
Chapter 3

Quantum chemistry and vibrational

spectra

This chapter presents the quantum chemical results for the systems studied in this work,

FHF− (Section 3.2) and OHF− (Section 3.3). These triatomic anions and their neutral

counterparts, FHF and OHF, were assumed to maintain a collinear configuration through-

out all calculations. Since bendings were neglected, the molecules retain C∞v symmetry in

all simulations. Furthermore, the anions and their neutral counterparts were assumed to

be oriented along a space-fixed Z axis throughout all calculations, unless otherwise noted.

Two-dimensional (2D) dipole and potential energy surfaces (PES) were constructed in

bond coordinates such that the symmetric and asymmetric normal stretching modes were

considered; these results are shown for FHF− and OHF− in Sections 3.2.1 and 3.3.1,

respectively. In addition to the calculated equilibrium geometries, harmonic and anhar-

monic vibrational eigenfunctions for FHF− (Section 3.2.3) and OHF− (Section 3.3.3) will

be discussed and compared to experimental values. In this context, isotope effects will be

discussed for FDF− (Section 3.2.4) and ODF− (Section 3.3.4). Simulated IR absorption

spectra for FHF− and FDF− (Section 3.2.5), and for OHF− and ODF− (Section 3.3.5),

will be presented last.

3.1 Hamiltonian for a linear triatomic molecule

Our goal is to solve first the electronic Schrödinger equation (Eq. (2.4)), for the triatomic

anionic systems, FHF− and OHF−, and their neutral counterparts, FHF and OHF.

Recalling the sums over electrons and nuclei in the exclusively electronic Hamiltonian
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(Eq. (2.3)), M = 3 since each of these molecules contains three nuclei. For the anion

FHF−, the number of electrons is N = 20, building a closed-shell singlet. The neutral

FHF is an open-shell doublet with N = 19. OHF− has N = 19 so it also builds an

open-shell doublet, whereas its neutral counterpart OHF has N =18 and is an open-shell

triplet. The electronic Schrödinger equation will be solved for a range of linear nuclear

geometries. The nuclear coordinates are the bond distances of the two collinear bonds,

{~RA}= (R1, R2). The electronic energies that are obtained at fixed nuclear coordinates

will then be used to construct the 2D PES. The electronic problem will be solved using

ab initio methods that will be described in more detail in Sections 3.2 and 3.3. All ab

initio calculations were performed using the software program Gaussian 98 [151].

Afterwards, the nuclear Schrödinger equation (Eq. (2.8)) will be solved. Its solution

will then deliver the total wave function within the Born-Oppenheimer approximation.

The total Hamiltonian operator, consisting of kinetic and potential energy terms, for a

triatomic molecule with bond distances R1 and R2 is given as,

Ĥ = T̂(R1, R2) + V̂(R1, R2), (3.1)

where the potential energy operator V̂ depends on the nuclear coordinates, (R1, R2).

The kinetic energy operator T̂(R1, R2) describes the ro-vibrational (internal) mo-

tion of the nuclei T̂(R1, R2)≡ T̂
internal

nuc (R1, R2), and it can be approximated as the sum of

two operators, one responsible for vibrational motion and the other for rotational motion

(Eq. (2.73)):

T̂
internal

nuc (R1, R2) ≈ T̂
vib

nuc(R1, R2) + T̂
rot

nuc(R1, R2). (3.2)

To calculate the 2D vibrational wave functions and eigenenergies for the linear triatomic

molecules, the rotational kinetic energy operator will be neglected. The kinetic energy

operator describing the vibrations of the 2D linear system is then given as,
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(3.3)

where γ is the internal bond angle (γ =180◦ for collinear geometries), and m1 and m2 are

reduced masses,

mX =
mXmH

mX + mH

, X = F, O. (3.4)

The case of a vibrating and rotating molecule will not be treated in this thesis. However,

in the case of OHF−, rotational wave functions will be calculated within the rigid rotor

approximation in Section 4.4.1. In the application to follow, the total angular momentum

J = R + L + S consists of nuclear angular momentum R due to the orbiting rigid body

and electronic orbital angular momentum L; the spin angular momentum, S = 1/2, will

be neglected. The electronic contribution L=1 is considered small compared to the total
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angular momentum J . Therefore, J can be considered to consist predominantly of nuclear

angular momentum, J≈R and the total kinetic energy operator is then

T̂
rot

nuc ≈ BĴ
2

(rigid rotor) (3.5)

where B is the rotational constant and Ĵ
2

is the total angular momentum operator

squared, introduced in Section 2.5.1, i.e. T̂
rot

nuc is equivalent to Ĥr.r. from Eq. (2.200).

Next, in Section 3.2, the solutions of the electronic and nuclear Schrödinger equa-

tions for FHF− will be discussed. In Section 3.3, the electronic and nuclear problem will

be treated for OHF−.
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3.2 FHF−/FHF

The geometry optimization of FHF−, as well as calculations of harmonic vibrational fre-

quencies, was performed using the quadratic configurational interaction method, including

single and double excitations (QCISD) [105], with Dunning’s polarized valence correla-

tion consistent (cc)1 triple-split basis set d -aug-cc-pVTZ [152]. Due to the delocalized

negative charge of the anion in the 1Σ ground state, doubly-augmented diffuse functions

are required for H and F. Anharmonic vibrational frequencies are estimated from the

calculated QCISD 2D potential energy surface. The more economic QCSID method was

chosen in view of the quantitative agreement with CCSD(T) calculations of FHF− [71],

that had demonstrated good agreement with experiment [78].

3.2.1 Potential energy and dipole surfaces

The nuclear coordinates {~RA} consist of the collinear bond distances between Fa − H

and Fb − H and are labelled R1(≡ Fa − H) and R2(≡ Fb − H). For the construction of

the 2D PES for the closed-shell singlet FHF− (1Σ) and open-shell doublet FHF (2Σ), the

coordinates R1 and R2 were each varied from 0.6 to 3.0 Å over 16 grid points along one

dimension, making a total of 136(=16(16 + 1)/ 2) ab initio single energy points. Taking

advantage of the symmetry of the molecule, we obtained a square PES of 256(≡ 162) ab

initio data points for each surface. From the 256 ab initio points, a grid of N = 8192

(≡ 64 × 128) points was constructed using a bi-cubic spline, as implemented in the

program qmbound [119].

The PES for the anion and neutral are shown in Figure 3.1. The PES for the an-

ion contains a local minimum energy at R1 = R2 = 1.141 Å (marked with •). The PES

corresponding to the neutral surface is dissociative, with a transition state located

at R1 = R2 = 1.141 Å (marked with •), and with two equivalent dissociation channels

leading to identical chemical products, F + HF. The vertical energy spacing between

the minimum energy of FHF− and the transition state of FHF (at the geometry

R1 =R2 =1.141 Å) is 6.1 eV, shown schematically in Figure 3.2. The FHF− anion is

tightly bound with respect to the products HF + F−, with a binding energy of 1.9 eV, or

43.8 kcal/mol. This binding energy is in close agreement with CCSD(T) binding energy

of 44.6 kcal/mol [71]. Experimentally, the binding energy in the gas phase has been

1Correlation consistent (cc) basis sets consist of shells of functions added to a core set of atomic
Hartree-Fock functions. These added functions contribute correlation energy to the atomic calculation
which, typically, only applies to valence electrons.
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measured to be 38.6 kcal/mol [73] and ≥34.6 kcal/mol [76]. The neutral species FHF is

dissociative, with a calculated exothermicity of 0.3 eV, or 6.9 kcal/mol. To the best of

our knowledge, no experimental data pertaining to the energy profile of the neutral PES

is available for comparison.
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Figure 3.1: 2D potential energy surfaces for FHF− (left) and FHF (right). A local minimum in the
anionic PES and a transition state in the neutral PES (both marked with •) are located at R1 = R2 =
1.141 Å. Equidistant contours (∆E =1.0 eV) of the energies are relative to the global FHF− minimum
energy.
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Figure 3.2: Schematic FHF− and FHF potential energy (eV) profile along the reaction coordinate
F +HF ↔ FH + F. The minimum energy of FHF− and the transition state of FHF are located at
R1 =R2 =1.141 Å.
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Permanent dipole values for FHF− were also calculated at the QCISD level of

theory, and the 2D dipole surface is shown in Figure 3.3. Similar to the PESs, the

permanent dipole surface also contains a line of symmetry at R1 = R2, dividing—in this

case—values of opposite sign (solid vs. dashed lines in Figure 3.3). In the case of FHF−,

due to the molecule’s net charge of −1, the dipole moment depends on the frame of

reference of electron and nuclear coordinates [67]. As a result, the permanent dipole

moment must be computed with respect to its instantaneous center of mass [67].
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Figure 3.3: 2D permanent dipole moment surface for FHF−. Solid vs. dashed lines correspond to
values of opposite sign. Equidistant contours (∆µ0 =1.0 Debye) of the dipole values are relative to the
value µ0 =0 Debye at the line R1 =R2.

The transition dipole moment that couples the PESs corresponding to anionic and neu-

tral species has been set to 1 within the Condon approximation [121]. In this approx-

imation, the transition dipole moment is assumed to be independent of the nuclear co-

ordinates [121]. For a more detailed discussion of estimating ionic-to-neutral transition

dipole moments beyond the Condon approximation, see Ref. [153]. The permanent dipole

moment of the neutral surface was set equal to 0. As a result, vibrational excitations

within the PES of neutral FHF were not considered.

3.2.2 Geometry optimization and rotational constant

The harmonic QCISD and CCSD(T) F–F bond lengths, along with the computed

anharmonic QCISD and CCSD(T) values, and the experimental value, are listed in

Table 3.1. Anharmonic F–F bond lengths are calculated from the expectation values of

the F—H bond length, 〈RFH〉, allowing for averaging over features of the entire ground

state wave function. The harmonic QCISD length is calculated to be 2.273 Å, within

99% of both the harmonic CCSD(T) value of 2.282 Å [71], as well as the experimental

value of 2.278 Å [78]. The anharmonic QCISD F–F distance, 2.326 Å , and anharmonic

CCSD(T) F–F distance, 2.316 Å , are both larger than the harmonic values, as expected,
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Table 3.1: QCISD and CCSD(T), and experimental equilibrium F–F bond lengths

F–F [Å] harmonic anharmonic experiment

QCISD CCSD(T)a QCISD CCSD(T)a gasb

〈RHF〉
FHF− 2.273 2.282 2.326 2.316 2.278

〈RDF〉
FDF− — — 2.318 2.310 2.295c

aCCSD(T) [71]
bgas phase [78]
cgas phase [154]

due to averaging over the ground state wave function.

The rotational constant B of FHF− could also be obtained from the geometry op-

timization. The computed QCISD rotational constant, as well as the value calculated

from the expression B =~/2I, where I is the moment of inertia (calculated according to

Eq. (2.207), see Appendix A for a complete discussion of the calculation of the moment

of inertia) at the equilibrium bond lengths of R1 = 1.141 Å and R2 = 1.141 Å , are

listed in Table 3.2. The QCISD and calculated values2 are identical, 0.341 cm−1. The

experimental value, measured in the gas phase to be 0.342 cm−1 [78], within 99% of the

QCISD and calculated values.

Table 3.2: QCISD, calculated, and experimental FHF− rotational constant

QCISD B=~/2I experimenta

B [cm−1] 0.341 0.341 0.342

agas phase [78]

2Energies and frequencies will be listed in this chapter with the units cm−1. One should note that
the unit cm−1 is an inverse wavelength (λ−1) and is related to frequency through ν = c

λ , where c is the
speed of light and λ is the wavelength. The wavelength is related to energy, E =hν, through E = hc

λ .
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3.2.3 Eigenenergies and vibrational frequencies

From the 2D anionic PES, low-lying symmetric and asymmetric anharmonic eigenfunc-

tions were calculated for FHF− using the Fourier Grid Hamiltonian (FGH) method

(see Section 2.3.5) [112, 113]. Twelve low-lying eigenfunctions and their eigenenergies

obtained using the FGH on this square grid are shown in Figure 3.4. (A complete list of

the lowest twenty-six (Ψ0−Ψ25) eigenfunctions is given in Appendix B). The notation of

eigenfunctions Ψυ will be simplified now to just υs as, where s and as refer to symmetric

and asymmetric modes, respectively. υs 0 and υ0 as correspond to pure symmetric and

asymmetric stretching modes, respectively, whereas υs as corresponds to mixed-modes.

The symmetric functions contain nodes perpendicular to the line of symmetry, R1 =R2,

whereas the asymmetric functions contain nodal planes parallel to the line R1 =R2.

The spacings between the lowest pure-mode vibrational eigenstates, υ10←υ00 =593 cm−1

and υ01←υ00 =1448 cm−1, correspond to the fundamental symmetric ν1 and asymmetric

ν3 vibrational frequencies, respectively. The bending vibration, ν2, can not be obtained

from the 2D eigenfunctions. These anharmonic vibrational frequencies are listed in

Table 3.3, along with anharmonic values from CCSD(T) calculations [71], harmonic

CCSD(T) and QCISD values, and results from gas phase microwave experiments [78]

and solid-phase experiments [155, 156, 157] for comparison. The gas phase experiments

were performed using diode laser spectroscopy [78]. The solid phase experiments

consisted of either IR [156] or Raman [157] spectra taken of crystalline KHF2, or

FHF− in a cold (12 K), inert argon matrix [155]. The experimental values can

be regarded as exact “3D” reference values, although discrepancies between these ex-

perimental values may arise due to the various media in which the spectra were recorded.

The value of the symmetric stretching frequency, ν1(≡ υ10 ← υ00) = 593 cm−1,

agrees with the experimental value of 583 cm−1 to within 98%, and with the CCSD(T)

value of 595 cm−1 to within 99%. As expected, the anharmonic values are all lower than

the nearly identical harmonic QCISD and CCSD(T) frequencies, 649 cm−1 and 640 cm−1,

respectively. The first and second excited QCISD symmetric stretching frequencies can

be calculated from the transition υ20←υ10 and υ30←υ20 (see Figure 3.4) and are found

to be 584 cm−1 and 578 cm−1, respectively; both are smaller than the fundamental

transition (≡υ10←υ00). This decrease in energy spacing is expected from the anharmonic

model.

Larger deviations are seen between the values of the asymmetric stretching fre-

quencies. The QCISD asymmetric stretching frequency, ν3 = 1448 cm−1 is 117 cm−1

higher than the experimentally measured gas phase value of 1331 cm−1, an agreement
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Figure 3.4: 2D anharmonic vibrational eigenfunctions for FHF−, labelled υs as. The symmetric func-
tions (υs 0) contain nodes perpendicular to the line of symmetry, R1 =R2, whereas the asymmetric (υ0 as)
functions contain nodal planes parallel to the line R1 =R2. Mixed-mode functions (υs as) contain nodes
both parallel and perpendicular to the line R1 =R2. Contours correspond to wave packet density.

of ∼ 92%, and 71 cm−1 higher than the value obtained in a solid Ar matrix, 1377 cm−1,

demonstrating agreement of ∼ 95%. The QCISD value is 28 cm−1 lower than the

CCSD(T) value, an agreement of 98%. The large deviation of the QCISD and CCSD(T)
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Table 3.3: Calculated QCISD, CCSD(T), and experimental vibrational frequencies of FHF−.

FHF− experiment harmonic anharmonic

gasa solidb QCISD CCSD(T)c QCISD CCSD(T)c

Frequency [cm−1]

ν1 (sym) ≡ υ10 ← υ00 583∗ 600e 649 640 593 595

υ20 ← υ10 584 585

υ30 ← υ20 578 573

ν2 (bend) 1286 1225− 1275e 1380 1347 — —

ν3 (asym) ≡ υ01 ← υ00 1331 1377 1250 1244 1448 1476

υ02 ← υ01 1698

υ03 ← υ02 1762

(2ν1) ≡ υ20 ← υ00 1177

(3ν1) ≡ υ30 ← υ00 1755

(ν1 + ν3) ≡ υ11 ← υ00 1849 2044 1977 2007

(2ν1 + ν3) ≡ υ21 ← υ00 2602 2493 2525

(3ν1 + ν3) ≡ υ31 ← υ00 3166 2992

(2ν3) ≡ υ02 ← υ00 3146

(ν1 + 2ν3) ≡ υ12 ← υ00 3694

(3ν3) ≡ υ03 ← υ00 5090 4908

(ν1 + 3ν3) ≡ υ13 ← υ00 5643 5441

a gas phase [78]
b IR spectrum of crystalline KHF2 [156]
c CCSD(T) [71]
d solid Ar matrix [155]
e Raman spectrum of crystalline KHF2 [157]
∗ Since the frequency of the symmetric stretching band (ν1) is not directly observable experimentally,

this frequency is often estimated by subtracting the fundamental frequency of the asymmetric stretch,

(ν3), from that of the combination band (ν1 + ν3≡υ11 ← υ00), which is observed experimentally.

values from the experimental frequency is largely due to the neglect in the 2D theoretical

treatment of the bending-stretching coupling via Coriolis perturbations [67]. The

comparable values of the experimental bending frequency, ν2 = 1286 cm−1, and the

asymmetric stretching frequency ν3 = 1331 cm−1, indicate that mixing of these modes

could be significant and should be taken into account for a more accurate description of

the frequencies. Unlike the symmetric stretching frequencies, the asymmetric (QCISD

and CCSD(T)), stretching frequencies are significantly higher than the harmonic values,
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1250 (QCISD) and 1244 (CCSD(T)) cm−1. The experimental value 1331 cm−1, lies

in the middle of the harmonic and anharmonic values. These discrepancies indicate

both the inadequacy of the harmonic approximation as well as the lack of mode-mixing

in the 2D model. Inverse harmonicity can also be seen in the spacing between the

QCISD asymmetric stretch eigenfunctions (see Table 3.3); the frequency spacing between

vibrational levels increases from 1448(≡ υ01← υ00) cm−1 to 1698(≡ υ02← υ01) cm−1 and

to 1762(≡ υ03 ← υ02) cm−1. Extending the 2D model to include the bending vibration

would allow for more relaxation of the wave function and would most likely lead to closer

agreement with the experimental value of ν3.

The QCISD energy of the combination band ν1 + ν3(≡ υ11 ← υ00) = 1977 cm−1,

involving one quantum each of symmetric and asymmetric vibrations, is within 99%

of the CCSD(T) value of 2007 cm−1 and 97% of the experimental value 2044 cm−1

obtained in solid KHF2 [156]. The combination band ν1 + ν3 calculated in the gas phase

is the lowest, at = 1849 cm−1, and is within 94% of the QCISD value. The mixed-mode

2ν1 + ν3(≡υ21 ← υ00)=2493 cm−1 is also within 99% of the CCSD(T) value of 2525 cm−1

and within 96% of the value 2602 cm−1, obtained in solid KHF2 [156]. The mode

involving three quanta of symmetric stretching vibrations and one mode of asymmetric

vibration, 3ν1 + ν3(≡υ31 ← υ00), was calculated to be 2992 cm−1, within 95% of the solid

KHF2 value, while the QCISD values 3ν3 =4908 cm−1 and ν1 + 3ν3 =5441 cm−1 are both

within 96% of the solid KHF2 values of 5090 cm−1 and 5643 cm−1, respectively.

3.2.4 Isotope effects: FDF−

Isotope effects on equilibrium bond lengths and vibrational eigenfunctions were examined

by calculating QCISD vibrational eigenfunctions of FDF−. Due to the lower zero-point

energy of the heavier isotopomer, the F–D bond length is expected to be shorter than the

F–H bond length. Indeed, the anharmonic QCISD value for 〈RDF〉 is 2.318 Å , compared

to 2.326 Å for 〈RHF〉, and in 99% agreement with the anharmonic CCSD(T) value of

〈RDF〉=2.310 Å. The QCISD and calculated rotational constant for FDF− are the same

as for FHF−, B=0.332 cm−1 (see Table 3.2), since the moment of inertia is the same for

the symmetric molecules. The experimental value of the rotational constant, obtained in

the gas phase [77], is B=0.333 cm−1.

Twelve low-lying pure and mixed-mode eigenfunctions and their energies are shown

in Figure 3.5. The symmetric and asymmetric stretching frequencies, along with

CCSD(T) [71] and experimental values [77, 78, 156, 157] are listed in Table 3.4 for

comparison. The fundamental and first two excited symmetric stretching frequencies of
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FDF−, ν1 = 598(≡ υ10← υ00) cm−1, 587(≡ υ20← υ10) cm−1, and 570(≡ υ30← υ20) cm−1

are nearly identical to those of FHF−, as expected for the vibration of the heavy atoms.

The spacing between these levels also decreases slightly due to the anharmonic model.

These values are also within 99% of the CCSD(T) values of 601(≡ υ10 ← υ00) cm−1,

588(≡ υ20 ← υ10) cm−1, and 570(≡ υ30 ← υ20) cm−1, respectively [71]. The asymmetric

stretching frequencies, however, ν3 = 1002(≡ υ01 ← υ00) cm−1, 1163(≡ υ02 ← υ01) cm−1,

and 1197(≡ υ03← υ02) cm−1, are approximately 500 cm−1 lower than the corresponding

frequencies of FHF−, due to the larger mass of deuterium. As a result, the eigenstate υ01

lies lower in energy than the state υ20, unlike in the case of FHF− (cf. Figure 3.4). The

FDF− value of ν3, 1002 cm−1, agrees to within 96% of the experimental value, 965 cm−1,

obtained for FDF− in a solid argon matrix [155], and agrees to within 93% of the gas

phase value of 934 cm−1 [77]. The QCISD value agrees within 98% of the theoretical

CCSD(T) value 1023 cm−1.

Interestingly, the lowest anharmonic QCISD values for the symmetric stretching

frequency of FDF−, 598 and 587 cm−1, are slightly higher than the corresponding values

for FHF−, 593 and 584 cm−1, respectively (cf. Table 3.3). The same trend is observed

for the CCSD(T) values. Typically, the eigenfunctions of the heavier isotopomer are

expected to lie deeper than those of the lighter isotopomer. The experimental (Raman)

values available for comparison of ν1 are almost identical, i.e. ν1 = 600 cm−1 for FHF−

and ν1 = 601 cm−1 for FDF− [157]. The reverse behavior of the eigenenergies in the 2D

anharmonic models (QCISD and CCSD(T)) indicates that a 3D model may be necessary

to allow for relaxation of the wave function in the PES.
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Table 3.4: Calculated QCISD, CCSD(T), and experimental vibrational frequencies of FDF−.

FDF− experiment harmonic anharmonic

gasa solidb QCISD QCISD CCSD(T)c

Frequency [cm−1]

ν1 (sym) ≡ υ10 ← υ00 601e 649 598 601

υ20 ← υ10 587 588

υ30 ← υ20 570 570

ν2 (bend) 884− 907d 989 — —

ν3 (asym) ≡ υ01 ← υ00 934 965e 896 1002 1023

995− 1023d

υ02 ← υ01 1163 1176

υ03 ← υ02 1197

(2ν1) ≡ υ20 ← υ00 1185

(ν1 + ν3) ≡ υ11 ← υ00 1469 1597 1546 1569

(3ν1) ≡ υ30 ← υ00 1755

(2ν1 + ν3) ≡ υ21 ← υ00 2070 2071 2100

(2ν3) ≡ υ02 ← υ00 2165

(ν1 + 2ν3) ≡ υ12 ← υ00 2713

(3ν1 + ν3) ≡ υ31 ← υ00 2519 2880 2614

(3ν3) ≡ υ03 ← υ00 3561 3662

(ν1 + 3ν3) ≡ υ13 ← υ00 4217

a gas phase [78]
b IR spectrum of crystalline KDF2 [156]
c CCSD(T) [71]
d solid Ar matrix [155]
e Raman spectrum of crystalline KDF2 [157]

Similar to the inverse anharmonicity observed in FHF−, the spacing between the asym-

metric stretching vibrational levels for FDF− also increases, from 1002(≡υ01←υ00) cm−1

to 1163(≡ υ02 ← υ01) cm−1 and to 1197(≡ υ03 ← υ02) cm−1. The symmetric stretching

vibration, corresponding to the motion of the heavy end atoms, therefore follows expected

anharmonic behavior, whereas the oscillation of the light hydrogen atom between the

heavy end atoms (asymmetric stretch) resembles a particle-in-a-box model, whose energy

levels are spaced increasingly farther apart. The QCISD value of the combination band

ν1 + ν3(≡ υ11 ← υ00) was calculated to be 1546 cm−1, within 99% of the CCSD(T)

value of 1569 cm−1 and within 97% and 95% of the solid KHF2 and gas phase values,

respectively. The mixed-mode 2ν1 + ν3(≡ υ21 ← υ00) was calculated to be 2071 cm−1,
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Figure 3.5: 2D anharmonic vibrational eigenfunctions for FDF−, labelled υs as. The symmetric func-
tions (υs 0) contain nodes perpendicular to the line of symmetry, R1 =R2, whereas the asymmetric (υ0 as)
functions contain nodal planes parallel to the line R1 =R2. Mixed-mode functions (υs as) contain nodes
both parallel and perpendicular to the line R1 =R2. Contours correspond to wave packet density.

in 99% agreement with both the CCSD(T) value of 2100 cm−1 as well as the solid

KHF2 value of 2070 cm−1. The QCISD value of 3ν1 + ν3(≡ υ31 ← υ00) is calculated

to be 2880 cm−1, in 91% agreement with the CCSD(T) value of 2614 cm−1 and 87%
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agreement with the value of 2519 cm−1, obtained from an IR spectrum of solid KHF2 [156].

Knowing the asymmetric stretching vibrations of FHF− and FDF−, we can intro-

duce a “scaling” factor, which we will denote b, that relates the frequencies of the two

isotopomers through the ratio of masses. The reduced mass involved in the asymmetric

stretching vibration ν3 is given as

µas(FZF−) =
mZ 2mF

mZ + 2mF

≈ mZ (3.6)

for Z = H or D. Since both isotopomers have the same force constant, kas, one can write

kas = µas(FHF−)ν3(FHF−)2 = µas(FDF−)ν3(FDF−)2. (3.7)

This relationship implies that the scaling factor b is just the ratio between the two asym-

metric stretching frequencies,

b ≈
√

µas(FDF−)

µas(FHF−)
≈

√
mD

mH

≈ ν3(FDF−)

ν3(FHF−)
. (3.8)

A comparison of these values is shown in Table 3.5. The agreement between the scaling

Table 3.5: The scaling factor b for isotopomers FHF− and FDF− calculated using the mass of the isomers
(m), the reduced mass of the asymmetric stretching vibration (µas), and the asymmetric stretching
frequency, (ν3).

scaling factor (b)

√
(mD)/(mH) 1.41

√
(µas(FDF−)/(µas(FHF−)) 1.40

gasa solidb QCISD CCSD(T)c

ν3(FHF−)/ν3(FDF−) 1.43 1.43 1.45 1.44

agas phase [78]
bsolid Ar matrix [155]
cCCSD(T) [71]

factor of the reduced masses and that of the anharmonic asymmetric stretching vibrations

is, expectedly, quite close for the gas phase [78] and solid [155] values of 1.43, which are
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both 99% of the QCISD value of 1.45 and 99% of the CCSD(T) value 1.44 [71]. Later, in

Section 4.3.6, the scaling factor will be revisited in the discussion of designing few-cycle IR

laser pulses to drive the asymmetric stretching vibration of the heavy isotopomer, FDF−.

3.2.5 IR absorption spectra of FHF− and FDF−

For a final comparison of the two isotopomers, simulated IR absorption spectra for

FHF− and FDF− are shown in Figure 3.6; peak locations and relative intensities are

listed in Table 3.6. The absorption spectra were obtained using the method described
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Figure 3.6: Absorption spectra of FHF− (solid lines) and FDF− (dashed lines). Vibrational transitions
are indicated. Separations between peaks corresponding to the two isotopomers are labelled (1), (2), (3),
and (4).

in Section 2.3.4, in which the Fourier transform of the permanent dipole autocorrelation

function is calculated (see Eq. (2.149)); propagations were carried out for 5 ps. The

solid peaks correspond to FHF−, and the dashed peaks correspond to FDF−. The

frequencies at which the peaks occur can be correlated to transitions between pure and

mixed-mode vibrational states. One should note that peaks due to pure symmetric

stretching vibrations are absent from the spectrum since these modes are IR-inactive.

The peaks of highest intensity (1.00), at 1002 cm−1 (dashed) and 1449 cm−1 (solid),

correspond to the transition from the ground state to the lowest asymmetric stretching

vibration, υ01←υ00, of FDF− and FHF−, respectively.
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Table 3.6: Frequencies and relative intensities of FHF− and FDF− IR absorption peaks obtained from
the theoretical calculation and experiment.

Transition [cm−1] FHF− FDF−

Calculation Experiment Calculation Experiment

Freq. Int. Freq. Int. Freq. Int. Freq. Int.

ν3(≡υ01 ← υ00) 1449 1.0 1331a 1002 1.0 934a

1377b 965b

969c

ν1 + ν3(≡υ11 ← υ00) 1977 0.31 1849a 1543 0.13

2ν1 + ν3(≡υ21 ← υ00) 2492 0.06 2071 0.02

3ν1 + ν3(≡υ31 ← υ00) 2989 <0.01 2580 <0.01

(ν1 + ν3) −ν3
∗ 528 — 516a — 541 —

531d — 546d —

agas phase [78]
bsolid Ar matrix [155]
csolid Ar matrix [91]
danharmonic CCSD(T) [90]
∗ Since the frequency of the symmetric stretching band (ν1) is not directly observable experimentally,
this frequency is often estimated by subtracting the fundamental frequency of the asymmetric stretch,
(ν3), from that of the combination band (ν1 + ν3≡υ11 ← υ00), which is observed experimentally.

Less probable are transitions from the ground state to mixed-modes, and these

peaks accordingly have lower relative intensities: for FDF− at 1543 cm−1 with intensity

of 0.13 (dashed) and for FHF− at 1977 cm−1 with intensity 0.31 (solid), the peaks belong

to the υ11 ← υ00 transition. The relative intensity of the ν3 band with respect to the

combination band ν3 + ν1 is therefore 3.1:1 for FHF−, and 7.7:1 for FDF−. A gas phase

spectrum of FHF−, recorded by Kawaguchi et al., indicates that the relative intensities

of the ν3 :ν3 + ν1 bands are on the order of 4 :1 [77]. Kawaguchi et al. also observed that,

in general, the peaks corresponding to FDF− were several time weaker in intensity than

those of FHF− [77].
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The peaks at 2071 cm−1 with 0.02 intensity (dashed) for FDF− and for FHF− at

2492 cm−1 with 0.06 intensity (solid), are due to the υ21 ← υ00 transition. The peaks

with weakest relative intensities (< 0.01), for FHF− at 2989 cm−1 and for FDF− at

2580 cm−1 (overlapping in Figure 3.6 with the peak located at 2492 cm−1), correspond

to the transition to the mixed-mode υ31←υ00 with three quanta of symmetric stretching

vibration and one quantum of asymmetric stretching vibration. Agreement with the

frequencies obtained from the QCSID eigenfunctions is excellent for all visible peaks.

Although the frequency of the fundamental symmetric stretching vibration, ν1, is

not observed in the spectrum, it can be extracted from the difference of the combination

band (ν1 + ν3) and ν3, i.e. [(ν1 + ν3)− ν3], both of which are observable. From the

simulated absorption spectrum, this difference for FHF− is calculated to be 528 cm−1

(cf. Table 3.6), in 99% agreement with the CCSD(T) value 531 cm−1 [71], and 97%

agreement with the value obtained in gas phase experiment, 516 cm−1 [78]. For FDF−, the

frequency difference [(ν1 + ν3)− ν3] obtained from the simulated spectrum is 541 cm−1,

13 cm−1 higher than that of FHF− and within 99% agreement of the CCSD(T) value

of 546 cm−1 [71]. This increased frequency, compared to FHF− at 528 cm−1, is due to

the relatively smaller contribution from the asymmetric stretching vibration of FDF−

(1002 cm−1 for FHF− versus 1449 cm−1 for FDF−) due to the heavier mass of deuterium.

The resulting difference [(ν1 + ν3)− ν3] is accordingly higher for FDF− than for FHF−

The separation between peaks belonging to one isotopomer is nearly constant, and

it corresponds to quanta of symmetric stretching that separate the peaks υ01, υ11, υ21,

and υ31. The first peak separation ( 1↔) is 447 cm−1; the ratio of the frequencies of these

isotopomer peaks corresponding to the same vibration (asymmetric stretch, ν3 =υ01←υ00)

is b = 1.45, as expected from the calculated ratios listed in listed in Table 3.5. For

the peak separations ( 2↔), ( 3↔), and ( 4↔), this separation between isotopomer frequen-

cies decreases slightly to 434 cm−1, 421 cm−1, and finally 409 cm−1, due to anharmonicity.

In general, experimentally measured frequencies are lower than the simulated ones,

most likely since the real “3D” model allows for complete relaxation of the wave function.

For example, for FHF−, the calculated value of ν3 is 1449 cm−1, whereas the experimental

value is 1331 cm−1; for FDF−, ν3 =1002 cm−1 and the gas phase value is 934 cm−1.
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3.3 OHF/OHF−

The most recent theoretical investigation of OHF−(2Π) and OHF(3Π) used a complete

active space (CASSCF) procedure for subsequent multireference configuration interac-

tion (MRCI) calculations to generate a high quality three-dimensional (3D) PES for the

electronic ground state [94]. This study of the neutral surface point to the absence of a

barrier to the reaction OH(2Π) + F(2P) → O(3P) + HF(1Σ+). Earlier work constructed

the PESs using unrestricted second and fourth order Møller-Plesset perturbation theory,

UMP2 and UMP4 respectively, and then fit an analytical function to the ab initio data

at very short and very long ranges [83, 93]. These data were in good agreement with the

MRCI results. With knowledge of the accuracy of the less demanding UMP4 surfaces,

we chose to optimize the geometry of OHF−, and to construct our 2D ab initio potential

energy and permanent dipole surfaces for OHF− and OHF, at this level of theory. Simi-

lar to our treatment of FHF−, simulations of OHF− were only performed for a collinear

geometry, so bendings were neglected. Unfortunately, no experimental data to our knowl-

edge is available for comparison, so the followling discussion will only contain references

to other theoretical studies of OHF− and OHF.

3.3.1 Potential energy and dipole surfaces

In our calculations, the standard 6-31++G(d,p) basis set was used for the ground

state of the open-shell doublet anion, 2Π, and the triplet neutral, 3Π, including diffuse

functions located at the heavy atoms and hydrogen (++) to describe the anionic

character, as well as polarization functions for both the heavy atoms and hydrogen

(d,p). The nuclear coordinates {~RA} consisted of the collinear bond distances between

O–H and H–F and are denoted ROH and RHF. To construct the 2D PES, the bonds

ROH and RHF were varied in steps of 0.1 Å, from 0.6 to 3.0 Å, and from 0.6 to 4.0 Å,

respectively. A total of 850 ab initio single point energies were calculated for the anion

and neutral PESs, and the same number of permanent dipole values were calculated

for the anion. Next, one-dimensional (1D) cuts were taken along the ROH and RHF

coordinates, and a 1D cubic spline routine [158] was implemented to smooth and extend

the curves, for ROH from 3.0 Å to 4.0 Å, and for RHF from 4.0 Å to 5.0 Å; a total of

918 points was obtained. The extension of the grid was performed to provide enough

surface for the dissociative wave packet dynamics simulations. For the calculation of

eigenfunctions, a grid of N =8192 (≡64× 128) points was constructed from the 918 data

points using a bi-cubic spline, as implemented in qmbound [119]. The coordinate ROH is

described with 128 grid points, while the RHF coordinate is discretized in 64 grid intervals.
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The 2D anion and neutral PES are shown in Figure 3.7. Unlike the PESs of

FHF− and FHF, the surfaces of OHF− and OHF are asymmetric. The anionic PES
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Figure 3.7: Potential energy surfaces for OHF− (left) and OHF (right). A minimum in the anionic
PES (marked with •) is located at ROH =1.07 and RHF =1.38 Å. The neutral PES contains a transition
state (marked with •) at ROH = 1.10 Å and RHF = 1.45 Å. Equidistant energy contours (∆E = 0.5 eV)
are relative to the global OHF− minimum energy.

(Figure 3.7, left) contains a local minimum (marked with •) at ROH = 1.07 Å and

RHF = 1.38 Å. The neutral PES (Figure 3.7, right) is unbound, with a transition state

(marked with •) located at ROH = 1.10 Å and RHF = 1.45 Å, and dissociation products

OH + F and O + FH. One should note that the contours of the neutral PES indicate a

significant slope in the direction of the products O + HF. Indeed, previous investigations

of the OHF dissociation dynamics indicated that the topology of the neutral PES

heavily favors the products O + HF, with a branching ratio of 0.7 : 0.3 with respect

to the products OH + F [93]. Let us now examine the potential energy profile along

the reaction coordinate O +HF↔OH + F for the anion and neutral species in more detail.

Previous UMP2 investigations of the 2D PES of OHF− by Bradforth et al. predicted that

the products OH + F− and O− + HF lie 1.48 eV and 2.05 eV higher, respectively, than

the minimum energy at the geometry ROH =1.08 Å and RHF =1.35 Å [83]. Bradforth et

al. also concluded that the barrier height 12 kcal/mol of the neutral reaction OH + F

→ O + HF, calculated by Sloan et al. [92], was overestimated. Based on experimental

photo-electron spectra, Bradforth et al. estimated its value to lie within 2 − 9 kcal/mol
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(0.09 − 0.39 eV) [83]; they assumed that the location of the barrier, as calculated in

Ref. [92], ROH=1.08 Å and RHF=1.32 Å , was correct. A more recent investigation by

Gómez-Carrasco et al. places the barrier to the neutral reaction OH + F → O + HF at

ROH=1.46 Å and RHF=1.02 Å, albeit for a bent geometry, with an angle of γ =109◦ [94].

Dixon et al.—who used an analytical fit to extrapolate ab initio UMP4 energy values

at short (< 0.8 Å) and long ranges (> 4.0 Å)—calculated the saddle point and OH + F

products of the neutral species OHF(3Π) to lie 1.90 eV and 1.47 eV above the energy of

the O + HF products, respectively [93].

In Figure 3.8, a sketch of our calculated UMP4 potential energy profile for OHF−

and OHF is shown. On the anionic potential energy curve, the products OH + F− and

O− + HF lie 1.49 eV and 2.80 eV higher than the minimum, respectively. The minimum

UMP4 energy of the anion is located at the geometry ROH = 1.07 Å and RHF = 1.38 Å.

Figure 3.8: Schematic OHF− and OHF potential energy (eV) profile along reaction coordinate
O +HF ↔ OH + F. The minimum energy of OHF− is located at ROH = 1.07 Å and RHF = 1.38 Å,
and the transition state of OHF is located at ROH =1.10 Å and RHF =1.45 Å.

The energy of the neutral system at the minimum geometry is 4.90 eV. The transition

state in the neutral PES is located at a slightly different geometry, namely ROH =1.10 Å

and RHF = 1.45 Å, and the potential energy of OHF at the transition state is 5.10 eV.

On the neutral PES, the barrier to the reaction OH + F → O + HF is calculated to be

(0.32 − 0.29)=0.03 eV (0.7 kcal/mol), smaller than the range predicted by Bradforth et

al., 0.09−0.39 eV [83]. The energy difference between the OH + F products and O + HF

products is 0.29 eV, smaller than the value 1.47 eV calculated by Dixon et al. Similarly,

our barrier height of 0.32 eV to the reaction OH + F → O + HF is also more than

1 eV smaller than the value 1.90 eV calculated by Dixon et al. These discrepancies in

energy values could be due to the analytical fitting procedure used by Dixon et al. to

obtain asymptotic potential energy values of the neutral OHF. The dissociation products

OH + F and O + HF are located 5.07(= 4.78 + 0.29) eV and 4.78 eV higher than the
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minimum energy of the anion OHF−, respectively.

A similar asymmetry in dissociation channels can be seen in the 2D permanent

dipole moment surface of OHF−, shown in Figure 3.9. As in the case of FHF−, due

to the net charge of OHF− of −1, the permanent dipole moment has been calculated

with respect to its center of mass. A high density of contours near ROH > 2 Å, and
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Figure 3.9: 2D permanent dipole moment surface for OHF−. Equidistant contours (∆µ0 =0.5 Debye)
of the dipole values are relative to the value µ0 = 0.01 Debye at the equilibrium geometry, ROH = 1.07
and RHF =1.38 Å.

RHF <2 Å suggests a steep surface in this region. Later, during wave packet simulations,

we will see how the topology of both the PES and the permanent dipole surface strongly

drives the reaction toward the O + HF exit channel. Similar to the case of FHF−, the

transition dipole moment that couples the anionic and neutral PESs, was set to 1 within

the Condon approximation [121]. Also, the permanent dipole of the neutral system was

set equal to 0, so vibrational transitions within the neutral PES were not considered in

the forthcoming wave packet dynamics simulations.

3.3.2 Geometry optimization and rotational constant

Table 3.7 contains the computed F—H and O—H equilibrium bond lengths. Harmonic

UMP4 geometry optimizations of collinear OHF− yield an O—H bond length of 1.07 Å

and an F—H bond length of 1.38 Å. These bond length values are in good agreement

with previous harmonic UMP2 results that calculated an O—H bond length of 1.08 Å

and an F—H bond length of 1.35 Å , agreement of 99% and 98%, respectively [83].

3D MRCI/CASSCF calculations also confirmed the UMP4 results with an estimated
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Table 3.7: 2D harmonic UMP4 and UMP2, 3D MRCI, and 2D anharmonic UMP4 O–H and F–H
equilibrium bond lengths

OHF− bond lengths [Å] harmonic anharmonic

UMP4 UMP2
a

MRCI
b

UMP4

ODF−

〈ROH〉 〈ROD〉
O–H 1.07 1.08 1.08 1.12 0.85

〈RFH〉 〈RFD〉
F–H 1.38 1.35 1.32 1.26 1.10

aUMP2 [83]
b3D MRCI [95]

ROH = 1.08 Å and RHF = 1.32 Å [95]. Anharmonic O–H and F–H bond lengths were

calculated in the same manner as described for FHF− (cf. Section 3.2), namely by

computing the expectation values 〈ROH〉 and 〈RFH〉 over the entire anharmonic UMP4

ground state wave function. These calculated values, ROH = 1.12 Å and RHF = 1.26 Å ,

differ slightly from the harmonic values. In particular, the anharmonic ROH is larger

than the harmonic values, demonstrating agreement within 96% of the harmonic values,

1.04 Å (UMP4), 1.08 Å (UMP2 [83] and MRCI [94]). The anharmonic RHF agrees to

within 91% of the harmonic value of 1.38 Å. Discrepancies between the anharmonic

UMP4 values and the harmonic and anharmonic MRCI values can arise due to the

shallow nature of the anion PES, which causes spreading of the wave function. Averaging

the wave function over the entire grid may therefore lead to deviations from the geometry

observed near the minimum, or the equilibrium bond lengths. Let us now turn our

attention to the vibrational eigenfunctions and eigenenergies of OHF−, as obtained from

the 2D anionic PES.

From the UMP4 geometry optimization, the rotational constant B of OHF− could

also be obtained. The computed UMP4 rotational constant, as well as the value

calculated from the expression B = ~/2I, where I is the moment of inertia (calculated

according to Eq. (2.207), see Appendix A for a complete discussion of the calculation

of the moment of inertia) at the equilibrium bond lengths of ROH = 1.07 Å and

RHF =1.38 Å , are listed in Table 3.8. The calculated value 0.323 cm−1 is within 98% of

the UMP4 value of 0.328 cm−1. The value B =0.33 cm−1 will be used in the simulations

of rotational wave packets in Section 4.4.1. To our knowledge, no experimental value is
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available for comparison.

Table 3.8: UMP4 and calculated OHF− rotational constant

UMP4 B=~/2I

B [cm−1] 0.328 0.323

3.3.3 Eigenenergies and vibrational frequencies

Anharmonic 2D vibrational eigenstates (υs as) and eigenenergies for OHF− were ob-

tained from the 2D PES, using the Fourier Grid Hamiltonian (FGH) method (see

Section 2.3.5) [112, 113]. Twelve low-lying states are depicted in Figure 3.10, and the

corresponding eigenenergies are also listed in Table 3.9, along with 2D UMP4 values,

anharmonic UMP2 values [83], and 3D MRCI values [94], for comparison. (A complete

list of the lowest twenty-six (Ψ0 − Ψ25) eigenfunctions is given in Appendix B). The

3D MRCI model consisted of stretching and bending vibrations, defined in Jacobi

coordinates [95]. These coordinates, as defined in Ref. [95], consist of the HF internuclear

distance, rHF, the distance between the HF center of mass and the O atom, RO−HF, and

the angle between these two vectors, γrR. The motion of the HF center of mass with

respect to the O atom, RO−HF, can be considered roughly analogous to the 2D symmetric

stretching vibration (ν1) of the heavy end atoms, and the motion of H and F, described

by the coordinate rHF, can be compared to the asymmetric stretching vibration (ν3).

UMP2 frequencies [83] were obtained in a similar set of coordinates, namely considering

a fixed ROF distance and then the vibration along the coordinate ROH. A Morse

potential was then fit along the ROH coordinate at the equilibrium ROF geometry of

1.08 + 1.35 = 2.43 Å, and the UMP2 asymmetric stretching wave functions were calcu-

lated. In the following discussion, we will compare our calculated frequencies with the

results of these studies, although discrepancies may arise due to the different treatments

of the coordinate system. In general, however, a 3D model should provide a better

description of the system since relaxation of the wave function along all normal modes

is possible. Nonetheless, experimental data would be required for a definitive comparison.

The anharmonic value of the symmetric stretching vibration, obtained from the

vibrational eigenfunctions, 496(= υ10← υ00) cm−1, is 19 cm−1 higher than the harmonic
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Figure 3.10: 2D anharmonic vibrational eigenfunctions for OHF−, labelled υs as. The symmetric
functions (υs 0) contain nodes perpendicular to the line R1 =R2, whereas the asymmetric (υ0 as) functions
contain nodal planes parallel to the line R1 =R2. Mixed-mode functions (υs as) contain nodes both parallel
and perpendicular to the line R1 =R2. Contours correspond to wave packet density.

UMP4 symmetric stretching frequency, 477 cm−1 and it is 63 cm−1 higher than the

anharmonic UMP2 value of 433 cm−1, agreement of 87%. The anharmonic value

496 cm−1 agrees to 99% of the MRCI value of 500 cm−1 [95].
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Table 3.9: 2D harmonic UMP4, 2D anharmonic UMP2 and UMP4, and 3D MRCI vibrational frequen-
cies of OHF−

OHF− harmonic anharmonic

UMP4 UMP2a UMP4 MRCIb

Frequency [cm−1]

ν1 (sym) ≡ υ10 ← υ00 477 433 496 500

υ20 ← υ10 450

υ30 ← υ20 421

ν2 (bend) 1059, 1238 1064, 1225 — 2016

ν3 (asym) ≡ υ01 ← υ00 1698 2015 1679 1613

υ02 ← υ01 1543

υ03 ← υ02 1658

(2ν1) ≡ υ20 ← υ00 949

(3ν1) ≡ υ30 ← υ00 1367

(ν1 + ν3) ≡ υ11 ← υ00 2293

(2ν1 + ν3) ≡ υ21 ← υ00 2881

(2ν3) ≡ υ02 ← υ00 3222

(3ν1 + ν3) ≡ υ12 ← υ00 3504

(ν1 + 2ν3) ≡ υ31 ← υ00 3761

(3ν3) ≡ υ03 ← υ00 4880

(ν1 + 3ν3) ≡ υ13 ← υ00 5431

a UMP2 [83]
b 3D MRCI in Jacobi coordinates [95]

Anharmonic bending frequencies (ν2) can not be calculated from the 2D PES, but

harmonic UMP4 bending frequencies, 1059 cm−1 and 1238 cm−1, were compared

with UMP2 bending frequencies [83], 1064 cm−1 and 1225 cm−1, and found both to

agree to within 99%. The bending vibration obtained from the 3D MRCI calcula-

tions, 2016 cm−1, corresponds to the bending of RO−HF with respect to rHF, as defined

in Ref. [95], so the unusually high frequency may be an unreliable number for comparison.

Large discrepancies are also observed in the computed asymmetric stretching

ν3(υ01 ← υ00) frequencies. Eigenfunctions obtained from a Morse potential fit to

UMP2 calculations gives a value ν3=2015 cm−1 [83], almost 300 cm−1 higher than the

harmonic and anharmonic UMP4 values of 1698 and 1679 cm−1, respectively. The MRCI

value, 1613 cm−1, is approximately 50 cm−1 lower than the UMP4 values, agreement

of 96%. The unusually high UMP2 frequency, 2015 cm−1, may therefore be overestimated.
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The spacing between symmetric stretching functions decreases, from 496(=υ10←υ00) cm−1

to 450(= υ20 ← υ10) cm−1, to 421(= υ30 ← υ20) cm−1, due to anharmonicity. The

spacing between the asymmetric stretching eigenfunctions also initially decreases,

from 1679(= υ01 ← υ00) cm−1 to 1543(= υ02 ← υ01) cm−1, but then increases to

1658(= υ03← υ02) cm−1. This mixture of anharmonicity and inverse anharmonicity may

arise due to fluctuations in the shape and steepness of the splined 2D PES.

3.3.4 Isotope effects: ODF−

Isotope effects were examined for the heavy isotopomer, ODF−. Twelve low-lying

vibrational eigenfunctions and their eigenenergies are shown in Figure 3.11. From the

ground state vibrational wave function, υ00, anharmonic O–D and F–D bond lengths

〈ROD〉 and 〈RFD〉 could be computed. These values, listed in the last column of Table 3.7,

were calculated to be 0.85 Å and 1.10 Å , respectively. Both values are smaller than the

corresponding anharmonic OHF− bond lengths of 1.12 Å and 1.26 Å, respectively, as

expected for the heavier isotope with a lower zero-point energy. The UMP4 rotational

constant for ODF−, B = 0.337 cm−1, is larger than that of OHF−, 0.328 cm−1 (see

Table 3.8), since the moment of inertia is smaller for the heavier isotopomer with shorter

bond lengths. To our knowledge, no experimental value is available for comparison.

The first vibrational overtones of ODF− are listed in Table 3.10, along with har-

monic and anharmonic UMP4 frequencies. The fundamental symmetric and asymmetric

stretching frequencies, ν1 = 464(≡ υ10 ← υ00) cm−1 and ν3 = 1211(≡ υ01 ← υ00) cm−1,

respectively, of ODF− are lower than those of OHF−. In general, the heavier iso-

tope generates deeper-lying eigenfunctions than those of its lighter counterpart. The

first excited symmetric stretching frequency of ODF− is 424(≡ υ20 ← υ10) cm−1,

32 cm−1 lower than that of OHF−. The second excited symmetric stretching frequency,

447(≡ υ30 ← υ20) cm−1, demonstrates inverse anharmonicity and is larger than the first

overtone. From Figure 3.11, one also can see that whereas the first two symmetric

stretching eigenfunctions are dominated by stretching along the RDF bond, the third

symmetric stretching eigenfunction, υ30, is slanted in the direction of the ROD coordinate

and thus contains asymmetric stretching character as well. This mixing of stretching

modes may lead to the observed inverse anharmonicity in the symmetric stretching

frequencies.

The isotope effect is even more apparent in the asymmetric stretching frequencies

involving the motion of the heavy deuterium between the end atoms. The fundamental



98 Quantum chemistry and vibrational spectra

R
D

F
  [

Å
]

υ00

E/hc=847 cm−1

1

1.2

1.4

1.6

1.8

R
D

F
  [

Å
]

υ01

E/hc=2058 cm−1

1

1.2

1.4

1.6

1.8

υ10

E/hc=1311 cm−1
υ20

E/hc=1735 cm−1

υ30

E/hc=2182 cm−1
υ11

E/hc=2712 cm−1

R
D

F
  [

Å
]

υ02

E/hc=3106 cm−1

1

1.2

1.4

1.6

1.8

ROD  [Å]

υ13

E/hc=4891 cm−1

0.8 1 1.2 1.4 1.6 1.8

υ21

E/hc=3288 cm−1

R
D

F
  [

Å
]

ROD  [Å]

υ12

E/hc=3911 cm−1

1

1.2

1.4

1.6

1.8

0.8 1 1.2 1.4 1.6 1.8

υ31

E/hc=3608 cm−1

ROD  [Å]

υ03

E/hc=4341 cm−1

0.8 1 1.2 1.4 1.6 1.8

Figure 3.11: 2D anharmonic vibrational eigenfunctions for ODF−, labelled υs as. The symmetric
functions (υs 0) contain nodes perpendicular to the line R1 =R2, whereas the asymmetric (υ0 as) functions
contain nodal planes parallel to the line R1 =R2. Mixed-mode functions (υs as) contain nodes both parallel
and perpendicular to the line R1 =R2. Contours correspond to wave packet density.

and first two excited asymmetric stretching frequencies of ODF−, 1211(≡υ01 ← υ00) cm−1,

1048(≡ υ02 ← υ01) cm−1, and 1235(≡ υ03 ← υ02) cm−1, are 468 cm−1, 495 cm−1, and
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423 cm−1 lower than those of OHF−, respectively. The asymmetric stretching eigen-

functions also demonstrate a mixture of anharmonicity and inverse harmonicity. The

spacing between vibrational states initially decreases from 1211(= υ01 ← υ00) cm−1 to

1048(= υ02← υ01) cm−1, and then increases to 1235(= υ03← υ02) cm−1, a pattern similar

to that found in OHF−. This mixture of anharmonicity and inverse anharmonicity is

attributed to the irregular topology of the 2D PES. Finally, the combination bands

listed in Table 3.10 are all lower in energy than the corresponding bands of OHF−

(cf. Table 3.9).

Table 3.10: 2D harmonic UMP4 and anharmonic UMP4 vibrational frequencies of ODF−

ODF− harmonic anharmonic

UMP4 UMP4

Frequency [cm−1]

ν1 (sym) ≡ υ10 ← υ00 462 464

υ20 ← υ10 424

υ30 ← υ20 447

ν2 (bend) 760, 889 —

ν3 (asym) ≡ υ01 ← υ00 1258 1211

υ02 ← υ01 1048

υ03 ← υ02 1235

(2ν1) ≡ υ20 ← υ00 888

(3ν1) ≡ υ30 ← υ00 1335

(ν1 + ν3) ≡ υ11 ← υ00 1865

(2ν3) ≡ υ02 ← υ00 2259

(2ν1 + ν3) ≡ υ21 ← υ00 2441

(3ν1 + ν3) ≡ υ31 ← υ00 2761

(ν1 + 2ν3) ≡ υ12 ← υ00 3064

(3ν3) ≡ υ03 ← υ00 3494

(ν1 + 3ν3) ≡ υ13 ← υ00 4044

The ratio of asymmetric stretching frequencies, ν3(OHF−)/ν3(ODF−) = 1.39, is

identical to the predicted ratio from the mass scaling factor for the asymmetric stretch,√
(µas(ODF−)/(µas(OHF−))=1.39. These calculated scaling factors are listed in Table

3.11.
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Table 3.11: The scaling factor b for isotopomers OHF− and ODF− calculated using the mass of
the isomers (m), the reduced mass of the asymmetric stretching vibration (µas), and the asymmetric
stretching frequency, (ν3).
(∗) Anharmonic frequencies obtained at the UMP4 level of theory.

scaling factor (b)

√
(mD)/(mH) 1.41

√
(µas(ODF−)/(µas(OHF−)) 1.39

ν3(OHF−)/ν3(ODF−)(∗) 1.39

3.3.5 IR absorption spectra of OHF− and ODF−

Finally, we consider the simulated IR absorption spectra of OHF− and ODF− to compare

absorption intensities and vibrational transition probabilities. The absorption spectra

for OHF− and ODF− are shown in Figure 3.12; they were calculated in the same manner

as the FHF− spectra (cf. Figure 3.6), and over a propagation period of 5 ps. The peak

locations and relative intensities are listed in Table 3.12; to the best of our knowledge,

no experimental data is available for comparison. Unlike the FHF− and FDF− spectra,
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Figure 3.12: Absorption spectra of OHF− (solid lines) and ODF− (dashed lines). Vibrational transi-
tions are indicated.
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Transition [cm−1] OHF− ODF−

Absorption spectrum Absorption spectrum

Freq. Int. Freq. Int.

ν1(≡υ10 ← υ00) 509 0.03 474 0.13

ν3(≡υ01 ← υ00) 1711 1.00 1270 1.00

3ν1(≡υ30 ← υ00) 1399 0.01 1371 0.61

ν1 + ν3(≡υ11 ← υ00) 2354 0.13 1950 0.05

2ν1 + ν3(≡υ21 ← υ00) 2958 0.04 2377 0.18

Table 3.12: Frequencies and relative intensities of OHF− and ODF− IR absorption peaks obtained
from theoretical UMP4 calculation.

the OHF− and ODF− spectra demonstrate a more complicated structure. In general, the

larger number of peaks, as well as the numerous peaks of small intensity (< 0.05), most

likely arises due to the asymmetric nature of the molecule and its stretching vibrations.

Several low intensity peaks corresponding to vibrational transitions to mixed-mode states

are also visible. Unlike in the case of FHF−, the symmetric stretching vibration ν1 is now

IR active since the wave function is no longer symmetric, and it gives rise to low-intensity

peaks.

Whereas with FHF−/FDF−, the peaks corresponding to the heavier isotopomer

FDF− are all weaker than those of FHF−, this trend is not observed with OHF−/ODF−.

Specifically, ODF− peaks corresponding to transitions involving more symmetric stretch-

ing quanta (ν1) than asymmetric stretching quanta (ν3) are more intense than those

of OHF−. This phenomenon can be analyzed by comparing the symmetric stretching

eigenfunctions of the two isotopomers, e.g. υ30 (cf. Figures 3.10 and 3.11). One sees that

υ30 of OHF− is localized along the RHF bond, with almost no mixing with ROH. The wave

function υ30 of ODF−, on the other hand, is noticeably slanted toward ROD, similar to

the behavior of the asymmetric stretching eigenfunctions. In other words, the symmetric

stretching eigenfunctions of ODF− contain more asymmetric stretching character than

do the symmetric stretching functions of OHF−. This trend is observed for all ODF−

eigenfunctions containing symmetric stretching quanta. Since the most intense peaks in

the absorption spectra of both species are due to the asymmetric stretching vibration, ν3,

one can assume that transitions to states containing asymmetric stretching character are

most probable. Therefore, we attribute the intense peaks of ODF− containing quanta of

ν1 to the asymmetric stretching character of these functions. Let us now continue with a
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quantitative analysis of all the absorption peaks.

The peaks of highest relative intensity (1.00) correspond to the asymmetric stretching

vibration ν3(≡υ01←υ00) for ODF− at 1270 cm−1 (dashed), and for OHF− at 1711 cm−1

(solid). The medium intensity (0.61) peak at 1371 cm−1 belonging to ODF− is due to

a transition from υ00 to the third excited symmetric stretching eigenstate, υ30, which

also contains asymmetric stretching character (see Figure 3.11). The corresponding peak

(υ30← υ00) for OHF− is located at 1399 cm−1 and has a very weak relative intensity of

0.01, most likely since it contains less asymmetric stretching character (see Figure 3.10).

The medium (0.13) intensity peak at 2354 cm−1, belonging to OHF− (solid), can be

assigned to the combination band ν1 + ν3(≡ υ11 ← υ00), and the corresponding peak

for ODF− is located 404 cm−1 lower at 1950 cm−1, with a relative intensity 0.05. The

peak at 2377 cm−1 belonging to ODF− (dashed), 0.18 relative intensity, is assigned to

the transition 2ν1 + ν3(≡ υ21 ← υ00), and the corresponding peak for OHF− (solid) is

located 581 cm−1 higher at 2958 cm−1 with relative intensity of 0.04. Finally, the low

intensity peaks near 500 cm−1 correspond to the first symmetric stretching frequency,

ν1(≡υ10←υ00), and are calculated to be 474 cm−1, with relative intensity 0.13 for ODF−

(dashed) and 509 cm−1, with relative intensity 0.03, for OHF− (solid).




