
3 Basic boundary value problems for analytic function in
the upper half plane

3.1 Poisson representation formulas for the half plane

Let f be an analytic function of z throughout the half plane Imz > 0,
continuous such that f satisfies the growth property

lim
R→∞

M(R, f) = 0, (3.1)

where M(R, f) = max |z|=R
0≤Imz

|f(z)|.
For any fixed point z above the real axis let CR denote the upper
half of the positively oriented circle of radius R centered at the origin,
where R > |z|. Then, according to the Cauchy integral formula,

f(z) =
1

2πi

∫

CR

f(s)ds

s− z
+

1

2πi

∫ R

−R

f(t)dt

t− z
(3.2)

We find that the first of these integrals approaches 0 as R tends to ∞
consequently,

f(z) =
1

2πi

∫ ∞

−∞

f(t)

t− z
dt, (3.3)

where Imz > 0 and the integral is understood as a Cauchy principal
value integral. Representation (3.3) is the Cauchy integral formula for
the half plane Imz > 0.

When the point z lies below the real axis, the right-hand side of
equation (3.2) is zero; hence integral (3.3) is zero for such a point.
Consequently, when z is above the real axis, we have the formula

f(z) =
1

2πi

∫ ∞

−∞
(

1

t− z
+

c

t− z̄
)f(t)dt, (3.4)

where c is an arbitrary constant and Imz > 0.
In the two cases c = −1 and c = 1 this formula reduces, respectively,
to

f(z) =
1

π

∫ ∞

−∞

yf(t)

|t− z|2dt, (3.5)

where y > 0 and to
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f(z) =
1

πi

∫ ∞

−∞

(t− x)f(t)

|t− z|2 dt, (3.6)

where y > 0. Here z = x + iy is used.
If f(z) = u(x, y) + iv(x, y), it follows from formulas (3.5) and (3.6)

that the harmonic functions u and v are represented in the half plane
y > 0 in terms of the boundary values of u by the formulas

u(x, y) =
1

π

∫ ∞

−∞

yu(t, 0)

|t− z|2 dt

=
1

π

∫ ∞

−∞

yu(t, 0)

(t− x)2 + y2dt (3.7)

where y > 0,

v(x, y) =
1

π

∫ ∞

−∞

(x− t)u(t, 0)

(t− x)2 + y2 dt (3.8)

where y > 0
Formula (3.7) is known as the Poisson integral formula for the upper

half plane and

f(z) =
1

πi

∫ ∞

−∞

u(t, 0)

t− z
dt + ic0

as the Schwarz integral formula, where c0 is an arbitrary real constant.
The constant c0 can be determined e.g. by Imf(i) = c. Then

c = Im
1

πi

∫ ∞

−∞
u(t, 0)

t + i

t2 + 1
dt + c0 = −1

π

∫ ∞

−∞
u(t, 0)

t

t2 + 1
+ c0

and

f(z) =
1

πi

∫ ∞

−∞
u(t, 0)

(
1

t− z
− t

t2 + 1

)
dt + ic.

3.2 Schwarz problem for the half plane

Let F denote a real-valued function of x that is bounded for all x and
continuous except for at most a finite number of finite jumps. When
y = ε and |x| 5 1

ε , where ε is any positive constant, the integral
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I(x, y) =

∫ ∞

−∞

F (t)dt

(t− x)2 + y2

converges uniformly with respect to x and y, as do the integrals of the
partial derivatives of the integrand with respect to x and y. Each of
these integrals is the sum of a finite number of improper or definite
integrals over intervals where F is continuous; hence the integrand of
each component integral is a continuous function of t, x and y when
y = ε. Moreover, each partial derivative of I(x, y) is represented by
the integral of the corresponding derivative of the integrand whenever
y > 0.

We write U(x, y) = yI(x, y)/π. Thus U is the Poisson integral
transform of F , suggested by equation (3.7).

U(x, y) =
1

π

∫ ∞

−∞

yF (t)

(t− x)2 + y2dt, (3.9)

where y > 0.
Except for the factor 1/π, the kernel here is y/|t − z|2. It is the

imaginary part of the function 1/(t − z) which is analytic in z when
y > 0. It follows that the kernel is harmonic, and so it satisfies
Laplace’s equation in x and y. Because the order of differentiation
and integration can be interchanged, function (3.9) then satisfies that
Laplace equation. Consequently, U is harmonic when y > 0.
To prove that

lim
y→0
y>0

U(x, y) = F (x) (3.10)

for each fixed x at which F is continuous, we substitute t = x+y tan r

in formula (3.9) and write

U(x, y) =
1

π

∫ π/2

−π/2
F (x + y tan r)dr, (3.11)

where y > 0.
If

G(x, y, r) = F (x + y tan r)− F (x)
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and α is some small positive constant, then

π[U(x, y)−F (x)] =

∫ π/2

−π/2
G(x, y, r)dr = I1(y) + I2(y) + I3(y), (3.12)

where

I1 =

∫ −π/2+α

−π/2
G(x, y, r)dr

I2 =

∫ π/2−α

−π/2+α

G(x, y, r)dr

I3 =

∫ π/2

π/2−α

G(x, y, r)dr.

If M denotes an upper bound for |F (x)|, then |G(x, y, r)| 5 2M .
For a given positive number ε we select α so that 6Mα < ε; then

|I1(y)| 5 2Mα < ε/3

and

|I3(y)| 5 2Mα < ε/3

We next show that corresponding to ε there is a positive number δ

such that

|I2(y)| < ε/3,

when 0 < y < δ.
Since F is continuous at x, there is a positive number γ such that

|G(x, y, r)| < ε

3π
,

when 0 < y| tan r| < γ.
Note that the maximum value of | tan r| as r ranges between −π/2+

α and π/2−α is tan(π/2−α) = cot α. Hence if we write δ = γ tan α,
it follows that
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|I2(y)| < ε

3π
(π − 2α) <

ε

3
,

when 0 < y < δ.
We have thus shown that

|I1(y)|+ |I2(y)|+ |I3(y)| < ε,

when 0 < y < δ.
Condition (3.10) now follows from this result and equation (3.12). On
the basis of (3.9) then for any real constant c the function

f(z) =
1

πi

∫ ∞

−∞

F (t)

t− z
dt + ic

therefore solves the Schwarz problem for analytic functions for the half
plane y > 0 with the boundary condition

lim
z→t

0<Imz

Ref(z) = F (t), t ∈ R.

It is evident from the form (3.11) of formula (3.9) that |U(x, y)| 5 M

in the half plane where M is an upper bound of |F (x)|; that is, U is
bounded. We note that U(x, y) = F0 when F (x) = F0, where F0 is a
constant.
According to formula (3.8) of the preceding section, under certain
conditions on F the function

V (x, y) =
1

π

∫ ∞

−∞

(x− t)F (t)

(t− x)2 + y2dt + c, (3.13)

where c is an arbitrary real constant and y > 0, is a harmonic con-
jugate of the function U given by formula (3.9). Actually, formula
(3.13) furnishes a harmonic conjugate of U if F is everywhere con-
tinuous, except for at most a finite number of finite jumps, and if F

satisfies the growth property |xkF (x)| < M for some k > 0. For under
those conditions we find that U and V satisfy the Cauchy-Riemann
equations when y > 0.
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Remark 9 The boundary behaviour (3.10) can be proved also in the
following way. Consider for z ∈ H

f(z) =
1

πi

∫ ∞

−∞

F (t)

t− z
dt.

We assert, that

lim
z→t0

Ref(z) = F (t0),

where t0 ∈ R.

Proof Denoting u = Ref , then

u(z) =
1

π

∫ ∞

−∞

yF (t)

|t− z|2dt.

From (3.7) applied to u(t, y) ≡ 1 it follows

1

π

∫ ∞

−∞

y

|t− z|2dt = 1.

Hence,

u(z)− F (t0) =
1

π

∫ ∞

−∞
y
F (t)− F (t0)

|t− z|2 dt.

Let

|t0 − x| < 1

2
δ

and 0 < y < 1
2δ. By the continuity of F at the point t0 for any ε > 0

there exists a δ = δ(ε, t0) > 0 such that

|F (t)− F (t0)| < ε,

for |t− t0| < δ. Decomposing

∫ ∞

−∞
=

∫ t0−δ

−∞
+

∫ t0+δ

t0−δ

+

∫ ∞

t0+δ
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and observing the estimates

∣∣∣∣y
∫ t0+δ

t0−δ

F (t)− F (t0)

|t− z|2 dt

∣∣∣∣ ≤ y

∫ t0+δ

t0−δ

εdt

|t− z|2 ≤ ε

∫ ∞

−∞

ydt

|t− z|2 = ε

and

∣∣∣∣
(∫ t0−δ

−∞
+

∫ ∞

t0+δ

)(
y
F (t)− F (t0)

|t− z|2
)

dt

∣∣∣∣

≤ y2M

(∫ t0−δ

−∞
+

∫ ∞

t0+δ

)
dt

|t− z|2

= 2My

(∫ −δ

−∞
+

∫ ∞

δ

)
dt

(|t| − |t0 − x|)2

= 4My
1

δ − |t0 − x| ≤
8My

δ

we have

|u(z)− F (t0)| ≤ ε +
8My

δ
.

Hence,

lim
z→t0

u(z) = F (t0).

3.3 Dirichlet problem for the half plane

Theorem 13 Let w be an analytic function in H, and a function G ∈
L2(R;C) ∩ C(R;C) be given. Then

w(z) =
1

2πi

∫ ∞

−∞
G(t)

1

t− z
dt (3.14)

is the uniquely given solution to the Dirichlet problem w = G on R if
and only if for z ∈ H

1

2πi

∫ ∞

−∞
G(t)

dt

t− z̄
= 0. (3.15)
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Proof The proof of this theorem consists of two parts.
1)The sufficiency of (3.15) follows at once from subtracting (3.15) from
(3.14) leading to

w(z) =
1

2πi

∫ ∞

−∞
G(t)

dt

t− z

=
1

2πi

∫ ∞

−∞
G(t)

dt

t− z
− 1

2πi

∫ ∞

−∞
G(t)

dt

t− z̄

=
1

π

∫ ∞

−∞
G(t)

y

(t− x)2 + y2dt

Thus for z → t0 and t0 ∈ R, limz→t0 w(z) = G(t0) follows.
2)The formula (3.15) is shown to be necessary. Let w be a solution
to the Dirichlet problem. Then w is an analytic function in H having
continuous boundary values

lim
z→t0

w(z) = G(t0), (3.16)

where t0 ∈ R.
Consider for z /∈ R the function

w̃(z) =
1

2πi

∫ ∞

−∞
G(t)

dt

t− z

and

w̃(z̄) =
1

2πi

∫ ∞

−∞
G(t)

dt

t− z̄
,

where z ∈ H.
From

w̃(z)− w̃(z̄) =
1

π

∫ ∞

−∞
G(t)

ydt

(t− x)2 + y2 (3.17)

and the properties of the Poisson kernel [see formula (3.7)]

lim
z→t0

(w(z)− w̃(z̄)) = G(t0) (3.18)
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follows. The formula (3.17) tends to G(t0) when y tends to 0 and x

tends to t0. Then for the validity of

lim
z→t0

w(z) = G(t0),

where t0 ∈ R, follows
lim
z→t0

w̃(z̄) = 0.

Moreover, from

w̃(ζ) =
1

2πi

∫ ∞

−∞
G(|ζ|t) dt

t− ζ
|ζ|

,

|w̃(ζ)| 6 1

2π

(∫ ∞

−∞
|G(|ζ|t)|2dt

) 1
2

(∫ ∞

−∞

dt

|t− ζ
|ζ||2

) 1
2

=
1

2π|ζ|12

(∫ ∞

−∞
|G(t)|2dt

) 1
2

(∫ ∞

−∞

dt

|t− ζ
|ζ||2

) 1
2

it is seen

lim
ζ→∞

Imζ<0

w̃(ζ) = 0.

Thus

w̃(ζ) =
1

2πi

∫ ∞

−∞
G(t)

dt

t− ζ

is an analytic function in Imζ < 0 with vanishing boundary values on
R. As also

lim
ζ→∞

Imζ<0

w̃(ζ) = 0

then w̃ vanishes identically in Imζ < 0.
This in fact was required to prove.
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3.4 Neumann problem for the half plane

Let wz̄ = 0 in H and ∂yw = iw
′
= iG on R, w(i) = c, where G ∈

L2(R;C) ∩ C(R;C), satisfying G(t) log(1 + t2) ∈ L1(R;C) and for
z ∈ H

1

2πi

∫ ∞

−∞
G(t)

dt

t− z̄
= 0

i.e.

1

2πi

∫

R
G(t)

dt

t− z
= 0,

and c ∈ C.
Then the Dirichlet problem w

′
= G on R is solvable by, see 3.3,

w
′
(z) =

1

π

∫ ∞

−∞

yG(t)

|t− z|2dt

=
1

2πi

∫ ∞

−∞
G(t)(

1

t− z
− 1

t− z̄
)dt

=
1

2πi

∫ ∞

−∞
G(t)

dt

t− z

if and only if

1

2πi

∫ ∞

−∞
G(t)

dt

t− z̄
= 0

for z ∈ H. Integration leads to

w(z) = c− 1

2πi

∫ ∞

−∞
G(t) log |t− z|2dt +

1

2πi

∫ ∞

−∞
G(t) log(1 + t2)dt.

From

wz̄(z) =
1

2πi

∫ ∞

−∞
G(t)

dt

t− z̄
= 0

w is seen to be analytic. Moreover,
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w
′
(z) =

1

2πi

∫ ∞

−∞
G(t)

dt

t− z
=

1

π

∫ ∞

−∞
G(t)

ydt

|t− z|2 , w(i) = c.

Summing up we have the following theorem.

Theorem 14 The Neumann problem wz̄ = 0 in H, ∂yw = iG on R,
w(i) = c with G ∈ L2(R;C) ∩ C(R;C) and (1 + t2)G(t) ∈ L1(R;C) is
solvable if and only if

1

πi

∫ ∞

−∞

G(t)

t− z̄
dt = 0

for z ∈ H. Then the solution is

w(z) = c +
1

2πi

∫ ∞

−∞
G(t) log | t− i

t− z
|2dt.

3.5 Robin boundary value problem

At first a particular case is studied, see [13].
Special Robin problem: Find an analytic function in the upper half
plane H, satisfying the boundary condition

w + ∂νw = γ (3.19)

on R for given γ ∈ L2(R;C) ∩ C(R;C).
Note that in our case for the boundary condition (3.19) we have

∂νw = ∂yw = iw
′
.

Thus (3.19) can be written as

w + iw
′
= γ

on R. As we know from Section 3.3

w(z) + iw
′
(z) =

1

2πi

∫ ∞

−∞
γ(t)

dt

t− z
=

1

π

∫ ∞

−∞
γ(t)

ydt

|t− z|2 (3.20)
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if and only if
1

2πi

∫ ∞

−∞
γ(t)

dt

t− z̄
= 0,

for z ∈ H. The solution to the differential equation (3.20) is

w(z) = C0e
iz − i

π

∫ ∞

−∞
γ(t)

∫ z

i

ei(z−s)Ims

|t− s|2 dsdt. (3.21)

Remark 10 As the right-hand side of (3.20) is analytic the integral
in (3.21) is analytic in H.

Verification of (3.21). By differentiating (3.21)

w
′
(z) = iC0e

iz +
1

π

∫ ∞

−∞
γ(t)

∫ z

i

ei(z−s)Ims

|t− s|2 dsdt− i

π

∫ ∞

−∞
γ(t)

ydt

|t− z|2

follows. This gives together with (3.21)

w(z) + iw
′
(z) =

1

π

∫ ∞

−∞
yγ(t)

dt

|t− z|2 .

In order to determine C0 consider

w(i) = C0e
−1,

hence

C0 = ew(i),

w(z) = w(i)e1+iz − i

π

∫ ∞

−∞
γ(t)

∫ z

i

ei(z−s)Ims

|t− s|2 dsdt.

General Robin problem: Find an analytic function in the upper half
plane H, satisfying the boundary condition

αw + ∂νw = γ on R,
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where α ∈ C(R;C) and w(0) = C0. This boundary condition on R is

αw + iw
′
= γ,

which is
w
′ − iαw = −iγ on R. (3.22)

If γ = 0, then

w(t) = Cei
∫ t

0
α(ζ)dζ

We can verify this for t ∈ R:

w
′
(t) = iCα(t)ei

∫ t

0
α(ζ)dζ = iα(t)w(t).

If γ 6= 0, then by the method of varying the constant for t ∈ R

w(t) = C(t)ei
∫ t

0
α(ζ)dζ

and
w
′
(t) = C

′
(t)ei

∫ t

0
α(ζ)dζ + iα(t)C(t)ei

∫ t

0
α(ζ)dζ

so that on R

w
′
(t)− iα(t)w(t) = C

′
(t)ei

∫ t

0
α(ζ)dζ + iC(t)α(t)ei

∫ t

0
α(ζ)dζ

−iαC(t)ei
∫ t

0
α(ζ)dζ = −iγ(t).

Thus
C
′
(t) = −iγ(t)e−i

∫ t

0
α(ζ)dζ .

By integration

C(t) = −i

∫ t

0
γ(s)e−i

∫ s

0
α(ζ)dζds + C0

follows with arbitrary C0 ∈ C. Hence, on R
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w(t) = [−i

∫ t

0
γ(s)e−i

∫ s

0
α(ζ)dζds + C0]e

i
∫ t

0
α(ζ)dζ

= C0e
i
∫ t

0
α(ζ)dζ − i

∫ t

0
γ(s)ei

∫ t

s
α(ζ)dζds.

These are the Dirichlet boundary values for the analytic function w.
The development of Section 3.3 leads to the next result.

Theorem 15 The Robin problem wz̄ = 0 in H, αw + ∂νw = γ on
R, w(0) = C0 for α, γ ∈ L2(R;C) ∩ C(R;C), w(0) = C0, C0 ∈ C, is
uniquely solvable if and only if

1

2π

∫ ∞

−∞
{C0e

i
∫ t

0
α(s)ds − i

∫ t

0
γ(σ)ei

∫ t

σ
α(s)dsdσ} dt

t− z̄
= 0,

where z ∈ H. The solution is given by

w(z) =
1

π

∫ ∞

−∞
{C0e

i
∫ t

0
α(s)ds − i

∫ t

0
γ(σ)ei

∫ t

σ
α(s)dsdσ} ydt

|t− z|2 .

A special case can be treated in another way. If α(t) are the boundary
values of a function α analytic in H, then

w
′ − iαw

is analytic in H so that

w
′ − iαw = −iγ

on R is a Dirichlet problem for an analytic function on H. Thus

w
′
(z)− iα(z)w(z) =

−i

2πi

∫ ∞

−∞
γ(t)

dt

t− z

= − i

π

∫ ∞

−∞
γ(t)

ydt

|t− z|2
(3.23)

is an analytic solution in H if and only if
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1

2πi

∫ ∞

−∞
γ(t)

dt

t− z̄
= 0,

where z ∈ H.
If γ = 0, then w(z) = Cei

∫ z

i
α(ζ)dζ .

If γ 6= 0,then the solution to (3.28) is of the form w(z) = C(z)ei
∫ z

i
α(ζ)dζ .

Therefore

w
′
= C

′
ei

∫ z

i
α(ζ)dζ + iαCei

∫ z

i
α(ζ)dζ ,

w
′ − iαw = C

′
ei

∫ z

i
α(ζ)dζ + iαCei

∫ z

i
α(ζ)dζ − iαCei

∫ z

i
α(ζ)dζ

= − i

π

∫ ∞

−∞
γ(t)

ydt

|t− z|2 ,

i.e.

C
′
= − i

π

∫ ∞

−∞
γ(t)

ydt

|t− z|2e
−i

∫ z

i
α(ζ)dζ .

By integration

C(z) = C0 − i

π

∫ z

i

∫ ∞

−∞

Imsγ(t)

|t− s|2 e−i
∫ s

i
α(ζ)dζdtds

and

w(z) = C0e
i
∫ z

i
α(ζ)dζ − i

π

∫ ∞

−∞
γ(t)

∫ z

i

Ims

|t− s|2e
i
∫ z

s
α(ζ)dζdsdt

follow. Obviously w(i) = C0.
This can be easily checked by

w
′
= C0iαei

∫ z

i
α(ζ)dζ − i

π

∫ ∞

−∞

yγ(t)

|t− z|2dt
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− i

π

∫ ∞

−∞
γ(t)

∫ z

i

iα(z)Ims

|t− s|2 ei
∫ z

s
α(ζ)dζdsdt

= iαw − i

π

∫ ∞

−∞

yγ(t)

|t− z|2dt

from which

w
′ − iαw = −i

1

π

∫ ∞

−∞

yγ(t)

|t− z|2dt

follows.

Theorem 16 The Robin problem wz̄ = 0 in H, αw + ∂νw = γ on
R, w(i) = C0 for α ∈ O(H) ∩ C(H;C), γ ∈ L2(R;C) ∩ C(R;C) and
C0 ∈ C is uniquely solvable if and only if

1

2πi

∫ ∞

−∞

γ(t)

t− z̄
dt = 0

for z ∈ H. The solution is given by

w(z) = C0e
i
∫ z

i
α(ζ)dζ − i

π

∫ ∞

−∞
γ(t)

∫ z

i

1

|t− s|2e
i
∫ z

s
α(ζ)dζdsdt. (3.24)

Here O(H) denotes the set of analytic functions in H.

3.6 Neumann problem for harmonic functions in the upper half plane

The Neumann problem for the Poisson equation is solved in Section
2.4. Here this problem is treated again on the basis of the Poisson
formula for the Laplace equation.
Let G(x) be continuous for all real x, except for at most a finite
number of finite jumps, and xG(x) ∈ L2(R;C). For each fixed real
number t the function log |z−t| is harmonic in the half plane Imz > 0.
Consequently, the function

U(x, y) =
1

π

∫ ∞

−∞
log |z − t|G(t)dt + U0

=
1

2π

∫ ∞

−∞
log[(t− x)2 + y2]G(t)dt + U0, (3.25)

73



where y > 0 and U0 is a real constant, is harmonic in that half plane.
Formula (3.25) is given with the Poisson formula (3.9) in mind; for it
follows from formula (3.25) that

Uy(x, y) =
1

π

∫ ∞

−∞

yG(t)

(t− x)2 + y2dt, (3.26)

where y > 0.
In view of equations (3.9) and (3.10), then,

lim
y→0

Uy(x, y) = G(x), y > 0, (3.27)

at each point x where G is continuous.
Integral formula (3.26) therefore solves the Neumann problem for the
half plane y > 0 with the boundary condition ∂yU = G. But we have
not presented conditions on G that are sufficient to ensure that the
harmonic function U is bounded as |z| increases.
When G is an even function, formula (3.25) can be written as

U(x, y) =
1

2π

∫ ∞

0
log

(t− x)2 + y2

(t + x)2 + y2G(t)dt + U0, (3.28)

where x > 0, y > 0.
This represents a function which is harmonic in particular in the first
quadrant x > 0, y > 0 and which satisfies the boundary conditions

U(0, y) = U0, y > 0

lim
y→0
y>0

Uy(x, y) = G(x), x > 0.
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