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Notation

It might be useful to keep the following notations in mind. Some of them may be, for the sake of
clarity, formally introduced in the body of the report.

• N set of all natural numbers

• Z set of all integer numbers

• R set of all real numbers

• M (n,m,R) set of all real-valued (n×m)-matrices

• M (n,R) set of all real-valued (n× n)-matrices

• 1n n× n identity matrix

• λ scalar quantity

• w vector in the sequence vector space or its subspaces

• ε vector in the sample space

• δij Kronecker symbol

• 〈x〉 mean of x, typically over a number samples

• 〈x〉± weighted mean of x over positive and negative samples

• S,S typically a set

• |S| cardinality of set S

• {a, b, c} set containing elements a, b, c

• (a, b) open interval from a to b

• [a, b] closed interval from a to b

• F (A,B) set of functions defined in A with values in B

3
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Part I

scope and method
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Purpose of this first part of the report is to set the background of the project, explain its motivations
and introduce the employed methods.
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Chapter 1

Introduction

Biology is the science of life.
But what is life? Despite its widespread use, there is no general agreement as to what exactly the

notion “life” stands for [1, 2]. Giving credit to some appealing arguments originated in the science of
complexity [3–6] a living entity could in general be thought of as one presenting a complex, “interesting”
behaviour, as opposed, for instance, to chaotic, fluid-like, or perfectly ordered, crystal-like ones1.

The most interesting behaviours on planet Earth in this sense, as far as the human scientific
community can tell, is observed in a class of self-organized [7, 8] chemical systems characterized by
a number of common features, the most striking of which is that of being based on a double helical
molecule called deoxyribonucleic acid, or, in short, DNA.

1.1 Proteins

The DNA appears to be a sort of library that contains the instructions for the self-organization
and self-sustainment of the chemical systems that are called “living” organisms, the instructions to
construct their other basic components: proteins.

Proteins are linear chains of covalently connected molecules called amino acids. Their sequences
are encoded in DNA segments called genes.

Proteins participate in almost all activities that take place within an organism and perform a huge
variety of functions. Some of them are enzymes that catalyze biochemical reactions, and are vital to
metabolism. Others have structural or mechanical functions, such as the proteins of the cytoskeleton,
which form a system of scaffolds to maintain a cell’s shape. Proteins are also important in processes
of the so-called immune response, in cell adhesion, cell signalling, and in the cell cycle.

The sequence of amino acids building up the chain is believed to be solely accountable [9] for the
spatial arrangement (fold) of the protein and ultimately for the special role the protein is going to
play within the organism.

1.1.1 Amino acids

In general terms, an amino acid is a molecule containing both amine and carboxyl functional groups.
In biochemistry, however, and for the purposes of this project too, what really go under the name
of amino acids are only the 20 standard natural amino acids (see figure 1.1). With the exception of
proline, these all adhere to the same template, including an α-carbon to which the amine and the
carboxyl groups and a variable side-chain are bonded. What drives the folding process and thus leads
to the final three-dimensional structure of the protein are the different physicochemical properties of
the side-chains.

The amino acids in a protein are linked by peptide bonds formed in a dehydration reaction. For
this reason, proteins are often also called peptides (or polypeptides if they are particularly long),

1The two extremes could be regarded as corresponding respectively to entropy or energy driven systems.
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Alanine (Ala/A) Arginine (Arg/R) Asparagine (Asn/N) Aspartic acid (Asp/D)

Cysteine (Cys/C) Glutamine (Gln/Q) Glutamic acid (Glu/E) Glycine (Gly/G)

Histidine (His/H) Isoleucine (Ile/I) Leucine (Leu/L) Lysine (Lys/K)

Methionine (Met/M) Phenylalanine (Phe/F) Proline (Pro/P) Serine (Ser/S)

Threonine (Thr/T) Tryptophan (Trp/W) Tyrosine (Tyr/Y) Valine (Val/V)

Figure 1.1: The 20 standard natural amino acids in their skeletal representation. In parentheses are
respectively their three-letter and one-letter codes. As can be seen, proline deviates from the scheme the
other amino acids adhere to, in that its N-end nitrogen is involved in an unusual ring with the side-chain.
This, incidentally, makes proline technically an imino acid rather than an amino acid.
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structure structure
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Figure 1.2: Schematic view of the possible path of a polypeptide chain to its native state. The chain
arranges itself locally in secondary and supersecondary structures which subsequently fold into the tertiary
conformation. Several folded subunits can then come together in the quaternary conformation.

though the former name is preferred when referring to the complete biological molecule in its final
stable conformation or native state. Once linked in the protein chain, an amino acid is also called a
residue and the linked series of carbon, nitrogen and oxygen atoms are known as main chain or protein
backbone. The end of the protein with a free carboxyl group is commonly known as the C-terminus,
whereas the end with a free amino group is known as the N-terminus.

1.1.2 Protein structure

Most proteins fold into unique three-dimensional structures, which appear to be determined by their
primary structure, that is, by the sequence of amino acids actually composing them. Assembled
together in the native three-dimensional protein structure, the amino acids enlisted in the primary
structure organize themselves in regularly recurrent local structural motifs mostly stabilized by means
of hydrogen bonds. The most common examples of such structural motifs are alpha-helices [10] and
beta-strands [11]. The local arrangements of a polypeptide chain are collectively called secondary
structure, while the way in which the polypeptide chain (eventually locally organized in secondary
structure domains) finally folds in the three-dimensional space is called tertiary structure. The latter
is generally stabilized by non-local interactions, most commonly by the formation of a hydrophobic
core, but also through hydrogen bonds, disulphide bonds and salt bridges. Finally, in many cases, two
or more polypeptide chains, called in this context protein subunits, can form larger complexes, which
then constitute what is commonly regarded as the protein’s quaternary structure. The definitions
of protein primary, secondary, tertiary and quaternary structure were first introduced by Kaj Ulrik
Linderstrøm-Lang in 1952 [12].

It is widespread belief that in their transition to the native state, the amino acid sequences take
on roughly the same route and proceed through the same intermediate states (see figure 1.2). The
folding process seems to involve the establishment of regular secondary and supersecondary2 structural
features first [13–17], particularly α-helices and β-sheets, and afterwards of tertiary ones. Formation
of quaternary structure usually involves the assembly of subunits that have already folded.

Despite the regularity with which they fold, proteins are not entirely rigid molecules. On the
contrary, while performing their biological function they may shift between several related structures.
In this frame, the various tertiary or quaternary structures they adopt are usually referred to as
conformations, and the transitions between these are called conformational changes. Such changes
are often induced by the binding of a substrate molecule to an especially “sensible” region of the
protein called active site, or by interaction with other proteins. In solution all proteins also undergo
variation in structure through thermal vibration and association with other molecules. In the context

2Supersecondary structures involve the association of several secondary structures motifs in a particular geometric
arrangement. Examples of supersecondary structure are hairpins, corners and even Rossmann folds.
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of a protein’s relatively dynamic life the secondary structure domains appear to enjoy instead a rather
stable existence and while they do often play a central role in the protein’s activity itself, they see
their structural integrity for the most part unaffected.

1.1.2.1 Secondary structure

The secondary structure of a protein is defined by patterns of hydrogen bonds between backbone
amide and carboxyl groups.

The hydrogen bonding patterns are, however, correlated with other structural features and this
has given rise to alternative definitions of secondary structure. The most famous is the geometrical
definition based on the dihedral angles φ and ψ formed by the α-carbons in the backbone, that is, the
angles between the planes formed by two consecutive peptide bonds. Since the secondary structure
formation induces specific arrangements of the backbone, embodied by specific values of the dihedral
angles, a segment of residues with such dihedral angles is often called a “helix” or a “strand”, sometimes
regardless of whether it exhibits the correct hydrogen bonding pattern or not. The correlation between
secondary structure and dihedral angles is commonly summarized in the Ramachandran plot [18].
Many other definitions have been proposed, often applying concepts from the differential geometry of
curves, such as curvature and torsion.

0 10 20 30 40

length (number of residues)

5000

10000

15000

helix
strand
coil

SSE length distribution

Figure 1.3: Distribution of the standard second-
ary structure elements as a function of their length
in number of residues. This distribution was ob-
tained from the release 1.71 of the Astral40 data
set [19]. The secondary structures were determ-
ined using DSSP (see section 2.2.1) and a loose
reduction scheme (see section 2.3.1.5) to project
the secondary structure types resolved by DSSP
to the three standard ones (helix, strand and coil).
While the coil class follows an exponential distri-
bution the helix and strand classes hint rather at
a superposition of bell-shaped distributions.

The rough secondary structure content of a
protein can often be estimated spectroscopically.
A very common method is the one based on
far-ultraviolet circular dichroism. Less common
but still widely used is the method based on in-
frared spectroscopy, which detects differences in
the bond oscillations of amide groups due to hy-
drogen bonding. In addition, secondary struc-
ture contents may as well be accurately estim-
ated using the chemical shifts of an unassigned
NMR spectrum.

The most common secondary structure types
are α-helices and β-sheets. Other helices, such
as the 3-turn helix and 5-turn helix, have ener-
getically favourable hydrogen-bonding patterns
as well but are far less frequently observed in
natural proteins. Some structural features like
tight turns and loose, flexible loops often link
the more “regular” secondary structure elements
(SSEs). Finally, the motif called “random coil”
is not a true secondary structure type, but is the
class of conformations that indicate the absence
of regular secondary structure. Figure 1.3 shows
the distribution of helices, strands and coils, as
a function of their length in number of residues.

Amino acids vary considerably in their abil-
ity to form the various secondary structure ele-
ments. Proline and glycine residues are some-
times known as “helix breakers” because they
disrupt the regularity of the α-helical backbone
conformation. They both have unusual conformational abilities and are commonly found in turns.
Amino acids that prefer to adopt helical conformations in proteins include alanine, leucine, methion-
ine, glutamine, glutamic acid and lysine; by contrast, the large aromatic residues (tryptophan, tyrosine
and phenylalanine) and the Cβ-branched amino acids (isoleucine, valine, and threonine) tend to adopt
β-strand conformations. At any rate, these preferences are not strong enough to constitute alone a
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reliable criterion for predicting secondary structure. In relatively recent times several methods have
been developed to do that.

1.1.3 Protein structure prediction

Since the structure of a protein plays such a central role for its function within the living organism,
it is subject of great interest. Several experimental techniques have been developed in order to
investigate it, the most popular of which are X-ray crystallography and NMR spectroscopy. These
techniques have given great insight into many mechanisms involving proteins, and have thus helped
to shed light on countless processes essential for life. They are however relatively expensive and time
consuming. As a consequence, especially considering the massive amount of protein data derived from
modern large scale DNA sequencing, the need is increasingly felt for theoretical prediction methods
providing a means of generating plausible structures for those proteins the structure of which is
yet unknown. Medicine and biotechnologies also provide important fields of application for protein
structure prediction. This can be a very precious aid in fact in designing drugs and other functional
or structural molecules.

Predicting the structure of proteins is a very difficult task. The number of atoms involved in such
molecules is most of the times too large to allow a thorough “ab initio” electrostatic computation, let
alone a quantum mechanical one. A direct simulation of protein folding in atomic detail via methods
like molecular dynamics on the other hand is to rule out too, due to its very high computational
cost. For these reasons, most structure prediction methods actually rely on more or less simplified
representations of proteins in which amino acids are typically treated as structureless units rather
than in atomic detail.

Given the huge number of possible amino acid combinations (N = 20L for a sequence comprising
L amino acids), an exhaustive inspection of the entire sequence space is not feasible. So, for example,
in the frame of ab initio techniques the likelihood of a certain fold can be established by means of
“energy” functions [20, 21] and contact maps [22] that summarize in a way the interaction between
the amino acid side-chains. Of a somewhat different nature are homology modelling and protein
threading techniques. The former [23] is based on the reasonable assumption that two homologous
proteins, that is proteins with “similar” sequences, will share very similar structures. Because a
protein’s fold is evolutionarily more conserved than its amino acid sequence, a target sequence can be
moulded with reasonable accuracy on a very distantly related template, provided that the relationship
between target and template can be discerned through sequence alignment. The latter [24] consists in
scanning the amino acid sequence with unknown structure against the database of solved structures.
A scoring function not dissimilar from the energy functions of ab initio methods is then used to assess
the sequence’s compatibility with each candidate structure (also called decoy), thus yielding suitable
three-dimensional models.

A considerable aid is provided to all these structure prediction methods if a prediction of the
secondary structure [25–27] of the protein is available beforehand. Reliable secondary structure in-
formation may in fact be employed to build up safe starting cores in fold simulation programs [28] and
especially, as effective structural constraints for protein threading [29, 30] and homology modelling
[31–33] searches.

1.1.3.1 Secondary structure prediction

Early secondary structure prediction methods were based on the mentioned alpha and beta propensit-
ies of individual amino acids [34–36], or tried to exploit certain physicochemical properties of these
[37]. Such methods reached at most an accuracy ratio of about 0.65 in predicting which of the three
states helix, strand or coil (see definition of the Q3 index in section 2.3.2.1) a residue adopts. The
main drawback of these techniques was that, typically, they were taking into account no contextual
information [38, 39].

In the years the field has grown considerably and so has the secondary structure prediction accur-
acy. Several different methods have been developed, varying in more respects, from the information
actually taken into account to the adopted techniques. The latter include information theory [40–45],
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neural networks [46–62], homology and nearest neighbour searches [63–71] eventually coupled to a
physicochemical analysis [72, 73], hidden Markov models [68, 74–77], stochastic tree grammars [78],
support vector machines [79–84] not to mention multiple linear regression analysis (a technique not
dissimilar from the one to be presented in this report) [85], genetic algorithms [86] and various com-
binations of such techniques [87, 88]. Some have also worked out ways to merge together a number of
existing tools in the frame of so-called consensus methods [89–94], often succeeding in increasing the
overall prediction quality.

The strongest performance boost was given to secondary structure prediction programs by the
introduction of multiple sequence alignments and profiles to replace the pure sequence as input material
for the prediction program.

1.1.3.2 State of the art

Unfortunately, it is not so straightforward to compare the prediction qualities achieved by various
methods because they were often tested in different conditions. A solution to this problem might
have been represented by the EVA (Evaluation of Automatic protein structure prediction) project
[95–97]. Drawing on pre-release data from the Protein Data Bank (PDB) [98], EVA provided in fact
a universal, continuous and statistically significant benchmark platform for all secondary structure
prediction servers that took part in it. According to EVA’s statistics, using EVA’s own “standard
of truth” (see section 2.3.1.5), the average accuracy ratio in predicting which of the three secondary
structure states, helix, strand or coil, a residue adopts (see section 2.3.2.1) appeared to be somewhere
below 0.8.

The EVA project seems to be no longer active at the time of writing but still represents a valuable
reference for the secondary structure community. The servers officially benchmarked by EVA are
listed in table 1.1 together with other prediction programs available in the internet.

Following are some further details about them.

• APSSP2 [99] combines a modified example based learning (EBL) technique with a neural network
approach.

• PHD [100], like other prediction tools, is based on a system of neural networks. Its main merit
was that of introducing profiles to the secondary structure prediction community.

• Porter’s bidirectional recurrent neural networks [56] make use of long range information to
improve the predictor’s accuracy.

• PROF [90] by Ouali and King combines GOR-like and neural network methods.

• Prospect [101] is a program designed to predict the fold of a protein my means of threading
techniques. It can input secondary structure information or predict it on its own.

• PSIPRED [51] uses a bilayer neural network and two-stage learning. It was the first to make
use of PSIBLAST-generated sequence profiles.

• SABLE2 [58] uses neural networks to combine secondary structure and relative solvent access-
ibility (RSA) predictions.

• SAM [102] is an homology-based predictor. The homologs to a target sequence are found by
means of a hidden Markov model which is iteratively constructed in the learning process.

• SSpro4 [55] is the precursor of Porter.

• YASPIN’s architecture is not dissimilar from that of other bilayer neural networks. What makes
it different is that the second stage prediction is performed in its case by a hidden Markov model
instead of a second neural network [54].

12



Table 1.1: List of active secondary structure prediction programs as of April 24th, 2009. The last
column indicates whether a version of the prediction program was also available for download. In the
first part are servers which were tested by EVA; in the second part, those which were no longer or never
tested by EVA.

name method reference download

servers benchmarked in EVA

APSSP2 nearest neighbour and neural network [99] no

PHD neural network [100] yes

Porter neural network [56] no

PROF consensus [90] yes

Prospect threading [101] yes

PSIPRED neural network [51] yes

SABLE2 neural network [58] yes

SAM hidden Markov models [102] yes

SSpro4 neural network [55] yes

YASPIN
neural network and
hidden Markov models

[54] no

servers not benchmarked in EVA

BSMPSSP segmental semi-Markov models [103] no

GOR information theory [42, 44, 93] yes

IPSSP hidden semi-Markov models [74] no

JPred neural network [104] no

JUFO neural network [105] no

MUPRED nearest neighbour and neural network [88] no

PMSVM support vector machine [82] no

PREDATOR sequence homology and physicochemical analysis [73] yes
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• BSMPSSP [103] uses a generalization of hidden Markov models to treat the secondary structure
prediction as a general Bayesian inference problem.

• GOR-IV and GOR-V [42, 44, 93] are the successors of the original GOR (Garnier-Osguthorpe-
Robson) method, based on probability parameters derived from empirical studies of known
protein structures.

• IPSSP’s architecture is very close to that of BSMPSSP; it prides itself, however, of not making
use of sequence profiles, but of what the authors call single amino acid sequences [74].

• JPred [104], the evolution of Jnet, uses juries of neural networks in a sort of internal consensus
approach.

• JUFO’s neural network architecture differs from others in that it accepts also low-resolution
non-local tertiary structure information as an additional input [105]. In most application this
would come from de novo tertiary structure prediction methods like rosetta [106].

• MUPRED [88] uses a neural network to combine the strengths of the fuzzy k-nearest neighbour
[107] prediction method and of the sequence profile-based method.

• PMSVM [82] imitates the two-stage learning procedure used by many neural network-based
methods, but replacing the neural networks themselves with support vector machines.

• PREDATOR [73] generates secondary structure propensities for a target sequence and a set of
sequences related to it by sequence alignment.

1.2 Scope of this project

The aim of the project reported on here was to develop a new method for predicting a protein’s
secondary structure on the basis of its primary structure.

The method developed prides itself of originality and a relative straightforwardness and eventually
proved to be a competitive alternative to those existing at the time of writing.
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Chapter 2

The method

2.1 Overview

The general scheme of a sequence-based secondary structure predictor is depicted in figure 2.1.

Figure 2.1: Basic flow diagram of a sequence-based secondary structure predictor. The amino acid
sequence, or primary structure, is input by the program which returns its secondary structure prediction.

2.1.1 Prediction instructions

In order for a prediction program to have any real predicting potential, it must be first instructed
on how to make best use of the input it receives. This is done here by constructing a set of rules
to correlate a protein’s primary structure with its secondary structure. This process, accompanied
by the quality assessment of the achieved predicting capability, was the actual main concern of the
project and shall be the subject of the rest of this report.

Let’s have first of all a brief overview of the type of technique used to instruct the predictor.

2.1.1.1 A comparative statistical learning method

The method developed belongs to the broader class of comparative techniques. Techniques of this
kind use available information to infer a set of more or less manifest rules which somehow identify
the system of interest. These rules can be either implicitly applied, like in methods based on direct
homology searches, or used in a semi-empirical fashion to build ad hoc models describing the system
of interest. Such models differ from those stemming from ab initio techniques in that they are not
based on any established theoretical constructs and are generally very specialized. They are often
so entangled in the program that generates them, that it is hard, if not impossible, to identify the
rules that actually define them. This is the case, for instance, for multilayer artificial neural networks,
however not, as will be shown in section 5.2.4.3, for models like the one illustrated in this report.
The parameters contained in the predictor described here have a very precise significance and can be
directly related to the input it receives, that is, the sequence of amino acids.

The “statistical” attribute characterizing the method delineates the nature of the rules-inferring
procedure. This is based, as the reader shall see, on the statistical analysis of existing data and fits
in the theoretical framework defined by Vapnik’s statistical learning theory [108].
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Figure 2.2: Scheme of the PDB filtering process. The filtered database contains representatives of all
relevant protein classes.

2.1.1.2 Defining the problem

It is common practice to represent the secondary structure of a protein as a string of characters with
the same length as the primary structure, in terms of number of amino acids, and assign in this way
a secondary structure motif to every residue in the peptide chain.

In the following example, the beta chain of E. coli heat-labile enterotoxin [109], amino acids are
represented by their one-letter code and "H" stands for helix, "E", signifying here “extended”, stands
for strands and "." stands for coil, which is not, as already pointed out, a secondary structure motif
in itself but rather means “no structure”, or, at least, “none of the above structures”.

TITELCSEYR NTQIYTINDK ILSYTESMAG KREMVIITFK

SGETFQVEVP GSQHIDSQKK AIERMKDTLR ITYLTETKID primary structure
KLCVWNNKTP NSIAAISMKN

.HHHHH.... .EEEEEEEE. ..EEEEE... ...EEEEE..

...EEEE... .......HHH HHHHHHHHHH HHHH....EE secondary structure
EEEEE..... EEEEEEEEE.

Given a certain amino acid sequence the predictor will return a string like the second one, the quality
of which can be straightforwardly evaluated by simple direct comparison with the true1 one (see
section 2.3.2 for further details on the evaluation criteria).

2.2 Data

In order for the program to be able to deduce any correlation rules between primary and secondary
structures, it must have access to the actual secondary structures of the proteins as well as to their
amino acid sequences.

The raw information available is in the form of protein structural data, which can be obtained
from existing databases like the Protein Data Bank (PDB) [98].

The PDB contains many protein structures, a fair amount of which share considerable portions of
their amino acid sequence with each other. While this might be to a tiny extent due to the natural
occurrence likelihood of certain amino acid combinations, determinant factors are in some cases the
relative straightforwardness with which some structures can be resolved and often the privileged sci-
entific interest reserved to some protein families. In order to use properly unbiased data it is therefore
necessary to filter (see figure 2.2) the bulk database, selecting only proteins that are representatives
of particular classes.

The data set most extensively employed throughout this project was the release 1.71 of the As-

tral40 compendium [19, 110, 111], from the SCOP database. This data set contains domain se-
quences with up to 40% homology.

2.2.1 Structural information

The files in the databases contain the coordinates in space of the atoms of every amino acid in the
protein chain. The protein’s secondary structure can be derived from these coordinates using tools

1The definition of the true secondary structure itself is not as precise as it may seem.
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Figure 2.3: Scheme of the data feeding. The primary and secondary structure information is extracted
out of the PDB data and passed to the program in the form of strings.

like DSSP [112], STRIDE [113] or DEFINE [114].
It is opportune to spend some words here about the process of secondary structure determination

carried out by such tools. All programs mentioned above make use of PDB coordinates to get inform-
ation about the geometry and the intramolecular interaction patterns of specific peptide chains. The
secondary structure of the peptide is determined on the basis of this information. Plain though the
whole procedure may seem, it is not exempt from some shortcomings. The PDB structures, to begin
with, are affected by certain degrees of approximation. Another approximation is then introduced
by the algorithms, in order to simplify what are otherwise too complex interaction networks. DSSP,
for example, identifies hydrogen bond patterns using pre-assigned atomic partial charges for the car-
bonyl oxygen and the amide hydrogen. The consequent non-exactness of the definition of secondary
structure intrinsically limits the accuracy attainable by comparative predictors of the kind discussed
in this report (see also section 2.3.2.1).

2.3 Program design

Once both primary and secondary structures are available and stored in strings like those seen in the
example in section 2.1.1.2, they can be fed to the program as shown in the scheme in figure 2.3.

The program itself is divided into two main modules (figure 2.4):

- learning module: constructs a model based on the data it is presented;

- evaluating module: tests the model to see how well it performs the task it was designed for.

The actual secondary structure predictor tool will be in essence based on the evaluating module save
for the quality assessment functionalities themselves.

2.3.1 Learning module

As already pointed out, the learning module is to construct a set of rules correlating the primary and
the secondary structures of the protein domains provided.

Unit peptides. The protein domains in the database consist of few tens to several hundreds amino
acids. Handling so heterogeneous data would prove quite impractical. It is more convenient instead,
to base the treatment of the amino acid sequences not on the whole original protein chains but on
unit peptides, extracted out of these (see figure 2.5), containing an equal number of amino acids. A
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Figure 2.4: Scheme of the program’s modular structure. The primary and secondary structure inform-
ation is passed on to the learning module first. Based on them, the learning module produces a model
representing the correlation between primary and secondary structure. This model is then passed on to
the evaluating module, which tests its quality.

typical unit peptide can contain between 5 and 15 amino acids. In the work reported here, peptides
with up to 39 amino acids (see, for instance, section 4.1.5) have occasionally also been considered.

Figure 2.5: Extraction of the primary and sec-
ondary structure strings of a unit peptide with 13
amino acids from the original chain. Such peptides
are more easily processed by the learning module.

The hypothesis of locality. It is important,
at this stage, to point out a significant conceptual
repercussion of the use of unit peptides. Aside
from its obvious practical advantages, the extrac-
tion of a peptide sequence out of its natural pro-
tein environment implies ignoring the influence
the latter has on the secondary structure of the
former. In other words, by basing the analysis
on segments of the protein chains rather than on
the whole protein chains themselves the second-
ary structure is assumed to depend only locally
on the primary structure. Though this doubt-
less is in many cases a reasonable approximation,
there are some situations in which it might definitely prove too rough [115, 116]. The β-sheets for
example, formed by rows of parallel or antiparallel β-strands, often involve pairs of residues that are
quite far apart on the sequence, but come very close to each other as the protein folds and constitute
crucial stability factors for the tertiary structure as well as for the secondary structure itself. It could
well be that neglecting distant correlations such as these might prevent a predictor from identifying a
structure that owes in part its very existence to them.

2.3.1.1 Learning data set

Ahead of the actual learning phase a stack of unit peptides like that of figure 2.5, effectively constituting
the predictor’s knowledge, is selected from the whole data set and the corresponding primary and
secondary structure substrings are stored. These are then used to investigate the correlation rules
existing between them.

Supporting data sets. In some cases the learning data set can be further divided into different
learning subsets, which are then used to optimize different features of the model. In the case of neural
networks, for instance, a portion of the learning data set is left out of the training, but is used to
prevent overfitting. As soon as the network’s prediction performance on this portion gets worse the
training is interrupted. In this work, a fraction (∼10%) of the learning data set, called supporting
data set, was used to optimize the statistical reweighting factors (see section 4.1.5.1).
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Figure 2.6: Scheme of the data set splittings. The bulk database is divided into two parts, one of which
is used for learning, while the other one is used for validation. The “recognition” test, carried out on the
former part, tells how well the learning module has learned the data it was given. A test carried out on
the latter part gives a measure of the predictor’s generalization capability.

2.3.1.2 Validation data set

Since the database of proteins is not unlimited it is imaginable that an algorithm may be devised,
which is capable of learning all the information contained in it by heart. For instance, a function that
simply maps each position in the primary structure string to the motif at the corresponding position
in the secondary structure string would achieve one hundred percent prediction accuracy without
even being very resource-demanding. Such a function would however be totally helpless if presented
with an amino acid sequence that is not included in the database it was “instructed” with; in fact it
would not work at all. This is expressed by saying that the “predictor” based on that function has no
generalization capability and is therefore of no use.

In order to have a more realistic measure of the quality of the model it is advisable to leave out
of the learning procedure a portion of the initial database of proteins for cross-validation (figure 2.6).
Proteins belonging to this portion are in other words not taken into account when establishing the
correlation rules and can be used to test the model’s actual generalization capability.

2.3.1.3 Recognition

The set of protein domains or unit peptides, that were used in the learning procedure can still be
tested on to check how well the program has actually learned them. A slightly better performance is
to be expected, in general, in the recognition of the learned data set than in the true prediction. A
predictor that achieves a very good accuracy in recognition at the expenses of the true prediction is
said to be overfitted.

2.3.1.4 The library of secondary structure patterns

Before any correlation rules between primary and secondary structure can be established, it is neces-
sary to specify which secondary structure patterns the sequence is to be correlated with.

In theory, all the information included in the secondary structure string (or more realistically,
in the substring corresponding to the unit peptide currently under examination) provided by the
secondary structure definition program can be utilized. In practice though, in order to limit the
complexity of the problem, it is advisable to use a few of the secondary structure motif characters
at most. Once the number of characters constituting a secondary structure pattern is established, a
catalogue of secondary structure patterns can be compiled. This is best illustrated with the help of
some examples.

The most typical scenario is the one in which the secondary structure patterns involve a single
amino acid position so that the library simply coincides with the secondary structure alphabet M,
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that is, in general2, with the alphabet of motifs the secondary structure definition program is capable
of sorting out.

Assuming to be using, for instance, DSSP, which is actually the case for most of the results that

will be reported, the library of different secondary structures, P
(8)
1 , would consist of the eight states

[112]: α-helix ("H"), isolated β-bridge ("B"), extended strand that participates in β-ladder ("E"),
3-turn-helix ("G"), 5-turn-helix ("I"), hydrogen bonded turn ("T"), bend ("S") and coil (represented
in DSSP by a white space).

It is also feasible to consider extended patterns (see section 4.2.3), that is, patterns involving more
than one residue position. In this case the secondary structure library can grow considerably. If, for
example, an alphabet consisting of the three basic states (helix "H", strand "E" and coil ".") was to
be used and the patterns were identified by two amino acid positions, the library would end up being

P
(3)
2 =







HH, HE, H.,
EH, EE, E.,
.H, .E, ..






,

where alongside the persistence patterns, "HH", "EE" and "..", also the transition patterns, "HE",
"H." and "EH", "E.", ".H" and ".E", make their appearance. Similarly, were the secondary structure
involving three amino acid positions instead of two, the library would result in

P
(3)
3 =







HHH, HHE, HH., HEH, HEE, HE., H.H, H.E, H..,
EHH, EHE, EH., EEH, EEE, EE., E.H, E.E, E..,
.HH, .HE, .H., .EH, .EE, .E., ..H, ..E, ...






.

2.3.1.5 Alphabet reduction scheme

The secondary structure definition programs characterize secondary structure based on several (eight
in the case of DSSP) different motifs. If a smaller number of secondary structure types is needed,
a suitable reduction scheme is necessary to convert the raw secondary structure information. In the
secondary structure prediction community, for example, mainly two different reduction schemes are
employed to shrink the eight DSSP states down to the three basic ones. The strict reduction scheme
assigns "H" states to helix and "E" states to extended (or strand) only, leaving everything else to
the coil meta-class. Using this scheme the populations of the three basic secondary structures in
the release 1.71 of Astral40 amount to 32.7%, 21.1% and 46.2% respectively. The loose reduction
scheme assigns instead all helix-like states, i.e. "G", "I" and "H", to helix and all strand-like states,
i.e. "B" and "E" to strand, partially balancing in this way the secondary structure populations. For
the release 1.71 of Astral40 these amount now to 36.4%, 22.2% and 41.4% respectively. Incidentally,
the loose reduction scheme also corresponds to EVA’s “standard of truth” [96].

2.3.1.6 Relating primary to secondary structure

Given the library of secondary structure patterns the next question arises: how can the amino acid
sequence be actually related to these patterns?

Though this clearly is an example of complex multi-choice classification problem, the approach
chosen was to start by looking at all patterns separately and reduce it to the sum of as many so-
called single-choice classification problems as there are patterns in the library (see figure 2.7). In a
single-choice classification problem all the patterns that are not the one of interest are grouped into
a single class and rules are established, in turn, to sort the one of interest out3. Each single-choice
classification problem is addressed (see chapter 3) taking inspiration from the procedure4 outlined by

2It is possible, as will be shown in section 4.1.4, to further extend the alphabet provided by the secondary structure
definition program DSSP [112].

3Strictly speaking it is a double choice, one choice being the secondary structure of interest, the other being all
others. I thought however that the “single” attribute better stresses the fact that only one secondary structure type is
handled at each time.

4Incidentally, the same procedure was successfully applied in this group [117] to the problem of the major histocom-
patibility complex (MHC) binding affinity.
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Figure 2.7: Scheme of the separation of the three-choice classification problem into three single-choice
classification problems. As the reader will see, each single-choice problem gives rise to a likelihood model
for the secondary structure of interest. Comparing all likelihood models obtained this way allows to
finally solve the three-choice problem.

R. A. Fisher in 1936 [118]. It turns out, as will be explained in more detail in section 3, that each
set of rules won through Fisher’s procedure provides a means of measuring the likelihood that some
amino acid sequence be associated to the corresponding secondary structure pattern. Once all the
needed sets of this kind are available, a simple direct comparison of the likelihoods attainable from
them allows to solve the multi-choice classification problem.

At the moment of establishing the correlation rules themselves two different ways of proceeding
were worked out, involving two slightly different regression [85] approaches.

Distributed regression approach. In this case (see figure 2.8a) “signals” are extracted for all
secondary structure patterns in the library from each peptide sequence in the learning data set. This
can be done, for instance, by looking at the secondary structure pattern at different positions along the
unit peptide and ponder each contribution. This way, sequence windows containing more occurrences
of a same pattern will give, as a rule, a stronger signal than those containing a little bit of everything.
These, in turn, will give possibly weak non-zero signals for all patterns present.

Exclusive regression approach. Here a single secondary structure pattern is associated to each
peptide sequence in the learning data set (see figure 2.8b). This is designated by means of a coherent
assignment criterion. The criterion used in this work, was to extract the secondary structure pattern
at one position along the sequence, elected to be the key-position, and assign this to the data sample.
This procedure can also be regarded as an extreme case of distributed regression in which one pattern
gets all the “signal” while the others get nothing.

The distributed approach was only briefly investigated and promptly abandoned in favour of the
exclusive approach which, at least in the context in which the two were compared, lead to slightly
better performance.

2.3.2 Evaluating module

The correlation rules constructed by the learning module are put to test here.
A data set of amino acid sequences, in the form of strings like those seen precedently, is input

to the program, which performs a prediction based on them. The way this is done differs slightly
depending on the type of data set the evaluating module is actually fed with.
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(a) distributed regression (b) exclusive regression

Figure 2.8: Visual representation of the secondary structure signal extraction from a polypeptide
segment of length 13 in the case of (a) distributed and (b) exclusive regression. The yellow bars represent
different signal intensities. In (a) both strand and coil get fairly strong signals, while in (b) only strand
gets a non-zero signal.

Unit-wise evaluation. The data set is composed of unit peptides. This could be the case, for
example, if the interest is in ascertaining the model’s ability of recognizing the assigned secondary
structure pattern. In this case the evaluation procedure consists in applying the correlation rules
to every single peptide and compare the predicted secondary structure pattern to the one used (see
section 2.3.1.6) during the learning procedure.

Figure 2.9: Chain-wise evaluation/prediction. A
sliding window is used to subsequently isolate the
unit peptides to be fed to the evaluating module.
The latter gives a suggestion for the secondary
structure of the amino acids of interest by apply-
ing the learned unit-based rules. The evaluation
involves every residue in the polypeptide chain.

Chain-wise evaluation. The data set is com-
posed of entire protein chains. Since the rules
necessarily involve unit peptides only, the pro-
cedure effectively consists in isolating subsequent
portions of the sequence with the desired length
(see figure 2.9). These are then fed as unit pep-
tides to the model to get its “suggestions” regard-
ing the secondary structure to be assigned to the
amino acids of interest.

How these suggestions are finally put together
to build the complete protein secondary struc-
ture string depends very much on the model em-
ployed, in the first instance on the size of the
secondary structure patterns. Further details
on these procedures will therefore be discussed
within the chapters dedicated to the predictor’s
development.

2.3.2.1 Quality measures

Once secondary structure guesses are available for all residues of interest, an overall measure of their
quality can be obtained by comparing them, as anticipated, with the motifs ascribed by the secondary
structure definition program. The most common quality evaluation measures are those based on the
three-states quality indices Q3 and Sov3 (segment overlap [119]), the three states being helix, strand
and coil. In this work, only Q3, reckoned to be more general, was used. A multi-class correlation coef-
ficient (Rm) [120] that more accurately reflects the subtleties of multi-choice classification problems
was also employed. Partial accuracy indicators for individual secondary structure motifs also exist,
which tell how good the predictor is in detecting a single motif in the context of a multi choice clas-
sification problem: here motif-specificity and motif-sensitivity were used. A useful tool to summarize
a multi-choice prediction scenario, especially to express the rather elaborate multi-class correlation
coefficient, is the so-called confusion matrix. Each entry Cσρ in this matrix contains the number of
motifs of class ρ predicted to be of class σ, where σ, ρ ∈ M, the standard secondary structure alphabet.
For conciseness, the total number of occurrences of motif σ will be called Nσ, while N will stand for
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• Qm =

∑

σ Cσ σ
∑

σ ρCσ ρ
=
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N
;

• σ-Specm =
Cσ σ

∑

ρCσ ρ
(σ-specificity);

• σ-Sensm =
Cσ σ

∑

ρ Cρ σ
=
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Figure 2.10: Definition of multi-choice prediction quality indices. In the formulas above, Cσ ρ are the
entries of the confusion matrix (see text), N is the total number of data samples, Nσ is the number of
occurrences of class σ and m = |M| is the number of different classes.

the total number of residues for which a prediction is actually performed. Figure 2.10 contains the
definitions of the quality indices mentioned above, as functions of these quantities.

It is important to remember that, as has been said before, the problem of secondary structure
prediction necessarily requires certain approximations (cf. sections 2.2.1 and 2.3.1). Though the
quality measures defined in figure 2.10 do allow for “perfection”, this might in reality be unachievable.
It has been indeed estimated [121] that the accessible Q3 prediction accuracy could be intrinsically
limited to about 0.88.

Pattern-wise quality control. The various learning procedures aimed at finding the best correla-
tion between the sequence and a single secondary structure class provide an additional frame in which
the reliability of the learned rules can be preliminarily surveyed.

In the single-choice classification problem, the unit peptides are divided into two classes which
can be called positive class and negative class. The peptides which have been assigned the current
secondary structure pattern of interest belong to the positive class, while the others belong to the
negative class. Provided some threshold likelihood has been established, it is possible to infer the
program’s classification of each unit peptide by comparing the computed likelihood for that peptide
to present the pattern of interest, to the threshold likelihood. The numbers of correctly or incorrectly
assigned data samples can then be used to derive additional single-class quality indices. Figure 2.11
summarizes the ones occasionally used in this work.

2.3.2.2 Statistical relevance

Whenever the complexity of the prediction scenario allowed it or the scenario itself was reckoned to
be particularly relevant, a thorough statistical analysis of the results was performed. In order to do
this, the same procedure was repeated several times with randomly assigned data sets. In this work,
two main sets of subdivisions were employed, called respectively R50/50 and R90/10 subdivisions.

The R50/50 set consisted of ten subdivisions obtained by dividing the Astral40 data set into
two subsets of roughly equal size (∼3600 protein domains), one of which to be used to carry out the
functions’ optimization procedure, the other to be left out for cross-validation.

In order to generate the R90/10 set instead, the Astral40 data set was first deprived of all
transmembrane protein domains. The remaining domains were then divided in ten subsets, nine of
which to be used in turn to optimize the scoring functions, the remaining one to be left out for cross-
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• specificity :

Spec =
TP

TP + FP

• sensitivity :

Sens =
TP

TP + FN

• overall accuracy :

Q =
TP + TN

TP + TN + FP + FN

• Matthews correlation coefficient (MCC) :

M =
TP · TN − FP · FN

√

(TP + FN) · (TP + FP) · (TN + FP) · (TN + FN)

Figure 2.11: Single-choice prediction quality indices definitions. In all the formulas TP indicates the
number of unit sequences correctly classified as positive, TN the number of unit sequences correctly
classified as negative, FP the number of unit sequences wrongly classified as positive and FN the number
of unit sequences wrongly classified as negative.

Table 2.1: Astral40 – release 1.71 subsets. The subsets statistics were computed using both the strict
and loose DSSP reduction scheme (see section 2.3.1.5): subsets 1 to 10 contained 704 domains each, while
the transmembrane domains amounted to 183. The quantities Nhelix, Nstrand and Ncoil are the number
of residues in the corresponding state, N is the total number of residues.

DSSP strict DSSP loose

set Nhelix Nstrand Ncoil Nhelix Nstrand Ncoil N

set 1 40622 26109 57498 45238 27387 51604 124229
set 2 42238 26316 59410 47057 27772 53135 127964
set 3 41032 26254 57463 45646 27576 51527 124749
set 4 38323 26478 57200 42800 27849 51352 122001
set 5 42439 25622 58649 47196 27070 52444 126710
set 6 39744 26006 57229 44332 27441 51206 122979
set 7 37890 25440 53868 41980 26595 48623 117198
set 8 42998 26954 58469 47770 28269 52382 128421
set 9 40815 26188 58618 45521 27537 52563 125621
set 10 43260 27964 59575 48333 29322 53144 130799

membrane 11591 8571 16210 12937 8996 14439 36372

total 420952 271902 594189 468810 285814 532419 1287043

validation. Tests carried out on the subset containing the transmembrane domains will be reported
on in section 6.1.1. Table 2.1 contains more detailed information about the ten (+1) subsets.

Calling R the set of the generated data partitions into learning and validation subsets, the results
were averaged out, according to

Q̄ =

∑|R|
s=1 Q

(s) ·Ns
∑|R|

s=1Ns

, (2.3.1)

where Q stands for any one of the quality indices listed in figures 2.10 and 2.11, |R| is the cardinality
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of R, i.e. the number of random partitions, and Q(s) is the quality index achieved on the Ns residues
contained in sample s (or the number of unit peptides in that sample in case of a unit-wise evaluation).
If not specified otherwise the deviations shown are computed from the weighted variance

ǫ2Q =

∑|R|
s=1

(
Q(s) − Q̄

)2
·Ns

∑|R|
s=1Ns

. (2.3.2)

Notice that equations (2.3.1) and (2.3.2) reduce to the familiar averages and standard deviations if
the random data set assignments are done in such a way as to preserve the total number of residues.
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Chapter 3

Scoring functions

As anticipated in the introduction, the core of the secondary structure predictor developed is a function
which, given an amino acid sequence, returns the likelihood that this sequence adopts one specific
secondary structure pattern. Such likelihood will later on be referred to also as score, hence the name
“scoring function”.

The central issue to be addressed in this chapter is how to give shape to such functions, in such a
way that they perform their task in the best possible way. The method developed in this project is
straightforward. It consists in analytically determining the function (of a certain type) that best fits
the available data.

In order to be able to treat the problem quantitatively, some mathematical notions and tools, like,
for instance, the sequence vector space and a space of functions defined on it, must be introduced.
The tools will be the same independently from which approach will be pursued, let it be distributed
or exclusive regression (see section 2.3.1.6 of the introduction), but the process for designating the
scoring functions slightly differs in the two cases. In the following, is briefly explained how.

3.1 Sequence vector

The primary structure can be processed by a computer program in different ways. Often it can be
taken as a string of identifiers like the ones listed in figure 1.1. This is the case, for example, for
methods based on sequence alignment searches. Sometimes though, it has to be translated into other
better suited mathematical entities.

The predictor to be developed here will be applied on portions of protein sequences, the unit
peptides (see section 2.3.1), containing L amino acids. The problem then consists in rendering in a
mathematically viable way a sequence of L amino acids.

There exists a fairly broad spectrum of ways to do this. Some of these consist in describing the
amino acids by means of certain characteristics like polarity, acidity or basicity, hydropathy or even the
size of the side chain, appropriately assembled in so-called “feature vectors”. Others, like the one called
here “standard representation” (see section 3.1.1) or the representations based on scoring matrices
(BLOSUM [122] or PAM matrices [123]) require no knowledge of any physicochemical properties but
similarly assign to each amino acid type a specific vector. Akin to the latter in its statistical nature,
but a great deal more powerful, is the sequence profile [124–126] to be introduced in section 3.1.2. Like
those found in BLOSUM or PAM matrices the entries of a sequence profile also represent amino acid
affinities, but unlike those, do so in a position-specific fashion. For this reason profiles are sometimes
called also position-specific scoring matrices (PSSM). The sequence profiles were originally employed
for multiple sequence alignment. They provide a keener and far more “flexible” portrait of amino
acid sequences because they contain a measure of the similarity between amino acid types as well as
indirect global information about the protein chain these are inserted into, which is absent in other
representations.
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Figure 3.1: Scheme of the vectorization process. The amino acid sequence of a unit peptide is translated
into a mathematical entity, the sequence vector x.

Throughout a large portion of the project, the standard sequence representation (the reason behind
the “standard” attribute will soon become clear) was used, and was replaced only lately, following
what has become a driving trend in the secondary structure prediction community, by the profile
representation. The latter greatly improved the program’s performance.

The idea to use multiple sequence alignment as an aid in the secondary structure prediction
quest dates back to the years between the late 1980s and the early 1990s [63, 127, 128] but the
first program to employ sequence profiles in a systematic way was PHD [49], a set of feed-forward
neural networks trained by back-propagation. Following the successful example of PHD, several other
secondary structure prediction programs have been developed, based on multiple sequence alignment
and profiles [43, 51, 53, 55, 59, 61, 62, 67–69, 71, 77, 80–82, 85, 104].

As a rule, both standard and profile representations of amino acids are based on a twenty-
dimensional vector space, like the following examples will show. It is worth mentioning here though,
that the project has at times also involved a partial dimensional reduction of the sequence vector
space. This comes, as will be shown in section 4.2.2, as a consequence of grouping together, under
a unique identifier, amino acids that are generally acknowledged to share certain physicochemical
properties among each other and are therefore evolutionarily more likely to be interchanged across
different proteins.

3.1.1 Standard representation

The standard representation straightforwardly assigns to each amino acid type a vector of the standard
basis. So for instance

aAla =












1
0
0
0
...
0












, aArg =












0
1
0
0
...
0












, aAsn =












0
0
1
0
...
0












, . . . ∈ {0, 1}20

and a sequence comprising L amino acids results in the direct sum of L such vectors, i.e.

xstd =










aA1

aA2

aA3

...
aAL










∈ {0, 1}L×20,

where aA1
,aA2

,aA3
, . . . ,aAL

are the vectors corresponding to the amino acid types A1,A2,A3, . . . ,AL

which build up the sequence.
The standard representation has a limited correlation potential because it does not account for

any similarities that may exist among different amino acid types.

3.1.2 Profile representation

In the profile representation, different vectors may be assigned to the same amino acid type, depending
on the sequence, and indeed, on the protein chain the amino acid belongs to. While in the standard
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representation every amino acid vector aXyz only has one non-zero entry and is always the same
regardless to which sequence it belongs, in its profile counterpart all entries can be non-zero, each one
embodying the context-dependent affinity of the corresponding amino acid type.

A polypeptide of length L could be, for instance, translated into

xprof =










pA1

pA2

pA3

...
pAL










∈ Z
L×20,

where

pA1
=












−2
+5
+4
−3
...
−4












, pA2
=












+0
−2
−6
−7
...

+1












, pA3
=












−2
+7
−1
−5
...

−1












, . . . ∈ Z
20.

The higher the vector entry, the greater the affinity of the corresponding amino acid type at the
corresponding position.

3.2 Single-state likelihood functions

The single-state scoring functions embody the correlation between the primary structure and the
secondary structure pattern they represent the likelihood of. Since they are functions of the amino
acid sequence, the sample space, that is to say the functions’ definition space, will most reasonably be
the vector space S of amino acid sequences introduced in section 3.1. Given a sample taken from S,
the single-state likelihood functions will return a scalar value, which lies in an interval [y0, y1], where
y0 stands for very unlikely and y1 for very likely (or, less intuitively, the other way around).

In a distributed regression approach, as the reader may recall, the strength of a secondary structure
character is extracted from each sequence in the learning data set: when properly renormalized, this
strength takes values in an interval very much like the one the likelihood functions should take values
in. Given the discrete nature of amino acid sequences, the strength “signals” coming from a residue-
wise weighting of secondary structure patterns are not strictly continuously distributed. Still, their
spectrum, especially when considering longer sequence windows, can get fairly dense, so that suitable
regression functions for the secondary structure under examination can very straightforwardly be
obtained through its interpolation.

In an exclusive regression approach it is not quite as plain to see how likelihood functions come
about. In this case the assignment is clear-cut: either the sequence has got some secondary structure
character or it has not (recall figure 2.8b). Such a sharp, non-continuous behaviour is not so obviously
related to interval-valued functions like the ones sought. It is nevertheless still possible to treat the
problem in the very same way, just with two possible strength levels only. Accordingly engineered
exclusive regression functions, as the results will show, seem to perform slightly better than the
respective distributed regression functions (see section 4.1).

3.2.1 Function optimization procedure

Independently from the approach being followed, the search for suitable likelihood functions puts the
software up to the same task: find a function f ∈ F (S,R) that best fits the data in the learning set.
The technique utilized here to find this function is that of straightforwardly minimizing the sum of
the recognition squared errors.
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3.2.1.1 Parametrical candidate estimators

The candidates to the role of single state likelihood functions can in principle be chosen freely. In
practice certain criteria need to be followed in order to enable a systematic implementation within a
computer program. The functions’ details are explored in the chapters of this report dedicated to the
development of the predictor. Suffice it to say here that, since the space F (S,R) is quite large, it is
convenient to restrict the choice to a feasible subset Gw (S,R) ⊂ F (S,R) whose members have all the
the same general shape but differ from each other in a number of free parameters grouped under the
vector label w. All candidates are, in other words, of the form f (w ;x), where w ∈ R

p, p ∈ N, are
the parameters to be optimized to best adapt the function’s behaviour to the learning data set.

This drastic but necessary restriction effectively precludes the chances of finding the “perfect”
single state likelihood functions (provided they exist at all). Even if the secondary structure prediction
problem were exempt from the defects mentioned in chapter 2, enforcing the shape of the functions
into so rigid paradigms introduces a gross approximation which renders the models hardly capable to
cope with its complexity1.

It is therefore very reasonable to assume that whatever candidate estimator is taken for the scoring
function of interest, its action on a vector of the sample space S will be affected by a measure of “non-
exactness”. It is this “non-exactness” that is to be minimized in the optimization procedure, the result
of which finally identifies the best candidate, among those available, for the secondary structure type
under investigation.

3.2.1.2 Least squares

The “non-exactness” of the estimators can be formalized by saying that, given a sequence vector x ∈ S,
its evaluation by means of the estimator f will, in general, be affected by an error ε, i.e.

y = f (w ;x) + ε. (3.2.1)

The expected value y spans different ranges depending on whether the distributed regression approach
or the exclusive regression approach is being followed. In the former, y is to carry the secondary
structure patterns signals. In this case the range is therefore going to be the interval, let’s write it
[ŷ0, ŷ1], which the signals’ strengths have been constrained to take values in. In the latter, the two
conditions, sequence pertaining or non-pertaining to the class, can be labeled with two numbers ŷ0
and ŷ1 and these values can in turn be assigned to y so the range is going to be, in this case, the set
constituted by these very labels, i.e. {ŷ0, ŷ1}.

Let’s assume now a set of data points is available, with which to instruct the not-yet-expert system.
This will be, a learning set of pairs

D = {(xi, yi) ∈ S × Y, i = 1, . . . , N} ,

where then Y = [ŷ0, ŷ1] for distributed regression approaches, whereas Y = {ŷ0, ŷ1} for exclusive
regression approaches, and suppose a family of scoring functions f (w) ∈ Gw (S,R), w ∈ R

p, p ∈ N

contains the eligible estimators.
The parameter vectors w identify the members of the family and can be chosen freely once the

shape of the functions has been decided. The ones sought are those w that minimize the norm

T (w) = ‖ε (w)‖ , (3.2.2)

of the vector ε = (ε1, . . . , εN ) of estimation errors on the set D.
Which norm is best to employ depends on several factors, like the quantity and the quality of

the data points or the kind of functions that are being used to interpolate them. Some norms are
mathematically better behaved than others, especially if the scoring functions are restricted to a
convenient category, but this is not much of an issue in the context of computer applications in which

1This is the reason why one should speak of function estimators, rather than plain functions, though the two concepts
will be heedlessly confused from now on.
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Figure 3.2: Intuitive illustration of different types of estimators by means of a dartboard example: can-
didate A represents an unbiased estimator because it hits uniformly around the target. The distribution
of his darts shows that he is not very efficient though; candidate B is more efficient but biased to the left
of the target. An efficient unbiased estimator here is represented by candidate C.

disparate numerical methods allow to solve this kind of optimization problems by means of iterative
approximations [129], quite regardless of the ill nature of the mathematical entities involved.

It turns out however, that by appropriately selecting the kind of functions employed, not only
it becomes possible to solve the problem analytically2, but the choice of the norm itself is naturally
induced too.

The Gauss-Markov theorem [130] states in fact that when estimating the parameters of a linear
model (that is to say the parameters appear linearly in the model) in which the errors have zero
expectation value, are uncorrelated and have equal variances, the most efficient unbiased linear estim-
ators of the parameters themselves are the least-squares estimators, that is the estimators obtained by
minimizing the standard 2-norm ‖ε (w)‖2 of the error vector.

Figure 3.2 exemplifies the concept of most efficient3 unbiased estimator appearing above.
Further encouraging the use of the 2-norm is the fact that, in case the errors follow a normal

distribution, those obtained by minimizing 3.2.2 are the maximum likelihood estimators [131], that is,
given the model of the system of interest, they are the estimators which maximize the likelihood of
the observed data.

Throughout this project the theoretical advantages of the 2-norm

T (w) = ‖ε (w)‖2 (3.2.3)

were exploited and the first restriction in the spectrum of utilizable scoring functions was thus intro-
duced. These shall namely be linear in the parameters w.

3.2.1.3 Linear equation system

Given these premises it can be shown [130] that the problem of minimizing (3.2.3), or rather its square

E (w) = T 2 (w) =

N∑

i=1

ε2i (w) , (3.2.4)

where
εi (w) ≡ f (xi ;w) − yi (3.2.5)

is the error on data point i, boils down to solving a linear system of normal equations of the kind

ATAw = AT b0, (3.2.6)

2It is always best to use caution when calling analytical the outcome of a machine with limited computational power.
3In rigorous mathematical terms this is the estimator with minimum variance.
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Figure 3.3: Example of multi-choice prediction with three secondary structure types. The three likeli-
hood models return the likelihood values for helix, strand and coil. Typically the residue of interest in
this prediction is the one at the central position in the sequence window.

where the matrix A and the vector b0 solely depend on the data points (xi, yi) in the learning set D.
The system (3.2.6) always has solution and the function f (w̌) with the parameters w̌ that solve

it, is the one among those of the chosen kind that best fits the data points of set D.

3.3 From single-state to multi-state

So far, it has been explained how to develop a tool, the single-state scoring function, that discerns
a specific secondary structure pattern from the others. But secondary structure prediction is mostly
regarded as a multi-state problem, typically as a three-state one (helix, strand, coil).

The optimization procedure, carried out for all secondary structure patterns of interest, provides
a likelihood function for each of these,

fσ : S → R, σ ∈ P ,

where P is the secondary structure patterns library, i.e. contains the indices identifying the secondary
structure patterns. The functions fσ typically take on values in ranges of the kind (ŷ0 − δ0, ŷ1 + δ1),
where δ0 and δ1 are comparatively small positive numbers, and it is reasonable to assume that the
closer an amino acid sequence is mapped by fσ to the “positive” label, the stronger is the hint that
this sequence might present the secondary structure pattern σ. The idea is then simply to compare
the values (see figure 3.3) and see which one is closest to its highest likelihood label. The secondary
structure pattern it represents is then assigned to the sequence under examination.

This procedure assumes the different scoring functions to be equally renormalized, but this is true
only to some extent. A certain difference between them exists, and represents another limitation of
the method, but not such that it irremediably affects the performance of the predictor.

More refined techniques were actually also developed in the course of the project, that partially
overcome the normalization problem. Since they were not generally applied though, their discussion
is relegated to the proper sections (see section 5.2).
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Part II

development
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This part of the report is dedicated to the discussion of the most relevant steps in the development
of the sequence-based secondary structure predictor. It will conform to a sort of branched “evolution-
ary” plan, starting with the earliest attempts but occasionally introducing modifications or upgrades
possibly paying little or no attention to the order in which they were actually implemented.
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Chapter 4

Standard sequence-based predictor

4.1 Linear scoring functions

Probably the simplest function of the kind introduced in section 3.2 is a linear combination of the
sequence vector components, xk, k = 1, . . . , n, where n = L × 20 is the number of components, L
being the length of the sequence window expressed in number of amino acids:

f (w ;x) = w · x, w ∈ R
n. (4.1.1)

In this work the extension

f (w, w0 ;x) = w · x + w0, w ∈ R
n, w0 ∈ R (4.1.2)

of (4.1.1) was used, where the offset w0 appears beside the parameters w. It is possible to reduce
(4.1.2) back to the form (4.1.1) by introducing an extra variable x0 which always takes on the value
1. This would however hide some interesting features of the least squares optimization procedure that
are about to be illustrated.

Function optimization

The parameters w and w0 are optimized following the criteria outlined in section 3.2.1.2. The function
(3.2.4) is in this case1

ES (w, w0) =
1

2N

N∑

i=1

(f (w, w0 ;xi) − yi)
2

=
1

2N

N∑

i=1

(w · xi + w0 − yi)
2
, (4.1.3)

and the system of linear equations corresponding to (3.2.6) can be obtained by setting to zero all
partial derivatives of (4.1.3) with respect to the parameters w and w0. This results in the equations

0 =
∂ES

∂wk
(w, w0) =

1

N

N∑

i=1

xik (w · xi + w0 − yi) , k = 1, . . . , n

and

0 =
∂ES

∂w0
(w, w0) =

1

N

N∑

i=1

(w · xi + w0 − yi) .

From the second equation, w0 can be isolated,

w0 = −
1

N

N∑

i=1

(w · xi − yi) .

1the reason for the additional factor 1/2N will soon be clear.
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Subsequent insertion of this expression for w0 into the first equations gives

0 =
1

N

N∑

i=1

xik



w · xi −
1

N

N∑

j=1

(w · xj − yj) − yi



 , k = 1, . . . , n,

where the index of the internal sum has been renamed. Using the full expression for the scalar products
and the definition of mean over a sample, the equations become for k = 1, . . . , n

0 =
1

N

N∑

i=1

xik





n∑

h=1

wh xih −
1

N

N∑

j=1

(
n∑

h=1

wh xjh − yj

)

− yi





=
1

N

N∑

i=1

xik





n∑

h=1

wh xih −
n∑

h=1

wh
1

N

N∑

j=1

xjh +
1

N

N∑

j=1

yj − yi





=
1

N

N∑

i=1

xik

(
n∑

h=1

wh xih −
n∑

h=1

wh 〈xh〉 + 〈y〉 − yi

)

=

n∑

h=1

(〈xk xh〉 − 〈xk〉 〈xh〉)wh + 〈xk〉 〈y〉 − 〈xky〉

=
n∑

h=1

cov (xk, xh)wh − cov (xk, y) .

The equations above can be written in the matrix form

ΓSw = bS , (4.1.4)

where ΓS = cov (x,x) is the sequence covariance matrix, i.e. the matrix whose elements span the
covariances cov (xk, xh), for h, k = 1, . . . , n, and bS is the vector whose components are the covariances
cov (xk, y) for k = 1, . . . , n, between the sequence and the secondary structure.

Regularization

In reality, in place of equation (4.1.4) its regularized version

(ΓS + λ)w = bS , (4.1.5)

was employed, which is obtained by adding a regularization term to the function (4.1.3), so that this
actually reads

ES (w, w0, λ) =
1

2N

N∑

i=1

(f (w, w0 ;xi) − yi)
2

+ λw ·w. (4.1.6)

The regularization term serves the double purpose of removing possible near-singular behaviours that
may appear due to the computer’s limited precision, and of keeping the size of the parameters w small
to attenuate their overfitting to the sequence samples contained in the learning data set. It therefore
plays an especially important role when the number of parameters available is large2 as compared to
the number of samples used for the function’s optimization procedure. As will soon be shown, this
mostly is not the case for linear scoring functions like (4.1.2), so that a more thorough discussion of
the subject is best postponed to later sections (see for instance section 5.2.3 and the test results of
section 5.2.4). Until further notice, it is to be assumed a value λ = 10−5 was used.

2The meaning of large actually depends on the nature of the dataset and of the scoring functions being utilized.
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Test results

Unit peptides of increasing lengths were isolated in turn from the designated portion of the R50/50

subdivisions to fuel independent learning processes for helix, strand and coil. Only fully defined
peptides, that is to say with no missing residues, were employed (as the reader shall see in section
4.1.5.1, this requirement would be dropped later on, since suspected to lead to certain biases in the
prediction performance). The true secondary structure strings were assembled applying the loose
reduction scheme (EVA’s standard of truth [96]) to the eight DSSP states (see section 2.3.1.5).

The scoring functions were put to test on both the validation subset and the learned subset in
order to have a measure of their generalization capability. In the following, the term prediction shall
preferably be reserved for the test carried out on the validation subset whereas the test carried out
on the learned subset will be referred to as recognition.
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Figure 4.1: Example of the different secondary
structure signal distributions in a sequence win-
dow comprising 19 amino acids. All distributions
are normalized in such a way that the sum of all
signals equals 1. In the abscissa are the 19 amino
acid positions. The gaussian distribution is the
one corresponding to δ2

= 2.

The recognition and prediction performances
of four types of scoring functions were com-
pared: the exclusive regression functions (ESF)
and three types of distributed regression3 func-
tions (DSF) differing in the way the secondary
structure motifs at each position in the sequence
were weighed to get the regression signals:

• exclusive (ESF): the central amino acid
position is the key-position and gets weight
one; all others get no weight at all;

• gaussian-distributed (gDSF): the sec-
ondary structure signal weights follow a
gaussian distribution centred in the cent-
ral amino acid position;

• binomially-distributed (bDSF): the sec-
ondary structure signal weights follow a bi-
nomial distribution centred in the central
amino acid position;

• uniformly-distributed (uDSF): all mo-
tifs have the same weight;

Figure 4.1 gives a visual idea of how the three different distributions work and compare to the exclusive
regression approach. Incidentally, ESFs can be regarded as the limit case of gDSFs were the weights
distribution tends to the normalized delta-function

∆(x− c) =

{

1 for x = c

0 elsewhere,

where c is the central position in the sequence window.
Figure 4.2 contains the average prediction and recognition performances achieved on the R50/50

data set subdivisions (see section 2.3.2.2) using scoring functions based on different sequence windows.
Notice that only sequence windows spanning an uneven number of amino acids were taken into account.
As can be seen from the plots in the figure 4.2, an increase of the window length corresponds initially
to an increase, but subsequently to a decrease in performance in both prediction and recognition.

Two possible causes were identified, which could explain the observed behaviour. The first was
merely of technical nature and had to do with the fact that while only fully defined peptides were
learned, a prediction was actually performed for all residues, including those at the N- and C-termini.

3Though the tests on distributed regression scoring functions were carried out only later in the course of the project,
it is perhaps best to analyse them here in direct comparison with those carried out on the original exclusive regression
scoring functions.
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L n + 1 Q̄3 prediction Q̄3 recognition Q̄3 prediction Q̄3 recognition

ESFs bDSFs

5 101 0.5908 ± 0.0009 0.5915 ± 0.0008 0.5880 ± 0.0010 0.5886 ± 0.0007
7 141 0.6050 ± 0.0009 0.6054 ± 0.0007 0.5999 ± 0.0011 0.6004 ± 0.0007
9 181 0.6111 ± 0.0010 0.6115 ± 0.0008 0.6031 ± 0.0012 0.6035 ± 0.0008
11 221 0.6143 ± 0.0010 0.6147 ± 0.0008 0.6035 ± 0.0011 0.6039 ± 0.0007
13 261 0.6154 ± 0.0011 0.6158 ± 0.0009 0.6021 ± 0.0011 0.6025 ± 0.0007
15 301 0.6146 ± 0.0009 0.6151 ± 0.0007 0.5991 ± 0.0009 0.5995 ± 0.0006
17 341 0.6132 ± 0.0009 0.6136 ± 0.0007 0.5954 ± 0.0008 0.5957 ± 0.0005
19 381 0.6110 ± 0.0009 0.6115 ± 0.0008 0.5912 ± 0.0009 0.5916 ± 0.0005

gDSFs (δ2 = 1) uDSFs

5 101 0.5898 ± 0.0009 0.5904 ± 0.0007 0.5829 ± 0.0011 0.5836 ± 0.0008
7 141 0.6037 ± 0.0009 0.6043 ± 0.0007 0.5855 ± 0.0012 0.5861 ± 0.0007
9 181 0.6098 ± 0.0010 0.6101 ± 0.0006 0.5727 ± 0.0012 0.5732 ± 0.0008
11 221 0.6129 ± 0.0010 0.6133 ± 0.0007 0.5566 ± 0.0011 0.5570 ± 0.0009
13 261 0.6140 ± 0.0008 0.6143 ± 0.0007 0.5424 ± 0.0009 0.5425 ± 0.0008
15 301 0.6132 ± 0.0008 0.6136 ± 0.0006 0.5309 ± 0.0007 0.5311 ± 0.0008
17 341 0.6119 ± 0.0009 0.6123 ± 0.0006 0.5215 ± 0.0005 0.5217 ± 0.0007
19 381 0.6097 ± 0.0008 0.6101 ± 0.0005 0.5137 ± 0.0005 0.5140 ± 0.0006
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Figure 4.2: Q3-accuracy averages (loose DSSP reduction scheme) for recognition and prediction on
the R50/50 data set subdivisions using linear scoring functions based on sequence windows of different
lengths. The Q̄3 achieved by gDSFs clearly approaches the one achieved by ESFs when δ2 gets smaller.
[Note that the Q3-scale in the plot relative to uDSFs is different from that of the other plots.]
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The amount of missing sequence information at the N- and C-termini increases with the window length,
so that predictors based on larger sequence windows suffer a comparatively larger handicap. The
second cause envisaged the possibility that the secondary structure motif of a residue could actually,
in general, be badly correlated with information about residues too far away along the sequence. This
would rather represent noise, the only effect of which would be that of masking out the really useful
contributions coming from the residues at the positions that most (or exclusively) contribute to build
up the secondary structure signal. In the case of uDSFs, the distant residues, treated with the same
emphasis as the central ones, apparently scramble the secondary structure signals already in sequence
windows containing nine amino acids. Subsequent tests (see section 4.1.5.2), in which this behaviour
was no longer observed, would indicate that the first cause, i.e. the technical artifact, was probably
to be held accountable for the most part of it.

From the table in figure 4.2 and visually from the plots themselves it is also possible to see how, as
expected, the prediction performance systematically lies a fraction of a percent below the recognition
performance, the gap between the two widening a little as the window lengths increase. This means
that the sequences learned are represented slightly better by the parameters of the scoring functions.
This is especially true for the parameters relative to the more distant residues, which are otherwise,
as earlier noticed, only loosely correlated with the central secondary structure motifs. This effect
is however merely physiological and rather weak so that one may not speak of overfitting. Another
remark to make is that ESFs were awarded, in general, a higher Q3 index than DSFs.

Given the state of the art of secondary structure prediction as known from the introduction, even
the best Q3-accuracy ratio results of about 0.615 obtained by the ESFs based on sequence windows of
13 amino acids are not even close to those of other methods. In the following, some of the upgrades
devised to reduce the gap will be analysed.

4.1.1 Dual statistics

The first upgrade which was worked out involved a modification of the objective function (4.1.3) to
account for the difference between the so-called positive and negative samples.

The optimization procedure of the exclusive regression functions is naturally suited to treat positive
and negative samples separately: positive would be all those samples whose central secondary structure
motif matched the one of interest for the scoring function under development, negative the others.

Finding a meaningful subdivision of the data samples for the optimization of distributed regression
functions on the other hand, is a little less straightforward: the way chosen was to set a score threshold
for every motif and distinguish the samples whose score lay above this threshold from those whose
score lay below it. The score thresholds were tuned following a simple heuristic procedure.

The function (4.1.3) was replaced by

ED =
1

4N+

N+

∑

i=1

(f (xi) − yi)
2 +

1

4N−

N−

∑

j=1

(f (xj) − yj)
2 . (4.1.7)

Here N+ and N− are the number of positive and negative samples respectively. The sums appearing
in (4.1.7) are understood to run respectively on the subset of positive and negative samples.

Given ED, the very same steps followed in the previous section can be repeated to get the final
linear equations system. This turns out to be formally identical to that of (4.1.4), with the difference
that the averages appearing in the covariances are weighted averages on positive and negative samples.
More concretely it is now,

ΓDw = bD, (4.1.8)

where

[ΓD]kh = 〈xk xh〉± − 〈xk〉± 〈xh〉±

bDk = 〈xk〉± 〈y〉± − 〈xky〉± ,

39



and, in general,

〈q〉± =
1

2N+

N+

∑

i=1

qi +
1

2N−

N−

∑

j=1

qj =
w(0)

N+

N+

∑

i=1

qi +
w(0)

N−

N−

∑

j=1

qj , (4.1.9)

the sums being once again understood as partial sums over positive and negative subsets. The factor
w(0) = 1/2, stemming from (4.1.7), is necessary to preserve the normalization of the averages.

Contrary to the expectations, the separation of positive and negative samples in the statistics
lead to a sensible decrease in performance for ESFs, which even fell some measure behind bDSFs and
gDSFs. This outcome could be related to the fact that the Q3 index evaluates the quality of the
prediction for the three main secondary structure states and could, to a certain extent, overshadow
upgrades that are mainly devised to improve the recognition of a single secondary structure state.
Partial results, relative to single-state prediction will be presented in later sections (starting with
section 4.1.5), where these issue will be further investigated.

Dual statistics introduce at any rate an additional degree of freedom that was yet to be exploited:
they enable, in principle, to reweight positive and negative sums at will. This is accomplished in
practice by changing (4.1.7) to

E∗
D =

w+

2N+

N+

∑

i=1

(f (xi) − yi)
2 +

w−

2N−

N−

∑

j=1

(f (xj) − yj)
2 , (4.1.10)

where alongside the function parameters w also the so-called reweighting factors w+ and w− appear,
incidentally causing the redefinition of the weighted average (4.1.9) to

〈q〉± =
w+

N+

N+

∑

i=1

qi +
w−

N−

N−

∑

j=1

qj . (4.1.11)

The same issues mentioned earlier about preserving the normalization of the averages enforce here the
condition that w+ and w− be themselves normalized, that is, that w+ + w− = 1, so that effectively
one of the two is determined once the other is assigned.

Calling Γ∗
D and b∗D the new covariance matrix and vector respectively, the optimization of (4.1.10)

results in the linear equations system

Γ∗
Dw = b∗

D . (4.1.12)

The reweighting parameters represent an element of non-linearity which hinders them from being
included in the squared errors minimization procedure described earlier. A simple heuristic approach
was followed here, identical to the one used to optimize the score thresholds, to find the “closest to
optimal” w+s simultaneously for all three secondary structure motifs.

Test Results

The results obtained using dual statistics, both with and without reweighting, are reported in table
4.1. For DSFs, only the results obtained using heuristically optimized score thresholds are reported.
The scoring functions employed were based on the optimal sequence window of 13 amino acids.

Interestingly, only ESFs seemed to appreciably benefit from the reweighting, the best positive
reweighting factors being w+ = 0.6 for helix, w+ = 0.5 for strand and w+ = 0.7 for coil. Despite the
recovery they enjoyed however, a real breakthrough lay still ahead. To be fair, some improvement was
registered with respect to the results obtained using unified statistics. The extent of this though, of
the same order of magnitude of the deviation, hardly constituted ground for jubilation.
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Table 4.1: Q3-accuracy (loose DSSP reduction scheme) for recognition and prediction on the R50/50

data set subdivisions using linear scoring functions based on a sequence window of 13 amino acids. These
were optimized in turn with non-reweighted dual statistics and dual statistics with heuristically tuned
reweighting of positive and negative partial sums. For DSFs only the results obtained with the optimal
score thresholds are reported.

dual statistics Q̄3 prediction Q̄3 recognition Q̄3 prediction Q̄3 recognition

ESFs bDSFs

non-reweighted 0.6052 ± 0.0008 0.6052 ± 0.0008 0.6075 ± 0.0007 0.6079 ± 0.0008
optimally reweighted 0.6172 ± 0.0010 0.6175 ± 0.0009 0.6076 ± 0.0007 0.6079 ± 0.0007

gDSFs, δ2 = 1 uDSFs

non-reweighted 0.6154 ± 0.0008 0.6157 ± 0.0007 0.5414 ± 0.0008 0.5416 ± 0.0009
optimally reweighted 0.6154 ± 0.0008 0.6157 ± 0.0007 0.5432 ± 0.0008 0.5434 ± 0.0009
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Figure 4.3: Q3-accuracy averages (loose DSSP
reduction scheme) in recognition and prediction
for different learning data set sizes. The number
of unit sequences learned is reported in reverse log-
arithmic scale in the abscissa. The deviations are
not shown. When the learning data set consists of
a large number of unit sequences the recognition
and prediction rates are very close to each other.
As the number of sequences learned decreases the
recognition rate grows to reach 100% while the
rate of correct predictions approaches that of a
random guess.

Is it actually learning? In order to rule out
the possibility that bugs of the program might
be drastically affecting its performance, a “con-
trolled overfitting” test was performed. The size
of the learning data sets was progressively re-
duced to see if the recognition accuracy was
thereby augmented. The accuracy on a fixed val-
idation data set comprising 700 protein domains
kept also being monitored.

The test was carried out using the ESFs based
on the optimal sequence window of 13 amino
acids. The functions were optimized with dual
statistics, but using no reweighting, since it is
reasonable to assume that the optimal reweight-
ing factors strongly depend on the populations of
the secondary structure motifs, and these could
sensibly fluctuate among the random subdivi-
sions, especially when few samples were learned.

As can be seen in figure 4.3, the smaller the
number of unit peptides the program learned the
worse its prediction capability became. While
this was progressively impaired and eventually
totally compromised however, its recognition
capability kept improving. When the size of the
learning data set was smaller than the number of
parameters (N . n = 260) the learned samples
were recognized with 100% accuracy (Q3 = 1.0).
The fact that the program could actually reach
perfection in recognition excluded the presence
of major bugs.

4.1.2 Filtering the learning data set

A technique investigated at relatively early stages in the development of the program, was that of
filtering the learning data sets. The rationale behind this idea was that having the scoring functions
learn bad samples could affect their overall prediction capability. This would then benefit from a
partial removal of the former from the original learning data set.
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Figure 4.4: Scheme of the positive reinforcement technique. A first recognition procedure serves to
identify potentially difficult sequences. These are filtered out of the learning data set in the second
learning procedure.
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Figure 4.5: Q3-accuracy averages (loose DSSP reduction scheme) (a) in recognition and prediction
and (b) focused on prediction only, for different data set readjustment filters. All scoring functions were
based on a sequence window of 13 amino acids and optimized using non-reweighted dual statistics. The
strength of the filters is represented here by ts (tc = 1 − ts).

4.1.2.1 Positive reinforcement

The first experimented filtering system involved a duplication of the learning/recognition procedure
(see figure 4.4). In the duplicate procedure, the learning data set was restricted to those samples the
secondary structure of which was properly recognized, or nearly so, in the first procedure.

Stage-I of the procedure was carried out in the traditional way, only monitoring the performance
on the learning data set. Since it was desirable to be able to calibrate the filter so that the learning
data set could be flexibly readjusted, two tunable parameters were introduced, the safety threshold ts
and the criticality threshold tc, to determine whether a prediction was wrong enough, as described in
the following.

For all those residues whose motif was not recognized, the secondary structure likelihood scores
were examined. The sequence sample corresponding to that residue was discarded in the next round
of learning if at least one of the following conditions was observed:

· the likelihood score for the actual secondary structure was below the threshold ts;

· the maximum likelihood was above the threshold tc;
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To test this feature, scoring functions based on a sequence length of 13 amino acids were employed.
These were optimized using dual statistics and no reweighting of positive and negative sums (see
arguments on page 41). To simplify the problem, the filter parameters were normalized according to

ts = 1 − tc. (4.1.13)

The Q3-accuracy results obtained on the R50/50 subdivisions are displayed in figure 4.5. As can be
better seen in the close-up of figure 4.5b, reducing the learning data set to “easier” samples does bring
an improvement, though it is as usual better not to restrict it too much lest run into overfitting.
This can already be observed at the best performing filtering level (Q3 ≈ 0.6114), corresponding to
ts = tc = 0.5. Clearly, the fact that “difficult” samples had been expelled from the learning data sets,
however not from the validation data sets, dramatically increased the gap between the performances
on the two. Though not unsuccessful, due to the complication it introduced of duplicating the learning
procedure, this two-stages technique was put aside in the development process thereafter.

4.1.2.2 SSE length filters
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Figure 4.6: Q3-accuracy in recognition and pre-
diction (loose DSSP reduction scheme), using pro-
gressively larger thresholds for the SSE length fil-
ters. All scoring functions were based on a se-
quence window of 13 amino acids and optimized
using non-reweighted dual statistics. An interest-
ing feature of the plot is the stepwise dependence
on the length thresholds.

Another filtering system tested was the one
based on the lengths of the secondary structure
elements (SSEs).

The idea consisted in removing from the
learning data set all those unit sequences in
which the secondary structure key-position be-
longed to short SSEs, SSEs, that is, involving
a small amount of amino acids. Encouraging
the design of such a scheme was also the con-
sideration that short SSEs can often be artifacts
of the secondary structure definition programs.
The only details to be established regarded the
thresholds dividing short from long SSEs.

First of all, only helix and strand classes were
affected by the length filters. No constraints
were set on the length of coil segments, since
these often involve few residues only (e.g. tight
turns). To further simplify the procedure, the
same length threshold was applied to both helix
and strand SSEs.

SSE length thresholds ranging from one to
nine amino acids were tested, one effectively
meaning “no threshold”. The functions used were
based on sequence windows comprising 13 amino
acids and optimized using dual statistics. Following again the arguments of page 41, no reweighting
of positive and negative samples was applied. The Q3 accuracy results on the R50/50 subdivisions are
collected in figure 4.6.

As the results show, it does seem to pay off (Q3 ≈ 0.6126, i.e. three quarters of a percent better
than with no length thresholds) to exclude the shortest SSEs from the learning procedure, the optimal
threshold corresponding to four residues.

To ensure the filters to be actually the most convenient, similar tests were carried out abandoning
the requirement that the filter be the same for both helix and strand classes: the results spoke however
again in favour of using a common length threshold of four residues.

Due to its relative efficacy, the SSE length filtering technique kept being employed in some ap-
plications involving linear scoring functions. It was not given much space however in the subsequent
development. As will be shown later on in fact, the most effective predictors turned out to be the ones
based on quadratic scoring functions, which depend on a considerably larger number of parameters.
For such predictors a reduction of the learning sample space is not advisable.
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Figure 4.7: Example of a learning scenario involving more than one key-position. The same unit peptide
is learned by different scoring functions but is assigned in each case the secondary structure of a residue
at a different position.

Figure 4.8: Illustrative view of the use of scoring functions optimized to correlate the sequence to the
secondary structure motifs at five different key-positions. In this example the key-positions employed
are the five innermost in a sequence window comprising 13 residues. In order to get the likelihoods for
the threonine residue (cerise), the five sequence windows having that residue at the five key-positions
are extracted and passed to the five scoring functions. The five resulting scores are then weighted and
averaged to get the final likelihoods.

4.1.3 The secondary structure key-position

A quite crucial issue in the optimization of exclusive regression scoring functions is the selection of
the secondary structure information.

All ESFs seen so far were constructed by correlating the sequence samples to the secondary struc-
ture motif of the central residue. While this probably is the most reasonable choice, it is unclear
to what extent such a simple approach makes use of the information available. This consideration
motivated the design of a mechanism that would allow to better exploit the sequence-structure cor-
relations offered by the data. This mechanism consisted in independently optimizing not one but
several scoring functions for all secondary structure motifs of interest. For each of these, the amino
acid sequence would be correlated to the secondary structure motif at a different position (see figure
4.7). This way, if each scoring function was still aware of the secondary structure motif at one position
only, all of them together were somehow providing a more complete picture of the secondary structure
landscape of the peptide. The contributions from all these scoring functions were merged in the final
test phase as shown in figure 4.8. The essential part of the procedure, involving how to actually put
all the scores together, consisted in quite naively averaging the available contributions, with the only
condition that these be given different weights, according to the scheme to be illustrated shortly.

As can be seen from figure 4.9, if taken as the only source of secondary structure information, the
motifs inherent to the various positions in a unit peptide provide qualitatively different correlations
with the amino acid sequence. In particular, as is to be expected, the internal positions correlate
better than the peripheral ones. However, the closer it gets to the centre the smaller a difference it
seems to make which position is actually considered (see results for key-positions ‘6’ and ‘7’). The
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Q̄3

1 2 3 4 5 6 7 8 9 10 11 12 13

key-position

0.54
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key Q̄3 recognition

1 0.5746 ± 0.0010

2 0.5979 ± 0.0009
3 0.6095 ± 0.0007

4 0.6142 ± 0.0008
5 0.6166 ± 0.0009

6 0.6176 ± 0.0009

7 0.6175 ± 0.0009
8 0.6159 ± 0.0009

9 0.6129 ± 0.0010
10 0.6073 ± 0.0009

11 0.5967 ± 0.0009

12 0.5785 ± 0.0009
13 0.5411 ± 0.0010

Figure 4.9: Average Q3-accuracy (loose DSSP reduction scheme) in recognition for linear scoring
functions based on sequence windows with 13 amino acids using different secondary structure key-
positions. The optimization was carried out using dual statistics with positive/negative reweighting
factors w+

helix = 0.6, w+
strand = 0.5, and w+

coil = 0.7. No SSE length filters were applied. The averages
are computed using (2.3.1) on the R50/50 data set subdivisions. The deviations, computed according to
(2.3.2), are too small to be reported in the plot. Clearly visible is the asymmetry between N-terminus and
C-terminus. Scoring functions optimized using the inner key-positions show similar performances. When
very peripheral key-positions are taken, it makes a considerable difference whether they are taken close
to the N-terminus or to the C-terminus. In particular, the secondary structure motifs at the N-terminus
of a peptide seem to be better correlated with the sequence than their counterparts at the C-terminus.

Q3-accuracy gives a measure of the predictor’s reliability. It is therefore possible to take the average
recognition Q3-accuracies from figure 4.9 to weigh the contributions of different scoring functions to
the average likelihood scores.
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Figure 4.10: Average Q3-accuracy in recognition
(loose DSSP reduction scheme), using a progress-
ively larger number of scoring functions for each
secondary structure type. In each case, the inner-
most key-positions were used. [See figure 4.9 for
further details on the test background.]

The next issue to be addressed concerned how
many of the available scoring functions should
actually contribute to the averages. While in
fact all of them could be used in principle, the
suspicion was it could be advisable to leave out
those optimized to correlate to the most peri-
pheral key-positions, since these, as suggested
by figure 4.9, presented a rather poor correlation
with the amino acid sequence.

To find the best possible scoring function
combination, a series of tests were carried out.
These involved using increasingly larger score
sets obtained by gradually introducing more
peripheral key-positions.

The recognition Q3-accuracy results in figure
4.10 provide a clear indication that it is reward-
ing to use nearly all scores, leaving out only those
stemming from the very terminal key-positions.
The motifs at these positions are apparently too
loosely correlated to the amino acid sequence and
do not provide any useful signal to the global scores. The best results for recognition and prediction,
relative to average scores built up out of eleven key-specific scores, are collected in table 4.2. Though
still far from competitive, the average prediction Q3 appeared to validate the key-position averaging
illustrated and justify its subsequent development. At a later stage (see section 4.1.5.1) though, doubts
would be raised about its efficacy, to the point that it would eventually be dropped.
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Table 4.2: Average Q3-accuracy for prediction and recognition on the R50/50 data set subdivisions.
For each secondary structure type of interest a set of eleven scoring functions was employed. These were
based on sequence windows of 13 amino acids and optimized, using dual statistics with heuristically tuned
weights, to correlate to the secondary structure of the eleven innermost key-positions.

prediction recognition

DSSP Sens3 Spec3 Sens3 Spec3

helix [H,G,I] 0.6099 ± 0.0021 0.6475 ± 0.0028 0.6106 ± 0.0012 0.6492 ± 0.0021
strand [E,B] 0.3893 ± 0.0018 0.5660 ± 0.0048 0.3892 ± 0.0024 0.5656 ± 0.0030
coil [C,S,T] 0.7621 ± 0.0019 0.6251 ± 0.0010 0.7625 ± 0.0008 0.6249 ± 0.0013

Q̄
(loose)
3 0.6237 ± 0.0008 0.6242 ± 0.0008

Figure 4.11: Example of prediction scenario with four secondary structure likelihood models. The
likelihood signal for the coil meta-class is obtained here by taking the maximum among the likelihoods
of the turn and the true coil classes.

4.1.4 The secondary structure motifs unleashed

Considering the secondary structure motifs at more than one key-position is one way to extend the
sequence-structure correlation information used. Another way is to introduce and optimize scoring
functions for more secondary structure types than the ones of interest. The contributions of these
sets of scoring functions were filtered in the prediction phase by applying the appropriate reduction
criterion. The following example will clarify the idea.

Example: the hydrogen-bonded turn. In the minimal extension of the three basic secondary
structure motifs (see figure 4.11) the very populated and heterogeneous coil class was divided into two
subclasses: turn and true coil. The scoring function optimization procedure was then applied to both
subclasses so that in the end the scoring functions to be compared to each other were four instead of
three. In the testing phase an amino acid was assigned to the general coil class if either of the two
scoring functions, the one detecting the likelihood of true coil or the one detecting the likelihood of
turn, returned the strongest signal.

Table 4.4 displays the averageQ3 results obtained by exploiting progressively higher levels of detail
of the DSSP and STRIDE secondary structure definitions (see table 4.3). All scoring functions were
based on a sequence window of 13 residues. Due to the larger number of motifs involved here, the
heuristic procedure used earlier to optimize the dual statistics reweighting factors would have become
impractical. The use of non-reweighted dual statistics, on the other hand, would have introduced a
bias, due to the considerable variations among the populations of different secondary structure types.
Therefore, unified statistics were preferred to dual statistics. No SSE length filters were applied.

The results indicate that enlarging the number of coil-like classes by separating turns and bends
from the bulk meta-class, leads to a loss of accuracy. On the other hand, while it does not bring
any concrete improvement, discriminating 3-turn and 5-turn4 helix types and isolated bridges in the

4The 5-turn helix type can’t really be accounted for any sensible alterations of the results due to its negligible
statistical weight.
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Table 4.3: Levels of secondary structure definition. Levels 1 to 6 refer to pure DSSP (or STRIDE)
assignments. Levels 7 to 11 arise from a further reclassification of five DSSP motifs ("H", "E", "G", "I",
and coil) in “short” and “long”, depending on the length (in terms of number of residues) of the SSE
they belong to: length thresholds of seven, four and three residues were used for helix, strand and coil
respectively. Levels 12 to 15 encompass the distinction of motifs belonging to long helix- and strand-like
SSEs according to the residue’s relative position within the SSE itself.

secondary
structure

type

definition level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

helix/α-helix X X X X X X X X X X X X X X X

N-term. α-helix X X X X

C-term. α-helix X X X X

short helix/α-helix X X X X X X X X

strand/β-strand X X X X X X X X X X X X X X X

N-term. β-strand X X X X

C-term. β-strand X X X X

short strand/β-strand X X X X X X X X

3-turn-helix X X X X X X X X X X X X

N-term. 3-turn-helix X X X X

C-term. 3-turn-helix X X X X

short 3-turn-helix X X X X X X X X

5-turn-helix X X X X X X X X X X X X

N-term. 5-turn-helix X X X X

C-term. 5-turn-helix X X X X

short 5-turn-helix X X X X X X X X

β-bridge X X X X X X X X X X X X

bend X X X X X X X

turn X X X X X X X X X X X

coil X X X X X X X X X X X X X X X

short coil X X X

[key: 1 = standard (helix, strand, coil), 2 = standard + turn, 3 = standard + turn + bend, 4 = standard +
exotic (3-turn-helix, 5-turn-helix, β-bridge), 5 = standard + exotic + turn, 6 = standard + exotic + turn +
bend, 7 = DSSP + short coil distinction, 8 = (long + short) (helices + strand) + β-bridge + coil, 9 = (long +
short) (helices + strand) + β-bridge + coil + turn, 10 = (long + short) (helices + strand) + β-bridge + coil +
turn + bend, 11 = (long + short) (helices + strand + coil) + β-bridge + turn + bend, 12 = ((N+C+I)-long +
short) (helices + strand) + β-bridge + coil, 13 = ((N+C+I)-long + short) (helices + strand) + β-bridge + coil
+ turn, 14 = ((N+C+I)-long + short) (helices + strand) + β-bridge + coil + turn + bend, 15 = ((N+C+I)-long
+ short) (helices + strand) + β-bridge + (long + short) coil + turn + bend; N,C,I mean N-terminal, C-terminal
and internal respectively. See also table 4.3. Entries under STRIDE referring to definition levels including bend
are missing due to the fact that bend is not resolved by this program.]

47



Table 4.4: Q3-accuracy averages in recognition and prediction for different levels of DSSP or STRIDE
secondary structure definition (see table 4.3). The STRIDE secondary structure assignment was not
tested for levels 7 to 15. The final reduction scheme followed was the loose one defined in section 2.3.1.5.
The program’s setup was like the one used to obtain the results in table 4.2 with the difference that the
scoring functions were optimized using unified statistics. The loose DSSP reduction scheme was applied
for both DSSP and STRIDE definitions.

definition
level

|M|

Q̄
(loose)
3

DSSP STRIDE

prediction recognition prediction recognition

1 3 0.6215 ± 0.0007 0.6220 ± 0.0008 0.6172 ± 0.0008 0.6199 ± 0.0007
2 4 0.6016 ± 0.0008 0.6027 ± 0.0009 0.5833 ± 0.0009 0.5849 ± 0.0009
3 5 0.5681 ± 0.0011 0.5706 ± 0.0009 – –
4 6 0.6221 ± 0.0006 0.6223 ± 0.0008 0.6179 ± 0.0007 0.6206 ± 0.0006
5 7 0.6115 ± 0.0008 0.6121 ± 0.0008 0.5958 ± 0.0008 0.5972 ± 0.0009
6 8 0.5830 ± 0.0010 0.5848 ± 0.0009 – –

7 9 0.5696 ± 0.0011 0.5751 ± 0.0010 – –
8 10 0.6185 ± 0.0009 0.6220 ± 0.0008 – –
9 11 0.6138 ± 0.0008 0.6173 ± 0.0008 – –
10 12 0.5872 ± 0.0009 0.5903 ± 0.0006 – –
11 13 0.5463 ± 0.0010 0.5480 ± 0.0009 – –
12 18 0.5833 ± 0.0007 0.5884 ± 0.0008 – –
13 19 0.5922 ± 0.0007 0.5973 ± 0.0007 – –
14 20 0.6077 ± 0.0010 0.6116 ± 0.0007 – –
15 21 0.6069 ± 0.0007 0.6110 ± 0.0006 – –

catalogue of secondary structure types did not affect much the performance. Further distinctions
based on the length of the SSEs and on the residues’ position within the SSEs, turned out to be
generally counterproductive. The second remark to be made is that DSSP’s secondary structure
definition yields generally better sequence-structure correlations than STRIDE’s.

On the whole, the idea of increasing the secondary structure definition did not convince because it
brought insignificant improvement or none at all. It must be kept in mind, however, that the results
were obtained using unified instead of dual statistics. While the heuristic procedure is not applicable
to predictors based on too many scoring functions, it is reasonable to believe that precisely then the
reweighting of the different secondary structure contributions would be most effective, thanks to the
larger number of degrees of freedom. It could be argued that using another technique, like one based
on genetic algorithms for instance, it would have been possible to fully exploit the potential of dual
statistics. It is also possible however, to accept this as a limitation of a multi-choice oriented approach
and start devising instead a way to avoid such problems rather than overcome them.

4.1.5 Focusing on the single-choice classification problems

The experiments on secondary structure definition exposed a possible limitation of the multi-choice
oriented optimization. As noted in the previous section, some fine-tunings like those involved in the
choice of the reweighting parameters, if rather unorthodox to begin with, become totally unfeasible
when scoring functions have to be optimized for a larger number of secondary structure types.

On the other hand, also other characteristics of the classifiers, like the window length or the
number of secondary structure key-positions, could be differentiated for each secondary structure of
interest. If all these features had to be simultaneously optimized to suit the multi-choice prediction
problem directly, the procedure would become too complex because of the huge number of possible
combinations of single-choice classifiers.

These arguments eventually induced the focus of the optimization procedures to be shifted towards
the individual intermediate single-choice classification problems. The tests to be described in the
following were all carried out on the R90/10 subdivisions (see table 2.1 in section 2.3.2.2).
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4.1.5.1 Structure-dependent optimization schemes

Of the nine subsets available for learning, only eight were actually learned while one was reserved to
perform the so-called supporting test prediction (recall section 2.3.1.1). In order to remove the bias
possibly arising from the variable amount of information lost at the N- and C-terminal ends, unit
peptides with missing residues were this time allowed (cf. page 37).

The single-choice classification recognition and supporting prediction tests require the definition of
a threshold likelihood (see section 2.3.2.1) to distinguish between the so-called positive and negative
predictions. A threshold likelihood of 0.5 was used here.

Window lengths. To begin with, the choice of the window lengths was reexamined for the different
secondary structure types. Peptides sequences with up to 39 residues were tested. The average results
obtained in the recognition of the learned data samples and in the prediction of the supporting data
samples derived from the R90/10 subdivisions are reported in figures A.1, A.2 and A.3 of appendix
A. They clearly show the reduced performance gain attained through use of larger sequence windows.
The growth of the quality measures relative to helix and strand is nearly imperceptible when the
sequence window reaches a length of 39, while those relative to coil have long since started fluctuating
around their ceiling values by that time. No deterioration of the performance like the one experienced
in the earliest tests (see figure 4.2) was observed though. It was finally settled to use sequence windows
of 19 residues for helix and strand and a sequence window of 17 residues for the coil meta-class, since
larger sequence windows offered little or no improvement.

Statistics. Using functions based on the selected sequence windows, the actual effect of dual stat-
istics on the single-choice classification problem was investigated. As the reader may recall from
section 4.1.1, non-reweighted dual statistics failed to aid exclusive regression functions (ESFs) in the
multi-choice classification. This relatively unexpected behaviour was attributed to the fact that the
technique was devised to benefit not the the multi-choice but the single-choice classification.

The helix, strand and coil single-choice classification results for unified and non-reweighted dual
statistics are reported, as promised, in table 4.5. The values for specificities and sensitivities, reported
here for completeness, immediately jump in the eye for their dissimilarity, but this is probably due to
the strong influence that dual statistics exert on the scores and should not be given too much attention.
Of more general validity are instead the overall accuracy for positive and negative classification and
the Matthews correlation coefficient (third and fourth column respectively). The former seems once
again to confirm the thesis that wants unified statistics to perform better than dual statistics (at least
with no reweighting). It must be kept in mind however that the overall accuracy index is not very well
suited to measure the prediction quality on asymmetric populations of positive and negative samples.
In the extreme case in which a population comprised, say, 99% of negatives and only 1% of positives a
very simple predictor which always predicts negative would achieve 0.99 accuracy ratio with no effort.
Even if to a much smaller extent, the exclusive regression approach inevitably does introduce, as
pointed out in section 4.1.1, an asymmetry between positive and negative samples because it classifies
as negatives all those samples which do not belong to the target class. The most reliable quality
index in this case is therefore the Matthews correlation coefficient (MCC) which is capable of better
handling such asymmetries. A brief glance at the fourth columns in table 4.5 confirms then that, as
expected, dual statistics perform indeed slightly better in single-choice classification problems.

Reweighting factors. Once the efficacy of dual statistics (even non-reweighted) in the single-
choice classification scheme had been established, the positive/negative reweighting technique was
also revised in the new frame. Using scoring functions based on the chosen sequence windows of 19
residues for helix and strand, 17 residues for coil, the performance dependences on the reweighting
factors were analysed. Figure 4.12 shows the quality indices for the recognition of the R90/10 learning
subsets plotted against the positive reweighting factor w+ (see equation 4.1.11). The quality indices
for the prediction of the supporting data sets resemble very closely the ones for the recognition and
are therefore not reported.
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Figure 4.12: Single-choice recognition quality indices (see figure 2.11) dependence on the (positive)
reweighting factor (see equation 4.1.11) for helix, strand and coil. The average values and their deviations
were computed using equations (2.3.1) and (2.3.2). The deviations were too small to be reported. The
functions were based on sequence windows comprising 19 amino acids for helix [H,G,I] and strand [E,B],
and 17 amino acids for coil [C,S,T], and were optimized to correlate to the central key-positions only. Quite
expectedly, the values of specificity (a) and sensitivity (b) follow opposite behaviours. More interesting
from a general point of view are the positive/negative accuracy indices (c) and especially the Matthews
correlation coefficients (d).
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Table 4.5: Single-choice prediction and recognition performance for helix, strand and coil states, ob-
tained using (a) unified or (b) non-reweighted (reweighting factor w+

= 0.5) dual statistics. The scoring
functions used were linear and based on sequence windows comprising 19 residues for helix [H,G,I] and
strand [E,B], and 17 residues for coil [C,S,T]. They were optimized to correlate to the secondary structure
of the central residue.

(a) unified statistics

specificity sensitivity pos/neg accuracy MCC

support
prediction

0.6817 ± 0.0020 0.5425 ± 0.0021 0.7393 ± 0.0009 0.4196 ± 0.0017 helix
0.7079 ± 0.0029 0.2113 ± 0.0030 0.8076 ± 0.0007 0.3124 ± 0.0030 strand
0.7128 ± 0.0018 0.5772 ± 0.0020 0.7289 ± 0.0010 0.4311 ± 0.0021 coil

recognition
0.6833 ± 0.0006 0.5438 ± 0.0019 0.7401 ± 0.0003 0.4198 ± 0.0010 helix
0.7093 ± 0.0006 0.2108 ± 0.0011 0.8074 ± 0.0004 0.3124 ± 0.0008 strand
0.7136 ± 0.0004 0.5802 ± 0.0007 0.7304 ± 0.0003 0.4340 ± 0.0006 coil

(b) non-reweighted dual statistics

specificity sensitivity pos/neg accuracy MCC

support
prediction

0.5836 ± 0.0019 0.7404 ± 0.0019 0.7115 ± 0.0010 0.4204 ± 0.0019 helix
0.4135 ± 0.0014 0.7047 ± 0.0019 0.7145 ± 0.0008 0.3612 ± 0.0018 strand
0.6634 ± 0.0017 0.6939 ± 0.0020 0.7280 ± 0.0009 0.4432 ± 0.0018 coil

recognition
0.5820 ± 0.0010 0.7406 ± 0.0005 0.7118 ± 0.0004 0.4206 ± 0.0007 helix
0.4147 ± 0.0006 0.7061 ± 0.0005 0.7142 ± 0.0004 0.3621 ± 0.0007 strand
0.6654 ± 0.0005 0.6942 ± 0.0004 0.7287 ± 0.0003 0.4448 ± 0.0006 coil

Looking preferentially at the Matthews correlation coefficients for the reasons explained earlier,
the optimal reweighting factors could be with reasonable approximation located around 0.4 for helix
and strand, and around 0.5 for the coil meta-class.

Structure key-positions. Another relevant trait of the single-choice classifiers that was prone to
be reassessed within the frame of the single-choice classification problem, was the number of key-
positions to be utilized (recall section 4.1.3). More single-choice classification tests were therefore
carried out with the intent to establish how many scoring functions for each secondary structure type
the multi-choice predictor would count.

Surprisingly, these tests indicated that the use of more key-positions had no relevant effect on the
performance. This outcome was related to the fact that partially defined peptides, that is peptides
with missing residues, had this time been included in the learning data set as well, and supplied
the necessary correlation information for the residues at the N- and C-terminal ends. The earlier
registered success in the use of off-center key-positions was in other words to be attributed to the
missing information these made up for.

4.1.5.2 Multi-choice classification tests

All was left to do now was to apply the newly optimized single-choice classifiers to the multi-choice
classification problem. Even if they are, strictly speaking, not one to one comparable, the results
reported on table 4.6, obtained on the ten R90/10 subdivisions, appear to show no sensible improvement
with respect to those on table 4.2. The only remarkable effect of the new optimization system regarded
the partial accuracy indices. In particular, despite an even less pronounced tendency to predict strand
the predictor’s sensitivity to the latter increased, at the expenses, apparently, of the one to coil. As
far as the overall accuracy is concerned, the recognition Q3 increased slightly, probably thanks to the
larger sequence windows used, but the prediction Q3 lay still within the statistical fluctuations, and
even assuming to be in the presence of a trace of overfit there was nothing to be gained by fighting it.
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Table 4.6: Multi-choice prediction and recognition performance for helix, strand and coil states, obtained
using reweighted (positive reweighting factors: w+

= 0.4 for helix and strand, w+
= 0.5 for coil) dual

statistics. The functions used were linear and based on sequence windows of 19 residues for helix and
strand, and of 17 residues for coil. Only the central secondary structure key-positions were employed.
The averages and deviations were computed as in equations (2.3.1) and (2.3.2), but for recognition only
among a randomly selected subset of roughly the same size as the test set.

prediction recognition

DSSP Sens3 Spec3 Sens3 Spec3

helix [H,G,I] 0.6020 ± 0.0056 0.6577 ± 0.0059 0.6033 ± 0.0049 0.6645 ± 0.0036
strand [E,B] 0.5419 ± 0.0056 0.5038 ± 0.0094 0.5490 ± 0.0066 0.5083 ± 0.0078
coil [C,S,T] 0.6880 ± 0.0048 0.6653 ± 0.0050 0.6911 ± 0.0030 0.6651 ± 0.0033

Q̄
(loose)
3 0.6243 ± 0.0032 0.6275 ± 0.0031

While these tests did indicate that no progress had actually been made, they at least dismissed
the earlier (see page 37) hypothesized intrinsic drawback of employing sequence windows with more
than 13 residues. The results of figure 4.2 are then to be interpreted trivially as mere artifacts of the
particular way the learning data samples were extracted from the protein domains.

4.2 Quadratic scoring functions

If linear scoring functions are the simplest estimators which can be employed to build a predictor with
a reasonable predictive power, quadratic scoring functions are one step ahead in the hierarchy. The
general quadratic extensions of the parametrical estimators (4.1.2) are

f (W,w, w0 ;x) = xtWx + w · x + w0, W ∈ (Rn ×R
n) , w ∈ R

n, w0 ∈ R. (4.2.1)

Though quadratic in the sequence vector these functions keep being linear in the parameter space.
With this in mind, upon introduction of the vectors

w̃ = (w1, . . . , wn,W1,1, . . . , (2 − δhk)Wh,k, . . . ,Wn,n)

x̃ =
(
x1, . . . , xn, x

2
1, . . . , xhxk, . . . , x

2
n

) (4.2.2)

where the restriction h ≥ k can be imposed thanks to the symmetry of the system, and of

ñ = n+
n (n+ 1)

2
,

the functions (4.2.1) can be rewritten as

f (w̃, w0 ; x̃) = w̃ · x̃ + w0, w̃, x̃ ∈ R
ñ, (4.2.3)

which are formally identical to those in (4.1.2).
This reformulation of the quadratic scoring functions allows to apply the same optimization pro-

cedure that was applied in the case of linear scoring functions, so that the task will similarly be that
of solving a linear equations system of the kind (recall equation (4.1.12))

(

Γ̃∗
D + λ

)

w̃ = b̃∗
D. (4.2.4)

It must be stressed here however that the number of degrees of freedom is much greater in the quadratic
case than it is in the linear one. Some examples of quadratic scoring function sizes are collected in
the table in figure 4.13a and compared to those of the corresponding linear ones just to give an idea
of the orders of magnitude involved.
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number of equations

L n + 1 ñ + 1 ñeff + 1

5 101 5151 4101

7 141 10011 8541

9 181 16471 14581

11 221 24531 22221

13 261 34191 31461

15 301 45451 42301

17 341 58311 54741

19 381 72771 68781
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Figure 4.13: Resource requirements of quadratic scoring functions based on different window lengths.
Full amino acid definition is implied here (see section 4.2.2). In the table (a) the number of parameters
entering linear and quadratic scoring functions (total ñ, and effective ñeff) are compared. The plot (b)
displays ñeff and the memory required to store the coefficient matrix of the linear equations system.

Effective degrees of freedom. When using the standard sequence representation, as is the case
here, it is possible to partially reduce the number of quadratic factors actually entering the functions.
Not all the products of sequence vector entries express in fact actual amino acid sequence features
and some of them contain just redundant information. As a matter of fact, it is possible to discard all
products involving two entries relative to the same amino acid position in the sequence window: if the
two factors in the product are relative to the same amino acid type the quadratic term is effectively
equivalent to a linear one and therefore redundant; if on the other hand the two factors are relative to
two different amino acid types the quadratic term represents a physical impossibility and can therefore
be discarded. Assuming an alphabet of 20 amino acids the effective number of parameters entering
the quadratic scoring functions, also reported on table 4.13a, is then

ñeff = n+
n (n− 20)

2
.

Remark: When utilizing profiles instead of standard sequence vectors this reduction could be ex-
clusively applied to the diagonal terms, that is to the terms relative to squared sequence vector entries.
It would therefore be practically of no advantage in that case.

The number of degrees of freedom introduced with the quadratic terms requires also a considerable
amount of memory especially in order to store the covariance matrix Γ̃∗

D that enters the linear equations
system. The memory requirements for quadratic scoring functions based on different window lengths
are reported in figure 4.13b together with the number of equations to be solved.

Test results

The quadratic scoring functions were tested in several different contexts, but because of their fairly
high computational cost not always in a systematical way. At occasions, only the first of the ten
R90/10 data set subdivisions was used, with a consequent loss of statistical relevance. At any rate, the
number of residues contained in the R90/10 subdivisions ensures a measure of self-averaging, which in
turn guarantees quite general validity even for results obtained on a single one of them.
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Figure 4.14: Q3-accuracy (loose DSSP reduction scheme) for prediction and recognition, averaged on
the R90/10 subdivisions and in detail for the first subdivision, as a function of the window length L.
The scoring functions were all optimized using reweighted dual statistics to correlate to the central key-
position. The regularization parameter λ amounted to 10

−5. The time required to optimize the scoring
functions is given in figure 4.15, which reports the time required to assemble the sequence information
(i.e. to generate the coefficient matrix of the linear equations system) and to solve the linear equations
system. The recognition averages and deviations were computed only for a randomly selected subset of
roughly the same size as the test set.

As done while developing the linear scoring functions, the performances of quadratic scoring func-
tions based on different window lengths were investigated first. In order to limit the computational
load while maintaining, to begin with, the full statistical relevance of the results, the sequence windows
were limited to contain 5 to 15 amino acids.
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Figure 4.15: Computing time required by a
single learning procedure (i.e. to optimize a single
scoring function) as a function of the window
length. the “stats assembling time” indicates the
time required to generate the coefficient matrix of
the linear equations system. Full amino acid defin-
ition is implied (see section 4.2.2). The computa-
tions were performed on an AMD OpteronTM275
processor at 2.2 GHz.

Figure 4.14 reports the average Q3-accuracy
of quadratic scoring functions based on different
sequence windows. It shows a consistent uplift in
the performance with respect to the one achieved
by linear scoring functions. While optimistic pro-
jections placed in fact the Q3-accuracy obtain-
able with the latter somewhere around 0.63 (re-
call the results reported in section 4.1.5.2), the
quadratic scoring functions based on sequence
windows comprising 15 residues reached a Q3-
accuracy of nearly 0.68.

Evident from the results in figure 4.14 is also
the widening gap between recognition and pre-
diction accuracies, a clear symptom of parameter
overfitting. While for linear scoring functions
this gap is very small and only mildly increasing
with the window length (and therefore the num-
ber of parameters), for quadratic scoring func-
tions it grows quite fast and amounts to nearly
three percent for sequence windows comprising
15 residues.

Similar prediction/recognition tests were sub-
sequently carried out on the first R90/10 subdi-
vision using scoring functions respectively based
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on sequence windows of 17 and 19 residues. While the recognition accuracy maintained an upward
trend, with Q3 = 0.7136 and Q3 = 0.7210 for window lengths of 17 and 19 respectively, the prediction
accuracy (Q3 = 0.6757 and Q3 = 0.6745 for window lengths of 17 and 19 respectively) was lower
than the one achieved on the same subdivision (see table in figure 4.14) using sequence windows with
15 residues. This is an indication that the overfitting had reached such an extent to diminish the
predictor’s generalization capability.

4.2.1 Reducing overfitting

There are several techniques to prevent overfitting. These can be very different in the way they are
applied but all basically consist in reducing the number of parameters in the attempt of preventing
non-general features of the learned data from being overrepresented.

Probably the most sophisticated of these techniques are the ones based on Principal Component
Analysis (PCA) [132] and Independent Component Analysis (ICA) [133]. These allow to automatically
identify and select a stack of highly significant representatives from the original parameter set, but
are computationally quite costly. Alternatively, it is possible to partially inhibit the parameters
entering the optimization scheme by tuning regularization terms like the one seen in equation (4.1.6).
The regularization technique can soothe overfitting by diminishing the strength of the parameters,
but it does not reduce the parameter space. It therefore falls short of one of the advantages of
other techniques, that of lowering the model’s resource requirements. And on the other hand the
regularization parameter λ = 10−5 used to obtain the results of figure 4.14 was already such to
prevent overfitting to some extent, so that there probably was not much to be gained by further
fine-tuning it.

4.2.2 Clustering amino acids

There exists another way to reduce the degrees of freedom of amino acid model-systems described, as
here, by means of the standard sequence representation (see section 3.1.1). This consists in grouping
amino acids in clusters and use an alphabet of cluster types in place of one of amino acid types. A
proper clustering can shrink the dimension of the sequence vector space (see section 3.1) modifying as
well as reducing the model’s parameters.

Ideally, each cluster should contain amino acids that share certain features among each other.
Within the project presented here, two different clustering schemes were used. These are shown in
figure 4.16.

The amino acid clustering can be mathematically translated by replacing the functions (4.2.1) with

f (W,w, w0 ;x) = x̂tW x̂ + w · x + w0, W ∈ (Rn ×R
n) , w ∈ R

n, w0 ∈ R, (4.2.5)

where

x̂ = C x, (4.2.6)

and C is a clustering matrix, which projects the standard sequence vector into a vector of lower
dimensions. Notice that C is applied only to the quadratic term, being this the most likely source
of overfitting for the model. Assuming to be applying, for instance, the clustering of figure 4.16b
exclusively to the N- and C-terminal positions of a unit peptide of length L, the clustering matrix C
would be the (L× L)-blocks matrix

C =









C6 0 . . . . . . 0
0 120 0 . . . . . .

· · ·
. . . . . . 0 120 0
0 . . . . . . 0 C6









,
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ten clusters

polar C,Q,N,S,T
nonpolar A,V,M,L,I
negatively charged E,D
positively charged K,R
phenylalanine F
tryptophan W
tyrosine Y
histidine H
glycine G
proline P

(a)

six clusters

polar C,H,Q,N,S,T,Y
nonpolar A,V,M,L,I,F,W
negatively charged E,D
positively charged K,R
glycine G
proline P

(b)

Figure 4.16: Examples of possible amino acids clusterings in (a) ten categories and (b) six categories
respectively. Both clustering criteria are based on physicochemical properties of the amino acids, like
overall electric charge and hydropathy. Due to their peculiarity though, some amino acids, like, for
example glycine and proline, are typically assigned a cluster of their own.

Table 4.7: Number of parameters entering the scoring functions with different clustering zone sizes.

L full
definition

ten clusters six clusters
clustering region size clustering region size

1 2 3 4 5 1 2 3 4 5

15 45451 37429 30191 23737 18067 13181 39641 34231 29221 24611 20401
17 58311 49169 40811 33237 26447 20441 51701 45491 39681 34271 29261
19 72771 62509 53031 44337 36427 29301 65361 58351 51741 45531 39721

where

C6 =













0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0
1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0













︸ ︷︷ ︸

20 columns







6 rows,

and alphabetical ordering of the amino acids is assumed, as in figure 1.1 of the introduction.
The amino acid clustering was applied to quadratic scoring functions based on sequence windows of

length 15, 17 and 19, the ones which showed strongest overfitting. Only the N- and C-terminal regions
were interested by the clustering. Full amino acid definition was preserved for the inner positions.
Figure 4.17 illustrates the different clustering patterns applied. The dimensions of the parameter
spaces resulting from the different clustering patters are collected in table 4.7. The results of the test
prediction performed on the first R90/10 subdivision are reported in figure 4.18.

While the clustering did reduce the recognition quality (the results are not shown), it had, though
mildly beneficial, a far less relevant influence on the prediction quality. The best Q3-accuracy index
of about 0.682 was obtained using sequence windows of 19 amino acids and clustering in six categories
at four+four terminal positions.
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Figure 4.17: Illustration of amino acid clustering with different clustering zone sizes. The blue circles
represent amino acid positions at which the clustering was not applied, the orange circles the amino acid
positions at which the clustering was applied.
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Figure 4.18: Q3-accuracy (loose reduction scheme) in prediction using partial amino acid clustering,
respectively in (a) ten and (b) six categories. The abscissa shows the number of positions at the window’s
N and C termini at which amino acids were actually clustered, zero corresponding to full definition (see
figure 4.16a). The scoring functions were based on sequence windows of 15, 17 and 19 amino acids.
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(a) (b)

Figure 4.19: Usage of extended secondary structure patterns. In (a) a two-dimensional secondary
structure pattern assignment with sequence window 14 (even window lengths are preferably used when
the secondary structure patterns comprise an even number of amino acids) and key-position 7. In the
learning phase the unit peptide in this example is assigned the pattern "H.". In (b) a possible prediction
scenario in which scoring functions optimized to discern two-dimensional secondary structure patterns
are employed: in predicting the secondary structure motif of the threonine residue (in cerise) six of the
original nine scores can be ignored following the indication of a previous prediction (in green).

4.2.3 Extended secondary structure patterns

One concept developed in the course of the project, which eventually turned out to be quite unsuc-
cessful, but nevertheless deserves to be mentioned, is that of extended secondary structure patterns.
Some examples of secondary structure patterns involving more than one residue already made their
appearance when the concept of secondary structure library was introduced in section 2.3.1.4.

The rationale for devising this construct was not dissimilar from the one behind the investigations
on secondary structure definition analysed in section 4.1.4 of this report: considering extended patterns
should yield a sharper secondary structure definition.

The learning procedure carried out to optimize the scoring functions for extended secondary struc-
ture patterns is in all respects identical to the one carried out for the scoring functions analysed so
far. As usual for exclusive regression functions (ESF), the secondary structure pattern has to be read
at a defined key-position. The extended secondary structure patterns most widely employed in this
work were the simplest ones formed by two consecutive secondary structure motifs. In applications
involving such secondary structure patterns, the two motifs starting from the one at the key-position
itself are used to build the two-dimensional secondary structure pattern, as shown in figure 4.19a.

The most delicate issue faced while employing scoring functions optimized to correlate to extended
secondary structure patterns, concerned rather how to actually fit them into the prediction scheme.
The goal remained in fact that of predicting the secondary structure motif for every single residue in
a protein chain. For such a task, secondary structure patterns involving more than one residue seem
quite ill suited. A method had to be devised, which would enable to use the likelihood of patterns
of arbitrary size in a residue-wise secondary structure prediction. The following example, illustrated
also in figure 4.19b will hopefully give a better insight into it.

Example: Let’s take the simplest extended patterns, those composed by the secondary structure
motifs of two consecutive amino acids, and assume a set of scoring functions has been optimized to
distinguish them. Let’s assume also that a prediction is available for an amino acid in a certain protein
chain and that a prediction for the one right next to it is sought. To begin with, the scoring functions
for the extended secondary structure patterns are evaluated on the amino acid sequence pertaining
to the designated motifs. This gives nine scores. Recalling then however the secondary structure
information from the available prediction, the spectrum of possible choices can be collapsed down to
three and the problem’s complexity is thus reduced back to the usual one. The secondary structure
prediction of the second amino acid can be then utilized in that of a third and so on.
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The same technique just exemplified can of course be applied to extended patterns involving any
number of amino acids. Independently from the number of amino acids however, the crucial feature of
the whole procedure, as the attentive reader may already have guessed, is that it must be initialized.

The first kind of initialization applied was a very trivial one: the prediction started at the N
terminus of every protein chain, assuming the initial secondary structure motif to be coil. This lead
however to very poor results. Even using quadratic scoring functions based on window lengths of 14
amino acids and optimized with unified statistics, the Q3 prediction accuracy achieved on the first
Astral40-based R90/10 subdivision was barely of about 0.52. Clearly enough it was necessary to
improve the initialization scheme.

4.2.3.1 Initialized prediction

The basis of the new initialization concept was the idea of having not one but possibly several initialized
secondary structure seeds for every peptide chain, as depicted in figure 4.20. These would serve as
multiple starting points for the prediction which would then proceed as exemplified in figure 4.19 in
both directions along the chain.

Figure 4.20: Illustration of an ideal seed-
based initialized prediction scenario: the
procedure starts from multiple initialization
seeds (in green). Note that the initialization
seeds are all within helix or strand SSEs.

Using an artificial initialization grid with a min-
imum seed-seed distance of eight residues, various pos-
sible scenarios were simulated in which the residues in
the grid were forcedly assigned with increasing prob-
ability the correct secondary structure motif, or a ran-
domly chosen one. The scoring functions employed to
measure the likelihood of the two-dimensional second-
ary structure patterns were based on a sequence win-
dow comprising 14 amino acids. They were optimized
using unified statistics. The regularization parameter
was maintained constant at λ = 10−5. The results of
the prediction simulation are reported in figure 4.22a.

The plot shows a nearly linear correlation between
the seed accuracy and the prediction accuracy. It is
interesting to observe that even very accurate seeds lead only to a moderately good prediction per-
formance. Depending on the density and quality of the actual seeds however, the chance that some
improvement might still come about could not be ruled out.

The only question that remains unanswered at this point is how the initialization points could
actually be designated. A pre-prediction phase (phase I), as illustrated in figure 4.21, would serve
exactly to this purpose. This phase would involve traditional scoring functions like the ones used to
obtain the results of figure 4.14, optimized to recognize single-residue secondary structure patterns.
The safe residues identified during the pre-prediction would then be used as initialization points in the
actual prediction phase (phase II), which would instead involve extended secondary structure patterns.
Key node of the procedure was the identification of the safe residues. These should in fact provide
reasonably secure starting points, but also guarantee a relatively dense initialization grid. This task
was accomplished by analysing the prediction scores from the first phase and by making use of two old
acquaintances from section 4.1.2.1, the safety and criticality thresholds ts and tc, again normalized
with respect to each other. The scheme prescribed a residue to be safe, provided the highest score
it achieved was above ts and the difference between the two highest scores was above (ts − tc). Safe
residues were also restricted to belong to either helix or strand SSEs, since starting the prediction in
the middle of a coil region was reckoned to be counterproductive.

The scoring functions relative to the standard secondary structure patterns were based on sequence
windows of 15 amino acids, the ones relative to the extended ones were based on sequence windows
of 14 amino acids. The latter were again optimized using unified statistics.

The threshold-dependent prediction performance is reported in figure 4.22b. The plot shows an
initial plateau followed by a modest rise and a downfall. The plateau corresponds probably to the
initial indifference in the choice of very unrestrictive thresholds. The subsequent increase in thresholds
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Figure 4.21: Scheme of the two-phase prediction procedure. Phase I involves scoring functions optimized
to recognize standard single-residue secondary structure patterns and serves to identify the potential
secondary structure seeds. Phase II involves scoring functions optimized to recognize extended secondary
structure patterns. It uses the seeds identified in phase I.
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Figure 4.22: Extended secondary structure patterns. In (a) the Q3-accuracy in a seed-based secondary
structure prediction simulation. The seed accuracy at the abscissa represents the ratio of seeds being
assigned the correct secondary structure motifs. The remaining were assigned random motifs. Scoring
functions based on sequence windows of 14 amino acids were used for all extended secondary structure
patterns. In (b) the Q3-accuracy as a function of the seed safety threshold ts for a real seed-based
secondary structure prediction.

demands apparently improves the overall quality of the secondary structure seeds and as a consequence
that of the prediction. When the thresholds become too strict however, the number of residues meeting
their requirements drops so much that the seeds get too sparse to constitute an efficient initialization
grid. Even the best prediction performance however, achieved using ts = 0.7, lay around 0.66, that is
more than two percent lower than that achieved with standard quadratic scoring functions. All in all
therefore, the test outcome did not speak in favour of the new technique.

The perfect grid. It is of some interest to see what would become of the prediction performance
if a perfect grid was used. In order to show this, the procedure described above was applied making
use of an all-residue dense grid with 100% percent seed accuracy, while the rest of the settings where
left exactly like in the previous tests. Interestingly, the Q3 accuracy performance increased then up
to roughly 0.87, very close to the hypothesized theoretical limit [121].
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(a)

gap Q3

0 0.6601
1 0.6591
2 0.6530
3 0.6500

(b)

Figure 4.23: Gapped extended secondary structure patterns. In (a) is illustrated how different patterns
can be assigned to the same amino acid sequence, eventually parity-adjusted to the effective size of the
pattern itself. In (b) the effects of the use of different gaps on the prediction performance.

4.2.3.2 Gapped secondary structure patterns

An attempt to rescue the idea of extended secondary structure patterns was made by modifying the
way these were defined in the first place. This was done, as illustrated in figure 4.23a by introducing
variable gaps between the amino acids actually entering a secondary structure pattern. To encourage
this final attempt was the idea that two adjacent secondary structure motifs might be too closely
related to represent genuine persistence or transition sequences. Unfortunately, increasing the gap
caused instead a drop in performance as can be read from table 4.23b.
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Chapter 5

Profile-based predictor

The present chapter is dedicated to the analysis of the most crucial step in the development of the
project: the evolution from standard sequence-based to profile-based scoring functions.

PSI-BLAST profiles

The sequence profiles employed to instruct the new predictor are a by-product of the multiple sequence
alignment tool PSI-BLAST [134]. They emerged (see figure 5.1) from the third PSI-BLAST iteration
in the alignment of 4,396,331 protein sequences belonging to a non-redundant database including the
GenPept [135], Swiss-Prot [136], PDB [98], PIR [137], PRF [138], and NCBI RefSeq [139] databases.
An example of a PSI-BLAST profile is reported in figure 5.2.

Figure 5.1: Scheme of the profile generation process. While the generation of a standard sequence
vector involves only the sequence of interest, as shown in figure 3.1, that of a profile actually takes a
whole database of sequences.

#TDB 9wgaA0 171 WHEAT GERM AGGLUTININ (ISOLECTIN 2)
1 - ... 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1
2 R ... -4 6 -3 -4 -6 6 -2 -5 -3 -6 -5 3 -3 -6 -4 -3 -4 -6 -4 -5
3 C ... -3 -5 -6 -6 11 -6 -7 -6 -6 -4 -3 -5 -4 -4 -6 -4 -3 -5 -4 -3
4 G B ... 0 -2 1 2 0 0 0 3 1 -3 -2 -1 -3 -5 2 0 0 -2 -4 -4
5 E G ... -1 0 2 0 6 0 1 -2 -2 -3 -4 -1 -3 -3 3 0 0 -1 -5 -2
6 Q G ... -1 -1 2 0 5 1 0 3 0 -3 -4 -2 -3 -4 -2 0 0 -5 -2 -3
7 G G ... 0 -1 0 -1 7 -1 0 1 0 -2 -3 0 -1 0 0 0 0 3 0 -3
8 S T ... 0 -1 0 1 3 0 1 1 2 -4 -3 -1 -4 -2 -1 2 0 -1 0 -3
9 N T ... -1 0 2 0 3 1 1 3 -2 -4 -5 -2 -3 -3 -1 0 0 -5 -1 -2

... ... ...

Figure 5.2: Example of a PSI-BLAST profile. The entries are integers. Each column left of the dotted
one refers to a specific amino acid type and represents its affinity to the one in the actual sequence:
the larger the number the higher the affinity. The dots stand for additional information output by
PSI-BLAST which is not reported here.
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5.1 Preliminary tests: a quality leap

The enormous potential inherent to the profile representation of amino acid sequences was made clear
very soon, in a preliminary test carried out on the first of the R90/10 subdivisions. Using quadratic
scoring functions based on a sequence window comprising eleven amino acids and optimized with
reweighted dual statistics, it was possible to achieve a prediction Q3-accuracy of 0.784. Not only the
threshold of 0.7 had been breached, but even that of 0.8 was all of a sudden within grasp.

5.1.1 Choosing a reduction scheme

All along the development analysed so far, the eight DSSP secondary structure classes were reduced
to the three standard ones according to the loose scheme illustrated in section 2.3.1.5. As observed
by others [51] before, however, the strict reduction scheme seems to lead to better Q3-accuracies.
In a second test, which in all other respects was identical to the one just mentioned, the prediction
Q3-accuracy achieved using the strict reduction scheme was 0.798, that is more than a point percent
better than the one achieved using the loose reduction scheme.

One might wonder which factor is exerting a stronger influence on these results: one might ask
in particular whether the strict reduction scheme leads to better performance because it prevents the
contamination of the helix and strand classes, or simply because it augments the population of the
coil class, increasing the disproportion among the classes and thus facilitating the whole secondary
structure prediction task. In order to answer this question a new predictor was instructed using the
strict reduction scheme, but with a slightly modified learning data set. A fraction of the unit peptides
in the original data set was discarded so that the proportions of the secondary structure populations
resembled those attainable by applying the loose reduction scheme. In particular, only roughly 90%
of the coil sequence samples were included in the learning data set. The new predictor achieved a Q3

of 0.797, very close to the one achieved by the predictor instructed with the complete data set. This
indicates that the way the strict reduction scheme affects the proportions of the secondary structure
populations does not influence the performance. Hence, the main effect must be the contamination of
the helix and strand classes.

Following these last considerations the strict reduction scheme was used in place of the loose one
in the following development. While weighing the implications of this decision it became clear that by
increasing the sequence-structure correlation potential, the strict reduction scheme could also amplify
the effects of upgrades yet to befell to the model and thus be of more use as well.

The applications to be discussed in part III of the report attempted to compare the efficacy of the
predictor developed to that of a selection of existing ones. Since the latter adopt, for the most part,
the loose DSSP reduction scheme, the results presented there will stick back to it.

5.2 Super scoring functions

An important construct, which was introduced concurrently with the sequence profiles and eventually
became an integral part of the profile-based predictor, is the super scoring function.

Historical digression: The idea of super scoring function originated in the search for a mechanism

to synergically combine a number of scoring functions into a single single-state classifier (recall the

discussion of multiple secondary structure key-positions in section 4.1.3). Eventually, the concept of

using multiple key-positions to build a classifier turned out to be rather unproductive (see end of section

4.1.5.1) and the need to combine them trailed off together with it. It would be the introduction later on

of a new type of scoring function to reinvigorate the idea. The new type of scoring function was designed

to distinguish between two secondary structure patterns only (e.g. distinguish helix from strand), rather

than between one and all others. The only way the new scores could actually be used however, was to

have their contributions automatically weighed together with those of the standard scores. Later still,

the super scores further developed into combinations of all available scores.
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Figure 5.3: Scheme of the modified program including the super scoring function optimization step.
The models provided by the bare scoring functions are used to compute a set of score vectors. These are
in turn re-input by the learning module, which constructs the so-called super models. These are then
passed on to the evaluation module.

Let’s assume a scoring function (which will be also called bare scoring function from now on, to
distinguish it from the super scoring function yet to be defined) fδ ∈ F (S,R) has been optimized
for each single-choice classification problem δ ∈ CP , that is for both “one versus one” (e.g. helix vs.
strand, helix vs. coil, strand vs. coil) and “one versus all” (e.g. helix vs. other, strand vs. other, coil
vs. other) classification problems1.

The problem is now that of finding a means of combining these bare scoring functions into a new
super scoring function that makes the best possible use of each contribution. The idea is to build this
new function by simply taking (in first approximation) a linear combination of the fδs,

F =
∑

δ∈CP

uδfδ + u0, (5.2.1)

where the parameters uδ ∈ R, δ ∈ CP , must be optimized, like the parameters of the bare scoring
functions, to best adapt to a given data set. Introducing the vectors

f =
(
f1, . . . , f|CP |

)t
∈ F(S,R|CP |) and u =

(
u1, . . . , u|CP |

)t
∈ R

|CP |,

the function (5.2.1) can be rewritten as

F = u · f + u0, (5.2.2)

which is formally identical to (4.1.2). The main difference in fact is that instead of a function of the
sequence vector, (5.2.2) is a function F ∈ F

(
R

|CP |,R
)

of the score vector, that is, the vector whose
components are the scores obtained by applying the fδs to the sequence vector2.

If the model is the same then the super scoring functions can actually be optimized in the same
way the bare scoring functions were and the same machinery developed in that case (see figure 5.3)
can for the most part be re-used.

As for the bare scoring functions-based predictor, the multi-choice classification problem would be
addressed employing one super scoring function Fσ for every secondary structure of interest σ ∈ P .
The classification procedure would therefore be in all respects identical to the one observed this far.

1If NP is the number of secondary structure patterns, the cardinality of CP is |CP | = NP +
`NP

2

´

.
2If needed, an arbitrary number pδ of scores can still be introduced for each classification problem δ ∈ CP . The

super scoring function becomes in this case

F =
X

δ∈CP

pδ
X

c=1

u
(c)
δ f

(c)
δ + u0,

which is analogous to (5.2.1) and can therefore undergo its same treatment.
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(a) (b)

Figure 5.4: Illustration of the evolution from the super scoring function of type (5.2.1) to the new
neighbourhood-based (5.2.3). In (a) a set of bare scores are calculated around the target residue and
used to generate a super score; in (b) the bare scores are computed for every residue in the neighbourhood
N . All sets of scores obtained this way enter the super scoring functions of new design.

5.2.1 The score neighbourhood

All scores used by the super scoring functions, independently from the classification problem they
stem from, result from the correlation of the sequence to the secondary structure of a single residue.
Eventually, a way was found to further extend the super scoring functions correlation reach.

The inspiration really came by attentively observing how the learning procedure was designed in
other secondary structure prediction programs. After establishing the correlation rules between the
primary and the secondary structure (sequence-structure correlation), many of the existing programs
also compute correlation rules between the secondary structure of the target residue and that of a
number of neighbouring ones (structure-structure correlation). This is done, in practice, by applying
the learned sequence-structure correlation rules to all the residues in the designated neighbourhood
and subsequently establishing the correlation rules between the scores obtained in this way, and the
secondary structure of the target residue. A scheme depicting the implementation of this technique
within the software presented here is reported in figure 5.4b.

In formal terms everything translates into further upgrading the super scoring function (5.2.1) to

F =

|N |
∑

r=1

∑

δ∈CP

ur,δfr,δ + u0, (5.2.3)

where r labels the residue’s address in the neighbourhood set N .

The sequence-structure/structure-structure terminology will be borrowed in the following too to
refer to the two levels of scoring function optimization.

5.2.2 Quadratic super scoring functions

The process of enhancement of the super scoring functions did not end with the introduction of the
score neighbourhood. As seen in section 4.2, the optimization machinery developed was capable to
record second order correlations too and there was no reason why the super scoring functions should
be limited instead to the first order.

The general shape of a quadratic super scoring function is

F =
∑

H>K

UHK fHfK +
∑

K

uKfK + u0, (5.2.4)

65



where the new indices H,K = 1, . . . , ns, label, for simplicity, all possible score contributions, that is
the ones coming from functions inherent to different single-choice classification problems and different
residues of the score neighbourhood.

In complete resemblance to what was done in section 4.2 the functions (5.2.4) can be rewritten as

F = ũ · f̃ + u0, (5.2.5)

upon prior definition, of course, of the vectors

ũ = (u1, . . . , uns
, U2,1, . . . , UH,K , . . . , Uns,ns−1)

and
f̃ = (f1, . . . , fns

, f2f1, . . . , fHfK , . . . , fns
fns−1) .

In the form (5.2.5) the true nature of the super scoring function F is again revealed.

5.2.3 Further upgrades

Simultaneously to the introduction of the enhanced super scoring functions, two more aspects of the
predictor underwent some upgrades.

Multi-fold statistics. The reweighting technique was modified, at both sequence-structure and
structure-structure correlation levels, by introducing in general different factors for samples to be as-
signed different secondary structure patterns. The objective function (structure-structure correlation
level) would then be

EM =
∑

σ∈P

wσ

2Nσ

Nσ∑

i=1

(F (xi) − yi)
2 , (5.2.6)

its minimization resulting in the linear equation system

Γ̃M ũ = b̃M , (5.2.7)

where [

Γ̃M

]

kh
=
〈

f̃k f̃h

〉

M
−
〈

f̃k

〉

M

〈

f̃h

〉

M
[

b̃M

]

k
=
〈

f̃k

〉

M
〈y〉M −

〈

f̃ky
〉

M
,

and, in general,

〈q〉M =
∑

σ∈P

wσ

Nσ

Nσ∑

i=1

qi . (5.2.8)

The sums contained in (5.2.8) are understood as partial sums over subsets pertaining to a single
secondary structure class.

The wσs for helix, strand and coil were optimized independently, with the same technique employed
to optimize the reweighting factors in the past. The most convenient choices turned out to be very
close to 0.5 for both patterns involved in the “one versus one” functions types, and close to 0.4 and 0.3
for the pattern of interest and for the other two respectively, in the “one versus all” function types.

Improved regularization. The regularization term introduced in equation (4.1.5) affects all scoring
function parameters in the same measure. During the development of the profile-based predictor it
was improved in that it was made sensitive to the type of parameter it affected. In mathematical
terms the equations (4.2.4) were turned into

(

Γ̃M + Λ
)

w̃ = b̃M , (5.2.9)
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where Λ is a diagonal regularization matrix. Of course it is feasible to differentiate the value of λ up
to a certain level only. To begin with, this was done for linear and quadratic terms, setting in other
words Λ to a (2 × 2)-block matrix of the kind

Λ2 =

(
λlin1n 0

0 λquad1ñ−n

)

, (5.2.10)

where λlin and λquad are the regularization parameters for linear and quadratic terms respectively.
Subsequently, the regularization parameters were differentiated for the latter according to the distance,
in number of residues, between the two residues correlated. The larger this distance the larger the
parameter should be in order to inhibit unlikely correlations. The resulting form of the regularization
matrix was then

Λ̆2 =

(
λlin1n 0

0 Λ̆quad

)

, (5.2.11)

where Λ̆quad is a diagonal matrix of
(
R

(ñ−n) ×R
(ñ−n)

)
the entries of which are directly proportional to

the strength of the inhibition. Tests aimed at identifying the best regularization parameters suggested
to apply a very mild distance dependence or none at all. It appeared to be more convenient in other
words to inhibit all quadratic terms in the same way, as when using (5.2.10), rather than favour short
range correlations at the expenses of long range ones.

5.2.4 Test results

The bare scoring functions chosen for the final profile-based predictor tests were quadratic and based on
sequence windows of 15 amino acids. No filters were applied to the learning data sets. Neighbourhood
windows comprising as well 15 residues (for a total of 4186(+1) super parameters) were used to build
the super scoring functions.

5.2.4.1 Optimizing the regularization parameters

In order to loose as little as possible to overfitting, the regularization parameters for the quadratic
terms in scoring and super scoring functions were optimized ahead of the multi-choice test itself. This
was done by monitoring the λquad-dependence of helix, strand and coil single-choice classification
performances. The optimization was carried out on the first of the R90/10 subdivisions, which acted
this way as a supporting test data set. For this reason the results obtained on the latter were not
taken into account when computing the averages (see section 5.2.4.2) later on.

The results of the λquad optimization for the bare scoring functions are reported in figures 5.5,
5.6 and 5.7. As can be seen, all quality indices follow the same trend. The initial plateaus mark the
region in which λquad is too small to affect the scoring function parameters. The subsequent more
or less pronounced rise in prediction, accompanied by the initial decline in recognition, indicates the
sought overfit-inhibiting effect of the regularization term. The rise is followed by a collapse of both
prediction and recognition accuracies, most probably caused by “overinhibition”. In other words, when
the regularization parameters get too large they start to suppress the parameters too strongly thus
causing a loss of valuable correlation information.

It is instructive to look at how the parameter vectors w resulting from the use of different λquad

values actually deviate from each other. The normalized scalar product

sab =
wa · wb

‖wa‖ ‖wb‖
(5.2.12)

was used to measure the similarity between two parameter vectors.
Figure 5.8 shows the similarity distribution over the ten R90/10 subdivisions3, for three repres-

entative values of λquad. The reference similarity distribution was obtained setting λquad = 10−12.
Several orders of magnitude above, at the optimal λquad = 10−4, the similarity factors appear to be

3for a total of
`10

2

´

= 45 similarity values
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Figure 5.5: Helix [H] recognition and prediction quality indices dependence on the quadratic regulariz-
ation factor λquad.
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Figure 5.6: Strand [E] recognition and prediction quality indices dependence on the quadratic regular-
ization factor λquad.
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Figure 5.7: Coil [C,S,T,G,I,B] recognition and prediction quality indices dependence on the quadratic
regularization factor λquad.
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Figure 5.8: Parameter vectors similarity distributions for helix, strand and coil using λquad = 10
−12,

λquad = 10
−4 and λquad = 0.9.

slightly larger, but their spread is unchanged. It is when the regularization factor is set to 0.9 that
its influence is heavily felt. In this regime the parameters are clearly strongly suppressed and are all
forced in a very narrow space as the entity and spread of the similarity factors testify.

Super scoring functions. A similar procedure was subsequently carried out to optimize to the
quadratic regularization parameters for the super scoring functions. In this case, larger values of
λquad had only negative influence on the single-choice classification performance. Therefore, nearly
vanishing values of λquad = 10−12 were used throughout.
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Table 5.1: Multi-choice prediction and recognition performance for helix, strand and coil secondary
structure classes (strict DSSP reduction scheme) using respectively (a) a scoring function-based pre-
dictor resulting from a pure sequence-structure correlation procedure, (b) a super scoring function-based
predictor resulting from a sequence-structure correlation procedure coupled to a structure-structure cor-
relation procedure and (c) a neural network-enhanced predictor resulting from the combination of the
sequence-structure and the structure-structure correlation procedures with a third structure-structure
correlation procedure carried out by means of an artificial neural network.

(a) sequence-structure (bare scoring functions)

prediction recognition

DSSP Sens3 Spec3 Sens3 Spec3

helix [H] 0.8727 ± 0.0054 0.8234 ± 0.0040 0.8786 ± 0.0006 0.8318 ± 0.0004
strand [E] 0.8375 ± 0.0042 0.6909 ± 0.0065 0.8486 ± 0.0006 0.6977 ± 0.0008
coil [C,S,T,G,I,B] 0.7339 ± 0.0054 0.8520 ± 0.0048 0.7404 ± 0.0006 0.8593 ± 0.0006

Q̄
(strict)
3 0.8011 ± 0.0034 0.8084 ± 0.0005

R̄
(strict)
3 0.6969 ± 0.0054 0.7084 ± 0.0008

(b) structure-structure (super scoring functions)

prediction recognition

DSSP Sens3 Spec3 Sens3 Spec3

helix [H] 0.8753 ± 0.0053 0.8454 ± 0.0046 0.8804 ± 0.0005 0.8514 ± 0.0005
strand [E] 0.8390 ± 0.0044 0.7101 ± 0.0067 0.8484 ± 0.0004 0.7177 ± 0.0008
coil [C,S,T,G,I,B] 0.7592 ± 0.0057 0.8506 ± 0.0045 0.7650 ± 0.0006 0.8567 ± 0.0005

Q̄
(strict)
3 0.8139 ± 0.0037 0.8203 ± 0.0005

R̄
(strict)
3 0.7143 ± 0.0057 0.7243 ± 0.0007

(c) structure-structure (artificial neural network)

prediction recognition

DSSP Sens3 Spec3 Sens3 Spec3

helix [H] 0.8681 ± 0.0064 0.8579 ± 0.0080 0.8740 ± 0.0078 0.8639 ± 0.0058
strand [E] 0.7605 ± 0.0124 0.7904 ± 0.0120 0.7728 ± 0.0102 0.8004 ± 0.0089
coil [C,S,T,G,I,B] 0.8277 ± 0.0085 0.8206 ± 0.0071 0.8339 ± 0.0087 0.8277 ± 0.0057

Q̄
(strict)
3 0.8268 ± 0.0036 0.8342 ± 0.0007

R̄
(strict)
3 0.7266 ± 0.0056 0.7384 ± 0.0009

5.2.4.2 Estimating performance

With the indications provided by the regularization experiments, the prediction machinery could
finally be set up to perform the actual tests on the R90/10 subdivisions. The results achieved by
the scoring function-based predictor, respectively at sequence-structure (bare scoring functions) and
structure-structure (super scoring functions) correlation level, are reported in tables 5.1a and 5.1b.
They show how the longed Q3-accuracy of 0.8 could finally be overcome, thus proving the usefulness
of sequence profiles once again, but also the validity of the method presented here. In the last line of
each subtable the average three-class correlation coefficient, R3 (see figure 2.10), is also reported.

It is also of some interest to look at the amino acid-specific prediction and recognition, overall
and partial accuracy indices. The ones obtained using the super scoring function-based predictor are
reported in figures 5.9 and 5.10.

Top scorers in the overall Q3-accuracy are alanine (A), valine (V), glycine (G) and proline (P): the
first two owe their ranking most likely to their predictability in being found respectively in helices
and strands (both in the case of valine), as proven by helix and strand quality indices in figures
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5.10a, 5.10b, 5.10c, 5.10d; the second two owe probably theirs, in contrast, to their tendency to be
found outside helices and strands (see coil-specificity and coil-sensitivity in figures 5.10e and 5.10f
respectively). The helix and strand classes, are predicted with high specificity and sensitivity also
on isoleucine (I), and leucine (L) residues, but the correlation between these amino acids and the
coil meta-class seems to be, on the contrary, rather elusive. The helix and strand propensities of
methionine (M), glutamine (Q), glutamic acid (E), phenylalanine (F) and tyrosine (Y) is reflected by
the specificity and sensitivity values for these residues; asparagine (N) and aspartic acid (D) appear
instead to be fairly easy to place within the coil regions. The two amino acids to which it appears to
be most difficult to assign a secondary structure motif are cysteine (C) and tryptophan (W), but this
may be in part due also to their low relative abundance (1.5% and 1.4% respectively) in the proteins
composing the database.

5.2.4.3 Taking a closer look
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Figure 5.9: Q3-accuracies (strict DSSP reduc-
tion scheme) in prediction and recognition for each
amino acid type.

As anticipated in section 2.1.1.1, a particularly
attractive aspect of the model developed is that
it enables to easily trace its parameters back to
“physical” correlation rules. Let’s look then in
more detail at the model’s internal structure to
see if any remarkable features out of all those
building up its strength can actually be iden-
tified. Let’s analyse the helix, strand and coil
scoring function parameters.

Figure 5.11 shows the averages and standard
deviations of the model’s parameters correspond-
ing to the optimal λquad determined in the tests
of section 5.2.4.1.

Some of the known amino acids tendencies
mentioned in the introduction are recognizable
in the plots 5.11a, 5.11c, and 5.11e relative to
the linear parameters. For example, alanine’s
propensity to be found at the centre of helical
patterns is confirmed by the magnitude of the
helix scoring function parameters 121, 141 and
161, corresponding to finding it respectively at positions 7, 8 and 9 in the sequence window4. Like-
wise, the presence of valine at positions 7, 8 or 9 in the sequence window, marked by parameters 140,
160 and 180, gives through the strand scoring function, a strong indication that the central residue
might be in this conformation. On the other hand, the helix signal is clearly disrupted by the presence
of proline at positions 9, 10, 11, as is the strand signal, though more seriously if this residue is found at
positions 7, 8 and 9. A relevant structure-breaking effect has of course glycine, but in some positions
also cysteine. These amino acids tend to favour instead the coil conformation, as can be seen from
the plot 5.11e. Less known tendencies can also be won from the mentioned plots, like the helix/strand
ambivalence of isoleucine and a certain propensity of cysteine itself to be in the centre of strands.

But perhaps the most interesting type of information that can be read from figure 5.11 is the one
that comes from the plots 5.11b, 5.11d, and 5.11f relative to the quadratic parameters. Although
these have in general lower magnitudes than their linear counterparts, it is still possible to discern
among them important signal carriers, which amount in this case to second order correlations. Most of
the stronger quadratic signals come from pseudo-correlations, that is parameters relative to the same
residue position in the sequence window. Some of these refer to the same amino acid type as well and
therefore play the same role as their linear equivalents. Others, more interesting, refer to different
amino acid types and are a consequence of the use of the profile representation. These “quasi-linear”

4Interestingly, there seems to be a marked asymmetry in the magnitude of positive linear parameters indicating a
weight shift towards the C-terminus.
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Figure 5.10: Amino acid specific motif-specificities/sensitivities for the three standard secondary struc-
ture motifs, helix, strand and coil.
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Figure 5.11: Parameter vectors averages and standard deviations for helix, strand and coil obtained
using the optimal quadratic regularization parameters. These parameters are the result of the correlation
between the sequence window comprising 15 amino acids and the secondary structure pattern of the
central (eighth) residue. [Note: the quadratic parameters are sorted as in the vectors (4.2.2), i.e. in the
order W1,1, W1,2, W2,2, W1,3, W2,3, W3,3, . . . ]

75



Figure 5.12: Scheme of the neural network-enhanced predictor. The mechanism at the heart the neural
network-enhanced predictor is very similar to the one on which the super scoring functions are based.
For each residue in the test chains the super scores computed for a neighbourhood of that residue are
passed to the neural network, which performs its prediction based on them.

parameters speak for amino acids types inserted in a context which enhances their affinity with other
amino acid types. So, for example, a large glycine/proline affinity at position 9 is associated with a
favourable signal for helix. While this may be puzzling at first, it makes perfect sense when it is taken
into account that the scoring function was optimized to correlate with the central position, that is
with position 8. A glycine/proline affinity could then point at the breaking of a helical structure and
therefore be a fairly reliable indicator of a helical motif for the preceding residue. Remarkable signals
from the strand scoring function include the one coming from double presence of proline at positions
8 and 9, and an isoleucine/valine equivalence at the central position. At the same position are also
the more curious alanine/glycine, leucine/proline and asparagine/glycine equivalences to be found:
the first two give a positive contribution to the strand likelihood score, the last a negative one. The
combinations that do not favour helix or strand conformations favour in general coil.

5.2.4.4 The missing correlations

From the 0.6 Q3-accuracy (section 4.1) achieved in the early attempts and through the development
process described in the present chapter, the scoring function-based secondary structure predictor has
come quite a long way.

Introducing second order5 correlations by including quadratic terms in the bare scoring functions
(section 4.2) added a new dimension to the predictor’s parametrical power. Using profiles in place of
standard sequence vectors on the other hand, gave a decisive boost to the performance by introducing
a context-dependent measure of similarity for the amino acid sequences. Finally, The super scoring
functions provided correlations between various scores and, in their latest incarnation, also between
scores relative to different secondary structure patterns.

In spite of all the upgrades operated however, the predictor’s basic structure had not changed:
it was still simply a superposition of three independent single-state predictors, with no awareness of
each other.

The lacking awareness would be raised in a third correlation procedure to be carried out with the
help of an artificial neural network [140]. Figure 5.12 shows how the neural network was actually
integrated into the predictor’s overall architecture.

The neural network employed was a multilayer perceptron trained by back-propagation. Its input
layer consisted of the helix, strand and coil super scores for all the residues in a neighbourhood window
of 15 amino acids centred in the target amino acid; the output layer consisted of course in the three
final scores for the three secondary structure types of interest; in between them was a hidden layer
comprising 100 nodes.

5and fourth order during the optimization procedure.
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Table 5.1c summarizes the results obtained on the familiar R90/10 subdivisions (excluding the one
used to optimize the regularization parameters) using the neural network-enhanced predictor. Its
content is to be compared to the one of subtables 5.1a and 5.1b.

The most evident effect the neural network had was that of reducing the predictor’s sensitivity
to helix and especially strand, and to favour in contrast the one to coil. As can be seen by looking
also at the specificities reported on table 5.1b, the super scoring functions had a certain tendency to
overestimate the strand signal. This tendency was probably detected by the neural network, which
took the necessary measures in order to suppress it, benefiting in so doing the sensitivity to coil.
Because of the remarkable size of the coil population, the overall Q3 results profited too by the neural
network’s intervention.
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Part III

applications

79



In this part of the report some examples of applications of the prediction software developed will
be presented. Among these, the reader will find secondary structure predictions for the photosystems
I and II and for a set of newly resolved protein structures included in later versions of the Astral40

data set.
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Chapter 6

The application software

This chapter is dedicated to the description and the application of the secondary structure prediction
software that resulted from the development process described in part II of this report.

6.1 SPARROW: boarding secondary structure prediction

Because of the nature of its basic constituents, that is, the parameter arrays w̃ (see sections 4.1 and
4.2) and ũ (see section 5.2.2), which effectively identify the scoring functions at its core, the prediction
software was designated “Secondary structure Predicting ARRays of Optimized Weights”, or, in short,
SPARROW.

Most of the tests carried out during the development of SPARROW, including the tests of section
5.2.4, made use of protein data extracted from the release 1.71 of the Astral40 data set. While for
testing purposes however, part of the data set was always left out for cross-validation, the whole data
set was used in order to instruct the actual prediction application tool.

The rest of SPARROW’s specifications followed exactly those of the program employed in the tests
of section 5.2.4.

SPARROW’s loose reduction kit. Since in most secondary structure prediction applications
eight DSSP states are reduced adopting the loose scheme described in section 2.3.1.5, the latter was
adopted in SPARROW’s applications as well. In order to compensate for any handicaps that might
affect it as a consequence of the fact that it had been optimized using instead the strict reduction
scheme, SPARROW was fitted with an extra loose reduction kit.

Whenever a residue would be assigned a coil motif, an auxiliary scoring function, optimized to
distinguish between exotic (3-turn, 5-turn) helices and other coil types (coil, turn and bend), would
be applied. This would ultimately decide whether the residue should indeed be assigned a coil or the
prediction should rather be converted to helix1.

6.1.1 Introducing transmembrane domains

As the reader may recall from section 4.1.5, the R90/10 data subdivisions employed in the software
development were generated after exclusion of the transmembrane domains present in the original
Astral40 data set. While instructing the first version of SPARROW this tradition was maintained
and the membrane domains were left out of the so-called knowledge-data set provided to the learning
module. The question later arose, whether this was indeed a wise choice or not. A second version was
therefore instructed with all domains in the original data set, including this time the transmembrane
domains. Its performance was compared to that of the original one in the recognition of the learned
data set and in the prediction/recognition of the portion comprising only transmembrane domains.

1Incidentally, the loose reduction kit makes it possible to straightforwardly discriminate between alpha helices and
exotic helices.
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Table 6.1: SPARROW’s overall and partial accuracy in assessing the secondary structure organization
of membrane and non-membrane domains, respectively (a) not having and (b) having learned the former.

(a) SPARROW-nm

non-membrane domains (recognition) membrane domains (prediction)

DSSP Sens3 Spec3 Sens3 Spec3

helix [H,G,I] 0.8487 0.8790 0.8070 0.8421
strand [E,B] 0.7707 0.8107 0.6844 0.7959
coil [C,S,T] 0.8294 0.7847 0.8089 0.7192

Q
(loose)
3 0.8234 0.7774

R
(loose)
3 0.7262 0.6590

(b) SPARROW-all

non-membrane domains (recognition) membrane domains (recognition)

DSSP Sens3 Spec3 Sens3 Spec3

helix [H,G,I] 0.8621 0.8698 0.8360 0.8486
strand [E,B] 0.8062 0.7796 0.7766 0.7868
coil [C,S,T] 0.7976 0.8059 0.7870 0.7704

Q
(loose)
3 0.8230 0.8018

R
(loose)
3 0.7268 0.6970

Table 6.2: SPARROW-all’s overall and partial accuracy indices on photosystems I and II.

PS I PS II

DSSP Sens3 Spec3 Sens3 Spec3

helix [H,G,I] 0.7952 0.8879 0.6966 0.9154
strand [E,B] 0.5533 0.3897 0.5900 0.2986
coil [C,S,T] 0.7801 0.7229 0.7694 0.7053

Q
(loose)
3 0.7733 0.7182

R
(loose)
3 0.6006 0.5457

The results, reported in table 6.1, indicate on the one hand that the secondary structure of trans-
membrane domains is indeed somewhat harder to predict than that of other domains. On the other
hand, they quite undoubtedly show that, while it of course benefits the performance achievable on the
transmembrane domains themselves, the inclusion of these in the learning process has practically no
repercussion on the prediction of other domains.

At the light of the indications provided by these tests, the version instructed with the complete
Astral40 data set was used in all applications thereafter.

6.1.1.1 Two special membrane proteins: the photosystems I and II

Because of their particular relevance for the Earth’s biosphere, the two major protein complexes
responsible for photosynthesis were also looked into, to see how well the fully trained SPARROW
could predict their secondary structure. The results are collected in table 6.2.

As can be seen, the secondary structure of the photosystems is not predicted with very high
accuracy, especially in the case of photosystem II. Besides being membrane protein, which already
makes them potentially tough candidates, the photosystems contain also a great number of cofactors
(chlorophylls, carotenoids), which are taken in no account by SPARROW but could play a role in the
structure formation as well.
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6.1.2 Prediction confidence

The Q3-accuracy, estimated by means of cross-validation techniques like the one employed in the
final benchmark of section 5.2.4, does provide a general measure of a predictor’s reliability. However,
different secondary structure types are predicted with different accuracies for different amino acids,
and sometimes it could be desirable to have a more detailed picture of the reliability of a prediction.
One might for example be interested in the secondary structure prediction for the amino acids well
within a peptide chain and not for those near the terminal positions. For this reason it is important
to provide, along with a residue-wise secondary structure prediction, also a measure of its confidence.

The natural source of information out of which to build the prediction confidence are the super
scores Fσ (or alternatively, the neural network output signals for the secondary structures of interest)
for every residue in the target protein chain. At first sight, it would seem quite reasonable to assume
that the larger one score is as compared to the others, the more reliable the ensuing prediction
becomes. It is however imaginable also that certain situations might arise in which the predictor is
badly mistaken. On all accounts, its ways could very well be hard to fathom for heuristic human-
devised “magic formulas”.

Since the machinery developed in the course of the project was actually designed to distinguish
between two classes (”right” and “wrong” perhaps?), the confidence determination problem looked very
much like an application which a scoring function is perfectly well suited for.

The confidence scoring function C would be a function of the final secondary structure scores for
the target residue. Given the secondary structure scores sσ, σ ∈ P , it will be

C (g, g0 ; s) = g · s + g0, g ∈ R
m, g0 ∈ R, (6.1.1)

where m = |M| is the number of secondary structure motifs of interest, and all scores sσ are grouped
in the vector s.

Like all scoring function analysed so far, also the confidence function C (s) would be optimized
to be close to one or zero, one representing this time the value labelling the “right”, zero the value
labelling the “wrong” predictions.

SPARROW’s confidence scoring function was optimized on the whole knowledge data set and was
applied in turn to every R90/10 subset. As experienced with other scoring functions optimized in
this way, also in this case the returned confidence values were only roughly in the range [0, 1]. For
simplicity, the whole confidence range was divided into nine intervals and each interval was assigned a
digit between 1 and 9. During the test prediction the residues in the chains were sorted according to
the confidence their secondary structure was predicted with, and the actual specificities were recorded
for each confidence interval. Figure 6.1 reports the average confidence-dependent populations and
specificities for the three standard secondary structure types, while figure 6.2 shows the corresponding
global quantities.

The specificities ultimately embody the probability that a prediction of the pertaining secondary
structure be correct, and can be a useful aid in the prediction software applications (see section 6.2.4).
The expected prediction accuracies are reported for easier reference also in table 6.3.

6.2 SPARROW versus others

In order to pronounce the final verdict on the quality of SPARROW’s secondary structure prediction,
the latter must be compared to the one achieved by other predictors. The designated terms of
comparison were selected among the programs available for download and included PROF v1.0 [90],
Prospect 2 [101], PSIPRED v2.5 [51], SSpro 4.01 [87], GOR-IV [42], PHD [100] and PREDATOR [73].

6.2.1 Astral40 generations: a neutral testing ground

A neutral testing ground had to be set for the comparison to be as fair as possible.
While SPARROW was still in course of development the version 1.73 of the Astral compendium

was released. Stemming from the same SCOP database however, this data set was very likely to
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Figure 6.1: The plots in (a), (c) and (e) show the average percentage of residues whose secondary
structure was predicted with the corresponding confidence level; those in (b), (d) and (f) show the
expected accuracy for the prediction of the relative secondary structure, that is, the probability that that
prediction be actually correct.

84



1 2 3 4 5 6 7 8 9
confidence level

0

5

10

15

20

25

%

overall prediction confidence distribution

(a)

1 2 3 4 5 6 7 8 9
confidence level

0.5

0.6

0.7

0.8

0.9

1

overall expected accuracy

(b)

Figure 6.2: These plots are similar to the ones in figure 6.1, but do not refer to one secondary structure
in particular. They can be of use if the general accuracy of the secondary structure prediction is needed.

Table 6.3: Expected prediction accuracies (in percent) for all confidence levels. The large fluctuations
reported for confidence levels 1 and 9 are a consequence of the small number of residues the secondary
structure of which was predicted with such a confidence (see figure 6.2a).

confidence
level

helix strand coil overall

1 (49.7 ± 52.3)% (40.0 ± 46.5)% (60.8 ± 27.8)% (53.1 ± 25.5)%
2 (54.2 ± 5.9)% (45.4 ± 4.4)% (66.3 ± 1.9)% (57.7 ± 1.5)%
3 (66.0 ± 2.5)% (56.6 ± 1.9)% (74.8 ± 2.2)% (67.5 ± 1.3)%
4 (77.0 ± 1.9)% (72.4 ± 3.2)% (81.6 ± 0.9)% (77.9 ± 1.1)%
5 (86.6 ± 2.0)% (84.5 ± 2.6)% (86.5 ± 1.5)% (86.0 ± 1.4)%
6 (92.7 ± 1.9)% (91.9 ± 1.5)% (90.5 ± 2.4)% (91.8 ± 1.1)%
7 (95.9 ± 1.3)% (95.2 ± 1.8)% (93.4 ± 1.1)% (95.1 ± 0.6)%
8 (97.9 ± 1.8)% (97.4 ± 2.9)% (95.8 ± 3.1)% (97.3 ± 2.1)%
9 (98.9 ± 8.9)% (97.9 ± 29.6)% (97.8 ± 10.5)% (98.6 ± 6.8)%
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Figure 6.3: Scheme of the BLAST-operated filtering of the Astral40 – release 1.73 data set. The
domains in the release 1.73 were pairwise aligned to those in the release 1.71 using the sequence alignment
tool BLAST. The domains that, according to BLAST, presented more than 40% sequence identity to
those in the release 1.71 were discarded. The remaining ones were used as benchmark data set.

contain most of the structures already present in the one used to instruct SPARROW, or at least very
similar ones. A thorough filtering procedure was therefore needed in order to prevent the introduction
of biases in the prediction accuracy results. For this purpose the BLAST [141] alignment tool was
employed to match every sequence in Astral40 – release 1.73 to the sequences in Astral40 – release
1.71. All the ones which were assigned more than 40% sequence identity (see figure 6.3) were discarded
to assemble a reasonably neutral test data set. The BLAST filtering returned 1919 domains.

The overall Q3-accuracies (loose DSSP reduction scheme) of SPARROW and its competitors on
the new test data set are reported in the first column of table 6.4 (the complete results for SPARROW
are reported in appendix B). Since their performance lay well below that of other predictors, PHD,
PREDATOR and GOR-IV were excluded from the final report.

As the first objective measure of its efficacy in the secondary structure prediction, the outcome
of this test confirms SPARROW as a valid alternative to the existing software. A detailed analysis
of the prediction outcome reveals furthermore that the sets of secondary structure motifs wrongly
predicted by PSIPRED and SPARROW overlap by only 70.3%. This leaves a non-negligible margin
for improvement in a combined method.

It is instructive to look at how the performances of the three programs compared in relation to
the degree of similarity (always according to BLAST) of the protein domains to the ones learned by
SPARROW. Four possible similarity-sorting criteria were identified:

• percentage of sequence identity;

• percentage of residues positively contributing to the BLAST alignment score;

• BLAST alignment score;

• p-value.

The p-value is a measure of the probability that a better alignment, that is, an alignment with a
higher BLAST-score, could be found by means of a random database search.

The sorted results are reported in figures 6.4 and 6.5 (the corresponding generalized correlation
coefficient and partial helix, strand and coil accuracy indices for SPARROW are again reported in
appendix B). Interestingly, they seem to reveal nearly no correlation between the performance quality
and the percentage of identity (fig. 6.4a) or similarity (fig. 6.4b) among learned and predicted
sequences. On the contrary, in some cases the performance quality seems to be even anticorrelated
to the sequence identity (fig. 6.5a). Much more reliable similarity measures are instead the BLAST
score and the p-value. When the domains are sorted according to these (see figures 6.4c and 6.4d)
it becomes in fact possible to discern a slight decrease in the prediction accuracy. This is very much
enhanced in the cumulative Q3-accuracy figures 6.5c and 6.5d. Even these plots show a more or less
extended transition in the range corresponding to the sequences for which a relatively close match was
found in the learned data set. This however, could well be an artifact of the lower statistical weight
of the latter (see population plots).

It is worth underlining here how all tested programs (with the possible exception of SSpro4) present
a very similar behaviour, in spite of the fact that the data set which the sequences in Astral40 –
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Figure 6.4: Q3-accuracy (loose DSSP reduction scheme) achieved by SPARROW, PROF, Prospect,
PSIPRED and SSpro4 on the 1919 domains of Astral40 – release 1.73 with less than 40% sequence
homology to the domains of Astral40 – release 1.71. The domains are sorted here respectively according
to (a) percentage of sequence identity, (b) percentage of residues that positively contributed to the BLAST
alignment score, (c) BLAST alignment score and (d) p-value. The partial populations (number of residues)
in the Astral40 – release 1.73 data set are reported in the lower portion of the plots.
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Figure 6.5: Q3-accuracy (loose DSSP reduction scheme) achieved by SPARROW, PROF, Prospect,
PSIPRED and SSpro4 on increasingly greater portions of the 1919 domains of Astral40 – release 1.73
with less than 40% sequence homology to the domains of Astral40 – release 1.71. These portions were
obtained by progressively adding chains with respectively (a) lower percentage of sequence identity, (b)
lower percentage of residues that positively contributed to the BLAST alignment score, (c) lower BLAST
alignment score and (d) higher p-value. The cumulative populations, in terms of number of residues, are
reported in the lower portion of the plots.
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Table 6.4: Q3-accuracy (loose DSSP reduction scheme) of SPARROW, PROF [90], Prospect [101],
PSIPRED [51] and SSpro4 [87] in predicting the secondary structure of the protein domains in Astral40

– release 1.73 with up to 40% sequence identity to those in Astral40 – release 1.71. [Note: SPARROW’s
reference Q3-accuracy in the recognition of Astral40 – release 1.71 amounts to 0.8224.]

program

Q
(loose)
3 [Astral40 – release 1.73]

all sequences non-aligned sequences(*)

PROF 0.7508 0.6769

Prospect 0.7748 0.6982

PSIPRED 0.8194 0.7317

SPARROW 0.8089 0.7498

SSpro4 0.7923 0.7473

(*) these are the sequences which returned no significant alignment to the domains in Astral40 – release 1.71

release 1.73 were matched against, were those learned by SPARROW. This means that the knowledge
data of the other predictors could not be too dissimilar from the release 1.71 of Astral40.

The sorted plots confirm the ranking established for the overall performances in table 6.4. This
may not be very evident from the partial results in figure 6.4, but it definitely becomes by looking at
the cumulative results collected in figure 6.5.

6.2.2 Non-aligned sequences

The sequences sorted in the plots in figures 6.4 and 6.5 are not all those resulting from the BLAST
filtering procedure: 22 out of the 1919 (for a total of 1379 residues) did not return any reasonable
BLAST alignments and could not be included in such sorting2.

The performance of the tested programs on these outliers is reported in the second column of table
6.4 (partial results for SPARROW are as usual reported in appendix B). These results are more or
less in line with those achieved on the “aligned” domains. They however see SPARROW this time
in the lead by a short measure over SSpro4. Even if the size of the data set accords them only very
limited statistical weight, these results speak in favour of SPARROW’s generalization capability.

6.2.3 A three-dimensional picture of secondary structure prediction

In order to give a different flavour of SPARROW’s secondary structure prediction accuracy, 23 domains
of Astral40 – release 1.73 were selected out of the 1919 tested for a three-dimensional visualization.
They are representatives of different families and include eight mainly alpha domains, eight mainly
beta domains and seven mixed alpha/beta domains. The drawings are collected in the following pages
(figures 6.6, 6.7, 6.8, 6.9, 6.10 and 6.11). The correctly predicted secondary structure motifs are
coloured, while the non-correctly predicted ones are transparent. The molecules were drawn with the
help of the visualization tool VMD.

2A closer inspection of the profiles relative to these sequences revealed no anomalies.
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(a) 1t72 (A) {Q
(loose)
3 = 0.9163} (b) 1wdy (A) {Q

(loose)
3 = 0.8140}

(c) 1x9f (B) {Q
(loose)
3 = 0.9310} (d) 1xqo (A) {Q

(loose)
3 = 0.7866}

Figure 6.6: Three-dimensional representation of domains with prevalent helix content. In (a) phosphate
transport system protein (PhoU) from Aquifex aeolicus, (b) human 2-5a-dependent ribonuclease, (c)
subunit II of extracellular dodecameric hemoglobin (erythrocruorin) from Lumbricus terrestris, (d) 8-
oxoguanine DNA glycosylase (AgoG) from Pyrobaculum aerophilum.
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(a) 1xqr (A1) {Q
(loose)
3 = 0.8561} (b) 1z0j (B1) {Q

(loose)
3 = 0.8431}

(c) 2aho (B1) {Q
(loose)
3 = 0.7912} (d) 2c7n (A1) {Q

(loose)
3 = 0.8182}

Figure 6.7: Three-dimensional representation of domains with prevalent helix content. In (a) human
Hsp70-binding protein 1 (HspBP1), (b) human effector protein rabenosyn-5 (Rab5), (c) domain 2 of
the eukaryotic initiation factor 2α (eIF2α) from Sulfolobus solfataricus, (d) ubiquitin-binding domain of
human RabGEF1 (Rabex-5).
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(a) 1t9h (A1) {Q
(loose)
3 = 0.8358} (b) 1w9s (A) {Q

(loose)
3 = 0.8358}

(c) 1wqw (A1) {Q
(loose)
3 = 0.5957} (d) 1y7b (A2) {Q

(loose)
3 = 0.8349}

Figure 6.8: Three-dimensional representation of domains with prevalent strand content. In (a) N-
terminal domain of probable GTPase EngC (YjeQ) from Bacillus subtilis, (b) hypothetical protein
BH0236 from Bacillus halodurans, (c) C-terminal domain of biotin–[acetyl-CoA-carboxylase] ligase from
Archaeon Pyrococcus horikoshii, (d) N-terminal domain of beta-D-xylosidase from Clostridium aceto-
butylicum.
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(a) 1y9q (A2) {Q
(loose)
3 = 0.8485} (b) 2bib (A1) {Q

(loose)
3 = 0.8017}

(c) 2f9c (A1) {Q
(loose)
3 = 0.6406} (d) 2gtl (O1) {Q

(loose)
3 = 0.8525}

Figure 6.9: Three-dimensional representation of domains with prevalent strand content. In (a) C-
terminal domain of probable transcriptional regulator VC1968, from Vibrio cholerae, (b) C-terminal
domain of teichoic acid phosphorylcholine esterase Pce (LytD) from Streptococcus pneumoniae, (c) hy-
pothetical protein YdcK from Salmonella enterica, (d) extracellular hemoglobin linker l3 subunit from
Lumbricus terrestris.
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(a) 1u5h (A) {Q
(loose)
3 = 0.9103} (b) 1yks (A1) {Q

(loose)
3 = 0.8429}

(c) 1yln (A1) {Q
(loose)
3 = 0.7658} (d) 1zjc (A1) {Q

(loose)
3 = 0.8039}

Figure 6.10: Three-dimensional representation of tested domains with mixed secondary structure con-
tent. In (a) beta subunit of citrate lyase from Mycobacterium tuberculosis, (b) NS3 helicase from yellow
fever virus, (c) protein VCA0042N from Vibrio cholerae, (d) aminopeptidase S (AMPS) from Staphylo-
coccus aureus.
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(a) 2g5f (A1) {Q
(loose)
3 = 0.7770} (b) 2hu7 (A1) {Q

(loose)
3 = 0.7987}

(c) 2j8k (A1) {Q
(loose)
3 = 0.8114}

Figure 6.11: Three-dimensional representation of two domains with mixed secondary structure content
and one with little secondary structure content. In (a) salicylate synthase MbtI from Mycobacterium
tuberculosis, (b) acylamino-acid-releasing enzyme from Aeropyrum pernix, (c) NP275-NP276 from Nostoc
punctiforme.
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6.2.4 SPARROW’s output examples

As mentioned in section 2.1.1.2, the secondary structure predictor assigns one of the considered sec-
ondary structure motifs to every residue in a peptide chain. Sometimes though, one may wish to have
a somewhat deeper insight into the secondary structure assignment.

A feature offered by several modern secondary structure predictors is that of integrating the actual
output prediction string with a plot depicting the trend of the secondary structure signals along the
whole sequence.

This feature is implemented in SPARROW as well. It is illustrated here for eight of the 1919
Astral40 – release 1.73 domains tested. The likelihood scores produced by SPARROW’s super
scoring functions were plotted as a function of the residue position. Since it was in this case available,
the ”true secondary structure” (according to DSSP) is reported in the abscissa. The accuracy indices
are also reported for possible reference. The plots are collected in pages 97 to 104. They are followed
by the actual secondary structure prediction and its confidence level (indicated by colour-code). The
reader may refer to table 6.3 and figures 6.1 and 6.2 for the expected prediction accuracy corresponding
to each confidence level.
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Secondary structure prediction of the phosphate transport system protein (PhoU) from Aquifex aeolicus
(see also figure 6.6a). This mainly helical structure is predicted with relatively high accuracy. This
domain scored 124.0 (with a p-value of 4 · 10−30) against the domains in the release 1.71 of Astral40.
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Secondary structure prediction of the human 2-5a-dependent ribonuclease (see also figure 6.6b). While
the overall prediction is quite accurate that of the central region, in particular between residues 118 and
173, has a very low confidence value. A brief glance at the corresponding region in the score plot shows
how this clearly is a consequence of the closeness of the three super scores for helix, strand and coil. This
domain scored 90.5 (with a p-value of 8 · 10−20) against the domains in the release 1.71 of Astral40.
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Secondary structure prediction of the hypothetical protein YdcK from Salmonella enterica (see also figure
6.9c). This structure consists of a series of short strands forming a rod of triangular section (see also
figure 6.9c). SPARROW does identify all strands but tends in most cases to overestimate their length.
This domain scored 32.7 (with a p-value of 0.02) against the domains in the release 1.71 of Astral40.
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121 - 122 . . A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

Secondary structure prediction of the extracellular hemoglobin linker l3 subunit from Lumbricus terrestris
(see also figure 6.9d). This domain scored 25.4 (with a p-value of 0.02) against the domains in the release
1.71 of Astral40.
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1 - 40 . . E E E . . . E E E E E . . . . . . . . . . H H H H H H H H H H H . . . E E E

41 - 80 E E E . . H H H H H H H H H H H . . . . . E E E E E E E E E . . . . . . . H E E

81 - 120 E H H H H H H H H H H . . . . . . E E E E E E E E . . . . . . H H H H H H H H H

121 - 140 H H H H H H . . . E E E E E E E . . . . A A A A A A A A A A A A A A A A A A A A

Secondary structure prediction of NS3 helicase from yellow fever virus (see also figure 6.10b). This domain
scored 23.5 (with a p-value of 0.99) against the domains in the release 1.71 of Astral40.
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41 - 80 . E E E . . E E E E E E E . . . . . . . . E . . . E E E E E H H H H H . . . . E

81 - 111 E E E E E . H . H H H H H H H H H H H H E . . . E E E E E . . A A A A A A A A A

Secondary structure prediction of VCA0042 from Vibrio cholerae (see also figure 6.10c). This domain
scored 23.5 (with a p-value of 0.94) against the domains in the release 1.71 of Astral40.
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41 - 80 E E E E . . E E E E E E . . . . . . . . . . . . . . . E E E E E E E H H . . H H

81 - 120 H E E E E E E E . . . . . . E E E E . . . . E E E E E E E E E . . . E E E E E E

121 - 160 E . . . . E E E E E E E . . . E E E E . . . . . . E E E E E E . E . E E E E E E

161 - 200 E E . . . . E E E E E E E . . . . . E E E E E . . . . . E E E E E E . . . . E E

201 - 240 E . . . . . . . . E E E E E E E . . . . . E E E E E . . . . . E E E E E E E E E

241 - 280 E E E E E . . . . . E E E E E E . . . . E E E E E . E E E E E . . . . E E E E E

281 - 313 E E E . . E E E E E . . . . . . . . E E E E . . . . . . E E . . . A A A A A A A

Secondary structure prediction of the N-terminal domain of acylamino-acid-releasing enzyme from
Aeropyrum pernix (see also figure 6.11b). This domain scored 28.1 (with a p-value of 0.44) against
the domains in the release 1.71 of Astral40.
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Secondary structure prediction of NP275-NP276 from Nostoc punctiforme (see also figure 6.11c). The
general low confidence contrasts with the relatively good Q3-accuracy achieved. This domain scored 27.7
(with a p-value of 0.29) against the domains in the release 1.71 of Astral40.
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Chapter 7

Conclusions and outlook

The lengthy development that lead to the secondary structure predictor named SPARROW carried a
few significant lessons along with it.

First of all, it is quite clear that a standard representation (see chapter 4) of amino acid sequences
seriously limits the performance achievable using straightforward methods like the one based on scoring
functions presented here. Clearly, treating amino acids as colourless virtual objects with absolute
disregard for their physical nature, precludes access to fundamental correlations between primary and
secondary structure. The use of more evolved representations like sequence profiles (see chapter 5)
was therefore necessary to compete with powerful predictors such as PSIPRED. Essential to build a
competitive scoring function-based predictor is also the inclusion of second order sequence-structure
correlations (see quadratic scoring functions in section 4.2). These provide a means to keep up with
the parametrical strength of secondary structure predictors based on other machine-learning methods.
Refinements like those involving statistical reweighting of different data samples (see for instance
section 4.1.1) or various learning data set manipulations (see section 4.1.2) on the other hand, seem
to have mostly a scarce influence on the predictor’s performance. Quite relevant are again instead
enhancements like those deriving from the introduction of the super scoring function (see section 5.2)
and the final neural network (see section 5.2.4.4). Devised to effectively combine independent single-
state likelihood functions, these make up for the structure-structure correlations missing in the bare
sequence-structure correlation machinery.

One more comment regarding the decoupled treatment of the secondary structure motifs. While
it could on one hand be considered a drawback, because it renders a method based on it uncapable of
grasping certain inter-motif correlations, this singular aspect of the developed scoring function-based
predictor could present advantages too. It allows in fact to easily focus the attention on one specific
secondary structure motif, so that, if required, a more aimed prediction can be performed.

A modern predictor

The learning method SPARROW relies on, can probably be listed together with those so-called “brute
force” methods which have arisen in recent times in response to the outstanding growth of both hard-
ware and database resources. Such growth has made it possible to use models based on a considerable
number of parameters, with no risk of overfitting them. Of course, it never ceases to be desirable
to have a method capable of maintaining a model’s generalization capability independently from the
quantity of data available. A way to possibly reduce the thirst of techniques like the one described
here could be to restrict the parameter space to a selection of important descriptive features, therewith
inhibiting the influence of less relevant information contained in the data sets and thus reducing the
number of features necessary to adequately represent those data sets. While this thirst may seem
a weakness though, it is important to keep in mind that the amount of available structural data is
steadily growing, and possibly at a higher rate each year (see figure 7.1), providing the bioinformatics
community with more unbiased data to instruct their prediction machineries with. At the same time,
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DNA sequencing is constantly improving the quality of sequence profiles [142], the primary input of
most secondary structure prediction programs. If such arguments do not negate the value of resource
economization, at the very least they de-emphasize it, prompting the structure prediction quest in
a more forward-oriented stance. Methods based on neural networks may well remain the most con-
venient when there is limited data availability but are no longer necessarily the ones of choice in the
general case.
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Figure 7.1: Growth of the PDB database [98] in
the years from 2000 to 2008.

It can be said in conclusion that the second-
ary structure predictor called SPARROW, de-
veloped within this project, is a valuable tool and
can be comfortably filed together with the more
emblazoned ones existing to date. It can be used
as a stand alone or together with other predict-
ors to have an even keener insight into the most
likely secondary structure organization of a pro-
tein. Due to the slight differences detected in
their areas of expertise (see arguments on page
86), it is furthermore not to be excluded that
by combining SPARROW with other predictors
such as PSIPRED, in the frame of a consensus
method, even better results may be achieved.

Future developments

One of the questions left open in part II of the
report concerns the true potential residing in
higher degrees of secondary structure definition.
As established in section 4.1.4, the naive ap-
proach followed, barely aids or even harms the
prediction performance of the three states, helix,
strand and coil. As pointed out in the same sec-
tion however, there exist techniques, such as those based on genetic algorithms for instance, that may
enable an efficient inspection of the reweighting factors and thus unleash the potential of higher de-
grees of secondary structure definition. The latter could be even better exploited in the super scoring
function frame and/or in the final neural network learning stage.

Another possibility currently explored by Dawid Rasinski consists in replacing several single-state
likelihood functions with a single vectorial gauge function, optimized to indicate pre-assigned points,
representing the secondary structure motifs in a multi-dimensional space. It seems this kind of ap-
proach may have some advantages and produce even more powerful predictors than the one based on
scalar scoring functions presented here.
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Appendix A

Single-state prediction accuracy:

window length dependence

In the following pages are collected the plots reporting the window length dependence of the single-
state accuracy indices.

Table A.1: Supporting test prediction quality indices for helix strand and coil as a function of the
sequence window lengths. The values for recognition are comparable. Only the results for sequence
windows with up to 19 amino acids are shown.

L specificity sensitivity pos/neg accuracy MCC

h
el

ix

5 0.5361 ± 0.0016 0.7112 ± 0.0019 0.6689 ± 0.0008 0.3428 ± 0.0017
7 0.5569 ± 0.0019 0.7234 ± 0.0022 0.6879 ± 0.0009 0.3770 ± 0.0017
9 0.5679 ± 0.0021 0.7292 ± 0.0022 0.6976 ± 0.0009 0.3943 ± 0.0014
11 0.5736 ± 0.0019 0.7324 ± 0.0019 0.7026 ± 0.0009 0.4034 ± 0.0016
13 0.5775 ± 0.0020 0.7354 ± 0.0016 0.7061 ± 0.0009 0.4100 ± 0.0014
15 0.5807 ± 0.0016 0.7372 ± 0.0019 0.7088 ± 0.0006 0.4150 ± 0.0010
17 0.5826 ± 0.0020 0.7391 ± 0.0015 0.7105 ± 0.0009 0.4184 ± 0.0015
19 0.5837 ± 0.0019 0.7404 ± 0.0019 0.7115 ± 0.0008 0.4204 ± 0.0015
. . . . . .

st
ra

n
d

5 0.3787 ± 0.0019 0.6723 ± 0.0020 0.6846 ± 0.0008 0.3061 ± 0.0018
7 0.3880 ± 0.0019 0.6821 ± 0.0023 0.6928 ± 0.0007 0.3215 ± 0.0017
9 0.3957 ± 0.0019 0.6869 ± 0.0030 0.6997 ± 0.0006 0.3329 ± 0.0021
11 0.4024 ± 0.0021 0.6927 ± 0.0030 0.7055 ± 0.0007 0.3432 ± 0.0024
13 0.4078 ± 0.0020 0.6981 ± 0.0030 0.7099 ± 0.0006 0.3518 ± 0.0021
15 0.4108 ± 0.0020 0.7020 ± 0.0025 0.7123 ± 0.0006 0.3570 ± 0.0018
17 0.4126 ± 0.0020 0.7037 ± 0.0027 0.7138 ± 0.0007 0.3598 ± 0.0020
19 0.4135 ± 0.0021 0.7047 ± 0.0021 0.7145 ± 0.0007 0.3612 ± 0.0019
. . . . . .

co
il

5 0.6511 ± 0.0013 0.6756 ± 0.0018 0.7163 ± 0.0007 0.4185 ± 0.0015
7 0.6592 ± 0.0015 0.6855 ± 0.0019 0.7235 ± 0.0008 0.4335 ± 0.0016
9 0.6612 ± 0.0017 0.6884 ± 0.0015 0.7254 ± 0.0006 0.4375 ± 0.0013
11 0.6623 ± 0.0015 0.6905 ± 0.0019 0.7266 ± 0.0009 0.4400 ± 0.0018
13 0.6626 ± 0.0018 0.6923 ± 0.0018 0.7271 ± 0.0008 0.4414 ± 0.0017
15 0.6630 ± 0.0016 0.6933 ± 0.0020 0.7276 ± 0.0008 0.4424 ± 0.0016
17 0.6636 ± 0.0016 0.6941 ± 0.0020 0.7281 ± 0.0008 0.4436 ± 0.0017
19 0.6634 ± 0.0015 0.6939 ± 0.0018 0.7280 ± 0.0006 0.4432 ± 0.0012
. . . . . .
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Figure A.1: Recognition and supporting test prediction quality indices for helix. The supporting data
set consisted in sequence samples subtracted from the learning set amounting to roughly 10% of the
latter. The average values were computed using (2.3.1); the deviations are not reported. The functions
used were linear and optimized using non-reweighted dual statistics. Only the central secondary structure
key-position was used.
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Figure A.2: Recognition and supporting test prediction quality indices for strand. The supporting
data set consisted in sequence samples subtracted from the learning set amounting to roughly 10% of the
latter. The average values were computed using (2.3.1); the deviations are not reported. The functions
used were linear and optimized using non-reweighted dual statistics. Only the central secondary structure
key-position was used.
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Figure A.3: Recognition and supporting test prediction quality indices for coil. The supporting data
set consisted in sequence samples subtracted from the learning set amounting to roughly 10% of the
latter. The average values were computed using (2.3.1); the deviations are not reported. The functions
used were linear, based on a sequence window of 19 residues and optimized using non-reweighted dual
statistics. Only the central secondary structure key-position was used. Note that the size of the sequence
window affects the coil quality indices to a much smaller extent than the helix and strand quality indices.
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Appendix B

SPARROW prediction data

Table B.1 contains the results, complete of all quality indices, obtained predicting the secondary
structure of the domains in Astral40 – release 1.73 with up to 40% sequence identity with those in
Astral40 – release 1.71.

Table B.1: SPARROW’s overall and partial multi-choice prediction accuracy for helix, strand and coil
classes, on the domains of Astral40 – release 1.73 with up to 40% sequence identity with the domains
in Astral40 – release 1.71.

aligned sequences non-aligned sequences

DSSP Sens3 Spec3 Sens3 Spec3

helix [H,G,I] 0.8475 0.8704 0.7656 0.8300
strand [E,B] 0.7412 0.7992 0.5267 0.4540
coil [C,S,T] 0.8104 0.7620 0.7877 0.7614

Q
(loose)
3 0.8091 0.7498

R
(loose)
3 0.6757 0.4935

The following pages feature the partial and cumulative plots for the accuracy indices which were
not reported in the body of the report. The domains are sorted with respect to sequence identity,
sequence similarity (percentage of residues positively contributing to the BLAST score), BLAST score
and p-value.
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Figure B.1: R3 correlation coefficient achieved by SPARROW on the domains of Astral40 – re-
lease 1.73, sorted respectively (a) by percentage of sequence identity, (b) by percentage of residues that
positively contributed to the BLAST alignment score, (c) by BLAST alignment score and (d) by p-value.
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Figure B.2: R3 correlation coefficient achieved by SPARROW on an increasingly greater portion of
the domains of Astral40 – release 1.73, obtained by progressively adding chains with respectively (a)
lower percentage of sequence identity, (b) lower percentage of residues that positively contributed to the
BLAST alignment score, (c) lower BLAST alignment score and (d) higher p-value.
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Figure B.3: Helix-specificity of SPARROW on the domains of Astral40 – release 1.73, sorted respect-
ively (a) by percentage of sequence identity, (b) by percentage of residues that positively contributed to
the BLAST alignment score, (c) by BLAST alignment score and (d) by p-value.
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Figure B.4: Helix-sensitivity of SPARROW on the domains of Astral40 – release 1.73, sorted respect-
ively (a) by percentage of sequence identity, (b) by percentage of residues that positively contributed to
the BLAST alignment score, (c) by BLAST alignment score and (d) by p-value.
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Figure B.5: Strand-specificity of SPARROW on the domains of Astral40 – release 1.73, sorted re-
spectively (a) by percentage of sequence identity, (b) by percentage of residues that positively contributed
to the BLAST alignment score, (c) by BLAST alignment score and (d) by p-value.
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Figure B.6: Strand-sensitivity of SPARROW on the domains of Astral40 – release 1.73, sorted re-
spectively (a) by percentage of sequence identity, (b) by percentage of residues that positively contributed
to the BLAST alignment score, (c) by BLAST alignment score and (d) by p-value.
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Figure B.7: Coil-specificity of SPARROW on the domains of Astral40 – release 1.73, sorted respect-
ively (a) by percentage of sequence identity, (b) by percentage of residues that positively contributed to
the BLAST alignment score, (c) by BLAST alignment score and (d) by p-value.
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Figure B.8: Coil-sensitivity of SPARROW on the domains of Astral40 – release 1.73, sorted respect-
ively (a) by percentage of sequence identity, (b) by percentage of residues that positively contributed to
the BLAST alignment score, (c) by BLAST alignment score and (d) by p-value.
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Figure B.9: Helix-specificity of SPARROW on an increasingly greater portion of the domains of As-

tral40 – release 1.73, obtained by progressively adding chains with respectively (a) lower percentage of
sequence identity, (b) lower percentage of residues that positively contributed to the BLAST alignment
score, (c) lower BLAST alignment score and (d) higher p-value.
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Figure B.10: Helix-sensitivity of SPARROW on an increasingly greater portion of the domains of
Astral40 – release 1.73, obtained by progressively adding chains with respectively (a) lower percentage
of sequence identity, (b) lower percentage of residues that positively contributed to the BLAST alignment
score, (c) lower BLAST alignment score and (d) higher p-value.
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Figure B.11: Strand-specificity of SPARROW on an increasingly greater portion of the domains of
Astral40 – release 1.73, obtained by progressively adding chains with respectively (a) lower percentage
of sequence identity, (b) lower percentage of residues that positively contributed to the BLAST alignment
score, (c) lower BLAST alignment score and (d) higher p-value.
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Figure B.12: Strand-sensitivity of SPARROW on an increasingly greater portion of the domains of
Astral40 – release 1.73, obtained by progressively adding chains with respectively (a) lower percentage
of sequence identity, (b) lower percentage of residues that positively contributed to the BLAST alignment
score, (c) lower BLAST alignment score and (d) higher p-value.
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Figure B.13: Coil-specificity of SPARROW on an increasingly greater portion of the domains of As-

tral40 – release 1.73, obtained by progressively adding chains with respectively (a) lower percentage of
sequence identity, (b) lower percentage of residues that positively contributed to the BLAST alignment
score, (c) lower BLAST alignment score and (d) higher p-value.
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Figure B.14: Coil-sensitivity of SPARROW on an increasingly greater portion of the domains of As-

tral40 – release 1.73, obtained by progressively adding chains with respectively (a) lower percentage of
sequence identity, (b) lower percentage of residues that positively contributed to the BLAST alignment
score, (c) lower BLAST alignment score and (d) higher p-value.
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Zusammenfassung

Proteine sind wesentliche Bestandteile von lebenden Organismen. Die meisten Proteine falten sich
in einzigartigen Strukturen, die von der Sequenz der bildenden Aminosäuren bestimmt werden. In
dreidimensionalen Proteinstrukturen treten regelmäßig wiederkehrende lokale strukturelle Motive wie
α-Helices und β-Strands oft auf. Solche lokalen Anordungen werden in ihrer Gesamtheit als Sekun-
därstruktur bezeichnet, während die Art und Weise, in der sich eine Polypeptidkette schließlich im
dreidimensionalen Raum faltet, Tertiärstruktur genannt wird.

Da die Struktur eines Proteins eine so zentrale Rolle für die Funktion des Proteins selbst in lebenden
Organismen spielt, ist sie von großem Interesse. Experimentelle Techniken wurden entwickelt, um sie
zu untersuchen. Diese sind aber relativ teuer und zeitaufwendig. Daher ist eine wachsende Not-
wendigkeit für theoretische Methoden zur Strukturvorhersage zu spüren.

Proteinstrukturvorhersage ist eine sehr schwierige Aufgabe. Mehrere Methoden sind bis heute
entwickelt worden. Eine wichtige Beihilfe für diese Methoden entsteht, wenn eine Sekundärstruktur-
vorhersage vorhanden ist. Zuverlässige Sekundärstrukturinformation kann zum Beispiel zum Aufbau
von sicheren Kernen in Fold-Simulationsprogrammen oder strukturellen Beschränkungen in Protein
Threading und Homology-Modelling-Suchen eingesetzt werden.

Ziel dieses Projektes war es, ein neues Instrument für die Proteinsekundärstrukturvorhersage aus
der Sequenz der Aminosäuren zu entwickeln.

Die angewendete Methode ist von statistischer Natur und basiert auf bestehenden Proteindaten.
Die Primärstruktur wurde in Form von PSI-BLAST-Profilen betrachtet. Die zum Lernen eingesetzte
Sekundärstruktur wurde aus den Atomkoordinaten durch DSSP hergeleitet.

Obwohl Sekundärstrukturvorhersage ein Dreiklassenproblem ist, war der angennommene Ansatz
alle Motive einzeln zu betrachten und es in die Summe von drei Zweiklassenprobleme umzuwandeln.
Dies ist durch Gruppieren der jeweils nicht betrachteten Motive zu einer einzigen Klasse und das
Lernen von Regeln, um das betrachtete Motiv auszusortieren, erfolgt. Es stellt sich heraus, dass
jeder durch ein solches Verfahren gewonnene Regelsatz ein Mittel zur Messung der Wahrscheinlich-
keit, dass eine Aminosäuresequenz zu der entsprechenden Sekundärstruktur führt, darstellt. Sobald
alle benötigten Regelsätze dieser Art zur Verfügung stehen, ermöglicht ein direkter Vergleich der
durch diese bestimmten Wahrscheinlichkeiten, das Dreiklassenproblem zu lösen. In der letzten En-
twicklung wurde ein neuronales Netz eingesetzt, um die Wahrscheinlichkeiten zu verbessern und die
Dreifachklassifizierung durchzuführen.

In einer auf der Version 1.71 von Astral40 basierenden zehnfachen Kreuzvalidierung erreichte die
aktuelle Version des Programms eine durchschnittliche genauigkeit von ungefähr 82% in der Vorhersage
welches von den Motiven, Helix, Strand und Coil (kein Motiv), eine Aminosäure einnimmt. Weitere
Vorhersagetests auf der Version 1.73 von Astral40 zeigen, dass die in diesem Projekt entwickelte
Sekundärstrukturvorhersage-Software in der Lage ist, auf dem gleichen Niveau wie ein etabliertes
Programm wie PSIPRED zu arbeiten.
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Summary

Proteins are essential constituents of living organisms. Most proteins fold into unique structures
determined by the sequence of amino acids composing them. In three-dimensional protein structures,
regularly recurrent local structural motifs like α-helices and β-sheets can often be identified. Such
local arrangements are collectively called secondary structure, while the way in which a polypeptide
chain finally folds in the three-dimensional space is called tertiary structure.

Since the structure of a protein plays such a central role for its function within living organisms,
it is subject of great interest. Experimental techniques have been developed to investigate it, but are
relatively expensive and time consuming. As a consequence, the need is increasingly felt for theoretical
structure prediction methods.

Predicting the structure of proteins is a very difficult task. Several protein structure prediction
methods exist to date. A considerable aid is provided to these methods if a prediction of the secondary
structure of the protein is available beforehand. Reliable secondary structure information can be
employed, for example, to build safe starting cores in fold simulation programs or structural constraints
in protein threading and homology modelling searches.

Aim of this project was to develop a new tool to predict protein secondary structure from the
amino acid sequence.

The method employed is of statistical nature and relies on existing protein data. The primary
structure was input in the form of PSI-BLAST profiles. The secondary structure information used to
instruct the program was extracted from atomic coordinates using DSSP.

Though secondary structure prediction is a three-choice classification problem, the approach adop-
ted was to consider all motifs separately and reduce it to the sum of three single-choice classification
problems. This is done by grouping all the motifs that are not the one of interest into a single class
and having the program learn a set of rules to respectively sort the one of interest out. It turns
out that each set of rules won through this procedure provides a means of measuring the likelihood
that some amino acid sequence be associated to the corresponding secondary structure motif. Once
all the needed sets of this kind are available, a direct comparison of the likelihoods attainable from
them allows to solve the three-choice classification problem. In more recent developments a neural
network was deployed to make the best sense out of the likelihood scores and perform the three-choice
prediction based on them.

In a ten-fold cross-validation based on the release 1.71 of Astral40, the current version of the
program achieved an average accuracy of about 82% in predicting which secondary structure motif
among helix, strand and coil (none), a residue adopts. Other prediction tests carried out on the release
1.73 of Astral40 show that the developed secondary structure predictor can compete with a celebrated
predictor like PSIPRED.
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