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1Abstract
This thesis aims to explore the prospects of parametric pulse shaping in multiphoton excitation and
laser beam filamentation. Multiple challenges have to be overcome in order to introduce findings of
this field of research into applications in medicine or biological imaging. First, experiments will be
conducted in which different parametrically phase and polarization shaped laser pulses are tested
on their effectiveness for selective excitation of two two-photon fluorophores. Two dyes are mixed
in one solution and excited after propagation of the shaped pulses through a hollow-core photonic
crystal fibre. Using experiments and simulations, an overview of the limits of this approach is
presented as solutions to this problem are subject to a pareto-optimability where achieved contrasts
have to be matched against a reduced overall fluorescence intensity.

In addition to a hollow-core fibre, pulses were also transmitted via a recently developed
Kagomé fibre which will be beneficial for future high intensity applications. Two perpendicular
shaped laser pulses, each optimized for fluorescence of one dye in a combined solution were cre-
ated and send through this fibre. Anisotropy of the dyes allows for the measurement of a contrast
in each polarization direction after the cuvette. This confirms that low dispersion and birefrin-
gence enable applications where polarization and phase shaped pulses after propagation through a
Kagomé fibre are used in multiphoton fluorescence experiments.

Three-photon excitation in water was demonstrated for the amino acid L-Tryptophan. It was
found that phase shaping can be used in a three-photon excitation scheme, although high pulse in-
tensities are seen to result in strong spectral modulations after propagation through the cuvette. For
intensities at which three-photon excitation is efficient, nonlinearities will most likely occur dur-
ing focussing. Evaluation of the nonlinear Schrödinger equation will show that the laser spectrum
up to the focus is mainly influenced by self-phase modulation. This spectral change significantly
alters the three-photon field which in turn determines the interaction of the shaped pulse with the
fluorophore. It will be pointed out how this pulse-shape dependent effect can be used to enhance
selectivity in a three-photon excitation experiment by a correct choice of shaped pulses. Tryp-
tophan was used as a model system to demonstrate how autofluorescence of biological tissue is
susceptible to this experimental approach.

Further studies strive to understand whether pulse shaping can be used to enhance supercon-
tinuum generation by filamentation in atomic gases. A white-light shaped laser source is used to
study the influence of pulse shapes on the laser spectrum after filamentation in Argon and Kryp-
ton. Pulses are precompensated using a new approach, such that pulse shaping at the onset of
the filament becomes possible. Although nonlinear effects like self-phase modulation and self-
steepening are inherently important for the filamentation process, spectral changes due to plasma
interaction are found to dominate spectral modulations after filamentation. To further understand
this process, a two-dimensional cylindrical variation of the split-step Fourier method is derived
and implemented. Nonlinear effects, dispersion, refraction, energy loss by ionisation and plasma
defocussing are included in the simulation which results in very good agreement with the exper-
imental findings. It is found that features which predominantly depend on the temporal shape of
the laser pulse at the focus can be easily controlled by antisymmetric phase functions that were
already applied to selective multiphoton ionisation, although through a distinctly different mech-
anism. Simulations seem to confirm that the temporal phase acquired due to interaction with the
plasma is the main factor determining spectral modulations after the filament. Evolutionary opti-
mizations are used to find more complex shaped pulses that give rise to a series of desired spectral
features. These optimizations, which use a newly developed method of parameter-wise mutational
parameters, are found to converge towards pulse shapes which tightly match the criteria set by the
fitness functions. Results found in this last chapter demonstrate that knowledge of the pulse shape
at the onset of a filament is essential for optimal supercontinuum generation via filamentation.
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2Kurzfassung
Das Ziel dieser Arbeit besteht darin, Möglichkeiten der parametrischen Pulsformung, mit beson-
derem Blick auf die Multiphotonen-Fluoreszenzanregung und Filamentation, durch Laserpulse
aufzuzeigen. Zudem werden Verfahren vorgestellt, die für die Anwendung von Pulsformung in
medizinischer und biologischer Bildgebung von Vorteil sind.

Hierfür wurden zunächst verschiedene parametrische Phasenfunktionen daraufhin untersucht,
ob sie zwei Farbstoffe selektiv, nach Transmission durch eine Hohlkernfaser, zweiphotonisch an-
regen können. Dies bestätigt, dass geformte Laserpulse für selektive Anregung von Farbstoffen,
z.b. in endoskopischen Anwendungen, verwendet werden können. Parametrische Phasenfunk-
tionen werden vorgestellt, die eine Kontrolle der Multiphotonen-Anregung durch Veränderung
nur eines Parameters ermöglichen. Simulationen wurden durchgeführt um die Grenzen der Kon-
trolle des Zweiphotonen-Prozesses aufzuzeigen. Dabei wurde deutlich, dass geformte Pulse, die
größere Kontraste zwischen den Fluorsezenzfarbstoffen erreichen, immer mit einer reduzierten
Fluoreszenz-Intensität einhergehen.

Zusätzlich zu der Hohlkernfaser wurde eine neuartige Kagomé-Faser untersucht, welche
besonders geeignet ist Pulse hoher Intensität ohne den störenden Einfluss von nichtlinearen Ef-
fekten zu leiten. Selbst polarisationsgeformte Pulse finden in solch einem Szenario Anwendung.
Es wurde gezeigt, dass ein polarisationsgeformter Doppelpuls, nach Transmission durch eine
Kagomé-Faser, verwendet werden kann um anistrop fluoreszierende Farbstoffe polarisationsab-
hängig anzuregen. Hierfür wurden zwei senkrechte phasengeformte Laserpulse erzeugt, die je für
die Fluoreszenz eines Farbstoffes optimiert sind. Je nach Orientierung eines Polarisationsfilters
ließ sich somit zwischen stärkerer Fluoreszenz des einen oder anderen Farbstoffes wählen.

Weiterhin wurde die Kontrolle der Dreiphotonen-Anregung anhand von der Aminosäure L-
Tryptophan in Wasser demonstriert. Auch dieser Prozess kann durch geformte Pulse beeinflusst
werden, jedoch zeigt sich schnell, dass bei den hierfür benötigten Intensitäten nichtlineare Ef-
fekte einen signifikanten Einfluss auf die Entwicklung des Spektrums in der Küvette haben.
Simulationen der Puls-Propagation in der Küvette, welche die Intensitätsentwicklung im Gauß-
Fokus berücksichtigen, gaben Aufschluss auf die, hauptsächlich durch Selbstphasenmodulation
bestimmten, spektralen Veränderungen. Das sich damit ebenfalls verändernde Dreiphotonen-
Spektrum konnte durch Wahl der Pulsform so verändert werden, dass der Kontrast zwischen zwei
Farbstoffen noch weiter verbessert werden kann.

In einer dritten Reihe an Experimenten wurde untersucht inwieweit parametrisch geformte
Pulse Einfluss auf das Weißlichtspektrum nach einem Filament haben. Pulse wurden mit einer
neuartigen Methode zur Phasenbestimmung so vorkompensiert, dass sie zu Beginn des Fil-
aments eine gewünschte Pulsform erreichten. Zweidimensionale, zylindrische Simulationen
der Puls-Propagation unter Berücksichtigung von nichtlinearen Effekten, Dispersion, Plasma-
Wechselwirkung und Beugung zeigten, dass Selbstphasenmodulation und Selbstaufsteilung zwar
essentiell für das Auftreten eines Filaments notwendig sind, die Veränderung des Spektrums aber
maßgeblich von der Wechselwirkung des Laserpulses mit dem Plasma und damit durch die Puls-
form während des Filaments bestimmt wird. Simulation und Experiment zeigten eine starke
Übereinstimmung, was bestätigte, dass die Pulspropagation im Filament maßgeblich durch die
im Modell berücksichtigten Faktoren bestimmt ist. Der Einsatz von parametrischen Phasenfunk-
tionen, wie sie bereits zur selektiven Anregung von Mehrphotonenübergängen verwendet wur-
den, ermöglicht im Experiment bereits eine Kontrolle über das Spektrum nach dem Filament.
Evolutionäre Optimierungen werden verwendet um optimale Pulse zu finden, die eine Reihe an
komplexen spektralen Features optimieren. Hierfür wurde eine neue Methode zur parameter-
abhängigen Anpassung des Mutationsparameters verwendet. Die in dieser Arbeit präsentierten
Ergebnisse veranschaulichen das Potential parametrischer Pulsformung im Bereich der Laserfila-
mentation und Mehrphotonen-Fluoreszenzanregung.
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3Introduction
In 1999 Ahmed Zewail (∗1946, †2016) was awarded the Nobel Price in chemistry for his achieve-
ments in the field of femtochemisty. In his area of research, ultrashort laser pulses, which can
be as short as a couple of femtoseconds (1 fs = 10−15 s), are used to study chemical reactions
at timescales where the movement of atoms in a molecule becomes relevant. It was at this time,
that scientists developed the dream of controlling chemical reactions with the help of coherent
light. Different measurement schemes were proposed [1, 2] in which interference between multi-
ple excitation pathways in an electronic system are utilized to influence results of an ionisation or
dissociation reaction. As a first experimental implementation of these schemes pump probe exper-
iments were conducted. Here, a first laser pulse is used to prepare a superposition of vibrational
states of a quantum system. Then, a second pulse probes the propagated system after an adjustable
delay. With the advent of computer-programmable liquid crystal arrays far more complex pulse
shaping became viable. Multi-element spatial light modulators were used by Weiner et al. in 1990
to change the spectral phase of a laser pulse [3, 4]. Shortly after, methods for finding optimal
pulse shapes for excitation of specific electronic molecular states were proposed by Rabitz et al.
in 1992. These involved optimization of the phase delays generated by a spatial light modulator
in a computer controlled closed loop experiment. Here, evolutionary strategies were employed
to find parameter-sets that can outperform a short (transform-limited) laser pulse [5] in certain
experiments. These feedback-optimized phase shaped pulses were shown to be able to steer dis-
sociation reactions [6] or selectively ionise isotopes [7] and thereby came closer to achieving the
goal of controlling chemical reactions with phase shaped laser pulses. In 1999, Doron Meshulach
and Yaron Silberberg proposed an additional control scheme which would lead to some control
over arbitrary multiphoton transitions [8]. They stated that multiphoton transitions can be seen
as the result of interference of a continuum of excitation pathways involving one or more virtual
levels in between an initial and a final state. They proposed that phase shaped pulses should be
able to influence which excitation pathways constructively or destructively interferes. Meshulach
and Silberberg demonstrated this in an experiment on atomic Caesium where a phase shaped pulse
was tuned such that it would not excite a narrow two-photon transition when compared with an
unshaped pulse.

While evolutionary optimizations were very successful in finding optimized pulses, it was
difficult to interpret the obtained results. In the long term it was seen as desireable to use parametric
pulse shaping rather than high-dimensional, time-consuming optimizations to steer and control
quantum systems.

Recent developments in the area of pulse shaping hint to a series of applications in microscopy,
endoscopic procedures and even photodynamic therapy. For these applications to emerge, it is
essential that the problem of finding a matching pulse shape is reduced to tuning a set or a single
relevant parameter. Furthermore, shaped pulses have to be delivered to a required place without
being distorted by linear and non-linear effects. Here, hollow-core photonic crystal fibres pose as
one way of pulse delivery for most medical applications.

Most of these developments became possible due to the availability of ultrashort laser systems.
With the help of Ti:Sa crystals as a gain medium and chirped pulse amplification, previously
unrivalled laser intensities could be reached. At these intensities a beam can, even at ambient
pressure, experience self-focussing due to nonlinear effects. Self-focussing leads, above a critical
power, to a beam collapse and subsequent ionisation of the propagation medium. This process is

5



6 Introduction

called filamentation and can, after some fine tuning be used as a broadband whitelight laser source.
It was demonstrated that filaments can occur over the length of some km when plasma defocussing
and self-focussing are well balanced [9].

This thesis will explore which parametric phase functions can selectively excite two-photon
fluorophores after transmission through a hollow core photonic crystal fibre. For that, a range of
parametric phase-functions will be tested on their usefulness in such an approach and parameters
will be named which allow for easy control over the selective excitation of two fluorophores.
It will be demonstrated that hollow-core fibres can be used in such a setup if linear dispersion
is accounted for. In a second set of experiments the effect of nonlinear propagation of pulses
destined for three-photon excitation of L-Tryptophan will be studied. Simulations are performed
that shed light on the nonlinear spectral modulation which will occur in a focus at these intensities.
It will be analysed whether pulse shapes can be used to exploit nonlinear self-phase modulation
for increased selectivity when dyes are excited in a cuvette filled with water. Tryptophan will be
used as an example that demonstrates autofluorescence of biological tissue will be applicable to
this method. In further experiments, the influence of shaped laser pulses on the broadening of a
spectrum after a filamentation in high pressure Argon and Krypton will be studied. Simulations
will help to point out the mechanism involved when spectral changes occur due to changes in
pulse shapes during filamentation. The development of algorithms for enhanced convergence of
evolutionary optimizations and for the propagation of ultrashort laser pulses in nonlinear ionising
media represent a significant part of this thesis. A separate chapter will be committed towards
these methods. As this thesis examines a series of slightly different applications of laser pulse
shaping, each chapter will offer a separate introduction recapitulating what was achieved in that
concerning field of research.



4Theoretical Principles
This chapter will briefly introduce a series of theoretical concepts required in this thesis. First
the mathematical description of the electromagnetic field will be introduced. Essential concepts
for pulse generation as well as the equations governing pulse shaping will be discussed. The
interaction of light with optical media, fluorescent molecules and ionizable gases is essential to
understand the presented experimental results and will therefore be studied in greater detail. Fi-
nally, a short section will be explaining simulation and optimization algorithms used in the course
of this thesis.

4.1 Mathematical Description of Ultrashort Laser Pulses
Laser pulses can be fully characterized by their spatial and temporal electrical field. In this chapter,
for each polarization a complex electrical field will be defined as it will be particularly beneficial
when describing the propagation of laser pulses in optical media later on.

4.1.1 Complex Electrical Field Description
The electrical field of a polarized laser pulse can be written as

E(x, y, z, t) =

(
E‖(x, y, z, t)
E⊥(x, y, z, t)

)
, (4.1.1)

In order to derive the complex electrical field description in the temporal and spectral domain, for
now, the polarization as well as spatial dependence of the electrical field will be neglected, i.e.,
E(x, y, z, t) = E(t). Following the description in [10], a spectral field strength is introduced:

Ẽ(Ω) = F{E(t)}. (4.1.2)

Since E(t) is a real function, one finds that Ẽ(Ω) = Ẽ(−Ω). This is slightly impractical since
negative frequencies are undefined. Additionally a complex representation of the electrical field
in the time domain would be useful. Hence, a complex electrical field is defined as the Fourier
transformation over only the positive frequencies of the spectral field strength:

Ẽ+(t) =
1

2π

∫ ∞
0

Ẽ(Ω)eiΩtdΩ (4.1.3)

For convenience one can use:

Ẽ+(Ω) =

{
Ẽ(Ω) for Ω ≥ 0
0 for Ω < 0

(4.1.4)

The relationship between Ẽ+(t) and Ẽ+(Ω) is then given by a simple fourier transform:

Ẽ+(t) = F{Ẽ+(Ω)} =
1

2π

∫ ∞
−∞

Ẽ+(Ω)eiΩtdΩ (4.1.5)

7



8 Theoretical Principles

a0 carrier envelope phase
a1 linear phase frequency shift of the spectrum
a2 linear chirp broadening of the pulse
b0 carrier envelope phase
b1 linear phase temporal shift of the pulse
b2 linear chirp broadening of the pulse
b3 quadratic chirp asymmetric broadening of the pulse

Table 4.1: List of the most important spectral-phase taylor coefficients and their influence on the laser pulse.

and
Ẽ+(Ω) = F−1{Ẽ+(t)} =

∫ ∞
−∞

Ẽ+(t)eiΩtdt. (4.1.6)

In most cases the complex electrical field is rapidly oscillating around a so called carrier frequency
ωl. This suggests that it is reasonable to split the complex electrical field into an amplitude E(t) and
phase ϕ0 +ϕ(t) + ωlt, seperating the slowly varying temporal phase ϕ(t) from the fast oscillating
term ωlt:

Ẽ+(t) =
1

2
E(t)eiϕ0eiϕ(t)eiωlt. (4.1.7)

Here, E(t) is the real electrical field envelope and ϕ0 the carrier envelope phase. Another important
quantity is the instantaneous frequency, which equals the derivative of the temporal phase, i.e.,

ωt = ∂ϕ(t)/∂t+ ωl. (4.1.8)

Usually the temporal and spectral phase are expanded into a taylor series. This helps to understand
the effect of different kind of phase functions on a laser pulse.

ϕ(ω) = b0 + b1(ω − ω0) +
b2

2
(ω − ω0)2 +

b3

6
(ω − ω0)3 + ..., (4.1.9)

ϕ(t) = a0 + a1(t− t0) +
a2

2
(t− t0)2 +

a3

6
(t− t0)3 + ..., (4.1.10)

with bi = ∂iϕ(ω)/∂ωi|ω0 and ai = ∂iϕ(t)/∂ti|t0 . This is especially beneficial because material
properties are given in the quantities of the group delay dispersion (GDD) and group velocity dis-
persion (GVD) which translate into changes of the coefficients of the spectral phase’s taylor series.
GDD and GVD will be explained in more detail later on. Tab. 4.1 lists the most relevant coeffi-
cients of the temporal and spectral taylor series used to described the effect of a phase function on
a laser pulse. For very broadband spectra, that are used in parts of this thesis, higher order terms
will become relevant. It is noteworthy that even coefficients of both, temporal and spectral taylor
series, have an equal effect on the pulse.

4.1.2 Jones Formalism
Although we neglected polarization states in the preceding chapter, it is an essential concept when
discussing pulse shaping methods. We will use the widely adapted Jones-formalism to mathemat-
ically describe the effects of polarizing optics on a laser beam.
The electrical field vector can be seen as sum of two orthogonal electrical fields:

E = E⊥e‖ + E⊥e‖, (4.1.11)
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1
0

)
linear polarized

1√
2

(
1
1

)
linear polarized rotated 45◦

1√
2

(
1
i

)
circular polarized (clockwise)

1√
2

(
1
−i

)
circular polarized (counter-clockwise)

Table 4.2: Normalized Jones vectors for the most important polarization states

with
E‖ = E0⊥e

i(kzz−ωt+ϕ⊥) (4.1.12)

and
E⊥ = E0‖e

i(kzz−ωt+ϕ‖). (4.1.13)

This notation becomes especially simple when rewriting Eq. 4.1.11.

E =

(
E0‖e

iϕ‖

E0⊥e
iϕ⊥

)
ei(kzz−ωt) (4.1.14)

The vector in eq. 4.1.14 is called Jones vector [11]. In Tab. 4.2 the most common normalized
Jones vectors are listed. From here on, it is pretty easy to describe the influence of an arbitrary
optical device on the polarization of a laser beam with the help of Jones matrices.

Jout = M · Jin = ...M3 ·M2 ·M1 · Jin (4.1.15)

Jones matrices can be combined by multiplication to characterise complex optical devices. The
most important Jones-matrices stand for the influence of a polarizer:

POL‖ =

(
1 0
0 0

)
, (4.1.16)

a retardance plate:

RET(ϕ) =

(
eiϕ/2 0

0 e−iϕ/2

)
, (4.1.17)

and a rotation:

D(Θ) =

(
cos(Θ) − sin(Θ)
sin(Θ) cos(Θ)

)
(4.1.18)

on the Jones vector. By combining these three, every polarizing optical component can be mod-
elled.

4.2 Generation of Ultrashort Laser Pulses
The generation of ultrashort laser pulses is based on interference of a broad spectrum of elec-
tromagnetic waves. Ultrashort laser pulses are commonly generated in an oscillator which is a
special laser with a broadband laser medium, dispersion management and an intensity dependent
gain which allows for mode locking. In modern femtosecond oscillators a Titan doped sapphire
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Figure 4.1: Example for laser modes (a) and the resulting interference (b). If the phase dependence is
random no clear maxima can be seen (red). (black) shows a transform-limited pulse for which all modes are
phase-locked.

crystal (Ti:Sa) is used because of its broadband emission spectrum. This kind of laser was invented
by P.F. Moulton in 1982 [12] A laser cavity of length L can sustain longitudinal modes satisfying
the equation

mλm
2

=
∑
i

ni(λm)Li, (4.2.1)

or as for the frequencies
νm =

mc

2
∑

i ni(νm)Li
. (4.2.2)

M is an integer which is called the mode number and ni is the refractive index of each partial length
inside the cavity Li.

∑
i ni(ν)Li can be substituted with n(ν)L when assuming L as an effective

length of the cavity. From Eq. 4.2.2 the distance of two modes can now be calculated:

δν = νm+1 − νm =
c

2n(νm)L
. (4.2.3)

This quantity is also known as the repetition rate of the oscillator frep which is typically in the
order of 50 to 80MHz.

Fig 4.1 (a - red) illustrates how the allowed modes of a very short cavity would look like. In-
terference of these modes would lead to an electrical field seen in Fig 4.1 (b - red). If all modes are
phase locked and their oscillations are constructively interfering at t = 0 we receive a transform-
limited (TL) pulse (Fig. 4.1 (b - black)).

4.2.1 Mode-Locking
In a laser cavity all allowed modes (see Eq. 4.2.2) compete. Modes with the best gain vs loss ratio
will over time use all energy stored in the lasing medium. In this regime an oscillator becomes
a classic continuous wave (cw) laser source. In order to move to the pulsed regime, as stated
before, the phases of the cavity modes have to be locked. This is achieved by reducing the gain
in the low intensity regime, for which it is common to use either active or passive mode-locking.
Active mode-locking uses electro- or acoustooptics to introduce losses to the cw-cavity and thereby
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kerr medium

cw
pulsed

aperture

Figure 4.2: Illustration of Kerr-lens mode-locking. Losses are introduced in the cw regime by closing an
aperture. Image taken from [13].

discourage cw-lasing. These mechanisms are electronically controlled and therefore cannot result
in pulses shorter than picoseconds on their own. Passive mode-locking, on the other hand, relies on
a saturable absorber to change the gain of the laser cavity. One common type of saturable absorber
exploits the Kerr-lens effect to reduce the gain in the cw regime. In this context it is sensible
to introduce the nonlinear refractive index n2. At high intensities the refractive index becomes
intensity dependent:

n(I) = n0 + n2I (4.2.4)

These nonlinearities predominantly occur in the lasing medium, where the strongly focussed Gaus-
sian beam profile induces a refractive index change which leads to self focussing of the beam. Fig.
4.2 illustrates the effect of this self-focussing on the pulsed regime. Using an aperture one can eas-
ily induce losses in the cw regime and thereby reach mode-locking. Another aspect of oscillator
operation, which is not demonstrated in Fig. 4.2 is dispersion control. The air, as well as the lasing
medium result in pulses being generated to disperse after a number of round-trips. This would
again prevent mode-locking. Hence, chirped mirrors or a prism compressor are added to the cavity
to account for all introduced dispersion. By tuning the compressor, one can choose at which peak
intensity the dispersion of the cavity is compensated. This results in a change in spectral band-
width corresponding to a different transform limited pulse length. It is important to note that, as an
implication by the Fourier-dependence of time and frequency space, the time-bandwidth product
has a lower limit:

δωpτp ≥ 2πcB (4.2.5)

Here, ωp is the spectral width and τp the pulse width, defined as a full width at half maximum
(FWHM) . Limits for the time bandwidth product are dependant on the pulse shape and are listed
in Tab. 4.3.
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Gaussian pulse cb = 0.441 Lorentzian pulse cb = 0.142 sech2 pulse cb = 0.315

Table 4.3: Values for the minimum of the time bandwidth product for the most common pulse shapes.

4.2.2 Chirped-Pulse Amplification
Chirped pulse amplification was first introduced in 1985 by D. Strickland and G. Mourou [14].
A seed pulse from the oscillator is stretched by a factor of ≈ 10000 [15], amplified and then
recompressed using a second grating compressor. Stretching the pulse is necessary to keep inten-
sities below the damage threshold of the Ti:Sa crystal. The lasing medium is usually pumped by
a frequency-doubled YLF or Nd:Yag solid state laser. Both, multi-pass and regenerative ampli-
fiers are operated at considerably lower repetition rates to allow for enough pumping of the lasing
medium. Common repetition rates are (1-250) kHz resulting in pulse energies of around µJ to mJ

4.3 Laser Pulse Shaping
Laser pulse shaping in closed loop schemes has become the most crucial method in coherent
control [16]. Pulse shaping using programmable liquid crystal (LC) arrays [4] was followed by
different methods of pulse shaping. Either using acousto-optics [17], or micro-mirror arrays which
also work in the UV regime [18]. Pulse shaping with programmable spatial light modulators
(SLM), as applied in this thesis, takes place in the Fourier space. The laser beam is split in a
4-f zero dispersion line into its frequency components. First, the beam is dispersed by a grating.
Each frequency component, still retaining the original beam shape, is then focused by a cylindrical
mirror or lens into the Fourier plane. Since the distance of the focussing element to the grating is
equal to the focal length, all wavelengths are parallelized in the process. A spatial light modulator,
consisting of an array of liquid crystals, is placed in the centre of the setup. With this, each
frequency can be changed in its phase before another focussing lens and grating recombine the
beam. In recent years, this setup was extended so that using one [19] or more SLMs could be used
to control more and more properties of the electrical field. Using a total of four liquid crystal arrays
and a series of waveplates one can achieve full control over the laser pulse’s properties including
phase, amplitude, polarization orientation, and ellipticity [20, 21].

4.3.1 Phase- and Amplitude-Shaping
The classic setup in which phase and amplitude shaping is realized uses two liquid crystal arrays
at ±45◦ to the incoming horizontal polarized light. While phase shaping could be accomplished
by only one array, two arrays are required for full control over the phase and amplitude of the laser
spectrum. Arrays Aa and Ab can be seen a simple wavelength-dependant retardation plates rotated
to plus or minus 45◦. The Jones matrices for both arrays become:

Aa = D(−45◦)RET(ϕa)D(45◦)

= ei
ϕa
2

(
cos(ϕa

2
) i sin(ϕa

2
)

i sin(ϕa

2
) cos(ϕa

2
)

)
(4.3.1)

and

Ab = D(45◦)RET(ϕa)D(−45◦) = ei
ϕb
2

(
cos(ϕb

2
) −i sin(ϕb

2
)

−i sin(ϕb

2
) cos(ϕb

2
)

)
(4.3.2)
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The combined Jones matrix describing the effect of both arrays is the result of a matrix multipli-
cation. It is noteworthy that only the difference or sum of the phase terms ϕa, ϕb appears in this
equation:

Aa ·Ab = ei
ϕa+ϕb

2

(
cos(ϕa−ϕb

2
) i sin(ϕa−ϕb

2
)

sin(ϕa−ϕb

2
) cos(ϕa−ϕb

2
)

)
. (4.3.3)

This can be understood as a variable transformation from ϕa and ϕb to (ϕa − ϕb) and (ϕa + ϕb).
Together with a polariser, the effect on the incoming electrical field becomes:

Eout = POL‖ ·Aa ·Ab · Ein = ei
ϕa+ϕb

2

(
cos(ϕa−ϕb

2
) i sin(ϕa−ϕb

2
)

0 0

)
Ein (4.3.4)

E(ω)‖,out = H(ω)E(ω)‖,in

= ei
ϕa,ω+ϕb,ω

2 cos(
ϕa,ω − ϕb,ω

2
)E(ω)‖,in

(4.3.5)

Here H(ω) is called a transfer function.

H(ω) = R(ω)eiΨ(ω) (4.3.6)

made up of an (amplitude) transmission function R(ω) and phase change Ψ(ω) as seen by each
frequency component ω.

Nyquist-Limit

Pixelated pulse shaping systems feature one inherent problem which has to be addressed. The
retardance generated by each liquid crystal array can be given in the range of [0−2π] based on the
periodicity of the incoming wave. Let us assume a phase difference between two adjacent pixels
ϕ1 and ϕ2 at frequencies ω1 and ω2. This difference δϕ is undefined by a summand of n2π.

ϕ1 − ϕ2 = n2π, (4.3.7)

where n is a integer. This means that a linear phase, created by a pulse shaper will allow for
different interpretations and thereby to multiple replica pulses shifted by 2πn/(ω2 − ω1) in time.
While these pulses are of low intensity (especially for high n), it is still desirable to maximize the
resolution of a setup to minimize problems introduced by the Nyquist limit. The Nyquist limit is
defined as being reached when the phase difference of to neighbouring pixels surpasses π:

|ϕ2 − ϕ1| ≥ π (4.3.8)

At this limit both interpretations (an increasing or decreasing phase) are equal.

4.3.2 Polarization-Shaping
Polarization pulse shaping was found to be especially useful when selecting multiphoton ionisa-
tion pathways in small molecules. This was shown impressively by Brixner et al.[23]. Polarization
shaping can be used to control the complete polarization ellipse which requires either interfero-
metric [24, 25] methods or at least 4 liquid crystal arrays in succession [20]. Fig. 4.3 shows what
kind of pulses can be created using parametric shaping techniques. In most experiments simple
polarization control will suffice.
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Figure 4.3: Example of a polarization shaped laser pulse generated with a setup described in [20]. Sub-
pulses with alternating ellipticity and orientation are shown. This data originates from the work in [22].

In order to create two perpendicular polarized phase shaped laser pulses, only two arrays are re-
quired. A rotation by a half-waveplate, which is placed just after the two liquid crystals rotates the
polarization of the beam by 45◦. The combined Jones matrix of both arrays then reads:

Ret(π, 45◦/2) ·Aa ·Ab =
1√
2

(
1 −1
1 1

)
1

2

(
eiϕb + eϕa eiϕb − eϕa

eiϕb − eϕa eiϕb + eϕa

)
(4.3.9)

=
1√
2

(
eϕa −eϕa

eiϕb eiϕb

)
(4.3.10)

For a parallel laser pulse this will result in:

Ret(π, 45◦/2) ·Aa ·Ab · E(ω)‖ =
1√
2
E(ω)

(
eiϕa

eiϕb

)
(4.3.11)

Using this setup, both polarization components can be phase-shaped independently using only two
liquid crystal arrays in the Fourier plane. It is important to note, that without the waveplate phase
shaping of both polarization components would be possible as well. This, unfortunately would
lead to problems when the beam is recombined in the zero-dispersion compressor. Both gratings
usually show a different reflectivity depending on the polarization of the light. Therefore, pulses
which traverse a grating in a±45◦ angle, will be compressed in one axis. Those pulses would then
seize to be orthogonal, which is circumvented with the aforementioned half-waveplate.

4.3.3 Methods for Parametric Pulse Shaping
Pulse shaping schemes allow to alter the phase, amplitude and polarization state of a incoming
laser pulse. This control is achieved, as previously stated, by at least two liquid crystal arrays (for
phase and amplitude shaping) which often consist of hundreds of liquid crystal cells. Since the
width of the separate liquid crystal cells determines the spectral resolution and Nyquist limit it is
desirable to apply SLM’s with even more pixels. This provides one with the problem to address all
these separate parameters. In many coherent control experiments genetic optimization algorithms
are used to optimize all pixels separately but this approach is very time consuming and often does
not lead to an insight into the physics present. One way of reducing the dimensionality is to find
suitable parametrizations which can be used to directly change relevant pulse parameters. A first
step was to extend the spectral phase into a Taylor series. The effects of the Taylor coefficients on
the laser pulse were discussed in chapter 4.1.1. When sequences of separately shaped laser pulses
with different intensities are required other concepts will have to be established.
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Arbitrary pulse sequences

One method to achieve this full parametric control was developed by Weber et al. [26] and is
based on the assembly of pulse sequences from separately shaped pulses in the time or frequency
domain. Let us assume a series of separately shaped pulses based on a single input pulse:

Ei(ω) = Hi(ω)Ein(ω) (4.3.12)

Then, the transfer function for the complete pulse sequence is the sum of all single pulse transfer
functions:

Eout(ω) = Hges(ω)Ein(ω) = H1Ein +H2Ein + ... =
∑
i

Hi(ω)Ein(ω) (4.3.13)

Here, the properties by each single pulse are defined by its transfer function Hi(ω). The time
delay of the pulses with respect to the input pulse is therefore set by the linear phase term in the
Taylor expansions of Ψ(ω)i. At this, point it has to be ensured that the full transfer function fulfils
|Hges(ω)| ≤ 1, because amplitude shaping can only be used to reduce the spectral intensity at a
given wavelength. If this is not satisfied |Hges(ω)| can either be clipped at a transmission of one or
divided by the full transfer function’s maximum. Latter would reduce the energy of the total pulse
sequence which can be impractical in certain applications.

Fourier-Transform Iteration Method

In certain conditions the spectrum required for the generation of pulses is not available, or only
phase shaping is available to create a desired pulse shape. Then, the aim of a pulse shaping
method should be to find a spectral amplitude and phase function which will result in the closest
resemblance with the desired pulse shape. To do so, one parameter has to be given up since the
problem is over-determined. Here, an iterative approach can be used to find an optimal solution.
The transfer function which describes the pulse shaping process can be split into an amplitude and

Figure 4.4: Schematic representation of the Fourier transform iteration method for phase shaped laser pulses.
This image was taken from [27].
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phase. If only phase shaping is available, the amplitude of the transfer function is zero (R(ω) = 0)
such that:

Eout(ω) = H(ω)Ein = eiΨ(ω)Ein(ω) (4.3.14)

The goal of this algorithm is to find a pareto optimal phase Ψ(ω) to apply to the input pulse that
simultaneously fulfils the two boundary conditions. The algorithm acts as follows: The input pulse
A(ω)eiϕ(ω) is transformed into the time domain:

B(t)eiθ(t) = F−1
(
A(ω)eiϕ(ω)

)
(4.3.15)

then the desired temporal pulse shape (
√
|Id| = Ed(t)) replaces the temporal field B(t). After a

transformation back into frequency space:

A′(ω)eϕ
′(ω) = F

(
Ed(t)e

iθ(t)
)

(4.3.16)

we find a new spectral phase and amplitude. Since only phase shaping is allowed we will again
replace the spectral amplitude with the original amplitude A(ω). Here, ϕ′(ω) is the first estimate
for the desired spectral phase function Ψ(ω). The capabilities of this method, as well as an in-depth
explanation can be found in [27].

4.4 Properties of Optical Media
In this section, the linear and nonlinear properties of optical media, as well as polarization effects
resulting from birefringent material will shortly be introduced.

4.4.1 Dispersion
The way light interacts with bound electrons of an optical medium it traverses, changes with its
frequency ω. This so called chromatic dispersion is characterized by the refractive index n(ω).
The refractive index originates from resonances of the optical medium at which photons of the
incident light can be absorbed [28]. Knowledge of these resonances is sufficient for stating the
Sellmeier equation:

n2(ω) = 1 +
m∑
k=1

Bkω
2
k

ω2
k − ω2

. (4.4.1)

The set of material parameters Bk, ωk are crucial for experiments involving ultrashort laser pulses
since different wavelengths travel at different speeds c/n(ω) through optical media. The spectral
phase (or rather: k(ω)L) can be expanded into a taylor series:

ϕ(ω) = k(ω)L = k0L+ L
dk

dω
(ω − ω0) +

L

2

d2k

dω2
(ω − ω0)2 + ... (4.4.2)

Here k = n(ω)ω/c is the wave vector, L the length of the optical medium and ω0 the central
frequency of the pulse’s spectrum. The first two coefficients become:

dk

dω
=

1

vg
=

1

c

(
n+ ω

dn

dω

)
(4.4.3)

d2k

dω2
=

1

c

(
2
dn

dω
+ ω

d2n

dω2

)
(4.4.4)
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Eq. 4.4.3 is called group delay (GD) and equates to the temporal shift optical frequencies experi-
ence after travelling a distance L through a medium. The group delay is usually stated in units of
fs/mm. Eq. 4.4.4 which refers to the change of GD, is called group velocity dispersion (GVD).
GVD is expressed in units of fs2/mm and will result in a broadening (linear chirp) of the pulse
after transmission through the medium. When the GVD is greater than zero, the material is said to
have normal dispersion, while a GVD less than zero is called abnormal dispersion. Continuation
of the spectral phase’s Taylor expansion will define higher order material properties like the
third-order dispersion (TOD) etc. These terms become particularly significant when dealing with
broadband spectra.

For optical waveguides such as fibres, other types of dispersion may become relevant. In
an optical fibre multiple propagation modes are possible. Since the propagation speed of each
wavelength is constant, fibre modes with wavevectors kx or ky that are non-zero will be transmitted
slower in the direction of the long fibre axis.

k =
n(ω)ω

c
=
√
k2
x + k2

y + k2
z (4.4.5)

implies that kz < k and thereby slower propagation of these modes.

4.4.2 Birefringence
Fibres which possess a non centro-symmetric core as well as most non isotropic materials will
feature a special kind of polarization mode dispersion. Birefringence is defined by the difference
of the orthogonal refractive indices [29]:

B = |n⊥ − n‖| (4.4.6)

Where n⊥, n‖ are the refractive indices of the orthogonal optical axes. The optical axis corre-
sponding to the larger refractive index is also called the slow axis while the axis with the smaller
refractive index is the fast axis. We can calculate the length at which the phase dependence between
both axes is again in sync by:

m2π = Bk0LB ⇒ mλ = BLB ⇒ LB = m
λ

B
λ (4.4.7)

LB is also called the beat-length after which the polarization state of the incident light will be
recovered. The birefringence B of ordinary step-index fibres was found to be in the order of 10−5 to
10−6 [30]. However, hollow-core fibres can feature much larger birefringence due to their possible
asymmetric internal structure [31]. Last but not least, stress by bending or twisting can as well
have an effect on birefringence of an optical fibre [28]. Birefringence in optical crystals however
is often used for phase matching in frequency conversion applications. In order to maximize the
conversion efficiency it has to be ensured that newly created photons interfere positively throughout
the crystal. By turning the angle of a birefringent crystal, one can select the refractive index of the
extraordinary axis and thereby optimize phase matching between the signal and idling beam.

4.4.3 Intensity Dependent Refractive Index
In linear optics the light-matter interaction is described by the dielectric susceptibility tensor χ:

P = ε0χi,jE (4.4.8)
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where, ε0 is the vacuum permittivity and P the polarization of the optical medium. In the case of
isotropic media, this equation can be simplified since χxx = χyy = χzz = χ. For intense electrical
fields the optical response from a medium becomes nonlinear. This originates from the fact that,
in the high intensity regime, the assumption that electrons are bound to their atoms by a harmonic
potential is no longer valid. The total polarization thereby differs from the linear case [32, 33]:

P (t) = ε0χ(E)E = ε0
(
χ(1)E(t) + χ(2)E(t)2 + χ(3)E(t)3 + ...

)
(4.4.9)

Here χ(k) are the k-th order susceptibility. While χ(1) covers the effects of dispersion, χ(2) is
responsible for second harmonic generation as well as sum frequency generation. It should be
noted that χ(2) can only be non-zero for materials which are not isotropic on the molecular level.
Most fibres, as well as gases thereby do not allow efficient second harmonic or sum frequency
generation [28]. χ(3) is an important factor in this thesis, since it is accountable for the Kerr-effect,
third-harmonic generation and four-wave mixing [32]. While the Kerr-effect will occur in the
experiments discussed later on, other, frequency generating processes can only be efficient when
phase matching is observed. It is useful to define a linear and nonlinear polarization PL and PNL:

P(r, t) = PL(r, t) + PNL(r, t) (4.4.10)

The nonlinear refractive index is defined as the change of the refractive index with intensity:

n = n0 + n2I (4.4.11)

Here I is the intensity (W/cm2) which relates to the electrical field by:

I =
cnε0

2
|E|2 (4.4.12)

Derivation of the Nonlinear Refractive Index

As seen before, we can split the electrical field in a slow and fast oscillating term:

E(r, t) =
[
A(r, t)e−iω0t + c.c.

]
. (4.4.13)

The same is possible for the linear and nonlinear polarization:

PL = ε0χ
(1)E =

[
P̃L(r, t)e−iω0t + c.c

]
(4.4.14)

PNL = ε0χ
(3)EEE =

[
P̃NL(r, t)e−iω0t + c.c

]
. (4.4.15)

By substituting Eq.4.4.13 into Eq. 4.4.15 we find

P̃NL(r, t) = ε0χ
(3) 1

2

(
A3e−i3ω0t + 3AA∗Ae−iω0t + c.c.

)
. (4.4.16)

The term oscillating with the third harmonic will only be relevant when phase matching can be
achieved between ω0 and 3ω0. This is usually not the case in optical fibres or gases and will
therefore be neglected. This finally leads to the relation between the nonlinear polarizability and
the electrical field:

PNL = ε0εNLE = ε03χ(3)|A|2A, (4.4.17)
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which implies for the dielectric constant that:

ε = 1 + χ(1) + εNL = n2 +
3

4
χ(3)|A|2. (4.4.18)

Assuming that the occurring nonlinearities are a small perturbation to the refractive index we write

ε = (n+ n2|A|2)2 ≈ n2 + 2n2|A|2n (4.4.19)

Identification results in the formula for the relation between the nonlinear refractive index and the
third-order susceptibility χ(3):

n2 =
3

2n
χ(3). (4.4.20)

4.5 Light-Matter Interactions
The most relevant concepts concerning the interaction of laser pulses with matter will be intro-
duced in this chapter. First, the concept of multiphoton excitation will be differentiated from
single photon excitation. Then, secondary processes like fluorescence and photoionisation are dis-
cussed. In the context of the simulation of laser pulse propagation, different ionisation schemes
will be investigated.

4.5.1 Multiphoton Excitation

Figure 4.5: Examples for different excitation schemes. One, two, or more photons can simultaneously be
absorbed and lead to the excitation of an atom or molecule. Different selection rules apply depending on
the order of the process. This image originates from [33].

The first experiments on multiphoton excitation were performed by Kaiser and Garrett in 1961
[34] with a ruby laser, which was at that time called an optical maser. When high intensity laser
systems became more common, applications of this new method of excitation were explored. In
1990, Denk et al. [35] demonstrated the advantages of two-photon excitation in microscopy ap-
plications. Multiphoton excitation, which relies on the simultaneous absorption of two or more
photons can significantly enhance the resolution when used in a laser scanning microscope.

Since the diffraction limit is dependent on the wavelength of the exciting light, using two-
photons cuts in half the wavelength used for excitation and thereby doubles the resolution which
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is achieved. A second advantage of multiphoton microscopy is that the process is efficient at
high intensities and scales with In, where n is the number of photons required for excitation.
This means that only a volume close to the focus will be excited which is employed for creating
three-dimensional images of a sample. Additionally multiphoton microscopy follows different
selection rules than single photon excitation. A photon possesses an angular momentum of ±1,
while a two-photon transition requires an angular momentum change of ±2, 0. Therefore other,
prior unreachable, states can be excited. Two-photon excitation at a frequency 2ω0 is achieved by
two photons with the energies ω1 + ω2 = 2ω0. To find the efficiency at which a certain transition
is excited E(ω) = |E(ω)|eiφ(ω), one has to integrate over each possible combination of photon
energies resulting in the total energy required for the transition.

E(2)(2ω0) =

∫ ∞
−∞
|E(ω0 − Ω)||E(ω0 + Ω)|ei(φ(ω0−Ω)+φ(ω0+Ω)) (4.5.1)

The spectral phase Φ(ω) determines if the two photons interfere constructively or destructively.
If the phase is antisymmetric around ω0, i.e.: Φ(ω0 + Ω) = −Φ(ω0 − Ω), the two photon field
E(2)(2ω0) will be maximal. At frequencies other than ω0 this antisymmetric field (if not zero)
will lead to destructive interference and therefore can be used to excite two-photon transitions
selectively. The rate at which two-photon excitation occurs is furthermore determined by the two-
photon cross section:

R(2)(ω) = σ(2)(ω)I2 (4.5.2)

This efficiency can be greatly increased if a resonance exists at the energy of one photon. If three
photons are simultaneously absorbed the three-photon field can be calculated by:

E(3)(3ω0) =

∫ ∞
−∞
|E(ω0 − Ω1 − Ω2)||E(Ω1)||E(Ω2)|ei(Φ(ω0−Ω1−Ω2)+Φ(Ω1)+Φ(Ω2))dΩ1dΩ2

(4.5.3)
The rate is calculated accordingly:

R(3)(ω) = σ(3)(ω)I3 (4.5.4)

While three-photon excitation in principle shows the same properties as two-photon excitation,
antisymmetric phase terms do not lead to maximal absorbance as in the two-photon case. It is
clear that it is not possible to find a phase function for which Φ(ω0−Ω1−Ω2) = −Φ(Ω1)−Φ(Ω2)
except Φ(ω) = 0. This leads to the conclusion that only the transform limited pulse maximizes
higher order multiphoton excitation.

4.5.2 Fluorescence
Fluorescence is the process in which a molecule called fluorophore emits light under relaxation
from an excited state. The wavelength of the emitted light depends on the energy difference be-
tween the initial (excited) and final (relaxed) state. This spectral distribution emitted by a fluo-
rophore is called fluorescence spectrum. Fluorescence is a fast process in which lights is emitted
in the timescale of ns upon excitation. When, in certain cases the relaxation process is forbidden by
selection rules, light can be emitted over macroscopic timescales, which is then called phosphores-
cence. Fluorescence spectra are always red-shifted with regard to the absorption spectrum. This
effect, called stokes-shift, is due to internal relaxations over non-radiative transitions. Another
property of fluorescence spectra is their polarization. When a fluorophore is excited by linear po-
larized light, molecules with an aligned dipole transition element will be more efficiently excited
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Figure 4.6: This graph illustrates the effect of a pi-step spectral phase on the two and three-photon field. a)
Shows a Gaussian spectrum as well as the pi-step phase used to in eq. 4.5.1 and 4.5.3. In (b) we can see the
two-photon field which reaches a value equal to the transform limited two photon field at the wavelength
of the phase’s antisymmetry. While the three-photon field (c) looks similar, the phase modulation led to an
overall reduced efficiency in three-photon excitation.

than perpendicular aligned fluorophores. After a certain time period the excited fluorophore will
relax and emit light polarized parallel to the dipole transition element once again. If the molecule
is stationary and no internal energy transfer occurs, the polarization of the emitted photons should
in average aligned with the polarization of the exciting light. The polarization of the emitted light
is characterized by the fluorescence anisotropy:

r =
I‖ − I⊥
I‖ − 2I⊥

, (4.5.5)

where I⊥ and I‖ are the fluorescence intensities perpendicular and parallel with respect to the
linear polarized exciting light. Here, temperature and viscosity will have a great impact since fast
rotation will reduce the measured fluorescence anisotropy. Finally, the quantum yield is defined
by:

Φ =
Number of photons emitted

Number of photons absorbed
, (4.5.6)

which describes the efficiency at which fluorescence will take place. This can be reduced by
competition of the fluorescence with non radiant processes (i.e.: collision induced relaxation).

4.5.3 Photoionisation
When the energy of a single photon surpasses the atom’s ionisation potential (IP) (≈ 10eV ) an
electron can be seperated from the atom via the photo-effect. The electron will then retain the
kinetic energy:

Ekin = ~ω − IP (4.5.7)

For his work on the photo-effect, Albert Einstein was rewarded the Nobel Prize in 1921. When the
photon-energy is lower than the ionisation potential, no electron will be emitted. When we assume
the ionisation potential of Hydrogen, which equals 13.6 eV , we find that the exciting light has to
have a wavelength of 91nm or lower. Although molecules may possess IP’s lower than that of
hydrogen, it is evident that UV light or a simulatneous absorption of multiple photons is required
for this effect to occur. No laser used for experiments in this thesis reaches far enough into the
UV-spectrum. Hence, ionisation will most likely occur via multiple photons.
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Figure 4.7: Bending of an atomic potential in an electrical field. When the electrical field reaches a certain
strength, tunnelling through the remaining barrier becomes possible. If the field strength is even stronger
over the barrier ionisation can occur.

Multiphoton Ionisation

Multiphoton ionisation is the process of ionisation after the absorbance of more than one photon.
While the process of multiphoton ionisation is extremely improbable at low intensities, its effi-
ciency increases with the order of IN , where N is the number of photons required for ionisation.
As M. Göppert-Mayer suggested in 1931 [36] the energy can be raised by multiple photons of
lower energy. The rate at which ionisation occurs in the multiphoton regime is given by [37, 38]:

Wmp =
2πω0

(l − 1)!

I(r, τ)l

(~ω2
0σmp)

l
, (4.5.8)

where l is the number of photons required to achieve ionisation, σmp is the multiphoton cross-
section and I is the intensity of the laser given in the retarded reference frame. This rate was derived
using a rate equation approach where multiphoton absorption is seen as a process of consecutive
single photon absorptions into virtual excited states [38].

Tunnel and OTB Ionisation

In filamentation which usually involves extremely short laser pulses other ionisation processes
can become important. This is due to the fact that at high intensities the approximation that the
electronic potential is undisturbed by the laser field breaks down [39]. In case of an electrical field
of extremely high intensity the atomic potential might be deformed such that the tunnel probability
through the remaining potential wall becomes possible. This process, called tunnel-ionisation, is
dominant when the electrical field is oscillating slowly. Fig. 4.7 shows how the electrical field
−eEr changes the shape of the atomic potential V (r). A measure of the tunnel-probability can be
found in comparing the time required for an electron to tunnel out of the atom with the oscillation
period of the laser field. The tunnelling time can be estimated via the distance the electron has to
tunnel and its kinetic energy. The frequency times the tunnelling time then is:

ωttunnel =
s

v
=
IP

eE

√
me

2IP
= ω

√
2meIP

2eE
. (4.5.9)
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γK = ω

√
2meIP

eE
≈ ωttunnel (4.5.10)

γK is called Keldysh parameter [40] and was found to indicate that multiphoton ionisation is
dominant when γK > 1/2 and tunnel ionisation prevails when γK < 1/2 [41]. This Keldysh
parameter is sometimes also compared to the ratio of the ionisation energy and the ponderomotive
energy:

γK ≈
√
IP

UP
, (4.5.11)

where the value of the ponderomotive energy is given by

UP =
e2E2

4meω2
0

, (4.5.12)

which is the energy a free electron gains in the oscillating electrical field during one laser cycle.
At extremely high intensities, which are out of reach for laser systems used in the experiments for
this thesis, another ionisation scheme emerges. As the electrical field, like it is depicted in Fig.
4.7, deforms the atomic potential the field strength can reach a value when the potential barrier is
reduced by the binding energy of the valence electrons. Ionisation in this regime is called over the
barrier ionisation. Further information can be found in [39].

4.6 Propagation of Ultrashort Laser Pulses
Since simulations of the pulse propagation are a substantial part of this thesis, the required equa-
tions will be introduced in this chapter. First, the full wave equation will be formulated. Later,
the separate linear and nonlinear effects will be discussed. Finally, the split-step method will be
derived shortly. It allows for efficient calculation of the pulse propagation by step-wise integration
of the wave equation. This chapter is influenced by the notation and derivations in [28, 33].

4.6.1 The Nonlinear Schrödinger Equation
All electromagnetic effects and thus laser pulses are governed by the Maxwell equations:

∇× E = −∂B
∂t
, (4.6.1)

∇×H = J +
∂D

∂t
, (4.6.2)

∇D = ρf , (4.6.3)

∇B = 0, (4.6.4)

where H and E are the magnetic and electrical field and D and B are the electrical and magnetic
flux density. J is the current density, whereas ρf is the free charge density. J and ρf = ρ− ρpol are
the sources for the magnetic and electrical fields. In a vacuum or uncharged media both become
zero, largely simplifying the equations. In optical media the electrical and magnetic fields give rise
to the flux densities:

D = ε0E + P (4.6.5)

B = µ0H + M (4.6.6)
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P and M are the electrical and magnetic polarization. The liquids, gases and crystals used in this
thesis are not magnetic. Therefore, we can safely assume M = 0. It is possible to eliminate the
magnetic field and the electrical flux density from the equation set. With the curl of Eq. 4.6.1 and
the aid of all other Maxwell equations we get:

∇×∇× E = − 1

c2

∂2E

∂t2
− µ0

[
∂2P

∂t2
+
∂J

∂t

]
(4.6.7)

When we further use the identity∇×∇× E = ∇(∇E)−∆E, Eq. 4.6.3 and Eq. 4.6.5 we find:

∆E− 1

c2

∂2E

∂t2
= µ0

∂2P

∂t2
+ µ0

∂J

∂t
+

1

ε0
∇ρ (4.6.8)

This is the full wave equation including charges, currents and the influence of polarisable
optical media. It can only be solved using numerical methods, of which the most commonly used
method is integration.

Solutions of the Wave Equation in Optical Media without Free Charges

When no sources for the electromagnetic field are present, the wave equation 4.6.8 simplifies to:

∆E− 1

c2

∂2E

∂t2
= µ0

∂2PL

∂t2
+ µ0

∂2PNL

∂t2
(4.6.9)

Because most material properties are given depending on the wavelength of the incident light, it is
advantageous to transform eq. 4.6.9 into the Fourier domain.

For this we will express all quantities as their Fourier transform:

E(r, t) =
1

2π

∫ ∞
−∞

E(r, ω)e−iωtdω (4.6.10)

PL(r, t) =
1

2π

∫ ∞
−∞

PL(r, ω)e−iωtdω (4.6.11)

PNL(r, t) =
1

2π

∫ ∞
−∞

PNL(r, ω)e−iωtdω (4.6.12)

The linear polarization arises from the the first order χ(1) and is related to the electrical field by

PL(ω)(r, t) = ε0χ
(1)(ω)E(r, ω). (4.6.13)

By taking the Fourier transform of equation 4.6.9 one can make use of the very useful identity

F
(
dnf(t)

dtn

)
= (iω)nf(ω) (4.6.14)

and thus one can write:

∆E(r, ω)−
(
1 + χ(1)(ω)

) ω2
0

c2
E(r, ω) = −µ0ω

2
0PNL(ω). (4.6.15)

It is known that plane waves are a solution to the wave equation in free space (ε(ω) = ε0). This
gives rise to the slowly varying envelope approximation (SVAE) . It is assumed that solutions to
4.6.15 are of the type:

E(r, t) =
(
A(r, t)ei(k0z−ω0t) + c.c.

)
(4.6.16)
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SVAE generally speaking means that we assume the changes of A(r, t) are slow compared to the
oscillations ω0: ∣∣∣∣∂A∂t

∣∣∣∣� |ω0A|. (4.6.17)

ω0 is often called the carrier frequency, while k0 is the linear wavevector at this carrier frequency.
By expressing the slowly varying amplitude as its fourier-transform as well,

A(r, t) =
1

2π

∫ ∞
−∞

A(r, ω)e−iωtdω, (4.6.18)

equation 4.6.15 can be written as:

∆A(r, ω) + 2ik0
∂A(r, ω)

∂z
+ [k2(ω)− k2

0]A(r, ω) = −µ0ω
2PNL(r, ω)e−ik0z. (4.6.19)

This differential equation describes the evolution of the slowly varying amplitude A(r, ω) in the
frequency space. Let’s now take a look at the mathematical description of various effects included
in this formula.

4.6.2 Dispersion
As already shown in chapter 4.4.1, k(ω) can be expanded into a taylor series.

k(ω) = k0 + k1(ω − ω0) +
∞∑
n=2

1

n!
kn(ω − ω0)n (4.6.20)

k0 and k1 were excluded from the sum because they have distinct physical significance. k0 is the
wavevector at ω0 and k1 equals the inverse of the group velocity 1/vg. For clarity, we introduce
the dispersion operator D:

D(ω) =
∞∑
n=2

1

n!
kn(ω − ω0)n (4.6.21)

With this, equation 4.6.19 becomes:

∆A + 2ik0
∂A

∂z
+
[
2k0k1(ω − ω0) + k2

1(ω − ω0)2 + 2k0D(ω) + 2k1(ω − ω0)D(ω)
]
A

= −µ0ω
2PNLe

−ik0z
(4.6.22)

At this pointD(ω)2 was neglected because it is small compared to the other terms. The parameters
used in the expansion in equation 4.6.21, are the well known material quantities discussed earlier
in chapter 4.4.1. The propagation through space (∆A) of the slowly varying amplitude is governed
by the dispersion of the optical medium (D(ω)) as well as the nonlinear polarizability (PNL(r, ω)).
This equation can be analysed in Fourier space as well. A Fourier-transform gives rise to

∆A(r, t)+

[
2ik0

(
k1
∂

∂t
+

∂

∂z

)
− k2

1

∂2

∂t2
+ 2k0D(t) + 2ik1D(t)

∂

∂t

]
A(r, t)

= µ0
∂2

∂t2
PNL(r, t)e−i(k0z−ω0t)

(4.6.23)

in which

D(t) =
∞∑
n=2

1

n!
kn

(
i
∂

∂t

)n
(4.6.24)

Depending on whether linear or nonlinear effects are dominating the propagation equation will
later be solved either in frequency or temporal space.
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4.6.3 Nonlinear Polarizability
In order to further analyse the nonlinear polarizability, the slowly varying amplitude approximation
will be applied as before:

PNL(r, t) = P̃NL(r, t)ei(k0z−ω0t) + c.c. (4.6.25)

It was found earlier, that the nonlinear polarizability of an isotrope material and an instantaneous
response on the electrical field is:

P̃NL = 3ε0χ
(3)|A(r, t)|2A(r, t). (4.6.26)

The first and second derivative of PNL and thus become:

∂

∂t
PNL =

[
∂

∂t
− iω0

]
P̃NL(r, t)ei(k0z−ω0t) + c.c (4.6.27)

∂2

∂t2
PNL = −ω2

0e
i(k0z−ω0t)

(
1 +

i

ω0

∂

∂t

)2

P̃NL(r, t) + c.c (4.6.28)

When the second derivative is inserted into eq. 4.6.23 one find:

∆A(r, t)+

[
2ik0

(
k1
∂

∂t
+

∂

∂z

)
− k2

1

∂2

∂t2
+ 2k0D(t) + 2ik1D(t)

∂

∂t

]
A(r, t)

= −µ0ω
2
0

(
1 +

i

ω0

∂

∂t

)2

P̃NL(r, t)

(4.6.29)

Using relation 4.6.26 and by dropping higher order derivatives respecting the SVAE, one can ap-
proximate the right hand side of eq. 4.6.29 by neglecting the second derivative with respect to t
[33]: [

∆ + 2ik0

(
k1
∂

∂t
+

∂

∂z

)
− k2

1

∂2

∂t2
+ 2k0D(t)

(
1 + i

k1

k0

∂

∂t

)]
A(r, t)

= −3
ω2

0

c2

(
1 +

2i

ω0

∂

∂t

)
χ(3)|A(r, t)|2A(r, t)

(4.6.30)

4.6.4 Retarded Frame of Reference
Coming from eq. 4.6.9 the slowly varying envelope approximation for the polarizability as well as
the electrical field was introduced. In the last two subchapters the dispersion and basic nonlineari-
ties in isotropic media with an instantaneous response were both covered. Another important step
towards numerically solving the wave propagation is the introduction of the retarded time frame
[33]. It was found that k1 equals the inverse of the group velocity. The retarded time frame moves
along with the pulse at group velocity. One can substitute:

τ = t− z

vg
= t− k1z and z = z′, (4.6.31)

so that the differentials become:

∂

∂τ
=

∂

∂t
and

∂

∂z
=

∂

∂z′
− k1

∂

∂τ
. (4.6.32)
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This leads to a wave equation (see eq. 4.6.29) in the form of:

∇2
⊥A(r, t) + 2ik0

∂

∂z′

(
1 + i

k1

k0

∂

∂τ

)
A(r, t) + 2k0D(t)

(
1 + i

k1

k0

∂

∂τ

)
A(r, t)

= −µ0ω
2
0

(
1 +

i

ω0

∂

∂τ

)2

P̃NL(r, t),

(4.6.33)

where one neglects the second derivative with respect to z′ (in accordance with the SVAE). With
the help of k0 = nω0/c and k1 = 1/vg the ratio k1/k0 becomes: k1/k0 = c/nvgω0 ≈ 1/ω0 and
thus:

∇2
⊥A(r, t) + 2ik0

∂

∂z′

(
1 + i

1

ω0

∂

∂τ

)
A(r, t) + 2k0D(t)

(
1 + i

1

ω0

∂

∂τ

)
A(r, t)

= −µ0ω
2
0

(
1 +

i

ω0

∂

∂τ

)2

P̃NL(r, t),

(4.6.34)

or: [(
1 +

i

ω0

∂

∂τ

)−1

∇2
⊥ + 2ik0

∂

∂z′
+ 2k0D(t)

]
A(r, t) = −µ0ω

2
0

(
1 +

i

ω0

∂

∂τ

)
P̃NL(r, t),

(4.6.35)

In order to discuss the relevant terms of this equation the correction terms are neglected(
1 + i

ω0

∂
∂τ

)
≈ 1.

∂

∂z′
A(r, t) =

[
i

2k0

∇2
⊥ + iD(t) +

i3ω0

2c
χ(3)|A(r, t)|2

]
A(r, t) (4.6.36)

It becomes quite clear that after some simplifications the propagation of the electrical field is deter-
mined by a combination of diffraction ( i

2k0
∇2
⊥), dispersion (iD(t)) and nonlinear phase acquisition,

or self-phase modulation (SPM) ( iω0

2c
χ(3)|A2|).

4.6.5 Self-Phase Modulation
We will now take a look at the simplified wave equation from last chapter. By finding a solution
for the nonlinear term only we can understand what a high intensity laser pulse in a low dispersion
medium would experience.

∂

∂z′
A(z, t) =

i3ω0

2c
χ(3)|A(z, t)|2A(z, t) (4.6.37)

Here, it is customary to introduce a normalized amplitude U(z, τ) [28], for which U(0, 0) was
chosen to be 1:

A(z, τ) =
√
P0U(z, τ), (4.6.38)

where P0 is the peak power of the laser pulse. Using the approach U(z, τ) = U(0, τ)eiΦNL(z,τ)

leaves eq. 4.6.37 as:
∂ΦNL(z, τ)

∂z
=

3ω0P0

2c
χ(3)|U(0, τ)|2 (4.6.39)
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Figure 4.8: (left) A Gaussian laser pulse. (right) frequency shift originating from the intensity dependent
refractive index. Early frequencies are red-shifted, while pulses on the trailing flank are blue shifted. This
can result in spectrally broadened or narrowed laser pulses after passing through a nonlinear medium. This
image was taken from [15]

The nonlinear phase is therefore proportional to the intensity of the laser pulse:

ΦNL(z, τ) =
3ω0P0

2c
χ(3)|U(0, τ)|2z (4.6.40)

In this equation, one can identify the nonlinear refractive index as introduced in chapter 4.4.3.

ΦNL(z, τ) = k0n2P0|U(0, τ)|2z (4.6.41)

Here, it becomes apparent that a laser pulse with high intensity picks up a phase while propagat-
ing through the material. This phase change will lead to a frequency shift of the instantaneous
frequency. By calculating the derivative of the nonlinear phase, one can determine the nonlinear
frequency shift:

dω = −∂ΦNL(z, t)

∂t
= −k0n2P0

∂|U(0, t)|2

∂t
z (4.6.42)

This frequency-shift has a profound effect on incident laser pulses in nonlinear media. A
positively chirped (or transform-limited) laser pulse will experience spectral broadening. As can
be understood from the last equation, the instantaneous frequency is shifted to longer wavelengths
at the leading and to shorter wavelengths at the trailing flank of the pulse, thus broadening the
spectrum. The opposite is true for a negatively chirped pulse. A negatively chirped pulse possesses
short wavelengths at the beginning and long wavelengths at the end of the pulse. The nonlinear
frequency shift thus increases the wavelength at the beginning and reduces the wavelength at the
end of the pulse, resulting in a narrowed spectrum. This is why high peak intensities and strongly
nonlinear optical media can be used for generation of ultra broadband light (e.g.: amplified laser
pulses and thin sapphire plates [42, 43]).

4.6.6 Self-Steepening
Self-steepening is a high order nonlinear effect which occurs when pulses get even shorter (<
100fs [28]) and the correction factor in i

ω0

∂
∂τ

can no longer be neglected. Taking a look at this term
will allow for a basic understanding of this process. Starting from equation 4.6.30 which described
pulse propagation in the laboratory frame the second derivative by z is neglected according to the
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Figure 4.9: An example of the effect on self-steepening on a Gaussian laser pulse. The dashed line shows
the non-distorted pulse, while the sold lines represent a self-steepened pulse experiencing increasing non-
linearity. This image was taken from [28].

slowly varying envelope approximation.[
∂

∂z
− i

2k0

∇2
⊥ +

n
(g)
0

c

∂

∂t
+
ik2

2

∂

∂t2

]
A(r, t) =

i3ω0

2nc

(
1 +

i2

ω0

∂

∂t

)
χ(3)|A(r, t)|2A(r, t)

(4.6.43)

All higher order dispersion terms except the first
(
D(t) = −1

2
k2

∂
∂t2

)
were dropped as well since

only the effects due to higher order nonlinearities are going to be observed. It is useful to in-
troduce the group velocity index n(g)

0 = c/vg which describes the slowdown experienced by the
group velocity due to the medium, just like the reduction of the phase velocity is specified by the
refractive index. It is noteworthy that when one would ignore the term 2i

ω0

∂
∂t

one could still make
all approximations and find the results from chapter 4.6.5. For clarity a new quantity is introduced:

γ =
3ω0

2nc
χ(3). (4.6.44)

One thus finds:[
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]
A(r, t) = iγ|A(r, t)|2A(r, t)

− 4γ
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∂t

(4.6.45)

In the last step the derivative of the amplitude is evaluated. Both are real and thereby act on the
amplitude of A (in contrast to the self-phase modulation term which gives rise to a phase). After
rewriting,[

∂

∂z
− i

2k0

∇2
⊥ +

n
(g)
eff

c

∂

∂t
+
ik2

2
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]
A(r, t) = iγ|A(r, t)|2A(r, t)− 2γ

ω0

A(r, t)2∂A
∗(r, t)

∂t

(4.6.46)
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Figure 4.10: Illustration of the a) diffraction angle and b) self-focussing angle.

one can see that self steepening results in a intensity dependence of the group velocity:

n
(g)
eff = n

(g)
0 +

4γ

ω0

|A(r, t|2 (4.6.47)

The second term, being the derivative of the complex conjugate of the amplitude, has no simple
physical explanation but could be described as a dispersive four-wave mixing term [33]. Fig. 4.9
shows the effect of the intensity dependent group index. At high intensities the pulse propagates
slower leading to a formation of an optical shock at the trailing end of the pulse.

4.6.7 Self-Focussing
As covered in chapter 4.4.3, the index of refraction becomes intensity dependent when the assump-
tion of a harmonic electron potential breaks down. When a Gaussian light beam passes through an
optical medium the refractive index changes by:

n(r, r) = n0 + n2I(r, r) (4.6.48)

Here, the intensity I is proportional to the square of the electrical field and n2 is called nonlinear
refractive index which depends on the optical medium the laser beam propagates in. The light
travelling through a slab of glass (or an amount of gas) with a constant thickness will experience
an increased optical path length depending on the intensity-profile of the beam. Therefore the
Gaussian beam creates itself a lens under which the beam is focussed. The propagation equation
in a solely nonlinear medium would take the form:

∂

∂z′
A(r′, τ) =

[
i

2k0

∇2
⊥ + iγ|A(r′, τ)|2

]
A(r′, τ) (4.6.49)

It is apparent that by integrating this equation the amplitude would acquire two phase terms.
Diffraction (arising from the perpendicular gradient operator) counteracts nonlinear focussing
through the Kerr-term. An interesting quantity is called critical power. It states when nonlinear
self-focussing is greater than diffraction and therefore will inevitably lead to a beam collapse. In
other words, the critical power is reached when the diffraction angle is equal to the self-focussing
angle:

θsf = θdiff (4.6.50)

The diffraction angle of the first minimum is known to be:

θdiff =
1.22

2

λ0

n0d
. (4.6.51)
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In case of the self-focussing angle we can apply Fermat’s principle which states that all optical
path lengths from a wavefront to a focus have to be equal. As a beam propagating on the outside
of the spot experiences the linear refractive index while another beam at the centre of the spot is
propagating corresponding to the intensity dependent refractive index one can write:

(n0 + n2I)f = n0f/ cos(θsf ), (4.6.52)

hence

cos(θsf ) = (1 +
n2

n0

I) ≈ 1−
θ2
sf

2
(4.6.53)

θsf =

√
2n2I

n0

. (4.6.54)

Equalizing the two angles results in the value for a critical power

Pcr = 0.612 πλ2
0

8n0n2

≈ λ2
0

8n0n2

, (4.6.55)

where the definition of the Power P = π(d/2)2I was used. This critical power determines when
nonlinear self-focussing and diffraction are balancing each other out. If the laser power exceeds
the critical power the beam will inevitably collapse since the critical power does not depend on the
beam diameter.

4.6.8 Plasma Interactions
Plasma will be generated when the laser intensity becomes so great, that either tunnel, or multi-
photon ionisation leads to a build up of free electrons within the time of the laser pulse’s duration.
Multiple ionisation schemes were discussed in chapter 4.5.3 where the ionisation rate for multi-
photon ionisation was stated. This allows the calculation of the amount of free charges with a rate
equation of the type:

∂ρe
∂τ

= Wmpρ0 =
2πω0

(l − 1)!

I(r, τ)l

(~ω2
0σmp)

l
ρ0 (4.6.56)

Here, ρ0 stands for the density of neutral atoms, and ρe for the amount of electrons. This approx-
imation stands only for as long as no secondary ionisations take place and the density of neutral
atoms does not change considerably. In the latter case a set of equations could be integrated to find
the amount of charges when the average ionisation of the gas reaches close to 1. Now, following
the approach presented in [37], one could find that the interaction of the electromagnetic field with
a plasma is governed by four primary effects:

Sfree = Splasma + Srel + Swake + Sion (4.6.57)

Here, S stands for “source term”. The wake-field and relativistic term will be neglected since we
are only interested in the propagation of extremely short laser pulses. These terms become only
relevant at intensities higher than these found in our experimental conditions. The plasma term,

Splasma =
ωp(r, t)

c2

(
1− νe

ω0

)
A(r, t), (4.6.58)

with ωp = 4πq2ρe/me and νe being the electron neutral collision frequency, describes a decrease in
the refractive index leading to defocussing of the laser beam. The imaginary term on the other hand
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is determining the effect of inverse bremsstrahlung [37]. It is easy to see how the focussing from
the nonlinear refractive index can be opposed by the plasma generated by the laser pulse itself,
leading to defocussing of the laser beam. Since the laser pulses will be very short, collisional
effects by the electrons will most likely not influence the propagation of the beam. Additionally,
the trailing end of the pulse will see a larger amount of free charges than the beginning. While the
laser pulse ionizes the gas it travels in, it losses energy by ionisation. This is modelled by the term
[37]:

Sion = −8πik0
Uion
c

∂ne
∂τ

A(r, t). (4.6.59)

Here, Uion stands for the required ionisation energy. This implies the pulse will suffer the biggest
losses when the ionisation rate is maximal. As seen earlier, this rate is proportional to the intensity
to the power of l (with l = dUion/~ωe)

4.6.9 Split-operator Method (Split-Step Fourier Method)
The nonlinear Schrödinger equation is a nonlinear partial differential equation and thus cannot
be solved analytically (with some exceptions). One principal method for solving these kinds of
equations has emerged. This is the so called split-step Fourier method. It exploits properties of
the Fourier transform to rewrite the source terms discussed above such that they can easily be
integrated. In this chapter, the description from [28] will be used to discuss this method. Eq.
4.6.36 can be written in the form:

∂A(r, t)

∂z
= (D̂ + N̂)A(r, t) (4.6.60)

where the term responsible for the intensity dependent group velocity was included while neglect-
ing the term relevant for diffraction (we will come back to it later) such that:
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∞∑
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(4.6.62)

The propagation will be carried out in steps. After a step h the amplitude will have changed by:

A(z + h, t) = e(D̂+N̂)hA(z, t) (4.6.63)

This is an exact solution of eq. 4.6.60. The Split-step method carries out the integration in two
steps, a dispersion step and a nonlinear step:

A(z + h, t) = eD̂heN̂hA(z, t) (4.6.64)

Here an approximation was made. This can be made clear by the use of the Baker-Campbell-
Hausdorff (BCH) formula [44]:

eD̂heN̂h = e(D̂h+N̂h+h2

2
[D̂,N̂ ]+h3

12
([D̂,[D̂,N̂ ]]+[N̂,[N̂,D̂]])+...) (4.6.65)

which shows that the non-commutating nature of D̂ and N̂ has been neglected. The size of the
commutator will therefore determine the accuracy of this approach while a smaller step size will



4.7. Optical Fibres 33

also decrease the errors made in each step. The Linear operator will be evaluated in the frequency
space:

A(z + h, t) = F−1eD̂(ω)hFeN̂hA(z, t), (4.6.66)

because this allows for the usage of eq. 4.6.21 to easily evaluate the dispersion step. Due to
the properties of the Fourier transform by which one can replace ∂

∂τ
by iω the dispersion term

is as simple as adding a spectral phase corresponding to the material dispersion in the optical
medium over the distance h. When only self-phase modulation would be considered then even
the nonlinear operator would reduce to a temporal phase. In combination with the fast Fourier
transform algorithm (FFT) these simulations can be carried out reasonably fast. The accuracy of
this method can be increased by using a symmetric approach:

A(z + h, t) = e
h
2
D̂eN̂he

h
2
D̂A(z, t), (4.6.67)

which reduces the error arising from the non-vanishing commutator to the order of h3 [28].

4.7 Optical Fibres
Optical fibres are known to be the backbone of the modern day communication infrastructure. They
are used to transmit increasing amounts of data in the form of pulsed light over long distances
without significant losses. Besides that, they find further application in medicine (endoscopes)
and even laser systems which rely on optical fibres as cavity or lasing medium. Therefore, it is
important to understand and explore the fundamental properties of optical fibres. One distinguishes
between different types of optical fibres which rely on different methods of beam confinement.

a) c)b)

Figure 4.11: Comparison of three different optical fibres. a) Step-Index, b) Hollow-Core and c) Kagomé

Step-Index Fibres

Step-index fibres are the most common type of fibre and are made out of a core and a cladding
material. As depicted in Fig. 4.12 the core of a step index fibre has a greater index of refraction than
the cladding. Note: A jacket is only used to protect the glass from being damaged by reducing the
stress when the fibre is bent. In these fibres, the beam-confinement is based solely on total internal
reflection which occurs when a beam of light hits the boundary of two regions with different index
of refraction at an angle bigger than the critical angle [45]:

θc = arcsin(
n2

n1

) (4.7.1)
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for which n2 > n1. This angle occurs when a beam coming from the lower refractive index
medium would be refracted to an angle greater than 90◦ which can easily be found using Snell’s
law. From this it is clear that if a glass fibre is bent, certain modes will be coupled out of the
core. This can lead to losses. Another limiting property of these classic fibres is the glass itself.
Dispersion and nonlinear effects can lead to distortions of pulses or transmitted signals, limiting
the achievable data rates or intensities. Besides chromatic dispersion, optical fibres introduce
another type of dispersion called modal dispersion. Different modes with different wavevectors k
will propagate the fibre at vph = c

n
= ω

k
. A mode with a perpendicular wavevector kx, ky > 0,

thus k =
√
k2
x + k2

y + k2
z will therefore travel slower than a mode for which k = kz. Therefore,

fibres are often designed as single-mode fibres such that only one mode can be transmitted without
significant losses.

Hollow-Core Fibres

Hollow core fibres differ profoundly from step index fibres. They consist of an optical lattice with
a big central hole. The lattice is surrounded by a cladding which does not play a role in the beam
confinement as it does for other fibres (see Fig. 4.12 b). Hollow-Core Fibres (HCF), which are a
subgroup of Photonic crystal fibres (PCF) rely on a band-gap for the guidance of the light [46]. This
band-gap is formed when reflections from different surfaces surrounding the central core interfere
destructively for light trying to escape (certain kx, ky), thereby confining the light to the fibre-core.
Simulations like the ones carried out in [47] are required to find the allowed modes of a PCF.
All hollow fibres share the advantage that nonlinearities and dispersion are extremely low. Some
fibres were designed to achieve anomalous dispersion (GVD < 0fs2/m). In other applications, a
gas filled central core, in conjunction with the high intensities confined at the centre, are used for
efficient high harmonic generation [48].

Kagome Fibres

Just recently, another type of fibre has been developed. It features extremely low chromatic disper-
sion as well as very low nonlinearities, which is beneficial in high intensity applications. Due to
its properties it is a promising tool for super continuum generation. Especially, since it has a very
low impedance on a broad wavelength range. In Raman-Scattering schemes it was demonstrated
that the exciting light as well as the scattered light could be found propagating in the same fibre,
significantly simplifying the experimental setup [49, 50]. In contrast to HCF’s, Kagome fibres rely
on a different principle of light guidance. While HCF’s feature full band-gaps which trap the light
of certain wavelengths, Kagome fibres offer band-gaps only at certain azimuthal angles [51]. This
allows them to transmit a wider spectral range at the cost of higher losses. The guidance principle
is currently not fully understood but is supposed to be related to “anti-resonant reflection optical
waveguiding” [51].
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4.8 Optimization Algorithms
Optimization algorithms are inherently important for coherent control experiments because of the
vast number of parameters to explore when trying to control fluorescence, ionisation or photo-
dissociation. In the course of this thesis two different optimization methods were employed.

4.8.1 Genetic Optimization
Genetic optimizations (GO), a specialization of evolutionary algorithms (EA), are based on the
principles of mutation and selection in biology. These algorithms are efficient in optimizing a
large parameter set despite comparatively large noise. Unfortunately, it is difficult to obtain a
value indicating the optimization’s convergence and they tend to converge in local minima. Genetic
algorithms encode parameters in a “gene” or an “individual”. By evaluating the parameters, each
individual of a generation can be assigned a “fitness” which needs to be optimized. The function
which defines the fitness has to be selected carefully to match the aim of the optimization. It can
be based on experimental results or be a direct function of the parameters in a simulation scheme.
Starting from a generation of individuals, four steps are used to find a surpassing (optimized)
generation. These steps will be iterated until a termination criterion is reached.

I Evaluating the fitness
The fitness function and/or an experiment is used to evaluate the fitness of each individual.

II Elitism (optional)
The best individual (or more) is selected and used in the next generation without alteration.
The rest of the generation is filled by mutation or crossover from the previous generation:

III Mutation
Parameters pi will be mutated with a certain probability. The mutated parameters are calcu-
lated via p′i = pi rnd(−1, 1)µp, where µp is the mutational parameter and rnd(−1, 1) is a
random number in the range of -1 to 1.

IV Crossover
Crossover takes care of convergence of the population: Two parents are selected (favourably
with a high fitness) and children are generated by randomly selecting genes from either parent.

Crossover and mutation counteract each other and the number of individuals used for either process
has to be fine tuned depending on the number of parameters and the problem at hand. Convergence
is furthermore controlled by the change of the mutational parameter µp and the mutation proba-
bility. For low mutation parameters convergence by crossover will dominate and will result in an
overall convergence. A high mutational parameter on the other hand spreads the parameter space
the generation occupies. A widespread method to determine µp is the “1/5th rule”, first formulated
by Rechenberg [52]. It states that when 1/5th of the population has increased their fitness from one
iteration to another one shall increase the mutational parameter by a factor. When this criterion is
not reached, the mutational parameter shall be reduced. This leads to an increased search space
when better fitness can still be achieved and convergence when the optimum is found.

4.8.2 Phase Resolved Interferometric Spectral Modulation
The PRISM algorithm (phase resolved interferometric spectral modulation) is based on the intra-
pulse interference of spectral components in a non-linear detector. By optimizing the non-linear
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Figure 4.12: Illustration of the PRISM algorithm. a) Each pixel is assigned a step size. Every measurement
step, each pixel’s phase is increased by the step size and the non-linear signal measured b). The non-linear
signal shows a beating pattern. A Fourier transform reveals the phase of each frequency component (=step
size) which can be used to precompensate the phase and generate a transform limited pulse at the position
of the detector.

(e.g. multiphoton excitation), PRISM can be used to find transform-limited pulses (i.e.: an offset
phase function) at the place of detection. The algorithm functions as follows: Each pixel to be
optimized is assigned a different step size. For each step, the phase of all pixels is increased by
this step size and the non-linear signal is measured. By interference of the spectral components
a pulse is formed which varies in intensity depending on the current phase applied by the pulse
shaper. In the process of increasing the phase of each of the pixels at a different rate, the non-
linear signal will experience a beating pattern at the frequencies corresponding to the step sizes.
Hence, when a Fourier transform of the measured non-linear signal is calculated, each pixel can
be assigned a frequency of the Fourier transform. The phase of the Fourier transform for each
frequency (which can be linked to a single step size and thereby a single pixel) is equal to the
phase offset each wavelength experiences from the shaper up to the detector, plus the phase offset
which was present before the pulse shaping setup. This offset can be used to pre-compensate all
dispersion and to create a transform limited pulse at the place of detection.
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Figure 5.1: Comparison of the spectra generated by the various laser sources used in the experiments for
this thesis. a) Available spectra with the Mira and the RegA setup. b) Oscillator, amplifier and white-light
spectrum which was generated by filamentation.

Two separate laser systems were used in the experiments conducted for this thesis. The first
is a system by Coherent (Mira, RegA) and relies on a regenerative amplifier as it features pulse
energies in the order of µJ , a central wavelength of 805nm and a repetition rate of 286 kHz. The
second laser system was used during filamentation experiments and consists out of a Femtosource
Compact (Spectra-Physics) Oscillator and an Odin multipass amplifier. It operates at a lower
repetition rate of 1 kHz but can generate, in its current state, pulses with the energy of ∼ 0.6mJ
at a central wavelength of 800nm and a spectral bandwidth of 80nm FWHM.

5.1.1 Mira Oscillator
The Mira Oscillator is a typical Ti:Sapphire femtosecond oscillator manufactured by Coherent Inc.
It is pumped by a Verdi Nd:YVO4 solid state laser, which can output 5W at 532nm (frequency
doubled). The pulse generation of the Mira oscillator is based on the previously discussed Kerr-
lens modelocking technique. An adjustable aperture is situated in the cavity just before the out-
coupling mirror. A pair of prisms is used to compensate for the dispersion introduced by all other
elements that make up the cavity. A pair of oscillating mirrors is used to start mode-locking by in-
troducing random fluctuations. The Mira oscillator typically puts out a power of 700−800mW at
a repitition rate of 76MHz, which corresponds to an energy per pulse of ∼ 10nJ . The spectrum
can be tuned from 750nm up to 820nm and the spectral bandwidth can be adjusted by the dis-
persion compensated in the prism compressor. A broad range of spectral bandwidths, from 22nm
up to 38nm, can be selected. In most experiments, the oscillator was tuned to λ0 = 805nm and
∆λ = 28nm (Fig. 5.1 a).

37
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5.1.2 RegA 9000 amplifier
Pulses generated by the oscillator can be amplified with the help of a regenerative amplifier (RegA
9050, Coherent). Before the pulses enter the amplifier, they are stretched by a grating compres-
sor so that they do not risk to damage the lasing medium. Intensities of amplified transform
limited pulses would rapidly reach the damage threshold of the Ti:Sa crystal. This method is
called Chirped pulse amplification (CPA) and is used in nearly every pulse amplification schemes
nowadays. The stretched pulses entering the RegA get injected into the cavity by a acousto optic
modulator. Since the amplifier operates at a significantly lower repetition rate a divider selects
each ∼ 280th pulse from the 76MHz pulse train. For injection, a standing wave is induced in the
acousto optic modulator which acts as a grating, refracting the incoming pulse into the cavity. A
double refraction scheme is used to maximize the efficiency injection [53]. The cavity is set up
similar to the oscillator cavity, although the amplifier does not require an aperture and a pair of
oscillating mirrors. A (Millenia-X, Spectra Physics) Diode laser is used for pumping of the Ti:Sa
crystal. The pump laser uses a Nd:YVO4 gain medium and can reach a power of 10W. The ampli-
fier features an additional Pockels-Cell in the beam line which prevents self-lasing by acting as a
variable absorbing medium. The pockels-cell blocks the beam except for a selected time window
in which the pulse is amplified. Careful tuning of this time window is fundamental for efficient
amplification. Amplified pulses show narrowing in their spectral width to 24nm from previously
28nm (Fig. 5.1 a). The repetition rate is now significantly lower (286 kHz) than that of the os-
cillator but results in pulses with up to µJ in pulse energy. A grating compressor completes the
CPA-scheme which compresses pulses back to ∼ 60 fs.

5.1.3 Femtosource Compact
The oscillator used in the whitelight setup is a Femtosource Compact manufactured by Spectra-
Physics. It is a “turn key” system which should require minimal calibration from day to day.
Unfortunately, stability was a problem when the system heated up such that the pump beam had to
be realigned continuously for 3 hours until the system was thermalised and would not fall out of
mode-lock. Mode-locking is again achieved by exploiting the Kerr-effect. Two focussing mirrors
around the lasing medium are positioned to be slightly out of focus in cw and in focus in the
nonlinear regime. Tuning the distance of these two mirrors can influence the stability of the mode-
locking regime (By tuning the losses of the cw cavity). Just like in the Mira system the lasing
medium is a Ti:Sa crystal which is pumped by a 5W frequency doubled Nd:YVO4 solid state laser
(Verdi). The oscillator generates a spectrum centred at 805nm and a spectral width of 90−100nm
FWHM (Fig. 5.1 b). The pulse energy is at approximately 5nJ at the repetition rate of 75MHz.
Just behind the oscillator an infrared diode is used for syncing the Pockel’s cell used in the amplifier
to the pulses generated by the oscillator. A Faraday isolator, positioned between oscillator and
amplifier, ensures that no reflexes return from the amplifier which could disturb the operation of
the oscillator.

5.1.4 Odin Multipass Amplifier
The Odin Multipass amplifier (Quantronix), which also uses a Ti:Sa crystal as gain medium is
pumped by a 10W YLF-type gas laser. The seed pulses which come from the Faraday isolator
are stretched to about 50 ps. Then, each 75.000th pulse is selected by a Pockel’s cell. It’s voltages
are driven by a Pockel’s cell driver (Medox Electro-optics, Inc.). Pulses, now at a repetition rate
of 1 kHz are amplified by passing the Ti:Sa crystal 8 times and meanwhile increase their energy
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∼100,000-fold. The output bandwidth decreases slightly in the amplification process and is usually
in the range of 50− 60nm FWHM (Fig. 5.1 b).

5.2 Pulse Shaper
Different temporal pulse shaping setups were employed during the course of this thesis. While
different types of pulse-shapers exist (micro-mirror, acousto optic), only liquid-crystal modulators
were used in the conducted experiments. Thus the focus will lie on the technical aspects of liquid-
crystal type modulators.

5.2.1 SLM640

Figure 5.2: Schematic view of a liquid crystal cell. when a voltage is applied to the electrodes on both sides
of the cell, the polar crystals turn. This reduces the refractive index along the y axis leading to a change of
phase retardation. This image was taken from [22]

The pulse shaper used for temporal pulse shaping is a SLM640 two-array, 640 pixel liquid
crystal SLM manufactured by CRI. It is now sold by another company (Meadowlark Optics, Inc.).
Each linear array of pixels has a width of 98µm. Between the pixels there is a gap of 2µm. The
insides of the LC cells are brushed so that the LC molecules align in a given direction when no
electrical field is applied. The front and back of each pixel is covered by a transparent cathode and
anode. The liquid crystal molecules turn according to the external field when a voltage is applied.
This is due to the polar nature of the LC molecules. Besides their polarity they are birefringent,
which results in a refractive index change when the molecules turn. The inside of both arrays are
brushed orthogonally to each other (at plus and minus 45◦ with respect to the laser table). Hence,
when applying a voltage, the phase of both perpendicular polarization components can be altered
independently. For this, the relationship between voltage and phase retardance has to be calibrated,
which will be addressed later in the experimental part of this thesis. The SLM sits in the centre
of a dispersion free 4f-compressor. In this Fourier plane, each wavelength is linearly separated
and focussed by a combination of a grating (Setup A: 1200 lines/mm, Setup B: 300 lines/mm)
and a cylindrical lens (Setup A: f = 25 cm) or a cylindrical focussing mirror (Setup B: 25 cm).
For correct parametric pulse shaping, the relationship between pixels and wavelength has to be
known. Calibration carried out each day, ensured that pixel 321 matched the central wavelength
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GDD (fs2/m) TOD (fs3/m)

fast-axis −7.5 · 103 4.1 · 105

slow-axis 7.5 · 103 7.3 · 105

Table 5.1: Dispersion of the Hollow-Core fibre as measured in [13]

of the spectrum (805nm). The spectral resolution was not subject to change and was only once
calibrated to be 0.272nm/px.

5.2.2 Hollow-Core Fibre

a) b)

Figure 5.3: a) Here the Core of a type HC-800-01 photonic crystal fibre is shown. b) Transmission is
allowed in a window of about 70nm centred around 830nm. It can be seen that the GDD (the slope of the
dispersion) is smallest at 830nm as well. This image was taken from [54]

The Hollow-Core Fibre used in the experiments is of the type (HC-800-1) and was acquired
from Blaze Photonics (now NKT Photonics). It features a central hollow core with a diameter of
about 9.2µm which is surrounded by a series of smaller holes. These form the optical band-gap
needed for beam confinement. Its attenuation (see Fig. 5.3) allows propagation of wavelengths
from 795 to 865nm without significant loss. In this region the GDD of this fibre is pretty small.
The value of TOD has to be assumed to be comparably large. The dispersion of the fibre is listed
in Tab. 5.1. The fibre has a total length of 110 cm and was shipped with two collimating optics
on either end which are encapsulated in two (FC/PC) plugs. Additionally, the fibre has a thin
window on both end-faces which keeps dust from entering the hollow cores. This has proven to
be a problem for unattenuated amplified pulses, which were able to damage the entrance window.
This required the fibre to be serviced by the supplier once.

5.2.3 Kagome Fibre
The second fibre used in the experiments is a Kagome fibre (PMC-PL-780-USP from GLOpho-
tonics). The optical lattice which forms the kagome fibre is depicted in fig. 5.4 (a). Its inner core
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has a diameter of 50 to 70µm depending on the optical axis. The maximum allowed pulse energy,
as stated by the manufacturer is 50µJ at a pulse length of 200 fs [55]. The fibre will break if bent
to a radius lower than 10 cm but transmission losses increase already significantly when the fibre
is slightly bent to a radius of ∼ 50 cm. As the fibre-core is not sealed, an entrance cap was built
to keep dust from entering the fibre. This fibre is especially useful for high intensity ultrashort
and broadband applications, since it features low dispersion and low attenuation over a significant
wavelength range (see fig.5.4 (b)). Its dispersion was measured by calculating the difference of
the phase required to form a TL-pulse before and after the fibre. This difference of both compen-
sations resulted in a effective GVD of −116 fs2/m and TOD of 2000 fs3/m. These values are
extremely low and represent nearly undisturbed propagation of ultrashort pulses.
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Figure 5.4: a) Core of the PMC-PL-780-USP Kagome fibre. The inner core diameter is 50 or 70µm large,
depending on the axis. b) The fibre allows efficient propagation over a broad spectral range. [55]

5.3 Pulse Characterization
Pulse characterization can be carried out in either the temporal or spectral domain. It is rela-
tively easy to determine pulse characteristics using a pulse shaper and a spectrometer [56] via the
spectrum and the spectral phase. Pulse characterization in the temporal domain is more difficult
because of the extremely short timescales involved. Two time-domain approaches will be dicussed
in this chapter.

5.3.1 Cross and Autocorrelators
Cross and autocorrelators rely on a short (ideally TL) laser pulse to probe a “signal” pulse. A delay
between both pulses is scanned and a nonlinear signal that depends on the interference between
both pulses is measured. An autocorrelation in contrast to a cross correlation, uses the same pulse
as probe and signal pulse, which introduces limitations but significantly simplifies the setup. A
cross correlator setup, made up from a BBO (type 2) crystal, lenses and a photomultiplier was set-
up earlier by the scientific group. Besides that, two autocorrelators (PulseCheck, NIR/IR-KTP)
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Figure 5.5: Illustration of an autocorrelator setup.

manufactured by (A P E GmbH) were used to quickly determine the pulse lengths at different
positions in the setup. It can be easily set up to scan ranges from 150 fs to 15 ps with a minimal
resolution of 1 fs in the spectral range from 750 to 1100nm. In the course of this thesis a data
link was established to download measurements to the computer and automate data acquisition.

5.3.2 TG-FROG

Figure 5.6: This image shows an illustration of the TG-FROG setup used to characterize WL-pulses in this
thesis. A nonlinear four-wave mixing process generates a phase matched beam kfrog which is analysed with
a spectrometer. Since all beams experience the same dispersion, extremely short pulses can be measured.
Note that this illustration shows the nonlinear material to be Fused Silica, while BK7 was used in the
experiments in this thesis. This illustration originates from [57]

In 1999 Li et. al. described a variant of the TG-FROG (transient grating - frequency resolved
optical gating) which would be able to measure extremely short pulses [57]. This is possible
because a degenerate four-wave mixing process is used that is inherently phase matched over a
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broadband spectrum which is usually difficult to achieve in classical correlator schemes. The
temporal resolution of a pulse-characterizing setup, which does not use a TL reference pulse, is
limited by the difference in dispersion the beams experience. The TG-FROG uses an aperture, not a
beam splitter, and a focussing mirror to create three separate beams. This enables the measurement
of extremely short pulses. The beams are focused with a focussing mirror (250mm) into a thin slab
of BK7, while one beam is delayed by the means of a computer controlled translation stage (PLS-
85, MICOS). The resulting beam KFROG, created by degenerate four-wave mixing is selected by
an aperture behind the focus and measured by a spectrometer (USB2000, Ocean optics). Beam K1

in Fig. 5.6 is delayed with respect to beam two and three. Thus, the output signal is given by the
formula [57]:

I(ω, τ) ∝
∣∣∣∣∫ ∞
−∞

E1(t− τ)|E2(t)|2eiωtdt
∣∣∣∣2 (5.3.1)

The setup used in the course of this thesis was built and characterized by Schmidt et. al. [58].
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5.4 Fluorescence Detection
Fluorescence experiments were carried out with varying focal lengths. Different lenses were used
to focus the beam in order to reach intensities required for the examined multiphoton process.
The dye was kept as a solution in a 10mm by 10mm quartz cuvette. Fluorescence was detected
with a spectrometer or photomultiplier tube situated after two large collimating lenses (CaF). The
beam was set up to be focussed close to one of the sides of the cuvette so that reabsorption ef-
fects of fluorescence propagating in the cavity would be minimized (Rhodamine B shows strong
reabsorption which can shift the observed fluorescence spectrum to longer wavelengths). With the
help of spectral filters (BG38, BG39, Schott) the exciting IR light was blocked. The intensity of
L-Tryptophan fluorescence was not sufficient to be detected via the spectrometer. Therefore, a
photomultiplier tube was used in conjunction with an UG11 filter to separate the light originating
from L-Tryptophan fluorescence.

5.4.1 Rhodamine B

Figure 5.7: (left) Molecular structure and (right) emission and absorption spectra of Rhodamine B.
Structure:[59], Spectral data: [60].

Rhodamine B (spectroscopy grade, Sigma-Aldrich) is a well known fluorescent dye. It is used
as marker substance in microscopy and has once been used as food colouring. Its emission and
absorption spectra are overlapping which can lead to reabsorption which in turn can shifts the
observed spectrum to longer wavelengths. Rhodamine B is an extremely efficient dye. Excitation
by two photons with a wavelength of 805nm yields sufficiently strong yellow fluorescence to
detect it easily with a spectrometer. In the conducted experiments it has been solved in ethanol
and sometimes glycerine in varying concentrations. When illuminated with high powered pulses
Rhodamine B photobleaching was observed, which over time lead to decreased fluorescence of the
samples. This was especially relevant when glycerine was used as solvent since “fresh” molecules
cannot easily replenish the volume of the laser focus. Two-photon excitation cross-sections of
Rhodamine B and other fluorescent dyes were measured using a tunable Ti:Sa laser by Xu and
Webb [61]. Fig. 5.7 shows the structure of Rhodamine B as well as its one photon absorption and
emission spectrum.

5.4.2 Coumarin 1
Coumarin 1 (also known as Coumarin 460 and Coumarin 47) is a derivate from the basic Coumarin
which can be found in many plants. Although it is not equally efficient as Rhodamine B, its blue
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Figure 5.8: Molecular structure of Coumarin 1. Structure:[59], Spectral data: [60].

fluorescence can still easily be detected by a spectrometer. Its quantum efficiency is especially big
in unpolar solvents. Additionally, it was found that polar solvents have a red-shifting effect on the
emission spectrum of various Coumarin derivatives. Extensive studies regarding this aspect can be
found in [62]. Fluorescence and absorption do not favour strong reabsorption and bleaching was
not observed. Two-photon excitation with light at 805nm will target the flank of the absorption
curve (see Fig. 5.8). This means that tuning the two-photon excitation spectra will have a non-
trivial influence on the excitation efficiency of Coumarin 1. It has to be noted that the spectra
shown in Fig. 5.8 are one-photon spectra. Two-photon excitation follows different selection rules
which implies these curves are not totally accurate. Two-photon absorption spectra are difficult to
obtain but it can be assumed that two-photon absorption in large molecules can be approximated
by one-photon absorption.

5.4.3 L-Tryptophan

Figure 5.9: Molecular structure of L-Tryptophan. Structure:[59], spectral data: [60].

L-Tryptophan (Sigma) is one of the essential amino acids required for human life. Together
with Tyrosine, and Phenylalanine it is detectable by fluorescence without any additional marker
substance. Tryptophan absorbs UV light and thus can be excited by three-photon excitation with
a Ti:Sa laser. The blue fluorescence was primarily detected with the help of a photomultiplier
tube and spectral glass filters. This enabled measuring the excitation efficiency of Tryptophan for
pulses other than the most efficient transform limited pulse. Tryptophan has always been solved in
distilled water in concentrations of 15mM in v.e. water.
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Figure 5.10: Experimental setup used in the fluorescence experiments including Rhodamine B and
Coumarin 1. For the experiments with L-Tryptophan amplified pulses were used and the fibre was taken out
of the experimental setup.

5.5 Setup A - Fluorescence Experiments
The experimental setup which was used in the fibre and fluorescence experiments is quite modular
and was adapted to suit the performed experiments. This chapter will try to outline the capabili-
ties of this first setup on the basis of the previously described devices and methods. Laser pulses
are generated in the Mira Oscillator (5.1.1) and can be amplified by chirped pulse amplification
with a subsequent regenerative amplifier (5.1.2). Amplified pulses have an energy of up to 1µJ
while oscillator pulses are in the order of ∼ nJ . The pulses which can be characterized by an
autocorrelator 5.3.1 then enter the pulse shaping setup (5.2.1). Here, depending on the experi-
mental requirements, it was chosen between two setups. The two liquid crystal arrays, which are
placed in the Fourier plane of a dispersion free 4-f compressor, can be used to either control phase
and amplitude of an incoming horizontal polarized laser pulse or control the phase of two perpen-
dicular polarization components separately. For the latter, waveplates were added to rotate both
shaped polarization components from ±45◦ to 0◦, 90◦ just after the LC arrays. This is necessary
because the polarization-dependent reflectivity of the gratings would stretch the polarization state
and thereby change the angle between both polarization components. This waveplate ensures that
both polarization components stay perpendicular. On the downside, this introduces intensity differ-
ences between the vertical and horizontal component. These were ruled out by another waveplate
in front of the pulse shaping setup, splitting the intensity on the two arrays unevenly, thus precom-
pensating for the grating losses. Both liquid crystal arrays were calibrated prior to the experiments.
The liquid crystals will align along the brushed inside of the cells when no voltage is applied. At
maximum voltage, however, all liquid crystals will be aligned along the beam’s propagation di-
rection. This ensures that at maximum voltage the phase retardance can assumed to be constant.
For calibration, one array is kept at this maximum voltage, the other’s voltage is lowered which
increases the retardance on that polarization component. A polariser and a power meter, set up
after the shaper, can be used to monitor the polarization change on horizontally polarized incident
light. This is then used to create the calibration lookup table required for further operations. Fur-
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thermore, the SLM was positioned such that pixel 320 was in line with the central wavelength of
the spectrum (805nm). The wavelength resolution was found to be 0.2716nm/px. The pulses can
then be transmitted through a hollow-core photonic crystal fibre (5.2.2) or Kagome fibre (5.2.3)
for which a telescope was used to adjust the diameter of the beam. The overlap of the beam with
the fibre mode determines how much light can be coupled into the fibre. Beam alignment had
to be optimized every day with the help of a photodiode on the back side of the fibre as refer-
ence. Even though photonic crystal fibres are designed to allow much higher pulse intensities than
conventional optical fibres the laser power was reduced to 60 mW when using amplified pulses to
avoid damage to the front window of the hollow-core fibre. After the fibre, the beam diameter was
widened by a telescope and then focused into a cuvette filled with the sample solution. Finally,
two lenses placed on an axis perpendicular to the exciting laser beam captured as much fluores-
cent light as possible to be analysed by a (OceanOptics) spectrometer. The spectrometer data can
be evaluated by a program and be used as feedback for e.g.: closed loop optimizations or to test
different parametric phase functions on their efficiency in exciting one or more dyes selectively.

5.6 Setup B - Whitelight Laser Setup
The laser system used for the experiments on laser filamentation in Argon and Krypton differs
significantly from the system described in the preceding chapter. This setup is capable of gen-
erating few-cycle, white-light laser pulses in a two stage filamentation scheme. First, pulses are
generated by a Ti:Sa oscillator (5.1.3) and then amplified in a multipass scheme (5.1.4). A Faraday
isolator (optical diode) in between the oscillator and the amplifier ensures that no backreflections
disturb the mode-locked oscillator. The amplifier selects pulses at a rate of 1kHz and amplifies
them during eight passes through a Ti.Sa crystal. The amplified beam intensity is reduced using
a circular aperture to optimize the spectral broadening by the following two filamentation stages.
A power of 490mW was found to optimize the whitelight spectrum (i.e.: least modulations in the
spectrum, maximal broadening). This corresponds to a pulse energy of 490µJ prior to the first
filament. The first filamentation stage is composed of a focussing mirror f = 2m, a collimating
mirror f = 2.5m and a acrylic glas tube to minimize beam pointing fluctuations. It broadens
the spectrum coming from the amplifier to a spectral width of ∆λ ∼ 100nm. The dispersion
that laser pulses acquire in this first filament is compensated for with a pair of broadband chirped
mirrors (700 − 900nm, Layertec). Each reflection on one of the chirped mirrors linearly chirps
the pulse by −30 fs2. Pulses are compressed to a pulse length of 15fs [63] which is necessary for
white-light generation during the second filamentation stage. Then, a second filamentation is used
to further broaden the laser spectrum to the octave spanning spectrum which is shown in Fig. 5.12
(b). Here, filamentation is triggered by a f = 1.5m focussing mirror, while a f = 1.25m is used
for collimating the beam before a second pair of chirped mirrors (∼ −20 fs2 per reflection) is used
to compensate for most of the chirp induced in the filament. Pulses have a broadband spectrum at
this point of the setup, which is why dispersion cannot be solely compensated for by linear chirp.
High order dispersion comes into play which has to be compensated using pulse shaper. The beam
enters the pulse shaping setup (a folded 4f compressor) which uses cylindrical focusing mirrors
(f = 25 cm) instead of lenses. This is important since lenses would induce chromatic aberration
which would lead to strong spatial chirping of the outgoing beam. The pulse shaper sits in the
Fourier plane of the 4f setup (5.2.1). The compressor uses two gratings with 300 lines/mm which
are blazed at 600nm. A wire grid polariser (Edmund Optics) can be used after the pulse shaping
setup to enable amplitude and phase modulation of the entire white-light spectrum. Each day, the
setup was calibrated using two apertures in front and in the back of the setup. Additionally, the
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Figure 5.11: Experimental setup as used in the experiments on Krypton and Argon with shaped white-light
pulses.

shaper was moved to match the central wavelength of the spectrum to a defined pixel number. This
ensured that the calibration matched the wavelengths on each pixel. This is relevant, since the re-
tardance introduced by each pixel is strongly wavelength dependent. Calibration of the white-light
setup was described in [63]. In the scope of this thesis a program was developed which simplifies
the calibration processes by automating all consecutive steps required for calibration. Besides the
measurement of TG-FROG (5.3.2) traces of shaped pulses, amplitude shaping (especially when
zero transmission was set as a test) was a strong indicator of a good calibration. After the shaper,
the beam was then steered to either a spectrometer, TG-FROG or the experimental chamber. Using
the pulse shaper to compensate for the remaining pulse-chirp we were able to repeatedly measure
TG-FROG-lengths of 5−7 fs (FWHM) at pulse energies up to 50µJ just before the measurement
chamber. Since the TG-FROG is very sensitive on the peak-intensity, we were not able to measure
the pulses with more complex pulse shapes. [Fig. 5.12 a)] shows a close to transform-limited (TL)
pulse as it was measured after manual compensation of the remaining chirp with the help of the
pulse shaper. The capability of the pulse shaping setup is demonstrated in [Fig. 5.13] in which
TG-FROG traces of a negativ and positiv linear chirped pulse are depicted. After the pulse shaping
setup, the beam passes a couple of silver steering mirrors and finally an off axis focussing mirror
(f = 250mm). The focussing mirror was placed inside of the pressure chamber which was filled
with either Argon or Krypton. This ensured that in the entrance window of the chamber (d=1/4
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Figure 5.12: a) TG-FROG trace of a short white-light pulse as it was after manual phase correction. b)
Usual white-light spectrum measured just before the pressure chamber.

inch) no nonlinear effects occurred that would interfere with the measurements. The spectrum was
measured after passing through the exit window of the chamber with a spectrometer (USB2000
UV/VIS, OceanOptics) pointed at a beam block which was covered in Teflon. Teflon is used be-
cause it reduces the amount of interference from multiple reflecting surfaces. The chirp introduced
by the gas cell and all further optical elements in the beam line had to be accounted for, as small
variations measurably changed the pulse length on a daily basis. Thus, an electric microphone
was placed just below the filament position. It recorded the acoustic shock wave produced by the
formation of the plasma. This value can be safely assumed to be proportional to the free carrier
density in the filament. By using PRISM [64] (chapter 4.8.2) an optimal phase compensation was
found which would maximize the acoustic shock wave from the filament. The acquired shock
wave was first amplified by an operational amplifier and then measured via an oscilloscope. The
oscilloscope data was then evaluated by a computer to find the intensity of the acoustic shock.
After one knows the phase that creates a transform limited pulse in the experiment, one can use
this phase as an offset to every other phase modulation that could be applied to a pulse. This is
of course only true when nonlinear effects can be neglected. This applies for the most part of the
beam line after filamentation, since intensities become only significantly large when the beam is
focussed.
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Figure 5.13: TG-FROG traces of chirped and unchirped pulses before the chamber: a) pulse negatively
chirped to −20 fs2 b) transform-limited pulse c) pulse positively chirped to 20 fs2. As a result of the
TG-FROG’s calibration higher wavelengths are underrespresented in the traces presented here.





6Extended Simulation Methods
and Algorithms
Computer controlled experimentation significantly increased the pace at which experiments are
conducted. Data acquisition is now mainly executed by computer programs which allow to scan
vast parameter spaces with little or no human input. This shifts the field of work of an experimental
physicist towards planning, automation and analysis of said measurements. During this thesis,
programs controlling parametric pulse shaping were developed, optimization algorithms enhanced
and a simulation of the pulse propagation in nonlinear media was created.

6.1 Enhanced convergence for genetic optimizations by
parameter-wise mutational coefficients

6.1.1 Introduction
Genetic optimization is a widely spread method for finding optimal pulses in coherent control ex-
periments [65]. The principals of GO’s were covered previously in chapter 4.8.1. The strength of
these methods lies in the robustness of the optimization, even if a large number of parameters have
to be optimized or the signal to noise ratio is not optimal. Downsides are that convergence cannot
be measured, thus multiple optimizations have to be carried out to get a sense of whether a global
optimum was found. In the early days of coherent control non-binary GO’s were employed to
optimize every pixel of a SLM separately [6]. Results, if achieved were difficult to interpret. This
gave rise to parametric optimizations were sub-pulse parameters, like intensity and chirp, could be
optimized directly [26]. During experiments conducted for this thesis, it became apparent that the
choice of relative parameter scaling was a relevant factor affecting convergence of the optimiza-
tion. The mutational parameter defines whether an optimization extends into the parameter space
by mutation or converges due to crossover. This mutational parameter is usually applied to all pa-
rameters equally. Parameters are scaled down (using their search space boundaries) to a range of
(0-1). Thus, parameters with a large influence on the fitness will have the greatest impact on how
the evolutionary parameter evolves. This can lead to premature convergence for e.g.: chirp Taylor
series parametrizations. Separate mutational parameters would solve this issue by independently
scaling the search space in each dimension.

6.1.2 Method for Updating Parameter-Wise Mutational Coefficients
In order to change mutational parameters for each parameter separately, a measure for the fitness
of a single dimension has to be defined. Therefore, an additional information was saved during
the mutation-phase of the genetic algorithm. From one generation to another, mutation occurs for
every parameter of a given set with a certain probability (Pµ). This in turn implies that not every
parameter of one set will be changed by mutation. Let us assume we remember the information
whether a parameter was mutated or not until after evaluation of the fitness. For each parameter we
now count the number of cases where first, an individual improved its fitness from one generation
to the next, and second, the parameter in question was indeed mutated (and therefore responsi-
ble for the change in fitness) during the last generation. This number (Ri) is normalized by the
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gen. until converged not in time local minimum
single mutational parameter 36.5 69 36
parameter-wise mutation rate 36.1 33 17

Table 6.1: Results of over 1000 optimizations carried out with either method were averaged. Both methods
took the same average time to converge. Overall, parameter dependent mutational rates resulted in more
robust optimization, thereby reducing the number of optimizations which did not finish in time or converged
into local minima of the test function.

mutation probability and the number of individuals in one generation. This value (which was cal-
culated for each parameter) was used to evaluate whether a single parameter had contributed to the
improved fitness. Finally, when Ri was greater than 0.3 (in contrast to 0.2 which attributes to the
1/5th rule), the parameter-dependent mutation rate (µi) was increased by 1.2 and else decreased by
0.8.

6.1.3 Convergence of the Proposed Method on a Variety of Test Functions
The efficiency of the proposed method was tested in a simulation against the standard approach
which uses only one mutational parameter. Ackley’s function was chosen as a test-potential, since
it possesses local minima as well as a global minimum at f(xi = 0) = 0. Ackley’s function is
defined by [66]:

f(x1, x2, ..., xn) = −20e−0.2
√

1
n

∑
i x

2
i − e

1
n

∑
i cos(2πxi) (6.1.1)

1000 automated optimizations were carried out for both, with and without parameter-wise muta-
tional parameters. All other settings regarding the optimization were kept equal. In order to present
the optimization with a scaled parameter space, the boundaries of 4 dimensions were chosen dif-
ferently. The parameters were initialized and evaluated using the boundary conditions (±5, ±2,
±1, ±0.1). In both optimizations, Pµ was equal to 0.54, 14 individuals were used for crossover,
2 survivors kept from one generation to another. Generations themselves had 40 individuals and
all mutational parameters were initialized with 0.05. Optimizations were either stopped after the
error fell below the threshold of 0.004 or after 70 generations (which is a reasonable number to be
evaluated in real world experiments). No extra noise was added which could be used to improve
convergence into the global optimum. The success rate above which the mutational parameter is
increased or decreased is different in both optimization schemes (0.2 for the single and 0.3 for
the multi mutational parameter optimization). This is reasonable, since the definition of success
was changed significantly for the multi-parameter approach. Both values were optimal for con-
vergence of the corresponding method at the selected optimization settings. Tab. 6.1 summarizes
the results from the optimizations carried out on the test function. Both methods converged in
nearly the same number of generations. A difference became apparent when regarding the number
of optimizations which did not converge in time, or converged into a local minimum. Here, the
parameter-wise mutation rate led to more robust results. From the evolution of generations it was
observed that a single mutational parameter led to symmetrical “ball like” convergence while for
parameter-wise mutation rates elliptic spreading of the individuals during convergence occurred,
which seemed to fit the unequal scaling of the four parameters.
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Figure 6.1: a) The optimization which relies on a single mutational parameter, converges quicker but is more
prone to converge into local minima. b) Multiple mutational parameters evolve differently, which increases
the search volume depending on the influence the parameter has on the fitness. Overall, in this example, it
converges slightly slower as an optimization with only one mutational parameter.

6.1.4 Conclusion
A genetic optimization is especially suitable when not much information exists on the search space
itself. On the other hand, parametric optimizations allow interpretation of the results obtained by
the optimization and are favourable when the aim exists to learn something about the examined
system. In both cases parameters can be scaled immensely different. While some will have nearly
no influence on the evolution of the optimization, others will lead to more noticeable changes of
the fitness and thereby be the deciding factor whether and when the optimization will converge.
Using parameter-wise mutational coefficients, each dimension can converge independently. This
can slightly increase the total time of convergence but reduce the risk of finding local minima.
Additionally, the information on the evolution of the mutational coefficients can be used as a
measure of influence of each parameter on the fitness. It can be concluded, that when scaling of
the parameters is not known multi-evolutional-parameter optimizations can be considered to be
beneficial.
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6.2 Two-Dimensional Propagation of Octave Spanning Laser
Pulses in Ionised Media

The simulation outlined in this chapter was initially based on the Split-Step Fourier method as
described by Agrawal [28]. The method was first implemented to simulate nonlinear effects in a
one dimensional retarded time frame, as it it is sufficient to reproduce effects observed in nonlinear
fibres. This one-dimensional simulation was quickly extended to give insight on the nonlinear
evolution of pulses in a focussed Gaussian beam. To accomplish this the intensity of the beam was
calculated according to the formula of a Gaussian beam focus for each propagation step of the split
step method. This allowed for the simulation of the spectral changes that occur in the Gaussian
beam focus of the fluorescence setup as outlined in chapter 5.5. For amplified pulses, as they
were used in the experiments on L-Tryptophan, self phase modulation was found to have a great
influence on the excitation progress. Pulse shaping can be used to exploit this process as we will
show later. As experiments on the filamentation in Argon and Krypton were conducted simulations
on the propagation of ionising media became of interest. The simulation was consequentially
adapted to allow propagation of the focussed beam following the work of Sprangle et.al. [37].

6.2.1 Pulse Parametrization and Initialization
As self-focussing and plasma defocussing are the most important effects governing filamentation,
a spatial approach had to be found. In order to speed up the simulations a two-dimensional, cylin-
drical pulse parametrization was chosen. The electrical field was stored in form of an amplitude
|E(ω, r)| and phase Φ(ω, r), so that only the radial beam profile was modelled. Sampling of r → ri
(∆r) and ω → ωj (∆ω) was reduced until no more changes of the simulation output could be ob-
served. Since the experimental conditions show an axial symmetry as well one should not expect
large deviations from this parametrization when compared with a full 3D simulation. The pulses
were initialized with the electrical field which was calculated from a reference spectrum (Iref (ω))
taken in front of the measurement chamber (Setup B). The beam, which is focussed by a focussing
mirror placed in the pressure chamber, will only experience nonlinear effects around the focus.
The propagation until nonlinearities arise can be easily calculated with the help of the formula’s
governing linear dispersion and the Gaussian beam. A region around the focus, from −1 cm to
1 cm was selected and the pulse initialized to fit the conditions at the beginning of the simulation.
To accomplish this, the beam diameter w(z) and beam waist w0 were calculated from the original
beam width prior focussing (1 cm) and the focal length of the focussing mirror (25 cm). This beam
waist (∼ 0.4mm) was then used to model the Gaussian radial falloff of the initial electrical field
amplitude:

|E(ri, ωj)| ∝
w0

w(z)
e
− r2i

w(z)2

√
Iref (ω) (6.2.1)

The radial phase was initialized with the help of the Gaussian beam formula as well. Additionally,
the phase amounting to the gas dispersion from the point of initialization up to the focus was
compensated for. This was done assuming the pulse is transform limited at the focus position. The
phase then becomes:

Φ(ri, ωj) =
ω0r

2
i

2cR(z)
, (6.2.2)

where

R(z) = z

[
1 +

(
πω2

0

λz

)]
(6.2.3)
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Figure 6.2: Flow-chart depicting the method for spatial, linear and nonlinear evolution of ultrashort laser
pulses.

is the radius of curvature. Finally, the electrical field was normalized such that the pulse energy
EP becomes:

EP =
∑
i

∑
j

(
2πri

cε0
2
|E(ri, ωj)|2∆r∆ω

)
(6.2.4)

6.2.2 Temporal and Spatial Propagation
The split-step method implemented here relies on the Fourier-transform to efficiently integrate all
operators which take part in the evolution of the laser pulses. All effects are integrated in steps of
the propagation distance ∆z until the end of propagation is reached (see Fig. 6.2). Dispersion is
easiest to evaluate in the spectral domain E(r, ω). All other nonlinear effects are propagated in the
time domain E(r, t). Finally, spatial propagation is achieved by adding a propagation phase in the
reciprocal (k-) space. For this, a Hankel transform (radial Fourier transform) is used to transform
the field into the reciprocal spaceE(k, t). While dispersion (D , in Fig. 6.2) and spatial propagation
(S) amount to a simple phase which is added in each propagation step, the nonlinear step on the
other hand is more complex. Here, SPM, self-steepening, plasma defocussing and losses that occur
through ionisation are included. This calculation takes up the biggest share of simulation time. An
important factor of the simulation’s sampling is the scaling imposed by the Fourier and Hankel
transforms. As the scaling process is equivalent for spatial and temporal Fourier transforms, only
one case will be discussed. Let us assume one chooses a sampling of the electrical fieldE(ω) in the
frequency domain which starts at ωmin, ends at ωmax and uses N samples. The Fourier transform
will then feature N samples extending from tmin up to tmax. One then obtains:

tmax = −tmin =
πN

(ωmax − ωmin)
= πfs. (6.2.5)

and hence finds the spacing between temporal samples:

∆t =
2π

N∆ω
(6.2.6)

Here, fs is called the sampling frequency (not to be confused with spectral frequencies). The reso-
lution obtained from the Fourier transform in this way may sometimes be insufficient to accurately
model nonlinear or extremely fast ionisation processes. As one can see from the last equation, the
temporal resolution can be improved by increasing the number of samples. This was accomplished
by padding zero’s symmetrical in frequency space, typically increasing the temporal resolution by
a factor of 3. While zero padding has a solely cosmetic effect on Fourier-transforms of continuous
signals, it is a sensible and accurate method when applied to pulses with a finite pulse length.
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Figure 6.3: Test of the linear propagation of a focussed laser beam using the implementation of the split-step
method. The calculation window ranges from −1 cm before to +1 cm after the focus. The expected beam
width (measured at 1/e2 of the peak intensity) at the beginning of the simulation and at the focus is marked
by a white line. This image is a two-dimensional representation of the simulation result. For each vertical
line spectral as well as phase information is evaluated during propagation.
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Figure 6.4: Propagation including dispersive effects. The simulated material features a GVD of 1000fs2/m
and a TOD of 5× 104fs3/m. The pulse was initialized by half the dispersion which would occur over the
total propagation length. The simulation shows that the pulse becomes (as it is supposed to) TL at the centre
of the simulation window.
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6.2.3 Linear Propagation
In order to check whether the implementation is correct, a simulation of only the linear effects
(spatial propagation, dispersion) was conducted. A beam with a diameter of 0.5 cm is focussed by
a focal length of 25 cm. The beam width at the beginning of the simulation was calculated using
the Gaussian beam formula. At the beginning of the simulation (−1 cm), the radial intensity was
initialized to correspond to a Gaussian beam with a radius of 103µm. The two-dimensional plot
(Fig. 6.3) shows the focussed beam as an intensity profile in dependence of r and z. From this
figure we can see that the beam waist, which was supposed to be 24µm was correctly reproduced.
When nonlinear and plasma effects are neglected, dispersion and spatial beam propagation do not
interfere. This was also the case in the simulation.

After a material dispersion of 103fs2/m(GVD) and 5×104fs3/mwas introduced, no changes
to the spatial propagation were observed. The spectrum was initialized with a Gaussian spectrum
centred at 750nm and with a width of 100nm. Before the simulation was conducted, a spectral
phase attributing to half of the dispersion which occurs over the complete propagation window,
was subtracted. Fig. 6.4 shows the evolution of the temporal pulse shape corresponding to the
data in Fig. 6.3. In this graph the temporal pulse power is plotted. The power was calculated
from integrating the intensity over the beam profile. We can see that both spatial focussing and
dispersion compensation lead to an extreme power build up towards the focus (z = 0 cm). As
expected the pulse shapes resemble symmetrically quadratically shaped pulses for positive and
negative distances from the focus. These simulations, in addition to other tests of the capabilities
of the implementation, show that dispersion and spatial evolution can be accurately modelled.

6.2.4 Nonlinear Propagation
All nonlinear effects that could influence the propagation of ultrashort pulses (see chapter. 4.6)
were analysed and tested on their relevancy for the propagation of pulses under the experimental
conditions at hand. In this chapter, tests to ensure all effects are correctly implemented will be
presented.

Self-Phase Modulation

SPM is the dominant nonlinear effect in most of the conducted experiments. It manifests itself by
a phase which is added in the temporal domain:

ΦSPM(ri, tk) =
n2ε0

2
|E(ri, tk)|2ω0∆z (6.2.7)

This factor is proportional to the nonlinear refractive index, and the intensity. Self-phase modu-
lation leads to self-focussing and spectral changes like spectral broadening. Fig. 6.5 a) illustrates
the effect of strong self-phase modulation on a focussed laser pulse. This simulation used spatial
propagation in addition to self phase modulation in a non dispersive medium. The nonlinear re-
fractive index was selected to be 2× 10−23m2/W . The spectrum on the other hand was initialized
as a Gaussian spectrum with a central wavelength of 750nm and a spectral width of 100nm. This
allows for easy inspection of spectral changes. Fig. 6.5 b) depicts the spectrum at the end of the
simulation. Spectral broadening due to self-phase modulation is greatest in the centre of the beam,
while broadening is reduced for larger radial coordinates.

Since the beam width, focal length and central frequency of the spectrum for both (linear and
nonlinear simulation) were equal, Fig. 6.5 (c) should compare well to Fig. 6.3. Self-focussing
due to SPM increases to a 4-fold intensity build up in the focus. Additionally, the focus appears
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Figure 6.5: Propagation test, which includes SPM. a) Due to focussing the pulse intensity rises towards
the focus. After the focus SPM distorts the pulse spectrum. Typical SPM induced spectral broadening can
be observed. Note that spectra displayed here are integrated over the complete beam area. Since SPM is
intensity dependent, spectral changes will differ depending on the distance to the centre of the beam. b)
Intensity profile in dependence of the radius and wavelength after the full propagation distance (z=1). c)
While the simulation result should be comparable to the linear case discussed before, distinct differences
can be observed. SPM results in self-focussing and therewith higher peak intensities.

to be slightly asymmetric. This might be a result from decreased self-focussing due to the strong
modulations which occur at the focus.

Self-Steepening

Self-steepening can be understood as a correction term to self-phase modulation which also arises
from the nonlinear polarizability of the optical medium. Self-Steepening leads to a change of
the temporal pulse profile, which can be best described as a steepening of the trailing flank of a
pulse. Again, simulations were performed, in which Dispersion was neglected and the nonlinear
refractive index reduced to a realistic value (n2 = 10−19cm2/W ) compared to the experimental
conditions we will study later. Self-steepening manifests itself by a temporal phase and amplitude
factor which incorporate a derivative of the temporal electrical field:

AS = −n2ε0
2

[
∂E(ri, tk)

∂t

∗

E(ri, tk) + 2
∂E(ri, tk)

∂t
E(ri, tk)

∗
]

∆z. (6.2.8)

Here, the partial integration is used for reasons of clarity. For evaluation, this term was replaced
by an adequate discrete differentiation method. When self-steepening is taken into account it is
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Figure 6.6: Propagation test which includes Self-steepening in addition to SPM and spatial evolution. a)
Shows how the temporal pulse profile changes. Self-steepening leads to a steepening of the trailing edge of
the pulse (Compare: fig. 4.9). b) Spectral modulations are less pronounced than in the SPM only simulation
because of the smaller value for n2 selected for this simulation. c) Spatial propagation is very similar to
previous calculations.

critical to choose a fine sampling because small modulations can otherwise lead to a build up of
errors during propagation. Fig. 6.6 summarizes the results found by this simulation. While no big
differences can be found in the spatial propagation of the beam (Fig. 6.6 c)), the pulse evolution
(Fig. 6.6 a)) depicts the previously discussed effect of a steepening of the trailing edge of the
pulse. Spectral modulations, though smaller, are again strongest at the centre of the beam. Overall
modulations are less pronounced which is the result of the decreased nonlinear refractive index.

Plasma-Effects

Plasma interaction is modelled by two separate effects. First, pulses loose energy while propa-
gating due to the energy required for ionisation. Second, the free electrons have an effect on the
polarizability of the medium, which manifests itself as a defocussing effect on the beam. Pre-
liminary calculations showed that multiphoton ionisation is the dominant ionisation process in the
conducted experiments. The rate at which multiphoton excitation occurs was calculated via (see
eq. 4.6.56):

Wmp =
cπε0ω0|E(ri, tk)|2n

(n− 1)! (w2
0~/σmp)

n , (6.2.9)

where σmp is the multiphoton cross section. Here, we assume that recombination effects are far
longer than the pulse duration. Additionally, the low repetition rate ensures that each pulse ex-
periences a "fresh" volume of gas at each propagation step. This means, that simple integration
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Figure 6.7: a) Radial intensity profile of a simulation incorporating SPM, self-steepening and plasma in-
teractions. Plasma defocussing clearly increases the beam waist and creates an elongated focus. Maximal
intensities are much lower than those found in previous simulations. b) Final electron (or ion) count ne(r, z)
generated by a complete pulse. From these two plots the profound effect of the plasma on the beam propa-
gation is displayed.

of Wmp can be used to find the ionisation count ne(r, t). From this the amplitude factor which
amounts to the energy loss by ionisation was calculated by:

Aion(ri, tk) = exp

(
−∂ne(ri, tk)

∂t

4πEion

cε0|E(ri, tk)|2
∆z

)
, (6.2.10)

where Eion is the ionisation energy. The phase factor on the other hand evaluated as:

Φion(ri, tk) = −2π
ne(ri, tk)

2e2

mecωε0
∆z. (6.2.11)

Both effects were taken into account when the simulation depicted in Fig. 6.7 was run. Fig. 6.7
a) shows a beam with a significantly larger beam waist than in previous examples. Plasma de-
focussing leads to an elongated focal region with a hot spot when the beam primarily focussed.
Maximal intensities are also lower than in previous examples. Fig. 6.7 b) displays the electron
count ne(r, z) which is the integrated number of electrons created by an entire pulse. It is inter-
esting to see how the shape of the plasma clearly defines the shape of the focus. The full method
as described in this chapter was not completed until the experiments on filamentation in Argon
and Krypton. Thus, only a reduced but sufficient simulation model was applied to understand the
measurements on Tryptophan, Rhodamine B and Coumarin 1.



7Experimental results
7.1 Optimization of Two-Photon Processes after Photonic

Crystal Fibres
Parts of this chapter were published within the scope of my doctoral thesis in the Journal Applied
Physics [67]. The last section of this chapter covers experiments which utilize a novel Kagomé
fibre for pulse delivery. The work on the Kagomé fibre was conducted in cooperation with Julius
Otto, who wrote his Master thesis in our experimental group. These experiments were also pub-
lished recently [68].

7.1.1 Preliminary Work and Introduction
The methods of coherent control allow us to gain a greater understanding of the structural and
electronic properties of atoms, clusters and even biologically relevant samples. A promising field
in coherent control lies in the excitation of multiphoton processes with shaped ultrashort pulses.
In this chapter two-photon excitation with parametrically-shaped pulses created by a femtosecond
oscillator will be explored. Control of three-photon processes by shaped amplified pulses will in
turn be covered by the next chapter.
Two-photon excitation is a nonlinear process which was first studied by Maria Göppert-Mayer
in 1930 [36]. It was shown that laser scanning microscopy can achieve higher resolution when
multiphoton- rather than single photon excitation is applied [69]. Mostly, infrared light is utilized
in two-photon excitation schemes which allows for greater sample penetration than one-photon
excitation in the visible spectrum [70]. As the efficiency at which two-photon excitation takes
place scales with the Intensity squared, the focus of the beam can be used to determine at which
depth fluorescence will be originating. Therefore, this method can even be used to generate three-
dimensional images [71]. By using Taylor-shaped laser pulses and by taking advantage of intra-
pulse interference, narrow absorption bands can be selectively excited with the same efficiency
as a transform-limited pulse [8]. With this method, selective excitation of close lying two-photon
absorption bands becomes feasible [35]. At the same time, sample damage which originates from
high order nonlinear effects is reduced. These advantages gave rise to a series of publications
demonstrating first control of selective excitation by simple phase shaped pulses [72, 73, 74, 75].
Even if suitable phase functions or pulse shapes are identified, the pulses have to reach the sam-
ple in a controlled manner. Dispersion, as well as nonlinear effects can strongly disturb the pulse
spectrum as well as its phase. Photonic crystal fibres allow the transmission of pulses with high
peak intensities and mostly exhibit low dispersion. Fibres can be seen as a manageable method for
pulse delivery if nonlinear and or linear effects are compensated for. Compensation of nonlinear
effects and polarization changes which occur when a fibre is bent and twisted was demonstrated in
two earlier publications, preceeding this thesis [76, 77].
Biologically relevant samples often feature broad absorption bands which overlap and hinder se-
lective excitation. This chapter wants to explore different spectral phase functions on their ability
to selectively excite fluorescent dyes with overlapping absorption bands after a hollow-core fibre.
An evolutionary algorithm will be applied to find optimal phase functions maximizing the con-
trast of two fluorophores in either direction. This data is used in conjunction with simulations to

61



62 Experimental results

understand the abilities of these parametrizations to optimize contrasts of two two-photon excited
fluorophores and give an overview of the limits and future possibilities of this approach. Finally a
short section will cover experiments conducted on the Kagomé fibre where two polarization shaped
pulses, each optimized for either fluorophore will be used to selectively excite two dyes depending
on the polarization angle of observation.

7.1.2 Simulations of the Two-Photon Field
The two-photon excitation of phase-shaped laser pulses is governed by the two-photon effective
field which describes how efficient a pulse is in exciting a transition at a given wavelength. The
two-photon field arises from the interference of spectral components within the laser pulse itself.
In the spectral domain, the electrical field can be conveniently split into an amplitude and a phase
factor: |E(ω)|eiΦ(ω). The two-photon field, which was introduced in chapter 4.5.1, then has the
form:

E(2)(2ω) =

∫ ∞
−∞
|E(ω − Ω)||E(ω + Ω)|ei(Φ(ω−Ω)+Φ(ω+Ω))dΩ. (7.1.1)

As said before, the two-photon field can be understood as the efficiency at which an infinitely
narrow two-photon transition would be excited. When a spectral phase function Φ(ω) is antisym-
metric around a chosen central frequency ωc, the phase term in (7.1.1) vanishes and E(2)(2ωc) is
at this frequency equal for the phase shaped and the transform-limited pulse. A phase which is
antisymmetric fulfils following requirement:

Φ(−ω − ωc) = −Φ(ω − ωc) (7.1.2)

Hence, an infinitely narrow two-photon transition at ωc can be excited equally efficient by a pulse
with an antisymmetric phase function and a transform-limited pulse [8]. Excitation of broad two-
photon transitions on the other hand, will always be less efficiently excited by a phase shaped than
by a short pulse. Antisymmetric functions examined in this thesis will be a step-function, a sinus
phase as well as a third-order polynomial phase. For broad two-photon absorptions as seen for
Rhodamine B and Coumarin 1 the fluorescence intensity IR/C is not directly proportional to the
two-photon field: If each excitation leads to fluorescence the spectral intensity in our experiment
can be found by convoluting the two-photon absorbance (TPAR/C) of a dye with the two-photon
field:

IR/C ∼
∫ ∞
−∞

∣∣E(2)(ω)
∣∣2 · TPAR/C(ω)dω (7.1.3)

where the index R or C stands for the examined dyes Rhodamine B and Coumarin 1, respectively.
It is desirable to know the TPA of Rhodamine B and Coumarin. Since only limited data is

available, measurements of the two-photon absorption were carried out. Usually, tunable pulsed
laser sources, like an Optical parametric oscillator (OPO) or Optical parametric amplifier (OPA)
are used to scan the excitation wavelength. The technique applied here is somewhat different. The
fibre was taken out of the setup to reach the maximal resolution in this initial experiment. An
evolutionary algorithm was used to compensate for any arising dispersion up to the focus in the
cuvette. Therefore, a two-photon diode was placed in the position of the cuvette and its signal was
used as feedback for the evolutionary optimization algorithm. This diode (G1116, Hamamatsu)
with an absorption around 400 nm is insensitive for single photon (IR) excitation. By means of
amplitude shaping a Gaussian spectrum with a width of 2.5nm was cut out of the available input
spectrum. Its central wavelength was then scanned and fluorescence spectra of Rhodamine B and
Coumarin 1 were taken for each step. As a reference, the same scan was repeated while measuring
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Figure 7.1: The two-photon field numerically evaluated for three types of antisymmetric phase functions.
Dashed lines indicate the two-photon spectrum of a transform-limited pulse. The dotted line on the other
hand is the spectral phase used in that calculation. The first three functions are antisymmetric around
805nm. For the second three graphs (d,e,f) the point of antisymmetry is shifted to 815nm. The third-
order phase (c,f) and the (a,d) sine function both result in a spike which can be used to selectively excite a
certain spectral band. The π-step (b,e) features the same spike but also allows constructive interference for
wavelengths further away from the point of antisymmetry. [67]
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Figure 7.2: Two-photon absorbance of Rhodamine B and Coumarin 1. With the help of amplitude shaping,
transform-limited pulses with a shifting Gaussian spectrum were created. For each shift of the central
wavelength the fluorescence signal was integrated and divided by the signal of a two-photon absorbing
diode. [67]

the signal of a two-photon absorbing diode as a reference. The integrated fluorescence signal
divided by the two-photon diode signal is displayed in Fig. 7.2. Of course, this technique is
only applicable in the range of the available laser spectrum. Hence, greater uncertainties of the
TPA arise towards the edges of the spectrum. Also, only relative two-photon absorption can be
measured. Lastly, we require a measure to evaluate the effect of different pulse shapes on selective
excitation. Often, in biological imaging a contrast is defined as:

C =
IR − IC
IR + IC

. (7.1.4)

Here, IR and IC are the integrated fluorescence signals. The contrast can feature values ranging
from -1 to 1, which would imply that only either one signal is present. A contrast of 0 on the
other hand stands for equal fluorescence from both samples. Obviously in real world applications
the fluorescence intensity will primarily depend on the concentration of a dye in a given solution.
The fluorescence ratio was not equal in the experiment, thus a transform-limited pulse was used
to establish a reference intensity ratio. This was used to normalize the simulations to reflect the
experimental conditions where a transform-limited pulse led to a contrast of 0.18.

7.1.3 Selective Excitation of Fluorophores after a Hollow-Core Fibre
For the actual experiments, pulses were transmitted through the Hollow-Core fibre. The fibre
unfortunately possesses two glass windows on both ends which prevent dust from entering the
fibre core. The beam power was reduced to 10 mW (which corresponds to a pulse energy of 35 nJ)
to ensure that the window did not get damaged. Nonlinear spectral changes in contrast would be
no issue, since these could be compensated for by nonlinear backpropagation [13, 76]. As stated
earlier, evolutionary parametric chirp optimizations were carried on the signal of a two-photon
sensitive diode at the position where later the cuvette would be placed. The offset will be added
to all antisymmetric phase functions discussed in this chapter to ensure that the phase is flat prior
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Table 7.1: Phase functions used in the contrast scans of Coumarin 1 and Rhodamine B. λc or ωc depicts
their respective point of antisymmetry. The scans used parameters which are stated in the third column.

phase function parametrization parameters

sine A sin(k(λ− λc)) A = 25 rad ,
k = 0.0736 nm−1

third-order b3
6

(ω − ωc)3 b3= 2× 105 fs3

π-step πΘ(ω − ωc)

addition of a certain phase function at the point of maximal excitation. The cuvette was filled
with a mixture of Rhodamine B and Coumarin 1 (chapter 5.4.2 and 5.4.1) at concentrations of:
10−3 molar and 7.5× 10−3 molar.

The emission spectra of Rhodamine B and Coumarin 1 are well separated and thus can be eas-
ily distinguished (see Fig. 7.4). For contrast calculation, Rhodamine fluorescence was integrated
from 560 nm to 700 nm and Coumarin fluorescence from 410 nm to 550 nm. The gap in between
was left un-integrated to reduce crosstalk between both signals. Contrasts calculated from the in-
tegrated spectra was then used as fitness for the evolutionary algorithm. These algorithms rely on
evaluating a large amount of individuals (parameter set). This means that the time per sample is
critical when trying to minimize optimization durations. This time was limited by two factors:
First, liquid crystals in the modulator require some time to orient themself after an updated voltage
is applied. Second, the spectrometer’s integration time has to be accounted for. Many optimiza-
tions were performed until it became clear that the delay between to fitness measurements had to
be twice the integration time of the spectrometer in addition to the modulator delay to ensure clean
data acquisition. The evolutionary optimization was set to either maximize or minimize the con-
trast ratio. Besides optimizations, parameter scans of previously mentioned antisymmetric phase
functions were carried out. Parameter scans are significantly faster than optimizations and are a
therefore a valuable tool to map the contrasts and fluorescence intensities that can in principle be
achieved. Fig. 7.2 shows that we expect Coumarin 1 to be more sensitive on wavelengths below
the central wavelength of the laser spectrum. Whereas Rhodamine B has an absorption maximum
which lies above the lasers central wavelength.

This leads to the conclusion that a function which results in constructive interference for
lower wavelengths and destructive interference at higher wavelengths will optimize the contrast
for Coumarin fluorescence and vice versa. Tab. 7.1 lists the definition of the phase parametriza-
tions used in the parameter scans. All functions either possess a central wavelength λ0 or central
frequency ωc which define their point of antisymmetry. At this point, the phase’s antisymmetry
7.1.2 will always ensure complete constructive interference. The effect of the sine phase and third-
order is clear: Constructive interference around the point of antisymmetry will be used to shift the
two-photon spectrum towards the absorption maximum of either one fluorescent dye. The pi-step
phase function, a variation of the Heavyside function Θ(x), shows destructive interference next
to the point of antisymmetry. Further away from the step, the flatness of the phase leads to con-
structive interference thus resulting in an opposite effect to what the other two parametrizations
accomplish. For each shift of the point of antisymmetry a spectrum is taken and the contrast
evaluated. The resolution of this scan was equal to the resolution of the shaper where one pixel
amounts to 0.2716nm.

Fig. 7.3 shows a selection of scans that were carried out. All simulations match the measure-
ment extremely well despite the fact that the TPA could not be easily measured at the edges of the
laser spectrum. As the concentration of both dyes was not resulting in the exact same fluorescence
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Figure 7.3: The point of antisymmetry is scanned from 775 nm to 835 nm The sum of both intensities is
plotted in red, and the black dashed line depicts simulations of the phase scans carried out on the basis
of the previously measured TPA. a) The third-order phase shows a strong modulation of the contrast. The
pi-step phase on the other hand is not as efficient in creating a contrast. A dip in the overall intensity can be
seen as the step shifts through the laser spectrum. The sine-phase presents a contrast change comparable to
that of the third-order phase. [67]

for excitation by a transform-limited pulse, the contrast is shifted to larger values. The contrast
of a TL pulse is marked as a solid black line as reference CTL = 0.18. Deviations from this ref-
erence mean that a pulse either enhances Rhodamine B (C > 0.18) or Coumarin 1 fluorescence
(C < 0.18). Both, the sine and third-order phase show large contrast differences which can used
for selective excitation. The pi-step function on the other hand has a significantly lower influence
on the contrast, which this is made up for by a large overall fluorescence intensity. At the point of
maximal contrast the total fluorescence intensity is reduced to only 45% and 52% of the intensity
of the transform-limited pulse.

Fig 7.4 depicts three spectra taken in the course of the parameter scans shown in Fig. 7.3.
These spectra correspond to the phase shifts which generated maximal contrasts for the sine-phase
parametrization. All scans were normalized to allow for easy comparison. Experimental condi-
tions, concentration or the sensitivity of the detector will differ from setup to setup. Hence, it
depends on the application whether larger fluorescence intensity or greater contrast is required.

7.1.4 Optimizations of Parametric Phase Functions for Selective Excitation
Parameters of three phase functions were optimized for maximal and minimal contrast between
the fluorescence of Rhodamine B and Coumarin 1. As before, a precompensating offset-phase was
added to all phase functions to account for all dispersion of the setup and fibre up to the sample.
The contrast was directly used as fitness function for the optimizations. Since noise will become
a significant factor for longer pulses which generate only low fluorescence it is necessary to nor-
malize fluorescence intensities to that of a transform-limited pulse. This ensures that initialization
occurs around 0 contrast. Positive and negative contrasts then stand for pulses optimized for ei-
ther dye. However, all graphs depicted in this chapter will show the un-normalized contrasts. We
concluded earlier, that the pi-step phase function is not able to generate large contrasts due to the
nature of its two-photon field (see. Fig. 7.1). Hence, it was not used as a parametrization in the
evolutionary optimizations. A third-order phase, a Taylor polynomial of 5th order and a sine phase
with variable amplitude and frequency were selected as parametrizations for the optimizations.
The results of the best optimizations are summarized in Table 7.2 and Table 7.3.

Multiple optimizations for each parametrization were carried out to ensure that they converged
into the global optimum. After optimization, spectra for the best individual were measured using
a longer spectrometer integration time to determine the contrast for each optimization. The third-
order phase, which only features two parameters, converged in the lowest number of generations.
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Figure 7.4: Exemplary spectra measured for pulses shaped with a sine phase antisymmetric around three
different wavelenghts. These spectra were taken in line with the scan depicted in 7.3 and are normalized to
1 [67].

parametrization best contrast intensity parameters

A sin(k(λ− λc)) 0.28 22.37 % A = 17.2 rad,k = 0.059 1
nm ,λc = 813 nm

b3
6

(ω − ωc)3 0.32 4.1 % b3 = 7.94× 105fs3,λc = 823 nm
5∑
i=2

bi
i!

(ω − ωc)i 0.33 4.72 % b2 = −3.84× 104 fs3, b3 = −1.46× 106 fs3

b4 = −5, 23× 105 fs4, b5 = 1.35× 109 fs5

Table 7.2: Parameters found for optimized Rhodamine B fluorescence (larger contrast). The transform-
limited pulse gives a contrast of 0.18.

parametrization best contrast intensity parameters

A sin(k(λ− λc)) 0.09 22.99 % A = 58.1 rad,k = 0.037 1
nm ,λc = 791 nm

b3
6

(ω − ωc)3 0.08 8.8 % b3 = 8.89 × 105fs3,λc = 792 nm
5∑
i=2

bi
i!

(ω − ωc)i −0.004 10 % b2 = −3.79 × 104 fs2, b3 = 1.67 × 106 fs3

b4 = −4.33 × 107 fs4, b5 = 4.79 × 108 fs5

Table 7.3: Parameters found for optimized Coumarin 1 fluorescence (lower contrast).
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Figure 7.5: The graph shows simulated two-photon fields for the optimized parametric phase functions.
It is can be seen that optimizations were able to find two-photon fields that match excitation of higher or
lower transitions. Graph a) displays results for minimized, and graph b) for maximized contrast. The simple
third-order phase function uses the spike, situated at the wavelength of antisymmetry, to shift the two photon
spectrum to either higher or lower wavelengths. The step- and sine function appear to be beneficial when a
reasonable fluorescence strength has to be retained. [67]

Although contrasts for both optimization goals were comparably large, the reduction in overall
intensity was extreme. The fifth-order polynomial gave better contrasts and was able to use its
higher parameter count to adjust the two-photon spectrum better to the TPA of both Coumarin 1
and Rhodamine B. Convergence on the other hand was relatively slow in comparison. The sine
function did find the lowest contrasts but optimal pulses retained strong fluorescence intensity. To
get an impression of the obtained results, Fig. 7.5 shows the two-photon fields corresponding to
the parameters depicted in table 7.2 and 7.3.

This graph can help to illustrate the reason for the difference in total fluorescence intensity
between the 3rd order phase parametrization and its contenders. The optimized fifth order polyno-
mial allows for excitation of two-photon transitions on the lower end of the wavelength scale while
minimizing excitation for higher wavelengths. While the high number of free parameters of the
fifth-order polynomial phase were able to achieve the largest contrasts, the sine-phase parametriza-
tion is able to achieve comparable contrasts while retaining a lot of intensity with only three pa-
rameters. In further optimizations it was found, that an increased amount of parameters did not
result in better contrasts. We can conclude that if mediocre contrast differences are sufficient the
sine-phase parametrization is a useful parametrization which converges fast and does not suppress
fluorescence as much as the other parametrisations tested here.

7.1.5 Solution Set
This optimization problem features conflicting goals. To achieve contrast between two fluores-
cence dyes the two-photon spectrum has to be modulated. This will inevitably lead to a reduction
in overall fluorescence intensity Itot = IR + IC . The space spanned by these two goals could be
mapped by optimizations with an altered fitness function:

f = (IR − IC)α(IR + IC)β. (7.1.5)

Here, α ≥ 0 and β ≤ 0 would define the importance of each goal. Unfortunately this would take a
long time with the method of evolutionary optimization. To get a sense of this solution space, the
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Figure 7.6: For all three phase scans, the total fluorescence intensity is plotted against the contrast. a) shows
the scans from fig. 7.4 while circles mark the optimization results, b) depicts the corresponding simula-
tions. In additional simulations, a large number of random phase functions were evaluated and their total
fluorescence intensity and contrast calculated. Black dots mark solutions which were selected following the
domination principle [78, 79]. [67]

phase scans from the previous chapter were plotted in Fig. 7.6. Experimental results were plotted
in the left graph (a). Simulations of these scans were plotted on the right (b). In these graphs, the
transform-limited pulse would achieve a contrast of 0.18 as well as total intensity of 100. A vast
number of phase parametrisations could be devised, but it appears that they span a distinct area in
the space of both conflicting goals.

The solution space seems to have a noticeable triangle shape. Phase functions seem to create
solutions at an front which follows dIfl/dC = const. > 0 for pulses optimized for Coumarin
1 and dIfldC = const. < 0 when contrasts are optimized for Rhodamine B fluorescence. The
pi-step phase scan spans the top part of the graph, achieving mediocre contrasts at high overall
intensities. Here one parameter is sufficient to select a phase function either resulting in larger
contrast or signal. If larger contrasts are required optimizations with multiple parameters should
be carried out. The differences between experimental data and simulations probably arises from
the errors made during measurement of the TPA of the dyes. The question still stands whether
phase-functions exist that can surpass contrasts and intensities found earlier by the three tested
parametrizations. Hence, thousands of random phase-functions were evaluated in a simulation.
Phases which fulfilled the domination principle were kept [78, 79], others discarded. This created
a pareto-optimal front (black squares in fig. 7.6) which maps the space reachable by phase shaped
pulses. It is surprising how close the pi-step phase function follows the possible range of solutions
at high total fluorescence intensities. For low intensities higher contrasts than these found by
parametric scans could be achieved.

7.1.6 Optical Properties of the Kagome Fibre
A Kagomé fibre relies on a different method of beam confinement than classical band-gap pho-
tonic crystal fibres. In a Kagomé fibre the band-gap is orientation dependent which allows for
transmission of a broad spectral range. Its unique properties which include extremely low disper-
sion and nonlinearity make it an ideal candidate for endoscopic applications where high intensity
pulses are required. In contrast to the Hollow-core fibre, this fibre’s core is not covered by a glass
window which in principle will allows the use of amplified pulses. An end cap with a window
glued to its front was built to ensure that no dust enters the fibre. Light was coupled into the fibre
with a 15 cm lens and re-collimated after the fibre with another lens (f = 30 cm). PRISM-phase
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Figure 7.7: a) Ellipticity of a pulse measured for incoming linear polarized pulses rotated by a half-
waveplate. b) Phase compensation found for directly before and after the Kagomé fibre. The difference
amounts to the fibre’s dispersion.

measurements were performed using a nonlinear detector just before and after the fibre. Fig. 7.7
b) shows the difference between both PRISM-offsets used for compensation and the difference
which corresponds to the fibre’s dispersion. A fit around 805nm gave a total fibre induced chirp
of −406 fs2 ± 20 fs2 and 7000 fs3 ± 1100 fs3. Another fibre property is birefringence. While
the Hollow-core fibre showed strong birefringence, the Kagomé fibre appears to have no influence
on the pulse’s polarization state. Fig. 7.7 b) shows that linear polarized light entering the fibre
under varying angles is still linear polarized after transmission through the fibre. This implies that
no distinguished fast or slow axis exist that would have an influence on the polarization of the
transmitted pulse.

7.1.7 Polarization Shaped Laser Pulses for Selective Two-Photon
Fluorescence Excitation after a Kagomé Fibre

A pulse with a spectrum centered around 805nm and a spectral width of 32nm was shaped using
the method specified in chapter 4.3.2. Thereby, two perpendicular polarization components can be
independently phase-shaped. The polarization shaped pulses were coupled into the fibre and were
then focussed into a cuvette filled with a mixture of the two fluorescent dyes. A fluorescent dye
which is excited by linear polarized light usually emits light in the same polarization it was excited.
If no internal charge transfer leads to a polarization change of emitted light, the polarization of
the fluorescence solely depends on two factors. A longer lifetime of an excited state allows the
molecule to rotate, which leads to the emission of slightly depolarized light. The second factor is
the average rotational speed of the molecules. This is influenced by temperature and viscosity of
the dye’s solution. Rhodamine B and Coumarin 1 were solved in Glycerol to inhibit movement
of the molecules maximizing their fluorescence anisotropy. Fig. 7.8 a) shows a measurement of
Rhodamine B and Coumarin 1 anisotropy. Fluorescence anistoropy is defined by

a =
I‖ − I⊥
I‖ + 2I⊥

, (7.1.6)

where I‖ and I⊥ are fluorescence intensities parallel and perpendicular to the exciting polarization
direction. A half-waveplate in front of a polariser was rotated and spectra recorded. From these



7.1. Optimization of Two-Photon Processes after Photonic Crystal Fibres 71

400 450 500 550 600 650
0

100

200

300

400

500
in

te
ns

iti
y 

(a
rb

. u
ni

ts
)

wavelength (nm)

Hwp 60 °
Hwp 70°
Hwp 80 °
Hwp 90 °
Hwp 100 °

400 450 500 550 600 650
0.0

0. 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

an
is

ot
ro

py

wavelength (nm)

coumarin 1
rhodamine B

(a) (b)

Figure 7.8: Polarization anistropy calculated from spectra taken for various positions of a polarizer between
cuvette and spectrometer [68]

spectra we computed the anisotropy over the spectral range. Fig 7.8 b) suggests reasonable values
for the anisotropy of both dyes. For Coumarin 1 a slightly lower anisotropy was measured. This
might originate from the smaller size of Coumarine which causes faster rotation compared to
Rhodamine. It is of interest if this anisotropy could be used by two perpendicular phase shaped
laser pulses to create selective fluorescence in either polarization of the detection. Therefore, a
phase which amounts to the compensation found by PRISM in addition to an antisymmetric second
order chirp term of the type ϕ(ω) = b3

6
(ω − ωc)3 were written on the shaper. The antisymmetric

phase on Array A was chosen to be optimal for Coumarin fluorescence (λc = 797nm), while
Array B was optimized for Rhodamine B fluorescence (λc = 813nm). Then, pulses were focussed
in the cuvette and the spectra were recorded by a spectrometer and a polariser in line with the
beam. A half-waveplate was rotated and the polarization dependent fluorescence captured. As
before, resulting from the difference in concentrations and the problem that turning the waveplate
in front of the fibre slightly changed the efficiency at which the beam is coupled into the fibre,
the fluorescence intensities were normalized by that of the transform-limited pulse. When the
perpendicular polarized double pulse is oriented such that the pulse optimized for Rhodamine is
parallel to the polariser in front of the spectrometer, then one will expect a contrast of:

cmax =
I

(1)
R + βRI

(2)
R − I

(1)
C − βCI

(2)
C

I
(1)
R + βRI

(2)
R + I

(1)
C + βCI

(2)
C

. (7.1.7)

Here, I(2)
R would refer to the fluorescence intensity of Rhodamine originating from excitation by

the pulse which was optimized for Coumarin fluorescence. βR/C = (1 − a)/(2 + a) denotes the
ratio of fluorescence which gets emitted perpendicular to the excitation for a given dye. The same
can be calculated for the minimal contrast:

cmin =
I

(2)
R + βRI

(1)
R − I

(2)
C − βCI

(1)
C

I
(2)
R + βRI

(1)
R + I

(2)
C + βCI

(1)
C

. (7.1.8)

Measured, and calculated contrasts are plotted in Fig. 7.9. Calculated contrasts which were derived
from the equations for cmin and cmin are matched well by the measurements. As the anisotropy
measurements reveal (fig. 7.8), the spectrometer will always capture fluorescence originating from
both orthogonal pulses, not matter how the polariser in front of the spectrometer is oriented. De-
spite this fact, reasonable contrasts were achieved. The inset in the upper right corner depicts the
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Figure 7.9: Demonstration of selective excitation using a polarization shaped laser pulse. By using two
differently phase shaped perpendicular polarized pulses, polarized fluorescence was evoked. Turning a
polariser in front of the detector can then be used to choose between stronger Rhodamine B or Coumarin 1
fluorescence. [68]

phase shaped perpendicular polarized double pulse which was used in this experiment. The dom-
inant feature seen in this illustration arises from the strong quadratic chirp, used for shifting the
two-photon field in either direction.

7.1.8 Conclusion
In this chapter phase shaped pulses were used to selectively excite two fluorescent dyes after trans-
mission through two fibres. It was demonstrated that by precompensating pulses, phase shaped
pulses can be used in fluorescence experiments on the rear end of photonic-crystal fibres. Phase
functions, which can be beneficial for the modulation of the two-photon field, were analysed.
Parameter scans gave insight on the solution space spanned by two conflicting goals (retaining
a large amount of fluorescence intensity, while increasing the fluorescence contrast as much as
possible). In the parametric phase scans, the third-order phase function outperformed the sine-
parametrization. The phase-step function did not achieve comparable contrasts able to maintain a
strong fluorescence signal from both dyes. These results are in line with simulations of the two-
photon field depicted in Fig.7.1. The parameters (chirp, step size, amplitude) which defined the
earlier phase functions were manually selected. Therefore, evolutionary optimizations were used
to find parameters for a series of phase functions which would be optimal for either Rhodamine
B or Coumarin 1 fluorescence, while at the same time inhibiting fluorescence of the other dye.
The largest contrast was found by the polynomial phase parametrization. But a phase-step was
surprisingly effective for high intensity results. Optimzations were found to be applicable for find-
ing phase functions which could lie on the pareto-optimal front defined by both conflicting goals.
Furthermore a novel type of fibre was studied. This Kagomé fibre was found to feature extremely
low dispersion and have nearly no influence on the polarization state of a incoming laser pulse.
Two perpendicular polarized phase shaped pulses were created with the SLM. One was optimized
for maximal and one for minimal contrast. While rotating the polarization of the double pulse
with the help of a waveplate in front of the Kagomé fibre, the polarized fluorescence spectrum of
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Rhodamine B and Coumarine 1 in glycerol was recorded. Since both dyes show strong fluores-
cence anisotropy, it was possible to show that solely rotating the waveplate and thus the double
pulse before the fibre could be used to maximize Rhodamine or Coumarin fluorescence at a given
polarization. This method to control two-photon excitations should in principle be applicable to
all anisotropic fluorescent molecules which possess a different slope in two-photon absorption in
the spectral range of the exciting laser pulse. These results could hence be useful in endoscopic
applications, or could be applied to enhance two-photon fluorescence excitation microscopy. The
kagome fibre allows for much higher pulse energies than those applied in the outlined experiment.
This would permit further experiments at intensities required for three-photon excitation.
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7.2 Influence of Nonlinear Effects on the Three-Photon
Excitation of L-Tryptophan

7.2.1 Preliminary work and Introduction
Two-photon fluorescence is already a valuable tool in biological research and medicine. The pre-
vious chapter (7.1) discussed how photonic crystal fibres can be used to deliver phase or even
polarization shaped pulses to selectively excite two-photon transitions in endoscopic applications.
While two-photon fluorescence microscopy, due to it’s intensity dependence, can achieve higher
resolution images as well as depth scans, three-photon excitation increases this effect even fur-
ther [80]. Three-photon excitation which requires even higher laser intensities to become efficient,
could in principle be also achieved after transmission through a hollow-core fibre. In this chapter,
we will explore the effect of phase shaping on three-photon fluorescence excitation of the amino
acid Tryptophan. Benefits of exciting Tryptophan directly via three IR photons is again the in-
creased penetration depth of the exciting light as well as the fact that Tryptophan occurs naturally
in biological systems. Non-invasive three-photon excitation in vivo was demonstrated by Hor-
ton et.al. [81] who produced stunning 3D images of red fluorescent protein-labelled neurons in
a mouse brain. Many marker substances were analysed [82] but the use of UV autofluorescence
would protect the sample of this contamination. Tryptophan, Phenylalanin, Tyrosin and Histidin
all are aromatic compounds and thus can be used in fluorescence experiments. Of these four Tryp-
tophan shows the most efficient fluorescence. As one of the required amino acids for human life
the properties of Tryptophan were studied extensively [83, 84]. Chen et.al. studied in 2004 if
pulse shapes could be used to optimize a fluorescence ratio of two and three-photon processes
[85]. In these experiments engineered fitness functions were used to find pareto optimal results for
simultaneous two and three-photon fluorescence. Results seem to favour transform-limited pulses
when higher-order excitation was prioritized, while trivial results were found for cost functions
which optimized two-photon fluorescence. Unfortunately these optimization were carried without
any phase parametrization and hence hard to interpret. In this chapter we will look at the benefits
of pulse shaping for three-photon excitation. Since intensities required for this kind of process
are relatively high, nonlinear effects will occur at the focus. Tryptophan solved in water was se-
lected as biological relevant system and simulations of the evolution of the pulse within the cuvette
will be compared to experimental results. Finally we will examine whether nonlinear effects and
pulse shaping could be exploited to selectively excite naturally occurring fluorophores in future
microscopy applications. Experiments presented here have been published in the context of my
theses in the Journal of the Optical Society of America B [86].

7.2.2 A Model for Nonlinear Pulse Propagation in a Fluorescence Setup
In contrast to the experiments conducted earlier, only amplified pulses offer the high intensities
required for three-photon excitation. The RegA (see chapter 5.1.2) amplifier provides pulses of
∼ 3µJ at a rate of 287 kHz. The spectrum was tuned to a central wavelength of 805nm while
the spectral width was reduced by the amplification process to 22nm. A grating compressor in
between the amplifier and pulse shaping setup compressed the pulse to a length of 58 fs. The
pulse length was measured with the autocorrelator introduced in chapter 5.3.1. After the pulse
shaping setup, which was set up to allow for simultaneous amplitude and phase modulation, the
beam was focussed into a glass cuvette by means of a (f = 20 cm) focussing lens. The 12mm
long cuvette had a wall thickness of 1mm and contained 15mM L-Tryp in v.e. water. The focus
was adjusted to lie exactly in the centre of the cuvette (at a depth of 6mm). Pulse energies were
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Figure 7.10: This graph shows the transmittance of the employed glass filters BG38 and UG11. Their com-
bined use is particularly suitable for removing stray IR and visible light from the Tryptophan fluorescence
signal. Transmittance data was extracted from [87].

so high that in the cuvette walls, the slightly focussed light was intense enough to provoke white
light generation. With the help of neutral density filters the maximal laser power was limited to
0.7µJ , preventing white light generation in the glass. Here, even if the threshold for white-light
generation is undercut, it is clear that the glass (e.g.: also the glass in microscopy application) will
have a strong influence on the propagation and thus selectivity of shaped pulses if these high pulse
intensities are employed. Two lenses were used to focus light (emitted sideways) from the cuvette
into a photomultiplier tube, while a spectrometer was placed in the direction of beam propagation
to monitor nonlinear changes of the pulse spectrum after the cuvette. Two filters (UG11, BG39)
were used to select Tryptophan fluorescence and minimize the signal from stray IR light detected
by the photomultiplier (see fig. 7.10).

The phase offset which can be used to create a transform-limited pulse at the focal point in
the cuvette could not be found by using Tryptophan fluorescence as a signal, as nonlinear effects
like self-steepening can change the offset phase required. Hence, Rhodamine B solved in v.e.
water was used as nonlinear fluorescence signal fed back to the PRISM algorithm. The phase
compensation found for the fluorescence optimization as well as a iteration of PRISM on the signal
of a two-photon diode at the cuvette’s position were compared. The difference of both phases was
appropriate to that of a cuvette and a lens (The only difference in the optical path for both PRISM
runs). This validates that only linear dispersion was compensated by this offset phase.

A reduced model of the pulse propagation method discussed in chapter 6.2 was used for this
setup to predict the change of the spectrum due to nonlinear effects in the focus. The simulation
took account of dispersion, self-phase modulation and self steepening. At each propagation step
of the Split-step Fourier method the intensity of the beam was re-evaluated according to the exper-
imental conditions (focal length, original beam diameter, beam power) to account for the fact that
nonlinearities occur primarily close to the focal point. The simulation of the pulse-propagation
was initialized at the beginning and terminated at the end of the cuvette. So at each step, either
the material properties (consisting of a set of GVD, TOD and the nonlinear refractive index n2
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Figure 7.11: a) Measured FWHM of the pulse spectrum after the cuvette plotted against the linear pulse
chirp which was added to the compensation phase. Three scans were performed for a pulse power of
72, 100 and 162mW . b) Simulations of the SPM induced spectral broadening (and narrowing) for a input
pulse with a central wavelength of 805nm and a spectral width of 22nm.

[88, 89, 90, 91]) of quartz glass or water were selected. This is required, since the nonlinear re-
fractive index, as well as dispersion are significantly larger in quartz than in water. Propagation in
air was neglected due to the same reasoning.

For selective excitation a third-order phase function was selected. This phase parametrization
offers the advantage that the effect not only on the three-photon field but also on the temporal
pulse shape of a third-order phase is well understood. A third-order phase, antisymmetric around
a frequency ωc

Φ(ω) =
b3

6
(ω − ωc)3 , (7.2.1)

equals a quadratically chirped pulse. When ωc coincides with the central frequency of the laser
spectrum the pulse is simply quadratically chirped by the value of b3. Although, a central frequency
which differs from ωc will result in a linearly and quadratically chirped pulse which can be easily
seen by performing a Taylor expansion of Φ(ω) with respect to ω0. All these pulses feature an
asymmetric pulse profile which will have a distinguished effect when self-phase modulation is
considered. A third-order phase with significantly lower value than that of the previous chapter
was chosen. This is sensible since the efficiency of three-photon fluorescence is proportional to
∝ I(t)3.

As a simulation of SPM and self-steepening depends on the factor (n2 × I), both the nonlinear
refractive index of the material as well as the pulse shape and power have to be known exactly.
The beam power was measured with a power meter. As these are quite imprecise, it is reasonable
to check whether SPM and self-steepening are correctly modelled. A comparison of the FWHM,
measured and simulated, of the spectrum after transmission through the cuvette is given in fig.
7.11.

Literature values were used for the dispersion and the nonlinear refractive index of water and
quartz. The simulations show a good conformance with the measurement. It can therefore be con-
cluded that SPM and self-steepening are correctly modelled by the proposed simulation method.

Fig. 7.11 shows besides the well known spectral broadening another effect. Negatively chirped
pulses for which shorter wavelengths arrive early and longer wavelengths are delayed experience
a spectral shift towards longer wavelengths at the leading and a shift towards shorter wavelengths
at the trailing edge of the pulse. This results in a reduced bandwidth after propagation through
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Figure 7.12: a) Three-photon spectrum for a positive third-order phase of 5× 104fs3. b) The three-photon
spectrum resulting from a negative third-order phase (−5 × 104fs3) is equal to the positive case when
effects like SPM and self-steepening are neglected. The red line stands for the three-photon spectrum of the
transform-limited pulse.

a nonlinear medium as can be seen in simulation and measurement alike. It is easy to spot that
this effect can result in pulse-shape dependent spectral changes which will have an influence on
the spectrum and ultimately multiphoton excitation as well. Without nonlinear effects the three-
photon spectrum for a quadratically chirped pulse does not depend on the sign of the chirp. Fig.
7.12 depicts the coinciding three-photon spectra for quadratic chirps of ±5× 104f 3. Whereas the
red line depicts the three-photon spectrum of a transform-limited pulse, based on the reference
spectrum taken before the cuvette. For each precompensated pulse a simulation of the propagation
was performed from the beginning of the cuvette up to the focus. The spectrum and spectral
phase found at the focal point were then used to evaluate the three-photon spectrum according to
eq. 4.5.3. While inverting the sign of the phase function does not change the simulated three-
photon spectrum in the linear case, it should make a difference when nonlinear effects are taken
into account. Fig. 7.13 shows this difference. Graph (a) and (b) can be compared to the linear
simulations performed earlier: SPM results in a strong reduction of the efficiency in three-photon
excitation. The asymmetry of the pulse shape during propagation in the cuvette thus leads to an
asymmetric three-photon spectrum. As the input spectrum was centred at a wavelength slightly
above 805nm the amount of reduction in efficiency is not equal for positive and negative third-
order phases. The effect of a shifted point of antisymmetry can be seen in graphs (c) and (d) where
λc was chosen to be 811nm.

It can still be said that the point of antisymmetry defines the shape of the three-photon spec-
trum. When the point of antisymmetry is scanned from one side of the exciting spectrum to the
other, the maximum of three-photon spectrum shifts just like it is the case for the two-photon spec-
trum (see Fig. 7.13). In the two-photon case this effect can still be understood analytically while
for three-photons a double-convolution over the exciting IR spectrum ensures that every phase
unequal to the flat phase will lead to a reduced three-photon excitation efficiency. A flat phase
close to the point of antisymmetry for the third-order phase allows for constructive interference
of photons around this wavelength. A rule of thumb for the shape of the three-photon spectrum
is that the maximum will be situated at the point of antisymmetry while an overall reduction in
efficiency will depend on the remaining peak intensity of the shaped pulse. The dominant effect
on the spectral evolution of the pulses in the cuvette was SPM. Only small changes were spotted
when self-steepening was disabled.
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Figure 7.13: Simulations of the three-photon spectra after propagation of the pulse up to the focus. a)
+5 × 104fs3, centre wavelength 805 nm, b) −5 × 104fs3, centre wavelength 805 nm, c) +5 × 104fs3,
centre wavelength 811nm and d) −5× 104fs3, centre wavelength 811 nm. The difference of three-photon
spectra for positive and negative phase coefficients is a result from self-phase modulation induced spectral
changes.

Another interesting effect was observed: Since pulses are precompensated to account for the
dispersion of the cuvette and water up to the focus, pulses will be negatively chirped when prop-
agating in the cuvette. On the way out pulses will be mainly positively chirped. We can consult
fig. 7.11 for the effect of linear chirp on a chirped pulse. Although this simulation was carried
out over the full length of the cuvette, the comparison still holds. Hence, pulses will experience
spectral narrowing on the way towards the focal point and spectral broadening on the way out
of the cuvette. This will result in an effectively reduced spectral width which would occur in all
microscopy applications at these intensities.

It is worth to note that SPM cannot be used to create an overall frequency shift by itself. The
frequency shift at each time induced by SPM can be written as:

δω(t) = −n2ω0
L

c

∂

∂t
I(t), (7.2.2)

where L is the length of the material. and I(t) is the tempoal intensity of the laser pulse. When
integrating the frequency shift δω(t) from minus to plus infinity we find:

− n2ω0
L

c

∫ ∞
−∞

∂I(t)

∂t
dt = −n2ω0

L

c
I(t)|∞−∞ = 0. (7.2.3)



7.2. Influence of Nonlinear Effects on the Three-Photon Excitation of L-Tryptophan 79

(a
rb
.u
.)

Figure 7.14: Simulation of the spectral changes due to SPM and self-steepening up to the focus position in
the cuvette for a third-order phase of±5×104fs3 centred around 805nm. The simulation is initialized with
a reference spectrum taken before the nonlinear medium (solid black line).

that indeed no overall frequency shift is possible. Asymmetric pulse shapes can nonetheless lead
to asymmetric modulations of the pulse spectrum.

The fluence at the laser’s focus reaches 76mJ/cm2. At this point a positive quadratically
chirped pulse has a steep leading and a shallow trailing frank. As can be seen from eq. 7.2.2,
a steep flank results in a strong shift while a shallow flank will create a broad band shifted only
slightly. In combination with dispersion and self-steepening the induced spectral changes can be
rather complex, thus simulations are best to look at the spectral changes as they occur in the focus.

7.2.3 Shaped Laser Pulses for Selective Three-Photon Excitation Utilizing
Nonlinearities in a Cuvette

In the focus, where the laser fluence reaches values of 76mJ/cm2, the pulse that is shaped with a
third-order phase has a steep leading flank and shallow trail or vice versa. In combination with the
varying instantaneous frequency within the pulse a rather complex spectral change arises. Since
this is unique for each shifted spectral phase, simulations will give the best insight into the expected
spectral changes. This effect can be observed when looking at the simulated spectra in the focus
of the cuvette.

Fig. 7.14 depicts an example of the nonlinear spectral changes of 1mm quartz and 5mmwater
for two differently shaped pulses. One clearly sees the spectral narrowing as well as the asymmetric
shift resulting from the asymmetric pulse shape. Pulse-shape dependent spectral changes can be
used in addition to methods described in the previous chapter on two-photon excitation to optimize
selective excitation in high intensity applications.

In fig. 7.15 fluoresence intensity of Tryptophan in water was measured while shifting the
point of antisymmetry for both plus and minus 5 × 104fs3. These two scans were then repeated
for different power levels which were set via amplitude modulation with the pulse shaper. The
separation of the maxima for positive and negative chirped pulses increases for rising intensities,
as effects due to self-phase modulation become more and more prominent. A positive third-order
phase which corresponds to a pulse with a steep leading flank seems to shift the scans maximum to
longer wavelengths. This at first contradicts the results from fig. 7.14 where the spectral maximum
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Figure 7.15: Measured Tryptophan fluorescence for a scan of the wavelength of antisymmetry for a third-
order phase function at various pulse energies. At higher beam powers, a split between the curves for
positively and negatively shaped pulses starts to emerge.
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Figure 7.16: Simulation of Tryptophan fluorescence which included the intensity change during propagation
due to the Gaussian beam focus, SPM self-steepening and dispersion. Simulations are based on literature
values for GVD, TOD and n2 while the simulation was initialized by a reference spectrum taken before the
cuvette as well as measured values for the beam diameter and power. The simulation confirms the results
from fig. 7.15: A split emerges for higher pulse energies confirming that SPM and self-steepening have a
strong influence on multiphoton excitation in fluorescence setups.

is shifted to lower wavelengths. Important for the process of three-photon excitation is not the
maximum but the band shifted to higher wavelengths, allowing for constructive interference of
three-photons at higher wavelengths in the case of positive third-order phase shaped pulses. For
intensities of 85mW and less this effect is nearly gone. From these measurements we can conclude
that a positive third order phase that features a point of antisymmetry at higher wavelengths will
be appropriate for excitation at longer wavelengths, while a negative third-order phase shifted to
lower wavelengths should be used for shorter wavelength optimized excitation. Simulations match
the measurement well (see fig. 7.16). The same separation for positive and negative phases can
be observed. Here again nonlinear effects are negligible for scans below 85mW . The simulation
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is based on only literature values or measurements of the beam power, beam diameter and initial
spectrum performed prior to the experiment. Since no three-photon absorption data for tryptophan
was available, one photon absorption spectra were used to calculate the total fluorescence intensity
from the three-photon spectrum [60]. This is a sensible simplification since both processes share
some selection rules.

7.2.4 Conclusion
The path from last chapter’s selective two-photon to selective three-photon excitation made clear
that nonlinear spectral changes will have a great influence on multiphoton fluorescence excitation
by shaped pulses. The good agreement between experiment and the simulation, which was based
only on literature values, encourages that a correct model of the underlying processes can be used
to effectively predict pulse shapes for optimal control of this excitation process. In microscopy ap-
plications, the optical setup might be different but intensities required for three-photon excitation
stay the same. Three-photon excitation and self-phase modulation are inherently coupled since
both are χ(3) processes. Chapter 7.1 demonstrated how selective excitation can be achieved by
phase shaped pulses after a hollow core fibre. As kagomé fibres open up intensity ranges which
allow for three-photon excitation endoscopic applications come into reach. Here, the knowledge
of the way nonlinear changes occur in the focus could be used to further increase fluorescence
contrasts. Three-photon fluorescence excitation microscopy allows for depth scans, higher reso-
lution and the use of autofluorescence of biological tissue as it was shown for Tryptophan in the
experiments conducted here. From the work presented in this chapter, we can conclude that com-
pensation or at least modelling of the nonlinear effects which occur during three-photon excitation
processes can result in improved fluorescence or selectiveness in a wide range of applications.
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7.3 Spectral Changes after Filamentation Controlled by
Shaped Whitelight Pulses

7.3.1 Preliminary Work and Introduction
Ultrashort laser pulses are the method of choice when exploring very fast atomic or molecular
processes. Particularly, few cycle whitelight laser-pulses generated by filamentation in gas or in
hollow-core fibres are beneficial for measurements with high temporal resolution [92, 93]. These
pulses, which can be as short as 5 fs, are employed to observe electronic wave packets [94]
while specificly tailored pulse sequences were used to demonstrate that excitation pathways can
be selected so that ionisation [7, 95], dissociation [6, 96], or fluorescence [97] can be controlled.
Just recently, shaped whitelight laser pulses were firstly used to optimize the ionisation ratio of
differently sized small Silver clusters [98]. These optimal pulse shapes are usually found in a
closed loop optimization scheme. Filamentation in gases is in itself an intriguing process involving
dispersion, multiple nonlinear and spatial effects, as well as ionisation dynamics. To allow for the
necessary cancellation of self-focusing and plasma defocusing one requires either high powered
lasers or extremely short pulses. Although a white-light supercontinuum is sometimes created
using thin sapphire plates [42, 43], in the experimentes presented here a high powered Ti:Sa Laser
system and a two-stage filamentation in air is employed to create the broadband spectrum. This
method has the advantage of providing comparably high pulse energies. The ionisation process on
the other hand depends strongly on the pulse’s peak-power, wavelength and the gase’s ionisation
potential. Here, the widely used Keldysh parameter [99] can be employed to tell, whether ion-
isation follows mainly multi-photon ionisation (MPI) or tunnel-ionisation (TI). In filamentation
experiments, spectral blue shifting [100], temporal pulse breaking [101] and filamentation over
long distances [102] have been observed. Theoretical models which were developed to account
for these effects recently allowed for the simulation of filamentation and pulse propagation and
thereby helped to understand the complex dynamics resulting from the interplay of spatial and
temporal effects. Filamentation is a highly nonlinear process and thereby relies even more strongly
on the incoming pulse shape than the previously discussed three-photon excitation. Studies of the
influence of basic linear chirp and the interplay of the temporal and spatial focus of the filament
allowed to shift and control the onset of the filament in space [103]. In this chapter the influence
of the pulse shape on the resulting spectra after filamentation in rare gases will be studied. The
laser system with pulse shaping [104] unit allows to arbitrarily change the phase and amplitude
of supercontinuum white-light laser pulses. Comparison of the obtained spectra from simulations
and experiment of the pulse propagation after the filament will be used to understand the interplay
of all relevant effects and give guidance on how to control spectral features after filamentation by
carefully tuning the pulse parameters pre-filamentation. The pressure chamber used in this chapter
was built during a cooperation with the experimental group of Prof. Jean-Pierre Wolf from the
Université de Genève.

7.3.2 Filamentation Triggered by Ultrashort Whitelight Laser Pulses
Filamentation is a process in which a multitude of separate effects are involved. Their numerical
description was discussed in chapter 4.6, while chapter 6.2 concentrated on the actual implemen-
tation of these properties in the simulation. Additionally, some simple examples for pulse prop-
agation were shown when single effects were included or neglected during the simulation. We
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will now discuss which effects are relevant for propagation in the regime set by the experimental
conditions and which effects in turn should be neglected to achieve a reasonable simulation speed.

Generally, pulse propagation in a filament depends on the bound electron and plasma response
of the propagation medium on the laser pulse. This response can be distinguished in a linear and
nonlinear polarizability. The linear part of the bound electron response which is not dependent
on the electrical field is responsible for dispersion. The nonlinear bound electron response will
lead to effects like self-focussing, self-steepening and self-phase modulation which are governed
by the so called nonlinear refractive index n2. The nonlinear refractive index of Argon is smaller
(n2 = 1.05 × 10−19 cm2/W [105]) than that of Krypton (n2 = 2.5310−19cm2/W [106, 107]). It
was shown that the nonlinear refractive index, although intensity [108] and wavelength dependent
[106], simply increases linearly with pressure [109]. When the laser beam reaches power-levels
higher than the critical power (eq. 4.6.55) self-focussing overcomes diffraction leading to a beam
collapse. The critical power is a function of n2 and thus differs for Argon and Krypton. Here
Argon requires a larger power for self-focussing (0.804GW , at 761nm and 9 bar) than Krypton
(0.318GW , at 761nm and 9 bar). When the beam collapses, intensities get so high that ionisation
by either tunnel or multiphoton ionisation will occur. The plasma generated acts as a defocussing
element which quickly overcomes self-focussing. This can lead to repetitive focussing and defo-
cussing of the beam over large distances as described in various publications [110, 111]. This is
not possible under the experimental conditions here, where a strong focussing of the beam will
ensure that only a single, relatively short filament will be created. During propagation, the pulse
will ultimately loose energy due to the ionisation process.

Concerning the simulation, it is important to discuss the choice of the coordinate space. The
propagation of pulses close to the focus was simulated using a 2D cylindrical coordinate space
E(r, z). For solving the NLSE a variant of the Split-Step Fourier method [28] was implemented.
In addition, after each nonlinear step, a fast Hankel-transform is applied. Thereby, the spatial prop-
agation for a small step in z-direction amounts to a simple phase added in k-space. This reduction
of dimensionality was necessary to keep the required computing time in a feasible range. An off-
axis focussing mirror was used in the experimental setup such that the focus was not distorted by
the small angle required for separating the reflected, focussed beam from the incoming beam. The
experimental conditions therefore did not favour any radial direction which was also verified by
the radial symmetry of the beam after exiting the chamber. At far bigger beam intensities than
these studied here, filament breakup could occur which would make a 3D description necessary
[112].

As Sprangle et al. state in their paper [37] the complete evolution of pulses in filaments is
governed by the source terms:

S = SL + SNL + SRaman + Splasma + Swake + Srel + Sion (7.3.1)

While the linear polarizability (SL), the optical Kerr-effect (SNL), Plasma effects (Splasma) and
energy depletion due to ionisation (Sion) were included in the simulation, effects due to Raman
stimulation, plasma wakefield interactions and relativistic corrections were neglected in accor-
dance with the following considerations:

While Raman scattering will occur at the intensities and pulse lengths employed here, the
response on the nonlinear refractive index by excitation of vibrational states will occur after a
characteristic time for the Raman process≈ τr = 1/ωr. It was found that this time for short pulses
is in the order of 62.5 fs [37] which is larger than most pulses studied in the experiments presented
in this chapter. Secondly, effects on the propagation of the pulse due to the generation of plasma
wakefields were dismissed. This effect acts as a perturbation to the plasma term described in eq.
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4.6.58 and is proportional to a factor of δne/ne ≈ 10−5 [37] which will thus have only a minor
contribution to the propagation. Finally relativistic effects were neglected as they occur at inten-
sities of 2cε0

(
mecω0

e

)2, when the electron mass increases significantly. For the central frequency
of the whitelight spectrum this intensity is in the order of 1019W/cm2 which is well beyond the
peak intensities reached by transform-limited whitelight pulses studied here (6.78× 1014W/cm2).
These simplifications were necessary to reduce the required computational time for the propaga-
tion of the laser pulse. The accuracy of the simulation method was tested by comparison with
a different nonlinear pulse propagation implementation [113]. Spatial propagation of the beam
without nonlinear effects was verified by the accuracy in recreating the expected Gaussian beam
focus. Additionally, values for the plasma density and plasma column diameter were checked to
match the order of magnitude stated in [114].

Depending on the laser-wavelength and intensity, different theories should be used to model
the underlying ionisation process. While at very high intensities above threshold ionisation (ATI)
could become relevant, at lower intensities and low frequencies tunnel ionisation should be as-
sumed. Short wavelengths in contrast suggest multiphoton-ionisation as the dominant process.
The widely accepted quantity to distinguish between different ionisation regimes is the Keldysh
parameter [99]. It indicates whether the propagation takes place in a regime dominated by tun-
nel (γK < 1/2) or multiphoton ionisation (γK > 1/2) [41]. For transform-limited pulses at the
experimental conditions at hand, the Keldysh parameter is γK = 0.65 with the ionisation energy
of Argon (15.76 eV ) [115], or γK = 0.62 when the ionisation energy of Krypton (14 eV ) [116]
is applied. Since these values for the Keldysh parameter are only as low for the peak intensity of
a transform-limited pulse and mostly shaped pulses will be studied in the experiments presented,
one can safely assume that, except for the propagation of TL-pulses, a reduced model regarding
only MPI will be sufficient. The rate at which multiphoton ionisation occurs is equal to

Wmp =
2πω0

(l − 1)!

(
I(r, z, τ)

Imp

)l
, (7.3.2)

where Imp = ~ω2/σmp, while σmp = 6.4 × 10−18 cm2 is the multiphoton cross section which,
for the simulation, was taken from [37]. This can be a highly nonlinear process, where l =
bUion/~ωc + 1 equals the number of photons required for ionisation. The laser pulses used in
this experiment are mainly so short, that electron-ion recombination and electron attachment pro-
cesses will be neglected [37]. Using rate equations one can therefore obtain the number of free
electrons by integration.

7.3.3 Experimental Results for Argon
Prior to the final setup used for the most part of the experiments, two different pressure chambers
were used. One made from acrylic glass allowed to take pictures of the filament [fig. 7.17 b)] while
the other had a side window from which side-spectra of the filament could be observed [fig.7.17
a)]. Both chambers employed a spherical focussing mirror with a focal length of f = 30 cm, and
PRISM was used to find an offset phase for compensation of the dispersion up to the filament.
The filament spectra shows two significant features. Argon I recombination lines dominate the
spectrum. In this graph red bars denote persistent Argon I and blue bars persistent Argon II lines.
It seems that only single ionisation occurs. Additionally a significant plasma continuum spans
from 350nm to 700nm. The plasma temperature can be cautiously estimated by the maximum of
the continuum which yields 5770K. This is in line with results obtained by W.Liu et. al. [117]
who measured the plasma temperature during filamentation in Argon to be 5800K by evaluating
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Figure 7.17: a) Side-spectrum of the filament for 9 bar Argon. This spectrum was taken perpendicular
to the beam path with an integration time of 2 seconds. The persistent lines of Argon I and Argon II are
depicted in the spectrum. While fluorescence due to recombination of Argon I is present, no signs of double
ionisation can be found in this spectrum. At these experimental conditions a broad continuum from the
plasma can be observed. b) shows a filament created by a transform-limited whitelight laser pulse. The
beam is entering from the bottom left. Both images are based on experiments under similar conditions in
two different pressure chambers.

fluorescence line-widths. It has to be noted that these results were obtained at significantly different
experimental conditions. In the final setup, pulses shaped by the SLM are guided into the chamber
with a couple of beam steering mirrors. In the gas filled chamber, which was flushed several times
to ensure neither air or Krypton would interfere with experiments, the beam is focussed by an off-
axis focussing silver mirror with a focal length of 25 cm. The beam power was 50mW , measured
just before the chamber. This equates to pulse energies of 50µJ and a peak power of 9.4GW .
After the chamber, the strongly modulated spectrum is diffused by a Teflon beam-block and then
measured via a fibre spectrometer. [Fig. 7.18 (a) (red-dashed)] shows the spectrum obtained after
the chamber, filled with 9 bar Argon, for a precompensated pulse. The dashed-red line depicts the
input spectrum for reference. Further broadening and a blue-shifting could be observed. Here,
an offset phase found using the PRISM algorithm was used to create precompensated pulses with
the pulse shaper. Pulses obtained this way should be correctly compensated so that the dispersion
of the gas and the optical elements up to the filament are accounted for. When the spatial focus
coincides with the temporal focussing of the laser pulse, the maximal peak intensity and ionisation
rate is reached at the beginning of the filament, resulting in the largest acoustic shock wave. This
signal was detected via a microphone placed as close as possible to the filament’s position. In Fig.
7.18 the microphone signal is shown as it was measured with the help of a digital oscilloscope and
a microphone amplifier circuit. It can be seen that the acoustic shock repeats itself at a frequency of
1 kHz which coincides with the laser’s repetition rate. The amplitude of this oscillation was used
as nonlinear feedback for the compensation algorithm. A linear chirp scan [fig. 7.18] confirms
that the phase offset indeed compensates the dispersion up to the filament correctly. From [fig.
7.18 c)] one can see that the microphone maximum appears at a small linear chirp of 10 fs2. The
algorithm which was used for finding the phase offset strongly modulates the spectral phase and
uses a Fourier transform of the nonlinear signal to compute the pulse phase. This means that the
spectral phase measurement is based on low intensity pulses which will hence experience a lower
level of nonlinear effects than transform-limited pulses found close to zero chirp in Fig. 7.18
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Figure 7.18: a) (red-dashed) Reference spectrum used as initialisation for the simulations. The spectrum
was measured directly in front of the chamber filled with 9 bar Argon for a transform-limited pulse. (black-
solid) shows the heavily modified spectrum for the same pulse after transmission through the Argon-filled
chamber. b) Microphone signal as it is measured by an oscilloscope for a close to transform-limited pulse.
The pattern repeats itself after 1ms which corresponds to the repetition rate of the laser. c) A linear chirp
was added in addition to the compensation phase. For each pulse the amplitude of the microphone signal
was plotted versus the linear chirp.
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Figure 7.19: Phase offsets were determined at variable pressure and with and without an additional glass
window in the beam’s path. From the difference of these offsets the phase offsets which corresponds to
1bar of Argon and a single glass window was evaluated. While increasing the pressure in steps of 2bar
the increase in compensation was equal for each step which suggests that nonlinearities did not have any
influence on the PRISM offset.

(c). it can be concluded that this small shift of the microphone maxima appears to be related to a
higher-order nonlinear change in dispersion.

For accurate simulation of linear effects concerning the propagation of pulses in the focal re-
gion it was necessary to determine the exact dispersion of the gas inside the chamber. Hence
a series of phase optimizations were carried out at low intensities and at various gas pressures.
Phase compensations were determined for 3, 7 and 9 bar of Argon pressure. After that a window
was added to the beam line to measure the dispersive effect of the chamber-windows. The differ-
ences between the phase compensations found for 3 and 7 bar and for 7 and 9 bar were as equal
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Figure 7.20: a) This figure shows spectra after the chamber (as vertical lines) as a function of the linear pulse-
chirp. The dominating feature is the broadening of the spectra close to zero chirp, as well as modulations
which occur in the low wavelength range for positive and negative chirps alike. b) shows simulations
carried out including dispersion, self-phase-modulation, self-steepening and plasma effects via multiphoton
ionisation. Close to zero chirp differences emerge which may arise from the lack of the model of the
ionisation process at very high intensities. (see chapter 7.3.2)

as expected since the dispersion should increase linearly with the gase’s pressure. The values ob-
tained for the GVD and TOD (610.5 fs2/m, 326.8 fs3/m) of Argon were later used in addition
to the nonlinear refractive index (n2 = 1.08× 10−19 cm2/W ) [105] when performing simulations
of the pulse propagation. [Fig. 7.19] shows the phase compensation required up to the cham-
ber (black), for one bar of Argon (dashed-red) and for the entrance glass window (dashed-green).
Linear combination of these offsets made it possible to quickly adapt to altered experimental con-
ditions and precompensate pulses accordingly. The first pulse parameters that will be examined
are the linear and quadratic chirp. Therefore, spectra were measured while scanning the linear and
quadratic chirp (b2 and b3) from −200 fs2 to 200 fs2 and −400 fs3 to 400 fs3, respectively. The
central wavelength for the chirp expansion was chosen to be 761.22nm, which equals the central
wavelength of the input spectrum. Here, the central wavelength was defined by:

λ0 = 2πc/ω0 = 2πc/

[∫∞
−∞ ω|E(ω)|dω∫∞
−∞|E(ω)|dω

]
. (7.3.3)

[Fig.7.20] summarizes the measured a) and simulated b) spectra for linearly chirped pulses at
the pressure of 9 bar Argon. Intensities are shown in colour, linear chirp and wavelength on the x
and y axes. Close to 0 fs2 the spectrum experiences strong spectral broadening and a blue shift.
Broadening is found to be strongest for lightly positive chirped pulses ∼ 10 fs2 which is when
the spatial and temporal focus coincide. The position of maximal spectral broadening may also
arise from the earlier spatial focussing which arises from strong self-focussing when the pulse is
transform limited. This shift favours pulses which are precompensated for this earlier point which
can lead to the results seen in both simulation and measurement [Fig.7.20]. Simulation and ex-
periment seem to differ primarily for close to transform-limited pulses. The reason for this small
agreement could be the reduced model used for the ionization process. It seems that the simula-
tion over-predicts absorbance due to multiphoton ionisation for very high pulse-intensities. This is
to be expected as for these pulses a mix of multiphoton and tunnel ionization is predicted by the
Keldysh parameter. The simulations allowed to verify that all modelled source-terms were respon-
sible for the observed spectral features in the medium to low intensity regime. Therefore, only a
combination of self-phase modulation, self-steepening and plasma effects leads to the measured
spectra. As an overall trend, the linear chirp scan features a spectral shift to higher energies for
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smaller absolute chirp values. Supplementary results that were obtained from the simulations can
be found in the appendix [Fig. 1].

Figure 7.21: (left) shows spectra modulated by nonlinear effects and plasma interaction in the chamber. The
x-axis denotes the quadratic chirp value in fs3 of the pulses at the focus in the chamber. Strong spectral
bands emerge which differ for positive and negative chirp values. (right) The simulation recreates the
experimental results quite remarkably. An asymmetry between positive and negative chirp values, resulting
from the asymmetry in pulse shapes is clearly visible.

Figure 7.22: Simulated intensity profile of the laser focus for a pulse with quadratic chirp of (a) −200fs3

and (b) +200fs3. The pulses were precompensated to acquire the desired spectral phase at the centre of the
simulation window. Both graphs use the same intensity scale. The positively chirped pulse experiences a
stronger defocussing early on which results in an overall lower peak intensity.

The agreement between simulation and experiment is better in the case of the quadratic chirp
scan which is dominated by two asymmetric spectral bands [Fig. 7.21]. They shift towards higher
frequencies for lower absolute chirp values (thus shorter pulses). The differences in the spectra
for positively and negatively chirped pulses arise from the temporal asymmetry of the pulses. For
pulses with b3 > 0 fs3 the laser pulse has a shallow leading and a steep trailing flank while for
b3 < 0 fs3 the Argon atoms experience a steep rise in electrical field strength followed by a long
decline. The slope of intensity determines the frequency shift by self-phase modulation and the
plasma interaction, which can be observed in [Fig. 7.21]. Here, in the case of positively chirped
pulses, we see a narrow band shifted far towards higher frequencies and a broad spectral band
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Figure 7.23: Experiment and simulation for wavelength-shifted third-order phase functions (b3 = 2 ×
102fs3). Here, the x-axis denotes the wavelength around which the phase function is antisymmetric. (left)
With a decreasing wavelength of antisymmetry a spectral band shifts accordingly to lower wavelengths.
(right) The simulation depicts the same shifting band. Only the width and intensity in relation to the peak
around 800nm are not exactly recreated.

shifted to lower frequencies. These effects diminish for higher pulse chirps since SPM and MPI
are primarily dependent on the intensity.

[Fig. 7.22] showcases the simulated intensity distribution in the focal region for a positive and
a negatively quadratically chirped pulse. As mentioned before, negatively quadratically chirped
pulses exhibit a steep leading flank. This means that the bulk of ionisation occurs early on which
seems to be able to counteract early self-focussing of the pulse. Simulations show, that negatively
quadratically chirped pulses resemble Gaussian beam propagation, while positively chirped pulses
are thus more prone to filamentation. It can be seen that in the filamentation regime, (b3 ≥ 0 fs3)
maximal intensities are lower compared to negatively chirped pulses. Additional results obtained
for the electron density and intensity profile are summarized in the appendix [Fig. 2]. Besides a
shifting spectral band in [Fig. 7.21], a broad dip in the spectrum can be seen for positive quadratic
chirps which broadens for pulses with lower quadratic chirp or higher peak intensities. This feature
could be used to optimize spectral ratios of filament spectra when those are experimentally desired.
In order to see whether these features could be controlled in an easy parametric way, the previously
employed parametrization consisting of a quadratic chirp expanded around a selectable frequency
ωc was used.

ϕ(ω) =
b3

6
(ω − ωc)3 (7.3.4)

This parametrization is an antisymmetric phase function which was already shown to be applica-
ble to optimize second- and third-order processes around the wavelength of antisymmetry. The
observed spectral changes in [Fig. 7.23] can be understood by taking a closer look at the saddle
point of the third-order phase function. Around this point of antisymmetry (ωc) the first deriva-
tive of the phase (the instantaneous frequency) ∂ϕ(t)/∂t becomes zero. This implies that, at the
peak of intensity, frequency-components around ωc are dominant. Frequency shifts generated by
the plasma depend on the ionisation rate which in turn depends on the intensity as well as the
instantaneous frequency. Therefore, the spectral maxima in the λc shift-scans can be seen as being
partially moved in correspondence to these antisymmetry points. This explanation is supported by
the similarity of the movement of the spectrum’s center wavelength to the wavelength of the shift-
ing spectral band. In [Fig. 7.24 a,b] selected spectra from the λc-scans are shown. [Fig. 7.24 b,d]
depicts the corresponding simulation results. A larger third-order phase (c, d) appears to result in
narrower spectral features. And the reduced peak intensity of these pulses invokes a smaller shift of
the maxima, when compared to phase-shaped pulses with a b3 = 100× 102fs3. Again simulation
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Figure 7.24: Measured spectra and corresponding simulations for selected quadratic chirp values and wave-
lengths of antisymmetry (see Fig.7.23). a) shows spectra for pulses of 100 fs3 and a λc of 800nm and
1000nm. The simulation b) confirms the position of the shifted spectral band as well as the modulations
seen for very short wavelengths. The graphs in c) are a further example for pulses of 200 fs3 chirp. Here,
sharper spectral features and shifts to longer wavelengths are visible. d) depicts the simulation for matching
experimental conditions.

and results agree well. Small differences can be observed in the ratio of intensity of the shifting
spectral band and the 800nm peak. This might again be the result of neglecting photo-ionisation
other than multiphoton ionisation which could be partially relevant for some pulse-shapes at the
onset of the filament, before ionisation leads to energy loss. The spectra in [fig. 7.24 a), b)] show
that the position of the maxima is reflected very well by the simulation. It can be seen that a shift
of λc to lower wavelengths leads to a shift of the modulated peak to lower wavelengths. Pulses
with large quadratic chirp possess a smaller rise in intensity on both leading and trailing flank.
This yields a smaller shift of the spectral peak for pulses with 200fs3 [fig.7.24 c,d)] in compari-
son to the lower quadratic chirp of 100fs3 in [Fig.7.24 a,b] due to self-phase modulation as well
as interaction with the plasma. In [Fig. 7.24 c,d)] we can observe that for λc = 1000nm the
resulting pulse generates only minor spectral modulations by self-phase modulation or ionisation.
This threshold was again verified by the simulation. As a simple method for a controlled spectral
modification one could chose the desired spectrum by adjusting the centre wavelength and one
can select the spectral width by modifying the prefactor. However, a precise spectral control will
require more complex pulse shaping.
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Figure 7.25: Optimization results for spectra with maximal and minimal average wavelength in Krypton. a)
shows the spectra found by one of the optimization runs. The shift towards lower wavelengths is significantly
larger than the result of the opposing optimization goal. b) depicts the temporal pulse shapes corresponding
to both spectra, while c) shows the spectral phase found by the optimization algorithm.

7.3.4 Optimal Pulses for Creating Specific Spectra after Filamentation
After understanding the basic effects of parametric pulse chirps on the filament spectra a genetic
algorithm was used to optimize a ratio of two arbitrary spectral bands. The parameter-set consists
of a chirp expansion up to the third-order around a central wavelength λc. The central wavelength
is also subject to optimization and might hint on the underlying optimization method. For opti-
mizations, the genetic optimization, introduced in chapter 6.1 was used. One relevant property
of a spectrum after filamentation is the weighted-average central wavelength (λ̄) as defined in eq.
7.3.3. Optimizations were carried out for Argon and Krypton to find pulses either maximizing or
minimizing this objective. It was to expect that a blue shift will be greatest for relatively short
pulses and strong ionisation, while a red shift will be more difficult to achieve since SPM cannot
by itself lead to an overall shift of the spectrum. The spectra obtained by one of the optimizations

central wavelength λc b2 b3 b4

min 1017.6nm 134.0 fs2 −146.4 fs3 37.4 fs4

max 400.0nm 383.4 fs2 −332.2 fs3 −564.6 fs4

Table 7.4: Optimized parameters found by the evolutionary optimization for spectra with maximal and
minimal average photon energy in Krypton.

on this objective for 9 bar Krypton are summarized in [fig. 7.25]. In the leftmost graph it can be
observed that pulses minimizing λ̄ achieve a significant shift of the spectrum after filamentation
even which is even greater than that seen for the transform-limited pulse. The optimization on the
inverse objective seems to give no real advantage over the input spectrum. A red shift of λ̄ seems
to be impossible via phase shaping, at least in the boundaries of the optimized phase parametriza-
tion. As expected, relatively short pulses result in the largest shift of λ̄ as can be seen in [Fig. 7.25
b)]. Another property of the pulse shapes is that both feature a steep flank, once on the leading
and once on the trailing edge which might result from an optimization of the spectral changes due
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Figure 7.26: Optimization results for spectra with maximized or minimized intensity ratio between two
spectral bands in Argon. a) The optimized spectra show that the algorithm found pulse shapes leading to
distinct spectral features fulfilling the optimization goal in either direction. (blue) stands for the optimization
trying to maximize the intensity in the blue area and minimize all intensity in the red area. (red) on the other
hand optimizes the inverse ratio. b) The temporal pulse shapes seem very similar. c) depicts the different
spectral phase functions found by the evolutionary algorithm during these optimizations.

to self-phase modulation, since a steep trailing edge (blue) will lead to a large positive frequency
shift.

Parameters found by the optimization for a maximization or minimization of λ̄ are summarized
in table 7.4 where one can see that overall smaller chirps were found by the minimization opti-
mization. A corresponding optimization carried out for Argon can be found in the Appendix [fig.
3, tab. 1].

In the previous chapter [fig. 7.24] indicated that quadratically chirped pulses would lead to the
formation of a spectral band after filamentation which was controllable via the point of antisym-
metry. In order to understand whether phase shaped pulses can be used to create tailored spectra
after filamentation optimizations on a special manufactured fitness functions were carried out. For
that, the spectral intensity in two wavelength ranges was integrated and divided. Multiple evo-
lutionary optimizations were performed after which the optimization with the largest fitness was
selected. Each generation consisted of 30 individuals including one survivor from each previous
generation. [Fig. 7.26] shows the result of two optimizations either maximizing or minimizing

(600− 650)nm (650− 700)nm λc b2 b3 b4

min max 631.9nm 69.6 fs2 1152 fs3 4455 fs4

max min 733.0nm −2.1 fs2 386 fs3 1422 fs4

Table 7.5: Results found by genetic optimization of the spectral areas given above. Both solutions differ
strongly. Overall larger chirps are found when maximizing lower wavelengths.

the ratio of the integrated spectra between 600nm− 650nm and 650nm− 700nm. When maxi-
mizing the spectral band for higher wavelengths the genetic optimization required 27 generations
before it converged to an intensity ratio of approximately 11.7. The best optimization for the in-
verted fitness function found an intensity ratio of 4.1 after 33 generations, which corresponds to
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Figure 7.27: Optimization results for optimizations on more complex spectral features after filamentation
in Argon. a) The green spectrum optimizes a central band from 700nm to 725nm and minimizes the
spectral intensity in the red areas. The red spectrum minimizes the signal in the green and maximizes the
spectrum in the red spectral areas. b) The corresponding temporal pulse profiles, which were calculated
using the phase found by the optimization and the spectrum before the chamber, show features different
from previous optimization results.c) depicts the phase functions resulting in the pulses in graph b).

an overall modulation of the ratio by a factor of about 48. From here on, optimizations factors
will not be calculated since the choice of fitness function, is somewhat arbitrary. [Fig. 7.26 c)]
shows the optimal phase functions (without the offset phase used for compensation) and [Fig. 7.26
b)] the calculated temporal pulse shapes at the onset of the filament which lead to the presented
spectra. The spectral features may be explained by the wavelengths of the inflection points of the
spectral phase which can be regarded as local antisymmetry points. The (red) phase function for
maximizing 650 − 700nm [Fig. 7.26 c)] shows two inflection points whereas the (blue) phase
possesses only one inflection point. This corresponds to spectral maxima as can be seen in [fig.
7.26 a)] which suggests that higher order phase terms will be required for more complex spectral
control. Parameters found by these two optimizations are summarized in [tab. 7.5]. In a third
optimization an even more complex fitness function was chosen to optimize filament intensity in
a central band while minimizing intensity on both adjacent spectral areas. This could be used
to increase the efficiency in selective excitation of two-photon versus three-photon processes by
means other than the pulse length, hence three spectral areas were selected and the fitness function
calculated as the ratio between the central area divided by the integrated spectra of both adjacent
bands multiplied by 1/2. Both, optimizations in Argon and Krypton were performed. In either
gas the optimization was able to find pulses creating tailored spectra after filamentation matching
the set optimization goals. [Fig.7.27] again combines results for two optimizations in Argon where
in graph a) the both resulting spectra are shown. It should be noted that both spectra show a spike
followed by a repeating pattern of smaller peaks towards shorter wavelengths. To understand the
origin of this feature simulations were carried out for the pulse found by the optimization maxi-
mizing and minimizing the spectral band from 700nm to 725nm with respect to its surroundings.
Using the whitelight spectrum which was measured before the chamber, the simulation recreated
the spectra measured after optimization very accurately [see fig. 7.28 a)]. As in both, simulation
and measurement the same spectral features emerge, we can try to understand the changes that oc-
cur in [Fig.7.27 a)] by analyzing the spectral evolution during the simulation. [Fig. 7.28 b)] shows
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Figure 7.28: Simulations carried out for the optimizations on a central band in 9 bar Argon. a) Spectra
resulting from the simulations when the phase found by the optimization is used as the input. The green line
corresponds to the phase found maximizing the central band, while the red line depicts the simulation for a
shaped pulse minimizing the central spectral area. b) The electron density identifies the area where plasma
effects should be dominant. c) The spectrum during the simulation. Here, the x-axis denotes the progress of
the simulation.

the simulated electron density and [Fig. 7.28 c)] the spectral evolution for the optimization which
maximizes the central band. The localization of the spectral changes to the focus indicates that
the spectral modulation is a consequence of the temporal phase induced by the creation of plasma.
At these intensities self-phase modulation appears to play only a marginal role. SPM was still
critical in this simulation since self-focussing in combination with plasma defocussing determine
the peak intensity of the focus. As a test, SPM and self-steepening were disabled after the focus
was reached. The simulated spectral change for a single step of the split step Fourier method at
the focus confirmed that SPM and self-steepening only play a minor role when compared to the
plasma term. Optimizations on this fitness function were carried out in Krypton as well. Results
[fig. 7.29] seem similar to those in Argon. Again both simulations find pulses which fulfil the
optimization goals. The interplay between all effects relevant for pulse propagation makes it diffi-
cult to further interpret pulses found by the evolutionary algorithm. Simulations confirm that only
the combination of all processes will result in the spectra shown here. Despite these convoluted
interactions it becomes clear that the pulse shape at the focus is the key to control the spectrum
after filamentation. When comparing pulses obtained for the optimization in Argon and Krypton
one difference stands out. Pulses optimized for a central band in Krypton appear to be longer than
those found for Argon. This can be understood when taking the large nonlinear refractive index of
Krypton into account. Hence, smaller peak intensities are found when compared to optimization
results in Argon. Parameters found in both optimizations are summarized in the appendix [tab. 3].
These non-trivial results show how genetic algorithms can be used in connection with parametric
pulse shaping to find optimized pulse shapes that result in a desired spectral shape after filamenta-
tion. Pulse shapes have an immense impact on the spectrum obtained from a filament and should
therefore be examined more closely in this regard in the future. Pulse shaping and filamentation
could become a versatile tool when looking for custom spectral shapes for a variety of applica-
tions. By means developed in this chapter ultrashort-whitelight pulses can be created which fit
certain experimental requirements such that e.g. one-photon fluorescence at a certain wavelength
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Figure 7.29: Optimization results for a maximized or minimized central spectral band in Krypton. a) The
green spectrum is the result of the optimization which favours integrated fluorescence in the green and
discourages intensity in the red regions. The red spectrum was again optimized using the inverse fitness
function. b) Some differences can be spotted when the temporal pulse shapes found by the optimization
are compared to the optimization in Argon. c) Phase functions leading to the temporal pulse shapes shown
above.

can be minimized in multiphoton fluorescence experiments by creating tailored spectra which lack
intensity at that wavelength.

7.3.5 Influence of Pulse Polarization on Filamentation
A yet unexplored parameter, which has an influence on the characteristics of filamentation is the
polarization state of the beam. Polarization can under certain circumstances have an effect on the
propagation of a pulse in nonlinear and ionising media. One of the effects could be cross-phase
modulation which would account for the changing refractive index of the ordinary beam on the
extraordinary beam and vice versa. This effect is mostly relevant in birefringent materials and
thus would not occur in filamentation in atomic gases. A second mechanism would be polarization
dependent ionisation which would have an influence on the absorption, temporal phase and thus on
the spectrum after filamentation. In accordance with theoretical models filamentation is suppressed
when the polarization is changed from linear to circular [118]. This is due to the reduced ionisation
rate of circular or elliptically polarized light. On the other hand it was found that in certain cases
circular polarized light can result in more efficient supercontinuum generation when the pulse
energy is above the filamentation threshold [119]. These publications give rise to the assumption
that linear polarized light will be more efficient in supercontinuum generation at the experimental
conditions at hand. The effects of the polarization state on the filament-spectrum for shaped laser
pulses have still to be examined. In a first test it was ensured that a linear polarized beam would
result in a linear beam after filamentation by placing a polariser in various orientations after the
pressure chamber. This showed that all light measured in forward direction resulted from coherent
intra-pulse processes and no delayed fluorescence was detected in propagation direction. Hence
no intensity was measured when the polariser was oriented orthogonal to the input polarization.
In order to change the polarization state of the beam, the wire-grid polariser, previously used
for amplitude modulation, was removed from the beam-line. This enabled the pulse shaper to
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Figure 7.30: Infuence of polarization on the spectrum after filamentation in 9 bar Argon. The linear polar-
ized beam (blue) results in a larger blue shift of the spectrum when compared with the ciruclar polarized
beam (red). A strongly chirped pulse was used to measure a reference spectrum (grey) where no nonlinear
effects or ionisations occur.

select the ellipticity of each spectral component while the orientation of the polarization stayed
fixed. The spectrum after filamentation for a transform-limited pulse is shown in [fig. 7.30]. The
linear (horizontal) polarized beam results in a larger blue-shift of the spectrum after filamentation.
This seems to match results from the mentioned publications that stronger ionisation will occur
for linear polarized light. However, both polarizations show strong spectral broadening when
compared to the input spectrum. As these results only confirm previous observations, it is time to
look at the polarization dependence of filamentation induced by shaped pulses. Therefore a scan
of a third-order phase’s antisymmetry point was carried out, once with a circular and once with
a linear (horizontal) beam polarization. Since peak intensities will clearly be reduced, one has to
expect a reduction in the influence of plasma interaction. [Fig 7.31] confirms this assumption by
comparing the spectra after filamentation for a third-order phase of 2 × 102fs3 centred at either
750nm and 800nm. The black spectra represent the measurement for linear and the red spectra for
circular polarization. In both graphs, interestingly, no blue-shifting can be observed as it was in the
case of the TL pulse. Although, stronger modulations seem to occur for a linear input polarization.
In the future, further experiments should be conducted to examine the influence of more complex
polarization shaped pulses on filamentation. Recently, it was shown that plasma fluorescence shifts
along the propagation axis when the polarization of the beam is changed from linear to circular
[120]. And Rostami et. al. reported that elliptical polarized light can enhance supercontinuum
generation in molecular gases [121]. Even the birefringence created by filamentation of a first
pulse was shown to be influencing the polarization state of a second probe pulse in experiments
conducted by Kosareva et. al. [122]. Thus, further studies conducted in this field, especially
when applying polarization shaped laser pulses will contribute to the current understanding of
polarization dependence of filamentation.
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Figure 7.31: Influence of polarization on filamentation of phase shaped pulses.A third-order phase’s (2 ×
102 fs3) antisymmetry point was shifted by wavelength. a) λc = 750nm b) λc = 800nm. The black
spectra correspond to a horizontal and the dashed-red spectra to a circular polarized beam.

7.3.6 Conclusion
In this chapter a model for the filamentation process was created and tested which included lin-
ear and nonlinear effects as well as multiphoton ionisation and plasma interactions. A cylindrical
two-dimensional parametrization was selected as multiple filamentation will not occur at the beam
power available to this laser system. Experiments and Simulation were very close, indicating that
multiphoton ionisation is indeed the underlying ionisation process in this intensity regime. Using
the simulation it was possible to further understand whether nonlinearities or plasma interaction
lead to some of the spectral features observed for shaped pulse filamentation. PRISM was, for
the first time, used in combination to a microphone signal to create precompensated pulses for
filamentation at the focus position. This method of using the acoustic shock-wave for measuring
the phase of a pulse at the start of filamentation could be used to enhance a multitude of appli-
cations. Conducted experiments showed that pulse shapes have a strong influence on the focus,
the filament and thus the spectrum after filamentation. While self-phase modulation is a part in
this process, it seems to mainly act as a focussing mechanism. Spectral changes (even at high
pressures) seem to predominantly arise from plasma effects. These plasma interactions can be
exploited to generate a spectral band after filamentation which shift parallel to a spectral phase’s
point of antisymmetry. This allowed for the control of certain spectral features after filamentation.
Genetic optimizations were used to fine-tune phase parameters of a Taylor expansion up to the
fourth order to match complex optimization goals. Finally, an introduction into the influence of
polarization on the filamentation process was given which points towards a wide field of further
studies that could be carried out using complex polarization shaped pulse sequences to assess their
influence on filamentation.





8Outlook
Methods, as well as the insight generated by this thesis can aid the development of multiphoton
microscopes as they are used for biological or medical imaging. Pulse shaping systems become
evermore accessible and will soon find their way into new applications. Although a thorough
understanding of the mechanisms of pulse shaping was required up to now, parametric phase func-
tions or pulse shapes can be implemented into pulse shaping systems to allow for easy control of
relevant pulse parameters. Thereby, selective excitation of two-photon or three-photon transitions
could be achieved by adding an easy to use pulse shaping device to existing microscopes. As
the cooperation with the group of Prof. Karsten Heyne showed, the focus in a microscope can
be even more optimized when a two-dimensional beam shaper is applied in addition to the tem-
poral pulse shaping technique. Here, the combination of temporal pulse shaping with the ability
to influence the spatial focus of one polarization of the beam could open up new measurement
schemes. Temporal pulse shaping in STED microscopy can enhance the resolution and efficiency
of this technique even more. Z-scans performed with optimized pulses for Tryptophan fluores-
cence could lead to 3-dimensional maps of the concentration of this amino acid in a biological
sample. Another area where results of this thesis might be useful are endoscopic fluorescence ex-
periments or photodynamic therapy. There is great potential for hollow-core photonic fibres being
used in high intensity endoscopic applications which could enable the detection of certain fluores-
cence markers after a fibre, as well as induce photo-damage in the scope of a medical procedure. A
combination of detection and phototoxicity by using small gold nanoparticles could even allow for
spatially selective damage to pathological tissue. As endoscopes are used in conditions different
from an optical table it is essential that the fibre’s dispersion and nonlinearities are compensated
for, even if the fibre is bent or twisted. Work published prior to this thesis by our group demon-
strated how this can be achieved by using a back-reflected part of the pulse to measure changes in
the fibres dispersion or birefringence in real-time. Experiments conducted during this thesis show
that multiphoton fluorescence can be modelled so well that the influence of pulse shapes can be
easily assessed prior to implementation which could help push advancements in this field.

Besides exploring further applications of shaped laser pulses in the area of medicine and mi-
croscopy, the opportunities of polarization-shaped laser pulses should be considered for supercon-
tinuum generation by filamentation. Experiments confirmed the influence of polarization states on
the ionisation efficiency during filamentation. Thus, a combined optimization, in which polariza-
tion states are optimized in addition to phase parameters could be used to exert even greater control
of the supercontinuum obtained after filamentation. It was suggested [119] that some polarization
effects on ionisation inverse when intensities increase beyond a certain threshold. It could be ex-
amined whether less efficient propagation is to blame for this effect or other mechanism are at play
resulting in a reduced ionisation efficiency at these intensities. Furthermore, polarization, phase
and amplitude shaping can be easily employed to create perpendicular polarized pulse sequences
with variable delay. This is an opportunity to observe the filamentation process in extremely short
timescales by using a first pulse as a pump and a second perpendicular polarized pulse as a probe
pulse. Since both pulses are generated collinear, this method of pulse shaping is an ideal tool to
study filamentation dynamics on timescales as short as ∼ 10 fs. Plasma generation, as well as
cross-phase modulation would pose as the mechanisms connecting the propagation of both per-
pendicular polarized pulses and could shed more light on the intriguing process of filamentation
as a whole.
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9Scientific Cooperations
During this thesis two cooperations led to important exchange of ideas and allowed me to be part
in two very interesting studies.

9.1 Setup for Simultaneous Spatial and Temporal Pulse
Shaping

While it was shown that phase, amplitude and polarization pulse shaping are valuable tools to im-
prove applications where either adaptive dispersion control or special pulse shapes are required, it
can only influence the temporal profile of a pulse. Especially optical systems used in modern mul-
tiphoton microscopes could be improved by additional spatial beam shaping. Spatial beam shaping
is achieved via a reflective two-dimensional liquid crystal modulator which operates comparable
to the SLM’s used in this thesis. By influencing the phase along the beam’s two dimensional pro-
file, the focus after a lens can be controlled. This is due to the lens acting as a Fourier transform
when operated in a 2-f scheme. Experiments conducted by the group of Prof. Dr. Karsten Heyne
are set to answer whether a combination of both spatial and temporal pulse shaping can lead to
improved fluorescence or even new experimental measurement schemes. My contribution to these
experiments was to help set up the temporal pulse shaper and provide a basis for the software to
spatially and temporally precompensate pulses for optimal fluorescence when used in combination
with a two-photon microscope. These experiments will lead the way to improved multiphoton
microscopes that will feature greater resolution as well as the ability to use phase shaped pulses
for selective excitation as discussed in in chapter 7.1.

9.2 Kramers-Henneberger States
During a cooperation with the group of Prof. Jean-Pierre Wolf’s Biophotonics Group at the Uni-
versité de Genève, loosely bound states of neutral atoms which only exist during the influence
of an oscillating electrical field of high intensity were investigated. These proposed Kramers-
Henneberger states [123] could exist during filamentation when certain experimental conditions
are met. Trapezoid shaped laser pulses were created with the help of the whitelight laser system
featured in this thesis and a Fourier-transform iteration algorithm. These pulses which have a flat-
top temporal intensity profile are used to observe resonances of these Kramers-Henneberger states
in the laserspectrum after filamentation. Results from this experimental campaign are still under
review. A publication featuring additional simulations performed by the group of Prof. Misha
Ivanov at the MBI Berlin is in preparation.
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Figure 1: (left column) electron density distribution plotted against the radial and propagation coordinate
for linearly chirped pulses in 9 bar Argon. (right column) Corresponding Intensity in the focal region which
is affected by plasma defocussing.

113



114 Appendix

- 1 0 - 5 0 5 1 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

p r o p a g a t i o n  a x i s  ( m m )

rad
ius

 (µ
m)

0 , 0 0 0
5 , 3 0 0 E + 1 3
1 , 0 6 0 E + 1 4
1 , 5 9 0 E + 1 4
2 , 1 2 0 E + 1 4
2 , 6 5 0 E + 1 4
3 , 1 8 0 E + 1 4
3 , 7 1 0 E + 1 4
4 , 2 4 0 E + 1 4

I n t e n s i t y  ( W / c m 2 )

- 1 0 - 5 0 5 1 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

p r o p a g a t i o n  a x i s  ( m m )

rad
ius

 (µ
m)

0 , 0 0 0
5 , 6 5 0 E + 1 3
1 , 1 3 0 E + 1 4
1 , 6 9 5 E + 1 4
2 , 2 6 0 E + 1 4
2 , 8 2 5 E + 1 4
3 , 3 9 0 E + 1 4
3 , 9 5 5 E + 1 4
4 , 5 2 0 E + 1 4

I n t e n s i t y  ( W / c m 2 )

- 1 0 - 5 0 5 1 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

p r o p a g a t i o n  a x i s  ( m m )

rad
ius

 (µ
m)

0 , 0 0 0
4 , 5 5 0 E + 1 3
9 , 1 0 0 E + 1 3
1 , 3 6 5 E + 1 4
1 , 8 2 0 E + 1 4
2 , 2 7 5 E + 1 4
2 , 7 3 0 E + 1 4
3 , 1 8 5 E + 1 4
3 , 6 4 0 E + 1 4

I n t e n s i t y  ( W / c m 2 )

- 1 0 - 5 0 5 1 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

p r o p a g a t i o n  a x i s  ( m m )

rad
ius

 (µ
m)

0 , 0 0 0
1 , 0 2 0 E + 1 4
2 , 0 4 0 E + 1 4
3 , 0 6 0 E + 1 4
4 , 0 8 0 E + 1 4
5 , 1 0 0 E + 1 4
6 , 1 2 0 E + 1 4
7 , 1 4 0 E + 1 4
8 , 1 6 0 E + 1 4

I n t e n s i t y  ( W / c m 2 )

- 1 0 - 5 0 5 1 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

p r o p a g a t i o n  a x i s  ( m m )

rad
ius

 (µ
m)

0 , 0 0 0
1 , 1 6 3 E + 1 4
2 , 3 2 5 E + 1 4
3 , 4 8 8 E + 1 4
4 , 6 5 0 E + 1 4
5 , 8 1 3 E + 1 4
6 , 9 7 5 E + 1 4
8 , 1 3 8 E + 1 4
9 , 3 0 0 E + 1 4

I n t e n s i t y  ( W / c m 2 )

- 1 0 - 5 0 5 1 0
0

1 0
2 0
3 0
4 0
5 0

p r o p a g a t i o n  a x i s  ( m m )

rad
ius

 (µ
m)

0 , 0 0 0
3 , 7 6 3 E + 2 2
7 , 5 2 5 E + 2 2
1 , 1 2 9 E + 2 3
1 , 5 0 5 E + 2 3
1 , 8 8 1 E + 2 3
2 , 2 5 8 E + 2 3
2 , 6 3 4 E + 2 3
3 , 0 1 0 E + 2 3

e l e c t r o n  d e n s i t y  ( 1 / m 3 )

- 1 0 - 5 0 5 1 0
0

1 0
2 0
3 0
4 0
5 0

p r o p a g a t i o n  a x i s  ( m m )

rad
ius

 (µ
m)

0 , 0 0 0
3 , 4 7 5 E + 2 2
6 , 9 5 0 E + 2 2
1 , 0 4 3 E + 2 3
1 , 3 9 0 E + 2 3
1 , 7 3 8 E + 2 3
2 , 0 8 5 E + 2 3
2 , 4 3 3 E + 2 3
2 , 7 8 0 E + 2 3

e l e c t r o n  d e n s i t y  ( 1 / m 3 )

- 1 0 - 5 0 5 1 0
0

1 0
2 0
3 0
4 0
5 0

p r o p a g a t i o n  a x i s  ( m m )

rad
ius

 (µ
m)

0 , 0 0 0
5 , 0 0 0 E + 2 3
1 , 0 0 0 E + 2 4
1 , 5 0 0 E + 2 4
2 , 0 0 0 E + 2 4
2 , 5 0 0 E + 2 4
3 , 0 0 0 E + 2 4
3 , 5 0 0 E + 2 4
4 , 0 0 0 E + 2 4

e l e c t r o n  d e n s i t y  ( 1 / m 3 )

- 1 0 - 5 0 5 1 0
0

1 0
2 0
3 0
4 0
5 0

p r o p a g a t i o n  a x i s  ( m m )

rad
ius

 (µ
m)

0 , 0 0 0
4 , 1 2 5 E + 2 2
8 , 2 5 0 E + 2 2
1 , 2 3 8 E + 2 3
1 , 6 5 0 E + 2 3
2 , 0 6 3 E + 2 3
2 , 4 7 5 E + 2 3
2 , 8 8 8 E + 2 3
3 , 3 0 0 E + 2 3

e l e c t r o n  d e n s i t y  ( 1 / m 3 )

- 1 0 - 5 0 5 1 0
0

1 0
2 0
3 0
4 0
5 0

p r o p a g a t i o n  a x i s  ( m m )

rad
ius

 (µ
m)

0 , 0 0 0
3 , 0 8 7 E + 2 2
6 , 1 7 5 E + 2 2
9 , 2 6 2 E + 2 2
1 , 2 3 5 E + 2 3
1 , 5 4 4 E + 2 3
1 , 8 5 2 E + 2 3
2 , 1 6 1 E + 2 3
2 , 4 7 0 E + 2 3

e l e c t r o n  d e n s i t y  ( 1 / m 3 )
- 2 0 0  f s 3 - 2 0 0  f s 3

- 1 0 0  f s 3 - 1 0 0  f s 3

0  f s 3 0  f s 3

1 0 0  f s 3 1 0 0  f s 3

2 0 0  f s 3 2 0 0  f s 3

Figure 2: (left column) electron density distribution plotted against the radial and propagation coordinate
for quadratically chirped pulses in 9 bar Argon. (right column) Corresponding intensity in the focal region
which is affected by plasma defocussing and the asymmetric pulse shape.
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Figure 3: a) The blue and red lines depict the changes to the spectrum after filamentation in Argon for
pulses optimized for either a maximal (red) or minimal (blue) average photon energy. b) Pulses found by
the genetic optimization algorithm. c) Phases which give rise to the pulse shapes seen in figure b).

central wavelength λc b2 b3 b4

min 793.3nm 17.6 fs2 −87.1 fs3 290.8 fs4

max 961.7nm 29.0 fs2 2068 fs3 −3772 fs4

Table 1: Optimization results corresponding to the data in fig.3
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Figure 4: a) The blue line shows the nonlinear distorted spectrum found for pulses which optimize the signal
in the sepctral range from (600nm to 650nm) while minimizing the intensity in the range from (650nm
to 700nm) in Krypton. The red line corresponds to the spectrum found when optimizing the inverse ratio.
b) Depicts the optimal pulses, while c) shows the phases found by the evolutionary algorithm.

(600− 650)nm (650− 700)nm λc b2 b3 b4

min max 887.3nm −190.5 fs2 −861 fs3 −3879 fs4

max min 1185.7nm −151.4 fs2 2474 fs3 −4446 fs4

Table 2: Optimization results corresponding to the data in fig.4
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(700− 725)nm λc b2 b3 b4

Krypton min 1087.0nm −555.7 fs2 400 fs3 380.4 fs4

Krypton max 1131.2nm 266.1 fs2 137 fs3 −315 fs4

Argon max 774.1nm −81.7 fs2 −2627 fs3 4631 fs4

Argon min 817.8nm −59.0 fs2 251.9 fs3 2780 fs4

Table 3: Parameters found for optimizations on a maximal or minimal spectral band in 9 bar Krypton
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