
Chapter 2

Theory

This chapter highlights theoretical concepts that are relevant to the quantum chemi-

cal and quantum dynamic investigations presented in this thesis. The time-independent

Schrödinger equation will be introduced in Section 2.1, after which the electronic and

nuclear Schrödinger equations will be treated separately, within the Born-Oppenheimer

approximation. In Section 2.2, solutions to the electronic (Section 2.2.1) and nuclear (Sec-

tion 2.2.2) Schrödinger equations will be presented. The former will involve an overview

of common approaches in the field of ab initio quantum chemistry, and the latter will

focus on numerical methods used to calculate nuclear wave functions and correspond-

ing energies. The time-dependent nuclear Schrödinger equation (TDSE) is reviewed in

Section 2.3, including a discussion of numerical methods for solving the TDSE. Finally,

angular momentum in quantum mechanics will be reviewed in Section 2.4, focusing on

the application of orienting a rigid rotor with the help of an external electric field.

2.1 The time-independent Schrödinger equation

In the absence of spin-orbit coupling, and neglecting other relativistic interactions, the

time-independent Schrödinger equation is given as,

Ĥ|Φtot〉 = Etot|Φtot〉 (2.1)
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where Etot is the total energy, and |Φtot〉 is the total wave function. The molecular Hamil-

tonian for N electrons and M nuclei is
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. (2.2)

ZA is the atomic number of nucleus A and −e is the charge of the electron. RAB = |~RAB|
is the distance between the Ath and Bth nucleus, riA = |~riA| is distance between the ith

electron and Ath nucleus, and the distance between the ith and jth electrons is rij. The

first two terms in Eq. (2.2) compose the operator for the kinetic energy, T̂; the potential

energy operator, V̂, is comprised of repulsive and attractive terms. As the separation

between the charged electrons and nuclei goes to infinity (RAB →∞, riA →∞, rij →∞),

these three potential energy terms go to zero, corresponding to the zero level of potential

energy.

2.1.1 Born-Oppenheimer approximation

The Schrödinger equation (Eq. 2.1) cannot be solved exactly for systems larger than

H2
+. To circumvent this problem, one solves the equation by separating electronic and

nuclear motion. Due to the significant difference in mass between an electron (me ∼
10−31 kg) and nucleus (mnuc ∼ 10−27 kg), the nuclei can be considered stationary on the

time scale of electronic motion. This approximation of separating electronic and nuclear

motion is known as the Born-Oppenheimer approximation [98] and holds in general if

(me/mnuc)
1/4 ¿ 1. The Born-Oppenheimer approximation thus allows us to solve the

electronic and nuclear problems discretely. We will now proceed to consider these two

problems separately.

2.1.2 Electronic Schrödinger equation

In order to solve the electronic Schrödinger equation within the Born-Oppenheimer ap-

proximation [98], the nuclei are considered fixed on the time scale of electronic motion.

One is then able to neglect the nuclear kinetic energy term from Eq. (2.2) and consider
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the nuclear repulsion constant. The remaining terms of the Hamiltonian in Eq. (2.2) form

the exclusively electronic Hamiltonian, which can be written as [99],

Ĥel = − ~2

2me

N∑
i=1

∇2
i −

N∑
i

M∑
A

ZAe2

4πε0riA

+
N∑
i

N∑
j>i

e2

4πε0rij

. (2.3)

The electronic Schrödinger equation is then just

ĤelΦel = EelΦel, (2.4)

where Eel is the electronic energy and Φel is the electronic wave function,

Φel = Φel

(
{~ri}; {~RA}

)
(2.5)

which depend explicitly on the electronic coordinates {~ri} but parametrically on the

nuclear coordinates {~RA}. The total energy for fixed nuclei, also known as the potential

energy for a given electronic state, V̂el

(
{~RA}

)
, consists of the electronic energy Eel and

a constant nuclear repulsion term:

V̂el

(
{~RA}

)
= Eel

tot

(
{~RA}

)
= Eel

(
{~RA}

)
+

M∑
A=1

M∑
B>A

ZAZBe2

4πε0RAB

. (2.6)

The notation Eel
tot emphasizes that the total energy, in general, depends on the electronic

state of the system.

2.1.3 Nuclear Schrödinger equation

In the same manner in which the electronic problem was solved, the nuclear portion of the

Schrödinger equation can be solved by invoking the Born-Oppenheimer approximation.

Since the electrons move much faster than the nuclei, the electronic coordinates can

be replaced by values obtained by averaging over the electronic wave function. In this

effective electronic field, the nuclear Hamiltonian can be expressed [99]:

Ĥ
el

nuc = −~
2

2

M∑
A=1

1

mA

∇2
A + Eel

(
{~RA}

)
+

M∑
A=1

M∑
B>A

ZAZBe2

4πε0RAB︸ ︷︷ ︸
V̂el({~RA})

. (2.7)

The solutions to the nuclear Schrödinger equation for a given electronic state,

Ĥ
el

nucΦ
el
nuc = Eel

nucΦ
el
nuc (2.8)

are the set of nuclear wave functions Φel
nuc that depend on the nuclear coordinates {~RA},

and in general, on time:

Φel
nuc = Φel

nuc

(
{~RA}; t

)
(2.9)
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and Eel
nuc is now the total energy in the Born-Oppenheimer approximation (≡Etot from

Eq. (2.1)) and contains electronic, translational, vibrational, and rotational energy. The

total time-dependent wave function within the Born-Oppenheimer approximation is then

the product of the electronic and nuclear wave functions, in which the electronic wave

function is considered time-independent and the nuclear wave function is explicitly time-

dependent:

Φtot

(
{~ri}; {~RA}; t

)
= Φel

(
{~ri}; {~RA}

)
Φel

nuc

(
{~RA}; t

)
. (2.10)

For stationary states, the time-dependence of the nuclear wave packet is explicitly given

as

Φel
nuc

(
{~RA}; t

)
= Φ̃el

nuc

(
{~RA}

)
· e−Eel

nuct/~, (2.11)

with nuclear eigenstates Φ̃el
nuc

(
{~RA}

)
and eigenenergies Eel

nuc. Later, in Chapter 3, these

eigenstates will be calculated for the systems FHF− and OHF−, and the notation “ ˜ ”

will be dropped for simplicity. In Chapter 4, we shall consider the time evolution of

non-stationary wave packets.

The nuclear wave functions Φel
nuc

(
{~RA}; t

)
depend on the electronic state, as de-

noted by the superscript el. In the remainder of this thesis, however, only the electronic

ground state will be considered, i.e. el = 0, so the superscript will be dropped for the

sake of simplicity.
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2.2 Solving the Schrödinger equation

We now turn our attention to methods used for solving the electronic (Eq. (2.4)) and

nuclear (Eq. (2.8)) Schrödinger equations. Reviewing Eq. (2.7), one sees that the energy

obtained by solving the electronic problem provides a potential energy for nuclear motion.

Thus, solving the electronic problem will naturally provide us with the framework within

which to solve the nuclear Schrödinger equation. Accordingly, we will review the electronic

problem first, limiting the discussion to methods that are germane to this work.

2.2.1 Solutions to the electronic problem

Hartree-Fock

Recall the problem we are interested in, Eq. (2.4). The electronic Hamiltonian, Ĥel, can

be solved exactly for hydrogen, and very accurate wave functions have been calculated

for helium and lithium. For atoms containing many electrons, however, obtaining highly

accurate wave functions is nontrivial. Calculations often rely on the Hartree-Fock method

in which an approximate antisymmetric wave function—or Slater determinant—is con-

structed from one-electron functions and then optimized [99]. For an N -electron system,

this determinant is given as:

|Ψ0〉 =
1√
N !

∣∣∣∣∣∣∣∣∣

χ1(~x1) χ2(~x1) · · · χN(~x1)

χ1(~x2) χ2(~x2) · · · χN(~x2)

· · · · · · · · · · · ·
χ1(~xN) χ2(~xN) · · · χN(~xN)

∣∣∣∣∣∣∣∣∣
. (2.12)

The notation |Ψ0〉 is used now to distinguish the approximate wave function from the

exact electronic wave function |Φel〉 from Eq. (2.5). The rows of the determinant are

labelled by electrons, and the columns are labelled by orbitals. The factor (N !)−1/2 is a

normalization factor and χi(~xi) represent occupied spin orbitals that are constrained to

be orthonormal,

〈χi|χj〉 = δij. (2.13)

These spin orbitals have the form

χ(~x) =





ψ(~r)α($)

or

ψ(~r)β($)

(2.14)

where ~x is a coordinate that includes spatial (~r) and spin ($) coordinates [99]. The

spatial orbital ψ(~r) is a function of the position vector ~r; the orthonormal spin functions
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α($) and β($), correspond to spin up (↑) and spin down (↓). In general, given a

set of K spatial orbitals, {ψi|i=1, 2, . . . , K}, one can form a set of 2K spin orbitals,

{χi|i=1, 2, . . . , 2K}.

The single determinant of Eq. (2.12), written in shorthand with just the diagonal

elements and including the normalization constant, |Ψ0〉= |χ1χ2 · · ·χN〉, is the simplest

possible antisymmetric wave function to describe an electronic state of N electrons, e.g.

the ground state. The variation principle, applied to this single antisymmetric wave

function, states that the best determinant is that which gives the lowest Hartree-Fock

electronic energy EHF ,

EHF = 〈Ψ0|Ĥel|Ψ0〉, (2.15)

where |Ψ0〉 denotes the electronic ground state wave function. The optimization relies

on minimizing the electronic energy EHF with respect to the set of single-electron spin

orbitals χ(~xi). The eigenvalue problem that can be formulated is [99]:

f̂(~xi)χ(~xi) = εiχ(~xi), (2.16)

where εi is the energy of the ith orbital. Eq. (2.16) is referred to as the Hartree-Fock

equation and f̂(~xi) is an effective one-electron operator, called the Fock operator, which

has the form,

f̂(~xi) = − ~2

2me

∇2
i −

M∑
A=1

ZAe2

4πε0riA︸ ︷︷ ︸
ĥ(~xi)

+VHF (~xi). (2.17)

The first and second terms in Eq. (2.17) compose the one-electron core Hamiltonian, ĥ(~xi)

for the ith electron, where the first term is just the kinetic energy of the ith electron, and

the second term is the potential energy for the attraction between the ith electron and

each of the nuclei. VHF (~xi) is the so-called effective Hartree-Fock potential which accounts

for two-electron potential energies and is calculated as an average potential experienced

by the ith electron in the environment of the other N − 1 electrons. The Fock operator

can be rewritten to express VHF (~xi) explicitly as the total averaged potential arising

from one-electron coulomb and exchange potentials. For instance, for electron 1, f̂(~x1) is

written as,

f̂(~x1) = ĥ(~x1) +
N∑

b

Ĵb(~x1)−
N∑

b

K̂b(~x1). (2.18)

Ĵb(~x1) and K̂b(~x1) are the one-electron coulomb and exchange operators, respectively, and

they are defined by

Ĵb(~x1)χa(~x1) =

[∫
d~x2 χ∗b(~x2)

1

r̂12

χb(~x2)

]
χa(~x1) (2.19)

K̂b(~x1)χa(~x1) =

[∫
d~x2χ

∗
b(~x2)

1

r̂12

χa(~x2)

]
χb(~x1). (2.20)
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Here, the indices a and b refer to the occupied spin orbitals of electrons 1 and 2,

respectively. The two-electron potential operator r̂−1
12 describes the interaction of

electron 1 with electron 2; integration over all space and spin coordinates of electron

2, ~x2, yields an effective one-electron potential for electron 1. The coulomb operator,

Ĵb(~x1), can be interpreted “classically” as the average local repulsion potential that

electron 1 feels sitting in the spin orbital χa, arising from electron 2 occupying spin

orbital χb. The exchange operator, K̂b(~x1), however, has no classical interpretation:

operating on χa(~x1) leads to an exchange of electron 1 to the spin orbital χb. Unlike

the coulomb operator, the exchange operator is a nonlocal operator since the energy

contribution comes from a delocalized interaction between electron 1 and electron 2.

By summing over all electrons b 6=a in Eq. (2.18), one obtains a total averaged poten-

tial acting on the electron in χa, arising from the N−1 electrons in the other spin orbitals.

Returning now to the eigenvalue problem given in Eq. (2.16), one notices that the

Fock operator itself depends on its eigenfunctions χ(~xi) (see Eqs. (2.19) and (2.20)), i.e.

the energy of the ith electron will depend on the spin orbitals of the other electrons.

Eq. (2.16) is thus nonlinear and must be solved iteratively. The procedure consists of the

following steps: an initial set of spin orbitals is used to calculate an initial average field,

VHF (~xi); the eigenvalue problem is solved and new orbitals are generated and compared

with the initial ones. If the numerical convergence criteria are not satisfied, the procedure

is repeated iteratively until self-consistency—or a self-consistent field (SCF)—has been

reached. The final orthonormal canonical Fock spin orbitals, {χi}, have energies {εi}
and these orbitals can be used to construct a Slater determinant which describes the

electronic ground state wave function. Now, before discussing these intermediate steps

in more detail, let us examine the differences between determinants constructed using

doubly-occupied spatial orbitals and those with singly-occupied spatial orbitals.

Restricted and unrestricted Hartree-Fock

Earlier (see Eq. (2.14)), we stated that 2K spin orbitals χi can be formed from K spatial

orbitals, ψi, if each spatial orbital is multiplied by either the α or β spin function.

χ2i−1(~x) = ψi(~r)α($)

χ2i(~x) = ψi(~r)β($)

}
i = 1, 2, . . . , K (2.21)

In Eq. (2.21), we are implying that the set of spatial orbitals needed to describe electrons

of α spin are identical to those used to describe electrons of β spin, i.e. ψα
i ≡ ψβ

i ≡ ψi.

In such a situation, the spin orbitals are said to be restricted, and the Hartree-Fock

determinant formed from such spin orbitals is also restricted. In an unrestricted system,
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the spatial functions describing α and β electrons are different, ψα
i 6= ψβ

i , and therefore,

χ2i−1(~x) = ψα
i (~r)α($)

χ2i(~x) = ψβ
i (~r)β($)

}
i = 1, 2, . . . , K (2.22)

In the case of a determinant with an even number of electrons, each spatial orbital is

doubly occupied,

{ψa|a = 1, 2, . . . , N/2}, (2.23)

where ψa refers to occupied spatial orbitals. The system is then said to have a closed-shell.

If a spatial orbital contains a single electron, the system is referred to as having an

open-shell. An open-shell system is usually described using unrestricted determinants

(unrestricted Hartree-Fock≡UHF) since the energy involving an unpaired α electron is

different from that of an unpaired β electron, whereas closed-shell systems are described

using a restricted determinant (restricted Hartree-Fock≡RHF). Restricted determinants

can, however, also be employed to describe an open-shell system; this case is referred

to as restricted open-shell (ROHF). Finally, one should note that in the case of an even

number of electrons in an unrestricted determinant, the UHF solution is identical to that

of the RHF one.

For clarity, let us first examine the closed-shell, restricted case in more detail, be-

fore returning to the unrestricted case. The determinant of the closed-shell restricted

ground state is

|Ψ0〉 = |χ1χ2 · · ·χN−1χN〉 = |ψ1ψ̄1 · · ·ψaψ̄a · · ·ψN/2ψ̄N/2〉, (2.24)

where the bar denotes spatial orbitals containing electrons with down spin. One can

now easily convert the Hartree-Fock equation (Eq. (2.16)) in terms of spin orbitals to an

equation in terms of spatial orbitals by integrating out the spin functions,

f̂(~r1)ψi(~r1) =

∫
d$1α

∗($1)̂f(~x1)α($1) = εiψi(~r1), (2.25)

where the integration in Eq. (2.25) is performed over e.g. electron 1 with α spin. A

similar integration can be performed over the variables corresponding to β spin. Then,

Eq. (2.18) can be rewritten for the closed-shell Fock operator [99],

f̂(~r1) = ĥ(~r1) +

N/2∑
a

2Ĵa(~r1)− K̂a(~r1), (2.26)

where the closed-shell coulomb and exchange operators are defined by

Ĵa(~r1)ψi(~r1) =

[∫
d~r2ψ

∗
a(~r2)

1

r̂12

ψa(~r2)

]
ψi(~r1) (2.27)

K̂a(~r1)ψi(~r1) =

[∫
d~r2ψ

∗
a(~r2)

1

r̂12

ψi(~r2)

]
ψa(~r1). (2.28)



2.2 Solving the Schrödinger equation 21

The closed-shell restricted Hartree-Fock equation is then

f̂(~r1)ψi(~r1) = εiψi(~r1), (2.29)

with the set of spatial orbital energies {εi}.

Let us return now to unrestricted determinants. Since electrons of α and β spin

will have a different number of coulomb and exchange integrals depending on the number

of remaining α and β electrons in the determinant, the energies corresponding to electrons

of opposite spin will be different. In order to account for these energy differences, spatial

functions corresponding to electrons of opposite spin must be different, i.e. ψα
i 6= ψβ

i .

We can substitute the unrestricted set of spin orbitals (Eq. (2.22)) into the Hartree-Fock

eigenvalue equation and follow the same procedure that was used in the case of a

restricted determinant (see Eq. (2.25)). One obtains

f̂
α
(~r1)ψ

α
i (~r1) = εα

i ψα
i (~r1) (2.30)

f̂
β
(~r1)ψ

β
i (~r1) = εβ

i ψβ
i (~r1), (2.31)

where εα
i and εβ

i are the energies of the spatial orbitals ψα
i and ψβ

i , respectively. Eqs. (2.30)

and (2.31) are the equations defining the unrestricted spatial orbitals ψα
i and ψβ

i (compare

with Eq. (2.29)). The unrestricted, spatial Fock operators f̂
α
(~r1) and f̂

β
(~r1) are given as

f̂
α
(~r1) = ĥ(~r1) +

Nα∑
a

[Jα
a (~r1)−Kα

a (~r1)] +
Nβ∑
a

Jβ
a (~r1) (2.32)

f̂
β
(~r1) = ĥ(~r1) +

Nβ∑
a

[
Jβ

a (~r1)−Kβ
a (~r1)

]
+

Nα∑
a

Jα
a (~r1), (2.33)

where Nα + Nβ = N . The Fock operator f̂
α

for an electron with α spin (Eq. (2.32)),

for example, includes kinetic energy, nuclear attraction, and an effective potential of

an electron with α spin. One should note that the effective interactions of an electron

with α spin include coulomb repulsion energies arising from interactions with all other

electrons (with both α and β spin), but an exchange interaction only with electrons of

the same (in this case, α) spin.

Having discussed restricted (Eq. (2.29)) and unrestricted (Eqs. (2.30) and (2.31))

Hartree-Fock equations, we now turn our attention to solving these equations, beginning

with the restricted case.

The Roothaan-Hall Equations

By introducing a set of known spatial basis functions, Eq. (2.25) can be solved using a

set of algebraic equations [100, 101]. In general, this calculation relies on expanding the
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set ψi as a linear combination of K known basis functions {φµ(~r)|µ = 1, 2, . . . , K},

ψi(~ri) =
∑

µ

Cµiφµ(~ri) i = 1, 2, . . . , K (2.34)

where the Cµi are expansion coefficients. The set {φµ} is, of course, finite, since for

practical computational purposes one must find a compromise between accuracy and

efficiency, and the series is truncated. For an infinite set of {φµ}, the expansion would be

exact. One can now substitute Eq. (2.34) into Eq. (2.29), and using the index ν, obtain

f̂(~r1)
∑

ν

Cνiφν(~r1) = εi

∑
ν

Cνiφν(~r1). (2.35)

Multiplication with φ∗µ(1) and integration over the coordinates of electron 1 leads to

∑
ν

Cνi

∫
d~r1φ

∗
µ(~r1) f̂(~r1) φν(~r1) = εi

∑
ν

Cνi

∫
d~r1φ

∗
µ(~r1)φν(~r1). (2.36)

At this point, two matrices are generally defined, the overlap matrix S and the Fock

matrix, F. The overlap matrix of dimension K ×K has the elements

Sµν =

∫
d~r1φ

∗
µ(~r1)φν(~r1) (2.37)

and is Hermitian. The basis functions {φµ} are normalized but not necessarily orthogonal,

such that they overlap with a magnitude 0 ≤ |Sµν | ≤ 1, where the diagonal elements of S

are 1 and the off-diagonal are less than 1. The Fock matrix is defined as follows:

Fµν =

∫
d~r1φ

∗
µ(~r1) f̂(~r1) φν(~r1) (2.38)

and is also a K ×K Hermitian matrix. Eq. (2.36) can now be rewritten in terms of the

overlap and Fock matrices:

∑
ν

FµνCνi = εi

∑
ν

SµνCνi i = 1, 2, . . . , K, (2.39)

where K is the number of spatial basis functions, from which 2K spin functions can be

constructed. For N electrons, N/2 occupied and K −N/2 unoccupied, or virtual, spatial

orbitals exist. In its most compact form, Eq. (2.36) is written as

FC = SCε. (2.40)

Eq. (2.40) is a single matrix equation that describes what are referred to as the Roothaan-

Hall equations [100, 101], where C is now a K ×K square matrix

C =




C11 C12 · · · C1K

C21 C22 · · · C2K

...
...

...

CK1 CK2 · · · CKK




(2.41)
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where the columns correspond to the molecular orbitals. ε is a diagonal matrix of the

(spatial) orbital energies εi:

ε =




ε1

ε2 0
. . .

εi

0
. . .

εK




. (2.42)

The Fock matrix F is the matrix form of the Fock operator (Eq. (2.26)) that consists of

the core Hamiltonian and the contributions from two-electron integrals.

The Roothaan-Hall equations therefore allow for the calculation of molecular or-

bitals from the restricted Hartree-Fock equations. Analogously, the Pople-Nesbet

equations [102] can be derived for the unrestricted Hartree-Fock equations, and they

have the form

FαCα = SCαεα (2.43)

FβCβ = SCβεβ. (2.44)

In general, larger and larger basis sets (for a review of basis sets, see e.g. Ref. [103]) will

lower the Hartree-Fock energy EHF , and in the limit of infinite basis functions (K→∞),

the Hartree-Fock limit is reached,

EHF = 〈Ψ0|Ĥel|Ψ0〉. (2.45)

In practice, any finite number of basis functions will lead to an energy above the Hartree-

Fock limit. The difference between the exact nonrelativistic energy of the electronic

ground state (in the Born-Oppenheimer approximation), E0, and the Hartree-Fock energy,

EHF , is what is called the correlation energy,

Ecorr = E0 − EHF . (2.46)

Since EHF is an upper bound to the exact energy, the correlation energy is negative.

Correlation energy arises since the motion of electrons with opposite spin is not correlated

within the Hartree-Fock approach. Several quantum chemical methods attempt to recover

this correlation energy by improving upon the Hartree-Fock approximation, and in the

following, we will examine some of these approaches.
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Configuration interaction

In general, for N electrons and 2K spin orbitals (K spatial orbitals), multiple electronic

configurations exist in which electrons have been excited from occupied spin orbitals,

χa, χb, . . . , to virtual spin orbitals, χr, χs, . . . . A wave function describing a single exci-

tation of an electron from χa to χr would be denoted

|Ψr
a〉 = |χ1χ2 · · ·χrχb · · ·χN〉, (2.47)

and in the case of two excited electrons, χa and χb to χr to χs, one would write

|Ψrs
ab〉 = |χ1χ2 · · ·χrχs · · ·χN〉, (2.48)

and so on, such that the exact electronic wave function for any state of the system within

a given basis set can be written as an expansion of all the electronic configurations [99],

|Φ0〉 = c0|Ψ0〉+
∑
ra

cr
a|Ψr

a〉+
∑

a<b
r<s

crs
ab|Ψrs

ab〉+
∑

a<b<c
r<s<t

crst
abc|Ψrst

abc〉+
∑

a<b<c<d
r<s<t<u

crstu
abcd|Ψrstu

abcd〉+ · · · ,

(2.49)

where here we have just considered the exact wave function for the electronic ground

state, |Φ0〉. Eq. (2.49) can be written more compactly,

|Φ0〉 = c0|Ψ0〉+ cS|S〉+ cD|D〉+ cT |T 〉+ cQ|Q〉+ · · · , (2.50)

where |S〉 represents terms involving single excitations, i.e. |Ψr
a〉, |D〉 represents terms

involving double excitations, i.e. |Ψrs
ab〉, and so on, with corresponding expansion coeffi-

cients, cS, cD, cT , cQ etc.. In general, ground and excited states of an N -electron system

can be written as a linear combination of all possible N -electron Slater determinants—

or electronic configuration interactions (CI). Accordingly, an infinite set of N -electron

determinants constitutes a complete description of the N -electron wave function, and is

referred to as “full CI” (FCI). The elements of the FCI matrix are,

|Ψ0〉 |Ψr
a〉 |Ψrs

ab〉 |Ψrst
abc〉 |Ψrstu

abcd〉 · · ·
|Ψ0〉 |S〉 |D〉 |T 〉 |Q〉 · · ·

|Ψ0〉 〈Ψ0|Ĥel|Ψ0〉 0 〈Ψ0|Ĥel|D〉 0 0 · · ·
|S〉 0 〈S|Ĥel|S〉 〈S|Ĥel|D〉 〈S|Ĥel|T 〉 0 · · ·
|D〉 〈D|Ĥel|Ψ0〉 〈D|Ĥel|S〉 〈D|Ĥel|D〉 〈D|Ĥel|T 〉 〈D|Ĥel|Q〉 · · ·
|T 〉 0 〈T |Ĥel|S〉 〈T |Ĥel|D〉 〈T |Ĥel|T 〉 〈T |Ĥel|Q〉 · · ·
|Q〉 0 0 〈Q|Ĥel|D〉 〈Q|Ĥel|T 〉 〈T |Ĥel|Q〉 〈Q|Ĥel|Q〉 · · ·
...

...
...

...
...

...
...

(2.51)
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where |Ψ0〉 is the determinant formed from the N lowest energy spin orbitals. The eigen-

values of the trial function Eq. (2.49) are obtained by constructing the matrix represen-

tation of the Hamiltonian in the basis of the N -electron functions, and then solving for

the eigenvalues of the FCI matrix (Eq. (2.51)). Since wave functions with a different total

spin do not mix, i.e. 〈Ψi|Ĥel|Ψj〉 = 0 if |Ψi〉 and |Ψj〉 have different total spin, several

of these determinants can be eliminated from the trial function [99]. From Eq. (2.51),

one sees that the evaluation of the integrals 〈Ψi|Ĥel|Ψj〉 will involve calculating terms of

the type 〈Ψ0|Ĥel|Ψr
a〉, which involve single excitations, 〈Ψ0|Ĥel|Ψrs

ab〉 which involve double

excitations, and so on. From all these terms, some can be eliminated. For example, the

Brillouin theorem states that determinants containing a single excitation |Ψr
a〉 will not

interact directly with a reference Hartree-Fock determinant [99], i.e.

〈Ψ0|Ĥel|Ψr
a〉 = 0. (2.52)

Instead, contributions from single excitations mix indirectly with |Ψ0〉 through the terms

corresponding to double excitations, 〈Ψr
a|Ĥel|Ψrs

ab〉 and 〈Ψrs
ab|Ĥel|Ψ0〉. Furthermore, for

determinants that differ by three or more spin orbitals, the matrix element is zero,

〈Ψ0|Ĥel|Ψrst
abc〉=0 [99]. As a result, double excitations mix directly with the ground state

determinant and bear the most contribution to the ground state correlation energy. Triple

excitations contribute to the ground state energy by mixing with double excitations, as

do quadruple excitations. Although single excitations have a small effect on the ground

state energy, they play a critical role in the calculation of excited electronic states, as

well as in the determination of other molecular properties, such as charge distribution

and therefore in the calculation of the dipole moment.

The variation principle implies that the lowest full CI eigenenergy will be an up-

per bound to the electronic ground state energy. Futhermore, the higher eigenvalues will

be upper bounds to the electronic excited state energies [104]. In practice, the full CI

matrix becomes computationally unrealistic, except for very small systems. Even for a

single-electron basis of moderate size, myriad determinants exist. The common solution is

thus to truncate the expansion to include only configurations that differ from the Hartree-

Fock ground state by a certain number of spin orbitals. Single (CIS), single/double

(CISD), and single/double/triple (CISDT) excitations can be routinely included. One

serious drawback of truncated CI energies, however, is their lack of size-consistency; that

is, the error associated with the energy of an N-particle system is not proportional to

the number of particles in the limit N→∞. In other words, for an ensemble of isolated

molecules, the error in the truncated CI energy of the total ensemble is not the sum of

the errors associated with the individual molecule energies [105]. Quadratic CI (QCI),

a method containing quadratic terms in the configuration coefficients, does recover size

consistency [105]. A related approach that also offers a size-consistent solution to the
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electronic problem is the coupled cluster (CC) approximation [106]. In general, the

equations required in CC theory are similar to those in QCI, but they are quartic in

nature rather than quadratic, and thus, typically, computationally more demanding than

the QCI equations.

Perturbation theory

An alternative approach that attempts to solve for the correlation energy in the electronic

problem is Rayleigh-Schrödinger (RS) perturbation theory. This method is based on the

division of the total Hamiltonian into two components, the zeroth-order part, Ĥ0, and a

small perturbation part, Ĥ
′
,

Ĥel = Ĥ0 + ζĤ
′
, (2.53)

where ζ¿1. The eigenvalue problem to be solved is then

(
Ĥ0 + ζĤ

′) |Φi〉 = Ei|Φi〉. (2.54)

Recalling the equation that needs to be solved, ĤelΦel = EelΦel (Eq. (2.4)), one can

expand the exact electronic eigenfunctions, |Φi〉, and eigenvalues, Ei, in a Taylor series in

the perturbation, ζ:

|Φi〉 = |Ψi〉+ ζ|Ψ(1)
i 〉+ ζ2|Ψ(2)

i 〉+ · · · (2.55)

Ei = E
(0)
i + ζE

(1)
i + ζ2E

(2)
i + · · · . (2.56)

It can be shown that for non-degenerate states, the nth order energy terms, E
(n)
i , can be

expressed in terms of the appropriate perturbation matrix elements (where |Ψi〉 is written

|i〉 for compactness) [99],

E
(0)
i = 〈i|Ĥ0|i〉 (2.57)

E
(1)
i = 〈i|Ĥ′|i〉 (2.58)

E
(2)
i = 〈i|Ĥ′|i(1)〉 =

∑

n 6=i

〈i|Ĥ′|n〉〈n|Ĥ′|i〉
E

(0)
i − E

(0)
n

(2.59)

E
(3)
i = 〈i|Ĥ′|i(2)〉

=
∑

m,n6=i

〈i|Ĥ′|n〉〈n|Ĥ′|m〉〈m|Ĥ′|i〉
(E

(0)
i − E

(0)
n )(E

(0)
i − E

(0)
m )

−E
(1)
i

∑

n 6=i

∣∣∣〈i|Ĥ′|n〉
∣∣∣
2

[
E

(3)
i − E

(0)
n

]2 (2.60)

...
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where the exact forms of |Ψ(n)
i 〉 can be derived for a given Ĥ

′
[99]. If the unperturbed

Hamiltonian is just the sum of the N one-electron Fock operators, as suggested by Møller

and Plesset (MP) [107],

Ĥ0 ≡
N∑

i=1

f̂(~xi), (2.61)

then the known eigenfunctions and eigenvalues, εi, are given by,

Ĥ0Ψ0 =

(
N∑

i=1

εi

)
Ψ0 = E

(0)
0 Ψ0, (2.62)

where εi are the orbital energies as defined in Eq. (2.29). The perturbation, ζĤ
′
, is the

difference between the true molecular electronic Hamiltonian, Ĥel, and the unperturbed

Hamiltonian. The first-order correction to the ground state energy, E
(1)
0 , is given as

E
(1)
0 = 〈Ψ(0)

0 |Ĥ′|Ψ(0)
0 〉 ≡ 〈Ψ0|Ĥ′|Ψ0〉, (2.63)

since Ψ
(0)
0 =Ψ0. Therefore,

E
(0)
0 + E

(1)
0 = 〈Ψ(0)

0 |Ĥ0|Ψ(0)
0 〉+ 〈Ψ(0)

0 |Ĥ′|Ψ(0)
0 〉

= 〈Ψ0|Ĥ0 + Ĥ
′|Ψ0〉

= 〈Ψ0|Ĥel|Ψ0〉. (2.64)

Notice that 〈Ψ0|Ĥel|Ψ0〉 is just the Hartree-Fock energy EHF (see Eq. (2.45)), so

E
(0)
0 + E

(1)
0 = EHF . (2.65)

Therefore, the first improvement to the Hartree-Fock energy is the second-order energy,

E
(2)
0 , followed by higher-order terms. Recalling now the expression for the second-order

energy, Eq. (2.59), the wave function |i(1)〉 is just the determinant corresponding to the

double excitation, |Ψrs
ab〉. Eq. (2.59) can therefore be rewritten,

E
(2)
0 =

∑

a<b
r<s

|〈ab||rs〉|2
εa + εb − εr − εs

, (2.66)

where a, b, . . . and r, s, . . . correspond to occupied and virtual spin orbitals, respectively,

The notation 〈ab||rs〉 represents the difference between two-electron integrals over spin

orbitals,

〈ab||rs〉 = 〈ab|rs〉 − 〈ab|sr〉 (2.67)

where 〈ab|rs〉 and 〈ab|sr〉 are defined in general as

〈ij|kl〉 =

∫
d~x1d~x2χ

∗
i (~x1)χ

∗
j(~x2)

1

r̂12

χk(~x1)χl(~x2). (2.68)
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Computationally, MP energy calculations are performed in the following manner: a finite

basis is chosen, and an SCF calculation is carried out to obtain Ψ0, EHF , and the virtual

orbitals. If a complete set of basis functions would be taken, the SCF calculation would

produce the exact Hartree-Fock energy and an infinite number of virtual orbitals. In re-

ality, however, the basis set must be truncated, and a finite number of virtual orbitals are

obtained, giving rise to the so-called “basis set truncation error”. Next, E(2) and other

higher order corrections are evaluated, where the sums, e.g. in Eq. (2.59), only run over a

finite set of virtual orbitals. Typically, energy corrections beyond fourth-order are not con-

sidered due to the computational effort involved in calculating their contributions [103].

Another source of error arises when the frozen-core approximation is invoked to simplify

the calculation of MP2, MP3, and MP4 energies; here, excitations of electrons from core

orbitals are not considered. In addition, MPn perturbation theory is not variational and

may yield an energy below the system’s true energy. MP2, MP3, and MP4 methods are

known to demonstrate oscillatory convergence behavior, and the calculated energies often

overshoot the exact energy, as shown schematically in Figure 2.1 [103]. In fact, recent

MP0+MP1
(SCF)

MP2

MP3

MP4

true value

energy

Figure 2.1: Oscillating convergence behavior of energy results obtained with the MPn method. The
true energy is the exact non-relativistic electronic energy in the Born-Oppenheimer approximation.

studies of MP convergence behavior have shown that higher-order energy contributions

can be quite unreliable and should only be included selectively [108]. Although not varia-

tional, an MPn series truncated at any order remains size-consistent. Size-consistency is

generally considered to be more important than being variational, since one is often more

interested in relative energy differences rather than in total energies [103]. Therefore,

MPn is a popular method for calculating electronic energies, in particular MP2 or MP4.

2.2.2 Solving the nuclear problem

Having discussed some common methods for solving the electronic problem, we now return

to the nuclear problem. Recall that the eigenvalues of the nuclear Hamiltonian are total
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energies (Eq. (2.8)), composed of both electronic and nuclear contributions; the nuclear

eigenfunctions Φnuc({~RA}) are solved as functions of the nuclear coordinates {~RA} which

also serve as parametric variables of the electronic function, Φel({~ri}; {~RA}). Also, recall

that the subsequent applications are for molecules or anions in the electronic ground state,

so that the electronic quantum number el=0 has been dropped for simplicitiy of notation.

The nuclear problem itself can be divided into a two-part problem by considering

the translational motion of the nuclei with respect to a space-fixed frame (e.g. the

laboratory), and the internal motion (vibrations and rotations) with respect to the

body-fixed frame of the nuclei [109]

Φnuc({~RA}) = Φtrans
nuc ({~Rc.o.m.})Φinternal

nuc ({ ~̃RA}), (2.69)

with energies Etrans and Einternal, where ~Rc.o.m. denotes the (nuclear) center of mass, and
~̃RA denotes the remaining “internal” nuclear degrees of freedom. The “ ˜ ” of ~̃RA will

be dropped subsequently for simplicity of notation. Typically, translational motion is

described using the “particle-in-a-box” model, for which the potential energy within the

box is zero and outside the box is infinite [109]. The translational energy of the molecule,

Etrans, therefore only consists of kinetic energy that depends on the main quantum number

n and inversely on size of the box,

Etrans =
h2

8m

(
n2

x

a2
+

n2
y

b2
+

n2
z

c2

)
, nx, ny, nz = 1, 2, 3, . . . (2.70)

where a, b, and c are the lengths of the three-dimensional box and m is the mass of the

system. The translational energy therefore adds a constant nonnegative energy to the

total energy of the system [109].

Having treated the problem of translational motion separately, one can proceed to

solve the Schrödinger equation for the internal motion of the nuclei, which consists of

vibrational and rotational motion,

Ĥ
internal

nuc Φinternal
nuc ({~RA}) = E internalΦinternal

nuc ({~RA}), (2.71)

where

Ĥ
internal

nuc = T̂(~RA) + V̂({~RA}), (2.72)

where T̂ and V̂ are the operators of the kinetic and potential energies of the internal

nuclear degrees of freedom, respectively. The energies in Eq. (2.71) are rotational-

vibrational (ro-vibrational) eigenenergies. Typically, solving this problem (Eq. (2.71))

is non-trivial for molecules with more than two nuclei [110]. The centrifugal force

arising from rotational motion causes internuclear distances to increase with increasing

rotational frequency. Furthermore, the rotational constant of the molecule, B, depends
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on the vibrational frequency ω, since the centrifugal force will be greater in the region

near the equilibrium geometry [110].

A further simplification is thus often made, in which the function describing the

internal motion, Φinternal
nuc ({~RA}), is expressed as the product of vibrational and rotational

wave functions [109],

Φinternal
nuc ({~RA}) ≈ Φvib

nuc({~RA})Φrot
nuc({~RA}), (2.73)

with energies Evib and Erot. This separation of motion implies that Eq. (2.71) be split

into two equations,

Ĥ
vib

nucΦ
vib
nuc({~RA}) = EvibΦvib

nuc({~RA}), (2.74)

and

Ĥ
rot

nucΦ
rot
nuc({~RA}) = ErotΦrot

nuc({~RA}). (2.75)

Since the rotational period is typically one hundred times longer than the vibrational

period, ro-vibrational coupling is quite small and the separation of vibrational and ro-

tational motion is a reasonable approximation [110]. In this approximation, the total

internal energy is the sum of vibrational and rotational energy,

Einternal =Evib + Erot. (2.76)

In the remainder of this thesis, vibrational and rotational motion will be treated sepa-

rately. Rotational motion will be discussed in detail in Sections 2.5 and 2.5.3, focusing

on the special case of a linear rigid molecule. In the next section, numerical methods for

solving the vibrational problem will be discussed.

2.2.3 Numerical approaches to solving the vibrational problem

The Schrödinger equation describing the vibrations of nuclei can be solved exactly for

simple models, such as the harmonic oscillator model. For real molecules, these models

are insufficient at describing the potential energy of the system. Instead, numerical meth-

ods are needed to solve the nuclear Schrödinger equation. In this section we will therefore

discuss one of the most common numerical approaches to solving the time-dependent

nuclear Schrödinger equation, the Fourier grid Hamiltonian (FGH) [111, 112, 113].

The FGH method is a specific case of the discrete variable representation (DVR),

a formalism that is based on choosing a convenient representation in which to diagonalize

matrices of interest [114, 115]. For the sake of simplicity, a single particle of mass m

moving in one linear dimension (r) will be considered, but the results may be extended
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for systems with many degrees of freedom. The Hamiltonian for a particle of mass m can

be written as

Ĥ = T̂ + V̂(r)

=
p̂2

2m
+ V̂(r), (2.77)

where p̂=−i~∇ is the momentum operator and V̂(r) is the potential energy operator.

Discretization of space

Numerical methods for solving the nuclear Schrödinger equation typically rely on the

discretization of position (r) and momentum space (k) into uniform segments, ∆r or ∆k,

respectively [116]. Thus, a continuous range of r values is replaced by a grid of N discrete

values, where the ith element is given as

ri = i∆r {i = 0, 1, . . . ,N}, (2.78)

and where ∆r is the uniform spacing between neighboring grid points and N is the total

number of grid intervals. The total length of the grid is then given by L = N∆r. The

normalization condition holds for the wave function on the discretized grid as well,

N∑
i=1

Ψ∗(ri)Ψ(ri)∆r = ∆r

N∑
i=1

|Ψ(ri)|2 = 1. (2.79)

The choice of grid size in coordinate space dictates the grid size in momentum space since

the length L is inversely correlated with the wave number spacing ∆k:

∆k =
2π

L
. (2.80)

The central point is chosen as k = 0, and the grid points are distributed equally below

and above zero. The minimum absolute value in momentum space is kmin =(Nπ/L), and

the maximum absolute value is accordingly kmax =(Nπ/L). The momentum value at the

jth discrete grid point is thus given by

kj = j∆k − kmin. (2.81)

Position and momentum space

We can now address the problem of representing the kinetic and potential energy opera-

tors, T̂ and V̂, in position and momentum space [112]. The kets of the coordinate space

are the set |r〉 and they are eigenfunctions of r̂,

r̂|r〉 = r|r〉 (2.82)
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where the orthogonality and completeness relationships hold:

〈r|r′〉 = δ(r − r′) (2.83)

and

1̂r =

∞∫

−∞

|r〉〈r|dr. (2.84)

The bras and kets of the discretized position space evaluate the wave function at the grid

points,

〈ri|Ψ〉 = Ψ(ri) = (∆r)−1/2Ψi, (2.85)

where the orthogonality and completeness relationships (Eqs. (2.83) and (2.84)) can be

rewritten,

∆r〈ri|rq〉 = δiq (2.86)

and

1̂r =
N∑

i=1

|ri〉∆r〈ri|. (2.87)

The potential energy is diagonal in the space spanned by |r〉,

〈r′|V(̂r)|r〉 = V(r)δ(r − r′). (2.88)

The eigenfunctions of p̂ are the set of |k〉,

p̂|k〉 = k~|k〉 (2.89)

and they satisfy the orthogonality and completeness relationships,

〈k|k′〉 = δ(k − k′) (2.90)

and

1̂k =

∞∫

−∞

|k〉〈k|dk. (2.91)

Therefore, the kinetic energy operator is diagonal in the momentum representation,

〈k′|T̂|k〉 = Tkδ(k − k′)

=
~2k2

2m
δ(k − k′). (2.92)

The matrix elements responsible for transforming between the two representations are

given as

〈k|r〉 =
1

(2π)1/2
e(−ikr). (2.93)
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As a consequence, the wave function in position space is related to the wave function in

momentum space via a Fourier transform:

Ψ(r) = 〈r|Ψ〉
= 〈r|1̂kΨ〉

= 〈r|



∞∫

−∞

|k〉〈k|dk


 Ψ〉

=

∞∫

−∞

〈r|k〉〈k|Ψ〉 dk

Ψ(r) =
1√
2π

∞∫

−∞

eikrΨ(k) dk. (2.94)

Similarly, the wave function in momentum space can be expressed as the inverse Fourier

transform of Ψ(r):

Ψ(k) =
1√
2π

∞∫

−∞

e−ikrΨ(r) dr. (2.95)

Remembering that Ĥ = T̂ + V̂(r),

〈r|Ĥ|r′〉 = 〈r′|T̂|r〉+ V(r)δ(r − r′)

and multiplying by 1̂k, one obtains

〈r|Ĥ|r′〉 =

∞∫

−∞

〈r|k〉Tk 〈k|r′〉dk + V(r)δ(r − r′). (2.96)

Using Eq. (2.93), one can rearrange this result to obtain

〈r|Ĥ|r′〉 =
1

2π

∞∫

−∞

eik(r−r′) Tk dk + V(r)δ(r − r′). (2.97)

The kinetic energy operator is therefore applied in the following manner: first, the wave

function is Fourier transformed (cf. Eq. (2.94)) from the position representation (Ψ(r))

to the momentum representation, (Ψ(k)). Second, the wave function is multiplied by

(~ k)2/2m and inverse Fourier transform is carried out (cf. Eq. (2.95)). The potential

energy is calculated by simply multiplying V with the value of Ψ(r). The transformation

between the two representations is most efficiently performed using fast Fourier transform

(FFT) [117], an algorithm that is computationally more efficient than normal Fourier

transform algorithm. Whereas basic FT computation time scales like N 2 for N grid

points, FFT scales like N log2N [116]. Thus, the computational effort increases slowly
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with the grid size. FFT benefits most from a system of N = 2X points, where X

is an integer [118]. The FGH method was used in our calculations, as implemented

in the program qmbound [119], and the grids that are used accordingly consist of 2X points.

Within the discretized grid of position or momentum space, the Hamiltonian ele-

ments of Eq. (2.97) can be rewritten:

〈ri|Ĥ|rj〉 = Hij

=
1

2π

n∑

l=−n

eil∆k(ri−rj)

{
~2

2m
(l∆k)2

}
∆k +

V(ri)δij

∆r

=
1

2π

(
2π

N∆r

) n∑

l=−n

e[il(2π/N∆r)×(i−j)∆r] · Tl +
V(ri)δij

∆r

=
1

∆r

{
n∑

l=−n

eil2π(i−j)/N

N · Tl + V(ri)δij

}
(2.98)

where n = (N − 1)/2 and N now is an odd number of grid points in the spatial grid1 and

Tl =
~2

2m
· (l∆k)2. (2.99)

It should be noted that T0 =0. Combining the terms with negative and positive values of

l, one arrives at

Hij =
1

∆r

{
2

N
n∑

l=1

cos(l2π(i− j)/N )Tl + V(ri)δij

}
. (2.100)

The expectation values of the energies corresponding to |Ψ〉 are given as,

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 =

∑
ij Ψ∗

i ∆rHij∆rΨj

∆r
∑

i |Ψi|2 . (2.101)

Minimizing by applying the variational principle, one arrives at the secular equations,

∑
j

[Hij − Eυδij] Ψ
υ
j = 0, (2.102)

which yield the bound-state vibrational eigenvalues, (Evib =)Eυ, and the eigenvectors,

Ψυ
j , which are the vibrational eigenfunctions as solutions of the vibrational Schrödinger

equation (Eq. (2.74)) evaluated at the grid points.

1For an even number of grid points, see Ref. [111] for a more detailed discussion.
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2.3 The time-dependent nuclear Schrödinger equa-

tion

In Section 2.2.2, the time-independent nuclear Schrödinger equation was introduced, and

in Section 2.2.3, a numerical method (FGH) for obtaining the solutions to the vibrational

problem was reviewed. The eigenfunctions of the time-independent vibrational Hamilto-

nian are stationary states. Here, stationary means the nuclei are fixed in space and that

the energy of these states is constant. If, however, a quantum mechanical system inter-

acts with an external force, such as electromagnetic radiation, the energy of the system

will change with time. To obtain the time-dependent behavior of the system, the time-

dependent nuclear Schrödinger equation (TDSE) must be solved. For this purpose, the

time-dependent Hamiltonian and time-dependent Schrödinger equation will be presented

in Section 2.3.1. In this context, we will also consider the TDSE for coupled molecular

systems. Section 2.3.2 will examine the properties of an external electric field, and we

will conclude with numerical methods for solving the TDSE in Section 2.3.5.

2.3.1 Time-dependent Hamiltonian

The time-dependent nuclear Schrödinger equation describes the evolution of a wave func-

tion in time:

i~
∂

∂t
|Ψtot(t)〉 = Ĥ(t)|Ψtot(t)〉, (2.103)

The wave function |Ψtot(t)〉 is the total wave function for the system, which consists of a

sum over all (orthonormal) electronic and nuclear wave functions,

Ψtot

(
{~ri}; {~RA}; t

)
=

∑

el

Φel

(
{~ri}; {~RA}

)
Φel

nuc

(
{~RA}; t

)
. (2.104)

From this point on, only the variable t will be retained in the notation, and the coor-

dinates {~ri} and {~RA} will be dropped for simplicity of notation. One should remem-

ber that the electronic wave function depends on both electronic and nuclear coordinates(
{~ri}; {~RA}

)
whereas the nuclear wave function depends on nuclear coordinates, as well as

time
(
{~RA}; t

)
. The time-dependent Hamiltonian consists of the total molecular Hamil-

tonian, Ĥ, and a time-dependent potential energy term V̂
ext

(t) arising from the interaction

of the molecular dipole moment ~µ with an external electromagnetic field ~E(t):

Ĥ(t) = Ĥ− ~µ · ~E(t)︸ ︷︷ ︸
V̂

ext

. (2.105)
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Recall that the total Hamiltonian, Ĥ, defined in Eq. (2.2), consists of kinetic and potential

energy for all nuclei and electrons. The total dipole moment, ~µ, consists of the electronic

and nuclear dipole moments, and it is given by

~µ =
N∑

i=1

(−e)~ri

︸ ︷︷ ︸
~µel

+
M∑

A=1

(ZAe)~RA

︸ ︷︷ ︸
~µnuc

, (2.106)

where ~ri are position vectors of the electrons, and ~RA are position vectors of the

nuclei, from an origin in the frame of the molecule to the ith electron or Ath nucleus,

respectively [99]. The term
∑N

i=1(−e) (~ri) is the electric dipole operator, and it is a sum

of one-electron operators.

Substitution of Eq. (2.104) into Eq. (2.103) leads to

i~
∑

el

|Φel〉 ∂

∂t
|Φel

nuc(t)〉 =
∑

el

Ĥ(t)|Φel〉|Φel
nuc(t)〉. (2.107)

Operating with 〈Φel′| on Eq. (2.107) gives

〈Φel′|i~
∑

el

|Φel〉 ∂

∂t
|Φel

nuc(t)〉 =
∑

el

〈Φel′|Ĥ(t)|Φel〉|Φel
nuc(t)〉. (2.108)

Due to the orthonormality of the electronic states, i.e. 〈Φel′|Φel〉 = δelel′ , Eq. (2.108)

reduces to

i~
∂

∂t
|Φel′

nuc(t)〉 =
∑

el

〈Φel′|Ĥ(t)|Φel〉|Φel
nuc(t)〉. (2.109)

The time-dependent Hamiltonian from Eq. (2.105) can be expanded in the following

manner:

Ĥ(t) = Ĥel +
M∑

A=1

M∑
B>A

ZAZBe2

4πε0RAB

+ T̂nuc − ~µel · ~E(t)− ~µnuc · ~E(t). (2.110)

Therefore, the right-hand side of Eq. (2.109) consists of the following matrix elements:

∑

el

〈Φel′|Ĥ(t)|Φel〉|Φel
nuc(t)〉 =

[
V̂elδel′el − 〈Φel′|~µel|Φel〉 · ~E(t)− ~µnucδel′el · ~E(t)

]
|Φel

nuc(t)〉

+ 〈Φel′ |T̂nuc|Φel〉|Φel
nuc(t)〉.

(2.111)

The electronic potential energy matrix elements are diagonal and vanish for el 6= el′, as do

the nuclear dipole moment terms ~µnucδel′el. Evaluation of the term 〈Φel′|T̂nuc|Φel〉|Φel
nuc(t)〉
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gives rise to three sets of terms:

〈Φel′ | − ~
2

∑
A

∇A
2

mA

|Φel〉|Φel
nuc(t)〉 = −~

2

2

∑
A

∇A
2

mA

δelel′|Φel
nuc(t)〉

− ~2
∑

A

1

mA

〈Φel′ |∇A|Φel〉∇|Φel
nuc(t)〉︸ ︷︷ ︸

diabatic coupling

− ~
2

2

∑
A

1

mA

〈Φel′ |∇A
2|Φel〉|Φel

nuc(t)〉︸ ︷︷ ︸
diabatic coupling

.

(2.112)

From the three nuclear kinetic terms on the right-hand side of Eq. (2.112), the second and

third terms represent diabatic couplings of first and second order, respectively, between

wave functions of different electronic states. These diabatic coupling terms are assumed

to be small and will be neglected. We will therefore only retain the first nuclear kinetic

term. Thus, the time-dependent Schrödinger equation can be written

i~
∂

∂t
|Φel′

nuc(t)〉 =
∑

el

〈Φel′|Ĥ(t)|Φel〉|Φel
nuc(t)〉

=
[
V̂elδel′el − 〈Φel′|~µel|Φel〉 · ~E(t)− ~µnucδel′el · ~E(t)

]
|Φel

nuc(t)〉

−~
2

2

∑
A

∇A
2

mA

δelel′ |Φel
nuc(t)〉. (2.113)

One sees from Eq. (2.113) that the only coupling between different electronic states arises

due to the electronic dipole moment ~µel. Its off-diagonal matrix elements are accordingly

referred to as the transition dipole moments.

Finally, Eq. (2.113) can be conveniently recast in matrix form for n electronic

states:

i~
∂

∂t



|Φ0

nuc(t)〉
...

|Φn
nuc(t)〉


 =




Ĥ00(t) · · · Ĥ0n(t)
...

. . .
...

Ĥn0(t) · · · Ĥnn(t)






|Φ0

nuc(t)〉
...

|Φn
nuc(t)〉


 . (2.114)

Eq. (2.114) represents a system of coupled linear differential equations of first order in

t. The coupling between these equations arises due to the perturbation, or off-diagonal

matrix elements Ĥij(t).

For the specific case of a two-level system, as used in the forthcoming simulations,

the time-dependent Schrödinger equation is given as

i~

(
|Ψ1

nuc(t)〉
|Ψ2

nuc(t)〉

)
=

(
Ĥ11(t) Ĥ12(t)

Ĥ21(t) Ĥ22(t)

)(
|Ψ1

nuc(t)〉
|Ψ2

nuc(t)〉

)
. (2.115)
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Now, the wave function |Φel
nuc(t)〉 is replaced with |Ψel

nuc(t)〉 to emphasize that wave func-

tion is no longer the exact nuclear wave function. The Hamiltonian matrix is given as

Ĥ(t) =

(
T̂11 + V̂11 − ~µ11 · ~E(t) −~µ12 · ~E(t)

−~µ21 · ~E(t) T̂22 + V̂22 − ~µ22 · ~E(t)

)
. (2.116)

The diagonal dipole moment terms, ~µii, correspond to permanent dipole moments,

whereas the off-diagonal dipole terms, ~µij, correspond to transition dipole moment terms

between different electronic states. All of these matrix elements will be discussed in more

detail in Section 4.2.

Time evolution operator, Û

The TDSE can be solved using a unitary time evolution operator Û that propagates the

wave function from time t0 to t1 [120]:

|Ψ(t1)〉 = Û(t1, t0)|Ψ(t0)〉, (2.117)

where the Û has the property Û(t0, t0) = 1̂ and the group property that Û(t0, t2) =

Û(t0, t1)Û(t1, t2). Eq. (2.117) can now be substituted in the TDSE (Eq. 2.103). Since any

initial vector |Ψ(t0)〉 must satisfy Eq. (2.103), the TDSE can also be recast with just the

time evolution operator as the initial state [121]:

i~
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0). (2.118)

Integration from t0 to t leads to the following:

Û(t, t0)− Û(t0, t0) = − i

~

∫ t

t0

Ĥ(t1)Û(t1, t0)dt1

Û(t, t0) = 1̂− i

~

∫ t

t0

Ĥ(t1)Û(t1, t0)dt1 (2.119)

Eq. (2.119) is solved in the following manner. First, for small time steps ∆t= t− t0, one

can substitute Û(t, t0)≈Û(t0, t0)= 1̂ under the integral; the approximate Û(t, t0) obtained

is then iteratively re-substituted until convergence is achieved. This iteration results in a

time-ordered power series in terms of Ĥ, such that the time evolution operator responsible

for propagation of a time interval ∆t= t− t0 is given as:

Û(t, t0) = 1̂− i

~

∫ t

t0

Ĥ(t1)dt1 +

(
i

~

)2 ∫ t

t0

Ĥ(t1)dt1

∫ t1

t0

Ĥ(t2)dt2 + · · · (2.120)

The time ordered series in Eq. (2.120) can be rewritten as a sum over all n expansion

powers:

Û(t, t0) = 1̂ +
∞∑

n=1

(
− i

~

)n ∫ t

t0

dtn

∫ tn

t0

dtn−1 · · ·
∫ t2

t0

dt1Ĥ(tn)Ĥ(tn−1) · · · Ĥ(t1). (2.121)
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If the Hamiltonian operator is not explicitly a function of time, the expression for the

time evolution operator (Eq. (2.120)) simplifies to

Û(t, t0) = e−
i
~ Ĥ(t−t0) for Ĥ 6= Ĥ(t). (2.122)

When this time-evolution operator is applied to a stationary state (eigenfunction of the

Hamiltonian), the system’s energy remains constant, and only the phase of the wave

function changes according to the exponential term in Eq. (2.122):

Û(t, t0)|Ψ(t0)〉 = e−
i
~ Ĥ(t−t0)|Ψ(t0)〉

=
∑

j

e−
i
~Ej(t−t0)|ψj〉 〈ψj|Ψ(t0)〉︸ ︷︷ ︸

cj(t0)

, (2.123)

where in Eq. (2.123), the wave function |Ψ(t)〉 is expanded in a basis of eigenfunctions of

the Hamiltonian, |ψj〉,
|Ψ(t)〉 =

∑
j

|ψj〉〈ψj|Ψ(t)〉. (2.124)

The set of cj(t0) are the initial expansion coefficients of the wave function, and Ej are the

eigenvalues of the Hamiltonian [121],

Ĥ|ψj〉 = Ej|ψj〉. (2.125)

Time-discretization

When the Hamiltonian operator is time-dependent, the TDSE is solved according to the

power series shown in Eq. (2.120). However, for computational purposes, an approxi-

mation can be made in which the time interval [t0, t] is discretized into N equal time

segments, with N∆t = t − t0. If the time interval ∆t is chosen sufficiently small, the

time-dependent Hamiltonian operator Ĥ(t) can be considered constant within the time

interval, and Eq. (2.119) can be written as [121]:

Û(tn, tn−1) ≈ 1̂− i

~
Ĥ(tn)∆t. (2.126)

The result of applying this time evolution operator to an initial wave function |Ψ(t0)〉 is

the successive propagation of the function over a time interval of ∆t,

|Ψ(t)〉 = Û(t, tn)Û(tn, tn−1) . . . Û(t1, t0)|Ψ(t0)〉, (2.127)

where each time evolution operator is given according to Eq. (2.122),

Û(ti, ti−1) = e−
i
~ Ĥ(ti−ti−1) = e−

i
~ Ĥ(ti)∆t (2.128)
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with

ti − ti−1 = ∆t. (2.129)

Having discussed the solution to the time-dependent Schrödinger equation, we will now

address the nature of the time-dependent external potential, V̂
ext

(t), namely the interac-

tion of matter with an electromagnetic field.

2.3.2 The origin of V̂
ext

(t): interaction of the electric dipole with

an electromagnetic field

Electric dipole approximation

Classically, electromagnetic radiation is considered to be an oscillating wave of electric

and magnetic fields. For typical field-matter interactions in atomic and molecular physics,

the wavelength of the incident radiation, λ, is much larger than atomic dimensions [122],

which are characterized in terms of the Bohr radius a0, i.e.

λÀa0. (2.130)

The inequality (2.130) implies that spatial variations in the electromagnetic field are neg-

ligible on the scale of atomic dimensions, and that the radiation can be considered uniform

when interacting with the charged nucleus and electrons of the atom, molecule, or ion.

This approximation is termed the electric-dipole approximation. Implicit in the electric-

dipole approximation is also the fact that the electric-dipole interaction term is much

larger than other field-matter interactions, including electric-quadrupole and magnetic-

dipole interactions [122]. The electric-quadrupole and magnetic-dipole contributions are

two orders of magnitude smaller than that of the electric-dipole, so these interactions are

often neglected [123].2 Accordingly, in the following discussion, we will only consider the

system’s electric dipole interaction with the electric field.

Dipole moment operator

Classically, the electric dipole operator3, ~µ, is a sum of discrete charge vectors,

~µ =
∑

p

Qp~rp, (2.131)

2Nuclear magnetic resonance (NMR) relies on the interaction of the magnetic field with the magnetic
dipole moments of the nuclei.

3The dipole moment operator is a quantum mechanical operator, but the notation µ̂ will be replaced
in this discussion with the notation ~µ to emphasize the vector quality of the dipole moment.
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where ~rp are position vectors and Qp is the charge of the pth particle [99]. The quantum

mechanical nuclear dipole operator, introduced in Eq. (2.106), includes a contribution of

N electrons with a charge of −e, and the contribution of M nuclei, with charge ZAe,

~µ =
∑N

i=1(−e)~ri +
∑M

A=1(ZAe)~RA [99]. Acting on the wave function of the electronic

ground state, |Ψ0〉, the permanent dipole moment can be calculated according to:

~µ00 = 〈Ψ0|
N∑

i=1

(−e)~ri|Ψ0〉+
M∑

A=1

(ZAe)~RA. (2.132)

The notation of the permanent dipole moment will be written from now on as ~µ0, that

is ~µ00≡ ~µ0. One should note that, like the electronic wave function Φel (see Eq. (2.5)),

the electronic contribution to the dipole moment is calculated from integrals that de-

pend explicitly on electronic coordinates, {~ri}, but parametrically on nuclear coordinates,

{~RA} [99]. ~µ0 can be decomposed into its Cartesian components, for example the µ0,x

component is given as

µ0,x = 〈Ψ0|
N∑

i=1

(−e)xi|Ψ0〉+
M∑

A=1

(ZAe)XA. (2.133)

For molecules with a net charge not equal to zero (anions and cations), the permanent

dipole moment of the molecule depends on the coordinate system. In other words, the

dipole moment of a charged species is not invariant upon translations. Therefore, in

the case of anions and cations, the coordinate system is typically defined relative to the

molecule’s center of mass [67].

Field-matter interaction

Earlier, in Eq. (2.105), we stated that the time-dependent potential V̂
ext

(t) has the form,

V̂
ext

(t) = −~µ · ~E(t), where ~µ is the dipole moment operator and ~E(t) is a time-dependent

electric field. Let us now assume that the electric field takes the following form,

~E(t) = ~εE0 sin (ωt + ϕ) · s(t) (2.134)

where ~ε is a unit vector in the polarization direction, E0 is the maximum value of ~E,

ω is a constant angular frequency, ϕ is a phase that we will set to 0 for simplicity, and

s(t) is an envelope function that will be discussed in more detail in the upcoming section

(Section 2.3.3). Then, V̂
ext

(t) can be recast as

V̂
ext

(t) = −~µ · ~εE0 sin(ωt) · s(t). (2.135)

Recalling now that we wish to solve the time-dependent Schrödinger equation for a time-

dependent Hamiltonian, V̂
ext

(t) is substituted into Eq. (2.103). The evolution of the wave

function |Ψ(t)〉 is then determined using the time evolution operator, Û=e−
i
~ Ĥ∆t.
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2.3.3 Properties of the electric field

The electric field in quantum dynamical simulations is typically designed to perform a

specific task, for example initiating a ro-vibrational or electronic transition. Studying

wave packet dynamics, or the dynamics of non-stationary states, is particularly useful

to understand the time-dependent evolution of a quantum mechanical system. In such

studies, radiation—either in the form of continuous wave (cw) or short pulses—can be

applied to create the wave packet(s) [124]. In this section, various electric field properties

will be discussed, focusing on the design of ultrashort laser pulses. In the case in which

the field is not cw but rather “pulsed”, the envelope function s(t) from Eq. (2.134) can

take one of several forms, such as a Gaussian function,

s(t) = e−(t−t0)2/σ2

(2.136)

or sin2 function [125],

s(t) = sin2

(
π(t− t0)

tp

)
. (2.137)

In Eq. (2.136), the pulse is centered at the time t = t0 and the full (temporal) width of

s(t) at half the maximum height (FWHM) is given by 2σ
√

ln 2. In Eq. (2.137), tp is the

total pulse duration and t0 is the initial time, so the pulse is centered at t0 + tp/2. The

pulsed laser field then is described as

~E(t) =

{
~εE0 sin(ωt + ϕ) · s(t) t0 ≤ t ≤ (t0 + tp)

0 otherwise
(2.138)

Intensity

The maximum intensity of the light, Imax, is related to the field strength ~E(t) through

Imax = ε0 c max | ~E(t)|2 = ε0 cE0
2 (2.139)

where ε0 is the dielectric constant and c is the speed of light [126]. To avoid undesired dis-

sociation or ionization processes, maximum laser field intensities in quantum dynamical

simulations are kept below the so-called Keldysh limit, typically Imax < 1013 W/cm2 [127].

The duration tp of a laser pulse and the spectral width ∆ω are related through a

Fourier transform. In general, the time and frequency components of light build what is

called a Fourier pair [128]:

f(t) =
1√
2π

∫ +∞

−∞
F(ω)eiωtdω, F(ω) =

1√
2π

∫ +∞

−∞
f(t)e−iωtdt, (2.140)
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where f(t) is the function describing the electric field in the time domain (≡E(t)), and

F(ω) is the function describing the electric field in the frequency domain. The duration

∆t and spectral width ∆ω are related by Heisenberg’s uncertainty principle,

∆t∆ω ≥ 1

2
, (2.141)

where the equality in Eq. (2.141) is only reached with time and spectral envelopes of

Gaussian form. In such a case, the pulse is called Fourier-transform limited [128] and is the

shortest pulse possible. In general, however, pulses need not be Fourier-transform limited.

To apply these relationships to the design of ultrashort IR and UV laser pulses [128]:

a 50 femtosecond (∆t = 50 × 10−15 s) Gaussian-shaped pulse has a minimum spectral

bandwidth of ∆ω = 53 cm−1. If the central carrier frequency is in the IR range, i.e.

ω = 1516 cm−1 (corresponding to a laser wavelength λ ∼ 1064 nm), the frequency

bandwidth is ∆ω/ω ≈ 0.03. A pulse lasting 5 femtoseconds (∆t = 5 × 10−15 s) has a

minimum spectral bandwidth of ∆ω=530 cm−1. If the central carrier frequency ω lies in

the UV part of the electromagnetic spectrum, i.e. ω = 43 500 cm−1 (corresponding to a

laser wavelength λ∼230 nm), then the frequency bandwidth is ∆ω/ω≈0.01.

Few-cycle pulses

Few-cycle pulses are laser pulses whose envelope varies on a time scale comparable

to that of the electromagnetic field itself [129]. The frequency of the radiation thus

dictates the duration of the few-cycle pulse, depending on how many optical cycles

are contained within the pulse envelope. Therefore, for a given number of cycles, the

duration of a few-cycle IR pulse will necessarily be longer than that of a UV pulse.

Current mode-locking techniques are able to deliver ∼4 fs pulses in the visible spectral

region with only a single cycle [130]. For pulses on the order of 450 fs, high energy

(0.8 µJ), half-cycle pulses can be generated [60].

A freely propagating electromagnetic pulse must integrate to zero, a condition

that is a consequence of Maxwell’s equations on electromagnetism in the electric dipole

approximation [59, 131, 132], ∫ tp

0

E(t)dt = 0. (2.142)

For pulses containing a large number of optical cycles within the pulse envelope, this

condition is usually satisfied for any analytical expression describing the field since the

average field strength is zero. For pulses containing a small number of optical cycles

within the pulse envelope, any asymmetry in the electric field must be compensated by
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pulse tails of opposite field strength. Few-cycle pulses that are created in the laboratory

are accordingly preceded or followed by very long, weak intensity tails, whose amplitude is

10% or less of the amplitude of the main peaks [59]. These tails compensate for any peak

area asymmetry and ensure that the total pulse area integrates to zero. Furthermore, the

tails are spread over a long time period, such that they minimally affect the nature of the

field-matter interaction that is determined by the central peaks. As a result, analytical

expressions describing the laser field of few-cycle pulses often neglect these low-intensity

tails, with the result that the total pulse area may not integrate to zero. In this thesis, we

will use few-cycle pulses that are a good approximation to experimentally realistic pulses.

Although the compensating long tails are neglected in the analytical pulse expressions,

one can assume that their presence would not significantly change the nature of the field-

matter interaction that has been modelled here.

2.3.4 Autocorrelation function and absorption cross-section

To monitor the evolution of the time-dependent wave function, one often considers the

autocorrelation function S(t) [133], a function that measures the overlap of the initial

wave function with the time-dependent wave function Ψ(t) at any time t:

S(t) ≡ 〈Ψ(t0)|Ψ(t)〉. (2.143)

If Ĥ is time-independent, the wave packet |Ψ(t)〉 is obtained by operating on |Ψ(t0)〉 with

the time evolution operator, Û=e−iĤ(t−t0)/~ (for an extended discussion of Û, see Section

2.3.1):

|Ψ(t)〉 = e−iĤ(t−t0)/~|Ψ(t0)〉. (2.144)

Substitution of Eq. (2.144) into Eq. (2.143) yields

S(t) = 〈Ψ(t0)|e−iĤ(t−t0)/~|Ψ(t0)〉. (2.145)

The modulus of the autocorrelation function, |S(t)| is a real number whose value ranges

from 0 to 1 for initially normalized wave functions. In general, the autocorrelation function

is time-dependent. For example, consider a system at t = 0 that is a superposition of

eigenfunctions |ψj〉 of the Hamiltonian, then |Ψ(t0)〉 =
∑

j |ψj〉〈ψj|Ψ(t0)〉 and

S(t) = 〈Ψ(t0)|e−iĤ(t−t0)/~|
∑

j

|ψj〉〈ψj|Ψ(t0)〉 (2.146)

=
∑

j

e−
i
~Ej(t−t0) · |cj(t0)|2. (2.147)

In the unique case in which the initial function |Ψ(t0)〉 is itself an eigenstate of Ĥ with

energy E, then the autocorrelation function is just

S(t) = 〈Ψ(t0)|Ψ(t0)〉 = e−iEt/~ (2.148)
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and the modulus is unity for all times [134].

An application of the autocorrelation function is in the calculation of absorption

and photodissociation cross sections. The absorption cross section σ(ω) is proportional

to the Fourier transform of the dipole autocorrelation function [124]:

σ(ω) ∝
∫ +∞

−∞
dt 〈Ψ(t)|Ψ(t0)〉︸ ︷︷ ︸

S(t)

eiω t, (2.149)

where ω is the radiation frequency and the wave function of interest is the ket |Ψ(t0)〉,
defined as [135],

|Ψ(t0)〉 = µ̂|ψ0〉, (2.150)

and |Ψ(t)〉 is given as

|Ψ(t)〉 = e−
i
~ Ĥ (t−t0)|Ψ(t0)〉. (2.151)

|ψ0〉 is the zeroth nuclear wave function for the ground electronic potential energy sur-

face, and µ̂ is the vector dipole operator, either the permanent dipole operator µ̂0 in

IR absorption processes, or the transition dipole operator µ̂fi in UV absorption pro-

cesses that couples an initial electronic state |Ψi〉 to a final electronic state |Ψf〉, i.e.

µ̂fi = 〈Ψf |µ̂|Ψi〉 [133]. For example, for the calculation of IR absorption spectra, the

dipole autocorrelation function is,

S(t) = 〈ψ0|µ̂0e
− i
~ Ĥ tµ̂0|ψ0〉, (2.152)

where Ĥ is the full Hamiltonian for nuclear motion on the ground electronic state. There-

fore, Eq. (2.149) relates the absorption cross section, with units of area, to the time

evolution of the molecular system by a simple Fourier transform. By analyzing absorp-

tion and photodissociation cross sections, one can make quantitative predictions regarding

line shapes and absorption envelopes of spectra [124].

2.3.5 Numerical methods for solving the time-dependent

Schrödinger equation

We conclude this section with a discussion of numerical methods used to solve the time-

dependent Schrödinger equation. Several numerical routines can be used to solve the time-

dependent Schrödinger equation, including the method of finite differences, the Chebychev

method [136], the Lanczos method [137], and the split-operator method [138, 139]. Here,

we will only focus on the last method, the split-operator. We will conclude with a brief

review of finite grids and the absorbing boundary method.
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Split-operator method

The objective is the numerical propagation of Ψ(t0) to Ψ(t0+∆t), using the time evolution

operator Û=e−
i
~ Ĥ∆t:

Ψ(t0 + ∆t) = e−
i
~ Ĥ∆tΨ(t0). (2.153)

The main obstacle in solving this problem is that the kinetic energy operator is nonlocal

in the position representation; in other words, although the potential energy V̂, which

includes now the time-dependent operator V̂
ext

(t), is diagonal in position space, the kinetic

energy operator T̂ is diagonal only in momentum space and the two quantities do not

commute,
[
T̂, V̂

]
6= 0 [116, 117]. The term e−

i
~ Ĥ∆t can therefore not be split into kinetic

and potential terms:

e−
i
~ Ĥ∆t 6= e−

i
~ T̂∆t · e− i

~ V̂∆t. (2.154)

Instead, an approximation is made that involves splitting the kinetic and potential energy

operators in the following manner [116, 117]:

e
−i
~ ∆tĤ = e

−i
2~∆tT̂ · e−i

~ ∆tV̂ · e−i
2~∆tT̂ +O(∆t3), (2.155)

where the error O is third-order in the time increment, ∆t. By choosing an adequately

small time interval, one ensures that the time-dependent term V̂
ext

(t) arising from the

electric field is constant, since it changes slowly during the time step. The propagation

of the wave function for an interval ∆t involves the following steps: beginning in

position space, the wave function is Fourier-transformed to momentum space where it is

multiplied by exp(−i∆tT̂/2~); next, the function is transformed back to position space

where it is multiplied by exp(−i∆tV̂/~); finally, the function is transformed back to

momentum space and multiplied again with exp(−i∆tT̂/2~) before it is transformed

back to coordinate space to complete one time step. Wave packet propagations discussed

in this thesis were carried out using the split-operator method as described here [138, 139].

Since the split-operator method was introduced [138, 139], it has been improved

by reducing the error to fourth-order in ∆t [140]. The revised exponential split operator,

containing seven exponential operators, is obtained by symmetrically splitting the

exponential terms from Eq. (2.155) and is given as

eη(T̂+V̂) = e
AηT̂

2 eAηV̂e
(1−A)ηT̂

2 e(1−2A)ηV̂e
(1−A)ηT̂

2 eAηV̂e
AηT̂

2 +O(∆t4) (2.156)

where η =−i∆t/~ and A = (2− 21/3)
−1

[116, 140]. As a consequence of the third-order

accuracy in ∆t, larger time steps can be chosen for computational efficiency without

sacrificing numerical stability.
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Finite grid and absorbing boundary function

The time-dependent Schrödinger equation is solved numerically on a discretized grid of

finite size. The grid length L in one dimension is given as L = N∆r, where N is the

number of grid intervals and ∆r is the spacing between grid points, as discussed earlier

in Section 2.2.3. This approach can be extended to a grid of multiple dimensions. The

grid size is chosen to allow adequate representations of the time-dependent wave function

in both position (r) and momentum (k) space. Under certain conditions, however, the

wave packet may reach the boundary of the grid, either in position or momentum space.

In momentum space, the maximum momentum can be extended by using a denser grid

in position space, since kmax ∝ N /L=1/∆r [141]. Similarly, the range in position space

can be extended by adding more grid points, but for a constant density of grid points,

this extension could lead to a large and therefore computationally expensive number of

grid points. One common method of circumventing this problem is to use an absorbing

function at the boundary of the grid, also referred to as a “gobbler” function, G(ri), since

it consumes outgoing wave packet fluxes. When chosen with the correct parameters, the

gobbler function is a smooth absorbing function that prevents artificial reflection of the

wave packet at the grid boundary [141, 116]. In this thesis, a Gaussian-shaped damping

function was used to absorb outgoing wave packet fluxes in the wave packet propagations

for the system OHF−, as implemented in the program qmpropa [141]. In one dimension,

the value of the gobbler function at the grid position ri is given as

G(ri) =

{
e−g0(i−N+g)2 i > N − g

1 otherwise,
(2.157)

where g0 is the damping constant, defined in this case as g0 = −ln 10−4/g2, and g is

the parameter controlling the onset, and thus the smoothness, of the function. N is the

number of grid points. The value of the wave function at the grid position ri is then the

product of the wave function and absorbing function,

Ψ(ri) = Ψ(ri) ·G(ri). (2.158)

On a 2D discretized grid, i.e. consisting of the grid points {ri, rj}, the Gaussian gobbler

function is given as

G(ri, rj) =





e−g0(i−Ni+g)2 · e−g0(j−Nj+g)2 i > Ni − g, j > Nj − g

e−g0(i−Ni+g)2 · 1 i > Ni − g, j < Nj − g

1 · e−g0(j−Nj+g)2 i < Ni − g, j > Nj − g

1 otherwise.

(2.159)

The value of the 2D wave function at the grid position {ri, rj} is then given as

Ψ(ri, rj) = Ψ(ri, rj) ·G(ri, rj). (2.160)
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One sees from Eq. (2.159) that for small values of g, the damping function is largest for

large values of ri and rj, and that it is zero for small values of ri and rj. Therefore, in

asymptotic regions of the discretized potential energy surface, the damping function is

largest to absorb outgoing wave packet fluxes.
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2.4 Angular momentum

In Eq. (2.73), an approximation was made in which nuclear vibrational and rotational

motions were separated; the internal nuclear wave function Φinternal
nuc was expressed as a

product of vibrational and rotational wave functions, Φinternal
nuc ≈ Φvib

nucΦ
rot
nuc. Having dis-

cussed numerical approaches to solving the vibrational problem in Section 2.2.3, our goal

now is to examine the rotational nuclear wave function Φrot
nuc in more detail, specifically

for the case of a rigid rotor. For this discussion, we will require a review of angular mo-

mentum. Therefore, in this section, we will begin with a review of the general theory

of angular momentum in quantum mechanics (Section 2.4.1). Next, angular momentum

algebra will be reviewed in the context of coupling two quantum mechanical angular mo-

menta (Section 2.4.3). This review will highlight the Clebsch-Gordan coefficients and 3−J
symbols, using the nomenclature of Zare [142].

2.4.1 Commutation rules

Let us define a generalized total angular momentum operator Ĵ with three Cartesian

components, ĴX , ĴY , ĴZ , which satisfy [142]:

[
ĴX , ĴY

]
= i~ĴZ (2.161)

[
ĴY , ĴZ

]
= i~ĴX (2.162)

[
ĴZ , ĴX

]
= i~ĴY , (2.163)

i.e. the three components of Ĵ do not commute with one another. The square of the total

angular momentum operator Ĵ can be defined as:

Ĵ
2

= Ĵ
2

X + Ĵ
2

Y + Ĵ
2

Z . (2.164)

Ĵ
2

has the commutation properties:

[
Ĵ

2
, ĴX

]
= 0 (2.165)

[
Ĵ

2
, ĴY

]
= 0 (2.166)

[
Ĵ

2
, ĴZ

]
= 0, (2.167)

which implies that it is possible to measure simultaneously Ĵ
2

and any one of the three

components of Ĵ. Traditionally, ĴZ is specified along with Ĵ
2
.
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Ĵ is Hermitian, so its eigenvalues are real; from Eq. (2.164), one can see that Ĵ
2

is

just the sum of the squares of three Hermitian operators. This property implies that all

the eigenvalues of Ĵ
2

are non-negative:

〈Ψ|Ĵ2|Ψ〉 = 〈Ψ|Ĵ2

X |Ψ〉+ 〈Ψ|Ĵ2

Y |Ψ〉+ 〈Ψ|Ĵ2

Z |Ψ〉
= ||ĴX |Ψ〉||2 + ||ĴY |Ψ〉||2 + ||ĴZ |Ψ〉||2 ≥ 0. (2.168)

Next, we will discuss the eigenvalues of the angular momentum operators.

2.4.2 Angular momentum observables

To begin, let us assume the total angular momentum Ĵ is represented by a vector ~J of

indeterminate orientation on a cone of given side and height, shown in Figure 2.2. The

Z

JMh
[J(J+1)]1/2 h

Figure 2.2: Vector representation of the total angular momentum ~J , whose magnitude is given by
[J(J + 1)]1/2 ~, and whose projection onto a space-fixed Z axis is given by M~.

cone is positioned symmetrically about the space-fixed Z axis. The magnitude of the

total angular momentum, |Ĵ|, is [J(J + 1)]1/2 ~, as shown schematically in the vector

representation4 in Figure 2.2. The projection of the total angular momentum onto the

space-fixed Z axis, is M~, where M is a real, dimensionless number. This quantity is

just the magnitude of the ĴZ component of the total angular momentum.

4One should distinguish the quantum mechanical angular momentum vector operator from a classical
vector. The vector product of two classical vectors, ~a1 × ~a2 = a1a2 sin θ, where θ is the angle between
the vectors ~a1 and ~a2, vanishes if ~a2 =~a1. The product of two vector operators, however, is not zero, i.e.
Ĵ× Ĵ= i~Ĵ [143].
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Whereas M~ is the projection of the total angular momentum Ĵ onto a space-

fixed Z axis, a second projection can be considered, namely the projection of Ĵ onto the z

axis of a rigid body contained within the space-fixed frame, as shown in Figure 2.3. This

Z

JMh
z

Kh

Figure 2.3: Vector representation of the total angular momentum vector ~J , and its projections M~
and K~ onto the space-fixed Z and body-fixed z axes, respectively.

projection of Ĵ onto the body-fixed axis is K~, where K, like M , is a real, dimensionless

number. Together, the three quantum numbers J , K, and M constitute the {|J K M〉}
representation. Later, in Section 2.5.3, we will see how the set of {|J K M〉} can be used

to construct the wave functions of a rigid rotor. The eigenvalue equations of interest are:

Ĵ
2|J K M〉 = J(J + 1)~2|J K M〉 (2.169)

ĴZ |J K M〉 = M~|J K M〉 (2.170)

Ĵz|J K M〉 = K~|J K M〉. (2.171)

It can be shown that the possible values of J , M , and K are positive integers or half-

integers, or zero [142]:

J = 0, 1/2 , 1, 3/2, 2 . . . (2.172)

and that (2J + 1) possible values for M and K exist:

M = −J, −J + 1, . . . , J − 1, J (2.173)

K = −J, −J + 1, . . . , J − 1, J. (2.174)

Eigenvectors common to Ĵ
2
, ĴZ , and Ĵz span the state space and satisfy the orthonormal-

ization

〈J K M |J ′ K ′ M ′〉 = δJJ ′δKK′δMM ′ (2.175)
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and closure relationships:

∑
J

J∑
M=−J

J∑
K=−J

|J K M〉〈J K M | = 1. (2.176)

At this point, having reviewed some fundamental relationships in the quantum mechanics

of angular momentum, we turn our attention to the addition of angular momenta.

2.4.3 Coupling of two angular momentum vectors

In this section, we take advantage of the vector representation to illustrate the coupling

of two quantum mechanical angular momenta. For clarity, we omit the vector notation

and retain only the operator notation, Ĵ, to emphasize the quantum mechanical nature

of these angular momenta. We are interested in the addition of two angular momentum

vectors, as depicted schematically in Figure 2.4,

J = J1 + J2, (2.177)

which also have M (projection onto a space-fixed Z axis) states associated with them,

|J1M1, J2M2〉. (The following treatment is generalized for any vector and its components,

so the coupling of two |J K〉 states is analagous and can be treated in the same manner.)

Coupled state

In Figure 2.4, J1 and J2 precess in phase (lower dashed circle) about J , while J precesses

about the space-fixed Z axis (upper dashed circle). These components are said to be

“coupled”. At any time, the projection onto the space-fixed Z axis is M (up to a factor

~ which has been omitted in Figures 2.4 and 2.5 for clarity), but an indeterminacy exists

in the values of M1 and M2. These coupled states, J = J1 + J2 and M = M1 + M2, are

eigenfunctions of the momentum operators:

Ĵ
2|J1J2JM〉 = J(J + 1)~2|J1J2JM〉 (2.178)

ĴZ |J1J2JM〉 = M~|J1J2JM〉 (2.179)

Ĵ
2

1|J1J2JM〉 = J1(J1 + 1)~2|J1J2JM〉 (2.180)

Ĵ
2

2|J1J2JM〉 = J2(J2 + 1)~2|J1J2JM〉 (2.181)

(2.182)
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O

x

y

z

J1

J2

J

M2

M

M1

Figure 2.4: Vector representation of the coupled state |JM〉, where J is given as the vector sum of
J1 and J2. The vectors J1 and J2 precess in phase about J (lower dashed circle), while the vector J

precesses about the space-fixed Z axis (upper dashed circle). The projection (up to a factor ~) M is at
any instant given as M =M1 + M2, although an indeterminancy in the individual components M1 and
M2 exists (adapted from [142]).

Uncoupled state

In another representation, shown schematically in Figure 2.5, the vectors J1 and J2 pre-

cess independently about the space-fixed Z axis, each sweeping out a cone of its own.

Accordingly, this representation is referred to as the “uncoupled” representation. At any

instant, J1 makes a projection M1 and J2 makes a projection M2, but an indeterminacy

in total M exists. These uncoupled states are eigenfunctions of the angular momentum

operators,

Ĵ
2

1|J1M1, J2M2〉 = J1(J1 + 1)~2|J1M1, J2M2〉 (2.183)

Ĵ1Z
|J1M1, J2M2〉 = M1~|J1M1, J2M2〉 (2.184)

Ĵ
2

2|J1M1, J2M2〉 = J2(J2 + 1)~2|J1M1, J2M2〉 (2.185)

Ĵ2Z
|J1M1, J2M2〉 = M2~|J1M1, J2M2〉. (2.186)

A unitary transformation connects the coupled and uncoupled representations,

|J1J2JM〉 =
∑

M1,M2

C(J1J2J ; M1M2M) |J1M1, J2M2〉 (2.187)

where the coefficients—termed Clebsch-Gordan coefficients5—are defined as

C(J1J2J ; M1M2M) ≡ 〈J1M1, J2M2|J1J2JM〉 ≡ 〈J1J2JM |J1M1, J2M2〉. (2.188)

5The Clebsch-Gordan coefficients are also sometimes referred to as vector coupling coefficients, vector
addition coefficients, or Wigner coefficients.



54 Theory

O

x

y

z

J1

J2

M2

M1

M

M1

J

Figure 2.5: Vector representation of the uncoupled state |JM〉, where J1 and J2 precess indepen-
dently about the space-fixed Z axis, making projections M1 and M2 (up to a factor ~). At any instant,
the uncoupled state |J1 M1, J2 M2〉 couples to form the state |J M〉, with length [J(J + 1)]1/2 (adapted
from [142]).

These coefficients form a unitary (orthogonal) matrix C of dimension (2J1 +1)(2J2 +1)×
(2J1 + 1)(2J2 + 1). The orthonormality relationships hold:

∑
M1,M2

〈J1J2JM |J1M1, J2M2〉〈J1M1, J2M2|J ′1J ′2J ′M ′〉 = δJJ ′δM,M ′ (2.189)

and ∑
J,M

〈J1M1, J2M2|J1J2JM〉〈J1J2JM |J1M
′
1, J2M

′
2〉 = δM1,M ′

1
δM2,M ′

2
. (2.190)

Eqs. (2.189) and (2.190) demonstrate that the scalar product of any two column or row

vectors vanishes, and the scalar product of any vector with itself is unity; CCT = 1̂ and

CT = C−1. In general, two conditions must be fulfilled for non-vanishing Clebsch-Gordan

coefficients, namely

M = M1 + M2 (2.191)

and

|J1 + J2| ≥ J ≥ |J1 − J2|. (2.192)

Eq. (2.192) is also referred to as the triangle condition. One should note that the magnetic

quantum numbers M1 and M2 add algebraically whereas the angular momentum quantum
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numbers J1 and J2 add vectorially (cf. Figure 2.4). An alternate representation of the

Clebsch-Gordan coefficients are the Wigner 3−J symbols, defined as

(
J1 J2 J

M1 M2 M

)
≡ (−1)J1−J2−M(2J + 1)−

1
2 〈J1 M1, J2 M2|J1J2J −M〉 (2.193)

or

〈J1 M1, J2 M2|J1J2J −M〉 ≡ (−1)J1−J2+M(2J + 1)
1
2

(
J1 J2 J

M1 M2 M

)
. (2.194)

The 3−J symbols are invariant under the cyclic exchange of any of the three columns.

Under non-cyclic interchange of any two columns, or under sign reversal of M1, M2, and

M3, the 3−J symbol is multiplied by (−1)J1+J2+J3 [142]. Using the vector model for

a geometric interpretation, one can consider the Clebsch-Gordan coefficients as indicat-

ing the possible angular momentum values that result after the addition of two angular

momentum vectors, J1 +J2. The coefficient 〈J1M1, J2M2|J1J2J −M〉 represents the prob-

ability amplitude that the coupled state |J1J2J M〉 of length [J(J + 1)]1/2 will be found

having its components J1 and J2 making the projection M1~ and M2~ for Ĵ1Z
and Ĵ2Z

,

respectively. The corresponding 3−J symbol is the probability amplitude divided by the

factor (2J + 1)1/2. The squares of these coefficients represent probabilities, so they are

real numbers whose values range from 0 to 1.
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2.5 The rigid rotor

In this section, the rigid rotor will be presented as a model of the rotational dynamics

of diatomic or linear polyatomic molecules. The standard rigid rotor eigenfunctions and

eigenenergies will be reviewed in Section 2.5.1. In Section 2.5.2, the specific case of a linear

triatomic molecule ABC will be treated. In this context, we will introduce (normalized)

rotation matrices as rigid rotor wave functions. Finally, in Section 2.5.3, we will consider

a rigid rotor in a linearly polarized laser field, focusing on the application to molecular

orientation.

2.5.1 Wave functions and eigenenergies

A rigid (non-vibrating) diatomic molecule, or a linear polyatomic molecule, can be ap-

proximated as a rigid rotor. Due to the angular nature of the problem, spherical polar

coordinates are optimal for describing the wave function, Ψ(r, θ, φ). The transformation

from Cartesian to spherical coordinates is sketched in Figure 2.6. The angle φ is the

θ

φ

(x,y,z)

Figure 2.6: Sketch of spherical coordinates. The angle φ is the azimuthal angle in the x, y-plane from
the x axis, with 0≤φ≤2π, θ is the polar angle from the z axis, with 0≤θ≤π, and r is the distance from
the point (x, y, z) to the origin.

azimuthal angle in the x, y-plane from the x axis with 0≤φ≤2π, θ is the polar angle

from the z axis with 0≤θ≤π, and r is the distance from the point (x, y, z) to the origin.

Expressed in polar coordinates, the Cartesian coordinates (x, y, z) are

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. (2.195)
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In a rigid rotor, the internuclear bond distances are held constant, so its Hamiltonian only

consists of kinetic energy due to the rotation of the molecule,

Ĥr.r. = − ~
2

2µ
∇̂2

, (2.196)

where µ is the reduced mass of the two nuclei, and the Laplacian operator ∇̂2
is given by

∇̂2
=

1

r

∂2

∂r2
r+

1

r2
Λ̂

2
, (2.197)

where Λ̂
2

is the Legendrian, or the angular portion of the Laplacian [143],

Λ̂
2

=
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ
. (2.198)

Since the radial coordinate r is constant in a rigid rotating molecule, the radial derivatives

of ∇̂2
can be omitted,

Ĥr.r. =
~2

2µr2

(
− 1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ

)

︸ ︷︷ ︸
Ĵ
2

. (2.199)

The expression in parentheses in Eq. (2.199) is just the operator for the square of the

total angular momentum in spherical polar coordinates, Ĵ
2
, and the moment of inertia is

I =µr2, so the Hamiltonian for a rigid rotor can be written,

Ĥr.r. =
~2

2I
Ĵ

2
. (2.200)

The corresponding orthonormal eigenfunctions of the rigid rotor Hamiltonian are the

spherical harmonics, Y M
J (θ, φ)≡ |JM〉, where J is the index corresponding to the total

angular momentum, and M is the index of the magnetic quantum number. The spherical

harmonics are defined only for integral values of J . In general, the total angular momen-

tum J consists of the orbital angular momentum R due to the orbiting rigid body, the

electronic orbital angular momentum, L, and the spin angular momentum, S:

J = R + L + S. (2.201)

J is therefore a vector sum of all angular momenta, and it depends on the angles of

rotation (θ, φ). The contribution of electronic orbital momentum (L) and spin angular

momentum (S) to the total angular momentum J does not imply any vibronic coupling

between nuclear and electronic modes. Furthermore, transitions between different

electronic states are not considered here.

In the absence of spin, S = 0, for example for a singlet state, and in the absence
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of electronic orbital momentum, L = 0, for example for a σ orbital, the total angular

momentum quantum number, J , just consists of nuclear angular momentum, J = R.

Initially, we limit the discussion of rigid rotor eigenfunctions and energy eigenvalues to

the case of S = 0 and L = 0, but later we will return to this discussion and examine the

rigid rotor wave functions for non-zero values of L. The spherical harmonics Y M
J (θ, φ)

span an orthonormal set over the unit sphere,

〈JM |J ′M ′〉 =

∫ 2π

0

dφ

∫ π

0

dθ sin θY M
J

∗
(θ, φ)Y M ′

J ′ (θ, φ) = δJJ ′δMM ′ , (2.202)

where Y M
J

∗
(θ, φ)=(−1)MY −M

J (θ, φ). The rotational energy levels EJ of a rigid rotor6 are

quantized according to,

EJ =
~2

2I
J(J + 1). (2.203)

It is customary to introduce a rotational constant, B, that is inversely proportional to I,

B =
~2

2I
(2.204)

such that EJ = BJ(J + 1). Thus, for a given J , EJ is (2J + 1)-fold degenerate. The

separation of two adjacent rotational energy levels, ∆EJ = EJ − EJ−1 is equal to:

∆EJ = B [J(J + 1)− J(J − 1)] = 2BJ (2.205)

and increases linearly with J .

2.5.2 Linear triatomic molecule ABC

Next, we consider a specific rigid rotor, namely a triatomic linear molecule ABC with

masses mA, mB, and mC, and bonds of fixed length RAB and RBC, as shown in Fig-

ure 2.7. The rotation about the axis that passes the center of mass—which for asymmetric

molecules is not the geometric center—will carry a moment of inertia I that is expressed

in general as:

I =
∑

i

miRi
2 (2.206)

where the mass mi is located a radial distance Ri from the center of mass of the molecule.

For a linear triatomic molecule ABC, it can be shown (see Appendix A for a complete

derivation) that the moment of inertia is given as [144],

IABC = mARAB
2 + mCRBC

2 − 1

M
(mARAB −mCRBC)2 . (2.207)

where M =mA + mB + mC and RAB and RBC are bond distances. Before discussing the
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A B C

RAB RBC

Z

Figure 2.7: A rigid rotor model for a linear triatomic molecule consisting of masses mA, mB, and mC,
and bond lengths RAB and RBC. The rotation is about the axis that passes through the center of mass
of the molecule, which for an asymmetric molecule, is not the geometric center.

Figure 2.8: Vector representation of the components of rigid rotor angular momentum. Ĵ is the total
angular momentum, composed of orbital angular momentum due to the orbiting rigid body R, electronic
angular momentum L, and spin angular momentum S. The projection of Ĵ onto the space-fixed Z axis
is M (up to a factor of ~), and the projection of Ĵ onto the body-fixed z axis is Ω (up to a factor of ~),
where Λ and Σ are the projections of L and S, respectively (adapted from [142]).

rigid rotor wave functions and energy eigenvalues, let us review the angular momentum

components that contribute to J , by considering Figure 2.8. The total angular momentum,

J , is composed of rotational angular momentum R arising from the orbiting rigid body,

electronic orbital angular momentum, L, and spin angular momentum, S. The projection

of J onto the space-fixed Z axis is quantized according to M~, where M is the magnetic

quantum number. Since the body-fixed z (molecular) axis is always perpendicular to the

6The commonly listed rigid rotor energy levels are only valid for the 1Σ electronic state. For states
with higher spin angular momentum or higher electronic orbital angular momentum, such as a 2Π state,
corrections must be made to the 1Σ rigid rotor energies [142].
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rotational angular momentum R in the case of a linear rigid rotor, the projection of R

onto this axis is zero. Rather, the orbital electronic angular momentum, L, and the spin

momentum, S, make projections Λ~ and Σ~, respectively, onto the body-fixed axis. The

values of L range from L=0, 1, 2, . . . for S, P, D, . . . orbitals, and Λ=±L; Σ = ±1
2
,±1, . . .

for a doublet, triplet, etc. The sum of Λ and Σ is termed Ω,

Ω = Λ + Σ. (2.208)

Let us recall now the eigenvectors of Ĵ
2
, ĴZ , and Ĵz, defined in Eqs. (2.169), (2.170), and

(2.171), where J was the total angular momentum and M~ and K~ were projections

thereof onto the space-fixed Z and body-fixed z axes, respectively. To reflect the fact that

the system may have non-zero spin and non-zero electronic orbital angular momentum,

the index K is often changed to Ω, i.e. |J K M〉 goes to |J Ω M〉. With these tools in

hand, we are now able to discuss the rigid rotor wave functions.

As discussed earlier, the spherical harmonics, Y M
J (θ, φ), are eigenfunctions of the

rigid rotor Hamiltonian for integral values of J . An alternate, yet equivalent, formu-

Figure 2.9: Rotation through the Euler angles (φ, θ, χ) transforms the space-fixed frame (X,Y, Z)
into the molecule-fixed frame (x, y, z) (adapted from [142]). The transformation is accomplished with a
rotation φ about the space-fixed Z axis, a rotation θ about the line of nodes N , and finally a rotation χ

about the z axis.

lation for the rigid rotor wave functions is in terms of rotation matrices. A rotation

matrix R(φ, θ, χ) is a matrix that rotates one coordinate frame into another frame—in

this case, the space-fixed (X, Y, Z) frame into the molecule-fixed (x, y, z) frame. This

transformation, sketched in Figure 2.9, is accomplished by three successive finite

rotations:
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1. a counter-clockwise rotation φ about the space-fixed Z axis, which carries the Y

axis into the line of nodes N

2. a counter-clockwise rotation θ about the line of nodes N , which carries the Z axis

into the z axis

3. a counter-clockwise rotation χ about the z axis, which carries the line of nodes N

into the y axis.

The Euler angles are therefore the angles through which a frame (X,Y, Z) must be turned

in order to coincide with a frame (x, y, z), and the total transformation can be described

as the product of three individual rotations:

R(φ, θ, χ) = Rz(χ)RN(θ)RZ(φ)

= e(−iχJz)e(−iθJN )e(−iφJZ) (2.209)

where for an arbitrary rotation about an axis ~n by an angle ξ, Rn(ξ) is given as

Rn(ξ) = e−
i
~ ξ ~J ·~n (2.210)

and ~J ·~n is the component of ~J along the ~n axis. Here, the vector notation is used to em-

phasize the directionality of J . Eq. (2.209) is often recast in another form to avoid mixing

operators belonging to different coordinate frames [142]. One convenient expression is

R(φ, θ, χ) = e(−iφJZ)e(−iθJY )e(−iχJZ), (2.211)

which can be shown to perform a rotation identical to that performed in Eq. (2.209) [142].

Now, let us consider a rotation acting on the eigenstate |J Ω M〉 of Ĵ
2

and ĴZ ,

which transforms |J Ω M〉 into a linear combination of other M values without changing

J and Ω (the following discussion can be applied analogously to rotations that transform

Ω to Ω′):

R(φ, θ, χ)|J Ω M〉 =
∑

M ′
DJ

M ′M |J Ω M ′〉 (2.212)

where the expansion coefficients DJ
M ′M(φ, θ, χ),

DJ
M ′M(φ, θ, χ) = 〈J Ω M ′|R(φ, θ, χ)|J Ω M〉, (2.213)

are the elements7 of a (2J + 1) × (2J + 1) unitary rotation matrix, R. Together, the

rotation matrix acting on the wave function |J Ω M〉, is still an eigenket of the operator

7The present derivation is adapted from Ref. [142]. We note that, paradoxically, the left-hand side of
Eq. (2.213) does not depend on Ω, in contrast to the right-hand side.
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Ĵ
2

with the same eigenvalues J(J + 1)~2 [134]:

Ĵ
2
R(φ, θ, χ)|J Ω M〉 = R(φ, θ, χ)Ĵ

2|J Ω M〉 (2.214)

= J(J + 1)~2 R(φ, θ, χ)|J Ω M〉. (2.215)

The rotation matrix leaves the wave function unchanged, except possibly for a phase

factor, such that the probability |J Ω M(φ, θ, χ)|2 is conserved. The rotation coefficients

DJ
M ′M(φ, θ, χ) represent the probability amplitude that the projection M~ of the angular

momentum vector J in the original frame will be M ′~ after a rotation through the Euler

angles (φ, θ, χ) [142]. Substitution of Eq. (2.209) into Eq. (2.213) gives

DJ
M ′M(φ, θ, χ) = eiM ′φdJ

M ′M(θ)ei Mχ, (2.216)

where

dJ
M ′M(θ) = 〈J Ω M ′|e−iθ JY |J Ω M〉. (2.217)

Eq. (2.216) was derived using the identity

e(−iξJZ)|J Ω M〉 = e(−iξM~)|J Ω M〉. (2.218)

The significance of the rotation e−iθ JY is to mix different M values, so the evaluation

of these matrix elements is nontrivial [134]. Typically, the expansion coefficients

dJ
M ′M(θ) are evaluated from a finite polynomial in arguments of the half angle θ/2, and

algebraic expressions for several common values of J and M have been tabulated (see

e.g. Ref. [142]). For example, for J = 1, M = 1, and M ′ = 1, d1
11(θ) = 1

2
(1 + cos θ). For

J = 1, M = 0, and M ′ = 0, d1
00(θ) = cos θ, which is just the spherical harmonic Y 0

1 (θ, φ),

up to a factor of
√

(3/4π) [142].

Particularily useful is the integral over a product of rotation matrices having the

same angular arguments. These integrals can be conveniently evaluated with the help of

3− J symbols [142]:

1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

DJ1

M1
′M1

(φ, θ, χ)DJ2

M2
′M2

(φ, θ, χ)DJ3

M3
′M3

(φ, θ, χ)dφ sin θdθdχ

=

(
J1 J2 J3

M1
′ M2

′ M3
′

) (
J1 J2 J3

M1 M2 M3

)
(2.219)

Finally, it can be shown that the general wave function for a rigid rotor is a linear com-

bination of rotation matrices [142, 134]. In the case of a rigid rotor, only two rotational

degrees of freedom exist and the third Euler angle χ can be fixed arbitrarily. By con-

vention, χ is set to zero, such that (φ, θ, χ) can be written as (φ, θ, 0) [142]. Including a

normalization factor, the rigid rotor wave functions |J Ω M〉 are given as

|J Ω M〉 =

[
2J + 1

4π

] 1
2

DJ∗
Ω M(φ, θ, 0) =

[
2J + 1

4π

] 1
2

(−1)M−ΩDJ
−Ω−M(φ, θ, 0). (2.220)
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The expansion coefficients DJ
Ω M are now the coefficients of a rotation matrix that rotate

the body-fixed frame (x, y, z) into coincidence with the space-fixed frame (X,Y, Z).
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2.5.3 Orienting a linear rigid rotor in a laser field

Orientation versus alignment

Controlling the orientation of molecules in the laboratory frame is highly desirable for

the optimization of bi-molecular collision experiments since the position of collision part-

ners determines the outcome of the encounter. Likewise, in unimolecular dissociation

experiments, controlling the orientation of molecules is essential for the spatial separa-

tion of dissociation products. Before continuing, it is instructive to distinguish between

alignment and orientation. Alignment refers to the spatial distribution of single-headed

arrows, whereas orientation refers to the preferential distribution of double-headed ar-

rows [142]. In terms of momentum eigenfunctions, alignment is concerned with the pop-

ulation of |J Ω M〉 and |J Ω−M〉 versus |J Ω M ′〉 and |J Ω−M ′〉. Orientation, however,

distinguishes between |J Ω M〉 and |J Ω−M〉, a population difference that gives rise to a

net helicity or spin [142]. A polar linear molecule ABC, for example, can be considered a

double-headed arrow, so its angular momentum distribution is best characterized in terms

of orientation. A nonpolar molecule ABA could only be described in terms of alignment.

Half-cycle pulse (HCP)

In this section, we will consider a rigid rotor in the presence of a nonresonant, moderately

intense (Imax ≈ 108 − 1012 W/cm2), linearly polarized half-cycle pulse (HCP). A HCP

can be generated, such that it consists of a large (on the order of 5 :1) asymmetry in the

positive and negative electric field magnitudes [60]. The central peak is predominantly

unipolar, and, in the laboratory, it is preceded or followed by long, low-intensity tails of

opposite field strength, such that the total area under pulse integrates to zero [59]. These

tails are on the order of ten times the length of the central peak. Such an experimentally

reproducible pulse is shown in Figure 2.10 (solid line, adapted from Ref. [60]). The tail

area, integrated up to t=4 ps, represents 15% of the main peak area. Superimposed on

the HCP in Figure 2.10 is a sine-square function (dashed line, taken from Ref. [59]). The

sine-square pulse is a good approximation to the experimental HCP, despite the missing

long weak tail. The inset (adapted from Ref. [60]) shows the Fourier transform of the

HCP in the frequency (cm−1) domain. In our simulations, we will also approximate

a HCP without including the long tails of opposite field strength. Since the central

peak is responsible for the significant transfer of angular momentum to the system,

neglecting these low-intensity tails should be a valid approximation [59, 145]. For a

general discussion on the design of few-cycle pulses, see Section 2.3.3.



2.5 The rigid rotor 65

Figure 2.10: An experimentally reproducible HCP (solid line) and a sine-square function (dashed
line) that is a good approximation of the HCP, adapted from Refs. [59] and [60]. The tail area of the
experimental pulse, integrated up to t=4 ps, represents 15% of the main peak area. The inset (adapted
from Ref. [60]) shows the Fourier transform of the HCP in the frequency (cm−1) domain.

Interacting with matter, the HCP exerts a unidirectional force on the molecular

axis, similar to a classical torque applied to a rigid body. An ensemble of randomly

oriented molecules will feel the polarity of the field, such that the librations of the

molecule become restricted to a fixed angular range in θ, the angle between the molecular

axis and the field vector.

In the “long” pulse limit, for which the pulse duration is much longer than the

rotational period, tp À τrot(≡ π~/B), the field appears static to the molecule and the

interaction is adiabatic [146]. In the short pulse limit, for which the pulse duration is

shorter than the rotational period of the molecule, tp <τrot, a “kick” of angular momen-

tum is transferred to the system. Under such conditions, the interaction is nonadiabatic;

the angular momentum of the system is not conserved and rotational transitions take

place. A broad wave packet—or a coherent superposition of rotational levels— is formed

in angular momentum space, such that the system is spatially well-aligned about the

polarization direction [50, 53, 146, 147].

As discussed in Section 2.3.3, using moderate laser intensities should not ionize or

dissociate the molecule. Furthermore, use of linearly polarized laser field implies

that M~, the projection of J on the laser polarization (space-fixed) axis, will remain

constant, ∆M =0 (see Figure 2.8). As mentioned previously, only the electronic angular
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momentum, composed of orbital (L) and spin (S) angular momentum, projects angular

momentum onto the body-fixed z axis since all nuclear rotational angular momenta of

the rigid rotor are normal to the molecular axis. Next, we will examine the wave packet

dynamics of the linear rigid rotor system.

Solutions to the time-dependent Schrödinger equation: rotational wave pack-

ets

The time-dependent Schrödinger equation (Eq. (2.105)) for the rigid rotor in the presence

of an external laser field is given as,

i~
∂Ψ(t)

∂t
= (Ĥrr + V̂

ext
(t))Ψ(t), (2.221)

where the Hamiltonian for a rigid rotor is defined

Ĥrr = BĴ
2
. (2.222)

B is the rotational constant in the equilibrium geometry and Ĵ
2

is the total angular

momentum operator squared. The time-dependent potential energy is given in the electric

dipole approximation as

V̂
ext

(t) = −~µ0 · ~E(t) (2.223)

where ~µ0 is the permanent electric dipole moment at the equilibrium geometry of the

molecule. The electric field describing the HCP, ~E(t), is given as

~E(t) = ~εE0 cos(ω t + ϕ) · s(t), (2.224)

where E0 is the field strength and ~ε is a unit vector along the polarization direction

which, following convention, is the space-fixed Z axis, i.e. ~ε from Eq. (2.224) is ~εZ . The

phase is set to zero, ϕ = 0, for simplicity. One should note that the electric field given

here differs slightly from the expression given in Eq. (2.134), namely cosine is used here

instead of sine. (Of course, since cos x = − sin (x − π/2), these expressions are related

through a simple phase factor.)

In the nonresonant case, electronic and vibrational excitations do not occur; this

condition implies that the carrier frequency, ω, be an off-resonant IR frequency, such that

the molecule remains in the electronic ground state and avoids vibrational transitions.

The envelope function, s(t), that describes the HCP is chosen in this case to be a

Gaussian function centered at time t= t0:

s(t) = e−(t−t0)2/σ2

. (2.225)
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The width of s(t) at half the maximum height is given by 2σ
√

ln 2 (see Eq. (2.136)).

The pulse duration σ is chosen such that it includes one half-cycle of the oscillating laser

field. The interaction of the field with the dipole moment of the molecule can give rise to

two interactions, a permanent dipole interaction and an induced dipole (polarizability)

interaction. However, the nature of these interactions is controversial and still being

debated by experts in the field [39, 148].

Herschbach and Friedrich write the interaction Hamiltonian for a cw laser as [39, 149],

V̂
ext

(t) = −~µ0 · ~E(t) = −µ0 E(t) cos θ − 1

4
αspaceE0

2 cos2 θ, (2.226)

where µ0 is the permanent dipole moment and αspace is the polarizability tensor in the

space-fixed frame,

αspace =




αXX αXY αXZ

αY X αY Y αY Z

αZX αZY αZZ


 . (2.227)

For nonresonant frequencies much greater than the reciprocal of the laser pulse duration,

ω À σ−1, averaging over the pulse width σ quenches the dipole interaction—the mean

value of µ0 E(t) averages to zero—and converts the second part of Eq. (2.226) to

E0
2/2 [39]. One should note that the cos2 θ nature of the polarizability interaction en-

hances alignment rather than orientation. On the other hand, the dipole-field interaction

scales according to E(t) cos θ and thus contributes to molecular orientation.

According to Seideman, at far-off-resonance frequencies, first-order absorption pro-

cesses can be neglected, and the induced dipole (polarizability) interaction is the

leading term [148]. For pulsed laser fields, the polarizability-field interaction behaves as

[E0s(t)]
2 cos2 θ, i.e. the polarization interaction depends on the pulse envelope s(t) and

not on the rapid oscillations of the laser field under the envelope. However, in the special

case of a virtually unipolar half-cycle laser pulse at moderate to strong field strengths

(1010 W/cm2 - 1012 W/cm2), the dipole coupling is the leading term and no polarizability

interaction need be considered [145], i.e.:

V̂
ext

(t) = −~µ0 · ~E(t) = −µ0 E(t) cos θ. (2.228)

In the subsequent rotational wave packet dynamics simulations, we will use the interac-

tion Hamiltonian from Eq. (2.228).

The wave function |Ψ(t)〉 can be expanded in a complete set of stationary eigen-

states,

|Ψ(t)〉 =
∑

J Ω M

CJ Ω M(t)|J Ω M〉e−iEJ t/~, (2.229)
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where CJ Ω M(t) are the time-dependent expansion coefficients and e−iEJ t/~ are time-

dependent phase factors. The wave function |J Ω M〉 is given in Eq. (2.220). Substitution

of Eqs. (2.228) and (2.229) into the time-dependent Schrödinger equation (Eq. (2.221))

yields a set of coupled equations for the expansion coefficients:

i~ĊJ Ω M(t) =
∑

J ′
CJ ′ Ω M(t) · 〈J Ω M |−~µ0 · ~E(t)|J ′ Ω M〉e i

~∆EJJ′ t. (2.230)

In Eq. (2.230), both M and Ω are conserved. ∆M = 0 since the laser field is linearly

Z-polarized, and ∆Ω=0 since the electronic state of the molecule does not change. The

values ∆EJ J ′ are the spacings between the rigid rotor rotational energies,

∆EJJ ′ = EJ − EJ ′ = B [J(J + 1)− J ′(J ′ + 1)] . (2.231)

The interaction Hamiltonian is

〈J Ω M |−~µ · ~E(t)|J ′ Ω M〉 = −µ0 E(t) ·Wdip(J Ω M |J ′ Ω M)

where the integral over the Euler angles for the dipole interaction is

Wdip(J Ω M |J ′ Ω′ M ′) = 〈J Ω M | cos θ|J ′ Ω M〉. (2.232)

The matrix elements in Eq. (2.232) can be evaluated using 3−J symbols, analagously to

the integral over three rotation matrices in Eq. (2.219), where cos θ is just the rotation

matrix D1
00(φ, θ, 0):

〈JΩ M | cos θ|J ′ΩM〉 = (−1)Ω+M
√

(2J + 1)(2J ′ + 1)

×
(

J 1 J ′

M 0 −M

) (
J 1 J ′

Ω 0 −Ω

)
. (2.233)

Starting with a pure rotational state |Ji Ωi Mi〉 (zero temperature limit) at t = 0, the

time-dependent expansion coefficients can be expressed as,

CJ Ω M(t = 0) = δJJi
δΩΩi

δMMi
. (2.234)

Quantifying orientation and alignment

Having discussed the tools for analyzing rotational wave packets, we can now return to the

goal of orienting an ensemble of molecules using a linearly polarized, HCP. One quantita-

tive measure of orientation is the expectation value 〈J Ω M | cos θ|J Ω M〉≡〈cos θ〉 where

θ is the angle between the z molecular axis and the Z space-fixed axis. In the case of a

rigid rotor with non-zero spin and electronic orbital angular momentum, the orientation

cosine 〈cos θ〉 can be evaluated using 3−J symbols with the following expression [150],

〈cos θ〉 =
∑

JJ ′
CJΩMCJ ′ΩM ∗〈JΩ M | cos θ|J ′Ω′M ′〉e i

~∆EJJ′ t (2.235)
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The matrix elements 〈JΩ M | cos θ|J ′Ω′M ′〉 vanish for M 6= M ′ and Ω 6= Ω′. The 3−J

symbols (discussed in Section 2.4.3) represent Clebsch-Gordan coefficients.

Typically, a rotationally cooled molecular beam consists of a thermal average of

rotational levels such that an isotropic distribution of magnetic states, −Ji ≤ Mi ≤ Ji,

exists, and averaging must be performed over the initial distribution of M states [53]. The

calculation of orientation and alignment observables must therefore include a Boltzmann

weighting, or a thermal average over rotational states:

〈cos θ〉T (t) = Qrot
−1

Jmax∑
Ji

wJi
(T )

Ji∑
Mi=−Ji

〈cos θ〉Ji,Mi
(t). (2.236)

where wJ(T )=exp(−EJ/kBT ), kB is the Boltzmann constant, T is the temperature, and

Qrot is the rotational partitional function that runs from Ji to Jmax:

Qrot =
Jmax∑

Ji

(2J + 1) exp

[−BJ(J + 1)

kBT

]
. (2.237)

For higher temperatures, the thermally averaged rotational population contains a broader

spread of J and M states than does a sample that is cooled to almost T = 0 K. This

broader distribution in angular space leads to a diminished observed orientation (and

alignment), as compared to the 0 K case. In other words, to achieve the same degree

of orientation as in the 0 K case, the field would need to apply more “torque” to the

system. The same reasoning applies to heavier molecules: more J levels are initially

populated than are for lighter molecules at comparable temperatures, so these systems

require more time to respond to the field. Nonetheless, a smaller rotational constant

implies that rotational energy levels are more closely spaced and that higher angular

momenta are accessed by the field at the same intensity, so that these competing effects

lead to qualitatively similar results.

Let us now conclude with a discussion of one way in which orientation, or 〈cos θ〉,
is measured experimentally. In the case of laser-induced orientation, a short (tp < τrot)

orientation pulse is applied that creates a superposition of rotational eigenstates. Next,

an intense femtosecond laser probes the sample by creating ions via Coulomb explosion,

and a static field projects the ions onto the position-sensitive detector. Finally, 〈cos θ〉
can be measured, where θ is just the angle between the Z polarization axis of the laser

and the projection of the ion velocity on the detector plane. This quantity is then a

measure of the average orientation of the ensemble of molecules [47, 55].
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