all ω ∈ Ω are in Ω, and it is additive: for two disjoint sets, ω can
be in at most one of them at the same time. To denote the finitely additive probability ηΩω
explicitly as a function on P(Ω), we write 1(.)(ω), that is, 1(.)(ω) = ηΩω.

Next, one has to show that this transformation is natural, that is, Ff ◦ ηΩ = ηΩ′ ◦ f for
f : Ω −→ Ω′. Thus, for any ω ∈ Ω, we have to show

(Ff ◦ ηΩ)(ω) = (ηΩ′ ◦ f)(ω) that is,
Ff (ηΩω) = ηΩ′(f(ω)).

Both sides in this equation yield a finitely additive probability on (Ω′,P(Ω′)), whose equality
is shown by application to A′ ∈ P(Ω′). Starting on the left hand side, one gets

Ff (ηΩω)(A′) = Ff (1(.)(ω))(A′) =
(
1(.)(ω)

)
(f−1(A′))

=
{

1 if ω ∈ f−1(A′)
0 if ω ∈ f−1((A′)c) =

{
1 if f(ω) ∈ A′

0 if f(ω) ∈ (A′)c (6.2)

= 1A′(f(ω))
= ηΩ′(f(ω))(A′).

The naturality of this transformation is thus proven.
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To define the transformation µ, first, we need the concept of evaluation maps3. For a
fixed set A ⊆ Ω, the evaluation map

evA : FΩ −→ [0, 1] is defined by
evA(P ) = P (A).

When applying the functor twice, starting with a set Ω, one obtains the set of finitely
additive probabilities defined on the powerset of FΩ. These finitely additive probabilities
over finitely additive probabilities are going to be denoted by Q to avoid confusion with the
P on (Ω, P(Ω)). The idea behind the transformation µ is to “reduce such a Q to a P on
(Ω, P(Ω)) by, for each A ⊆ Ω, weigthing the results of all P (A) with the probability that Q
gives to the P ’s”.

Definition 6.2.4. For a set Ω, the function µΩ : F 2Ω −→ FΩ (as for the functor leaving
out both brackets and spaces in the notation) is defined for each A ∈ P(Ω) as

µΩQ(A) =
∫

evAdQ. (6.3)

The integral, defined as in Section 6.1, is well-defined for each A ⊆ Ω and each Q that is
a finitely additive probability on (FΩ, P(FΩ)) due to Lemma 6.1.6.

Also, the function on P(Ω) defined by (6.3) really is a finitely additive probability on
(Ω, P(Ω)). For all P ∈ FΩ, one has evΩ(P ) = P (Ω) = 1. This implies that the evaluation
map for Ω is the constant function with the value 1. Therefore,

µΩQ(Ω) =
∫

evΩdQ =
∫

1dQ = 1 because Q is a finitely additive probability. ⇒ A1

Taking two disjoint sets A and B in P(Ω), observe that for each P ∈ FΩ one has P (A∪B) =
P (A) + P (B), wherefore evA∪B(P ) = evA(P ) + evB(P ). Linearity of the integral provides

µΩQ(A ∪B) =
∫

evA∪BdQ =
∫

(evA + evB)dQ =
∫

evAdQ +
∫

evBdQ

= µΩQ(A) + µΩQ(B) ⇒ A2.

Hence, axioms A1 and A2 are satisfied and µΩQ is an element of FΩ for each Q ∈ F 2Ω.

Having found a transformation of the right type, its naturality has to be proven as a next
step. For f : Ω −→ Ω′, the transformation needs to satisfy Ff ◦ µΩ = µΩ′ ◦ F 2f . First, we
need the following lemma, based on a result shown and used by Giry [1981] for the case of
σ-additive probabilities. For later reuse, it is stated in a more general version than needed
in this section, where powersets instead of the general algebras A,A′ would suffice.

Lemma 6.2.5. Given a finitely additive probability P on (Ω,A), an arrow f : (Ω,A) −→
(Ω′,A′) and a function g′ : Ω′ −→ R with a sequence of simple functions g′n ⇒ g′ that
converges uniformly to it,

∫
g′d(Ff P ) =

∫
g′ ◦ fdP.

Proof. First of all, the integral
∫

g′d(Ff P ) exists and is equal to the limit of the inte-
grals of the simple functions due to Lemma 6.1.9. Consider one of the g′n, and assume its

3The notation ev does not have anything to do with the evolutions in the formal framework or vulnera-
bility, neither is this an evaluation in the sense of the harm measurement there.
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representation is
∑n

i=1 ci · 1A′i for some real numbers ci and sets A′i ∈ A′.
∫

g′nd(Ff P ) =
∫ n∑

i=1

ci · 1A′id(Ff P ) =
n∑

i=1

ci ·
∫
1Ai

d(Ff P ) =
n∑

i=1

ci · Ff P (A′i)

=
n∑

i=1

ci · P (f−1(A′i)) =
n∑

i=1

ci · P ({ω ∈ Ω|f(ω) ∈ A′i}) =
n∑

i=1

ci ·
∫
1A′i(f(.))dP

=
∫ n∑

i=1

ci1A′i(f(.))dP =
∫

g′n(f(.))dP =
∫

g′n ◦ fdP.

This can be used (see (∗)) to show the equality of the integrals with g′ in place of g′n.
∫

g′d(Ff P ) = lim
n→∞

∫
g′nd(Ff P )

(∗)
= lim

n→∞

∫
g′n ◦ fdP =

∫
g′ ◦ fdP

where the last equality follows from the uniform convergence (g′n ◦ f) ⇒ g′ ◦ f (justified
next) and again Lemma 6.1.9 which allows to switch integral and uniform limits. The last
uniform convergence is easy to show: given an ε > 0, for all ω ∈ Ω

|(g′n ◦ f)(ω)− (g′ ◦ f)(ω)| = |g′n(f(ω))− g′(f(ω))| < ε for all n ≥ N for some N

due to the uniform convergence g′n ⇒ g′.

For naturality of µ, the equality Ff ◦ µΩ = µΩ′ ◦ F 2f has to hold for each Q ∈ F 2Ω.
That is,

(Ff ◦ µΩ)(Q) = (µΩ′ ◦ F 2f)(Q) or

Ff(µΩQ) = µΩ′(F 2f Q)

needs to be shown. Since both sides produce a finitely additive probability on (Ω′, P(Ω′)),
we need to show equality for application to A′ ⊆ Ω′.

µΩQ is a finitely additive probability on (Ω, P(Ω)), therefore

Ff (µΩQ)(A′) = µΩQ(f−1(A′)) =
∫

evf−1(A′)dQ

On the righthand side, we have F 2f Q which is a finitely additive probability on (FΩ′, P(FΩ′))
to which the respective µΩ′ is applied.

µΩ′(F 2f Q)(A′) =
∫

evA′d(F 2f Q).

Since F 2f is F (Ff), we can apply Lemma 6.2.5 to
∫

evA′d(F (Ff)Q), because the existence
of a sequence of simple functions converging uniformly to evA′ is guaranteed by Corollary
6.1.11. One obtains

µΩ′(F 2f Q)(A′) =
∫

evA′d(F (Ff) Q) =
∫

evA′ ◦ Ff dQ =
∫

evf−1(A′)dQ,

because the integrand in the second last integral is the function

P
Ff7−→ Ff P

evA′7−→ Ff P (A′) = P (f−1(A′))

that maps P to P (f−1(A′)) as does the function evf−1(A′). So, the equality of the two sides
and thus the naturality of µ is shown. Now that all the ingredients to a monad are given,
the interaction between the transformations has to be checked. This is done in the following
two sections.
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6.2.3 Unitarity of η

We have to show that µ◦ηF = idF = µ◦Fη, that is, for a set Ω, both µΩ◦ηFΩ and µΩ◦FηΩ,
when applied to a P ∈ FΩ, have to return exactly this P . Application to a finitely additive
probability P yields

(µΩ ◦ ηFΩ)P = µΩ(ηFΩP ) on the left, and
(µΩ ◦ F ηΩ)P = µΩ(F ηΩ P ) on the right side.

Equality is checked by application to A ⊆ Ω.
Starting on the left hand side, the arrow of the transformation η that is associated with

the object FΩ is a function from FΩ to F 2Ω. It is given by ηFΩP (B) = 1B(P ) for sets
B ∈ P(FΩ).

µΩ(ηFΩP )(A) = µΩ(1(.)(P ))(A) =
∫

evAd(1(.)(P )) = evA(P ) = P (A)

The second last equality here follows from the fact that evA is integrable under any Q on
(FΩ, P(FΩ)) by Lemma 6.1.6 and that then we can use Lemma 6.1.5.

On the right hand side, we have the finitely additive probability F ηΩ P defined on P(FΩ)
by F ηΩ P (B) = P (η−1

Ω (B)).

µΩ(F ηΩ P )(A) =
∫

evAd(F ηΩP ) =
∫

evA ◦ ηΩdP

where Lemma 6.2.5 was used to give the last equality and was allowed to be used because
a sequence of simple functions that converge uniformly to evA exists. Now, the integrand
evA ◦ ηΩ, when applied to an ω, evaluates the finitely additive probability 1(.)(ω) at A ⊆ Ω,
which means it is the function ω 7−→ 1A(ω). Since

∫
1AdP = P (A) because 1A is a (very)

simple function, we conclude that

µΩ(F ηΩ P )(A) = P (A) as well.

Hence,

µΩ(ηFΩP )(A) = P (A) = idFΩ(P )(A) = µΩ(F ηΩ P )(A)

for all P ∈ FΩ and all A ∈ P(Ω), so that the first monad property is proven.

6.2.4 Associativity of µ

Here we have to show µ◦µF = µ◦F µ, which, for an object Ω becomes µΩ◦µFΩ = µΩ◦F µΩ.
Both sides, when applied to a finitely additive probability R in F 3Ω must yield the same
P ∈ FΩ, a finitely additive probability on (Ω, P(Ω)).

(µΩ ◦ µFΩ)(R) = (µΩ ◦ F µΩ)(R) that is,
µΩ(µFΩR) = µΩ(F µΩ R)

has to be shown. Again, we apply both sides to an A ⊆ Ω. On the left,

µΩ(µFΩR)(A) =
∫

evAd(µFΩR).

Consider a sequence of simple functions fn ⇒ evA, which exists due to Corollary 6.1.11. As
µFΩR is a finitely additive probability on FΩ,

∫
evAd(µFΩR) = lim

n→∞

∫
fnd(µFΩR)
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by Lemma 6.1.9. Taking a closer look at
∫

fnd(µFΩR) for a fixed n, with fn =
∑m

i=1 ci ·1Bi ,
one sees that

∫
fnd(µFΩR) =

m∑

i=1

ci · µFΩR(Bi) =
m∑

i=1

ci ·
∫

evBi
dR =

∫ ( m∑

i=1

ci · evBi

)
dR (6.4)

where we have used the definition of the integral, the definition of µ and the linearity of the
integral.

To proceed, we need another

Lemma 6.2.6. For fn ⇒ evA, define a sequence of functions gn : F 2Ω −→ [0, 1] by

gn(Q) =
∫

fndQ.

Let g : F 2Ω −→ [0, 1] be given by g(Q) =
∫

evAdQ. Then, gn ⇒ g on F 2Ω.

Proof. Given uniform convergence of fn ⇒ evA, we can fix ε > 0 and N such that for all
n ≥ N and all P ∈ FΩ one has |fn(P )− evA(P )| < ε. Then, for n ≥ N also

|gn(Q)− g(Q)| =
∣∣∣∣
∫

fndQ−
∫

evAdQ

∣∣∣∣ =
∣∣∣∣
∫

fn − evAdQ

∣∣∣∣ ≤
∫
|fn − evA|dQ

≤ sup
P∈FΩ

|fn(P )− evA(P )| < ε,

where the first ≤-step uses Lemma 6.1.7 (iv) and the second one is correct because Q is a
probability and thus has a mass of 1 to distribute. Since the bound holds for all Q ∈ F 2Ω,
this shows the uniform convergence gn ⇒ g.

With the notation from this lemma, we can rewrite the last integrand in (6.4), the
function

∑m
i=1 cievBi on F 2Ω. Applied to a Q, it yields

m∑

i=1

ci · evBi(Q) =
m∑

i=1

ci ·Q(Bi) =
∫

fndQ = gn(Q). (6.5)

Substitute this back into (6.4) to obtain
∫

fnd(µFΩR) =
∫

gndR.

Recalling that

µΩ(µFΩR)(A) = lim
n→∞

∫
fnd(µFΩR)

one obtains

µΩ(µFΩR)(A) = lim
n→∞

∫
gndR

for the left side. By the uniform convergence gn ⇒ g and Lemma 6.1.9, this is equal to∫
gdR which the right side can be reduced to. The right side in the equation, applied to A,

is

µ(FµΩ R)(A) =
∫

evAd(FµΩR) =
∫

evA ◦ µΩdR (6.6)

by an application of Lemma 6.2.5 in the last equality. The last integrand in (6.6) associates
with every Q ∈ F 2Ω the value evA(µΩQ) = µΩQ(A) =

∫
evAdQ = g(Q). Therefore, it is

equal to the function g as defined in Lemma 6.2.6 and

µ(FµΩ R)(A) =
∫

gdR = lim
n→∞

∫
gndR = µΩ ◦ µFΩR(A), q.e.d.

In conclusion, the following theorem is proven:
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Theorem 6.2.7. (F, η, µ) as defined above is a monad on the category Fun.

The underlying idea in proving this may have been hidden between the different steps
and lemmata. It is an adaptation of the procedure of measure theoretic induction. For
simple functions the equalities to be shown are mostly simple manipulations, such as in
formula (6.4). For the general case, these were substituted by a sequence of simple functions
converging uniformly to them, which exists easily on the powerset as the underlying algebra.
Since under uniform convergence limits and integrals may be switched, the results follow
for all functions. The uniformly converging sequences will not be as obviously existent for
general algebras later.

6.3 Giry’s monad of probability measures

This section sketches the monad defined by Giry [1981] and discusses how it relates to the
monad from the previous section.

6.3.1 Sketch of the monad

The underlying category for Giry’s monad is Mes, the category of measurable sets and
measurable functions. Objects in this category are sets equipped with σ-algebras, (Ω,F).
Arrows are measurable functions between these, that is, an arrow f : (Ω,F) −→ (Ω′,F ′) is
a function from Ω to Ω′, such that f−1(A′) ∈ F for all A′ ∈ F ′. Identities are the usual
identity functions (measurable with respect to any σ-algebra on Ω) and composition is func-
tion composition, which preserves measurability. The category properties are thus inherited
immediately from these properties in Fun.

The probability functor, denoted Π, is defined as follows. To a set with a σ-algebra it
associates a set

ΠΩ = {P |P is a probability measure on (Ω,F)} (6.7)

and a σ-algebra, BΩ, defined as the initial σ-algebra (see Definition 3.1.10) of the evaluation
maps. These are here defined on ΠΩ: for A ∈ F ,

evA : ΠΩ −→ [0, 1] is again defined by evA(P ) = P (A).

Now, (evA)A∈F is a family of functions from ΠΩ to the measurable space ([0, 1],B[0, 1]),
where B[0, 1] denotes the Borel-σ-algebra on [0, 1]. The initial σ-algebra is the smallest
σ-algebra on ΠΩ which makes all evaluation maps measureable.

More precisely,

Definition 6.3.1. The probability functor Π associates to a measurable space (Ω,F)

Π(Ω,F) = (ΠΩ,BΩ) where
ΠΩ = {P |P is a σ-additive probability on (Ω,F)} and

BΩ = σ

( ⋃

A∈F
ev−1

A (B[0, 1])

)
.

To a measurable function f : (Ω,F) −→ (Ω′,F ′), it associates the measurable function
Πf : Π(Ω,F) −→ Π(Ω′,F ′) that maps any P ∈ ΠΩ to the induced probability under f :

Πf P (A′) = P (f−1(A′)) for each A′ ∈ F ′. (6.8)
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Further, the natural transformations η and µ are defined by

ηΩω(A) = 1A(ω) for A ∈ F , and

µΩQ(A) =
∫

evAdQ for A ∈ F and Q a probability measure on (ΠΩ,BΩ),

where
∫

is the Lebesgue integral. Giry shows that (Π, η, µ) is a monad and that the arrows
of the Kleisli category of this monad are transition probabilities of a Markov process, that
is, a stochastic process in continuous time with the Markov property: given the present
state the probability for the future evolution does not depend on the past evolution. In
the monadic dynamical system, this generalizes the example of the Markov chain given in
Section 5.1.2.

6.3.2 Π and F

The functors Π and F apply to different categories, Mes and Fun, respectively. While
objects in Fun are sets, an object in Mes has a set, but together with this set there is a
σ-algebra of its subsets. That means, each object in Fun can appear as the set in many
objects in Mes, which differ in the σ-algebra.

Arrows in both categories are functions. An arrow in Fun, f : Ω −→ Ω′ may or may
not be an arrow between two objects (Ω,F) and (Ω′,F ′) in Mes, depending on whether the
function is F-F ′-measurable.

A comparison of the functors Π and F is nonetheless not as far fetched as it may seem,
because the “lacking” σ-algebra of the Fun-objects is provided by F itself. This was of
course already suggested by the similarity in the definitions. The result of applying the
functors to an object in both cases has a set.

FΩ = {P |P is a finitely additive probability on (Ω, P(Ω))}
ΠΩ = {P |P is a σ-additive probability on (Ω,F)}

The powerset is a σ-algebra, so in the case where F is the powerset of Ω, one can conclude
FΩ ⊃ ΠΩ because any σ-additive probability is a finitely additive probability. It was seen
that for uncountable Ω, countably additive (probability) measures can be defined only if
discrete. That is, the choice of F as the powerset for the Giry monad would restrict the
set of measures, wherefore this case is not of much interest. Even if Ω is finite or countably
infinite, the set ΠΩ is very big as can be seen even for a simple example. Consider an Ω with
two elements, say Ω = {a, b}. Probabilities on the powerset of this Ω (with four elements)
are determined by the values they give to a and b and these have to add up to one. The set
of all these is ΠΩ = {P |P (a) = p, P (b) = 1 − p, p ∈ [0, 1]}. This means there are as many
of these P as real numbers in [0, 1]. Therefore, using the powerset as the algebra to go with
the set of probability measures would lead one into the same trouble at the next level of
functor application, that is, Π2. The smaller σ-algebra BΩ on ΠΩ that Giry uses is essential
to her monad construction.

To obtain a monad that better corresponds to the one by Giry, we will in the next
but one section define another monad of finitely additive probabilities which applies to a
supercategory of Mes and “extends” Π. The next section provides the preparations for this.

6.4 Finitely measurable functions

Measurability of functions allows to transfer measures from one measurable space to another
one. Since we want to do this here with finitely additive probabilities, we introduce a similar
concept for functions between sets which are equipped merely with algebras, and call this
finite measurability.
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Definition 6.4.1. Given two sets with algebras, (Ω,A) and (Ω′,A′), a function f : Ω −→ Ω′

is finitely measurable, or more precisely A-A′-finitely measurable, if

f−1(A′) ∈ A for all A′ ∈ A′.

Every measurable function is therefore finitely measurable but not vice versa. When
wanting to emphasize that the stronger condition is meant, we attach the qualifyier “count-
able” to measurability in the usual sense. Unfortunately, finite measurability lacks most of
the nice properties of measurability, which is probably why the concept does not appear in
the literature. As mentioned in Section 3.2, measure theory is carried out only for measur-
able spaces and measurable functions, while algebras and finitely additive functions are not
considered. However, here this concept provides useful in some steps towards a monad of
finitely additive probabilities that can generalize the monad of σ-additive probabilities by
Giry.

Finitely measurable functions from (Ω,A) to ([0, 1],J [0, 1]) are of special interest for
our monad. Simple functions for algebras are defined analogously to Definition 3.2.6. Some
properties of finite measurability are the following.

Lemma 6.4.2. Consider an (Ω,A) and R equipped with J [0, 1], and A-J [0, 1]-finite mea-
surability.

(i) Indicator functions of sets in A are finitely measurable.

(ii) Simple functions are finitely measurable.

(iii) For α ∈ R, the function αf is finitely measurable if f is (assuming α is such that also
αf : Ω −→ [0, 1]).

Proof.

(i) 1−1
A (J) is in A for any J ∈ J [0, 1] because

1−1
A (J) =





∅ if 0 6∈ J, 1 6∈ J
A if 0 6∈ J, 1 ∈ J
Ac if 0 ∈ J, 1 6∈ J
Ω if 0 ∈ J, 1 ∈ J

and since A is an algebra, with A ∈ A all the results are in A.

(ii) A simple function is of the form f =
∑n

i=1 ci1Ai for Ai ∈ A. The inverse image of a
set J ∈ J [0, 1] is

(
n∑

i=1

ci1Ai

)−1

(J) =

{
ω ∈ Ω

∣∣∣∣∣
n∑

i=1

ci1Ai(ω) ∈ J

}
=

⋃

i:ci∈J

Ai.

Being a finite union of sets in A, this is a set in A.

(iii) For α ∈ R such that αf has the range [0, 1], it suffices to show that the inverse image
of an interval is in A, due to Lemma 3.1.8. This is the case, because

(αf)−1([a, b]) = {ω ∈ Ω |αf(ω) ∈ [a, b]} = {ω ∈ Ω |f(ω) ∈ [a/α, b/α]} .

This is in A whenever f is A-J [0, 1]-finitely measurable.

One of the major differences with countable measurability is this:

Lemma 6.4.3. Pointwise limits of finitely measurable functions need not be finitely mea-
surable.
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Proof. Consider Ω = [0, 1) and the algebra generated by the half-open intervals [a, b) with
a, b ∈ [0, 1], a < b, denoted by A. This A is less similar to J [0, 1] than it might seem: It
does not contain points, because of the constraint that a < b and because, with complements
and finite intersections and unions only, one obtains half-open intervals or disjoint unions
of these only. A sequence of finitely measurable functions converging to a function that is
not finitely measurable can be constructed by considering indicator functions of half-open
intervals converging to the indicator function of a point. Let fn : Ω −→ {0, 1} and equip
the target with the algebra {∅, {0}, {1}, {0, 1}}. Let fn = 1[a,a+1/n), then fn is finitely
measurable for each n. For example, the inverse image f−1

n ({1}) = [a, a+1/n) is an element
of A for any n, and similarly for the three other sets. However, the fn converge to the
function f = 1{a}, which is not finitely measurable, because f−1({1}) = {a} 6∈ A.

6.4.1 Connections between integrability and finite measurability

As the Lebesgue integral is by definition applied to measurable functions, the question how
integrability relates to measurability is not an issue. Here, the integral is defined without
any measurability assumptions, but the concept of finite measurability will be used in the
construction of the monad. Therefore, we need some results on how finite measurability
relates to integrability.

For the integral from Section 6.1, A-J [0, 1]-finite measurability guarantees integrability:

Lemma 6.4.4. If f−1(J) ∈ A for all J ∈ J [0, 1], the function f : Ω −→ [0, 1] is integrable
in the sense of Definition 6.1.1.

Proof. We show that condition (ii) of Theorem 6.1.4 is satisfied; integrability follows from
the equivalence in the theorem. Given ε > 0, one can construct a partition of Ω in A with
the desired property via the inverse image mapping. Divide [0, 1] into intervals of length
< ε. Say, [0, 1

N ), [ 1
N , 2

N ), . . . , [N−1
N , 1] for an N > 1

ε . The intervals are elements of J [0, 1],
thus their inverse images f−1

(
[ i−1

N , i
N )

)
=: Ai are in A by assumption. The Ai partition Ω,

because the inverse image is well-behaved. And, by definition, f(ω) ∈ [ i−1
N , i

N ) (respectively
in [N−1

N , 1] if i = N) for all ω ∈ Ai, which means that |f(ω) − f(ω′)| ≤ 1
N < ε for all

ω, ω′ ∈ Ai for all i = 1, . . . , N . Thus (ii) is satisfied.

6.5 Monad: finitely additive probabilities on fixed alge-
bras

Given that any σ-additive probability is a finitely additive probability, the question arises
whether a monad of finitely additive probabilities can be defined on a suitable category
containing Mes in a way that is somehow compatible with Giry’s monad of probability
measures. General algebras instead of the powerset as a default choice have to be allowed as
domains of definition of finitely additive probabilities. Since the definition of (interesting)
σ-additive probabilities on big sets presupposes smaller σ-algebras than the powerset, also
on sets of finitely additive probabilities, the default choice of the powerset as algebra must
be dropped. This section presents a monad of finitely additive probabilities which applies
to a “finite” analogue and at the same time supercategory of the category Mes. Notation
is used as in section 6.2.

6.5.1 The category FMes

As the underlying category, we use a “finite version of” the category of measurable spaces
with measurable functions: an object is a set equipped with an algebra and arrows are finitely
measurable functions. This allows to “map” probabilities from one object to another using
the well-known construction of induced measures. The category is denoted FMes.
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Objects An object in the category FMes is a set equipped with an algebra of subsets. It
is denoted (Ω,A), where Ω is a non-empty set and A is an algebra of subsets of Ω.

Arrows An arrow f : (Ω,A) −→ (Ω′,A′) is a function f : Ω −→ Ω′ that satisfies the
following condition

f−1(A′) ∈ A for all A′ ∈ A′. (6.9)

The source of such an arrow is the object (Ω,A), the target (Ω′,A′). In the terminology of
Section 6.4, an arrow in this category is a finitely measurable function.

Identities The identity arrow id(Ω,A) : (Ω,A) −→ (Ω,A) associated to an object (Ω,A)
is the identity function on the set Ω. As the inverse image of any subset under the identity
is that subset itself, this function satisfies (6.9) and is thus an arrow of FMes.

Composition In this category, composition is defined as the composition of functions.
For two arrows f : (Ω,A) −→ (Ω′,A′) and g : (Ω′,A′) −→ (Ω′′,A′′), the resulting function
g ◦ f : Ω −→ Ω′′ is an arrow g ◦ f : (Ω,A) −→ (Ω′′,A′′) of FMes because

(g ◦ f)−1(A′′) = f−1(g−1(A′′)) ∈ A for all A′′ ∈ A′′

since g−1(A′′) ∈ A′ for all A′′ ∈ A′′ and f−1(A′) ∈ A for all A′ ∈ A′.

Because composition is defined as composition of functions, FMes inherits the two prop-
erties required for a category from the category of Fun of sets and functions: composition is
associative and it has the identity arrows as units. That is, for arrows f : (Ω,A) −→ (Ω′,A′),
g : (Ω′,A′) −→ (Ω′′,A′′) and h : (Ω′′,A′′) −→ (Ω′′′,A′′′),

h ◦ (g ◦ f) = (h ◦ g) ◦ f and
id(Ω,A) ◦ f = f = f ◦ id(Ω,A).

Therefore, FMes is a category.
It contains Mes as a subcategory: any object in Mes is an object in FMes, because any

σ-algebra is an algebra, and an arrow of Mes is also an arrow of FMes, since measurability
implies finite measurability. It is also a full subcategory as in Definition 3.3.2, because in the
case where the algebras of two objects in FMes are σ-algebras, i.e. the object is an object
of Mes also, finite measurability corresponds precisely to measurability, which means both
categories contain the same arrows between the objects.

6.5.2 The functor

The finitely additive probability endofunctor on the category FMes is denoted by G. It
associates to each object (Ω,A) an object G(Ω,A) and to each arrow f : (Ω,A) −→ (Ω′,A′)
an arrow Gf : G(Ω,A) −→ G(Ω′,A′), defined as follows.

Objects Fix an object (Ω,A). Then G(Ω,A) is a pair (Ψ,B) of a set and an algebra of
subsets of this set. The set is the obvious set of all finitely additive probabilities on the
given object,

Ψ = {P |P is a finitely additive probability on (Ω,A)}.
For the definition of the algebra B, we recur to the initial σ-algebra of the evaluation

maps from definition 6.3.1. This choice will be motivated in Section 6.5.5. The algebra of
the object G(Ω,A) is

B = σ

( ⋃

A∈A
ev−1

A (B[0, 1])

)
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Notation 6.5.1. In the following, the notation (Ψ,B) will be used for the object G(Ω,A)
and extended in the obvious way, for example, G(Ω′,A′) = (Ψ′,B′) and so on.

Arrows For arrows f : (Ω,A) −→ (Ω′,A′), we define Gf : G(Ω,A) −→ G(Ω′,A′) as a
function Gf : Ψ −→ Ψ′ that takes finitely additive probabilities on (Ω,A) into finitely
additive probabilities on (Ω′,A′) and satifies condition (6.9) for the respective algebras B
and B′. For P ∈ Ψ,

Gf P (A′) = P (f−1(A′)) for each A′ ∈ A′.

The three properties shown for the functor F in Lemma 6.2.2 are satisfied for G as well.
That is, Gf P is an element of Ψ′, and G preserves identities and composition. Except for
a substitution of the algebras A and A′ instead of the powersets, the proofs are identical to
the proof of that lemma.

To establish that G is a functor, one needs to show in addition that Gf is an arrow of
the category FMes, that means (Gf)−1(B′) ∈ B for any B′ ∈ B′ needs to hold. Here, one
can make use of Lemma 3.1.8 and the remark following it. The algebra B′ on Ψ′ is defined
as

B′ = σ
( ⋃

A′∈A′
ev−1

A′ (B[0, 1])
)
.

Therefore, it suffices to show

(Gf)−1(B′) ∈ B for B′ ∈
⋃

A′∈A′
ev−1

A′ (B[0, 1]).

For such a B′ there is an A′ ∈ A′, such that B′ = ev−1
A′ (C) for some Borel set C ⊆ [0, 1].

Thus,

(Gf)−1(B′) = (Gf)−1
(
ev−1

A′ (C)
)
.

Now, ev−1
A′ (C) is a set of the form {P ′ ∈ Ψ′|P ′(A′) ∈ C}. Its inverse image under Gf

consists of those P ∈ Ψ that Gf maps to a P ′ in this set:

(Gf)−1(ev−1
A′ (C)) = {P ∈ Ψ|Gf P (A′) ∈ C}

= {P ∈ Ψ|P (f−1(A′)) ∈ C}.

Since sets of the form

{P ∈ Ψ|P (A) ∈ D} for some A ∈ A and some Borel set D

are in B, and f−1(A′) ∈ A because f is an arrow ofFMes, also {P ∈ Ψ|P (f−1(A′)) ∈ C} ∈ B.
Therefore, Gf is an arrow of FMes, and in conclusion G is a functor.

6.5.3 The natural transformations

The natural transformations are defined very similarly to those of the functor F , with re-
stricted domains of definition. Showing that the functions defined for each object qualify as
the transformations η and µ involves showing that they are arrows of FMes.

For an object (Ω,A) of FMes, we define a function η(Ω,A) : Ω −→ Ψ. This means, for
ω ∈ Ω, η(Ω,A)ω needs to be a finitely additive probability on (Ω,A). Obviously, the chosen
finitely additive probability is again the concentrated probability function, here restricted
to the given algebra. We overload the indicator notation,

η(Ω,A)ω(A) = 1A(ω) defined for A ∈ A.
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η(Ω,A)ω is a finitely additive probability on A by the same arguments as above for F , and
the notation 1(.)(ω) will also be used as before.

Showing finite measurability of η(Ω,A) from (Ω,A) to G(Ω,A) = (Ψ,B) is the step that
differs from the analogous section for the functor F , where this was not necessary. Again
we use Lemma 3.1.8 to show that for all B ∈ B the inverse image η−1

(Ω,A)(B) is in A: it
suffices to consider sets B in the generator of B, that is, sets B = ev−1

A (C) with A ∈ A and
C ∈ B[0, 1].

η−1
(Ω,A)(B) = η−1

(Ω,A)(ev
−1
A (C)) = {ω|η(Ω,A)ω ∈ ev−1

A (C)}
= {ω|η(Ω,A)ω ∈ {P ∈ Ψ|P (A) ∈ C}} = {ω|η(Ω,A)ω(A) ∈ C}

=





∅ if 0 6∈ C, 1 6∈ C
A if 0 6∈ C, 1 ∈ C
Ac if 0 ∈ C, 1 6∈ C
Ω if 0 ∈ C, 1 ∈ C.

(6.10)

Since A is an algebra, and A ∈ A was assumed, this is in all four cases an element of A,
wherefore (6.9) holds. In conclusion, η(Ω,A) : Ω −→ Ψ defines an arrow of the category
η(Ω,A) : (Ω,A) −→ G(Ω,A) for each object and hence is a transformation of the desired
type, η : Id −→ G.

To prove naturality of η, it suffices to look back at equation (6.2) in Section 6.2.2. Given
an arrow f : (Ω,A) −→ (Ω′,A′), the equation Gf (η(Ω,A)ω)(A′) = η(Ω′,A′)(f(ω))(A′) holds
for all A′ ∈ A′ by exactly the same reasoning as applied to F and A′ ∈ P(Ω′) there. It
follows that Gf ◦ η(Ω,A) = η(Ω′,A′) ◦ f and hence that η is a natural transformation.

Similarly, µ is defined as before for F , but the finitely additive probabilities it applies to
are defined on B2, no longer on the powerset over the set of finitely additive probabilities.
Therefore, the integrability of the evaluation maps cannot be taken for granted here. In
addition, the finite measurability of µ has to be established.

We denote the object obtained by applying G to G(Ω,A) = (Ψ,B) by (Ψ2,B2) or
G2(Ω,A) and elements of Ψ2 again by Q.

Ψ2 = {Q|Q is a finitely additive probability on (Ψ,B)} and

B2 = σ
( ⋃

B∈B
ev−1

B (B[0, 1])
)

where for each B ∈ B,

evB is the evaluation map evB : Ψ2 −→ [0, 1], evB(Q) = Q(B).

For an object of FMes, (Ω,A), a function µ(Ω,A) : Ψ2 −→ Ψ, that “collapses a Q into a
P”, is now defined for A ∈ A, but by the same formula as above,

µΩQ(A) =
∫

evAdQ. (6.11)

The integral is still well-defined for each A ∈ A, because J [0, 1] ⊂ B[0, 1], which means that
the inverse images of sets in J [0, 1] under every evA are in B by definition of B. Integrability
follows from Lemma 6.4.4.

That the function on A defined in (6.11) is a finitely additive probability on (Ω,A)
follows like for the functor F (see after Definition 6.2.4).

To show that µ(Ω,A) is finitely measurable, we use the following lemma. The first and
last statement were “for free” in the case of probabilities defined on the powersets; the
second statement was already proven there in Lemma 6.2.6, and is here stated again only
for completeness because the domain of definition of the functions changed.
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Lemma 6.5.2.

(i) For each A ∈ A there exists a sequence of simple functions fn : Ψ −→ [0, 1] that
converges to evA uniformly over Ψ.

(ii) For a sequence fn ⇒ evA, the functions gn : Ψ2 −→ [0, 1] defined by gn(Q) =
∫

fndQ
converge uniformly to the function g : Ψ2 −→ [0, 1] defined by g(Q) =

∫
evAdQ.

(iii) Given a finitely additive probability R on (Ψ2,B2), the integrals in the following formula
are well-defined and limn→∞

∫
gndR =

∫
gdR.

Proof.

(i) The sequence of functions is constructed via evA’s inverse image. As in the proof of
Lemma 6.4.4, take a partition of [0, 1] into N intervals, [0, 1

N ), [ 1
N , 2

N ), . . . , [N−1
N , 1],

for some N ∈ N and consider their inverse images under the given function evA. We
denote these by Bi, i = 1, . . . , N . Recall that all Bi ∈ B by definition of B and that
the Bi partition Ψ. Now, fix a value in each little interval in [0, 1], for simplicity, we
take the middle point ξi := (i− 1

2 )/N . Define the following simple function on Ψ:

f(P ) =
N∑

i=1

ξi · 1Bi(P ).

If this procedure is carried out for each n ∈ N with N = n, one obtains a sequence of
simple functions fn(P ) =

∑n
i=1 ξn

i · 1Bn
i
(P ). By construction, this sequence converges

uniformly to evA on Ψ: for any ε > 0 there is an M ∈ N such that for all n ≥ M and
all P ∈ Ψ

|evA(P )− fn(P )| < ε because
|evA(P )− fn(P )| = |P (A)− ξn

i | if P ∈ Bn
i .

But P ∈ Bn
i means that P ∈ ev−1

A

(
[ i−1

n , i
n )

)
which in turn means that P (A) ∈ [ i−1

n , i
n ).

Hence, the distance between P (A) and ξn
i is always less than 1/n. So, any choice of

M > 1/ε yields the result.

(ii) The proof can be copied from that of Lemma 6.2.6. The only change is the domain
of definition of the functions gn and g. Since all integrals are well-defined, the proof
does not change.

(iii) One only needs to show that
∫

gndR is well-defined for all n. Then Lemma 6.1.9 does
the rest: since gn ⇒ g, Lemma 6.1.9 guarantees that

∫
gdR is well-defined and that

limn→∞
∫

gndR =
∫

gdR.

Consider, for a fixed n, gn(Q) =
∫

fndQ. To simplify the above notation, let fn =∑m
i=1 ci ·1Bi for sets Bi ∈ B and values ci ∈ [0, 1]. Since fn is simple, its integral with

respect to Q is
∫

fndQ =
m∑

i=1

ci ·Q(Bi) =
m∑

i=1

ci · evBi(Q)

and thus the function gn can be written as gn =
∑m

i=1 ci ·evBi . Every evBi is integrable
with respect to R (in fact, with respect to any finitely additive probability on B2) by
definition of B2 and Lemma 6.4.4: again, inverse images of J [0, 1]-sets are in B2. From
the existence of

∫
evB1dR, . . . ,

∫
evBmdR follows that of

m∑

i=1

ci ·
∫

evBidR =
∫ m∑

i=1

ci · evBidR =
∫

gndR

by linearity of the integral (Lemma 6.1.7 (ii ) and (iii )).
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For finite measurability of µ, it needs to be shown that µ−1
(Ω,A)(B) ∈ B2 for all B ∈ B.

As before, using Lemma 3.1.8, it suffices to show this for B in the generator, that is, show
µ−1

(Ω,A)(ev
−1
A (C)) ∈ B2 for Borel sets C and A ∈ A. Now,

µ−1
(Ω,A)(ev

−1
A (C)) = {Q ∈ Ψ2|µ(Ω,A)Q ∈ (ev−1

A (C))}
= {Q ∈ Ψ2|µ(Ω,A)Q(A) ∈ C}
= {Q ∈ Ψ2|

∫
evAdQ ∈ C}

= {Q ∈ Ψ2|g(Q) ∈ C} = g−1(C) (6.12)

with g defined as in Lemma 6.5.2. Consider also the corresponding gn for a sequence
fn ⇒ evA as in the lemma.

The task has been reduced to showing that g−1(C) ∈ B2 for Borel sets C ⊆ [0, 1], in
other words that g is a (finitely) measurable function from (Ψ2,B2) to ([0, 1],B[0, 1]). With
the definition of the algebra B2 as a σ-algebra (and the Borel sets being a σ-algebra, of
course), we can use the standards from measure theory. The functions gn are measurable:
they can be written as gn(Q) =

∑m
i=1 cievBi(Q) for some natural number m and ci ∈ [0, 1]

and sets Bi ∈ B2 (all deriving from the fn under consideration), as shown in equation (6.5);
all evBi are measurable by definition of B2 and linear combinations of measurable functions
to R with the Borel sets are measurable (Lemma 3.2.5). With the gn, also their pointwise
(because even uniform) limit g is measurable due to the same lemma. Therefore, each µ(Ω,A)

is an arrow of our category FMes, and hence µ is a transformation.

The proof of naturality of µ is again analogous to the proof for the functor F at the end
of Section 6.2.2. Lemma 6.2.5 was shown in the generality needed to apply it here as well.
Given an arrow f : (Ω,A) −→ (Ω′,A′) of FMes, for each Q ∈ Ψ2 and each A′ ∈ A′,

Gf (µ(Ω,A)Q)(A′) = µ(Ω′,A′)(G2f Q)(A′)

because both sides are equal to
∫

evf−1(A′)dQ. The proof can be obtained by simple sub-
stitutions of the algebras for the powersets and G for F at the end of Section 6.2.2 and will
therefore not be repeated here.

6.5.4 Monad properties

This short section generalizes the corresponding results from Sections 6.2.3 and 6.2.4.
For all objects (Ω,A) of FMes,

µ(Ω,A) ◦ ηG(Ω,A) = idG(Ω,A) = µ(Ω,A) ◦G η(Ω,A)

holds because for P ∈ Ψ and all A ∈ A
µ(Ω,A)(ηG(Ω,A) P )(A) = P (A) = idG(Ω,A)(P )(A) = µ(Ω,A)(Gη(Ω,A) P )(A)

follows from almost the same steps as made in Section 6.2.3. For the left side, integrability of
evA with respect to the finitely additive probability (1(.)(P )) on B is guaranteed by Lemma
6.4.4 in this case, which allows to conclude that the integral is the function value at P by
Lemma 6.1.5. On the right hand side, one is allowed to exchange the functor application
with the integration (Lemma 6.2.5) because Lemma 6.5.2 ensures the existence of simple
functions that uniformly converge to evA here.

Similarly, µ(Ω,A) ◦µG(Ω,A) = µ(Ω,A) ◦Gµ(Ω,A) for all objects (Ω,A) of FMes. The proof
given in Section 6.2.4 can be adapted step by step to G, because Lemma 6.5.2 provides the
neccesary results for G.

In conclusion, also the following theorem holds:

Theorem 6.5.3. (G, η, µ) as defined in this section are a monad on the category FMes.
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6.5.5 G extends Giry’s Π

In what sense is G an extension of Giry’s monad? Given an object (Ω,F) of Mes and hence
also of FMes, let us compare what the functors associate to it.

Π(Ω,F) = (ΠΩ,BΩ)
G(Ω,F) = (Ψ,B)

That ΠΩ is a subset of Ψ is clear because any σ-additive probability qualifies also as a finitely
additive probability. The σ-algebras have the following relation: they are both defined as
the smallest σ-algebra that makes the evaluation maps of all A ∈ F measurable, however,
the sources of the evaluation maps are not the same in the two cases. To make this explicit
in the notation, let

evA : ΠΩ −→ [0, 1] and
ẽvA : Ψ −→ [0, 1]

be the evaluation maps for the two cases. Then, evA is the restriction of ẽvA to ΠΩ.
Consider a Borel-set C ⊆ [0, 1].

ev−1
A (C) = {P ∈ ΠΩ|P (B) ∈ C}

ẽv−1
A (C) = {P ∈ Ψ|P (B) ∈ C} = {P ∈ ΠΩ|P (B) ∈ C} ∪ {P ∈ Ψ\ΠΩ|P (B) ∈ C}

so that each set in the generator of BΩ is the restriction of the corresponding set in the
generator of B to those elements that are in ΠΩ. That is, one can consider B an extension
of BΩ in some sense.

6.5.6 Monad with a smaller algebra

If one considers the functor G on the category FMes independently from the Giry monad,
the construction of the σ-algebra B on the set of finitely additive probabilities, Ψ, seems
rather far-fetched. When defining a functor on FMes, one needs to provide an algebra with
the set of finitely additive probabilities on a given object (Ω,A). For finitely additive proba-
bilities only, without considering σ-additivity, again, the easiest and probably most natural
choice of an algebra on Ψ would be its powerset. One can define a functor H on FMes,
which associates to an (Ω,A) the object (Ψ, P(Ψ)), and treats arrows just as G did. Most
finite measurability questions for H are easy to solve, because the inverse image of any-
thing is always contained in the powerset on the source of the function under consideration.
However, defining η(Ω,A) : (Ω,A) −→ (Ψ, P(Ψ)) as the concentrated probability

η(Ω,A)ω(A) = 1A(ω) for A ∈ A, (6.13)

it is not necessarily a finitely measurable function. One would have to show that for
any B ∈ P(Ψ), the inverse image under η(Ω,A) is an element of the algebra A, that is,
η−1
(Ω,A)(B) ∈ A. However, in particular if A is a small algebra, one can certainly find sets

B ∈ P(Ψ) such that η−1
(Ω,A)(B) = {ω ∈ Ω|1(.)(ω) ∈ B} /∈ A. That is, the scheme used to

construct the monad G does not make H a monad.

A more interesting question is how small the algebra on Ψ may be so that one still
obtains a monad on FMes. Sticking to the construction using the inverse images under the
evaluation maps of an algebra on [0, 1], because it has worked fine so far, two questions come
up. Can a smaller algebra be chosen on [0, 1]? And can the initial σ-algebra be reduced to
an analogously defined “initial algebra”?

We answer the first question positively: In the σ-additive case the choice of the Borel-σ-
algebra on [0, 1] is so to say automatic. The “natural” choice of an algebra on [0, 1] that need
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not be a σ-algebra might be J [0, 1]. Using this in the same construction with the initial
σ-algebra is sufficient to build a monad. To see this, consider yet another similar functor,
an endofunctor J on FMes defined by

J(Ω,A) = (Ψ, C), where

C = σ
( ⋃

A∈A
ev−1

A (J [0, 1])
)

and for f : (Ω,A) −→ (Ω′,A′)
Jf : Ψ −→ Ψ′ defined as before by

Jf P (A′) = P (f−1(A′)) for A′ ∈ A′.
All elements of C are also elements of B, the algebra in G(Ω,A), but not vice versa, because
the inclusion J [0, 1] ⊂ B[0, 1] is strict. C is a rougher algebra than B which “sees more sets”.
There is nothing new in the proof that J is a functor, it follows analogously to the proof for
G, with the small substitution that, in the proof of finite measurability presented on page
144, the Borel sets (C and D in that formulation) now are sets in J [0, 1].

The definition of the transformation η is analogous to that for G as well. For each object
(Ω,A), the function η(Ω,A) associates to ω ∈ Ω the concentrated probability in ω, defined
on A, so that η(Ω,A)ω(A) = 1A(ω). The finite C-J [0, 1]-measurability also follows just as
in formula (6.10), where again the general Borel-set is substituted as above. Obviously,
naturality is also proven like for G, that is, like for F , except that only A′ ∈ A′ are of
interest, in equation (6.2), Section 6.2.2.

The transformation µ deserves a closer look. For an object (Ω,A), the set Ψ is the same
as for G, the set of all finitely additive probabilities on (Ω,A). However, since the algebra on
Ψ is different, the set of “finitely additive probabilities over finitely additive probabilities”
is not the same as before. J2(Ω,A) = (Ψ̃2, C2) with

Ψ̃2 = {Q|Q is a finitely additive probability on (Ψ, C)} and

C2 = σ
( ⋃

B∈C
ev−1

B (J [0, 1])
)

where for each B ∈ C,

evB is the evaluation map evB : Ψ̃2 −→ [0, 1], evB(Q) = Q(B).

Now, for an object (Ω,A), the function µ(Ω,A) : Ψ̃2 −→ Ψ is defined as the well-known
integral over the evaluation map for each A ∈ A:

µ(Ω,A)Q(A) =
∫

evAdQ. (6.14)

While rougher than B, the algebra C still contains all inverse images of J [0, 1]-sets under the
evA, wherefore with Lemma 6.4.4, the integral is well-defined. The definition also delivers
a finitely additive probability, shown as for the first functor, F . The finite measurability of
the functions µ(Ω,A) is the interesting point: for G, we applied “measure theory standards”,
making use of the fact that B[0, 1] is a σ-algebra. This was not used before that point.
That it is sufficient to consider sets in the generator, that is, the application of Lemma 3.1.8
and Remark 3.1.9, does not presuppose any structure on the generator. Integrability was
shown to follow from A-J [0, 1]-finite measurability in Lemma 6.4.4. The requirement of
A-B[0, 1]-finite measurability would be stronger because condition (6.9) is stated for all sets
in the second algebra, but it is not necessary for the desired integrablity. In fact, in the
monad proof for G, we used the fact that J [0, 1] ⊂ B[0, 1] to apply the thus stated lemma.

In the proof that for G the transformation µ is finitely measurable, “measure theory
standards” were used for convenience. Limits of measurable functions are measurable. For
J , analogously to the proof for G, we arrive at the task of showing that g−1(C) is a set
in C2 for any C ∈ J [0, 1] (after formula (6.12)). This g is an integral, g(Q) =

∫
evAdQ

and we have a sequence gn converging uniformly to g. Moreover, each gn is of the form
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gn(Q) =
∑m

i=1 ci · evBi(Q) for some m ∈ N and ci ∈ [0, 1] and sets Bi ∈ C2. We know that
the evBi

are C2-J [0, 1]-finitely measurable by definition of C2. Since with B instead of C
this finite measurability was countable measurability, or measurability in the usual sense,
the measurability of sums and limits followed.

Here, we are in an intermediate case between finite and countable measurability. The
algebra on the source of the function is a σ-algebra, the one on the target is not. While
this does not allow to simply use the results from measure theory, it allows to mimick their
proofs, because the σ-algebra on the source is actually the important one.

We need to show that

Lemma 6.5.4. Given a (countably!) measurable space (Ω,F) and two finitely measurable
functions f, g : (Ω,F) −→ ([0, 1],J [0, 1]), their sum is F-J [0, 2]-finitely measurable.

Proof. We need to show that the inverse image under f +g of any set in J [0, 2] is an element
of F . Considering the generator {[0, a], [0, a)|a ∈ [0, 2]} of J [0, 2], it suffices to show this for
intervals of this form. That is, one needs to show that

(f + g)−1([0, a]) ∈ F and (f + g)−1([0, a)) ∈ F .

Consider the second statement.

(f + g)−1([0, a)) = {ω ∈ Ω|(f + g)(ω) < a} = {ω ∈ Ω|f(ω) + g(ω) < a}
= {ω ∈ Ω|f(ω) < a− g(ω)}

Since the rational numbers are dense in the real numbers (in any interval), for any x < y ∈ [0, 2],
one finds an r ∈ [0, 2] ∩Q with x < r < y. Therefore,

(f + g)−1([0, a)) = {ω ∈ Ω|∃r ∈ [0, 2] ∩Q : f(ω) < r and r < a− g(ω)}
=

⋃

r∈[0,2]∩Q
{ω ∈ Ω|f(ω) < r} ∩ {ω ∈ Ω|g(ω) < a− r}

=
⋃

r∈[0,2]∩Q
f−1([0, r)) ∩ g−1([0, a− r))

The two inverse images in the last line are elements of F for any r under consideration. In
the case that a− r is negative, the interval reduces to the empty set, whose inverse image is
the empty set. Since F is a σ-algebra, also the countable union in the last line is an element
of F , which was to be shown. For the first statement, (f + g)−1([0, a]) ∈ F , we can make
use of complements, because the inverse image is well-behaved:

(f + g)−1([0, a]) = (f + g)−1((a, 2]c) =
(
(f + g)−1((a, 2])

)c =
({ω ∈ Ω|(f + g)(ω) > a})c

The set {ω ∈ Ω|(f + g)(ω) > a} can be shown to be an element of F exactly as before,
wherefore also (f + g)−1([0, a]) ∈ F .

The lemma was stated for F-J [0, 2]-finite measurability for simplicity. For the func-
tions considered here, evaluation maps of sets in a finite partition, the sum gn(Q) =∑m

i=1 ci · evBi(Q) takes values in the interval [0, 1] wherefore we can conclude F-J [0, 1]-
finite measurability for the functions gn.

Also their limit is finitely measurable:

Lemma 6.5.5. Given a (countably!) measurable space (Ω,F) and finitely measurable func-
tions gn : (Ω,F) −→ ([0, 1],J [0, 1]) with a pointwise limit g : Ω −→ [0, 1], the function g is
F-J [0, 1]-finitely measurable.

Proof. We have to show that g−1((a, b)) ∈ F for any interval (a, b) ∈ [0, 1]. That g−1
n ((a, b)) ∈

F for any interval (a, b) ∈ [0, 1] is guaranteed by assuming finite measurability of these func-
tions. Now, g−1((a, b)) can be written as

∞⋃
n=1

∞⋃

K=1

∞⋂

k=K

g−1
k ((a +

1
n

, b− 1
n

)) (6.15)
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as will be justified below. Then, since all g−1
k ((a+ 1

n , b− 1
n )) ∈ F by assumption, and F is a

σ-algebra, the claim follows. The form (6.15) of g−1((a, b)) is correct because ω ∈ g−1((a, b))
means that g(ω) ∈ (a, b). Using the pointwise convergence, this is the case if and only if there
are n,K ∈ N such that gk(ω) ∈ (a+ 1

n , b− 1
n ) for all k ≥ K. This means there are n, K ∈ N

with ω ∈ g−1
k

(
a+ 1

n , b− 1
n

)
for all k ≥ K, which can be written as ω ∈ ⋂∞

k=K g−1
k ((a+ 1

n , b− 1
n ))

for the n, K considered. Therefore ω ∈ g−1((a, b)) means

ω ∈
∞⋃

n=1

∞⋃

K=1

∞⋂

k=K

g−1
k ((a +

1
n

, b− 1
n

)) and vice versa.

In conclusion, together with the evBi
, also the functions gn and g are C2-J [0, 1]-finitely

measurable, so that J just like G is a monad with the corresponding natural transforma-
tions because further in the proof of naturality of µ and of the monad properties themselves
nothing changes.

The second question must be left open. Using the algebra on Ψ defined by

D = a
( ⋃

A∈A
ev−1

A (J [0, 1])
)
,

one can still prove functoriality for a map K that associates (Ψ,D) to (Ω,A), and that
maps functions as F, . . . , J did. The analogous η and µ can be defined. With this D, each
evaluation map is an arrow in FMes from (Ψ,D) to the object ([0, 1],J [0, 1]), because for
any set J ∈ J [0, 1], by definition ev−1

A (J) ∈ D. Still, the evaluation maps for all sets in
A are integrable with respect to any finitely additive probability that one can define on D,
so, µ(Ω,A) is well-defined. But is it an arrow of the category? While finite measurability
here shows its weaknesses, a counterexample for which one finds a µ(Ω,A) that is not finitely
measurable, has also not been identified (yet?).

More generally speaking, the question whether the sum of two finitely measurable func-
tions (to R equipped with the algebra generated by the intervals) is open. Together with
the fact that pointwise limits of finitely measurable functions are not necessarily themselves
finitely measurable, it seems difficult if not impossible to show finite measurability for inte-
grals, which contain a limiting operation (supremum and infimum) in the construction.

6.6 Monad on Fun with arbitrary algebras?

To generalize the monad of finitely additive probabilities on powersets but remain on the
category Fun and avoid finite measurability, one could consider a construction in which the
algebra that the finitely additive probability is defined on is not fixed with the set in the
object, but comes with the finitely additive probability itself. This approach produced some
intermediate results, but a monad was not obtained for now.

Algebra functor

As a first step, here one needs to map algebras from one set to another. A functor for
algebras of subsets, denoted S, can be constructed as follows.

Given a set Ω, the set S Ω contains all algebras of subsets of Ω. A function f : Ω −→ Ω′ is
lifted to S f : S Ω −→ S Ω′ via the definition: if A ∈ S Ω then S fA = B, where B ⊆ P(Ω′),
and B ⊆ Ω′ is in B if f−1(B) ∈ A.

This defines an algebra on Ω′. First, B ∈ S Ω′ because Ω′ itself is always included in B; its
inverse image is Ω, which is in A. Second, the inverse image is well-behaved: if B ∈ B, then
f−1(B) ∈ A, and since this is an algebra (f−1(B))c ∈ A, thus, f−1(Bc) = (f−1(B))c ∈ A
which means that Bc ∈ B. Similarly, B is closed under intersection by mapping everything
backwards. Thus, B is an algebra of subsets of Ω′.
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For functoriality, identities and composition have to be preserved. For identities this is
obvious, because the inverse image of the identity is the identity. For composition, consider
f as above and g : Ω′ −→ Ω′′. We need to show S g ◦ S f = S (g ◦ f). For the left hand
side, define C, algebra on Ω′′ by taking all those C ⊆ Ω′′ that satisfy g−1(C) ∈ B where
B is constructed as above. Then C ∈ C means g−1(C) = B ∈ B and by definition of B,
f−1(B) ∈ A. Together, f−1(g−1(C)) ∈ A. But,

f−1(g−1(C)) = f−1
({ω′ ∈ Ω′|g(ω′) ∈ C})

= {ω ∈ Ω|f(ω) ∈ {ω′ ∈ Ω′|g(ω′) ∈ C}}
= {ω ∈ Ω|f(ω) = ω′ and g(ω′) ∈ C}

For the right hand side, define C′ by the above construction for g ◦ f , that is, C ∈ C′ if
(g ◦ f)−1(C) ∈ A.

(g ◦ f)−1(C) = {ω ∈ Ω|(g ◦ f)(ω) ∈ C}
= {ω ∈ Ω|f(ω) = ω′ and g(ω′) ∈ C}

Thus, C = C′, meaning that composition is preserved.
Let us provide an intuition about a mapped algebra, considering an algebra A on Ω and

a function f as above. In the “worst case”, B = S f(A) is the trivial algebra {∅, Ω′}. Let
Im(f) be the image of Ω under f in Ω′, that is, Im(f) = {f(ω)|ω ∈ Ω}. The mapped
algebra B automatically contains the powerset of Ω′\Im(f), because the inverse image of
any set contained in the complement of the image is the empty set, which is contained in A.

If A is finitely generated, one can consider the finitely many constituents of the generator,
say {C1, . . . , Cm}. Applying f to these may not preserve their empty intersections: in
general, f(Ci) ∩ f(Cj) 6= ∅ for i 6= j. Then, all that can be said is that the inverse image
of the union of the constituents is in A. In B, constituents whose images under f overlap
cannot be distinguished any more. However, when the constituents can be sorted into groups
with non-overlapping images under f , each group gives rise to a set in B. In this case, one
can imagine the mapped algebra as of the following form: if there are k sets stemming from
such a group of constituents in A, take k + 1 copies of P(Ω′\Im(f)). Keep one copy as it
is, and to each other copy associate one of the k sets. To get the sets in the algebra, join
the constituent-group-set to all sets in the copy, build the ”cartesian union” as it were.

In comparison with a finitely measurable function f : (Ω,A) −→ (Ω′,A′), the algebra
S f(A) is not smaller than A′. The mapped algebra contains the given one because by finite
measurability of f , one has f−1(B) ∈ A for all B ∈ A′, but A′ need not contain all sets in
Ω′ for which this holds. For example, it need not contain the powerset of the complement
of Im(f).

Finitely additive probability functor

Given the algebra functor, one can define a functor of finitely additive probabilities that
generalizes F . The category on which it is defined is Fun. To emphasize the underlying set
of the algeba that a finitely additive probability is defined on, we will speak of “a finitely
additive probability over Ω”, for example. Our new functor, denoted L, associates to a set
all finitely additive probabilities on all algebras of subsets. To make the algebra explicit in
the notation, the functor produces pairs: finitely additive probabilities and algebras, which
are their domains of definition, that is

L Ω = {(P,A)|A ∈ S Ω and P : A −→ [0, 1] is a finitely additive probability on (Ω,A)}.
L maps functions by the usual procedure, taking as algebra on the target set the mapped
algebra constructed previously. That is, Lf : L Ω −→ LΩ′ is defined, for f : Ω −→ Ω′, by

Lf(P,A) = (P ′,A′) with A′ = S fA, and

P ′(A′) = P (f−1(A′)) for all A′ ∈ A′. (6.16)



6.7. COHERENT ASSIGNMENTS AND MONADS 153

That this is a functor can again be shown exactly as for F , substituting the powersets by
the respective algebras. No measurability questions arise.

A monad (L, η, µ) on the category Fun was not obtained. The unsuccessful attempts at
constructing it will not be detailed here. The problem, in short, is rather µ than η. For the
latter, the usual concentrated probability can be defined on the powerset (for lack of another
algebra that would be preferrable). µ, however, is not as obvious. For an object Ω of Fun,
the object L2 Ω is the set of all finitely additive probabilities over L Ω, and these finitely
additive probabilities may be defined on any algebra of subsets of L Ω. When µΩ is applied
to an element (Q,B) of L2 Ω, the result must be a finitely additive probability over Ω. It
is not clear which algebra this finitely additive probability should be defined on. For the
simple case of a discrete Q that gives positive mass to finitely many values, the intersection
of the algebras of the finitely additive probabilities that get these positive weights suggests
itself. It is however unclear how to extend such an idea to the general case, especially
since a finitely additive probability with infinitely many possible values (no matter whether
countably or uncountably many) is not determined by the probabilities assigned to these
values. Recall the uniform probability over N from Section 4.4. Considering intersections
of many algebras, one might all too often end up with the trivial algebra {∅,Ω}.

Constructing the algebra to define µΩQ upon via integrability of evaluation maps also
failed: considering µΩQ(A) for all A ∈ P(Ω) to be

∫
evAdQ if the evaluation map is inte-

grable and undefined otherwise, does not work, because the set of the A ⊆ Ω for which this
integral is well-defined is not necessarily an algebra.

Even including an undefined element ⊥ directly in the functor did not solve the problem.
The undefined element “destroys” information, so that diagrams do not necessarily commute
depending on whether information is destroyed at an earlier or later point in the composition
of several operations. All in all, the trouble is immediately suggested by a missing “natural”
candidate for the algebra on which to define a finitely additive probability resulting from
the application of µ. Any construction that assumes extra information is bound not to yield
a natural transformation.

6.7 Coherent assignments and monads

As an outlook, let us consider also the further generalization of finitely additive probabilities,
coherent probability assignments, in relation to functors and monads. A very similar con-
struction to the algebra functor allows to show that coherent probability assignments have
functorial structure. A functor of coherent probability assignments T can be constructed on
the category Fun as follows.

To an object of Fun, that is, a set Ω, T associates all coherent probability assignments
on sets E of subsets E ⊆ Ω of Ω. For notational convenience, we will denote coherent
assignments here as total functions on the powerset of Ω which take values in [0, 1]∪⊥, with
the interpretation that any set which is not assigned a probability value by the assignment
is mapped to the undefined element ⊥. That is, a coherent probability assignment is a
function

α : P(Ω) −→ [0, 1] ∪ ⊥
such that the restriction of α to the set on which it takes values in [0, 1], that is E =
α−1([0, 1]), can be extended to a finitely additive probability on a(E), the generated algebra.
As before, we will also take the domain of definition into the notation. Then, the functor
associates to a set Ω

T Ω = {(α, E)|α : P(Ω) −→ [0, 1] ∪ ⊥, E = α−1([0, 1])
and α is a coherent probability assignment, that is,
α |E can be extended to a finitely additive probability
P : a(E) −→ [0, 1]}.
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To an arrow of Fun, that is, a function f : Ω −→ Ω′, the functor T associates the assign-
ment obtained by checking for all sets in P(Ω′) whether their inverse image is assigned a
probability by α.

T f α(A′) = α(f−1(A′)) for all A′ ∈ P(Ω′). (6.17)

The so defined T f α is a coherent probability assignment on Ω′: consider any finitely ad-
ditive probability P on a(E) that α extends to. Mapping this finitely additive probability
with the functor L constructed above produces a finitely additive probability Lf (P, a(E))
over Ω′. The here obtained T f α extends to the function in the pair Lf (P, a(E)). This
can be seen by rewriting also finitely additive probabilities with associated algebras as func-
tions from P(Ω) to [0, 1] ∪ ⊥ as done with coherent probability assignments. That is, in
a redundant but here useful notation, a finitely additive probability is a pair (P,A) such
that P : P(Ω) −→ [0, 1] ∪ ⊥ with P−1([0, 1]) = A and P |A is a finitely additive probability
according to definition 4.4.1. Since the information about the algebra is given by P , we will
write the application of Lf to P only. This is then given precisely by the adapted formula
(6.17)

Lf P (A′) = P (f−1(A′)) for all A′ ∈ P(Ω′). (6.18)

Returning to the finitely additive probability that extends α, those sets A′ whose inverse
image is in a(E) are assigned the probability of this inverse image as before, and those for
which this is not the case are assigned ⊥. Since these were not considered at all before, this
yields the same finitely additive probability on S fA as the definition in (6.16). Further,
since the definitions in (6.17) and (6.18) coincide, and P |E= α |E , also Lf P |F= T f α |F ,
where F is the set of all those sets in P(Ω′) whose inverse image under f is in E , that is,
F = {A′ ∈ P(Ω′)|f−1(A′) ∈ E}.

T is a functor because it obviously preserves identities, and as the inverse image is well-
behaved it also preseves composition: for f : Ω −→ Ω′ and g : Ω′ −→ Ω′′ and A′′ ⊆ Ω′′,

T (g ◦ f)α(A′′) = α((g ◦ f)−1(A′′)) = α(f−1(g−1(A′′)))

= (T f α)(g−1(A′′)) = (T g ◦ T f)α(A′′).

However, the question whether it yields a monad is again an open question. A coherent
assignment could be viewed as the collection of all the finitely additive probabilities on the
generated algebra a(E) that it extends to. Instead of a function to [0, 1] ∪ ⊥, a coherent
probability assignment could be written as a function with interval values: assign to each set
in a(E) the interval of values that any finitely additive probability in the collection assigns
to it. This is an interval because convex combinations of coherent assignments are coherent
assignments. A theory that could be useful here is presented by Weichselberger [2001],
where probability is generalized to a function that takes interval values. However, this has
not been further pursued. Given that for the functor L a monad has not been found, it seems
unlikely to find a monad for T . The close connection to L exposed above suggests that the
problems encountered in the attempt to construct such a monad for L can be expected here
as well. Also, identifying a coherent probability assignment with the set of its extensions
would not always allow to re-extract the original assignment from this set alone. In the case
where more sets than the elements of E (which were assigned probabilities by the original α)
have a unique value, one would need the additional information which sets were in E . This
may not be a major problem, but the extra-information to be considered could render the
construction of a monad more complicated.

6.8 Conclusions and outlook

This chapter has introduced several monads of finitely additive probabilities. First, a monad
on the category Fun was presented that considers finitely additive probabilities defined on
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the powerset of a given set. In this case, no measurability questions arise, which yields a
comparatively easy proof.

Since probability measures defined on the powerset of infinite sets can be discrete prob-
ability measures only, and this would exclude many interesting cases, a monad of finitely
additive probabilities which in a certain sense extends Giry’s monad of probability mea-
sures was presented next. It lives on a category that generalizes the category of measurable
spaces and functions Mes, denoted FMes. The objects of this category are sets with alge-
bras, its arrows are functions satisfying an equivalent of measurability in terms of algebras,
introduced as finite measurability for the construction of this monad. The concept of finite
measurability helped to prove that there exists a monad of finitely additive probabilities
defined on fixed algebras, but in itself it left some questions open.

In order to extend Giry’s monad, the construction of this second monad leaned on her
construction, for example, in the choice of the algebra to accompany the set of finitely
additive probabilities on a given set. In a first attempt, we simply copied the σ-algebra used
by Giry. If the criterion of extending her monad is dropped, the assumptions made for this
algebra can be slightly weakened, as was shown next. However, it also became obvious that
the concept of finite measurability is not powerful enough to carry the construction applied
here by itself: a σ-algebra was needed to make a function containing an integral an arrow
of the category of finitely measurable sets and functions. Whether a more general monad of
finitely additive probabilities on the category FMes can be obtained in some other way is
an open question.

Generalizing further again, the question whether monads of finitely additive probabilities
defined on arbitrary algebras exist on the category Fun was considered. While a functor
is rather straightforward, a monad was not obtained here, leaving further questions open.
The same holds for coherent probability assignments, since these further generalize finitely
additive probabilities defined on arbitrary algebras.

Interesting mathematical questions for further investigation are brought up by returning
to the motivation of this chapter, the monadic dynamical systems used in the formal frame-
work of vulnerability. A closer look at the Kleisli-categories of all the monads found could
be taken in further work. Giry relates the Kleisli-arrows to Markov processes. Since finitely
addivite Markov processes are less well studied than the countably additive counterpart,
their study via category theory could be an interesting endeavour. Markov processe are also
closely related to conditional expectation, which was not treated in this work. It would be
interesting how the Kleisli-arrows of the monads presented here relate to different concepts
of conditional expectation and conditional probability in the finitely additive setting that
can be found already in the literature [see, e.g. Coletti and Scozzafava, 2002, and references
therein]. However, this topic was considered beyond the scope of this work.

Further results from category theory about probability measures presented by Giry [1981]
could also be examined in the finitely additive setting. An “important problem” investigated
by her is that of finding a probability measure on the sample space compatible with given
transition probabilities of a Markov process. While there is a lot of work on stochastic
processes using probability measures, for finitely additive probabilities mainly processes in
discrete time seem to be considered in the literature [see, e.g., Dubins and Savage, 1965].
The category theoretical approach might yield some interesting results for continuous time
processes. Last but not least, Giry [1981] quotes an unpublished paper by Lawvere from
1962, stating that “most problems in probability and statistics theory can be translated in
terms of diagrams of these Kleisli categories.” [p. 68] A further exploration of what the com-
bination of finitely additive probability and category theory has to offer seems worthwhile.
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Chapter 7

Conclusions and outlook

Many of the conceptual questions are, unfortunately, inexhaustible if one wishes to examine
them thoroughly; and the worst thing is that, often, they are also rather boring unless one
has a special interest in them. [de Finetti, 1974, p. 14]

This work is subdivided into two parts, related in that the first part provides the mo-
tivation for the second one. In this first part, the method of formalization was discussed
and applied with a special interest in the two concepts probability and vulnerability. While
probability is a concept with a history of formalizations and thus serves as an example,
the application of the method formalization to vulnerability is new. It yields the formal
framework of vulnerability which motivated this dissertation.

Formalization was introduced as translation into mathematics. Therefore, first of all,
mathematics had to be awarded the status of a language. The characteristics of this lan-
guage, differentiating it from natural languages, are precision and consistency in the defi-
nition of concepts, and the abstract and therefore general nature of concepts used and of
solutions found. The exact nature of mathematical definitions implies that mathematical
concepts do not carry implicit connotations which differ with the speaker’s background, as is
the case for many concepts in the vulnerability terminology. It therefore suggests itself as a
lingua franca for communication between different scientific disciplines, and can be hoped to
enhance clarity in the interdisciplinary field of vulnerability research. The symbolic notation
used in mathematics, which constitutes another difference to natural languages, entails that
operations can be performed on the symbols. Fundamental for the use of the computer,
mathematics here has an advantage over natural languages. However, the concise notation
makes communication difficult for those who are not trained to use it. Mathematics is not
generally “spoken” by the target audience of the formal framework.

Hoping to nevertheless reap benefits of formalization for the confused terminology of
vulnerability, the mathematical models of concepts were re-translated into diagrams using
natural language words, disguising to some extent the underlying mathematics. A math-
ematical model of vulnerability as used in ordinary language and a model of the scientific
concept constitute the formal framework of vulnerability. Even if rather simple, in its gen-
erality the first model was able to embody the common structure of many theoretical defi-
nitions of the scientific concept. The refined mathematical model for the scientific concept
had a similar effect for assessment approaches and interpretations of vulnerability. Several
distinctions of interpretations made in the conceptual literature were ascribed to one pair of
assessment approaches, each described by one part of the mathematical model of the scien-
tific concept. Approaches to assessing risk of natural hazards, interpreted as instances of the
formal framework, were shown to have a similar structure to vulnerability assessments while
terms are used differently. The revealed non-injectivity of any mapping between terms used
and elements of assessments explained the terminology confusion both within and between
the two research communities.

Relating the levels of meaning and measurement of ‘possible future harm’, a mismatch
between theoretical and operational definitions of vulnerability was discussed. The missing
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connection between theoretical defintions and interpretations of the concept motivates a
suggestion for work on the concept: decrease the emphasis on theoretical definitions, as it
were, shift the focus away from the trees in order to see the forest.

The concepts vulnerability and risk have in common an uncertain future evolution of the
entity under consideration. While in risk assessments probability is generally used to describe
uncertainty about future events, this is much less the case in vulnerability assessments.
Two reasons for this were discussed. First, the focus on abilities of people to act in one
vulnerability assessment approach entails a disinterest in the description of the uncertain
future, and hence probability is not needed. Second, the SRES scenarios, constituting the
foundation of the description of the uncertain future in many assessments, are explicitly
provided without probabilities. The view of probability motivating this choice, roughly
speaking, reduces the concept from a description of uncertainty to a supposed prediction
tool. The debate about the use of probability reveals that this concept still is not clear.

A chapter was dedicated to probability to discuss this concept as an example of for-
malization. Here, not only different interpretations exist, but also different mathematical
models compete. The less general standard model based on Kolmogorov’s axioms is per-
ceived as mathematically more convenient: being based on measure theory, it can use many
of its results. On the other hand, it excludes examples which from a probabilistic point of
view seem no less intuitive than others, as was seen for uniform distributions, which can
be defined on finite and uncountably infinite sample spaces, but not on countably infinite
ones. Such examples can be included when the axiom of countable additivity is disregarded,
as is the case for finitely additive probabilities. These are again generalized by coherent
probability assignments, for which the domain of definition need not be an algebra.

Formalization was seen to be no miracle cure for confused concepts: interpretations of
probability are not unambiguously linked to a mathematical model of it. Also, mathematical
models are related to the concept, its meaning and its measurement in rather different ways,
explained from the intention pursued with a formalization. A mathematical model may
be motivated mathematically, as Kolmogorov’s axioms were. They build a foundation to
turn a previously confused half-mathematical research area into a full-fledged mathematical
discipline. The concept probability is taken as a primitive, implying that neither its meaning
nor how to measure it is explained by the mathematical model. A mathematical model may
on the other hand be motivated by the attempt at claryfying concepts, as in de Finetti’s
approach, where mathematics is perceived as a tool, not a goal in itself. The operational
definition of (subjective) probability provided allows to measure probabilities and illustrates
the meaning of the concept.

Discussing mathematics as a language, beneficial for concept clarification in interdisci-
plinary contexts, illustrating with the example probability, applying the translation method
to the example vulnerability, reaping some benefits by sorting out definitions, interpreta-
tions and relations with the concept risk and the concept probability, and finally reducing
the mathematical appearance of the results for communication with non-mathemematicians,
the first part of this work is a work about mathematics.

The second part is a work in mathematics in a more restricted sense. It combines el-
ements from the two fields of probabilitity theory and category theory, motivated by the
first part. Where probability is used in climate change research, often a frequentist interpre-
tation is not warranted. Considering a subjective interpretation instead, probabilities are
for example elicited from experts. Here, rather than using probability measures as in the
standard model, the more general mathematical model of coherent probability assignments
suggests itself. The idea was therefore to make more general models of probability, such as
finitely additive probability and coherent probability assignments, available for use in the
formal framework of vulnerability.

The generalized uncertainty description in the framework uses category theoretical con-
cepts. A functor describes a set of possibilities to which further information may be attached,
and allows the application of functions to the possibilities themselves, maintaining the extra
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information. It was shown that both finitely additive probabilities and coherent probability
assignments form functors.

In the computational version of the framework, monadic dynamical systems are used to
compute the future description in a very general fashion. These allow iteration involving
functorial descriptions of uncertainty when a monad is provided. Therefore, several mon-
ads of finitely additive probabilities were identified. These are a monad of finitely additive
probabilities defined on powersets, an extension of the monad of probability measures pro-
posed by Giry [1981] and small generalizations of this. For the second class of monads, an
auxiliary concept to deal with functions defined on sets which are equipped with algebras
had to be introduced. This ‘finite measurability’ was useful enough to support proofs of
some monads, but was seen to have serious deficiencies when compared to measurability in
the usual sense. This is probably why it is not encoutered in the measure theory literature.
Coherent probability assignments unfortunately where not proven to yield a monad, which
leaves scope for further work at the intersection between probability and category theory.

As an outlook, let us state some interesting questions raised in this work or arising from it.
This concerns both conceptual questions and mathematical questions which could not also be
treated here. For example, the question whether “vulnerability does not exist”, in the sense
that one can only consider the subjective vulnerability as viewed by a fixed reference person,
was mentioned. While subjectivity of vulnerability measurements is discussed as a drawback
of these, inherent subjectivity of the concept could be investigated. A mathematical further
question that was mentioned is whether monadicity allows to derive results on the existence
of a finitely additive probability on the sample space from given finitely additive transition
probabilities, especially considering a continuous time system.

This work has been a theoretical work. Practical questions from the climate change
decision making context would provide further objects of study on the borders between
vulnerability and probability. A topic of current interest is the issue of learning. Adaptive
management and social learning are frameworks discussed in the context of adaptation de-
cision making. In a probabilistic context, updating one’s views about the future with new
information is studied, for example, under the heading of Bayesian learning. A general-
ization of coherent probability assignments, coherent conditional assignments as studied by
Coletti and Scozzafava [2002], allow an updating procedure for probabilities that is more
generally applicable than Bayes’ theorem which is traditionally used. Integrating these
probabilistic ideas into the formal framework of vulnerability might enable it to describe
further approaches in climate change decision making, possibly opening up further areas
where mathematics can provide some clarity.
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de Finetti, B., 1995. The logic of probability. Philosophical Studies, 77, pp. 181–190.
Translated by R. B. Angell from La logique de la probabilité, Actualités Scientifiques et
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Rényi, A., 1967. Dialogues on Mathematics. Holden Day Publishers, San Francisco.
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Zusammenfassung

Die vorliegende Arbeit gliedert sich in zwei Teile. Diese sind dadurch verbunden, dass der
erste Teil die mathematischen Fragen, die im zweiten Teil behandelt werden, motiviert.

Gegenstand des ersten Teils sind die Begriffe Vulnerabilität und Wahrscheinlichkeit sowie
die Methode der Formalisierung. Formalisierung wird hier als Übersetzung von Begriffen
aus der Alltagssprache oder aus wissenschaftlichen Fachsprachen in mathematische Begriffe
aufgefasst. Das Ergebnis einer Formalisierung ist ein mathematisches Modell des jeweiligen
Begriffs. Ein Vorteil mathematischer Begriffe ist, dass diese keine impliziten Bedeutungen
haben.

Als Beispiel für Formalisierung wurde der Begriff Wahrscheinlichkeit mit seinen ver-
schiedenen Interpretationen und mathematischen Modellen betrachtet. Die subjektive In-
terpretation ist für die Klimafolgenforschung interessant, da sie sich im Gegensatz zur
frequentistischen Interpretation auch anwenden lässt, wenn keine langen Messreihen von
Daten zur Verfügung stehen. Diese Interpretation wird besonders im Modell der kohärenten
Wahrscheinlichkeitsbewertungen von de Finetti dargestellt. Die verschiedenen Modelle von
Wahrscheinlichkeit verhalten sich unterschiedlich zum Begriff selbst: de Finettis Modell
erklärt den Begriff und gibt eine Messvorschrift; Kolmogorovs Modell ist vorrangig Basis
für die mathematische Theorie, ohne genauer auf Bedeutung und Messung einzugehen. Ins-
gesamt wurde deutlich, dass Formalisierung kein Allheilmittel bei begrifflicher Unklarheit
darstellt aber zur Klärung beitragen kann.

Solch eine Klärung war ein Ziel einer Formalisierung von Vulnerabilität und verwandten
Begriffen, die am Potsdam-Institut für Klimafolgenforschung entwickelt wurde. Diese Arbeit
stellt die Formalisierung vor und verwendet sie zur Begriffsklärung in einer Fachterminologie,
für die die Literatur eine Babylonische Verwirrung konstatiert. Es existieren viele ähnliche
theoretische Definitionen, aber verschiedene Interpretationen und Arten der Messung von
Vulnerabilität. Mit Hilfe genauer und trotzdem allgemeiner mathematischer Definitionen
von Vulnerabilitität wurden die gemeinsame Struktur vieler Definitionen aus der Liter-
atur nachgewiesen und zwei Typen von Vulnerabilitätsassessments unterschieden. Mehrere
Paare von Interpretationen des Begriffs aus der Literatur, sowie Typen von Risikoassess-
ments aus dem Bereich der Naturgefahren, wurden auf die Unterscheidung zwischen diesen
Typen zurückgeführt. Die begriffliche Verwirrung wurde unter anderem dadurch erklärt,
dass zwischen Fachbegriffen und Arten von Messungen eine mehr-mehr-deutige Beziehung
besteht. Die Idee, die Mathematik als Lingua franca für Forscher verschiedener Disziplinen
zu verwenden, zeigte sich auf dem sozialwissenschaftlich geprägten Gebiet der Vulnerabilität
nur begrenzt umsetzbar. Durch Diagramme wurde versucht, die Formalisierung für Nicht-
mathematiker leichter zugänglich zu machen.

Der erste Teil dieser Arbeit betrachtet die Mathematik als Sprache, diskutiert Formal-
isierung als Übersetzung in Mathematik (anhand des Begriffs Wahrscheinlichkeit), übersetzt
Vulnerabilität in diese Sprache und schafft dadurch Klarheit. Schließlich diskutiert er wie
man Mathematik allgemeinverträglich präsentieren kann. Damit ist dieser erste Teil eine
Arbeit über Mathematik.

Der zweite Teil hingegen ist eine mathematische Arbeit im eigentlichen Sinne: er verbindet
Elemente aus der Kategorientheorie und der Wahrscheinlichkeitstheorie. Das mathematische
Vulnerabilitäts-Modell von Ionescu [2009] verwendet die kategorientheoretischen Begriffe
des Funktors und der Monade zur allgemeinen Beschreibung der ungewissen Entwicklung
eines Systems. Ungewissheit wird mathematisch unter anderem durch Wahrscheinlichkeit
beschrieben. Für Wahrscheinlichkeitsmaße im Sinne von Kolmogorovs Axiomen hat Giry
[1981] nachgewiesen, dass diese Funktor und Monade bilden. Hier wurde gezeigt, dass auch
die allgemeineren mathematischen Modelle der endlich additiven Wahrscheinlichkeit und
der kohärenten Wahrscheinlichkeitsbewertungen Funktoren über der Kategorie von Mengen
und Funktionen sind. Für endlich additive Wahrscheinlichkeit wurden außerdem mehrere
Monaden identifiziert. Dies bildet einen ersten Schritt zur Anwendbarkeit der allgemeineren
Modelle (subjektiver) Wahrscheinlichkeit auf dem Gebiet der Vulnerabilität.
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