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Zusammenfassung

In den letzten Jahren stieg die weltweite Nachfrage nach elektrischer Energie aufgrund

der steigenden Weltwirtschaft stark an, welche in der Zukunft nur mit nachhaltigen

und erneuerbaren Energiequellen umweltfreundlich bedient werden kann. Ein beson-

ders hohes Potential hierfür weisen Photovoltaik-Solarzellen durch die hohe Sonnenein-

strahlung auf der Erde auf. Leider besitzen heutige Solarzellenmaterialien oft Nachteile

wie hohe Kosten oder die Verwendung von seltenen oder umweltschädlichen Materia-

lien. Ein vielversprechender Ersatz hierfür sind Kësterite (Cu2ZnSnSxSe4−x), die aus

nicht-giftigen Elementen bestehen, welche auf der Erde reichhaltig vorhanden sind und

so eine zukünftige Verfügbarkeit garantieren.

Kësterite werden in dieser Arbeit daher mit quantenchemischen first-principles Metho-

den als Solarzellenabsorber geprüft, wobei Schlüsselfaktoren für die bisher niedrigen Ef-

fizienzen untersucht werden und ein Einblick in mögliche leistungssteigernde Material-

modifikationen gewährt wird. Erhöhte Energieausbeuten werden durch Cu2ZnSnSxSe4−x

Legierungen erzielt, die allerdings durch Legierungsmuster eine schwankende Material-

qualität aufweisen, die wiederum Schwankungen der Bandlücke verursachen. Weitere

Qualitätsschwankungen treten durch Unordnungen auf den 2c und 2d Wyckoff Positio-

nen in Cu2ZnSnS4 auf, deren Einfluss durch die Analyse der elektronischen Struktur

mit Bezug zu unterschiedlichen Unordnungsmustern und Unordnungsanteilen unter-

sucht wird. Dabei zeigt sich, dass die 2c/2d Unordnungen einer der Hauptverursacher

für Bandlückenschwankungen und folglich niedrige Effizienzen sind, wobei die S/Se Le-

gierungen nur einen kleinen Teil dazu beitragen.

Um den Kësterit Solarzellen zu einer stärkeren Verbreitung zu verhelfen, ist es notwen-

dig durch Nanostrukturierungen die Effizienz über das Shockley–Queisser Limit anzu-

heben sowie die Materialkosten weiter zu reduzieren. Einen Schritt in Richtung der Na-

nostrukturierung ist durch die theoretische Untersuchung von Cu2ZnSnS4-Oberflächen

und -Clustern gegeben, die beide unterschiedliche Grenzen der Nanostrukturierung dar-

stellen. Durch die Stabilitätsuntersuchungen der niedrig indizierten Oberflächen durch

Oberflächenenergien wird ein Einblick in strukturelle Stabilitätsmuster gegeben. Zu-

sätzlich werden erfolgreich Oberflächenenergien für symmetrische nicht-stoichiometrische

Oberflächen durch ein Extrapolationsschema bestimmt. Cluster dienen in dieser Arbeit

als strukturelles Modell für realistische Nanokristalle mit einem festen bulk-ähnlichen

Kern und einer relaxierten Oberfläche. In beiden Modellen zeigt sich eine Magnetisie-

rung der Oberfläche innerhalb des Computermodells sowie in Clustern größenabhängige

fundamentale Lücken sowie Oberflächenzustände in den Oberflächen, die zu einer grö-

ßeren Energieausbeute verwendet werden können.

Die theoretischen Untersuchungen zeigen einen der Hauptgründe für die Bandlücken-

schwankungen und eine Möglichkeit die Leistung der Kësterit-Solarzellen durch Nano-

strukturierung zu erhöhen. Durch eine Kombination der theoretischen Ergebnisse mit

Experimenten wird ein möglicher Pfad für effektivere Kësterit-Solarzellen aufgezeigt.



Summary

In the last years the demand for electrical energy has been increasing continuously due

to an expanding world economy, which has to be satisfied by sustainable and renewable

energy sources to preserve the environment. Especially photovoltaic solar cells feature

a high potential due to the immense energy reaching earth by solar radiation. Unfortu-

nately, today’s solar cell absorber materials often show certain disadvantages like high

costs or the utilization of rare or environmentally harmful materials. A promising solar

cell absorber are kesterites (Cu2ZnSnSxSe4−x), which only consist of earth abundant,

non-toxic, and highly available elements, assuring availability in the future.

This work reviews kesterites as a solar cell absorber by quantum chemical first-principles

calculations to understand key factors for the still low efficiencies, and give insight on

possible performance enhancing material modifications. Hereby Cu2ZnSnSxSe4−x al-

loys are utilized for band gap engineering to increase the efficiency, whereby varying

material qualities due to different structural alloy patterns introduce small band gap

fluctuations. Further varying material qualities are shown by disorders on the 2c and

2d Wyckoff positions in Cu2ZnSnS4, whose influence is shown by an analysis of the

electronic structure with respect to different structural disorder patterns and propor-

tions. The 2c/2d disorders are revealed to be one of the main reasons for the band gap

fluctuations, which induce lower efficiencies, whereby the Cu2ZnSnSxSe4−x alloys only

slightly contribute.

For a large-scale energy production via kesterite solar cells, further improvements are

required, like efficiencies beyond the Shockley–Queisser limit and a reduction of ma-

terial costs, which can be introduced by nanostructuring. A step towards nanostruc-

turing is taken by theoretically investigating Cu2ZnSnS4 surfaces and clusters, which

simulate different forms of nanostructuring. By studying the stability of different low-

index surfaces via surface energies, an insight on structural stabilizing patterns is given,

whereby the challenge of calculating surface energies for off-stoichiometric symmetric

slabs is successfully addressed via an extrapolation scheme. Decreasing the nanostruc-

ture size further to finite clusters, a structural model is designed to simulate a realistic

nanocrystal with a fixed bulk-like core and a relaxed surface. Both modeling schemes

show a magnetization of the surface within the computational model. The Cu2ZnSnS4

clusters show a size-dependent fundamental gap and the Cu2ZnSnS4 surfaces feature

surface states within the bulk band gap, which can be utilized for an increased energy

harvest.

The quantum chemical first-principles investigations show a main reason for the band

gap fluctuations and an opportunity for an enhancement of the solar cell performance by

nanostructuring. By combining these theoretical findings with experiments, a possible

route for more efficient kesterite solar cells is indicated.
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Chapter 1

Introduction

Over the last twenty years the demand for energy has been continuously increasing

due to an expanding world economy, growing world population and increasing living

standards especially in emerging countries. From 1990 to 2013, the world primary

energy consumption increased from 370 Exajoule (37x1019 Joule) to 575 Exajoule

(57.5x1019 Joule) [1], whereby the primary energy consumption is expected to keep

further increasing. This energy today is mainly produced by fossil fuels, although its

limited resources and climate-damaging combustion. Another main contributor to the

total (electric) energy is nuclear energy with about 10.6 % [2], despite two large inci-

dents in nuclear power plants in the last 30 years and the long remaining nuclear waste.

With the knowledge about these disadvantages for the current and future population

of the earth, many countries started a transition away from non-renewable and envi-

ronmentally harmful energy sources to sustainable and renewable energy sources. The

usage of renewable energy sources varies from country to country, whereby Germany

is an early pioneer in this field. In 2015 the estimated primary energy consumption

in Germany of 13.31 Exajoule is composed of energy produced by 33.9 % mineral oil,

21.1 % natural gas, 12.7 % hard coal, 11.8 % lignite, 12.5 % renewable sources and

7.5 % nuclear energy [1].

The renewable energy is produced from a wide variety of sources, for example wind,

bio fuels, biomass, geo- and solarthermy, hydro-power and photovoltaics to name a few.

This diversity is an advantage for a long-term transition to an environment-friendly

and renewable energy production. Especially the photovoltaic energy production is

a key factor, since the potential annual solar energy reaching earth is about 1575 to

49837 Exajoule [3]. Thus, to keep pace with the increasing demand for electrical and

total primary energy, new materials have to be found for a more efficient electrical

power generation by photovoltaic solar cells. The focus hereby lies on sustainable and

environment-friendly materials, which are available at a reasonable cost and available

in the future for an extensive application.
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1.1 Electrical Energy Production via Solar Radiation

In general, solar radiation is converted into electrical energy by photovoltaic solar cells,

which absorb the solar radiation of a certain wavelength region [4]. In principle, a solar

cell consists of an n-type and p-type semiconductor, which form a p-n-semiconductor

junction (see fig. 1.1). The n-type semiconductor features an excess of electrons,

whereby the Fermi level lies closer to the conduction band than to the valence band.

In contrast, in p-type semiconductors the Fermi level lies closer to the valence band

than to the conduction band, whereby a hole excess is shown. The two different types

are obtained by doping, for example, the widely used solar cell material silicon with

phosphorus to obtain an n-type semiconductor or with boron to obtain a p-type semi-

conductor. The p-n junction describes the boundary interface between the n-type and

p-type semiconductor in the solar cell. Each of the semiconductors is furthermore

bound to a different electrode, to which a consumer can be connected.

solar radiation

electrode

electrode 

n-type semiconductor

p-type semiconductor

p-n junction

current

consumer

Figure 1.1: Schematic illustration of a model solar cell module. By absorbing the solar ra-
diation, an electron-hole pair is generated in the semiconductors. Holes move to
the positive electrode and electrons move to the negative electrode, generating an
electric current.

There are various possibilities how the solar radiation can interact with the solar cell.

For example the photons of the solar radiation can be reflected at the surface of the

solar cell or pass through the material, if the photons exhibit too little energy. However,

if the photons in the solar radiation feature a minimal energy larger than the band gap

of the utilized semiconductors, the photons are absorbed in the solar cell module,

leading to an excitation of an electron from the valence band to the conduction band,

whereby charge carriers in form of electron-hole pairs are generated (see fig. 1.2).

Subsequently, the electron-hole pairs move through the solar cell, whereby the holes

move in directions of the positive electrode through the p-type semiconductor and the

electrons move through the n-type semiconductor to the negative electrode [4]. The

p-n junction forms a depletion region, which is an insulating region where the mobile

charge carriers have diffused away [5]. Since on n-doped side cations and on the p-
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doped side anions remain due to the electron diffusion, an electric field is generated

pointing from the n- to the p-doped semiconductor (see fig. 1.2). The electron-hole

pairs are separated by the drift generated by this electric field and additionally by

carrier diffusion from zones higher concentration to lower concentration following the

gradient of the electrochemical potential in the solar cell. As a result, a current is

produced, which can be used by a consumer.
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Figure 1.2: Schematic illustration of the p-n junction, depletion region and corresponding band
diagram. After absorbing the solar radiation an electron-hole pair is generated.
The hole moves to the positive electrode through the p-type semiconductor and
the electron moves through the n-type semiconductor to the negative electrode [4,
5]. This results in an electric current, which can be utilized by consumers.

To characterize the potential efficiency of a solar cell, in 1961 W. Shockley and H.

J. Queisser developed a scheme to estimate the solar cell efficiency. In general, the

efficiency of a solar cell is defined as the portion of energy absorbed from light that can

be converted into electricity. The Shockley–Queisser (SQ) limit gives the maximum

theoretical efficiency η of a solar cell with a single p-n junction [6] (see fig. 1.3). This

approximation is one of the most fundamental and most important approaches in solar

cell research [7]. For example, a solar cell with a single p-n junction and a band gap of

1.34 eV shows a maximum solar conversion efficiency around 34 % under the constraints

of solar radiation falling on an ideal solar cell with about 1000 W/m2 [7]. Solar cells with

multiple p-n junctions can even outperform this limit in theory, reaching a theoretical

limit of 87 %, using concentrated sunlight with an infinite number of cells [8].
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Figure 1.3: Simulated Shockley–Queisser limit for the efficiency of a solar cell, whereby the
light source is approximated by a 6000 K blackbody spectrum, adapted from [6].

The relatively simple model after SQ only accounts for few possible loss mechanisms

like the recombination of an electron-hole pair under radiation of a photon, which is the

reverse process of the photon absorption. Furthermore only a small portion of the solar

radiation spectrum can be used in a solar cell, which depends on the size of the band

gap. Photons with energy lower than the band gap are not absorbed, while photons

exhibiting a larger energy than the band gap are absorbed, whereby the additional

energy is transformed into heat. However, the SQ model neglects loss mechanisms like

optical losses, for example the quantum efficiency of a solar cell is smaller than one,

meaning that not every suitable photon generates an electron-hole pair leading to an

electric current. These optical losses contain for example reflection losses at the window

layer or absorption of the photon at buffer or window layers [9]. In practice, there are

various possibilities which are responsible for an efficiency deterioration of the solar cell.

One of these limits is connected to the open-circuit voltage VOC, which is the difference

in electrical potential between two electrodes of a device under light radiation when

disconnected from any circuit. The open-circuit voltage is hereby proportional to the

efficiency η [6], which reflects its importance. Many factors like material fluctuations

influence VOC, for example secondary phases or changes of the material stoichiometry

within the absorber material, which lead to additional recombination centers in the ab-

sorber material, effectively reducing VOC [10]. This often occurs in disordered lattices

or semiconductor alloys because of composition variations. All these imperfections lead

to local variations of the band gap within the solar cell module, which deteriorate the

performance of the solar cell [10], since the band gap Eg is proportional to the open-

circuit voltage VOC [6, 11]. The upper limit for the open circuit voltage of a solar cell

is therefore the band gap.

Despite the various possibilities for an efficiency deterioration of a solar cell, the current

conventional Si-based modules show suitable efficiencies of up to 20 % for commercial
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products [12]. However, these solar cells show drawbacks like high costs of monocrys-

talline silicon due to the homogeneous crystalline framework with no grain boundaries

and due to the utilized wafers thicknesses up to 240 micrometers (µm). To reduce

the costs of the solar cell, silicon solar cells were further modified resulting in differ-

ent silicon solar cell categories like polycrystalline and amorphous silicon solar cells.

Polycrystalline silicon solar cells feature larger bulk-like particles, which show grain

boundaries. An amorphous silicon solar cell is made of non-crystalline silicon, which

features a higher band gap of 1.77 eV [13]. Hereby the electronic effects of nanostruc-

turing are used, in which the band gap increases with decreasing nanostructure sizes,

which can be utilized for band gap engineering. This size-dependency of the band gap

is also known as the quantum confinement effect. The main aim behind amorphous

silicon solar cells is to lower production costs while concurrently accepting lower effi-

ciencies of about 10 % [14, 15].

A further famous material for multi-junction and thin film solar cells is gallium ar-

senide (GaAs), which is used in high-efficiency but high cost solar cells. In thin film

solar cells, the solar cell is produced by depositing one or more thin layers (thin film) on

a substrate, whereby the film thickness varies from a few nm (nanometers) to several

µm. The thin film technology allows for flexible solar cells and lower costs, since the

absorber material is only used in small amounts. The multi-junction solar cells feature

multiple p-n junctions, which are often made of different semiconductor materials to

efficiently absorb different wavelengths of light. GaAs-based devices hold the world

record for the highest-efficiency single-junction solar cell at 29 % [16] with a band gap

of 1.43 eV [17]. Due to its high efficiency, GaAs is commonly used for photovoltaic

arrays for satellite applications.

Cadmium telluride (CdTe) is another prominent thin film photovoltaic material with

a band gap of 1.5 eV [18], which has the smallest carbon footprint and lowest water

usage during production with regard to later generated electricity and shortest energy

payback time of all solar cell technologies [19–21]. Unfortunately, the toxicity of cad-

mium is an environmental concern which can be alleviated by the recycling of the solar

cell modules [22]. Furthermore, the price of Te is a limiting factor for these photo-

voltaics [23].

One of the most prominent material classes for the thin film solar cells are the chal-

copyrites CuInxGa1−xSe2 (CIGS) with a composition dependent band gap of 1.0 eV to

1.7 eV [24], already featuring a maximum lab efficiency of 20 % [25] and minimal lower

efficiencies in commercial products. However, there are doubts about the availability

and costs of indium and gallium in the future, which reduce the potential for an exten-

sive application.

Overall, these solar cell absorber materials already achieve good efficiencies, but all

show different disadvantages like high costs, utilization of rare or environmentally

harmful materials, fragility of the monocrystalline layers, or low lifetimes. However,

a promising material for thin film solar cells similar to chalcopyrites are kesterites
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(Cu2ZnSnSxSe4−x), which feature similar electronic properties, lack the dependency

on indium or gallium, and only contain non-toxic elements. Todays kesterite lab solar

cells show an efficiency of 12.6 % [26], whereby they exhibit the same potential as CIGS

solar cells with efficiencies over 20 %. In contrast to CIGS solar cells, the research on

kesterite solar cells is still in the beginning, whereby the CIGS solar cell research started

in the 1970s, showing similar low efficiencies at that time (see fig. 1.4). Due to this high

potential and promising material properties for an application in thin film solar cells,

kesterites are reviewed in this work by quantum chemical first-principles calculations to

understand key factors for the low efficiencies and give insight on possible performance

enhancing material modifications.
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Figure 1.4: Development of research solar cell efficiencies from 1975 to 2016, adapted from
the Best Research Solar Cell Efficiencies summarized by the National Renewable
Energy Laboratory (Golden, Colorado) [27].
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1.2 Kesterites as Solar Cell Absorber

Over the last years the material class of kesterites (Cu2ZnSnSxSe4−x) has started to

attract the interest of scientists for a utilization as an absorber layer in thin film solar

cells due to its isolectronicity to the current thin film high performer chalcopyrites [28–

30]. While featuring similar suitable electronic and optical properties as chalcopyrites,

kesterites consist of earth abundant non-toxic elements which are available in a high

concentration in the earth’s crust, assuring availability in the future [31]. The photo-

voltaic effect in kesterites was first observed in 1988 [32], which lead in 1997 to the first

kesterite solar cell with an efficiency of 2.3 % [33]. Consecutively researchers started

to increase this efficiency in 2008 to 6.7 % [34, 35], in 2010 to 9.6 % [36] and in the

following years to over 10 % [30, 37, 38]. The current kesterite thin film high performer

features an efficiency of 12.6 % [26] in 2013, which is still far off from the theoretical

limit of 31-32 % [39, 40].

The quaternary semiconductors Cu2ZnSnS4 (CZTS), Cu2ZnSnSxSe4−x (CZTSSe) and

Cu2ZnSnSe4 (CZTSe) are I2-II-IV-VI4 compounds [41], which crystallize in a tetrago-

nal crystal system with the space group I4 for the kesterite structure and with the

space group I42m for the stannite structure [28, 42], whereby the kesterite structure is

slightly more stable [43]. In the kesterite structure Cu, Zn, Sn and S/Se occupy the 2a

and 2c, 2d, 2b and 8g Wyckoff positions respectively (see fig. 1.5), which is identical in

CZTS, CZTSSe and CZTSe [28, 42]. CZTS features lattice constants of a = 5.427 Å

and c = 10.871 Å [44], which are slightly enlarged in CZTSe with a = 5.689 Å and

c = 11.347 Å [45] due to larger Se atoms.
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Figure 1.5: Bulk structures and lattice constants of CZTS [44] and CZTSe [45]. The ionic
structure of both compounds is identical, whereas the lattice constants are slightly
larger for CZTSe due to larger Se atoms. In the kesterite structure Cu, Zn, Sn and
S/Se occupy the 2a and 2c, 2d, 2b and 8g Wyckoff positions respectively.
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The lattice constants of CZTSSe alloys lie in between CZTS and CZTSe. Due to the

similar electronic structure of Cu+ and Zn2+, both cations are indistinguishable by

conventional X-ray diffraction, therefore neutron diffraction is applied for a structural

analysis [28].

Kesterites were first prepared in 1967 from the vapor phase by chemical transport with

iodine [46], whereby today there are various preparation methods like a solid state

reaction of the pure elements in sealed and evacuated ampoules with resulting large

single-phase crystals [47, 48] or the nanocrystal synthesis in different solution-based

processes [49–63], whereby the nanocrystals feature sizes of up to 50 nm [53, 58, 62,

63]. Later, these nanocrystals are coated by different techniques on a substrate to

form a polycrystalline thin film. The complexity of the structure often leads to defects

[64, 65], featuring off-stoichiometry and varying material properties. Off-stoichiometric

samples are also prepared on purpose to test composition boundaries [66], whereby in

the high performing kesterites solar cells the off-stoichiometry is utilized in form of

Cu-poor and Zn-rich samples [67, 68].

However, there are also stoichiometric defects like the most prominent 2c/2d disorders,

in which CuZn and ZnCu antisite are formed, which have been investigated experi-

mentally [48, 69–74]. The complex structure of course features also the advantage of

adjusting material properties by alloying different kesterite derived materials for exam-

ple like Cu2ZnSnS4 and Cu2FeSnS4 [75] or Cu2ZnSnS4 and Cu2ZnSnSe4 [76–78].

Due to the similarity to chalcopyrites, the electronic properties are promising for the

usage as a solar cell absorber like direct band gaps of 1.5 eV [32, 65, 79] and 1.0 eV [80]

at the Γ-point for CZTS and CZTSe respectively, which can be adjusted in between by

CZTSSe alloys [81]. Besides the ideal band gap, CZTS exhibit a high optical absorption

of 104 cm−1 and p-type conductivity [79]. Overall, CZTS, CZTSe and CZTSSe are a

promising material class for future thin film solar cells. Unfortunately, the efficiencies

are still to low for a mainstream application in thin film solar cells, since the material

suffers from different limiting factors. A deeper understanding of these limiting factors

and additionally new routes for an efficiency enhancement can be given by quantum

chemical simulation of the absorber material Cu2ZnSnSxSe4−x. An advantage of these

calculations is that they are faster and cheaper than experimental studies and therefore

can help preselect experimental settings.

8
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1.2.1 A Quantum Chemical Route to a Tailored Solar Cell Absorber

The theoretical and technological development in the last years lead to todays situation

in which material properties can be predicted precisely by quantum chemical electron

structure calculations [82], which can be used for an understanding of material proper-

ties as well as for predictions of a route to more efficient and cheaper solar cells. In recent

years, many theoretical investigations have therefore been performed on kesterites. The

theoretical studies especially focused on bulk properties like lattice parameters, elec-

tronic and optical properties of CZTS, CZTSSe and CZTSe, showing good agreement

with experimental data while applying the widely used and low cost density functional

theory (DFT) with various functionals [43, 83–91]. The quaternary semiconductor pro-

vides many possibilities for structural modifications like atom substitutions or alloying,

which have been investigated theoretically [81, 90–108]. Several possible alloys have

been theoretically investigated like the Cu2ZnSnS4 and Cu2FeSnS4 alloy [100], whereby

the most prominent is the CZTSSe alloy [81, 93, 95, 98, 99, 105], which is used in the

current high performing kesterite solar cell [26]. The experimental kesterite material

often exhibits off-stoichiometry and defects like vacancies VX and antisites XY , in which

X and Y denote different atom types. Theoretical investigations by Chen et al. have

shown that the CuZn antisite is the dominant point defect in stoichiometric CZTS and

CZTSe, whereby the off-stoichiometry often results from self compensating defect clus-

ters, such as [VCu+ZnCu], [2 CuZn+SnZn] and [ZnSn+2 ZnCu] [109].

Unfortunately, despite these intense theoretical investigations, the kesterite solar cell

modules are still at 13 % efficiency, whereby the reasons for these low efficiencies are

still not fully understood until today. Concluding from the previous experimental and

theoretical results, theory can help in two ways to increase the performance of kesterite

thin film solar cells. The first step is to understand the limiting factors for the low

efficiency from a theoretical point of view to support experimentalists during the syn-

thesis and solar cell preparation. In a second step, further material modifications have

to be theoretically investigated to estimate their impact on the performance of the

CZTS solar cell for a possible enhancement of the efficiency beyond the prediction by

the Shockley–Queisser limit.

First of all, kesterite solar cells suffer from a low open-circuit voltage, which con-

tributes too low efficiencies [110]. Since the low-open circuit voltage is proportional to

the band gap of the material, band gap fluctuations, namely varying band gaps within

the absorber material due to varying material qualities, may be a reason for these low

efficiencies. The low open-circuit voltages are often blamed on self-compensating defect

clusters like the 2c/2d disorder antisites CuZn and ZnCu, in which Cu2c and Zn2d are

interchanged, which researchers started recently to investigate [111–114]. But these

disorders are not the only source for a varying material quality. Especially the high

performer material Cu2ZnSnSxSe4−x may give rise to an efficiency loss due to different

structural patterns in the alloy, which may also cause band gap fluctuations. From a

9
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theoretical point of view, the reasons for the band gap fluctuations have to be investi-

gated and understood to support the experimentalists.

Furthermore, to increase the limiting efficiency beyond the prediction by the Shock-

ley–Queisser limit, material modifications like nanostructuring are introduced, which

provide opportunities like reduced material costs due to the utilization of less material

and an increased efficiency [115]. Nanostructuring can be performed in different ways,

which all feature the same increase of surface to volume ratio of the utilized material,

whereby large bulk material is substituted by smaller nanoscale materials [116]. There

are various examples for nanostructures like nanowires, nanomeshes, nanograined bulk

materials or quantum dots [116, 117]. In nanoscale objects, quantum size effects are

exploited, often enhancing the material properties [117, 118]. Another example for

nanostructuring are nanostructured surfaces, which can reduce reflection losses if the

size of the nanostructures is adjusted to the incoming wavelength of the light [115].

Additionally, patterned nanostructures can be designed for an increased light capture

rate, in which the light is trapped in the absorber [115, 119, 120]. Other general

features of nanoscale objects are the size-dependency of band gaps, known as the quan-

tum confinement effect, and modifications of the relaxation dynamics of photoexcited

charge carriers [4, 115]. Nanomaterials can also be utilized as part of multi-junction

solar cells inheriting different band gaps, which increase the energy harvest from the

solar radiation [121, 122]. In CZTS solar cells, nanostructuring can be introduced by

increasing the surface to volume ratio by using larger thin films with a smaller bulk

volume. But the surface to volume ratio can be further increased by utilizing a CZTS

thin film composed of CZTS nanocrystals, which contain a small bulk-like core part

and a relaxed surface. Unfortunately up until now the theoretical knowledge about

CZTS nanostructures is still limited despite the possibility of nanoscale effects on the

material properties [123–125]. The nanostructuring features therefore great possibili-

ties for strongly enhanced CZTS thin film solar cells.

The last two paragraphs sum up the scope of this thesis, which is split in two ways,

namely the theoretical understanding of the limiting factors for the efficiency and fur-

thermore provide theoretical insight on material enhancing techniques like nanostruc-

turing. The focus is set on the link between the lattice and electronic structure by

quantum chemical electronic structure calculations, utilizing a periodic and finite DFT

ansatz. In the beginning of chap. 3, the properties of the pure bulk materials CZTS

and CZTSe are examined for structural and electronic reference properties for subse-

quent investigations of modified CZTS and CZTSe materials. The focus is then set on

band gap engineering by CZTSSe alloys, in which the influence of different structural

patterns on the band gap is investigated, since band gap fluctuations lead to deterio-

rated efficiencies [10]. Another possible factor for the low efficiency are experimentally

observed 2c/2d disorders, whereby the focus is set on the structural influences of dis-

orders as well as a subsequent analysis of the electronic structure as a function of the

disorders. Combining the theoretical results of the CZTSSe alloys and 2c/2d disorder

10
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with experimental studies, a path for a more efficient kesterite solar cells may be pro-

vided by a prediction of disruptive factors for the efficiency. A further enhancement is

achievable with kesterite nanostructuring, which is performed in a first step in chap. 4,

in which CZTS surfaces are investigated. Hereby the focus is first set on the stabilities

in means of surface energies of CZTS surfaces, which are modeled in the periodic slab

approach (see sec. 4.1.4), whereby the challenge of calculating surface energies for off-

stoichiometric symmetric slabs is addressed via an extrapolation scheme. On top of the

structural results, the focus then is shifted to the influence of nanostructuring on the

electronic structure of surfaces. Afterwards a further step towards CZTS nanostructur-

ing is performed in chap. 5, in which the size of the nanostructures is further reduced to

CZTS nanocrystals, which are theoretically modeled in form of finite clusters with di-

ameters of ∼ 1nm. The aim is to develop a realistic finite model to simulate the CZTS

nanocrystals with sizes up to 50 nm from experiment [53, 58, 62, 63], whereby the

model should exhibit the same structural features like a realistic nanocrystal, namely

a fixed bulk-like core and a relaxed surface part surrounding this core after the full

structure relaxation of the finite cluster. Subsequently a first insight on the electronic

structure is given for further investigations of the electronic properties. With the help

of these theoretical insights on the reasons for the low efficiency as well as influence of

theoretically performance enhancing structural modifications, experimentalists can be

supported in the construction of more efficient kesterite solar cells.
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Chapter 2

Theoretical Background and Methods

Since the first steps of quantum mechanics in the 1920s, scientists from different fields

have been fascinated by the at the time ground breaking ideas, leading to various

new theoretical approaches over the last nearly 100 years. Especially the technologi-

cal developments in the last 30 years lead to today’s situation, in which a variety of

complex systems can be described quantum mechanically. But not only technology

developed rapidly, also theory evolved to adjust the theoretical models for an effective

calculation of material properties on computers. Starting from the point where even

atoms and small molecules were a great challenge to calculate, with todays technology

even extended quantum systems like the quaternary semiconductor Cu2ZnSnS4 can

be described within a moderate amount of computer time. On the basis of this im-

mense progress, the underlying fundamental methods and ideas applied in this thesis

are briefly presented in the following sections.

2.1 Hartree-Fock Theory

The first steps into the direction of describing systems by quantum mechanics was

postulated in 1926 by E. Schrödinger, who introduced the existence of a wave function

Ψ, which describes the quantum state of a system [126]. The time evolution of this

quantum state is given by

i
∂

∂t
Ψ = ĤΨ, (2.1)

where the system is characterized by the Hamiltonian Ĥ and the state by the wave func-

tion Ψ. This equation is also known as the time-dependent Schrödinger equation (SE),

which is even for small systems difficult to solve. For larger systems however, this com-

plexity can be reduced by different approximations, which depend on the investigated

properties. A first complexity reduction is introduced by describing the investigated

systems as stationary time-independent systems, in which the time-independent SE is

sufficient for a good description of the investigated properties. Many material proper-

ties like band gaps are not time-dependent, therefore the assumption is a reasonable

ansatz. A further approximation can be introduced by the neglect of relativistic effects

(see ref. [127] and references therein). This method is often a reasonable approach for
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atoms with only few electrons, whereby the neglect of relativistic effects in heavy atoms

can lead to errors. An ansatz in between the full neglection and the fully relativistic

description are relativistic pseudo potentials, which contain relativistic effects within

their potential for the core electrons of the described atoms. The first general form of

pseudo potentials hereby was introduced in 1935 by H. Hellmann [128]. The resulting

non-relativistic time-independent Hamiltonian in atomic units, which are consistently

utilized in the following sections, is given by

Ĥ = −
N

∑

i=1

1
2

∆i −
M
∑

A=1

1
2MA

∆A −
N

∑

i=1

M
∑

A=1

ZA

riA
+

N
∑

i=1

N
∑

j>i

1
rij

+
M
∑

A=1

M
∑

B>A

ZAZB

RAB
, (2.2)

with N as the number of electrons, M the number of nuclei and ZA is the atomic num-

ber of nucleus A. MA denotes the mass ratio of nucleus A to the mass of an electron,

rij is the distance between electron i and j and RAB is the distance between nucleus

A and B. The distance between electron i and nucleus A is denoted by riA [129]. The

first two terms describe the kinetic energy of the electrons and nuclei within the quan-

tum system respectively. The following three terms describe the electrostatic potential

between the electrons and nuclei, between electrons and between nuclei respectively.

A further approximation was shortly published after the initial work of Schrödinger

in 1927 by Born and Oppenheimer, who introduced the ansatz of decoupled electronic

and nuclear degrees of freedom, referred to as the Born-Oppenheimer approximation

(BO) [130]. The movement of electrons and nuclei can be treated separately within

the BO-approximation, since the electrons move distinctly faster than the nuclei and

therefore the movement of the nuclei is negligible for the electronic part. The resulting

electronic Hamiltonian is given by

Ĥel = −1
2

N
∑

i=1

∆i −
N

∑

i=1

M
∑

A=1

ZA

riA
+

1
2

N
∑

i,j=1

1
rij
. (2.3)

Since the systems investigated in this thesis are always described by the electronic

Hamiltonian, the notation "el" will be dropped in the further discussion. The electron-

electron interaction in the last term is a crucial point when describing the quantum

state of a system, whereby a direct solution is not possible even with the introduced

approximations.

There are several approaches for an approximation of the initial wave function. One

first approach for the wave function is the Hartree-product, which describes the N -

particle wave function as a product of N one-particle wave functions, which is an exact

solution for non-interacting electrons. However, the Hartree-product offends the Pauli-

principle. A further ansatz is applied in the Hartree-Fock (HF) theory [129], in which

the electronic wave function Ψ is constructed by a single Slater determinant (SD) of

one-particle wave functions [131, 132]. In contrast to the Hartree-product, the SD is an

13



2.1 Hartree-Fock Theory

anti-symmetric product ansatz for the wave function, which obeys the Pauli Principle

and is given by

Ψ(x1,x2, . . . ,xN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(x1) χ2(x1) . . . χN (x1)

χ1(x2) χ2(x2) . . . χN (x2)
...

...
. . .

...

χ1(xN ) χ2(xN ) . . . χN (xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |χ1χ2 . . . χN 〉 (2.4)

with χi(x) as the one-particle wave function describing spin and spatial part of an

electron and N as the number of spin orbitals and electrons. The spin orbital χi(x)

hereby is a combined function of a spin function δ(s) with δ = α, β and a spatial orbital

ψ(r).

To find the SD best describing the quantum system, the variational principle is applied.

In the variational principle an initial guess for the SD is utilized, whereby the orbital

coefficients of the spin orbitals χi(x) are varied until the energy reaches a minimum.

The resulting SD is the wave function best describing the system [129]:

E0 ≤ min
Ψ

〈Ψ|Ĥ|Ψ〉 . (2.5)

The ground state energy is given by E0 and Ψ is described by a SD. Following the

Hartree-Fock equations, the N one-particle problem can be derived as

f̂(xi)χ(xi) = ǫiχ(xi), (2.6)

where f̂(xi) is the Fock operator and ǫi are the eigenvalues of the one-particle wave

function, also referred to as orbital energies. The Fock operator is defined as

f̂(xi) = −1
2

∆i −
M
∑

A=1

ZA

riA
+ vHF (xi). (2.7)

The electrons in their spin orbital χ(xi) hereby only experience an average potential

denoted by the effective one-electron operator vHF(xi). Since the electrons only interact

with all other electrons in the system by an effective potential, this is also called a mean

field approach. The potential is generated by all other electrons in their spin orbitals

χb(x) and is given by

vHF(xi) =
∑

b

Ĵb(xi) − K̂b(xi). (2.8)

This potential is also referred to as HF potential [133], which is dependent on the spin

orbitals of all other electrons.
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2.1 Hartree-Fock Theory

Acting on a spin orbital χa(x1), the Coulomb operator Ĵb and exchange operator K̂b

can be defined as

Ĵb(x1)χa(x1) =
∫

dx2χ
∗
b(x2)

1
r12

χb(x2)χa(x1), (2.9)

and

K̂b(x1)χa(x1) =
∫

dx2χ
∗
b(x2)

1
r12

χa(x2)χb(x1) . (2.10)

The Coulomb operator expresses the classical Coulomb repulsion between two electrons.

For the exchange operator there is no classical equivalent. From eq. 2.10 it is clear

that for anti-parallel spin of the two electrons, the exchange operator vanishes. The

self interaction, defined as the interaction of an electron with itself, is dealt within HF

explicitly, since the Coulomb and exchange integrals cancel each other out for identical

spin orbitals.

The HF equations are iteratively solved within the self consistent field (SCF) approach

[133]. The main idea behind the SCF method is to solve the HF eigenvalue equation

(eq. 2.6) for an initial spin orbital and potential vHF(xi) guess, and then subsequently

calculate a new potential vHF(xi) while incorporating the solution of the previous calcu-

lation. The self-consistency is achieved, when certain convergence criteria are reached

after several iterations of this procedure. As a result of this procedure, a set of or-

thonormal spin orbitals χi with corresponding orbital energies are obtained after the

solution of the HF equation (eq. 2.6). The resulting SD is the HF ground state wave

function, which is the best variational single determinant solution for the ground state.

An approach for an effective solution of the HF equations was introduced by Roothan

[134] and Hall [135] independently in 1951. Both proposed an ansatz for the spatial

part of the HF orbitals ψi(r) as a linear combination of atomic orbitals (MO-LCAO):

ψi =
K

∑

µ=1

Cµiφµ, with i = 1, 2, . . . ,K. (2.11)

With K as the number of atomic orbitals, the expansion coefficients Cµi and the atomic

orbitals φµ as variants of solutions to hydrogen-like atoms. The application of these

basis functions yields a matrix eigenvalue equation for the expansion coefficients

FC = ǫSC, (2.12)

with the Fock matrix F and overlap matrix S. C is a matrix of dimensionality K ∗K,

which contains the expansion coefficients. This equation is also known as the Roothan-

Hall equation. The diagonal matrix ǫ contains the corresponding orbital energies ǫi.
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2.2 Density Functional Theory

The Fock matrix F is hereby defined by

Fµν =
∫

φ∗
µ(r1)f̂(r1)φν(r1)dr1, (2.13)

and the overlap matrix S by

Sµν =
∫

φ∗
µ(r1)φν(r1)dr1. (2.14)

The combination of Hartree-Fock and Roothan-Hall theory leads to one of the first

possibilities for quantum mechanically calculated systems in an ab initio manner.

2.2 Density Functional Theory

As Hartree-Fock, Density functional theory (DFT) is a quantum chemical method,

which is widely used for investigating the electronic structure of a many-body system.

The popularity is based on the relatively good accuracy compared to experiment while

concurrently featuring low computational costs. On the contrary to the wave function-

based HF, the key quantity in DFT is the electron density ρ. In 1927 and 1928, a first

idea of DFT was introduced by Thomas and Fermi [136, 137]. The breakthrough for

DFT however was established nearly 40 years later by Hohenberg and Kohn, who stated

two famous theorems, which build the basis for todays DFT [138]. The first theorem

states that the exact ground state energy E0 of a system can be solely described by the

electron density ρ(r). In the second theorem, Hohenberg and Kohn show that for every

electron density function ρ(r), which is normalized to the number N of electrons, the

variational principle is fulfilled as

E0 ≤ E [ρ(r)] . (2.15)

The total electron density of a system with N electrons is given by

ρ(r) = N

∫

. . .

∫

|Ψ(x1,x2,x3, . . . ,xN )|2ds1dx2dx3 . . .dxN , (2.16)

where x is the 4-dimensional vector of the position r and the spin s of an electron.

The integral and therefore the density represent the probability of finding one electron

within a volume element dr1 with an arbitrary spin.

Hereby the challenge to determine the kinetic energy T[ρ] as a functional of the electron

density still remains like in the Thomas–Fermi model. Nearly one year later in 1965

a solution to this problem was proposed by Kohn and Sham (KS) [139] by applying

an orbital-based approach. Kohn and Sham conducted using a reference system of N

non-interacting electrons, which experience an external potential VS(ri), in that way

the electron density of the non-interacting system ρS(r) is equal to the electron density

ρ(r) of the interacting system.
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2.2 Density Functional Theory

The Hamiltonian for the system of non-interacting electrons is defined as

ĤS =
N

∑

i=1

−1
2

∆i + VS(ri) =
N

∑

i=1

ĥKS
i . (2.17)

This Hamiltonian can be solved easily, because it consists of N non-interacting one-

particle Hamiltonian ĥKS
i . Their solutions are the non-interacting Kohn-Sham orbitals

ΦKS
i , where the KS eigenvalues (orbital energies) ǫKS

i are obtained by

ĥKS
i |ΦKS

i 〉 = ǫKS
i |ΦKS

i 〉 . (2.18)

Following this ansatz the first theorem of Hohenberg-Kohn can be fulfilled. The total

energy as a function of the electron density is further defined by

E[ρ] = TS[ρ] + J [ρ] + EXC[ρ] +
∫

ρ(r)Vext(r)dr , (2.19)

with TS[ρ] as the kinetic energy of the non-interacting system, Vext(r) is an external po-

tential and J [ρ] as the Hartree-term, which describes the classical Coulomb interaction

of the electrons

J [ρ] =
1
2

∫ ∫

ρ(r1)ρ(r2)
r12

dr1dr2 . (2.20)

The last term EXC[ρ] is the exchange-correlation energy, which is obtained by

EXC[ρ] = (T [ρ] − TS[ρ]) + (Vee[ρ] − J [ρ]) . (2.21)

where T [ρ] is the kinetic energy of the real system and TS[ρ] of the non-interacting sys-

tem. At last, Vee[ρ] defines the interaction energy between electrons of the full quantum

chemical system. Applying the variational principle as in the HF approximation before

under the constraints of orthonormal KS orbitals yields an expression for the external

potential VS(ri) introduced in eq. 2.17 [140, 141]:

VS(ri) =
∫

ρ(rj)
rij

drj +
∂EXC[ρ(ri)]
∂ρ(ri)

−
M

∑

A

ZA

riA
. (2.22)

The second term of the equation, the partial derivative of the exchange-correlation

energy EXC is often denoted as the exchange-correlation potential VXC [141].

The exact exchange-correlation functional from eq. 2.21 yields the exact ground state

energy E0[ρ], however since EXC[ρ] is in general unknown, several approximations have

been proposed since the original publication by Kohn and Sham in 1965. The quality of

DFT calculations strongly depends on the applied exchange-correlation functional EXC.

One of the first and simplest approximation for the exchange-correlation functional is

the local density approximation (LDA) [132, 142–144].
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2.2 Density Functional Theory

LDA assumes that the exchange-correlation functional of the inhomogeneous electron

density can be locally described by the exchange-correlation functional of the homoge-

neous electron gas

ELDA
XC [ρ] =

∫

ρ(r)ǫLDA
XC [ρ]dr , (2.23)

where ǫLDA
XC is the exchange-correlation energy of the homogeneous electron gas. The

exchange-correlation energy can be divided into a sum of the exchange and correlation

parts

EXC = EX + EC. (2.24)

The exchange part of the exchange-correlation energy can be solved analytically for

the homogeneous electron gas and the correlation part is only solvable for high- and

low-density limits and is often calculated via accurate quantum Monte Carlo methods

[140, 145]. Two famous correlation parts were developed by Vosko, Wilk and Nusair,

which were fitted to exact numerical data [143]. Unfortunately, the mapping of the

exchange-correlation functional of the homogeneous electron gas to the inhomogeneous

electron gas often leads to errors. An improvement to LDA is done in the generalized

gradient approximation (GGA), which takes additionally to the electron density ρ(r)

at a point r the gradient of the density ∇ρ(r) at a point r into account. The exchange

and correlation energies can be written as

EGGA
XC [ρ] =

∫

ρ(r)ǫXC[ρ,∇ρ]dr . (2.25)

Incorporated as a separate function, the gradient in ǫXC is either added or multiplied

to ǫLDA
C and ǫLDA

X in each case. Today there exist many different GGA functionals

e.g. the Perdew-Burke-Ernzerhof (PBE) [146] or the Perdew-Wang (PW91) [147] func-

tional. PW91 is the first reasonable GGA functional, which can be reliably used for

a wide range of systems [147, 148]. A few years later Perdew et al. developed the

PBE functional, which is based on PW91, but modified in several details (for further

information see ref. [146] and [149]). A disadvantage is that with increasing gradient

dependence the atomization and total energies will improve, however the bond lengths

worsen compared to experiment. Th PBE functional was later revised for solid state

systems, known as the PBEsol functional [150].

Due to the mentioned shortcomings of LDA- and GGA-functionals new approaches

were developed. One approach are meta-GGA functionals, which include additionally

higher order derivatives of ∇ρ. Another path was followed in the hybrid-functionals,

which include non-local Hartree-Fock exchange determined with Kohn-Sham orbitals

into the GGA functional where often contrary trends by DFT and Hartree-Fock theory

lead to excellent agreements with experimental reference data.
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2.3 Time-Dependent Density Functional Theory

The exchange energy is defined by

E
hybrid
X = αEexact

X + (1 − α)EDFT
X , (2.26)

where α is a parameter, which differs for the different type of hybrid-functionals. One

of the most commonly employed functionals is B3LYP with the form

EB3LYP
XC = ELDA

XC + a0(Eexact
X −ELDA

X ) + ax(EB88
X −ELDA

X ) + ac(ELYP
C −ELDA

C ) , (2.27)

with the parameters α0 = 0.20, αx = 0.72 and αc = 0.81, which are determined by a fit

to properties of a standard set of molecules. The name is derived from the developers

Becke [151], Lee, Yang and Parr [152], where the number three corresponds to the three

parameters used. The GGA functional B88 is also derived by Becke [153].

A further development in hybrid-functionals is shown by the introduction of efficient

screening techniques to take advantage of the fast spatial decay of the short range

HF exchange, as employed in the Heyd–Scuseria–Ernzerhof (HSE) screened Coulomb

hybrid density functional. In the hybrid-functionals HSE03 [154–156] and HSE06 [157]

the slowly decaying long-range part of the Fock exchange interaction is replaced by the

corresponding part of the PBE functional. The exchange-correlation energy is given by

EHSE
XC =

1
4
E

exact,SR
X (µ) +

3
4
E

PBE,SR
X (µ) + E

PBE,LR
X + EPBE

C , (2.28)

whereby SR and LR represent the separation of the electron-electron interaction into

a short- and long-ranged part respectively, only applied in the exchange interactions.

µ denotes the HF screening parameter, which is usually set to 0.3 Å−1 for HSE03 and

0.2 Å−1 for HSE06.

2.3 Time-Dependent Density Functional Theory

Since DFT only describes the ground states properties of a system, time-dependent

density functional theory (TDDFT) was developed to study properties of many-body

systems in the presence of time-dependent potentials like electric or magnetic fields.

Hereby features like excitation energies or photo absorption spectra can be calculated.

As an extension to DFT with analogous foundations, the main obstacle in TDDFT is

to show that the time-dependent wave function is equal to the time-dependent density.

The derivation of an effective potential of a non-interacting system returning the same

density as an interacting system is of importance, whose foundation was formulated in

the Runge-Gross Theorems.
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2.3 Time-Dependent Density Functional Theory

2.3.1 Runge-Gross Theorems

In 1984, E. Runge and E. K. U. Gross derived the Runge-Gross Theorems for arbitrary

time-dependent systems as an analog to the time-independent Hohenberg-Kohn theo-

rems [158]. The time-dependent electron density ρ(r, t) can be constructed out of the

time-dependent wave function Ψ(x, t) from eq. 2.1 by

ρ(r, t) = N

∫

. . .

∫

|Ψ(x1,x2,x3, . . . ,xN , t)|2ds1dx2dx3 . . .dxN , (2.29)

with the number of electrons N and xi is the 4-dimensional vector of the position r and

the spin s of electron i. Runge and Gross showed that for a many-body system evolving

from an initial wave function (Ψ(t0) = Ψ0), a one-to-one mapping between the time-

dependent potential of the system and the density of the system exists. Applying two

external spatially independent potentials to a wave function Ψ(x, t), which only differ

by an additive time-dependent function c(t), yields two wave functions only differing

by a phase factor e−ic(t). Runge and Gross have shown in their publication that this

mapping is reversible, in other words the density is a functional of the external potential

and of the initial wave function. The detailed proof of this theorem can be found

in ref. [158]. As in the Hohenberg-Kohn formalism, for an effective utilization of

TDDFT in computations the time-dependent density framework has to be applied to

the Kohn-Sham theorems. For reasons of simplicity, in the following derivation only

the spatial part of the quantum system is considered. The challenge is to determine a

non-interacting time-dependent potential VS(r, t), which transforms the time-dependent

non-interacting density ρS(r, t) to the time-dependent interacting density ρ(r, t). The

time-dependent Hamiltonian of the non-interacting system is given by

ĤS(t) =
N

∑

i=1

−1
2

∆i + VS(ri, t), (2.30)

with the now time-dependent potential VS(ri, t). Applying the Hamiltonian to the

time-dependent wave function Ψ(r, t) yields

ĤS(t)Ψ(r, t) = i
∂

∂t
Ψ(r, t) with Ψ(r, 0) = Ψ(r) . (2.31)

As before in HF (see sec. 2.1) and DFT (see sec. 2.2), the wave function Ψ(r, t) is

constructed by a set of N one-particle functions Φi(r, t), which obey the equation

(

−1
2

∆ + VS(r, t)
)

Φi(r, t) = i
∂

∂t
Φi(r, t) with Φi(r, 0) = Φi(r) (2.32)
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2.3 Time-Dependent Density Functional Theory

The sum over all N one-particle functions results in the time-dependent non-interacting

density, analog to eq. 2.29:

ρS(r, t) =
N/2
∑

i=1

|Ψi(r, t)|2 . (2.33)

The non-interacting density is hereby equal to the interacting density at all time

ρS(r, t) = ρ(r, t). (2.34)

The crucial part of solving the time-dependent Kohn-Sham equations is to find a

good approximation for the external potential VS(r, t). Analog to KS DFT, the time-

dependent KS potential is given by

VS(r, t) = Vext(r, t) +
∫

d3r ρ(r, t)VJ(r) + VXC(r, t) (2.35)

with the external potential Vext(r, t), the Coulomb interaction VJ(r) and the well known

exchange-correlation potential VXC(r, t). The former proof of the Hohenberg-Kohn

theorem is based on the Rayleigh-Ritz principle, which is not applicable to the time-

dependent system. Therefore, Runge and Gross proofed the time-dependency by an

action integral of the form

A[Ψ] =
∫

dt 〈Ψ(t)|Ĥ − i
∂

∂t
|Ψ(t)〉 , (2.36)

which was treated as a functional of the wave function [158]. It only provides a sta-

tionary point for variations of the time-dependent Schrödinger equation. By uniquely

mapping the wave function and resulting density, Runge and Gross expressed the action

integral as an integral of the density

A[ρ] = A[Ψ[ρ]] . (2.37)

For the detailed derivation see ref. [158]. Unfortunately, this proof results in paradox

conclusions with respect to functional derivatives of the density with regard to an exter-

nal potential [159]. Since the initial publication, many scientists critically discussed the

foundations of the TDDFT approach (see [160] and references therein). Nevertheless,

TDDFT with various functionals is used for calculations of excitation energies.
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2.4 Solid State Systems and Periodic Boundary

Conditions

The calculation of finite systems like atoms and molecules is mostly straight forward

with respect to the computational model applied. Solid state systems in contrast,

regarded as infinitely extended systems, however show computational challenges re-

garding the arising computational effort due to the system size. Providentially, ideal

solid state systems feature a translational symmetry, which allows a structural descrip-

tion by a very small part of the whole system, namely the unit cell. The lattice of

the unit cell can be characterized by the three basis vectors a1, a2, a3 in real space,

whereby a given position in real space can be expressed by a real-space vector R as a

linear combination of the three basis vectors [161]:

R = n1a1 + n2a2 + n3a3 . (2.38)

ni are the weights of the different basis vectors in real space. Another way to describe

the periodic solid is the utilization of the reciprocal space, which is convenient for

analytic studies of periodic structures. In reciprocal space the periodic solid can be

characterized by

K = m1b1 +m2b2 +m3b3 , (2.39)

where K is a reciprocal vector, obtained by a linear combination of the reciprocal lattice

vectors b1, b2, b3. The weights of the reciprocal basis vectors are m1, m2 and m3.

Each vector with integer m1, m2, m3 is a surface normal to the surface (m1m2m3),

which are also denoted as the Miller indices h, k, l [161].

As a result of the translational symmetry of the unit cell, a periodic potential exists

within the periodic crystal system. For a quantum chemical treatment of these solid

state systems, this periodic potential has to be taken into account in the theoretical

framework, which was done in 1929 by F. Bloch, who introduced the Bloch wave as a

wave function for a particle in a periodic potential [162]. The resulting wave function

is required to obey Bloch’s theorem by reflecting the translational symmetry

φ(k, r + R) = eikRφ(k, r) . (2.40)

k is a reciprocal vector, R is a translational vector and eikR is a plane wave [163–165].

These wave functions, referred to as Bloch functions, are hereby defined as

φ(k, r) = eikru(r) , (2.41)

with u(r + R) = u(r). This periodicity of the lattice leads to convenient features of the

systems. Two vectors k1 and k2 are equivalent when they only differ by a lattice vector

K. Therefore, only k-vectors in a small reference cell in reciprocal space have to be
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2.4 Solid State Systems and Periodic Boundary Conditions

taken into account, which is known as the first Brillouin zone (BZ). The corresponding

cell in real space is the Wigner-Seitz cell. As an example, the Brillouin zone for the

Cu2ZnSnS4 bulk is shown in fig. 2.1.

Z

Γ

N

P

X

b3

b2

b1

Figure 2.1: Brillouin zone of the space group I4 for the unit cell of Cu2ZnSnS4 bulk with
special high symmetry points.

For calculations of periodic systems, the periodic boundary conditions and the ap-

proaches discussed in HF (see sec. 2.1) and DFT (see sec. 2.2) have to be combined.

The wave function of the solid state system, also referred to as crystalline wave func-

tion and denoted as ψi(k, r), can be defined by a linear combination of Bloch functions

[166]:

ψi(k, r) =
∑

µ

cµi(k)φ(k, r), (2.42)

with the coefficients cµi(k), which are obtained by analogously solving the coupled set

of matrix equations as previously shown in HF (see eq. 2.12):

F(k)C(k) = ǫ(k)S(k)C(k) . (2.43)

By solving this set of coupled matrix equations for each value of k separately, k-

dependent eigenvalues ǫ(k) are obtained, which is also referred to as dispersion. Hereby

a small dispersion translates to a small dependency on the k-vector. The eigenvalues

ǫ(k) plotted as a function of k yields the electronic band structure of the solid state

system, whereby only the first BZ has to be considered due to the translational symme-

try. The electronic structure is characterized by a representative high symmetry path

within the BZ (see fig. 2.1). Hereby the Fermi energy defines the highest occupied

energy level, up to which the band structure is filled at 0K. One of the main features

of the band structure is extracted by the band gap, which is the energy difference be-

tween the eigenvalues of valence and the conduction band. The size of this gap leads

to a formal characterization of the solid state material, which can be classified as an

insulator, a semiconductor or a metal (fig. 2.2).
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metal semiconductor insulator

valence band

conduction band

band gap
EF

Figure 2.2: Schematic scheme of different band structure types. In metals the conduction and
valence band typically overlap. Semiconductors show normally a small band gap,
which band occupation changes with temperature. By strongly increasing the band
gap an insulator is obtained. The Fermi energy is presented by the dashed line.

Band gaps can be separated into direct band gaps, in which the valence band maximum

and the conduction band minimum are located at the same k-point, or indirect band

gaps, in which the two extrema are located at different k-points (see fig. 2.3).

Eg

k

valence band

conduction band

E

Eg

k

valence band

conduction band

direct band gap indirect band gap

E

Figure 2.3: Two possibilities of band gaps. On the left side a direct band gap is shown, in
which the gap is located at a specific k-point in the Brillouin zone. On the right
side the indirect band gap is presented, in which the maximum of the valence band
and the minimum of the conduction band are located at a different k-points in the
BZ.

Closely related to the band structure is the DOS, which describes the number of states

per interval of energy at each level that are available to be occupied by electrons. The

DOS is given by

Dj(E) =
2
VBZ

∫

BZ
dk δ(E − Ej(k)) , (2.44)

with the integral over the whole BZ, Ej as the j-th band energy and VBZ is the volume

of the BZ. The DOS is a useful tool when investigating the electronic properties of solid

state materials.

These electronic properties are straightforward when utilizing perfect and periodic crys-
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tals, which only works as a model system if the material features low amounts of defects

and is prepared as large monocrystals. Part of this work sets focus on the modeling

of CZTS nanostructures, whereby the material is modified to feature a high surface

area in combination with a small bulk part. Surfaces are defined as a truncation of

the ideal periodic crystal in one dimension in the computational model, also referred

to as slab model. Hereby the termination of a crystal by a formation of a surface dis-

rupts the usual boundary conditions in the direction perpendicular to the surface plane,

thus changing the behavior of the electronic structure at the surface in contrast to the

electronic structure in the bulk. Solving the electronic Schrödinger equation for this

situation, two qualitatively different solutions are obtained (see fig. 2.4).

The bulk states decay exponentially into the vacuum and have Bloch character in the

bulk, whereas the surface states found at the surface termination decay exponentially

into the bulk and vacuum. With these qualitatively different solutions for the electronic

Schrödinger equation the different behavior between surface and bulk atoms can be ex-

plained [167]. Surface states can have a crucial effect on the overall electronic behavior

of the material [168].

0

vacuumcrystalR
e
(

ψ
)
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e
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ψ
)

z

crystal

vacuum

z

surface state

bulk state

vacuumcrystal

Figure 2.4: Solution to the one-dimensional Schrödinger equation for bulk states and surface
states. Both states decay exponentially into the vacuum, whereby the bulk state
features Bloch character in the bulk. The surface state also decays exponentially
into the bulk. A model CZTS surface structure is shown in the right illustration.
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2.5 Basis Set and Pseudo Potentials

For the mentioned Bloch functions two different approaches for an expansion in a

basis set are here briefly introduced. The first type of a natural basis function for

a translationally invariant system is given by Bloch’s Theorem itself, namely a plane

wave. This plane wave is a symmetry-adapted wave function, which fits the crystal’s

boundary conditions. Hence, the crystal wave function can be expressed as a linear

combination of plane wave basis functions

φn(k, r) =
∑

K

cn(k,K)ei(k+K)r , (2.45)

with the mixing coefficients cn and a reciprocal lattice vector K defined in eq 2.39.

Due to their simplicity, plane waves have computational advantages over other types

of basis sets. They are orthogonal and not localized on atoms, additionally they are

not suffering from basis set superposition errors (BSSE) like atom centered basis sets.

The size of the plane wave basis set, determined by the number of plane waves, is

controlled by an energy cutoff Ecut [164]. The set of plane waves has to possess enough

variational freedom to exhibit the typical plane wave behavior between atoms but also

has to reproduce core-like behavior close to the atoms (see fig. 2.5).

To comply with both constraints, a high energy cutoff for the plane waves is required

for an accurate description of the core region, which leads to problems with computa-

tional resources [164, 169]. Therefore pseudo potentials (PP) have been developed to

approximate the electronic structure of the core region of the atoms up to a certain

distance, whereby the description of the valence electrons remains as in the all electron

calculation with respect to adjustments of the basis set to the utilized PP.

plane-wave like

atomic-like

ψ(k,r) 

r

Figure 2.5: Schematic drawing of a Bloch function for a one dimensional crystal. Close to the
nucleus the wave function oscillates rapidly, whereas in the region between two
nuclei, the wave function is slowly varying [164].

Today there are several types of PPs, which can be divided into two types: norm-

conserving pseudo potentials and ultrasoft pseudo potentials. Norm-conserving pseudo

potentials enforce, outside of a cutoff radius that the pseudo-wave function and its

corresponding all-electron wave function to be identical [170–172]. Inside of this cut-

off radius, the norm of the pseudo-wave function and the all-electron wave function
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are identical. Ultrasoft PPs reduce the basis set size by relaxing the norm-conserving

constraints while maintaining the same accuracy, but losing the orthonormality of the

orbitals. An advantage of this method are slowly varying wave functions, whereby for

the same precision of a computation a smaller number of plane waves is required [173].

A related method is the projector augmented wave method (PAW) (for further details

see ref. [174]), which is used in this thesis exclusively in all periodic calculations. PAW

is considered a PP, although it formally retains all core electrons [163]. Kresse et al.

derived in 1999 a formal relationship between ultrasoft PPs and the PAW method [175].

The second possibility for the expansion of the Bloch functions in a basis set are lo-

calized atomic basis functions. The crystal wave function can be expressed as a linear

combination of atomic orbitals (LCAO)

φn(k, r) =
∑

R

ϕµ(r − Aϕ − R)eikR , (2.46)

with the coordinate of an electron r, the direct lattice vector R and the reciprocal

lattice vector k. Aϕ denotes the coordinate of an atom in the reference cell, on which

the atomic orbital ϕ is centered [166]. Due to computational advantages, the atomic

orbitals themselves are normally a linear combination of products of Gaussian functions.

Atomic orbitals feature a consistent description of core and valence electrons, whereby

all electron calculations are easily possible. Unfortunately, they often suffer from the

BSSE. The atom centered basis set is often used in non-periodic calculations and is

defined by

φn(r) =
K

∑

µ=1

Cµnϕµ(r) , (2.47)

with K as the number of atomic orbitals, the expansion coefficients Cµn and the basis

functions ϕµ, which are atomic orbitals as variants of solutions to hydrogen-like atoms.

There are different ways to express the atomic orbitals, whereby the most common are

Slater-type orbitals (STO) and Gaussian-type orbitals (GTO) [163]. STOs are modified

hydrogen-like orbitals with an unchanged angular part and a node-free modified radial

part. Unfortunately STOs are not analytically integrable. GOTs are expressed as a

linear combination of Gaussian functions, which can be integrated analytically, favoring

their usage. Since an explicit description of all electrons is computationally expensive

for heavy atoms, the core electrons can be substituted by a pseudo potential, while

simultaneously treating the valence electrons explicitly, analogously to the PP idea

used in the plane wave basis set [163]. There exist various type of PPs, which differ in

the description of the core region in terms of the number of electrons included in the

potential as well as the incorporation or neglect of relativistic effects.
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2.6 Wulff Construction

The ground state structure of a crystal in nature formed during the crystal growth is

dependent on the surface energy of the different surfaces. An approximation for the

natural shape is obtained by the Wulff constructions [176]. The form of the crystal is

the one with minimal free energy of the surface with a constant volume. Gibbs stated

that a crystal will arrange itself in a way, so that the Gibbs free energy is minimized

by adopting a low surface energy configuration, defined by

∆Gi =
∑

k

γkOk , (2.48)

where γk is the surface energy of the kth crystal face and Ok represents the area of this

surface. The equilibrium shape of a crystal is the one with minimal ∆Gi [176]. Wulff

stated in 1901 a theorem, which is known as the Gibbs-Wulff theorem. Wulff postulated

that the length of a vector rk normal to a crystal face will be proportional to its surface

energy γk. Drawing the vector rk from the center of the crystal to the corresponding

face, the vector rk can be seen as the height of the kth face [177]. Several scientist have

given proof to Wulff’s theorem since the original publication [178–180].

The Wulff construction is prepared by a polar plot of the surface energy as a function of

the orientation, whereby lines from the origin to every point on the polar plot are drawn.

By drawing planes perpendicular to the surface normal at each intersection point of

the polar plot, the inner envelope of these planes represents the Wulff construction.

2.7 Atomic Charge Analysis

The information about atomic charge distributions in molecules and solid state systems

is important in rendering a chemical interpretation of the electronic structure. The

analysis of atomic charges can lead to a useful understanding and correlation of chemical

phenomena. Today there exist various methods for the determination of atomic charges

[141, 163], whereby two methods will be briefly discussed in the following since they

are utilized in this work.

2.7.1 Bader Charge Analysis

In 1990 R. Bader developed a method to divide many-atom systems into atomic parts

[181]. Bader’s method is to analyze the electron density of a system and evaluate its

stationary points. Then the electron density will be divided into fragments by zero flux

surfaces, which are two-dimensional surfaces on which the charge density is a minimum

perpendicular to the surface. Typically, for many-atom systems, the electron density

reaches a minimum between atoms, which is a natural place to divide atoms from each

other. The enclosed charge within this volume can be assigned to an atom to calculate

its atomic charge. The volume is also referred to as Bader volume.
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2.7.2 Natural Population Analysis

The second charge analysis method employed in this thesis is the Natural Population

Analysis (NPA) [182]. The method is based on natural atomic orbitals (NAO), which

are orthonormal atomic orbitals of maximal occupancy. Closely related are the con-

ventional natural orbitals (NO) as introduced by Löwdin [183], which in contrast are

defined as orthonormal molecular orbitals of maximum occupancy. NOs are delocal-

ized over the whole molecule and transform as irreducible representations of the full

symmetry point group of the molecule, which is not present in NAOs, since they are

by definition localized on atoms upon formation of the molecule. The NPA via NAOs

shows advantages like intrinsically nonnegative quantities, an excellent numerical sta-

bility with respect to basis set changes and a good description of charge distributions

in ionic compounds [182].
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Chapter 3

Modified Cu2ZnSnSxSe4−x Bulk

Structures

Over the last years, the interest in Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe), and

Cu2ZnSnSxSe4−x (CZTSSe) as absorbers in thin film solar cells has grown due to their

promising electronic properties and low material costs. In recent years, many theoreti-

cal papers have been published on the properties of CZTS and systems derived from

CZTS. Since the applied computational and theoretical methods and results vary, up to

now no standard method for describing the electronic structure of CZTS and CZTSe has

been established. Therefore, in a first step of the research on CZTS and Se-containing

derivatives is to investigate the bulk systems with respect to computational parame-

ters and applied theoretical methods for the subsequent research on modified kesterite

derived systems. This chapter focuses on the pure and perfect bulk systems. After

determining the optimal technical settings and getting insight on structural properties

and electronic structure of the bulk, the research continues with modified CZTS and

CZTSe bulk systems. The focus is then set on CZTSSe alloys and 2c/2d disorders in

CZTS, since both modifications are important in realistic devices. CZTSSe alloys are

currently used in the high performance thin film kesterite solar cell with efficiencies

up to 13 % [26]. Since there are a wide variety of different alloy mixtures possible,

the main focus lies on the investigation on the optimal S/Se ratio for a highly effi-

cient solar cell with respect to the Shockley-Queisser limit and on the investigation on

band gap fluctuations upon alloying. The second structural modification occurs in the

experimental samples, which feature a varying amount of 2c/2d disorders throughout

the crystals [114, 184]. These disordered systems are a possible limitating factor for

a constant quality and performance of the solar cell module, since minimal structural

changes in the lattice can result in fluctuating electronic properties. Therefore, the

research on this defect type is essential to understand a possible key factor for band

gap fluctuations and observed low open-circuit voltages in experimental samples [113].
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3.1 Technical Details

The periodic electronic-structure calculations were carried out within the Kohn Sham

DFT framework as implemented in VASP 5.3.5 and VASP 5.4.1 [185–188], whereby

both versions yield the same results. For the visualization of all structures XCryS-

Den [189, 190] was used. The calculations were performed with a plane wave basis set

with an energy cut off of 550 eV with the projector augmented (PAW) potentials [174,

175]. The employed PAW potentials acted on the 5s, 5p and 4d electrons of Sn, 3s,

3p electrons of S, 4s, 4p electrons of Se and 4s, 3d electrons of Cu and Zn. For the

electronic convergence, the Blocked-Davidson algorithm was applied as implemented in

VASP and an electronic convergence criteria was set at least to 10−5 eV. The structural

relaxation was set to a force convergence of 10−2 eV/Å2 and was performed with the

conjugate-gradient algorithm implemented in VASP [191]. A Gaussian smearing ap-

proach with a smearing factor σ of 0.01 eV and an enabled freedom of spin polarization

was used to account for a possible magnetization during the modifications of the bulk

material. In contrast to the structure relaxation the single point calculations for the

DOS and accurate energies were performed with the tetrahedron method with Blöchl

corrections [192] to account for precise energies. All employed k-grids were automat-

ically constructed via the Monkhorst-Pack scheme [193] and centered at the Γ-point.

The Bader charge analysis was performed with the Bader Charge Analysis code of

the Henkelman group of the University of Texas at Austin [194–196]. Since the three

bulk related topics have specific requirements for their modeling, the specific technical

details are listed in the following.

CZTS and CZTSe Bulk Systems

The bulk CZTS and CZTSe kesterite unit cell with 16 atoms was fully optimized with

the PBE [146], PBEsol [150], HSE06 [154–157] and PBE0 [197] functional to account

for a suitable functional with respect to the experimental data like lattice constants and

electronic properties. The Hartree-Fock screening parameter of the HSE06 functional

was set to the default value of 0.2 Å−1. The k-grid during the structure optimization

was set to 8x8x4 for PBE and PBEsol and to 4x4x2 for HSE06 and PBE0, which has

proven to be sufficient for the structural parameters as well as band gap determination.

To account for the influence of minor changes in the lattice parameters as well as internal

coordinates, on top of the fully optimized PBE-structure, single point calculations with

the HSE06 and PBE0 functional were performed, denoted as HSE06PBE and PBE0PBE.

DOS were calculated with a 8x8x4 k-grid to ensure full electronic convergence with the

GGA functionals and 6x6x4 for the hybrid-functionals. For every functional the Bader

charges were computed.
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CZTSSe Alloys

The CZTSSe kesterite unit cells with 16 atoms were fully optimized with the PBE func-

tional at a 8x8x4 k-grid to account for lattice changes upon the different alloy degrees.

The DOS were obtained with a 8x8x4 k-grid for the PBE functional. On top of the

PBE-optimized structures single point HSE06 calculations with a 4x4x2 k-grid were

performed for an accurate band gap. The Bader charges were computed with the PBE

functional and HSE06 functional with the PBE-optimized structures.

2c/2d Disordered CZTS

To simulate different disorder fractions and patterns a supercell with 64 atoms was

employed, consisting of 2x2x1 unit cells in kesterite structure. The supercells were

fully optimized with a 4x4x4 k-grid with the PBE functional. Due to the size of the

supercell, the 4x4x4 k-grid corresponds to a 8x8x4 k-grid in the bulk system with 16

atoms, which has shown converged structural properties. To accurately describe the

electronic structure of the supercell the HSE06-functional was applied in a single point

calculation on top of selected PBE-optimized structures. Due to computational costs

and convergence challenges a 2x2x2 k-grid was utilized, which corresponds to a 4x4x2

k-grid in the normal unit cell. This k-grid is sufficient for a converged band gap. The

Bader charges are calculated with the PBE functional. For the symmetry analysis of

the disorder degrees and fractions the solid solution module of the CRYSTAL14 is

employed [198, 199].

3.2 Cu2ZnSnS4 and Cu2ZnSnSe4 Bulk Systems

Over the last few years CZTS and CZTSe bulk systems have been studied extensively

in theory, whereas only few methods and computational schemes have proven to be

accurate and economically feasible at the same time. Theoreticians and computa-

tional scientists especially focused on DFT functionals within plane wave and atom

centered basis set program codes [43, 81, 83, 85–91, 109, 200–209]. Only few scien-

tists applied more advanced methods like the GW approximation for a more accurate

electronic structure [84, 210]. This accuracy comes of course at a high computational

cost, which is only applicable to small CZTS unit cells. Therefore most of the sci-

entists kept the focus on DFT methods, since the results are accurate enough with

relatively low computational costs. In this work as a first step for the investigation

on the CZTS and CZTSe kesterite systems, the bulk systems are benchmarked against

different theoretical methods for suitable computational parameters for the following

research on modified kesterite systems. As used in early theoretical work by Paier et al.

[43], the PBE and HSE06 functional are employed and additionally the closely related

PBEsol and PBE0 functionals. The calculations focus on structural properties like

lattice constants and the electronic structure in form of the DOS and band structures

to reproduce first of all the published data and obtain especially the necessary compu-
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tational parameters for a proper description of the investigated systems. Furthermore,

these calculations give an important understanding of the properties of CZTS, CZTSe,

and derived systems at the same computational level.

3.2.1 Structural Properties of the CZTS and CZTSe Bulk System

In the beginning the structural parameters obtained by the theoretical calculations in

comparison to the experimental data are of special importance, since a strong struc-

tural deviation of lattice parameters from the experimental data can lead to drastically

different electronic properties in later calculations. For all calculations the 16 atom

unit cells of CZTS and CZTSe are employed as shown in fig. 3.1. Both compounds are

in the kesterite structure, which is the lowest energetic form [43]. The structures only

differ in the anion type on the 8g Wyckoff position, while the 2a, 2b, 2c and 2d positions

are in both cases occupied Cu, Sn, Cu and Zn respectively. The cations form planes

normal to the lattice constant c, on which the 2c/2d plane is occupied by Cu/Zn and

the 2a/2b plane is occupied by Cu/Sn. These cation planes are connected by chalcogen

planes on the 8g position.

2b2a 2a

8g

2d

2d 2d

2c 2c

2c

2a

2a 2a

2b 2b

2b

8g

8g8g

8g8g

8g8g

a
b

c

CZTS CZTSe

Figure 3.1: Bulk structures of CZTS and CZTSe. The ionic structure of both compounds is
identical, whereas the lattice constants are slightly larger for CZTSe due to the
larger atom radius of Se. Zn is shown in pink, Cu in brown, Sn in gray, S in yellow
and Se in green.

The calculated lattice constants for CZTS and CZTSe are summarized in tab. 3.1.

All utilized functionals yield reliable lattice parameters in comparison to experimental

values, whereby the differences to experimental data varies. The PBE functional slightly

overestimates both lattice constants a and c of the tetragonal Bravais lattice in both

materials CZTS and CZTSe. PBEsol underestimates both lattice constants a and c in

the CZTS system. In CZTSe however, the lattice constant a is overestimated and lattice

constant c is underestimated. The hybrid-functionals HSE06 and PBE0 both slightly

overestimate the lattice constant a for the CZTS system, whereas lattice constant c is

slightly underestimated.
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In the CZTSe system the HSE06 functional yields a slightly overestimated lattice con-

stants a and c. PBE0 shows nearly identical results, while being closer to experimental

lattice parameters than the HSE06 functional.

Table 3.1: Lattice parameters of CZTS and CZTSe as obtained by different DFT functionals in
comparison to experimental values. Overall the different functional yield reasonable
results and only minor deviations from the experimental data are shown.

material functional a [Å] c [Å] 2a/c volume [Å3]
PBE 5.464 10.920 1.001 325.96
PBEsol 5.370 10.736 1.000 309.60

CZTS HSE06 5.445 10.856 1.003 321.91
PBE0 5.440 10.848 1.003 321.07
EXP[44] 5.427 10.871 0.97 320.18

PBE 5.761 11.507 1.001 381.87
PBEsol 5.761 11.298 1.001 361.42

CZTSe HSE06 5.738 11.369 1.009 374.25
PBE0 5.731 11.356 1.009 372.96
EXPa[45] 5.689 11.347 1.003 367.24

a at room temperature

Since calculations with hybrid-functionals in VASP are in general more than a mag-

nitude more expensive than GGA calculations, for structural optimizations a GGA

functional is the functional of choice, especially with regard to larger unit cells in fu-

ture research. In CZTS the PBE functional shows smaller deviations than the PBEsol

functional from the experimental data, resulting in PBE being the functional of choice

for structural related properties based of structures on the CZTS kesterite structure.

In comparison of the two hybrid-functionals, the HSE06 functional shows a faster con-

vergence with respect to the applied k-grid, while yielding nearly identical structural

results as PBE0.

With this good agreement with experimental data of the lattice, the questions arises how

these functionals perform with respect to the electronic structure, since the electronic

properties are crucial when investigating solar cell absorber material. A link between

the ionic and the electronic structure are atomic charges in form of Bader charges, since

they are a result of the ionic structure, but also give a first insight on the electronic

structure of the material. The Bader charge analysis with all DFT functionals shows an

ionic character, which differs from the formal charges Cu+, Zn2+, Sn4+, S2− and Se2−.

Due to the charge definition in the Bader charge analysis, rational atomic charges are

obtained rather than integer atomic charges. For all applied computational methods,

the Bader charges show the same consistent behavior (see tab. 3.2).
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Table 3.2: Bader charges for CZTS and CZTSe as obtained by different functionals. All DFT
functionals indicate an ionic character of the system, which deviate from formal
charges of Cu+, Zn2+, Sn4+, S2− and Se2− ions.

material atom formal [e] PBE [e] PBEsol [e] HSE06 [e] PBE0 [e]

CZTS

Cu2a 1 0.476 0.439 0.480 0.478
Cu2c 1 0.478 0.434 0.474 0.472
Sn2b 4 1.382 1.369 1.581 1.589
Zn2d 2 0.848 0.813 0.941 0.939
S8g -2 -0.796 -0.764 -0.869 -0.869

CZTSe

Cu2a 1 0.360 0.327 0.382 0.378
Cu2c 1 0.353 0.313 0.353 0.373
Sn2b 4 1.087 1.089 1.273 1.278
Zn2d 2 0.696 0.669 0.813 0.811
Se8g -2 -0.624 -0.599 -0.711 -0.710

In CZTS, Cu2a and Cu2c exhibit a charge of 0.48 e with the PBE functional within

the computational accuracy. Sn2b shows an average of PBE and PBEsol charges of

about 1.375 e and slightly higher charges with hybrid-functionals of 1.585 e. The PBE

and PBEsol functionals yield a charge of 0.848 e and 0.813 e for Zn2d respectively,

whereas the hybrid-functionals predict slightly higher charges of 0.94 e. S8g exhibits a

charge of -0.796 e for PBE, -0.764 e for PBEsol, -0.869 e for HSE06 and -0.869 e for

PBE0. In CZTSe S8g is substituted with Se8g, which shows Bader charges of about

0.2 e higher than S8g. As a result of this substitution, the cation charges in CZTSe are

in general about 0.1 e to 0.3 e lower than the CZTS counterpart. Overall the different

DFT functionals yield similar Bader charges, whereby all functionals show the same

tendencies with respect to the atom types. The hybrid-functionals show the same values

for Cu as the GGA functionals, but also a stronger charge transfer from Zn and Sn to S.

Concluding from the charge analysis, a formal charge assignment can be constructed as

follows: Cu0.5+, Zn1+, Sn1.5+ and S0.9− for CZTS and Cu0.4+, Zn0.8+, Sn1.3+ and Se0.7−

for CZTSe. In comparison to the formal charges of Cu+, Zn2+, Sn4+ and S2− ions,

the Bader charges show lower charges due to partially covalent bonds, but overall the

same ratio between the ion charges as in the formal charge is obtained. The calculated

Bader charges serve as a reference value for further research, since all structural changes

result in changes of the atomic charges. Overall the structural properties as well as the

first electronic properties in form of Bader charges reveal that GGA functionals yield

results in good agreement with experimental data, while showing low computational

costs. The additional non-local HF-exchange in the hybrid-functionals leads to an

even better agreement with the experimental data, but overall to a remarkably higher

computational costs. Therefore, for the structural parameters the GGA functionals

show a sufficient accuracy. In comparison to other theoretical publications, the reported
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structural values could be reproduced within the computational accuracy [43]. After

this good agreement of the different functionals with experimental lattice parameters,

the question arises if the applied functionals also show a good accordance with respect

to the electronic structure of CZTS and CZTSe.

3.2.2 Electronic Structure of CZTS and CZTSe Bulk Systems

A precise analysis of the electronic properties of CZTS and CZTSe is of special im-

portance for the solar cell absorber, since they are decisive for the efficiency and per-

formance of the solar cell module. Since the Bader charges only show a rough picture

of the electronic structure, a more sophisticated approach has to be chosen for a more

detailed view on the electronic structure, which is performed in form of the analysis of

the DOS and band structure. The DOS of CZTS and CZTSe are exemplarily shown for

the PBE and the HSE06 functional in fig. 3.2, since the DOS obtained by GGA func-

tionals and the DOS obtained by hybrid-functionals strongly resemble. No differences

between the different spin components (↑ / ↓) are observable, which reveals that CZTS

and CZTSe show no magnetic properties within the computational framework applied.

In CZTS the S-3s and S-3p states are visible between -13 eV and -16 eV and -6 eV to

0 eV respectively. The Zn-3d states form a narrow band at -7 eV to -8 eV, depending on

the functional applied. The valence band consists of Cu-3d states from -2 eV to 0 eV,

furthermore a combination of S-3p and Cu-3d states can be observed in the range of

-6 eV to 0 eV. The first conduction bands are made up of Sn-5s and S-3p states, which

are separated from the rest of the conduction bands by a larger gap. CZTSe shows a

nearly identical electronic structure like CZTS. The main difference is the interchange

of S states with Se states and energetically lower lying first conduction bands. The

overall shape of the CZTSe and CZTS DOS resemble, as well as the identical behavior

of the two spin components. A projection of the HSE06 DOS onto the different atoms

and orbitals reveals the contribution to the valence and conduction band, illustrated

in fig. 3.2. The main contribution on the valence band is made up by Cu-3d states

and a minor contribution of S-3p states or Se-4p in CZTS and CZTSe respectively.

The strong influence of the Sn-5s states and S-3p or Se-4p states for CZTS and CZTSe

respectively is shown in the conduction band. The conduction band of CZTSe is shifted

to lower energies in comparison to CZTS by 0.5 eV.

Overall the DOS for all functionals are qualitatively identical, with main changes in the

band gap size and low lying Zn-3d states. The close resemblance of GGA and hybrid-

functionals DOS lead to the concluding that the GGA functionals are sufficient for a

qualitative discussion of the shape of the electronic structure, whereby more accurate

DOS are only obtained by the addition of non-local HF-exchange in HSE06 and PBE0.
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Figure 3.2: The total DOS of CZTS and CZTSe show a clear gap at the Fermi energy that size
depends on the chosen DFT functional. The valence band consists of Cu-3d and
S-3p states, whereas the conduction band is made up of Sn-5s and S-3p states. The
overall electronic structures of CZTS and CZTSe strongly resemble. The different
spin components ↑ / ↓ are identical.

The key feature for the benchmark of the functionals is given by the band gap Eg (see

tab. 3.3). The experimental band gap of CZTS is in the range from 1.44 eV to 1.51 eV,

classifying CZTS as a clear semiconductor [79, 211–213]. PBE and PBEsol clearly

underestimate the band gap with 0.07 eV and 0.13 eV respectively. HSE06 shows a

clear band gap of 1.47 eV with the HSE06-optimized structure, which is in excellent

agreement with the experimental value. The PBE0 functional hereby overestimates

the band gap about 0.6 eV, leading to a band gap of 2.11 eV in the optimized PBE0-

structure. CZTSe shows a smaller band gap of about 0.8 eV to 1.0 eV in experiment

[80]. The same tendency like in CZTS hold true for CZTSe regarding the performance

of the functionals. PBE and PBEsol show small band gaps of 0.02 eV and 0.03 eV
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respectively, whereas the HF-exchange of the hybrid-functionals expands the band gaps

to 0.87 eV with HSE06 and 1.46 eV with PBE0. Overall the GGA functionals PBE

and PBEsol crucially underestimate the band gap and the hybrid-functional HSE06

with screened HF-exchange shows an excellent agreement with experimental data, while

PBE0 overestimates the band gaps of CZTS and CZTSe. The hybrid-functionals hereby

essentially shift the valence and conduction band, leading to a larger band gap than

the GGA functionals.

Table 3.3: Band gaps of CZTS and CZTSe as obtained by different functionals in comparison
to experimental values.

material PBE PBEsol HSE06 HSE06PBE PBE0 PBE0PBE EXP [79, 80]

Eg [eV]
CZTS 0.07 0.13 1.47 1.17 2.11 1.79 1.44-1.51
CZTSe 0.03 0.02 0.87 0.63 1.46 1.19 1.0

The influence of the ionic structure on the electronic structure is observed when us-

ing the PBE-structure with the hybrid-functionals, whereby a single point calculation

with the hybrid-functional is performed on top of the PBE-optimized structure, de-

noted as HSE06PBE and PBE0PBE. In the PBE-structure, HSE06 yields a band gap of

1.17 eV instead of 1.47 eV in the HSE06-structure. The PBE0 hybrid functional shows

a band gap of 2.11 eV in the PBE0-structure and 1.79 eV in the PBE-structure. These

smaller band gaps result out of the different lattice parameters between the GGA and

hybrid-functionals. The hybrid-functional lattice constants are in general closer to the

experimental values. The DOS in fig. 3.3 shows the DOS with different functionals

(left) and the influence of the optimized PBE-structure on the band gaps obtained by

hybrid-functionals (right).
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Figure 3.3: The left DOS shows the total DOS for the four different functionals within their
optimized structures, whereby the right DOS shows the influence of the PBE-
optimized structure on the electronic structure obtained by hybrid-functionals.
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In the PBE and PBEsol DOS the maximum of the first conduction band is located

at 1 eV, whereas in HSE06 and PBE0 the maximum is located at 2.5 eV and 3.25 eV

respectively. The right DOS shows the hybrid-functionals benchmarked within the

hybrid-functional optimized structure and the PBE-optimized structure, whereby the

both hybrid structures lead to higher band gaps than the PBE-structures. The PBE-

structure leads to a shift of the first conduction bands to lower energies, essentially

decreasing the band gap. As shown in tab. 3.3, this results in a systematic error of

-0.30 eV for HSE06 and -0.24 eV for PBE0, which has to be accounted for in further

research when employing PBE-structures with hybrid-functional electronic structures.

This systematic error reveals a strong influence of the lattice constants on the band gap,

since the main difference between the PBE- and the hybrid-functional structure are the

lattice constants. Therefore, a volume scan with optimization of internal parameters

is performed for the CZTS and CZTSe structures in the boundaries of the CZTS and

CZTSe PBE cell volume. The band gap serves as the key factor for the volume scan,

displayed in fig. 3.4.
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Figure 3.4: CZTS and CZTSe HSE06 band gaps as a function of the cell volume. The volume
scan reveals a linear dependence of the band gap on the cell volume.

The volume scan reveals a nearly linear decrease of the band gap as a function of the

cell volume, whereby the band gap decreases with increasing cell volume. Starting from

1.172 eV in the CZTS lattice parameters the band gap decreases to 0.787 eV for CZTS

in the CZTSe lattice constants. CZTSe shows a band gap of 1.072 eV for the CZTS

lattices constants and of 0.641 eV within the CZTSe lattice constants, which are over

0.1 eV lower than the CZTS counterparts. In conclusion the main difference in the

band gaps between CZTS and CZTSe is induced by the different lattice parameters,

whereby the effect of the different electronic structures of S and Se is small, but not

negligible.

Since the DOS only yield an energetic resolution of the electronic structure, the reso-

lution within the reciprocal space is given by the band structure in more details. The
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band structures with the PBE, PBEsol and HSE06 functional and corresponding Bril-

louin zone with high symmetry path are shown in fig. 3.5. The band structures show

a strong dispersive band at the Γ-point, which strongly decreases the band gap. As

already analyzed in the DOS, the valence band are made up of Cu and S contribu-

tions, whereby the conduction band consists of S and Sn bands. The two conduction

bands are well separated from the rest of the conduction bands by a larger gap, which

depends on the applied DFT functional. All DFT functionals show a similar band

topology, which mainly deviates in the size of the band gap as seen before.
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Figure 3.5: Band structure for CZTS with the PBE, PBEsol and HSE06 functional. All cal-
culated band structures reveal a direct band gap at the Γ-point, which varies
depending on the applied method.

The analysis of the electronic structure reveals several key factors for an accurate

description of the solar cell absorber material. The theoretical investigations at the

HSE06 level show that CZTS and CZTSe with band gaps of 1.47 eV and 0.87 eV are

clear semiconductors. The direct band gap is located at the Γ-point and is a result

of a strong dispersive band. Furthermore, Cu, S/Se and Sn are important for the

electronic structure, since they are mainly responsible for the valence and conduction

band. A distortion of any kind to these atom types may lead to large fluctuations in the

electronic structure. Zn in contrast shows a minor importance, since the Zn-3d states
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are located deep in the band structure and do not influence the band gap. Furthermore,

from a theoretical perspective, the level of theory is critical for the investigation of the

electronic structure. While yielding results in good agreement with experimental data

with respect to structural properties, the GGA functionals PBE and PBEsol clearly

fail to describe the electronic structure of CZTS and CZTSe precisely. By adding HF-

exchange to the Kohn-Sham framework, screened in HSE06 and unscreened in PBE0,

the size of the band gap is properly determined and with HSE06 in excellent agreement

with the experimental band gap. Higher level of theory in form of sc-GW yields a

slightly enlarged bang gap of 1.64 eV for CZTS [84, 210], but is in general not feasible for

large unit cells and a large amount of structures. Solving the Bethe-Salpeter equations

or applying the Random-Phase-Approximation on top of the sc-GW shows only minor

changes of the band gap of up to 0.1 eV [210]. In conclusion the theoretical studies

have shown optimal computational and theoretical methods for a further investigation

on kesterite derived systems. The already published theoretical and experimental data

could be reproduced. On the basis of this investigation, the focus is set to modified

kesterite derived system in the following sections.
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3.3 Band Gap Engineering by Cu2ZnSnSxSe4−x Alloys

A crucial point for the optimization of CZTS/CZTSe solar cells for a better absorption

of the solar radiation and better efficiency is the knowledge about suitable material

modifications. The quaternary semiconductor provides many possibilities for structural

modifications. One ansatz is alloying of CZTS and CZTSe to engineer the band gap

[81, 90–108]. The chemical formula Cu2ZnSnSxSe4−x reveals a wide variety of possible

chemical compositions, for example Cu2ZnSnS2Se2. Depending on the composition,

due to the eight S atoms in the unit cell, there are also different structural patterns

possible within each distinct chemical composition. Up until now, the knowledge about

the influence of these different structural patterns on the structural and electronic

properties is unknown, whereby scientist started in recent years to generally investigate

the structural and electronic trends of the CZTS and CZTSe alloying process [81, 93,

95, 98, 99, 105]. Different structural alloy patterns may lead to band gap fluctuations

due to a varying material composition, which is not optimal for realistic solar cells,

since the performance of the solar cell module may not be predictable and reliable

enough. Furthermore, possible band gap fluctuations in CZTSSe alloys may contribute

to the low open-circuit voltage of kesterite solar cells [110]. Therefore, the theoretical

investigation on the influence of these alloy patterns on the structural and electronic

properties of CZTSSe alloys is essential for the understanding of a possible limiting

factor in realistic kesterite solar cells.

3.3.1 Cu2ZnSnS4−xSex Alloy Model

In the conventional CZTS unit cell, there are eight S atoms at the 8g Wyckoff position

available for a substitution with Se. This leads overall to 28 different possibilities,

which can be reduced by the crystal symmetry to a total of 42 structures. The alloy

composition, referred to as alloy fraction in the following, therefore reaches from 0 % to

100 % in 12.5 % steps (e.g. see tab. 3.4). An alloy fraction of 12.5 % corresponds to one

Se atom and seven S atoms, while an alloy fraction of 62.5 % shows five Se atoms and

three S atoms. In every alloy fraction there are different S and Se distributions possible

at the 8g position, which are referred to as alloy pattern. In the 12.5 % alloy fraction

one S is substituted with Se, which leads to a total of eight alloy patterns. Since all

8g positions are symmetry equivalent, only one alloy pattern has to be considered. By

considering the crystal symmetry, the distribution of the 42 structures into the different

alloy fractions is shown in tab. 3.4.

Table 3.4: Number of structures obtained by a symmetry reduced structural analysis for dif-
ferent alloy fractions.

alloy fraction [%] 0.0 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0
alloy patterns [#] 1 2 5 7 12 7 5 2 1
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Since the structure optimization in section 3.2 has shown differences in the lattice

parameters between CZTS and CZTSe due to the larger Se-atoms, all 42 structures

are fully optimized at the PBE-level of theory. For the electronic structure PBE and

HSE06 single point calculations are performed on top of the PBE-optimized structures,

as described in sec. 3.1. The consideration of all different alloy patterns within an

alloy fraction allows for a detailed analysis of the CZTSSe alloys. As a first step of this

analysis, the change of the structural parameters is investigated in the next section.

3.3.2 Structural Properties of Cu2ZnSnSxSe4−x Alloys

All 42 structures were fully optimized, internal and external lattice parameters, whereby

the low energy structures for every alloy fraction are exemplarily shown in fig. 3.6. The

low energy structures of the alloy fractions 25.0 % and 75.0 % show an identical anion

pattern, in which S in 25.0 % and Se in 75.0 % maximize their distance within the unit

cell by occupying different horizontal planes with one horizontal 8g plane in between.

Also the alloy fractions 37.5 % and 62.5 % show a similar topology regarding their

minor alloy element, which try to avoid their close proximity in the same horizontal

8g plane. This leads to a vertical spreading of the minor alloy element within the unit

cell. The 50 % alloy also exhibits this feature, in which in every 8g plane one S and

Se atom can be found, leading to a maximum distance distribution of the anion types

within the unit cell.

0 % 12.5 % 25.0 % 37.5 % 50.0 %

62.5 % 75.0 % 87.5 % 100 %

SnCuZn S Se

Figure 3.6: Low energy CZTSSe alloy structures for every investigated alloy fraction optimized
at the PBE-level.
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The substitution of S with the larger Se atoms leads to an expansion of the cell. The

resulting optimized lattice constants are shown in tab. 3.5, whereby always the low

energy structures of the different alloy fractions are shown, corresponding to the struc-

tures presented in fig. 3.6. The full details for all calculated structures can be found in

app. A.

Table 3.5: Lattice parameters of CZTSSe alloys as obtained by PBE structure optimizations.
Only the low energy structures are presented. The lattice parameters linearly in-
crease with increasing Se amount.

fraction [%] a [Å] b [Å] c [Å] (a+b)/c volume [Å3]
0.0 5.464 5.464 10.921 1.001 326.04

12.5 5.499 5.497 10.995 1.000 332.35
25.0 5.538 5.531 11.073 1.000 339.18
37.5 5.570 5.577 11.142 1.000 346.14
50.0 5.607 5.615 11.207 1.001 352.79
62.5 5.646 5.648 11.283 1.001 359.75
75.0 5.685 5.687 11.363 1.000 366.89
87.5 5.723 5.718 11.437 1.000 374.17

100.0 5.761 5.761 11.507 1.001 381.91

The lattice parameter reveal that by partially substituting S with Se, the lattice con-

stants increase linearly from the CZTS to the CTZSe lattice constants due to the larger

atom radius of Se compared to S. This structural linearity is shown in fig. 3.7. In the

minimum alloy fraction 0 % and the maximum alloy fraction of 100 % CZTS and

CTZSe lattice parameters are obtained respectively. This behavior strictly follows Ve-

gard’s empirical heuristic law, which states that at the same temperature the lattice

parameter of a solid solution of two materials with the same crystal structure can be

approximated by an equation of the two constituents’ lattice parameters [214, 215].
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Figure 3.7: Lattice parameters a, b and c for the different CZTSSe alloys. The lattice parameter
hereby follow strictly Vegard’s law and linearly increase with increasing Se amount.
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Closer analyzing the lattice constants a, b and c, the ratio (a+b)/c in all structures is

close to one, which slightly varies throughout the different alloy fractions and patterns.

This deviation of a and b is due to an anisotropic distribution of the anions within

the 8g planes, whereby isotropic distributions lead to equal a and b parameters. Since

the lattice parameters a and b start to deviate up on the substitution, the formerly

tetragonal lattices changes to a orthorhombic lattice systems. Upon the full substitution

to CZTSe, the lattice constants a and b are equal, whereby the initial tetragonal lattices

of CZTSe is restored. Since not only the size but also the electronic structures of S and

Se are different, the change of the lattice parameter probably also results in a changed

electronic structure.

A closer look at the occurring Bader charges in the alloys reveal a decreasing mean

Bader charge for the cations with increasing Se amount (see fig. 3.8). This behavior

results out of the quantity that Se is about 0.2 e more positively charged than S. The

different alloy patterns with their different binding motifs within an alloy fraction lead

to not one uniform charge for an element as in the bulk, but rather lead to a range

of different charges for one element, in the following referred to as charge fluctuations.

With increasing alloy fraction an increasing charge fluctuation up to an alloy fraction

of 50 % is observed, whereby afterwards the charge fluctuations decrease again. The

mean cation charges linearly decrease with increasing alloy fraction, which is induced

by the increasing amount of Se atoms and by the increase of the lattice constants. The

anions show in all alloy fractions mean Bader charges of -0.799 e and -0.631 e for S and

Se respectively with neglectable charge fluctuations. Overall these charge fluctuations

and reduced charges of the cations with increasing Se amount may lead to fluctuations

of electronic key factors like the band gap.
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Figure 3.8: Bader charges for all CZTSSe alloys as a function of the alloy fraction at the
PBE-level. Zn is shown in pink, Cu in brown, Sn in gray, S in yellow and Se in
green.
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Concluding from the research on the pure bulk systems CZTS and CZTSe, overall the

CZTSSe alloys show an expected structural behavior. The lattice constants, and the

cell volume as a result, increase linearly from the CZTS to the CZTSe lattice parameter,

whereby for every fraction there are slight deviations since different alloy patterns and

binding motifs are possible. Furthermore, upon alloying small charge fluctuations exist

for the cations, whereby the anions feature only negligible charge fluctuations. The

mean charges of the cations decrease with increasing alloy fraction, which is a result of

the more positively charged and larger Se atoms. As seen in the investigation on the

bulk properties, the electronic properties strongly depend on the lattice system, since

the overlap of the electron densities changes. Therefore, in the next section a closer

focus is set the influence of the alloying process on the electronic properties.

3.3.3 Electronic Structure of Cu2ZnSnSxSe4−x Alloys

The influence of the structural changes upon alloying on the electronic structure of

CZTSSe is of special importance for the solar cell absorber, since the electronic structure

determines the electronic properties of the solar cell module. In comparison to CZTS

and CZTSe, the electronic structure of CZTSSe alloys strongly resembles the electronic

structure of the two boundary materials. Hereby the contribution of the different

atoms and orbitals to valence and conduction bands is identical to the ones in CZTS

and CZTSe. In contrast to pure CZTS and CZTSe, the conduction band now consists

of a mixture of Sn-5s, S-3p and Se-4p states. As a result of different alloy patterns

within an alloy fraction, the DOS of an alloy fraction shows a DOS distribution rather

than one distinct DOS. The different DOS reveal overall a similar shape of the states,

whereby especially the conduction band reveals the influence of the structural changes

on the electronic structure. The conduction band is shifted to lower energies with

increasing Se amount, which effectively narrows the band gap.

The band structure gives further insight on the electronic structures of the alloys.

The investigations of bulk CZTS and CZTSe have shown previously that the strongly

dispersive band at Γ-point determines the size of the direct band gap. Therefore, the

band structures at the high symmetry path within the first BZ from Z over Γ to X

for selected alloy patterns are shown in fig. 3.10 for a more detailed analysis. Starting

from the pure CZTS at 0 % the main changes can be observed in the conduction bands.

With increasing alloy fraction the conduction band is shifted to lower energies and is

therefore narrowing the band gap, whereby the band topology of all alloys resembles.

The band gap linearly decreases with increasing Se amount, whereas at 100 % the

CZTSe band structure is obtained. The valence band stays in place with respect to the

computational accuracy and the employment of PBE-optimized structures.
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Figure 3.9: Total HSE06 DOS for all CZTSSe alloys fractions and patterns in the optimized
PBE-structure. For every alloy fraction, there are different alloy patterns and
therefore different DOS possible, which overlap in the corresponding alloy fraction.
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Figure 3.10: HSE06 band structures for selected CZTSSe alloys with the optimized PBE-
structure, whereby always the low energy alloy pattern is shown.

A quantitative analysis of the band gap Eg is given in fig. 3.11. The PBE functional

shows a random distribution of band gaps, whereby the pure compounds show a band

gap of 0.064 eV and 0.033 eV. The alloy fractions in between tend to lower band gaps

than the pure systems. Overall the PBE functional shows only the tendency to a

lower band gap than CZTS, whereby the different alloy fractions show no consistent

behavior. By introducing non-local screened HF-exchange via the HSE06 functional a

clear trend can be observed, in which the band gap decreases linearly from 1.17 eV to

0.66 eV, which are the band gaps of CZTS and CZTSe respectively. As with the PBE

functional, the HSE06 band gaps reveal a span of band gaps within an alloy fraction,

referred to as band gap fluctuations, which are in the range from 0.015 eV to 0.030 eV

over all alloy fractions. With respect to the systematic error of the PBE-structure of

-0.3 eV, the values show an excellent agreement with the experimental band gaps of

CZTS and CZTSe [79, 80].
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Figure 3.11: PBE and HSE06 band gap of the different alloy fractions. The HSE06 band gaps
are given at the PBE-structure.

The decreasing band gap with increasing alloy fraction is an effect of the increasing cell

volume upon alloying, as seen before in the bulk in sec. 3.2. However, within an alloy

fraction, it is unclear if the varying band gaps are due to different cell volumes or due

to different alloy patterns. The largest fluctuations in lattice parameters are observed

in the 50 % alloy fraction, since it yields the highest amount of different structures.

The structures with the lowest and highest band gap of alloy fraction 50 % show two

distinct anion patterns (see fig. 3.12). The highest band gap structure (b) shows in

every plane one S and one Se atom, whereas the lowest band gap structure (a) shows

both the S and Se clustering two neighboring planes.

5.610 Å 
5.608 Å 

11.228 Å 11.207 Å

5.615 Å
5.607 Å

structure (a) structure (b)

Figure 3.12: Two CZTS2Se2 alloy structures with the lowest band gap in structure (a) and the
highest band gap in structure (b). Zn is shown in pink, Cu in brown, Sn in gray,
S in yellow and Se in green.

49



3.3 Band Gap Engineering by Cu2ZnSnSxSe4−x Alloys

A closer analysis of the HSE06 DOS for both structures in fig. 3.13 reveals the reason

for the smaller band gap of structure (a) (0.864 eV) than structure (b) (0.895 eV). The

conduction band of structure (a) is stronger shifted to lower energies, which results in

a smaller band gap than structure (b). In contrast to the expectation that S and Se

are solely responsible for this shift, the DOS reveals that the shift of the conduction

band is due to minimal shifts of the Sn-5s and S-3p states to lower energies. It is

further shown that in structure (a) due to the alloy pattern, the electronic structure

of the different atom types are not identical anymore, which leads to atomic DOS

fluctuations. This is especially seen in the Cu atoms, which deviate in the valence band

in contrast to structure (b). Since the cell volumina of both structures are not equal,

a clear contribution of the alloy pattern or cell volume can not be answered yet, while

a strong indication on the influence of the alloy pattern is given.
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Figure 3.13: CZTS2Se2 HSE06 DOS for the highest and lowest band gap structures at the
PBE-structures. Furthermore, in structure (a), the different Cu atoms are not
equal anymore with respect to the DOS.

A clear correlation between the band gap of one alloy fraction and the cell volume

within this fraction should reveal a linear behavior of the band gap as a function of the

cell volume. The band gap as a function of the cell volume is shown in fig. 3.14 for all

alloy fractions and for CZTS2Se2 in particular, since it shows the strongest band gap

fluctuations of all fractions. The left graph shows the linear increase of the cell volume

with linear decrease of the band gap, whereby for nearly every alloy fraction there is a

distribution of band gaps with a distribution of cell volumes. In a first approximation

the band gap correlates clearly linearly with the cell volume in the left graph for all alloy

fractions. If the band gap is solely dependent on the cell volume, the same linear trend

should be observed also for one selected alloy fraction. The alloy fraction 50 % shows no

correlation between the cell volume and the band gap, which is also shown in all other

alloy fractions (right graph, fig. 3.14). In conclusion two main trends influence the band

gap. The strongest influence on the band gap is given by the increasing cell volume

upon alloying, whereby the band gap decreases with increasing Se amount. However,

50



3.3 Band Gap Engineering by Cu2ZnSnSxSe4−x Alloys

within an alloy fraction this clear correlation is not shown, whereas the fluctuations

rather result out of different alloy patterns than different cell volumes. Furthermore,

the cell volume change within an alloy fraction is small compared to the total change

of cell volume for all alloy fractions.
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Figure 3.14: The HSE06 band gaps of CZTSSe alloys as a function of the cell volume are
shown in the left graph. The right graph shows the band gap distribution in the
CZTS2Se2 alloy with respect to the cell volume. The PBE-structures are always
used.

In summary the theoretical studies have shown that by alloying CZTS and CZTSe the

band gap can be linearly engineered to fit an optimal band gap for the application in

thin film solar cell. With increasing Se amount the lattice expands due to larger Se

atoms and the Bader charges of the cations start to decrease. Furthermore, since there

are different binding motifs possible in CZTSSe alloys due to two different anion types,

the cations show charge fluctuations within an alloy fraction. These different binding

motifs and different lattice parameter within an alloy fraction result in a distribution of

slightly different DOS rather than one distinct DOS for an alloy fraction. The electronic

structures of the alloys reveal a linear decrease of the band gap with increasing Se

amount, while this linearity is only seen with the HSE06 hybrid-functional. As in

the CZTS and CZTSe bulk systems, this linear decrease of the band gap of an alloy

fraction is strongly influenced by the enlargement of the lattice constants. The band

gaps fluctuate up to 0.03 eV within alloy fraction 50 %, which is primarily introduced by

different alloy patterns rather than the different cell volumes within the alloy fraction.

In comparison to the total decrease of the band gap of 0.5 eV, this fluctuation is rather

small and therefore only of minor importance. In addition to the DOS, the band

structure reveals a similar band topology like bulk CZTS and CZTSe, whereby the

main changes are seen in the shift of the conduction band to lower energies. The direct

band gap hereby is still located at the Γ-point. The smaller band gaps are not solely a

result of S-3p and Se-4p shifts but are also influenced by shifts of Sn-5s states to lower

energies due to different binding motifs in the alloy patterns.

The theoretical investigations can help experimentalist to construct solar cells with

higher efficiencies and a general better performance. From these results it can be
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predicted that the maximal efficiency after the Shockley-Queisser limit can be reached

with a band gap of 1.1 eV to 1.3 eV, which corresponds to an alloy fraction of 37.5 % to

62.5 % in which the systematic error of the PBE-structure is included. Furthermore, in

experimental solar cells, slight band gap fluctuations are to be expected due to a varying

material quality due to the different alloy patterns within an alloy fraction. Since an

experimental sample consist of a variety of unit cells, depending on the arrangement

of the alloy patterns the band gap fluctuations may average out in total or may also

increase to values larger than the calculated 0.03 eV. These band gap fluctuations may

contribute to the experimentally observed low open-circuit voltages [113], but due to

their small dimension, most probably there is a further contributor. A first hint on a

further possible influencing factor is given by the occurring disorders in experimental

samples. The disorders often occurs on the 2c/2d Wyckoff positions, which are occupied

by electronically similar Cu and Zn atoms. Therefore, in the following section the focus

is set on 2c/2d disordered CZTS systems.
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3.4 Band Gap Fluctuations in 2c/2d Disordered

Cu2ZnSnS4

The promising material properties of CZTS and CZTSe are often tarnished by a varying

quality of the samples and resulting in efficiencies below the theoretical maximum. A

challenge while preparing the samples is the often occurring different defect types in the

lattice system, which are a possible interference factor for efficiently performing CZTS

and CZTSe solar cells. Especially a wide-spread industrial production is disrupted,

since the properties of these defective structures can not be predicted accurately. The

stoichiometric and off-stoichiometric CZTS and CZTSe samples hereby often suffer from

several types of defects like self compensating defect clusters, such as [VCu+ZnCu], [2

CuZn+SnZn] and [ZnSn+2 ZnCu] [109]. VCu denotes a vacancy at a Cu position in the

lattice and ZnCu are antisites, in which in this example a Cu is substituted with Zn.

One of the most prominent defects are CuZn and ZnCu antisite disorders, which occur

at the 2c and 2d Wyckoff positions, normally occupied by Cu and Zn respectively. In

recent times these disorders were closer investigated by researchers, since they are a

possible candidate for the band gap fluctuations and resulting unexpected low open-

circuit voltages of the solar cell samples [111–113]. However, the reason why these

disorders may influence the electronic structure is not yet fully understood. For a deeper

understanding, this problem has to be approached from the experimental as well as the

theoretical side. An important first step for an experimental control of the disorders

and a reliable base for an industry production was given by Ritscher et al. in 2016.

They have shown that the 2c/2d disorders can be controlled by the annealing time and

temperature [114]. On the basis of these experimental investigations the second crucial

step is gaining a theoretical understanding for the changes of the electronic structure.

In the following section the theoretical investigations will focus on the influence of

different disorder degrees and patterns on the electronic structure of CZTS. With the

combination of the experimentally controlled disorders and theoretical understanding

of the influences, a path is partially cleared for an extensive application of CZTS thin

film solar cells.

3.4.1 Disorder Model

In the CZTS bulk system, several disorder degrees and structural disorder patterns

are possible at the 2c and 2d Wyckoff positions, in the following referred to as disorder

fraction and disorder pattern respectively. To account for a fine grid of different disorder

fractions and patterns, in the applied disorder model the normal tetragonal kesterite

unit cell with 16 atoms is expanded to a 2x2x1 supercell with 64 atoms. Thus, the

disorders can be introduced within two separated 2c/2d planes to account for horizontal

and vertical disorders patterns (see fig. 3.15).
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Figure 3.15: Applied disorder model with a 2x2x1 supercell. There are two possible 2c/2d
planes, on which the disorders can be introduced. Within these two planes there
are 16 possible atom positions, which have to be occupied by eight Zn and eight
Cu atoms to retain the stoichiometry.

Within the two disorder planes, 16 positions are available for eight Zn and eight Cu

atoms. Accounting for all possible disorder fractions and patterns, this leads in total

to 12870 different possible structures via binomial coefficients. Since these calculations

at DFT level are rather demanding, these structures are reduced to symmetry inde-

pendent structures by applying the solid solution module of the CRYSTAL14 program

package [198, 199]. By this symmetry analysis a total of 910 structures remain, which

are categorized from 0 % to 100 % in 12.5 % steps. Upon disordering different disorder

fractions and patterns are obtained. A disorder fraction of 50 % results in a change of

eight out of 16 atom positions, in which eight positions are kept fixed and the other

eight positions are disordered while remaining the stoichiometry. Upon creating the

disordered system, all unit cells will contain the same stoichiometry for a valid com-

parison, since off-stoichiometric structures lead to a strong deviation in the electronic

structure. For every disorder fraction, different structural disorder pattern are possible,

which have to be accounted for due to a potential influence on structural and electronic

properties. The distribution of the 910 disordered systems into the different disorder

fractions is shown in tab. 3.6.

Table 3.6: Number of structures obtained by a symmetry reduced structural analysis for dif-
ferent disorder fractions.

disorder fraction [%] 0.0 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0
disorder patterns [#] 1 6 62 214 344 214 62 6 1

The disorder fractions higher than 50 % should result in the same structures as the

disorder fractions lower than 50 % due to the crystal symmetry. The disorder fractions

higher than 50 % were initially investigated to research the computational accuracy of
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the calculations, since small structural changes can lie within numerical fluctuations

occurring in the computations. Without this test small lattice changes therefore may

otherwise be interpreted as a physical phenomenon rather than solely existing due

to numerical fluctuations. The electronic structures of Cu and Zn resemble with the

assumption of Cu+ and Zn2+ ions, but show differences in the binding lengths to S

atoms. The calculations on the 1x1 unit cell reveal binding lengths of 2.365 Å and

2.315 Å for Zn2d-S and Cu2c-S respectively. Due to these minor differences in binding

length, the disordered structures are structurally fully optimized, internal and exter-

nal lattice parameters, to account for a computational equilibrium structure, leading

to relaxed lattice constants and relaxed environments surrounding the disordered po-

sitions. All starting structures are tetragonal supercells, in which a distortion to an

orthorhombic supercell during the structure optimization is allowed. With this applied

disorder model structural and electronic changes upon disordering are investigated in

the following sections.

3.4.2 The Influence of 2c/2d Disorders on the Cu2ZnSnS4 Structure

The studies on the bulk CZTS/CZTSe systems and the CZTSSe alloys have shown that

the structural parameters crucially affect the electronic structure of the material. The

minimal differences in binding lengths between Zn2d-S and Cu2c-S result in the struc-

ture optimization in changes in the lattice constants, since the system tries to minimize

the stress introduced by the disorders. The lattice constants and the resulting cell

volume as a function of the disorder fraction are shown in fig. 3.16 for all calculated

disorder patterns, whereby the full tabularly data can be found in app. A.

Since every disorder fraction includes several disorder patterns, for every disorder frac-

tion several lattice parameters are obtained. The lattice constants a, b and c reveal a

similar trend, which shows an overall tendency to slightly larger lattice constants upon

disordering. In general the mean lattice constants of every disorder fraction increases

up to disorder fraction 50 %, whereby larger disorder fractions show decreasing mean

lattice constants up to the fully ordered structure at 100 %. The maximum variation of

lattice parameters is shown in disorder fraction 50 %, since the high amount of disorder

patterns increases the possibility of a larger lattice parameter spread. The data further

visualizes that the distribution of the lattice constant a and b is nearly identical with

minor deviations. In the lattice constant c the disorder fractions smaller and higher

than 50 % are not fully symmetric with respect to the disorder fraction 50 %, which

is a result of the computational inaccuracy during the structure optimization. As a

direct consequence of the change of the lattice parameters a, b and c, the mean cell

volume of every fraction increases up to a disorder fraction of 50.0 %, whereas over

50.0 % disorder the mean cell volume decreases again. The fully ordered structures at

0 % and 100 % disorder fraction should yield from a chemical point of view the same

lattice parameters. Their difference after the structure optimization can be regarded
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as the computational accuracy for the structure optimization process. The difference

of 1.75 Å3 in cell volume between the two structures is in total about 30 % of the max-

imum volume increase of 6 Å3. The mirrored structural behavior of disorder fractions

lower and higher than 50 % show that the structures are identical and within the com-

putational accuracy. Therefore, a detailed discussion of the disorder fractions higher

than 50 % is not required in the following sections within the computational accuracy.
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Figure 3.16: Lattice constants and cell volume as a function of the disorder fraction, as ob-
tained by PBE structure optimizations.

A closer investigation of the 50 % disorders shows two exceptions within the cell volume

distribution, which strongly stand out of the range of cell volumes (see fig. 3.17). The

highest cell volume of 1309.14 Å3 is shown by structure (b) where a full separation of

Cu and Zn atoms in two different planes occurs. Structure (c) is similar to the fully

ordered structure, whereby only the lower half of the structure is rotated by 90°. This

rotation leads to the structure with the lowest cell volume of 1303.98 Å3 for the disorder

fraction of 50 %. Only the fully ordered structure (a) exhibits a smaller cell volume with

1302.88 Å3. The last selected structure (d) shows a cell volume of 1305.53 Å3, which
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lies in between structure (b) and structure (c). Structure (d) is chosen as an example

for a structure with a cell volume in between the extrema, whereby the investigated

electronic structure in the next section shows correlations between ionic and electronic

structure.

structure (a) structure (b)

structure (c) structure (d)

Figure 3.17: Different disordered structures with 50 % disorders are illustrated. Structure (a)
shows the fully ordered structure, whereas structure (b)-(d) display structures
with the same disorder fraction of 50 % but different disorder patterns. Zn is
shown in pink, Cu in brown, Sn in gray and S in yellow.

The structural differences are a result of different binding lengths between Cu2a, Sn2b,

Cu2c, Zn2d and S (see fig. 3.18). In structure (a) and (c) there is only one structural

pattern in which S is bound to one Cu2a, one Sn2b, one Cu2c and one Zn2d (denoted

as S-(Cu2a,Sn2b,Cu2c,Zn2d)), referred to as binding motif in the following. Upon a

stronger disordering in structure (b) and structure (d) two new binding motifs are

created:

• S-(Cu2a,Sn2b,Zn2c,Zn2d),

• S-(Cu2a,Sn2b,Cu2c,Cu2d).

The binding lengths in the binding motif of structure (a) are taken as a reference.

In structure (b) the binding lengths between Cu2c-S and Zn2d-S remain, whereby the

disordered binding lengths Zn2c-S and Cu2d-S relax to the same values as the ordered

Cu2c-S and Zn2d-S. Remarkable are the changes of Cu2a-S and Sn2b-S, which increase

when bound to S-(Zn2c,Zn2d) and decrease when bound to S-(Cu2c,Cu2d). The same
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behavior is shown in structure (d) for the binding lengths of S-Sn2b and S-Cu2a. In

contrast to structure (b), S-(Zn2c,Zn2d) increases by 20 mÅ and S-(Cu2c,Cu2d) decreases

by 20 mÅ in structure (d).
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Figure 3.18: Different binding motifs and lengths of the four selected structures after the op-
timization at the PBE-level are shown. Zn is shown in pink, Cu in brown, Sn in
gray and S in yellow.

The minimal changes in binding lengths in the different binding motifs summarize to

noticeable changes in lattice parameter as seen before. The change of the structural

parameters lead to different relative stabilities of the structures. The relative energies

of the calculated structures are presented in fig. 3.19, whereby the total energy of the

fully ordered structure is taken as reference energy. Overall the relative energies reveal

that the introduction of disorders into the CZTS lattices costs energy. The required

energy increases up to 1 eV at 50 % disorder fraction and then decreases to 100 %,

which is as stable as the fully ordered structure. As in the cell volume, the relative

stabilities of the disorder fraction lower and higher than 50 % are identical. The relative

energies reveal the same ordering as observed in the cell volume for structure (a)-(d).

Structure (c) shows the lowest relative energy, which is nearly as stable as the fully

ordered structure, since a slight reordering of structure (c) to structure (a) needs less

energy than a fully separated structure like structure (b). The highest cell volume in

structure (b) also leads to the highest relative energy of over 1 eV in total. As in the

cell volume, structure (d) is in between the selected extrema. The relative energies

have to be compared with care, since this energetic ordering can be a result of different
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basis set qualities.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0  20  40  60  80  100

re
l. 

e
n

e
rg

y 
[e

V
]

disorder [%]

Figure 3.19: Relative energy of the disordered structures as a function of the disorder fraction
with reference to the fully ordered structure. The relative energies are calculated
at the PBE-level.

With constant energy cutoff of the plane waves, the basis set quality changes with

changing cell volume, possibly resulting in energy differences which solely exist due to

the computational parameters. Therefore, the energetic change with varying cell volume

for structure (b) with the highest cell volume gives information about the influences

of cell volume on the total energy, illustrated in fig. 3.20. The volume scan reveals

that the unit cell energy varies about 0.021 eV within the boundaries of calculated cell

volumes of structure (a) and structure (b). Hereby the lower cell volume leads to less

stable structures, which is indicated by higher unit cell energies. Increasing the cell

volume to values larger than the computational equilibrium value of 1309.14 Å3 leads

to slightly more stable structures, which is an effect of the changed basis set quality.
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Figure 3.20: Total energy of structure (b) as a function of the cell volume at the PBE-level. The
cell volume in the equilibrium is set to zero, whereby the cell volume is changed
within the magnitude of the observed cell volume changes upon disordering.
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These small changes are over a magnitude smaller than the calculated energy differ-

ences shown in fig. 3.19 and are therefore only of small importance. In comparison to

experiment, small theoretical energy differences have to be considered with care, since

the calculated structures are treated at 0 K in the vacuum. At normal conditions with

298 K and 100 kPa air pressure, the structural properties in experiment are influenced

by thermodynamic effects like lattice vibrations and entropy. Small energy differences

observed in the calculations may therefore not be present in experimental studies.

A link between ionic and electronic structure are the atomic charges, which are deter-

mined here by a Bader charge analysis (see fig. 3.21). All atom types show a set of

different charges within a disorder fraction, which is due to different disorder patterns,

referred to as charge fluctuations in the following. In the fully ordered structure Cu

shows an atomic charge of 0.477 e, Sn of 1.382 e, Zn of 0.849 e and S of -0.796 e, referred

to as reference charges.
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Figure 3.21: Bader charges for all calculated CZTS 2c/2d disordered systems as a function of
the disorder fraction at the PBE-level. For every disorder fraction all charges of
all disorder patterns are shown, resulting in a variety of charges for each atom
type and disorder fraction.
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Upon disordering, Cu exhibits charges including all disorder fractions from a minimum

of 0.470 e to a maximum of 0.498 e. Zn shows over all disorder fractions atomic charges

in a span from 0.839 e to 0.865 e and Sn from 1.353 e to 1.395 e. Therefore, the cationic

charge fluctuations span only a range of 0.028 e for Cu, 0.026 e for Zn and 0.042 e for

Sn. In contrast the charge fluctuations with S are 0.104 e from -0.741 e to -0.845 e,

which is 2-4 times higher than the cations. Averaging over all disorder fractions, the

mean Bader charges nearly stay identical (see full statistical analysis in app. A). Dis-

order fractions 25.0 % to 50 % show similar minimum and maximum charges, whereby

the charge range is distinctly smaller in the disorder fraction 12.5 %. The disorder

therefore introduces charge fluctuations within the unit cell, which vary depending on

the disorder fraction.

The analysis of the previously selected 50 % structures give further insight on the

charge fluctuations. The influence of the different binding motifs on the atomic charges

is illustrated in fig. 3.22 for structure (a)-(d). Structure (a) and (c) show both for

cations and anions identical charges, which is due to the similarity of the structures.

Since there is only one binding motif, the atomic charges are consistent for every atom

type. The high volume structure (b) shows a charge split from -0.757 e to -0.830 e with

respect to the horizontal 2a/2b plane in the middle of the unit cell. S in the top half of

the unit cell, bound to two Zn2c,2d, Cu2a and Sn2b, shows more negative charges than

S in the lower half, which are surrounded by three Cu2a,2c,2d and Sn2b. Since Cu shows

Bader charges only half as high as Zn, S bound to three Cu typically features lower

Bader charges than S bound to two Zn and one Cu. By increasing the complexity of the

structural pattern in structure (d), the analysis is aggravated, since a two dimensional

cut covers details in depth. The atoms in the back are therefore minimally enlarged

for an easier analysis. Structure (d) also shows similar strong charge fluctuations of S

from -0.761 e to -0.835 e. The 2c/2d planes in structure (d) show consistent charges

for the atom types Zn and Cu each, whereby the S atoms show a charge fluctuation

due to different chemical environments. Remarkable are the two different 8g planes,

one with uniformly charged S atoms and one with pairwise alternating charges, which

is due to the different disorder patterns. Altogether the Bader charge analysis shows a

correlation between the binding motifs and the charge fluctuations within the unit cell.

With decreasing amount of binding motifs close to the ones in the ordered structure

(a) (S-Cu2aSn2bCu2cZn2d), the Bader charges start to fluctuate within the unit cell.

The binding motifs S-Cu2aSn2bZn2cZn2d and S-Cu2aSn2bCu2cCu2d lead to strongly de-

viating charges from the ordered binding motif. The first binding motif leads to more

negatively charged S and the second one to more positively charged S, whereby the

charges are up to 0.1 e apart. Therefore these disorders lead to charge transfers within

the unit cell depending on the binding motif.
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Figure 3.22: Structures and Bader charges for the selected CZTS 2c/2d disordered systems at
the PBE-level. Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.
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3.4 Band Gap Fluctuations in 2c/2d Disordered Cu2ZnSnS4

Summarizing the structural trends in all disorder fractions and especially the three

selected 50 % disorder structures, a correlation between the different structural pa-

rameters can be observed. Upon disordering, the lattice constants, and as a result the

cell volume, slightly increase and vary within a disorder fraction due to the disorder

patterns. Up to 50 % disorder fraction the mean lattice parameters increase, whereby

after 50 % they start to decrease again, overall staying larger than the fully ordered

structure. Corresponding disorder fractions (12.5 % and 87.5 %, 25.0 % and 75 %,

37.5 % and 62.5 %, 0 % and 100 %) show identical properties due to chemical equality,

whereby minor differences are due to computational inaccuracies. The relative stabil-

ities show that an introduction of disorders requires energy, which varies within each

disorder fraction. The mean relative energy for every disorder fraction increases up

to a disorder fraction of 50 %. As a result of the slightly distorted structures due to

different Zn2d-S and Cu2c-S binding lengths, the Bader charges reveal charge fluctua-

tions within the unit cell, which are due to newly formed binding motifs. The three

selected disorder structure at 50 % show that a high cell volume leads to a high relative

energy and high charge fluctuations, whereas the opposite holds true for the minimal

cell volume structure. In comparison to experimental samples, the theoretical data has

to be averaged for every disorder fraction, since in experimental samples only the disor-

der fraction is known. In a crystal sample there are several different disorder patterns

present, which are not determinable experimentally. With this theoretical knowledge

about the structural changes upon disordering, the focus is set on the change of the

electronic structure in the next section.

3.4.3 Electronic Structure of 2c/2d Disordered Cu2ZnSnS4

An experimental limitation in the CZTSSe thin film solar cells are the low open-circuit

voltages. Experimentalist and theoreticians conjecture about the origin of these low

open-circuit voltages and have focused on the 2c/2d disorders as a possible key factor.

With the observed minor changes in the lattice parameter and Bader charges in the

previous section, the question arises how these deviations affect the electronic structure,

which is analyzed in form of the DOS. Concluding from the structural analysis, the

analysis of the electronic structure is performed for every disorder fraction as well as

for the disorder patterns with different binding motifs. The DOS for every disorder

fraction at the PBE-level is shown with the DOS of the fully ordered system as a

reference system in fig. 3.23. For every disorder fraction a distribution of DOS is

obtained rather than one unique DOS, which is a result of the high amount of different

disorder pattern. In general the electronic structure of the disordered systems is similar

to the ordered one in terms of atom and orbital contribution to the DOS (see sec. 3.2).

The overall changes mainly occur in the valence and conduction band, which are slightly

shifted with reference to the Fermi energy of every structure.
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Figure 3.23: Total PBE DOS for all calculated disorder fractions. The fully ordered structure
is taken as a reference system. For every disorder fraction all disorder patterns
are shown.
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The general trend shows in total a decrease of the band gap with increasing disorder

fraction, whereby for every disorder fraction a variety of band gaps are obtained due to

different disorder patterns. The shape of the valence and conduction band also slightly

changes, hence few structures introduce a gap within the first conduction band (see

fig. 3.24), which is not present in the ordered system. As in the structural analysis,

disorder fractions lower and higher than 50 % yield identical results.
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Figure 3.24: Total PBE DOS for a selected 50 % disorder structure, in which an additional
gap is introduced within the first conduction bands. The fully ordered structure
is taken as a reference system.

Focusing on the PBE band gaps as a function of the disorder fraction, the graph reveals

overall a decrease of the band gap Eg upon disordering (see fig. 3.25). The absolute

band gap of course strongly deviates from the experimental band gap of 1.5 eV, as

previously shown in the research on the bulk system and CZTSSe alloys. Nevertheless,

the PBE band gaps show a general trend to lower band gaps when the structure is

disordered. Furthermore, several different band gaps within an disorder fraction are

obtained due to different disorder patterns, in the following referred to as band gap

fluctuations.
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Figure 3.25: Band gap as a function of the disorder fraction at the PBE-level.
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Since PBE strongly underestimates the band gap at the Γ-point, the question arises if

the band gap fluctuations of 0.07 eV are also in the same magnitude when employing the

hybrid-functional HSE06. Therefore, three single point calculations on top of the PBE-

optimized structures were performed, whereby for every disorder fraction the structure

with highest, lowest and medium band gap were chosen. These band gaps obtained by

the HSE06 single point calculations as a function of the disorder fraction are presented

in fig. 3.26.
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Figure 3.26: HSE06 band gaps obtained by single point HSE06 calculations on top of the
PBE-optimized structures for the disorder fractions up to 50 %. Higher disorder
fractions are not considered due to the crystal symmetry.

The non-local HF-exchange introduced into the Kohn-Sham approach leads overall to

drastically higher band gaps. The ordered structure features a band gap of 1.176 eV,

which is equivalent to the band gap in the normal 1x1 unit cell. As investigated

previously, the difference between the HSE06PBE and experimental band gap of 1.5 eV

lies in the underlying PBE-structure, which systematically lowers the HSE06 band gaps

by 0.3 eV. Including this systematic error of the PBE-optimized structure, the corrected

HSE06 band gap of 1.47 eV agrees perfectly with the experimental value. Unfortunately,

a full HSE06 structure optimization of the 2x2x1 unit cell is not feasible. The selected

single point calculations on top of the optimized PBE-structure show that disorder

fraction 12.5 % yields a minimal band gap 1.01 eV, which is about 0.176 eV lower

than the ordered system. The band gap further decreases in disorder fraction 25.0 %

to 0.965 eV, which is a decrease of about 0.211 eV. In disorder fraction 37.5 % and

50.0 % the band gap is reduced to 0.902 eV and 0.857 eV respectively, corresponding to

a diminished band gap by 0.274 eV and 0.319 eV respectively. The maximum band gap

fluctuation is therefore as high as 0.320 eV for a disorder fraction of 50 %. Since there

are disorder patterns within a disorder fraction, which are structurally close to the

fully ordered structure like structure (c), the highest band gaps for disordered systems

can be close to the fully ordered band gap, which is also seen in the PBE band gaps.
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3.4 Band Gap Fluctuations in 2c/2d Disordered Cu2ZnSnS4

Therefore, the band gap fluctuation within each disorder fraction reach from 1.176 eV

of the fully ordered structure to the minimum band gap for every disorder fraction. As

a result the mean band gap decrease is estimated to be about 0.160 eV for the 50 %

disorder fraction.

Until now the data only reveals a general trend to lower band gaps with increasing

disorder degree, whereby the reason for different band gaps within a disorder fraction

is not clear yet. Therefore, the previously three selected structures from the structural

analysis are closer investigated by HSE06 DOS and HSE06 band gaps, to see if there

is a correlation between the electronic structure and the binding motif or cell volume

(see tab. 3.7). First of all the band gaps show that structure (a) and (c), which nearly

share the same structure, have nearly the same band gap. The structural rotation of

the lower half of structure (c) in contrast to structure (a) leads to a small band gap

decrease of 0.026 eV. The stronger disorder patterns in structure (b) and structure (d)

lead to decreased band gaps by over 0.320 eV to 0.855 eV and 0.857 eV respectively.

Table 3.7: HSE06 band gaps obtained by single point HSE06 calculations on top of the PBE-
optimized structures for the selected structures (a)-(d).

structure (a) (b) (c) (d)
Eg [eV] 1.176 0.855 1.150 0.857

As seen in the research on CZTS/CZTSe bulk and CZTSSe alloys, the cell volume has

shown a strong influence on the band gaps of the systems. Therefore, first an analysis

of the band gap as a function of the cell volume is performed in fig. 3.27, in which

the HSE06 band gap on top of the optimized PBE-structure as a function of the cell

volume is shown. The investigated structures show cell volumes from 1302.88 Å3 for

structure (a) to 1309.14 Å3 for structure (b), which is only a small difference of 6.26 Å3.
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Figure 3.27: HSE06 band gap at the PBE-optimized structures as a function of the cell volume
for the structures (a) and (b), within the calculated minimum and maximum cell
volume.
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Both structures show a decrease of the band gap with increasing cell volume within

the range of the minimal and maximum cell volume of the disordered systems. For

structure (a) and structure (b), the band gap decreases by 0.020 eV with increasing

cell volume, which is small compared to the change in band gaps of 0.320 eV due to

structural changes. This influence of the cell volume on the band gap is therefore nearly

negligible regarding the overall band gap fluctuations.

A second influencing factor is given by the different binding motifs occurring upon disor-

dering. The DOS are calculated at the HSE06-level with the PBE-optimized structure,

whereby the Fermi energies of the structures are aligned for comparison. The electronic

structure of structure (a) and (c) resembles with only slight deviations, which is also

the case for the electronic structure of structure (b) and (d). Therefore, only the closer

analysis of structure (a) and (d) is shown in fig. 3.28, whereby the comparison between

structure (a) and (b) as well as structure (a) and (c) is illustrated in app. A. The main

structural differences between structure (a) and (d) are the different binding motifs,

whereby structure (a) features one and structure (d) features three different binding

motifs. As seen before, the influence of the cell volume is neglectable. The projected

DOS show that the conduction band of structure (d) is shifted by about 0.3 eV to lower

energies. This leads to a decreased band gap of structure (d) in comparison to fully

ordered structure (a). The projection on S and Sn elucidate the shift of the conduction

band by 0.3 eV to lower energies. Hereby the different S states from the three different

binding motifs in the conduction band show an identical behavior, which is also seen

for the Sn states of the different binding motifs. In contrast, in the valence band the

different binding motifs influence the S-3p states, leading to deviations between these

states. Additionally the S-3p states of the three binding motif differ from the S-3p

states of structure (a). The projected DOS on Sn in the valence band reveal identical

states for the three binding motifs of structure (d), but an overall noticeable deviation

from structure (a). The Cu-3d states in structure (a) at the valence band are nearly

identical, whereas in structure (d) the Cu-3d states from Cu2a and Cu2c,2d slightly differ

due to the different binding motifs. Since the contribution of Zn to the valence and

conduction band is small, no major differences are observed.

The beforehand mentioned nearly identical projected DOS of the three different binding

motifs in structure (d) reveal that the change of the electronic structure within the unit

cell is global and not localized at specific binding motifs. For a possible localization of

the band gap fluctuation on different binding motifs within a unit cell, the unit cell has

to be expanded by several supercells. The binding motifs within the 64 atom supercell

are connected to each other, which results in a global and uniform electronic structure.

Nevertheless, concluding from the projected DOS on different binding motifs and the

cell volume scan, the new binding motifs remain a main reason for the smaller and

fluctuating band gaps, since the influence of the cell volume on the band gap of about

0.020 eV is of minor importance in comparison to the overall band gap fluctuations of

up to 0.320 eV.
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Figure 3.28: HSE06 DOS on top of the PBE-optimized structure for structure (d) and the
reference structure (a) with their occurring binding motifs. The Fermi energies
of the different structures are aligned for comparison. Zn is shown in pink, Cu in
brown, Sn in gray and S in yellow.

In summary, the 2c/2d disorder investigations reveal a possible main reason for the

band gap fluctuations in the solar cell absorber. The disordering of the 2c/2d Wyckoff

positions leads to different degrees and patterns of disorders, which in a first step

influence the lattice parameter. As an effect, the Bader charges start to locally fluctuate,

since the binding motifs are changed. In structures in which there are only few changes

in binding motifs from S-(Cu2cZn2d) to S-(Cu2cCu2d) and S-(Zn2cZn2d), there are only

slight structural and charge deviations from the ordered structure. Upon an increasing

amount of new binding motifs, the lattice constants start to further increase and the

Bader charges show fluctuations within the unit cell, which are especially visible in S.
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The cations also show charge fluctuations within the unit cell, but are in general much

smaller than charge fluctuations in the anions. As a result of the different atom charges,

the electronic structure is changed. The projected DOS reveal a shift mainly of the

conduction band, which result in lower mean band gaps with band gap fluctuations

within each disorder fraction. The band gap is decreased by up to 0.32 eV for the 50 %

disorders, but even within the disorder fraction 50 %, there exist several structures

with band gaps close to the fully ordered structure due to a similar amount of identical

binding motifs as in the fully ordered structure. These band gap fluctuations exist

within each disorder fraction due to the different disorder patterns. The influence of

the different disorder patterns on the electronic structure is mainly observed in the

S-3p states at the Fermi energy, which differ due to different chemical environments

surrounding S. The theoretical influence of the different disorder fractions and patterns

may result in crucial charge and band gap fluctuations in experimental samples. In

the experiment, a CZTS crystal consists of several unit cells, therefore the possible

experimental properties are an average over all values for different disorder patterns for

each disorder fraction. These band gap fluctuations may lead in the solar cell module to

erratic electronic properties like the experimentally observed low open-circuit voltages,

which are a limiting factor for the efficiency and performance of the CZTS thin film

solar cell. The control of these disorders during synthesis is a crucial point for solar

cell modules with a constant quality. One route to CZTS samples with low disordering

was given by Ritscher et al., who have shown a first step to overcome the disordering

obstacle [114]. The theoretical investigations have shown that the 2c/2d are a strongly

harming defect type for the absorber material. Combining both, theory and experiment,

a solution for a more efficient kesterite solar cell is indicated.
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Chapter 4

Nanostructuring by Cu2ZnSnS4 Surfaces

In material science there are many ways to alter the material properties in beneficial,

or also unwillingly harmful ways. One of the prominent procedures is nanostructuring,

in which large bulk materials like monocrystals are substituted by smaller nanostruc-

tures of the same material [116]. There are various examples for nanostructures like

nanowires, nanomeshes, quantum dots or nanograined bulk materials to name few [116,

117]. Nanostructuring is often utilized, since the exploitation of quantum size effects

often enhances the material properties [117, 118]. Therefore by nanostructuring the

CZTS material, the electronic structure of CZTS may be altered to benefit the effi-

ciency and performance of the CZTS thin film solar cells. In contrast to large bulk

structures with nearly no surface area, nanostructures are also called high surface area

materials. The structural distortion results in a reduced thermal conductivity and

changed electronic structure. To investigate the influence of nanostructuring on the

CZTS properties, two different models are employed to account for different surface to

bulk ratios.

A first approximation is a closer investigation of structural and electronic properties

of CZTS surfaces. Surface models show a surface to bulk ratio in which the bulk part

dominates, which is reversed in CZTS clusters. CZTS clusters are the second approxi-

mation for CZTS nanostructures and are featured in chap. 5. In the research on CZTS

surfaces, the first focus is set on the stability of the surface terminations via surface

energies for an energetic ordering of the different surface planes. Selecting the most

stable surface structure, a subsequent analysis of the electronic structure is of special

importance, since it is an indicator for a beneficial or harmful effect of nanonstructuring

on the properties of the absorber material. Unfortunately up until now the knowledge

about CZTS surfaces is still limited despite the possibility of strong influences on the

material properties [123–125]. Since the computational modeling of surfaces differs from

the modeling of the bulk systems in earlier chapters, a first step is to set up a suitable

modeling scheme for the investigation, which will be discussed in the next section.



4.1 Technical Details and Surface Model

4.1 Technical Details and Surface Model

4.1.1 Surface Model and Surface Stability

The research focuses on the low-index CZTS surfaces (001), (100), (110), (101), (111)

and the experimentally occurring (112) with different surface terminations. The surface

cuts are illustrated in fig. 4.1. A termination is defined as a cut parallel to the surface

plane along the surface normal, leading to different terminations for a given surface

plane, referred to in the following by the abbreviation tx with a consecutive numbering

labeled by x. For every surface plane a scan through the bulk system along the surface

normal was performed to account for all possible terminations of each surface plane

whilst keeping the initial stoichiometry of the slab.

(100)

Figure 4.1: Investigated surfaces planes of CZTS. The gray planes mark the cuts through the
bulk.

The investigated surfaces are modeled with the periodic slab approach, in which a

thick vacuum layer is introduced into the unit cell on top of the surface terminations

to prevent an interaction between the periodic image of the slabs normal to the surface

plane. There are two ways to construct a slab. Asymmetric slabs (left slab in fig. 4.2),

which feature two different terminations on top and bottom of the slab and symmetric

slabs, which show two identical terminations (right slab in fig. 4.2).

vacuum

vacuum

vacuum

vacuum

asymmetric slab symmetric slab

Figure 4.2: Visualization of asymmetric and symmetric slabs. Asymmetric slabs feature two
different terminations, whereas both terminations are identical in symmetric slabs.
CZTS asymmetric slabs are mostly stoichiometric, whereas symmetric slabs usually
suffer from off-stoichiometry.
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The symmetric slabs have the advantage of employing inversion symmetry as well as

reflection symmetry. Asymmetric CZTS slabs hereby mostly exhibit integer multi-

ples of the bulk stoichiometry, whereas symmetric CZTS slabs usually suffer from off-

stoichiometry. The most stable surface cut and surface termination can be determined

by the surface energy. The surface energy quantifies the disruption of intermolecular

bonds upon creating a surface. Intrinsically the surfaces must be less energetically

favorable than the bulk material, otherwise the bulk material would disintegrate. In

general the surface energy can be calculated by

Esurf =
1

2A
(Eslab − n · Ebulk) . (4.1)

Hereby Esurf is the surface energy of the newly formed surface, Eslab is the slab energy

of the whole slab unit cell and Ebulk is the bulk energy per unit cell. At last n is the

number of bulk units within the surface unit cell, which has to be an integer number. By

definition, the lower the surface energy the more favorable the corresponding surface is.

The different stoichiometries of asymmetric and symmetric slabs affect the investigation

on the surface stability. Concluding from eq. 4.1 three points are critical for the

calculation of the surface energy. The calculation of the bulk energy must be consistent

with the calculation of the slab, otherwise the subtractions of the two energies lead

to unreliable surface energies. Additionally, the number of bulk units n has to be an

integer for meaningful results, because a division of the bulk in non-integer values is

not possible. Unfortunately a non-integer value for n prevents an easy application of

eq. 4.1 for the calculation of surface energies for several observed terminations. The

third crucial part lies in the factor 1
2 of the equation. For a real assignment of an

absolute surface energy both surface terminations of the slab, top and bottom, have to

be identical. Else only an average surface energy of two different surface terminations

is calculated. Therefore, for two different terminations in asymmetric slabs the eq. 4.1

is modified to

Esurf2 =
1
A

(Eslab − n · Ebulk) (4.2)

to calculate the sum of both surface energies by the two different terminations of the

slab. To determine distinct surface energies for a given surface termination, symmetric

slabs with respect to a mirror plane or inversion center in the middle of the slab have

to be selected. These symmetric slabs however are mainly off-stoichiometric in CZTS

systems, whereby an easy application of eq. 4.1 is not possible due to non-integer values

for n. The challenge of calculating these surfaces energies is approached in sec. 4.1.3.
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4.1.2 Surface Relaxation

Further information about the structural properties of a surface can be obtained by the

evaluation of the relaxation energy, which is given by

Erelax = Eurlx − Erlx , (4.3)

where Eurlx is the surface energy of the unrelaxed slab in the ideal bulk structure before

the structure optimization and Erlx is the surface energy of the structurally optimized

slab. The relaxation energy gives useful insights on the optimization process of the

surface structure. The process of a surface structure optimization is often referred to

as surface relaxation or surface reconstruction. A relaxation is hereby defined as a

movement of the top surface atoms mainly in z-direction normal to the surface plane

with only minor relaxations in x- and y-direction. A strong movement of the surface

atoms in all three spatial directions is referred to as reconstruction.

4.1.3 Extrapolation Scheme for Surface Energies in

Off-Stoichiometric Slabs

To solve the challenge of calculating the surface energies for symmetric off-stoichiometric

slabs, a scheme by Gay et al. [216] is adopted, whereby the consistency of the obtained

surface energies is validated with surface energies from stoichiometric asymmetric slabs

after eq. 4.1. Gay et al. proposed a scheme, in which the surface energy does not rely

on integer bulk units, but on an extrapolation with respect to the number of layers in

the slab. Reformulation of eq. 4.1 yields

Eslab(N) = 2AEsurf +NEN
bulk, (4.4)

where N is the number of layers in the slab, rather than the number of bulk units. EN
bulk

represents the bulk energy per slab layer, which is averaged over the whole slab and is

obtained by the slope of the linear regression. For thick enough slabs, the slab energy

Eslab can be plotted as a function of the layers N . The surface energy is obtained by a

linear regression through these data points and by extracting the y-intercept (see fig.

4.3). From the standard deviation of the y-intersect the error of the fit results, which

is in the CZTS surfaces less than 2.5 % for all computed slabs.

For this scheme it is essential that the used slabs are thick enough to achieve a layer-

independent surface energy. Furthermore, the allocation of layers has to be done with

care. In the CZTS surfaces atoms with the same z-coordinate are assigned to one

layer in the unrelaxed structure and this assignment is consistent also for the relaxed

structures. A multilayer is defined as a combination of several layers with similar

z-coordinates in the range of ± 0.05 Å.
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Figure 4.3: Applied extrapolation scheme for the symmetric (001) surface. The dots mark
the computed slab energy at a chosen number of layers and the lines indicate the
linear fit through these points. By extrapolation to zero layers, the surface energy
is given by the y-intercept, corresponding to eq. 4.4. The different terminations of
the (001) surface are denoted as t1-t4.

To check the reliability of this scheme, the surface energies of the symmetric slabs can

be verified by the surface energies of the asymmetric slabs, which can be determined

precisely with eq. 4.2. Comparing the relaxed surface structures of the extrapolation

scheme and conventional scheme, the surfaces show nearly identical optimized struc-

tures, therefore the relaxation process is not noticeably influenced by the stoichiometry

of the slab. As a result, the surface energies should principally yield the same results.

Since the (101), (111) and (112) surface can not be constructed symmetrically due to

the crystal symmetry, the validation is only performed for the (001), (100) and (110)

surface. The surface energies obtained by the conventional scheme are regarded as

the reference values. The surface energies at the PBE-level are presented in tab. 4.1,

whereby values obtained by the extrapolation scheme are represented by †, all other

values are obtained by eq. 4.2. The nomenclature tx + ty denotes the two terminations,

which occur in the same slab and whose properties are derived from the same calcula-

tion. The abbreviation urlx stands for the surface energy of the unrelaxed slab, whereas

rlx denotes the surface energy of the relaxed slab. The investigated terminations are

illustrated in fig. 4.4, 4.5 and 4.6. In the following positive relative deviations in %

denote a higher surface and relaxation energy by the extrapolation scheme than the

conventional scheme. The combined surface energies of top and bottom termination are

always used for a comparison of the schemes, since the stoichiometric slabs are mostly

asymmetric. The two different calculation schemes show that both schemes yield (001)

surface energies in excellent agreement for all relaxed and unrelaxed terminations with

a minor deviation of a maximum of 1.9%. This deviation slightly increases in the
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(100) surface up to 5.1 % for t5+t5, whereby unfortunately t2 shows a non converging

electronic structure in off-stoichiometric slabs, but concluding from t1+t2-t1†, t2 is

estimated to show a low surface energy. Also, the (110) surface only shows a maximum

deviation of 4.0 % for t2a+t2b between the two calculation schemes, whereby the de-

viation for t1a+t1b is 1.5 % and for t3a+t3b 1.0 %. In comparison to experimental

errors of 20-40% [217–220] this deviation is rather small and of minor importance.

Table 4.1: Comparison of surface energies in J/m2 at the PBE-level obtained by the extrapo-
lation scheme (denoted by †) and by the conventional formula after eq.4.2.

(001) (100) (110)
term. urlx rlx term. urlx rlx term. urlx rlx
t1† 1.661 0.877 t1† 2.288 1.897 t1a† 2.004 1.753
t2† 2.471 2.057 t2⋆ 0.481 -0.162 t1b† 0.670 0.165
t3† 0.395 0.299 t3† 1.878 1.335 t1a†+t1b† 2.674 1.917
t4† 1.217 0.810 t4† 0.901 0.390 t1a+t1b 2.652 1.889
t1†+t4† 2.877 1.687 t5† 1.310 0.948 t2a† 0.977 0.656
t2†+t3† 2.866 2.356 t1+t2 2.769 1.735 t2b† 0.430 0.248
t1+t4 2.832 1.656 t3†+t4† 2.779 1.725 t2a†+t2b† 1.408 0.905
t2+t3 2.823 2.338 t3+t4 2.766 1.700 t2a+t2b 1.416 0.870

t5†+t5† 2.620 1.896 t3a† 1.379 0.488
t5+t5 2.612 1.804 t3b† 1.508 0.908

t3a†+t3b† 2.887 1.396
t3a+t3b 2.818 1.382

† extrapolation scheme after eq. 4.4
tx+ty conventional scheme after eq. 4.2
⋆ t1+t2-t1†

The relaxation energies, which are in a reasonable scale compared to other semicon-

ductor surfaces [124, 221, 222], are presented in tab. 4.2. In contrast to the surface

energies, the relaxation energy of each termination can be determined precisely, since

both slab terminations can be relaxed independently, which can be utilized for more

detailed validation of the extrapolation scheme. This leads to three relaxation energies,

obtained by the extrapolation scheme after eq. 4.4 and by double-sided relaxations and

by single-sided relaxations after eq. 4.2, whereby the conventional scheme is regarded

as the reference value. The relaxation energies reveal that the (001) surface shows

in t3 a maximal deviation of 12.9 %, whereby all other terminations show distinctly

smaller deviations of 2.4 %, 3.8 %, and 2.0 % for t1, t2 and t4 respectively. A reason

for the higher deviation in t3 is the overall small relaxation energy, which is prone to

larger errors. Termination t1 and t5 in the (100) surface show a deviation between

the schemes of -10.3 % and -10.5 % respectively, whereby the differences in t3 with

-2.0 % and in t4 with 0.4 % are significantly lower. The maximum deviation in the

(110) surface between the values obtained by the different relaxation schemes slightly
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decreases to 9.1 % in t3b and -8.8 % in t2a. Termination t2b shows a smaller deviation

of -6.2 %. The remaining terminations t1a, t1b and t3a exhibit considerably lower

differences between the schemes of 1.6 %, -0.4 % and 0.5 % respectively.

Concluding from the calculated surface and relaxation energies, the extrapolation scheme

has proven valid. The scheme offers a valuable possibility to calculate surface energies

for otherwise incomputable surface systems, despite the small deviations of up to 5.1 %

in the surface energy and up to 12.9 % in the relaxation energy in one rare case of

the (100) surface. The stoichiometry of the slab shows only negligible influences on

the structure of the surface termination. In further research on CoSb3 skutterudite

surfaces in my master thesis, I have further proven the validity of the extrapolation

scheme [222]. A closer investigation on the surface topology in relation to the surface

stability is performed in sec. 4.2.

Table 4.2: Relaxation energies in J/m2 obtained by the extrapolation scheme (denoted by †)
and the conventional formula after eq. 4.2 at the PBE-level.

(001) (100) (110)
term. Erelax term. Erelax term. Erelax

t1† 0.784 t1† 0.391 t1a† 0.252
t1∗ 0.766 t1∗ 0.436 t1a∗ 0.256
t2† 0.414 t2⋆ 0.643 t1b† 0.505
t2∗ 0.399 t2∗ 0.685 t1b∗ 0.507
t3† 0.096 t3† 0.543 t1a†+t1b† 0.757
t3∗ 0.085 t3∗ 0.554 t1a∗+t1b∗ 0.763
t4† 0.407 t4† 0.512 t1a+t1b 0.762
t4∗ 0.399 t4∗ 0.510 t2a† 0.321
t1†+t4† 1.190 t5† 0.362 t2a∗ 0.352
t1∗+t4∗ 1.165 t5∗ 0.404 t2b† 0.182
t1+t4 1.176 t1+t2 1.034 t2b∗ 0.194
t2†+t3† 0.510 t1∗+t2∗ 1.121 t2a†+t2b† 0.503
t2∗+t3∗ 0.484 t3†+t4† 1.055 t2a∗+t2b∗ 0.546
t2+t3 0.485 t3∗+t4∗ 1.064 t2a+t2b 0.546

t3+t4 1.066 t3a† 0.891
t5†+t5† 0.724 t3a∗ 0.887
t5∗+t5∗ 0.808 t3b† 0.600
t5+t5 0.808 t3b∗ 0.550

t3a†+t3b† 1.491
t3a∗+t3b∗ 1.437
t3a+t3b 1.436

† extrapolation scheme after eq. 4.4
∗ single-sided relaxation after eq. 4.2
tx+ty double-sided relaxation after eq. 4.2
⋆ t1+t2-t1†
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4.1.4 Computational Details

All calculations were performed within a periodic plane-wave DFT ansatz within the

Kohn-Sham framework. To simulate the surfaces the periodic surface model was ap-

plied, in which the surface is modeled in a three-dimensional periodic unit cell with a

bulk-like part and a surface part with vacuum region, referred to as slab. Hereby the

vacuum gap was set to 15 Å to ensure non-interaction between the periodic images in

the z-direction of the slabs. The slab model is presented in closer detail in sec. 4.1.1.

For the visualization of all structures XCrySDen [189, 190] was utilized, whereas the

Wulff construction was obtained with Wulffman [223]. As implemented in VASP

5.3.5 and VASP 5.4.1 [185–188] the PBE functional [146] and HSE06 functional [154–

157] with the projector augmented wave method (PAW) [174, 175] were used for all

computations. The applied PAW potentials acted on the 4s/3d electrons of Cu and

Zn, the 5s, 5p and 4d electrons of Sn and 3s, 3p electrons of S. For the creation of the

slabs PBE-optimized bulk lattice constants from the previous bulk calculations were

utilized. The surface structure optimizations were performed with the PBE-functional,

whereby a k-grid of 8x8x1 was applied for all surfaces except the (100) surface, in which

a 8x4x1 k-grid was employed due to the lattice constants of the (100) unit cell. This

quality level of k-grid ensures converged structures and surface energies. The k-grid

was automatically constructed via the Monkhorst-Pack scheme [193], centered at the

Γ-point. The relaxations were performed with the conjugate-gradient algorithm im-

plemented in VASP [191] and a Gaussian smearing approach with a smearing factor

σ of 0.01 eV was applied during the structure relaxation. The structures were relaxed

until a force convergence of 10−2 eV/Å2 and the freedom of spin polarization was en-

abled. The electronic wave functions were expanded to an energy cutoff of 550 eV. To

reach electronic convergence, the Blocked-Davidson algorithm implemented in VASP

was applied and the electronic convergence criteria was set to 10−5 eV. To ensure well

converged surface energies, the slabs were created with 20 to 128 atoms, resulting in a

slab thickness up to 64 Å. In the middle of each slab 5 Å was fixed to simulate a bulk-

like behavior and the surface parts on top and bottom were simultaneously relaxed. In

addition, single-sided relaxations were performed on the asymmetric slabs to identify

the different contributions of the different terminations to the relaxation energy of the

double-sided relaxation. Each slab was computed with at least four different slab thick-

nesses to ensure consistency in the surface energy and eliminate errors due to too small

slabs. Since it is known that surfaces can reconstruct over several surface unit cells, test

calculations for selected terminations of every surface plane up to a 2x2 surface super

cell were performed. Since the structures between the normal 1x1 surface unit cell and

2x2 unit cells were identical, the 1x1 unit cell was chosen for all calculations to reduce

computing time. The electronic properties in form of DOS were calculated for every

structure with the PBE-functional applying the same k-grid as in the structure opti-

mization. In calculations for the DOS and electronic energies, the tetrahedron method
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with Blöch corrections was applied [192] with the PBE and HSE06 functional. The

PBE band structures were calculated for the most stable slabs of every surface plane

considered. To account for an accurate description of the electronic structure, for the

most stable slab the DOS was determined with the HSE06-functional as a single point

calculation on top of the PBE-optimized structure. There a 4x4x1 k-grid was applied,

which is sufficiently accurate for the DOS. As a reference system the DOS for the bulk

system was calculated with a 4x4x2 k-grid.

4.2 Stability of Cu2ZnSnS4 Surfaces

For each of the 4, 5, 6, 16, 12 and 10 different terminating layers of the (001), (100),

(110), (101), (111) and (112) respectively (see fig. 4.4 to fig. 4.11) the surface stability

and surface relaxation is analyzed. The surface stability is determined by the surface

energy and the surface relaxation is quantified by the relaxation energy, which gives a

first insight on the saturation degree of a termination of the unrelaxed structure, since

strongly unsaturated surface terminations tend to relax or reconstruct stronger than

initially saturated surface terminations. The full tabularly overview of all calculated

surfaces and relaxation energies at the PBE-level is summarized in app. B.

(001) Surface

Starting with the (001) surface, there are four different terminations, which are sepa-

rable into two cation terminating layers and two anion terminating layers. The cation

terminations t2 and t4 feature Cu/Zn and Cu/Sn terminations respectively, while the

anion termination are both S terminated (see fig. 4.4). The S terminations t1 and

t3 hereby differ by the underlying layer directly below the S surface layer, whereby t1

shows an underlying Cu/Zn layer and t3 an underlying Cu/Sn layer.

t1 unrelaxed t2 unrelaxed t3 unrelaxed t4 unrelaxed

t1 relaxed t2 relaxed t3 relaxed t4 relaxed

Figure 4.4: All unrelaxed and relaxed terminations of the (001) surface at the PBE-level are
illustrated. Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.
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The (001) surface shows a wide range of surface energies from 0.299 J/m2 to 2.057 J/m2

(see tab. 4.3). The most stable termination is given by t3 with a surface energy of

0.299 J/m2 and a relaxation energy of only 0.096 J/m2. The surface S hereby only

relax in z-direction towards the underlying Cu/Sn layer, whereby the binding lengths

to Cu and Sn are shortened. In t1 with a similar termination topology, the S surface

atoms in contrast reconstruct in x, y and z-direction and form S-S bridges to saturate

the dangling terminating bonds, which leads to a relaxation energy of 0.784 J/m2.

A reason for the strong deviation between the relaxation energies of t1 and t3 are

the underlying layers. The Cu/Sn layer in t3 stronger binds to the top S atoms in

comparison to the underlying Zn/Cu layer, resulting in higher relaxation energies for

t1 than t3. Furthermore, t1 also reveals a distinctly higher surface energy of 0.877 J/m2.

Table 4.3: Surface and relaxation energies of the (001) surface as obtained by the conventional
scheme after eq. 4.2 and extrapolation scheme after eq. 4.4 in J/m2 at the PBE-
level.

Esurf [J/m2] Erelax [J/m2]
term. urlx rlx tx+tx
t1† 1.661 0.877 0.784
t2† 2.471 2.057 0.414
t3† 0.395 0.299 0.096
t4† 1.217 0.810 0.407
t1+t4 2.832 1.656 0.766 + 0.399
t2+t3 2.823 2.338 0.399 + 0.085
† extrapolation scheme after eq. 4.4
tx+ty conventional scheme after eq. 4.2

Switching to cationic terminations, t4 features a similar stability as the anionic ter-

mination t1 with a surface energy of 0.810 J/m2, but a lower relaxation energy of

0.407 J/m2. The cation top layer in t4 relaxes mainly in z-direction along the surface

normal, whereby Sn moves out of the surface plane and Cu moves into the surface

plane. A strongly resembling relaxed surface structure to t4 is shown in t2, whereby

both feature nearly identical relaxation energy of 0.414 J/m2 for t2. With 2.057 J/m2

t2 features the highest surface energy of the (001) terminations, despite the structural

similarity to t4. Overall in the (001) surface the key factor for stability are Zn and

Sn in the top layers of the termination. Zn directly in the top layers leads to higher

surface energies than the corresponding Sn terminations, which is also displayed in the

relaxation energies.
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(100) Surface

Structurally similar motifs as in the (001) surface occur in the (100) surface (see fig.

4.5). There exist one anionic termination (t1) and one purely cationic termination

(t2), here now consisting of all three cations Cu/Zn/Sn. Furthermore, since S features

different binding lengths to Cu, Sn and Zn, additional surface terminations are consid-

ered, in which the terminations consist of cations and anions simultaneously, featured

in t3-t5. In contrast to the pure cation or anion terminating surfaces, these mixed

anion-cation terminations feature a quite rough surface termination. While t1 features

a full S surface termination, surface S is reduced subsequently in t3 to t5, whereby in

t2 the full cation termination is obtained. Hereby t3 features three surface S, t4 one

surface S and t5 two surface S.

t1 unrelaxed t2 unrelaxed t3 unrelaxed

t1 relaxed t2 relaxed t3 relaxed

t4 unrelaxed t5 unrelaxed

t4 relaxed t5 relaxed

Figure 4.5: All unrelaxed and relaxed terminations of the (100) CZTS surface, calculated at
the PBE-level. Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.

Termination t1 with a full terminating S layer shows a high surface energy of 1.897 J/m2

with a relaxation energy of 0.391 J/m2 (see tab. 4.4). The termination reconstructs to

form S-S dimers to saturate dangling bonds, which is similar to the relaxed structure

(001) t1 structure, but shows strong deviations regarding the surface and relaxation

energy in comparison to the (001) termination. Removing one S-atom from the top
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layer leads to t3 with a surface energy of 1.335 J/m2, whereby also S-S dimers are

formed. Zn reconstructs into the surface plane, Sn slightly relaxes out of plane and

Cu mainly saturates dangling bonds by a movement in the x-y plane, leading overall

to a relaxation energy of 0.543 J/m2. Removing two S-atoms from the top layer of t1,

termination t5 is obtained with a surface energy of 0.948 J/m2 and a low relaxation

energy of 0.362 J/m2. Remarkably, the two missing surface S on top of Sn and Zn result

in a strong reconstruction of the surface termination, in which Cu and Sn strongly move

out of the surface plane.

Table 4.4: Surface and relaxation energies of the (100) surface as obtained by the conventional
scheme after eq. 4.2 and extrapolation scheme after eq. 4.4 in J/m2 at the PBE-
level.

Esurf [J/m2] Erelax [J/m2]
term. urlx rlx tx+tx
t1† 2.288 1.897 0.391
t2⋆ 0.481 -0.162 0.643
t3† 1.878 1.335 0.543
t4† 0.901 0.390 0.512
t5† 1.310 0.948 0.362
t1+t2 2.769 1.735 0.436 + 0.685
t3+t4 2.766 1.700 0.554 + 0.510
t5+t5 2.612 1.804 0.404 + 0.404
† extrapolation scheme after eq. 4.4
∗ single-sided relaxation after eq. 4.2
tx+ty conventional scheme after eq. 4.2
⋆ t1+t2-t1†

In termination t4, obtained by a further removal of a surface S-atom in t5, the surface

Zn and Sn form a bond since the surface S on top of both atoms is missing, also the Cu

atoms approach each other and are bridged by a single S-atom. This reconstruction of

the surface leads to the lowest surface energy of 0.390 J/m2 for t4 in the (100) surface,

since the termination is relatively charge balanced. The purely cationic termination

t2 shows the highest relaxation energy of 0.685 J/m2, obtained by the slab calculation

of t1+t2. The surface energy is estimated by the difference of t1+t2-t1†, which yields

a surface energy smaller than zero. In theory, while neglecting thermal and kinetic

effects in the computational model, the bulk would instantly disintegrate in the (100)

direction, which is not observed in experimental studies. In experimental studies the

(200) surface occurs [60], underlining a higher stability of the (100) surface cut, which

is however affected by Cu-poor surface terminations in experiment [224]. Overall the

relaxation energies of the (100) surface are similar to the (001) surface, whereby the

energy span is smaller in (100) due to more anion-cation balanced surface terminations,

which is a key for an increased surface stability.
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(110) Surface

Even more balanced surface terminations occur in the (110) surface, which features

six different surface terminations (see fig. 4.6). The terminations hereby reveal two

types of surface multilayer, Cu/S/Sn and Cu/S/Zn. An especially smooth surface cut is

shown in t2+t2b, whereby t1a+t1b and t3a+t3b show singly bound surface S sticking

out of the surface plane.

t1a unrelaxed

t1a relaxed

t1b unrelaxed

t1b relaxed

t2a unrelaxed

t2a relaxed

t2b unrelaxed

t2b relaxed

t3a unrelaxed t3a relaxed t3b unrelaxed t3b relaxed

Figure 4.6: All unrelaxed and relaxed terminations of the (110) surface at the PBE-level. Zn
is shown in pink, Cu in brown, Sn in gray and S in yellow.

The surface energies of the (110) surface are summarized in tab. 4.5. The terminations

t1a and t1b show the two extrema in the (110) surface regarding the surface energy

with 1.753 J/m2 and 0.165 J/m2 respectively. The relaxation energy of t1b is twice as

high as the relaxation energy of t1a, which is a result of strong reconstructions of Sn

and Cu at the surface termination. A similar situation is shown with t2b, which shows

half the surface and relaxation energy of t2a. With 0.248 J/m2 t2b shows the second

most stable termination of the (110) surface, which is due to nearly saturated top layers

at the termination. The strongest relaxation is shown in t3a with 0.891 J/m2, whereas

the surface energy is low with only 0.488 J/m2. Termination t3b, which is similar to the

least favorable termination t1a, shows the second highest surface energy of 0.980 J/m2

and a medium relaxation energy of 0.600 J/m2. Overall the occurrence of Sn or Zn in

the top layer is crucial for the surface stability as seen before in the (001) and (100)
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surfaces. Zn in the top layer leads to higher surface energies than Sn in the top layers as

seen in t1a/t3b, t1b/t3a and t2a/t2b. This trend is similarly featured in the relaxation

energies except for t1a/t3b.

Table 4.5: Surface and relaxation energies of the (110) surface as obtained by the conventional
scheme after eq. 4.2 and extrapolation scheme after eq. 4.4 in J/m2 at the PBE-
level.

Esurf [J/m2] Erelax [J/m2]
term. urlx rlx tx+tx
t1a† 2.004 1.753 0.252
t1b† 0.670 0.165 0.505
t1a+t1b 2.652 1.889 0.256 + 0.507
t2a† 0.977 0.656 0.321
t2b† 0.430 0.248 0.182
t2a+t2b 1.416 0.870 0.352 + 0.194
t3a† 1.379 0.488 0.891
t3b† 1.508 0.908 0.600
t3a+t3b 2.818 1.382 0.887 + 0.550
† extrapolation scheme after eq. 4.4
tx+ty conventional scheme after eq. 4.2

(101) Surface

The (101) shows 16 different terminations (see fig. 4.7), which surface energies can

only be calculated as a combination of two terminations, since the crystal symmetry

prevents the construction of symmetric slabs. The high amount of possible surface

terminations is due to the structural complexity of the CZTS structure. In contrast to

the (001), (100) and (110) surfaces, the (101) surface shows a step-like surface structure

instead of a flat surface structure. The (101) surface cut leads overall to a balanced

anion-cation ratio at the top layers. The surface terminations feature either a cation

or anion exposed as the top layer of the termination. The combined surface energies

from t1a+t1b to t8a+t8b range from 0.770 to 1.527 J/m2 with relaxation energies in a

broad span from 0.057 to 0.667 J/m2 for the single terminations. The surface energies

are hereby in a similar range like the (110) surface, whereby they are in general lower

than the combined surface energies of the (001) and (100) surface. The small range of

surface energies is due to similar step-like surface structures over all terminations.

A first approximation for the surface stability and saturation degree is shown by the

relaxation energy of the slabs, which reveals two key factors (see tab. 4.6). The first

structural feature shows that S as the top surface layer leads to an overall structural sta-

bilization, resulting in lower relaxation energies compared to structures with a cationic

top layer.
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t1a unrelaxed

t1a relaxed

t1b unrelaxed

t1b relaxed

t2a unrelaxed

t2a relaxed

t2b unrelaxed t3a unrelaxed

t2b relaxed t3a relaxed

t3b unrelaxed t4a unrelaxed t4b unrelaxed t5a unrelaxed t5b unrelaxed

t3b relaxed t4a relaxed t4b relaxed t5a relaxed t5b relaxed

t6a unrelaxed t6b unrelaxed t7a unrelaxed t7b unrelaxed t8a unrelaxed

t6a relaxed t6b relaxed t7a relaxed t7b relaxed t8a relaxed

t8b unrelaxed t8b relaxed

Figure 4.7: Unrelaxed and relaxed terminations of the (101) surface of CZTS at the PBE-level.
Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.
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The second key factor is the position and type of the top surface cation, Zn in the top

layer leads to higher relaxation energies than Sn, which is especially observed in t4a/t7b

and t5b/t6a. The more saturated both atom types are at the surface termination in

a similar structure, the closer the relaxation energies are, as seen in t1a and t2b with

relaxation energies of 0.266 J/m2 and 0.303 J/m2 respectively. Termination t3a shows

with 0.057 J/m2 the lowest relaxation energy of the (101) surface, whereby t3b features

the highest one with 0.667 J/m2. The combined surface energies show t8a+t8b as the

most stable slab with a surface energy of 0.770 J/m2, whereas the most unfavorable

slab is t4a+t4b with 1.527 J/m2. The relaxation energies in both cases show a contrary

trend, with a higher relaxation energy in total for t8a+t8b than t4a+t4b. All (101)

slabs show the same structural similarity, whereby one surface is terminated by S and

the second surface is terminated by a cation. These synergetic effects lead to the

mentioned balanced surface energies as well as balanced relaxation energies of both

terminations of the slab. The extraordinary stable t8a+t8b is followed by t2a+t2b

with a 0.336 J/m2 higher surface energy. Up till now, the (101) slab t8a+t8b shows the

overall most stable slab in comparison to the combined surface energies of the (001),

(100) and (110) surface.

Table 4.6: Surface and relaxation energies of the (101) surface as obtained by the conventional
scheme after eq. 4.2 in J/m2 at the PBE-level.

Esurf2 [J/m2] Erelax [J/m2]
term. urlx rlx txa + txb
t1a+t1b 1.912 1.150 0.266 + 0.494
t2a+t2b 1.965 1.106 0.557 + 0.303
t3a+t3b 1.842 1.114 0.057 + 0.667
t4a+t4b 2.191 1.527 0.312 + 0.351
t5a+t5b 2.090 1.504 0.302 + 0.283
t6a+t6b 2.193 1.386 0.663 + 0.144
t7a+t7b 2.316 1.396 0.309 + 0.611
t8a+t8b 1.608 0.770 0.596 + 0.243
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(111) Surface

The 12 terminations of the (111) surface also show a step-like structure (see fig. 4.9) like

the (101) surface. In contrast to the (101) surface, the (111) surface shows alternating

cation planes of Cu/Zn and Cu/Sn along the lattice parameter a (see fig. 4.8), which is

not present in the (101) surface. The initial surface cut leads to terminations with singly

bound cations (see t1b or t4b) or singly bound anions (see t2a, t4a or t5a), which is in

general an unfavorable starting structure due to a high amount of unsaturated bonds

at the surface termination. As in the (101) surface, the crystal symmetry prevents the

construction of symmetric slabs.

c

b

a

Figure 4.8: Unrelaxed model structure of the slab t1a+t1b of the (111) surface. The structure
shows alternating Cu/Zn and Cu/Sn atoms in the direction of lattice parameter a.
Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.

Due to the structural similarity to the (101) surface, the (111) surface energies are

in a similar range from 0.839 J/m2 to 1.461 J/m2 for the relaxed structures (see tab.

4.7). The relaxation energies shows slightly increased minimum and maximum values

from 0.113 J/m2 to 0.782 J/m2 in comparison to the (101) surface. The (111) surface

energies show characteristic features, which justify the energetic order of the slabs. The

most stable (111) slab is obtained with t3a+t3b with a surface energy of 0.839 J/m2,

closely followed by t6a+t6b with 0.856 J/m2. The extraordinary stabilities of both

slabs are the smooth step-like surface planes with no singly bound surface atoms. This

also results in similar relaxation energies of 0.471 J/m2 for t3a, 0.113 J/m2 for t3b,

0.409 J/m2 for t6a and 0.183 J/m2 for t6b. The terminations t2a+t2b and t5a+t5b form

the second group of structures with similar surface energies, since both slabs feature one

smooth termination with no singly bound surface atoms and one termination with singly

bound S. Hereby also the relaxation energies resemble with 0.585 J/m2 + 0.279 J/m2

for t2a+t2b and 0.563 J/m2 + 0.348 J/m2 for t5a+t5b.
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t1a unrelaxed

t1a relaxed

t1b unrelaxed

t1b relaxed

t2a unrelaxed

t2a relaxed

t2b unrelaxed

t2b relaxed

t3a unrelaxed

t3a relaxed

t3b unrelaxed

t3b relaxed

t4a unrelaxed

t4a relaxed

t4b unrelaxed

t4b relaxed

t5a unrelaxed

t5a relaxed

t5b unrelaxed

t5b relaxed

t6a unrelaxed

t6a relaxed

t6b unrelaxed

t6b relaxed

Figure 4.9: Unrelaxed and relaxed terminations of the (111) surface of CZTS. All structures
are obtained at the PBE-level. Zn is shown in pink, Cu in brown, Sn in gray and
S in yellow.
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The last surface group is formed by t1a+t1b and t4a+t4b, in which one termina-

tion shows singly bound cations and the other termination shows singly bound anions.

The surface energy of 1.107 J/m2 for t1a+t1b is similar to the group before, whereby

t4a+t4b shows the most unfavorable slab of the (111) surface with 1.461 J/m2. The

lower surface energy of t1a+t1b than t4a+t4b is a result of the strong relaxation of

t1a with 0.782 J/m2, whereby t1b shows a relaxation energy of 0.416 J/m2, t4a of

0.595 J/m2 and t4b of 0.402 J/m2. The stability and relaxation process of the (111)

surface are primarily determined by the amount and type of singly bound surface atoms.

The most stable slabs are obtained by both terminations only showing smooth surface

terminations with no singly bound surface atoms. Upon increasing the number of singly

bound surface atoms, the stability decreases as well as the relaxation energy increases.

As seen in all surface planes before, Zn and Sn in the top layers strongly influence the

stability of the slab, which is especially observed in t1a+t1b and t4a+t4b, in which

Sn and Zn are initially singly bound respectively. Unfortunately the magnitude of the

stability resulting from Sn and Zn at the top layers can not be determined indepen-

dently. One overall stabilizing factor is the widely balanced anion-cation ratio in the

top layers of the (111) surface, which lead to overall low surface energies and reasonable

relaxation energies.

Table 4.7: Surface and relaxation energies of the (111) surface as obtained by the conventional
scheme after eq. 4.2 in J/m2 at the PBE-level.

Esurf2 [J/m2] Erelax [J/m2]
term. urlx rlx txa + txb
t1a+t1b 2.482 1.107 0.782 + 0.416
t2a+t2b 1.915 1.047 0.585 + 0.279
t3a+t3b 1.428 0.839 0.471 + 0.113
t4a+t4b 2.458 1.461 0.595 + 0.402
t5a+t5b 2.073 1.163 0.563 + 0.348
t6a+t6b 1.442 0.856 0.409 + 0.183
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(112) Surface

The (112) surface features ten different terminations (see fig. 4.11), which in contrast

to the (101) and (111) surfaces show a flat surface structure like the (001), (100) and

(110) surfaces. The slabs hereby can be divided in two different termination topologies,

one anion terminating layer and one cation terminating layer, which is especially seen

in t1a+t1b. As in the (111) surface, the (112) surface shows alternating cation planes

of Cu/Zn and Cu/Sn along the lattice parameter b (see fig. 4.10), which leads to a

more balanced anion-cation ratio at the surface termination. As in the (101) and (111)

surfaces, the crystal symmetry prevents the construction of symmetric slabs.

c

a

b

Figure 4.10: Unrelaxed model structure of the termination t5a of the (112) surface. The
structure shows alternating Cu/Zn and Cu/Sn atoms in the direction of lattice
parameter b. Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.

The combined surface energies at the PBE-level range from 0.768 J/m2 to 2.339 J/m2

for the relaxed structures (see tab. 4.5). This broad energy range is due to termina-

tions with a high amount of unsaturated surface atoms. This unfavorable situation is

especially seen in t1a+t1b to t4a+t4b. The first slab t1a+t1b shows four singly bound

S at t1a and four singly bound cations in t1b. By transferring one S from t1a to t1b,

t2a+t2b is obtained. This process leads to an increasing saturation of the terminations

up to the nearly saturated termination t5a+t5b, whereby only one binding partner

of the surface atoms is missing and no singly bound surface atoms are present. As a

energetic result, slab t1a+t1b shows the highest surface energy of 2.339 J/m2, which

decreases to 1.742 J/m2 in t2a+t2b, 1.422 J/m2 in t3a+t3b, 1.265 J/m2 in t4a+t4b

and 0.768 J/m2 in t5a+t5b. The relaxed structures show that the singly bound surface

atoms form multiple new bonds to saturate their dangling bonds, which results in high

relaxation energies.
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t1a unrelaxed

t1a relaxed

t1b unrelaxed

t1b relaxed

t2a unrelaxed

t2a relaxed

t2b unrelaxed

t2b relaxed

t3a unrelaxed

t3a relaxed

t3b unrelaxed

t3b relaxed

t4a unrelaxed

t4a relaxed

t4b unrelaxed

t4b relaxed

t5a unrelaxed t5a relaxed t5b unrelaxed t5b relaxed

Figure 4.11: Unrelaxed and unrelaxed terminations of the (112) surface of CZTS at the PBE-
level. Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.
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A similar energetic order as in the surface energies is seen in the relaxation energies,

with a relaxation energy of 2.129 J/m2 for t1a+t1b, 2.301 J/m2 for t2a+t2b, 1.726 J/m2

for t3a+t3b, 0.928 J/m2 for t4a+t4b and 0.594 J/m2 for t5a+t5b. The slab t1a+t1b

hereby changes the position in the energetic ordering with t2a+t2b, since t2a shows

the strongest relaxation energy and therefore strongly increases the total relaxation

energy of t2a+t2b. The main contribution to the relaxation energy is hereby the top S

layer, whereas the bottom cation layer shows a smaller influence on the total relaxation

energy. As in the (111) surface before, the structural stability is mainly determined by

the different amounts of singly bound surface atoms. With decreasing amount of singly

bound surface atoms, the surface stability increases while concurrently the relaxation

energy decreases. The lowest surface energy for t5a+t5b of all calculated slabs gives

strong evidence for the main occurrence in experimental studies [225–234].

Table 4.8: Surface and relaxation energies of the (112) surface as obtained by the conventional
scheme after eq. 4.2 in J/m2 at the PBE-level.

Esurf2 [J/m2] Erelax [J/m2]
term. urlx rlx txa + txb
t1a+t1b 4.854 2.339 1.228 + 0.901
t2a+t2b 4.047 1.742 1.500 + 0.801
t3a+t3b 3.154 1.422 1.170 + 0.556
t4a+t4b 2.282 1.265 0.642 + 0.286
t5a+t5b 1.361 0.768 0.558 + 0.036
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Atomic Surface Charges

Besides the calculated surface and relaxation energies, a further indication on the sta-

bility of the surfaces are given by atomic charges, determined here by a Bader charge

analysis [194–196]. The atomic charges give a first insight on the electronic structure of

the atoms within the slab. The Bader charges of 0.477 e, 1.382 e, 0.848 e and -0.796 e for

Cu, Sn, Zn and S respectively of the bulk are taken as reference values. In the middle of

all slabs the mean charges over all slabs of 0.48 e for Cu, 1.40 e for Sn, 0.85 e for Zn and

-0.80 e for S are nearly identical to the bulk Bader charges, confirming converged slab

thicknesses. Moving from the bulk-like part in the middle of the slab to the surface,

the Bader charges start to deviate from the reference charges of the bulk, whereby the

largest deviations are shown directly at the surface (see fig. 4.12 and 4.13). The Bader

charges of all stoichiometric slabs are illustrated in app. B. The charges of the surfaces

atoms are referred to as surface charges in the following, whereby the charges in the

middle of the slab are referred to as bulk-like charges. In asymmetric slabs, deviations

between top and bottom surface charges occur due to different terminating layers. The

stability of a slab hereby can be approximated by the deviation of the Bader charges at

the termination from the bulk-like Bader charges. Remarkable about all investigated

slabs is that the surface atom charges nearly all show uniformly more neutral Bader

charges than the bulk-like charges. The different surface stabilities are reflected in the

Bader charges within a surface plane as well as in comparison of all surface planes. This

is seen in the (001) and (100) surfaces with similar surface energies and similar strong

deviations of the surface charges from the bulk-like charges. The highly stable (110)

surface shows only minor deviation of the surface charges from the bulk-like charges,

which is also present in the most stable slabs of the (101), (111) and (112) surfaces.

In all surface planes, the most unstable slabs show stronger deviations of the surface

charges from the bulk-like charges than the most stable slab of the corresponding sur-

face plane.

In summary, a general trend is observed in the charge analysis. Stable slabs show

mainly Bader charges close to the one in the bulk-like part of the slab, even at the

surface terminations. With decreasing surface stability the Bader charges stronger de-

viate at the surface terminations, showing nearly neutral charged atoms, for example

in the (112) surface with terminations t1a+t1b. The charge trends are an effect of

the surface structure relaxation, whereby the atoms relax to saturate dangling bonds

due to the initial surface cut. Deviations from the bulk-like charges indicate binding

situations differing from the bulk structure, whereby identical charges on the surface as

in the bulk reveal a bulk-like termination in terms of valency as well as a stable surface

structure. In addition to the surface energies and relaxation energies, the Bader charges

therefore can be utilized as an approximation for the surface stability.

93



4.2 Stability of Cu2ZnSnS4 Surfaces

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

−1.5 −1 −0.5  0  0.5  1  1.5  2

z 
co

o
rd

in
a

te
 [

Å
]

charge [e]

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

−1.5 −1 −0.5  0  0.5  1  1.5  2

z 
co

o
rd

in
a

te
 [

Å
]

charge [e]

most unstable (001) slab t2+t3 most stable (001) slab t1+t4

 0

 5

 10

 15

 20

 25

−1.5 −1 −0.5  0  0.5  1  1.5  2

z 
co

o
rd

in
a

te
 [

Å
]

charge [e]

 0

 5

 10

 15

 20

 25

−1.5 −1 −0.5  0  0.5  1  1.5  2

z 
co

o
rd

in
a

te
 [

Å
]

charge [e]

most unstable (100) slab t5+t5 most stable (100) slab t3+t4

 0

 5

 10

 15

 20

 25

 30

−1.5 −1 −0.5  0  0.5  1  1.5  2

z 
co

o
rd

in
a

te
 [

Å
]

charge [e]

 0

 5

 10

 15

 20

 25

 30

−1.5 −1 −0.5  0  0.5  1  1.5  2

z 
co

o
rd

in
a

te
 [

Å
]

charge [e]

most unstable (110) slab t1a+t1b most stable (110) slab t2a+t2b

Figure 4.12: Bader charges at the PBE-level of the most stable and unstable (001),(100) and
(110) slab plotted as a function of the z-coordinate of the surface. The first
mentioned termination is located at z=max, whereby the second termination is
located at z=min. Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.
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Figure 4.13: Bader charges at the PBE-level of the most stable and unstable (101), (111) and
(112) slab plotted as a function of the z-coordinate of the surface. The first
mentioned termination is located at z=max, whereby the second termination is
located at z=min. Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.
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4.2.1 Summary of CZTS Surface Stabilities

Summarizing the investigation on the structural properties of CZTS surfaces, surface

energies, relaxation energies and Bader charges are useful tools for a determination

of the surface stability. The surface energies of all surfaces show reasonable values in

comparison to other semiconductor surface energies [221, 222]. Also, the relaxation

energies are in a reasonable scale in regard to the ionic binding situation in the bulk,

leading to strong relaxations and reconstructions at the surface termination. These

relaxation energies correspond to atom shifts directly at the terminating layer of up

to 0.9 Å in z-direction for few single cations and about 0.6 Å in x- and y-direction,

especially for S, which form surface dimers. The size of relaxation energies hereby

strongly depends on the initial surface termination. The Bader charges show the same

tendency, in so far as Bader charges at the surface terminations of the unrelaxed surfaces

close to the bulk lead to low relaxation energies. Several key factors for stable CZTS

surfaces are shown:

a) balanced anion-cation ratios at the surface terminations,

b) Sn at the surface termination leads to lower surface and relaxation energies than

Zn in the same structures,

c) no or only few singly bound surface atoms,

d) Bader charges close to the bulk at the surface termination.

Considering all key factors above, as a result the (112) surface shows overall the most

stable slab, followed by the (101), (111), (110), (001) and (100) surface, summarized in

tab. 4.9.

Table 4.9: Summarized surface energies of the most stable slabs as obtained by eq. 4.2 at the
PBE-level.

surface terminations Esurf2 [J/m2] Erelax [J/m2]
(001) t1+t4 1.656 0.766 + 0.399
(100) t3+t4 1.700 0.554 + 0.510
(110) t2a+t2b 0.870 0.352 + 0.194
(101) t8a+t8b 0.770 0.596 + 0.243
(111) t3a+t3b 0.839 0.471 + 0.113
(112) t5a+t5b 0.768 0.558 + 0.036

The stability of the (112) surface is hereby in good agreement with the high occurrence

in experimental studies [225–234]. The different contributions to the surface energies

of the (101), (111) and (112) can only be estimated based on the relaxation energies

and Bader charges, whereby low relaxation energies and Bader charges close to the
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bulk are set as a reference for a stable surface termination. The terminations txb of

the (101), (111) and (112) surfaces therefore contribute a lower surface energy to the

combined surface energy than their opposing terminations txa, meaning that the txb

terminations are estimated to be more stable. Unfortunately there are no publications

on experimental surfaces energies for CZTS so far, so a comparison to experiment is

not possible yet.

Following the construction scheme after Wulff [177], out of the combined surface en-

ergies Esurf2 for the surface planes a plot of a possible nanocrystal in the vacuum in

thermodynamic equilibrium can be constructed (see fig. 4.14). The Wulff construc-

tion mainly consists of the (112) and (101) surface due to their low surface energies,

which are followed by the (110) and (111) surface. The high surface energies of the

(001) and (100) surface lead to an absence in the Wulff construction. In comparison

to experiments [49, 50, 52–54, 56, 58–62], in which the nanocrystals mostly indicate

spherical to ellipsoid shapes, but no identical structure over all studies, the theoretical

Wulff construction resembles with respect to the shape and the occurrence of the (112)

and (110) surface.

(112)

(111)

(101)

(110)

38 %

15 %

45 %

2 %

rel. surface area

xz-plane yz-plane

Figure 4.14: Wulff construction for the six calculated asymmetric surfaces of CZTS. Due to
the high surface energy Esurf2 of the (001) and (100) surface they are absent in
the Wulff construction. The main relative surface areas are the (112) surface and
(101) surface, followed by the (110) and (111) surface. All surface energies were
calculated at the PBE-level.
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4.3 Electronic Structure of Cu2ZnSnS4 Surfaces

Due to the importance of surfaces in the thin film solar cell, the influence of the surface

termination on the electronic structure is investigated. In the following the charac-

teristics of the most stable (112) slab are exemplarily illustrated and compared to the

electronic structure of the bulk, all other investigated slabs show similar electronic prop-

erties. The PBE DOS of all relaxed stoichiometric slabs and the PBE band structures

for the most stable slabs are illustrated in app. B. The (112) slab with termination

t5a+t5b shows the lowest surface energy and therefore the highest tendency for an ex-

perimental occurrence. The focus of the analysis of the electronic structure is set on the

HSE06 DOS with the PBE-optimized structure as basis for an insight on the electronic

changes upon nanostructuring. The utilized slabs are at least 16 Å thick to guarantee

a bulk-like part in the middle of the slab and a surface part at both terminations. In

general the total DOS of the slab shows similar properties like the bulk DOS (see fig.

4.15) for the low lying states from -15 eV to -1 eV, whereby the Fermi energies of the

bulk and the (112) surface are aligned for comparison. The main difference is shown

at the Fermi energy, at which the slab DOS shows states located at the Fermi energy

within the band gap. Furthermore, the α- and β-spin components (↑ / ↓) of these

states are not identical anymore, which results in a magnetization of the slab (see inset

in fig. 4.15).
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Figure 4.15: Total HSE06 DOS for the bulk (bottom) and the most stable (112) surface (top)
are shown. The PBE-optimized structures are utilized. The inset shows a zoom
on the surface states at the Fermi energy.

A further projection of the slab DOS on different parts in the (112) slab reveals two

different types of DOS, i) a bulk-projected DOS and ii) two surface-projected DOS

(see fig. 4.16). The bulk-projected DOS is defined as a projection of the DOS on the

multilayer in the middle of the slab, which should yield a nearly identical electronic
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structure as the real bulk system when the slab thickness is converged. The surface-

projected DOS is a DOS projection on the terminating multilayer of the two surface

terminations to account for changes of the electronic structure at the surface termi-

nation. The illustrated DOS are averaged for every atom type within the highlighted

multilayer.
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Figure 4.16: Projected HSE06 DOS for different parts of the most stable (112) surface. The
DOS are projected on the surface areas (top and bottom) and on the multilayer in
the middle of the slab, referred to as bulk-projected DOS. The DOS are averaged
for every atom type within the highlighted multilayer.

The bulk-projected DOS in the middle of the slab still shows a clear band gap and no

states within the bulk band gap. The DOS from the bulk calculation (dashed DOS)

hereby strongly resembles the bulk-projected DOS in the slab. Upon further projecting

the DOS on the surface terminations, the cause for the occurring states within the band

gap is revealed. The top termination of the slab shows a nearly bulk-like band gap of

over 1 eV, whereby the Cu-3d and S-3p states of the valence band are slightly shifted to

the Fermi energy compared to the bulk-projected DOS. The conduction band reveals

vanished Sn-5s states, which are normally present in the bulk conduction band.
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The top surface termination features a first conduction band solely consisting of S-3p

states. The disappearance of the Sn-5s states is due to the relaxation of the Sn-atoms,

as a comparison of the unrelaxed and relaxed PBE DOS shows (see fig. 4.17). The

conduction band is here shifted to lower energies in comparison to the HSE06 DOS due

to the utilization of the PBE functional.
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Figure 4.17: Projected PBE DOS for the top termination of the unrelaxed (112) t5a+t5b slab.
The DOS is projected on the surface area. The DOS are averaged for every atom
type within the highlighted multilayer. Zn is shown in pink, Cu in brown, Sn in
gray and S in yellow.

The projection on the bottom surface of the slab discloses the origin of the states

within the band gap. The termination on bottom of the slab features Cu-3d and S-3p

surface states within the band gap, which arise from dangling bonds, both of Cu and S.

Remarkable are the dominating S-3p states in the valence band below the Fermi energy,

whereby the surface states are slightly dominated by Cu-3d states. In contrast to the

top surface termination, the conduction band of the bottom termination still consists

of S-3p and Sn-5s states. In comparison to experimental surfaces in general, these Cu

surface states may not occur in experimental measurements due to Cu poor surface

terminations [224]. Combing the DOS of fig. 4.15 and 4.16, the magnetization of the

slab occurs directly at the bottom surface termination due to the dangling bonds of

Cu and S, whereby both atoms contribute equally to the magnetization (see fig. 4.18).

The bulk-like layers and top surface termination in contrast show no magnetization.

In summary the nanostructuring of the CZTS material leads to electronic surface struc-

tures, which feature surface states within the bulk band gap. These surface states show

differing α- and β-spin components at the surface termination, which indicate a mag-

netic behavior of the termination within the computational model applied. Both new

properties are present in all most stable slabs of every surface plane. The newly arising

surface states from the dangling bonds at the surface termination decrease the band

gap of the slab at the surface, whereas the bulk-like band gap in the middle of the

slab is nearly identical to the bulk band gap. The surface states indicate a metallic

behavior at the surface termination, which leads to an increased electric conductivity
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Figure 4.18: Projected HSE06 DOS on the different spin-components of Cu and S of the bottom
termination of the relaxed (112) t5a+t5b slab. The DOS is projected on the
surface area and is averaged for every atom type within the highlighted multilayer

at the termination of CZTS nanostructures. This increased electric conductivity may

contribute to a compensation of conductivity losses at interfaces between CZTS grains

or different materials within the thin film solar cell. Furthermore, these surface states

may also form recombination centers for excitons at the surface termination, which

has to be verified by exciton calculations via for example the Bethe–Salpeter equations

[235, 236]. The surface states within the band gap can lead to an increasing energy

harvest from the solar radiation due to exhibiting different band gaps and therefore

increasing the absorption range of the solar radiation [122]. Therefore, the effects of

nanostructuring in total may help to improve the performance and efficiency of the

solar cell module due to the increased electric conductivity at the surface terminations

and variations of the band gap.
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Chapter 5

Nanostructuring by Cu2ZnSnS4 Clusters

The previous studies on the nanostructuring of CZTS by surfaces have shown a first

effect on the electronic structure like magnetic and conducting surfaces. The next step

in researching the influence of nanostructuring on the material properties is a further

increase of the surface area in comparison to the bulk volume, namely the modeling of

CZTS nanocrystals. CZTS nanocrystals are not only of importance for the theoretical

considerations, they also play an important role for the preparation of CZTS thin film

solar cells. Instead of preparing CZTS by a solid state reaction of the pure elements in

sealed and evacuated ampoules with resulting large single-phase crystals [47, 48], CZTS

can also be synthesized in form of nanocrystals in different solution-based processes [49–

63]. These nanocrystals then serve as a precursor for the thin films in the solar cell,

since they can be coated by different techniques on the glass substrate to form a large

polycrystalline absorber film. Nanocrystals in general have attracted scientists over

the last years due significant changes in their properties compared to the parent bulk

material. The exploitation of quantum size effects can benefit the material properties

[117, 118]. Consequently, nanocrystals provide an interesting possibility for an effective

engineering for better performing CZTS solar cells. Unfortunately, the effect of CZTS

nanostructuring in form of nanocrystals is hard to model from a theoretical point of

view. In experiments, researchers have observed quantum confinement effects in the

polycrystalline films with varying sizes of the nanocrystals [237]. From a theoretical

point of view, the simulation of systems with diameters of up to 50 nm as in experiments

[53, 58, 62, 63] and several hundred atoms are especially demanding at a reasonable

computational level. A first step for a theoretical research on these nanocrystals is to

set up a suitable model, which is structurally similar to realistic nanocrystals. In a

first approximation, a realistic nanocrystal features a bulk-like core region and a dis-

torted surface area. Therefore, a first focus is set in this work on a computational

model, which features the same structural properties as a realistic CZTS nanocrystal.

The nanocrystals are hereby modeled as finite clusters. Having found the structural

properties in a first approach, a first insight on the electronic structure of CZTS clus-

ters follows. Combining this theoretical model with experiments, a prediction about

material modifications for more efficient CZTS solar cells may be provided.
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5.1.1 Cluster Model

The CZTS nanocrystals are modeled by CZTS clusters, which are obtained by a

spherical-like cut out the PBE-optimized bulk structure from the previous investiga-

tion on the bulk system (see fig. 5.1). A spherical-like structure is chosen to equally

distribute the occurring forces due to the truncation of the bulk over the whole surface

area during the structure optimization.

Figure 5.1: The initial nanocluster is cut out of the PBE-optimized bulk system, as optimized
in the studies on the bulk systems in sec. 3.2. Then the clusters are adjusted for
stoichiometry, which results in a reduction of symmetry to the point group C1. Zn
is shown in pink, Cu in brown, Sn in gray and S in yellow.

The focus is set on stoichiometric clusters for a valid comparison to the periodic bulk

properties, since off-stoichiometric structures show strongly varying structural and elec-

tronic properties, in which the origin of the changes cannot be assigned precisely. Un-

fortunately as in the studies on CZTS surfaces, symmetric clusters are only obtained

by utilizing off-stoichiometric structures. Therefore, the spherical-like initial clusters

are adjusted by removing or adding atoms to obtain bulk stoichiometry, which results

in a reduction of symmetry to the point group C1. As a result of the combination

of stoichiometry and the tetragonal unit cell of CZTS, the clusters show spherical-like

or ellipsoid-like structures. The clusters are unsaturated at the surface termination

to investigate the structural changes upon a distortion of the surface areas. Further-

more, initial calculations with a hydrogen passivation lead to non-converging electronic

structures and a creation of H2 molecules, indicating at least in vacuum that the pure

material will form stable stoichiometric clusters. For the structural investigations six

clusters are selected (see tab. 5.1). The clusters are named after their centering atom

and number of atoms in the cluster. Cu32 denotes a stoichiometric cluster with 32

atoms, which is centered at a Cu atom. The clusters show a diameter of 0.7 nm to

1.4 nm containing 32 and 96 atoms respectively.
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5.1 Technical Framework

Table 5.1: Stoichiometry of all selected CZTS clusters from 32 to 96 atoms. All investigated
clusters feature multiples of the bulk stoichiometry Cu2ZnSnS4.

cluster stoichiometry
Cu32 Cu8Zn4Sn4S16

Cu64 Cu16Zn8Sn8S32

Sn64 Cu16Zn8Sn8S32

Zn64 Cu16Zn8Sn8S32

S64 Cu16Zn8Sn8S32

Cu96 Cu24Zn12Sn12S48

A first approach for the theoretical modeling of the CZTS clusters is the investigation

of structural influences. Hereby two key factors are of interest:

a) The development of a core-shell system with increasing cluster size.

b) Clusters with the same number of atoms, but different structure.

The second point b) is investigated with respect to the core-shell system, whereby

clusters with the same number of atoms, but different structures are created. The

first point a) gives insight on structural changes upon increasing the cluster size, which

are quantified by the critical size of the cluster and the definition of the core-shell

system. The critical size of the cluster is hereby defined as a diameter and atom

number threshold at which the cluster can be divided in a core-shell system, which is

achieved when a structural division in a bulk-like core part and a distorted shell part

is possible. (see fig. 5.2).

Figure 5.2: Core-shell system of the CZTS cluster. The core stays bulk-like after the structure
optimization, whereas the shell strongly reconstructs due to the truncation of the
material. Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.
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5.1 Technical Framework

The core part of the cluster features after the structure optimization a nearly fixed

bulk-like structure in the center of the cluster obeying the valency and nearly all bond

lengths of the initial bulk structure. The shell part of the cluster describes the outer

part, which is exposed to the vacuum in the applied computational model and strongly

reconstructs to saturate the dangling bonds. The shell is the finite analog to the CZTS

surface structures in chap. 4.

At a certain critical size of the cluster, the core-shell system is established after a struc-

ture optimization and can act as a model structure for a realistic nanocrystal. This

model cluster should in general feature similar structural properties as a realistic nano-

crystal and may also feature similar electronic properties. In the limit of increasing the

cluster size, namely decreasing the surface to bulk ratio of the structure, the CZTS sur-

face model from the previous investigations should be reached. Unfortunately, clusters

with sizes of several 100 atoms are beyond the scope of computational resources at the

DFT-level or approximated DFT methods like Density Functional based Tight Binding

(DFTB) [238, 239]. For these tasks suitable classical force fields have to be fitted for

CZTS, which can be based on this first approach by quantum chemical methods.

To quantify a core-shell system, the structural changes have to be analyzed analytically,

since a rough approximation of the structural changes by eye is only possible for small

(< 30 atoms) structures. This analysis is performed by the distance and change matrix

of a cluster, whereby the center of the cluster is taken as a reference point. The distance

matrix contains all distances between every atom within the cluster and is defined by

Dij = |rji| . (5.1)

The indices here represent the ith and jth atom of the cluster, whereby rij denotes the

inner atomic distance between both atoms. The distance matrix Dij has the dimension

of NxN , where N is the total number of atoms within the cluster. The change matrix,

also a NxN matrix, is defined as the difference between the distance matrices of the

relaxed cluster (Drlx) and the unrelaxed cluster (Durlx), which corresponds to the bulk

structure:

Dchange = Drlx − Durlx. (5.2)

The process of the structure optimization is then visualized by a heat map of the change

and distance matrix, illustrated in fig. 5.3. Red and blue indicate large and small inner

atomic distances rij in the distance matrix respectively. In the change matrix positive

values indicate an expansion of the inner atomic distance between two atoms (red),

whereas a contraction of the inner atomic distance between two atoms is shown by

negative values (blue). The difference of inter atomic distances is hereby denoted as

∆rij .
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5.1 Technical Framework

The heat maps are constructed as follows:

a) The center of the cluster is shown at x=0 and y=0 with the corresponding label

for the centering atom.

b) The atom label indicates several atoms of the same type and with the same

distance to the central atom.

c) By moving along the x- or y-axis, a radial scan towards the surface of the cluster

is performed, i.e. at y=max and x=max the most outer atoms are reached.

d) In the distance matrix the inner atomic distance rij and in the change matrix the

difference ∆rij of the inner atomic distances of unrelaxed and relaxed structures

are shown.
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Figure 5.3: Distance and change matrix for an off-stoichiometric symmetric in S4 CZTS cluster
with 55 atoms centered at Cu (Cu55). The left heat map shows the distance matrix
of an unrelaxed cluster. The right heat map represents the change matrix of the
relaxation. The black line indicates the division in core and shell part, which occurs
here at 45 atoms.

From the given example Cu55 can be concluded that the model cluster mainly relaxes

in the outer shell, indicated by blue at y,x=max, whereby the core shows only minimal

relaxations (green). The atom cutoff for the core-shell system is indicated by a black

line. This model cluster Cu55 therefore features a core-shell system with 45 atoms in the

core and 10 atoms in the shell. The distance matrix reveals the approximated maximum

diameter of the cluster. The radial sequence of atoms of the unrelaxed structure is kept

as a reference and is not adopted to the new radial sequence of the relaxed cluster.

Additionally, the imperfect spherical structure leads to contractions, which are not

exclusively located at x=max or y=max, referred to as structural anisotropy. The

unrelaxed structure of the above illustrated matrices is exemplarily shown in fig. 5.4.
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z

y x

d=10.92 Å 

rij( - )=6.69 Å 

Figure 5.4: Structural features of Cu55. Due to the tetragonal unit cell of CZTS, the clusters
are ellipsoid shaped rather than perfectly spherical. This leads to an anisotropic
radial distribution of atoms within the nanocluster. rij denotes the distance be-
tween the red and blue Cu atoms, whereby d denotes the diameter of the cluster.
Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.

With these starting conditions, the structural behavior of a core-shell system can easily

be detected.

An approximation for the different stabilities of the investigated clusters can be ob-

tained by their binding energy, which can be defined as

Ebind = CuαZnβSnγSω − [α · Cu(g) + β · Zn(g) + γ · Sn(g) + ω · S(g)], (5.3)

where CuαZnβSnγSω is the energy of the relaxed cluster and α·Cu(g), β·Zn(g), γ·Sn(g)

and ω·S(g) are the atomic energies times their stoichiometric factor in the nanocluster.

The atoms assumed in their electronic ground state are hereby taken as a reference

energy for an approximation of the binding energies, whereby the binding energy only

acts as a comparison tool for the different clusters. The absolute binding energies are

not comparable to other cluster systems. They further reveal, if there is a stabilizing

effect with increasing cluster size or with different structure. Another indicator for

the relaxation process and the stability of a CZTS cluster is the relaxation energy,

which gives information about the energy gain during the structure optimization. The

relaxation energy is given by

Erelax = Erlx − Eurlx, (5.4)

with Erlx as the total energy of the relaxed cluster and Eurlx as the total energy of the

unrelaxed cluster. With the help of these tools the influence of nanostructuring on the

structural properties of CZTS is investigated.
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5.1.2 Computational Details

The finite clusters were calculated within the Kohn Sham DFT framework as imple-

mented in Turbomole 7.0.1 [240]. For the visualization of the structures XCrySDen

[189, 190] and VMD [241] were used. In all calculations the hybrid-functional PBE0

[197] and the def2-TZVP basis set [242, 243] were employed. As proven in previous

chapters, PBE0 yields good agreement with experimental data with respect to the

structural description of CZTS. All atoms except Sn were treated by an all electron

basis set, whereby Sn was treated with the ECP28MDF effective core potential (ECP)

with 28 core electrons, which is a fully relativistic ECP obtained by a multi electron

fit [244]. On top of this ECP also the def2-TZVP basis set was used for Sn. The clus-

ters were fully optimized without constraints in the point-group C1 in vacuum. The

electronic structure was converged until an energy convergence threshold of 10−6 eV

was reached. In every calculation an unrestricted Kohn Sham approach was utilized to

include additional degrees of freedom for the electronic structure. Since bulk CZTS in

experiment and in the previous investigations in sec. 3.2 shows no magnetism, a sin-

glet state was assumed for the electronic structure. For a verification of these starting

points, restricted DFT calculations are performed for two specific clusters to investigate

the particular influence of the initial starting condition of an unrestricted singlet KS

ansatz on the ionic structure in CZTS clusters (see fig. 5.5). In both structures the

clear structural pattern of core and shell (separated by the black lines, also referred to

as cutoff radius) remains, therefore the singlet unrestricted electronic starting structure

is a valid ansatz for the investigations of the structural properties. On top of every

optimized structure, single point calculations for the atomic charges via a Natural Pop-

ulation Analysis (see sec. 2.7.2) were performed [182]. For a closer analysis of the

orbitals and spin difference densities, the electronic structure is visualized with Orbkit

[245]. As reference system for the binding energy, atomic energies are calculated with

the same settings as in the cluster calculations, whereby the atoms are assumed in the

electronic ground state.

For selected examples, TDDFT single point calculations were performed on top of the

PBE0-optimized structures and orbitals to obtain optical spectra and optical gaps for

a comparison to experimental studies performed by experimental cooperation partners.

The same settings as in the PBE0/def2-TZVP calculations were utilized. As a start-

ing point for the TDDFT calculations, the electronic convergence threshold was set to

10−7 eV for well converged PBE0/def2-TZVP orbitals.
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Figure 5.5: Change matrices of Zn64 and Cu96 with an unrestricted (UKS) singlet and a
restricted (RKS) singlet Kohn Sham DFT ansatz. Cu96 shows an

〈

S2
〉

expectation
value of 0.0 after the structure optimization, whereby Zn64 yields an expectation
value of 2.82. A more detailed discussion of

〈

S2
〉

expectation values is shown in
sec. 5.3. The black lines indicate an atom cutoff for the division in core and shell,
whereas the atoms included by the dashed line are located in the most outer shell
of the cluster due to the ellipsoid shape.
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5.2 Structural Properties of Cu2ZnSnS4 Clusters

For the influence of the cluster sizes on the structural properties, the clusters Cu32,

Cu64 and Cu96 are selected. The clusters Cu64, Zn64, Sn64 and S64 are chosen for

the investigation of clusters with the same number of atoms, but different structures.

Starting with the size effects, the unrelaxed (urlx) and relaxed (rlx) clusters Cu32, Cu64

and Cu96 are illustrated in fig. 5.6. An analysis by eye yields strong reconstructions of

the clusters during the structure optimization to satisfy dangling bonds. Cu32 shows

strong reconstructions, whereby S-S dimers at the surface area are formed. By doubling

the size in Cu64, the surface also strongly reconstructs, whereby the core indicates only

minimal relaxations. The same behavior is shown in Cu96, in which the core part of

the cluster is hardly visible.

Cu32urlx Cu64urlx Cu96urlx

↓ ↓ ↓

Cu32rlx Cu64rlx Cu96rlx

SnCuZn S

Figure 5.6: Unrelaxed (urlx) and relaxed (rlx) clusters Cu32, Cu64 and Cu96 at the
PBE0/def2-TZVP level are shown.

The introduction of the change matrix facilitates the quantitative analysis of the struc-

ture relaxation, illustrated in fig. 5.7. Cu32 shows contractions over the whole struc-

ture, whereby especially the most outer Cu atoms contract. The core region also slightly

contracts, whereas one Cu-S and one S-S bond within the core slightly expand. Dou-

bling the cluster size, a clear structural pattern is obtained in Cu64. Cu64 features a

core region of 46 atoms, indicated by the black lines, in which the main part of the core

atoms show only minor relaxations.
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Figure 5.7: Change matrices of differently sized Cu-centered clusters at the PBE0/def2-TZVP
level. The black lines indicate an atom cutoff for the division in core and shell,
whereas the atoms included by the dashed lines are located in the most outer shell
of the cluster due to the ellipsoid shape.

The contraction of Cu enclosed by dashed lines in the change matrix is due to the

structural anisotropy, whereby the Cu at this radius are exposed at the shell to the

vacuum, leading to missing binding partners and stronger reconstructions than other

atoms with the same inner atomic distance to the central atom (see fig. 5.8). Cu64

shows first indications for the critical size for the establishment of a core-shell system.

Further increasing the cluster size to 96 atoms in Cu96, this trend is underlined. Cu96

shows that only the outer shell (40 atoms) relaxes and the core (56 atoms) stays bulk

like, whereby both parts are separated by a black line in the change matrix. As in

Cu64, the structural anisotropy of Cu96 leads to contractions in the shell, which are

not exclusively located at rij=max but also at the cutoff radius between core and shell.

Cu96 features a clear core-shell system. Combining the structural patterns of Cu32 to

Cu96, the core-shell system is established at a cluster size of 64 atoms or approximately

a diameter over 1 nm.
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4 binding partners

3 binding partners

2 binding partners

Figure 5.8: Visualization of the ellipsoid structure of Cu64. The red Cu shows four bind-
ing partners, blue shows three binding partners and black Cu shows two binding
partners. Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.

The four selected structures with the same number of atoms but different structures

feature a similar structural behavior like Cu32, Cu64 and Cu96. Concluding from the

size effects above, clusters with 64 atoms are chosen for an established core-shell system.

Cu64, Zn64, Sn64 and S64 differ in their centering atom, which leads to different

structures. The selected unrelaxed and relaxed clusters are illustrated in fig. 5.9. Sn64

and Zn64 show a similar structure, whereby the similarity is reduced after the structure

relaxation. As in the structures before, all clusters show strong reconstructions of the

shell, whereby first indications by eye are shown for a nearly unrelaxed core.

Cu64urlx Sn64urlx S64urlx Zn64urlx

↓ ↓ ↓ ↓

Cu64rlx Sn64rlx S64rlx Zn64rlx

Figure 5.9: Unrelaxed and relaxed clusters with 64 atoms at the PBE0/def2-TZVP level. All
clusters are centered at different atom types. Zn is shown in pink, Cu in brown,
Sn in gray and S in yellow.
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The more detailed analysis by change matrices reveals similar structural patterns for all

clusters after the structure relaxation, illustrated in fig. 5.10. All four clusters feature

a shell part, at which strong contractions occur due to the unsaturated termination

of the clusters. In the core, the clusters show slight deviations. As observed before,

Cu64 features a core, which hardly relaxes. Zn64 in total shows a similar relaxation

as Cu64, whereby the reconstruction regions are broadened, which is due to Zn/Cu

exposed at the surface in contrast to Sn/Cu in Cu64. This is a structural similarity to

the previously observed trends in the relaxations of the surfaces in chap. 4. The core of

Zn64 contains about 47 atoms, whereby as in Cu64, a shell part is included (indicated

by dashed lines) due to the ellipsoid shape of the cluster.
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Figure 5.10: Change matrices of all clusters with 64 atoms at the PBE0/def2-TZVP level.
All clusters are centered at different atom types. The label Cat in S64 denotes
several cation types, which vary to frequently for a clear labeling. The black
lines indicate an atom cutoff for the division in core and shell, whereas the atoms
included by the dashed line are located in the most outer shell of the cluster due
to the structural anisotropy.
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S64 shows in the core region minor relaxations, whereby the pattern is not as distinct

as in Cu64 and Zn64. The core can be described by 25 atoms, whereby a first inner

shell spans from 25 to 52 atoms and the outer shell from 53 to 64 atoms. Depending

on the initial conditions, the first shell up to 52 atoms may also be included in the core

region. The last cluster, Sn64, features a relaxation of the central part. The Sn atom

in the center moves out of the center towards the outer shell in z-direction (see fig.

5.11), showing that the Sn-centered cluster is structurally not as stable as the Cu- and

Zn-centered clusters, which is influenced by different surface topologies in the different

clusters. Though the central atom reconstructs heavily, the rest of the central part

stays more or less on the bulk-like position, so that even for the Sn64 cluster one can

talk of a core-shell system, because the outer shell relaxes more strongly. Excluding the

central atom relaxations, Sn64 features a similar core-shell structure (44 atoms core,

20 atoms shell) as Cu64 and Zn64. In summary, a lower limit of 64 atoms is necessary

for an established core-shell system, whereby the size of the core varies with different

structures.

yx

z

Figure 5.11: Structural features of Sn64 at the PBE0/def2-TZVP level. During the structure
relaxation, the central Sn atom relaxes into z-direction, indicated by the red
highlighted Sn atom. Zn is shown in pink, Cu in brown, Sn in gray and S in
yellow.

Information about the stability of the different clusters can be derived from the binding

energy after eq. 5.3 and the relaxation energy after eq. 5.4. The calculated binding

and relaxation energies at the PBE0/def2-TZVP level per atom are summarized in tab.

5.2. The binding and relaxation energy of Cu96 are taken as a reference, since it shows

the most stable cluster with respect to the employed reference energies of the atoms.

Positive values therefore indicate less stable structures and fewer relaxations. Increasing

the cluster size with the clusters Cu32, Cu64 and Cu96 yields a slight stabilization of the

clusters. The differences in stability in Sn64, Cu64, Zn64 and S64 are distinctly larger.

Cu64 and Sn64 feature the same stability, whereby Zn64 and S64 show less favorable

stabilities. The relaxation energies for the differently sized clusters show overall no

clear trend. In comparison to Cu96, Cu32 and Cu64 feature a stronger relaxation than
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Cu96, whereby Cu64 relaxes unexpectedly even more than Cu32, which may be a result

of unfavorable unrelaxed shell of Cu64. A stronger relaxation of Cu32 than Cu96 is

reasonable, since the increasing structure relaxes less due to the larger bulk-part. The

different structures in Cu64, Zn64, Sn64 and S64 show varying relaxation energies.

The more stable structures Cu64 and Sn64 hereby exhibit a larger energy gain during

the relaxation than the more unstable ones Sn64 and S64. A reason for this varying

stabilities are the different shells as well as different central atoms. Since the surface

areas all feature a similar amount of different atom types, no clear trend can be observed

yet. By increasing the data set a statistical analysis may show a correlation between

the stability and the surface topology.

Table 5.2: Binding energy and relaxation energy per atom for all calculated CZTS clusters at
the PBE0/def2-TZVP level. The binding and relaxation energy of Cu96 serves as a
reference, since it shows the most stable structure. Positive values indicate smaller
binding and relaxation energies.

cluster rel. Ebind/atom [meV] rel. Erelax/atom [meV]
Cu32 0.06 -0.09
Cu64 0.04 -0.14
Sn64 0.04 -0.11
Zn64 0.08 0.01
S64 0.11 -0.07

Cu96 0.00 0.00

A first step to the analysis of the electronic structure of the relaxed clusters are atomic

charges, determined here by a Natural Population Analysis [182]. The charges for the

differently sized clusters are shown in fig. 5.12. At x=0, the central atom of a cluster is

shown, whereby proceeding to x=max the most outer atom with respect to the central

atom is reached. Since Cu96 features a clear core-shell system, the atomic charges in

the most inner core are taken as reference charges. Hereby Cu features a mean charge

in the core of 0.75 e, S of -1.18 e, Zn of 1.45 e and Sn of 1.41 e. The charges in the inner

core of the cluster are referred to as core charges in the following, whereby charges

in the outer reconstructed shell are referred to as shell charges. Cu32 shows charge

deviations between the core and shell charges. In the core, all Cu atoms show similar

charges, which is also shown for all S atoms and all Zn atoms in the core. Moving to

the shell, especially the S charges start to deviate, showing partially lower charges than

the core charges of S, which is due to a lack of binding partners at the surface. The Cu

atoms exposed at the surface show charges nearly identical to the core charges, which

is a result of the reconstruction. The Cu32 core charges are similar to the reference

charges, which is a result of the bulk valency in the center of the cluster. Cu64 shows

a similar behavior in the core with only small deviations from the reference charges.

The second S group (shell) reveals charge fluctuations, which slightly normalize in the

third S shell. The two low S charges in the second S shell are due to the anisotropic
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structure, resulting in a lack of binding partners. However, Zn shows identical charges

in the core and shell, indicating a full saturation of surface Zn. Cu slightly starts to

deviate from the core to the shell atoms, but shows only minor fluctuations in the

outer shell. The Sn charges decrease slightly while moving to the surface. Cu96 reveals

negligible Cu and Zn charge deviations throughout the cluster, whereas the Sn charges

decrease from the core to the shell part of the cluster. In the shell, Sn is only charged

with a mean charge of 0.9 e, whereas in the core charges are 1.41 e. S shows strong

charge fluctuations in the shell part of the cluster where the charges decrease to half

the value of the core charges. As in Cu64 before, charge fluctuation exist within the

core-shell region due to the anisotropy of the structure.
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Figure 5.12: Natural population analysis for the clusters with increasing size at the PBE0/def2-
TZVP level. The radial sequence of the atoms starts from the core at x=0 to the
surface at x=max. Zn is shown in pink, Cu in brown, Sn in gray and S in yellow.

The charges for the differently structured 64 atom clusters are illustrated in fig. 5.13,

whereby the clusters feature a similar behavior as seen before. Over all four structures,

Zn in the core and shell shows neglectable charge fluctuations, which slightly increase

in case of Cu. Sn in the core is more positively charged than in the shell, whereby S
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is more negatively charged in the core than in the shell. The different S in the shell

sometimes display especially low charges due to the structural anisotropy, where few S

atoms are exposed at the surface and lacking binding partners. Concluding from the

charge analysis, the same trends hold true for the differently structure clusters as well

as differently sized clusters.

core shell core shell
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core shell core shell

S64rlx Zn64rlx

-1.5

-1

-0.5

0

0.5

1

1.5

c
h
a
r
g
e
 
[
e
]

-1.5

-1

-0.5

0

0.5

1

1.5

c
h
a
r
g
e
 
[
e
]

-1.5

-1

-0.5

0

0.5

1

1.5

c
h
a
r
g
e
 
[
e
]

-1.5

-1

-0.5

0

0.5

1

1.5

c
h
a
r
g
e
 
[
e
]

Figure 5.13: Natural population analysis for the clusters with the same number of atoms, but
different starting structure at the PBE0/def2-TZVP level. The radial sequence
of the atoms starts from the core at x=0 to the surface at x=max. Zn is shown
in pink, Cu in brown, Sn in gray and S in yellow.

In summary, the structural properties reveal that the critical size for a structurally

converged cluster in form of a core-shell system is approximately at 64 atoms or 1 nm

in diameter. Increasing the size of the clusters to 96 atoms in Cu96, the core-shell

system is further underlined. Furthermore, the different structures of the 64 atom

clusters show that the centering atom is important for a bulk-like structure in the core.

Cu, Zn and S feature a nearly bulk-like core in the center of the cluster, whereas the

central atom in Sn64 strongly reconstructs. The clusters are slightly stabilized with

increasing size, whereby stability fluctuations occur in clusters with 64 atoms due to
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different structures. Cu- and Zn-centered 64 atom clusters are hereby more stable

than Sn- and S-centered clusters. The charge analysis reveals that charge changes

mainly occur between Sn/S in the core and Sn/S in the shell, whereby Cu and Zn

show constant charges in core and shell. Core Cu/Zn and shell Cu/Zn hereby only

minimally differ. The 64 atom cutoff lies within the computational limits of the DFT-

framework, whereas the experimental sizes of usually up to 50 nm [53, 58, 62, 63] are

only calculable with classical force fields, which can be based on the quantum chemical

data obtained by this study. Furthermore, by utilizing DFTB (Density Functional

based Tight Binding) [238, 239], the cluster sizes may be increased over 100 atoms. By

introducing pseudo potentials for all atom types, the cluster size may also be further

increased, whereby preliminary calculations have shown that the pseudo potentials

influence the structure of the relaxed cluster. In comparison to the previous studies on

CZTS surfaces, similar structural properties are observed. The reconstructions in the

clusters are more prominent, since the stabilizing bulk-part is smaller than in the slabs,

but overall similar patterns are observed like the formation of S-S dimers or bonds

between cations due to a lack of binding partners at the surface termination. The

charge analysis of both nanostructuring models features charge deviations between the

bulk-like part of the structures and the surface part of the structures. Hereby the bulk-

like part are the middle of the slab or the core of the cluster and the surface part refers

to the surface termination in the slabs and shell in the cluster. In both models, the

charges at the surface termination show distinctly lower charges than the bulk region,

whereby the clusters show more stable shell Zn and Cu charges than the slabs, which

is a result of the stronger reconstructions in the clusters to satisfy the dangling bonds.
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5.3 Electronic Structure of Cu2ZnSnS4 Clusters

A first insight on the electronic structure of CZTS clusters is given by the analysis of

the energy difference between the eigenvalues of the highest occupied (HOMO) and low-

est unoccupied (LUMO) molecular orbitals obtained after the atomic charge analysis,

which serve as an approximation for the fundamental gap [246]. The HOMO/LUMO

gaps at the PBE0/def2-TZVP level with an unrestricted singlet KS ansatz are summa-

rized in tab. 5.3.

Table 5.3: HOMO/LUMO gaps and
〈

S2
〉

expectation values for all calculated CZTS clusters
at the PBE0/def2-TZVP level with an unrestricted singlet KS ansatz as obtained
after the atomic charge analysis.

cluster ∆ E [eV]
〈

S2
〉

Cu32 2.43 0.0
Cu64 1.29 1.88
Sn64 1.70 1.01
Zn64 1.48 2.82
S64 0.77 3.97

Cu96 0.98 0.0

The HOMO/LUMO gaps reveal deviations with respect to different cluster sizes and

different structures with the same number of atoms. The PBE0 bulk band gap of

2.11 eV from sec. 3.2 is taken as a reference. Starting with Cu32, the cluster features

a HOMO/LUMO gap of 2.43 eV. The gap then decreases with increasing cluster size

from 1.29 eV to 0.98 eV for Cu64 and Cu96 respectively. The different structures for

the 64 atom clusters yield a broad range of HOMO/LUMO gaps from 0.77 eV for S64

to 1.70 eV for Sn64, whereby Zn64 with 1.48 eV and Cu64 with 1.29 eV lie within the

extrema. A possible reason for this variation lies in the changed
〈

S2
〉

eigenvalues from

the initial
〈

S2
〉

= 0, which is an effect of the unrestricted KS ansatz. This change

indicates that the initial singlet guess yields an insufficient description of the electronic

structure for these clusters. Sn64 shows an expectation value
〈

S2
〉

of 1.01, Cu64 of

1.88, Zn64 of 2.82 and S64 of 3.97, which strongly deviate from the initial guess. As a

result, the clusters show a magnetized shell, indicated by the visualization of the spin

difference density calculated as α - β spin density (see fig. 5.14). The spin difference

density shows unevenly distributed α- and β-spins on the surface of the clusters, which

is in good agreement with the same observation in the DOS of the CZTS surfaces in

sec. 4.3. The different
〈

S2
〉

eigenvalues are a result of remaining dangling bonds at the

shell, which are often localized at S, Cu and Sn, leading to different energies for α- and

β-orbitals and therefore different HOMO/LUMO gaps. Therefore, the electronic results

of the 64 atom clusters have to be considered with care and need further investigations

for a correctly described spin state.

119



5.3 Electronic Structure of Cu2ZnSnS4 Clusters

Cu64rlx Sn64rlx

S64rlx Zn64rlx

Figure 5.14: Spin difference densities for all 64 atom clusters at the PBE0/def2-TZVP level,
obtained by the difference of α and β spin density. Red and blue indicate β- and
α-densities respectively. Zn is shown in pink, Cu in brown, Sn in gray and S in
yellow.

Since the band gaps in experiment are mostly determined optically, subsequent TDDFT

single point calculations on top of the PBE0 structure optimizations were performed for

optical spectra and optical gaps. Since the initial guess for the electronic structure of

the 64 atom clusters is insufficient, the TDDFT optical absorption spectra and optical

gaps are calculated for Cu32 and Cu96, since they show an unchanged expectation

value
〈

S2
〉

after the atomic charge analysis, illustrated in fig. 5.15.

The TDDFT spectra show that Cu32 features a high density of possible excitation

energies in the range from 1.8 eV to 2.6 eV. Cu96 in contrast, in which only the first

ten excitations could be calculated due to computational limits, shows two excitation

domains from 0.55 eV to 0.65 eV and from 1.05 eV to 1.4 eV, which are separated by

a larger gap. The TDDFT calculations show that the optical gap is 1.816 eV in Cu32

and 0.543 eV in Cu96 (see tab. 5.4).

Table 5.4: TDDFT optical gaps for the CZTS clusters Cu32 and Cu96 on top of the
PBE0/def2-TZVP atomic charge analysis.

cluster ∆ ETDDFT [eV]
Cu32 1.816
Cu96 0.543
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Figure 5.15: TDDFT spectra for Cu32 and Cu96 on top of the PBE0/def2-TZVP calculations.
In Cu32 40 excitations were considered, whereby in Cu96 ten excitations were
considered due to computational limits. The curves are obtained by a Gaussian
distribution of the oscillator strengths with a σ of 0.1 eV.

The resulting electron-hole pair binding energy, as the difference between HOMO/LUMO

gap and the optical gap, is 0.614 eV for Cu32 and 0.437 eV for Cu96. These values are

noticeably higher than the exciton binding energy of 10 meV in the experimental bulk

structure [65], which is caused by the small sizes of the clusters as well by influences

of the surface terminations. Unfortunately there are no UV-VIS absorption spectra

available yet for isolated CZTS nanocrystals, therefore a comparison to experiment is

not possible at the moment.

In summary the first insight on the electronic structure of CZTS clusters reveals that

the HOMO/LUMO gap decreases with increasing cluster size, which is similar to the

reported quantum confinement effect in experiment. In contrast to a real quantum con-

finement effect, in which the gap decreases in the limit to the bulk band gap, the cluster

gap decreases below the bulk band gap, which possibly is a result of the small size of the

clusters in comparison to the large nanocrystals of up to 50 nm in experiment [53, 58,

62, 63, 237]. In this cluster model, the surface affects the electronic structure stronger

than in experiment, since the surface to bulk ratio is noticeably higher. The influence

of the cluster shell is especially shown in the 64 atom clusters, which feature a broad

range of different HOMO/LUMO gaps despite featuring the same number of atoms.

Due to the remaining dangling bonds at the surface, these clusters feature different
〈

S2
〉

eigenvalues, which differ from the initial ansatz and therefore require further in-

vestigations of the electronic structure. The electronic description can be improved by

utilizing multi-reference methods. Furthermore, the G0W0-approximation may be ap-

plied to obtain more accurate HOMO/LUMO gaps as implemented in Turbomole [240],

since the difference of HOMO and LUMO only yields an approximation for the fun-

damental gap, which strongly depends on the DFT functional applied [246]. The spin

difference densities of the 64 atom clusters reveal a magnetization of the surface area,
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which is in good agreement with the investigations on the CZTS surfaces. In contrast,

the initial singlet ansatz is valid for Cu32 and Cu96, which show no spin contamination.

Overall the applied cluster model yields a promising first ansatz for the simulation of

the structural properties of a realistic CZTS nanocrystal. The structural model and

data can serve as a basis for future research on adapted force fields for CZTS. For the

electronic structure more advanced methods are required for a more accurate descrip-

tion of the electronic properties. From the first insight on the electronic structure, the

varying HOMO/LUMO gaps due to quantum confinement like effects can be utilized

in experiment for an increased energy harvest, since differently sized nanocrystals are

able to absorb a broader range of wavelengths from the solar radiation. Therefore, the

nanostructuring of CZTS yields a promising opportunity to increase the performance

of the kesterite solar cell while reducing the material costs.
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Conclusion

The always increasing worldwide energy demand can only be satisfied in a long-term

perspective by a sustainable and renewable energy production to circumvent permanent

damage to earth’s climate. Especially a renewable energy production via photovoltaic

solar cells is an important key for the transfer from todays fossil fuels powered energy

production to a climate-friendly energy production. Many solar cell materials utilized

today are often too expensive, too environmentally harmful or too rare. A promising

alternative are kesterites (Cu2ZnSnSxSe4−x), which are a possible absorber for solar

cells. They consist of earth abundant non-toxic elements, which are available in a high

concentration in the earth’s crust.

The presented work reviews kesterites as a solar cell absorber by quantum chemical first-

principles calculations applying density functional theory to understand key factors for

the low efficiency of maximum 13 % and possible performance enhancing material mod-

ifications. Hereby the first focus lay on the structural and electronic properties of the

bulk material without modifications, which served as reference properties for further

investigations. The bulk calculations revealed a strong dependence of the electronic

structure on the lattice constants, which is the main reason for the smaller band gap

of CZTSe in comparison to CZTS due to larger lattice constants as a result of larger

Se atoms, whereby the different electronic structures of Se and S exhibit only a small

influence. CZTS and CZTSe feature optimal electronic properties like a strong disper-

sive band at the Γ-point with band gaps of 1.47 eV and 0.89 eV respectively, which are

optimal after the Shockley-Queisser limit.

There are various possible reasons for the low efficiencies, whereby many are connected

to the low open-circuit voltage, which is caused by band gap fluctuations within the

absorber due to varying material qualities. Since the efficiency is a function of the

open circuit voltage and band gap, lower efficiencies are obtained than predicted by the

Shockley-Queisser limit. Varying material qualities often occur in semiconductor alloys

and disordered lattice structures. Therefore, the current high performer alloy CZTSSe

and 2c/2d disordered CZTS systems were investigated for hints to the band gap fluc-

tuations. CZTSSe exhibits the possibility of a linear band gap engineering between

1.0 eV and 1.5 eV by varying the CZTS and CZTSe compositions. The first-principles

investigations revealed that there exist slight band gap variations of up to 30 meV
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for different structural alloy patterns within the same alloy composition. These small

variations surely contribute to the low efficiencies, but are due to their size not solely

responsible. Further insight on the band gap fluctuations were shown in 2c/2d disor-

dered CZTS systems, in which defect pairs of CuZn and ZnCu antisites occur. These

antisites are responsible for slight structural deviations from the fully ordered structure

in terms of slightly enlarged lattice constants. Furthermore, due to different binding

motifs upon disordering, increasing charge fluctuations occur within the unit cell, which

lead as a result to varying electronic properties. In general, the band gap decreases by

a maximum of 320 meV upon disordering, whereby for every disorder fraction different

band gaps are obtained due to different structural disorder patterns. Based on these

electronic structure calculations, the 2c/2d disorders are therefore the main factor for

the occurring band gap fluctuations, low open-circuit voltage, and resulting low effi-

ciencies of the kesterite solar cell, whereby the CZTSSe alloys contribute only slightly.

Only increasing the efficiency by eliminating obstacles in form of material defects is

certainly not enough for a long-term transition to a more sustainable energy produc-

tion. To enhance the kesterite solar cells further, the material can be structurally

modified by nanostructuring. In this work, the effects of nanostructuring on CZTS

were investigated with two different computational models: the periodic slab approach

for CZTS surfaces and a cluster model for CZTS nanocrystals. The first model focused

on low-index CZTS surfaces. The low-index surfaces were energetically ordered by the

calculation of surface energies, whereby the challenge of calculating surface energies

for off-stoichiometric symmetric slabs was successfully addressed by an extrapolation

scheme. The (112) surface is revealed as the most stable surface of the investigated

surface planes, closely followed by the (101), (111), (110), (001) and (100) surface.

The extraordinary stability of the (112) surface is in good agreement with the strong

occurrence in experimental studies. The electronic structures revealed surface states

within the bulk band gap, which are directly located at the surface termination. This

leads to a metallic surface termination, whereby the projected DOS on the surface fur-

ther shows a magnetic behavior. These additional electronic states can contribute to

an increased energy harvest and furthermore may compensate conductivity losses at

interfaces or grain boundaries. To account for a higher surface to bulk volume ratio,

a computational model was set up for realistic CZTS nanocrystals. The structural

model successfully featured the core-shell system of a fixed bulk-like structure in the

nanocrystal’s core and a relaxed surface area, which is also expected from an exper-

imental CZTS nanocrystal. Varying the size and structure of the clusters, size and

structure effects in the structure optimizations were observed, which result in a lower

size limit of 64 atoms and a diameter of ∼ 1 nm for the structural simulation of an

experimental CZTS nanocrystal. The first insight on the electronic structure showed

that the fundamental gap exhibits a size dependency, which is similar to the quantum

confinement effects observed in experimental studies, in which the band gap increases

with decreasing nanocrystal size. This size dependency can be utilized for band gap
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engineering to adjust the kesterite solar cell for a maximum efficiency. By varying the

nanocrystal size, different HOMO/LUMO gaps were obtained, which can be used for

the absorption of a broader range of wavelengths of the solar radiation, effectively in-

creasing the energy harvest. The clusters feature like the CZTS surfaces a magnetic

surface area. The optical gaps for two selected clusters revealed a large electron-hole

pair binding energy, which is a result of the small size of the finite cluster.

Overall, the quantum chemical first-principles investigations have shown a main reason

for the observed low efficiencies and an opportunity for an enhancement of the solar

cell performance by nanostructuring. By combining these theoretical findings with

experiments, a possible route for more efficient kesterite solar cells is given.
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Appendix A

Modified Cu2ZnSnSxSe4−x Bulk

Structures

Band Gap Engineering by Cu2ZnSnSxSe4−x Alloys

Table A.1: Lattice parameters for all calculated CZTSSe alloys at the PBE-level. The band
gaps Eg are calculated by HSE06 single point calculations on top of the PBE-
optimized structure. Erel is calculated with respect to the low energy structure of
the corresponding alloy fraction.

fraction [%] pattern [#] a [Å] b [Å] c [Å] volume [Å3] Erel [meV] Eg [eV]

0.0 1 5.464 5.464 10.921 326.04 0 1.170

12.5 1 5.499 5.497 10.995 332.35 0 1.098

25.0 1 5.537 5.530 11.080 339.26 19 1.012

25.0 2 5.537 5.534 11.064 338.99 14 1.028

25.0 3 5.538 5.531 11.073 339.18 0 1.017

25.0 4 5.541 5.532 11.068 339.28 23 1.015

25.0 5 5.533 5.540 11.067 339.23 8 1.025

37.5 1 5.573 5.570 11.142 345.83 28 0.951

37.5 2 5.572 5.563 11.150 345.59 23 0.942

37.5 3 5.569 5.568 11.147 345.66 19 0.957

37.5 4 5.572 5.573 11.138 345.83 0 0.952

37.5 5 5.581 5.566 11.132 345.79 24 0.953

37.5 6 5.570 5.577 11.142 346.14 0 0.956

37.5 7 5.577 5.572 11.133 346.00 24 0.950

50.0 1 5.610 5.608 11.228 353.25 62 0.864

50.0 2 5.609 5.607 11.214 352.69 41 0.878

50.0 3 5.614 5.601 11.216 352.66 40 0.890

50.0 4 5.609 5.611 11.222 353.19 26 0.889

50.0 5 5.608 5.611 11.213 352.86 51 0.891

50.0 6 5.608 5.598 11.242 352.90 48 0.864

Continued on next page
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fraction [%] pattern [#] a [Å] b [Å] c [Å] volume [Å3] Erel [meV] Eg [eV]

50.0 7 5.613 5.602 11.218 352.75 36 0.877

50.0 8 5.610 5.607 11.219 352.85 36 0.885

50.0 9 5.605 5.605 11.224 352.64 47 0.881

50.0 10 5.607 5.615 11.207 352.79 0 0.895

50.0 11 5.612 5.612 11.204 352.87 24 0.886

50.0 12 5.623 5.602 11.198 352.75 48 0.884

62.5 1 5.647 5.642 11.291 359.73 34 0.811

62.5 2 5.647 5.637 11.302 359.70 26 0.812

62.5 3 5.646 5.648 11.283 359.75 0 0.822

62.5 4 5.644 5.652 11.278 359.76 24 0.818

62.5 5 5.648 5.643 11.280 359.47 0 0.832

62.5 6 5.654 5.641 11.278 359.74 24 0.821

62.5 7 5.642 5.648 11.298 360.03 27 0.812

75.0 1 5.682 5.673 11.372 366.54 35 0.740

75.0 2 5.686 5.682 11.358 366.95 17 0.762

75.0 3 5.685 5.680 11.363 366.89 0 0.760

75.0 4 5.686 5.678 11.361 366.74 25 0.757

75.0 5 5.680 5.687 11.357 366.84 14 0.758

87.5 1 5.722 5.718 11.437 374.17 0 0.699

100.0 1 5.761 5.761 11.507 381.91 0 0.633
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Figure A.1: Bader charges for the different CZTSSe alloys as a function of the alloy fraction
at the PBE-level. Zn is shown in pink, Cu in brown, Sn in gray, S in yellow and
Se in green.
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Figure A.2: CZTSSe band gaps as a function of the cell volume calculated at the HSE06-level
on top of the PBE optimized structures.
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Figure A.3: Total PBE DOS for all CZTSSe alloys fractions and patterns in the PBE-structure.
For every alloy fraction, there are different alloy patterns and therefore different
DOS possible, which overlap in the corresponding alloy fraction.
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Band Gap Fluctuations in 2c/2d Disordered Cu2ZnSnS4

Table A.2: Calculated lattice parameters and band gaps Eg of 2c/2d disordered CZTS systems
at the PBE-level.

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

0.0 910 0 69 10.924 10.924 10.918 1302.88

12.5 904 195 9 10.932 10.931 10.922 1305.12

12.5 905 197 8 10.929 10.930 10.920 1304.51

12.5 906 298 34 10.931 10.931 10.916 1304.47

12.5 907 263 2 10.931 10.930 10.924 1305.15

12.5 908 262 2 10.930 10.932 10.924 1305.25

12.5 909 226 25 10.931 10.931 10.918 1304.50

25.0 630 290 27 10.934 10.935 10.921 1305.73

25.0 631 446 32 10.936 10.931 10.919 1305.22

25.0 632 442 29 10.932 10.931 10.929 1305.99

25.0 633 623 1 10.933 10.936 10.929 1306.63

25.0 634 373 35 10.930 10.936 10.918 1305.08

25.0 635 372 43 10.933 10.932 10.919 1305.09

25.0 636 553 7 10.933 10.938 10.924 1306.30

25.0 637 517 0 10.926 10.928 10.936 1305.77

25.0 638 483 0 10.933 10.929 10.927 1305.61

25.0 639 290 27 10.931 10.930 10.923 1305.04

25.0 640 253 31 10.932 10.932 10.916 1304.59

25.0 853 440 33 10.934 10.934 10.920 1305.46

25.0 854 425 35 10.930 10.929 10.931 1305.80

25.0 855 459 29 10.932 10.934 10.920 1305.28

25.0 856 391 26 10.930 10.929 10.930 1305.56

25.0 857 425 37 10.937 10.930 10.922 1305.54

25.0 858 438 33 10.935 10.931 10.919 1305.17

25.0 859 394 17 10.927 10.928 10.931 1305.34

25.0 860 426 38 10.935 10.932 10.919 1305.25

25.0 861 440 33 10.933 10.934 10.920 1305.43

25.0 862 365 47 10.930 10.928 10.930 1305.56

25.0 863 354 44 10.934 10.930 10.921 1305.15

25.0 864 388 37 10.931 10.932 10.923 1305.25

25.0 865 364 13 10.928 10.926 10.932 1305.22

25.0 866 367 32 10.934 10.930 10.922 1305.35

25.0 867 369 29 10.934 10.933 10.920 1305.41

25.0 868 369 27 10.932 10.931 10.923 1305.35

25.0 869 364 13 10.928 10.926 10.932 1305.20

25.0 870 388 39 10.932 10.933 10.919 1304.99

25.0 871 353 44 10.935 10.929 10.922 1305.26

25.0 872 354 44 10.934 10.930 10.921 1305.18

Continued on next page
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fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

25.0 873 317 39 10.931 10.931 10.922 1305.00

25.0 874 366 48 10.927 10.925 10.934 1305.38

25.0 875 437 33 10.936 10.933 10.920 1305.70

25.0 876 425 39 10.937 10.930 10.919 1305.28

25.0 877 387 11 10.928 10.928 10.931 1305.49

25.0 878 390 25 10.931 10.930 10.931 1305.93

25.0 879 353 43 10.935 10.928 10.923 1305.26

25.0 880 367 33 10.934 10.930 10.919 1305.02

25.0 881 290 29 10.933 10.932 10.920 1305.14

25.0 882 443 31 10.934 10.933 10.922 1305.70

25.0 883 445 32 10.931 10.936 10.919 1305.40

25.0 884 372 42 10.932 10.933 10.922 1305.34

25.0 885 373 35 10.936 10.931 10.918 1305.23

25.0 886 554 7 10.936 10.932 10.922 1305.74

25.0 887 623 0 10.937 10.933 10.930 1307.00

25.0 888 515 0 10.929 10.928 10.936 1306.05

25.0 889 483 0 10.929 10.933 10.927 1305.63

25.0 890 291 23 10.930 10.930 10.924 1305.16

25.0 891 253 31 10.932 10.931 10.917 1304.56

25.0 892 254 24 10.933 10.932 10.918 1304.86

25.0 893 371 33 10.933 10.931 10.918 1304.72

25.0 894 372 32 10.931 10.934 10.917 1304.75

25.0 895 373 22 10.927 10.928 10.932 1305.44

25.0 896 373 22 10.928 10.927 10.931 1305.34

25.0 897 517 6 10.937 10.933 10.924 1306.20

25.0 898 517 6 10.932 10.937 10.923 1305.98

25.0 899 483 0 10.928 10.928 10.932 1305.61

25.0 900 477 11 10.932 10.932 10.925 1305.68

25.0 901 254 23 10.932 10.932 10.918 1304.74

25.0 902 216 49 10.924 10.925 10.932 1304.63

25.0 903 216 48 10.927 10.926 10.930 1304.77

37.5 524 552 27 10.935 10.936 10.922 1306.13

37.5 525 548 35 10.935 10.934 10.936 1307.57

37.5 526 616 31 10.938 10.933 10.927 1306.61

37.5 527 650 35 10.939 10.935 10.922 1306.35

37.5 528 481 41 10.930 10.935 10.926 1305.84

37.5 529 550 30 10.935 10.938 10.922 1306.26

37.5 530 581 44 10.935 10.935 10.921 1305.88

37.5 531 511 28 10.927 10.930 10.935 1305.97

37.5 532 543 13 10.933 10.927 10.932 1306.07

37.5 533 639 28 10.930 10.931 10.935 1306.52

37.5 534 477 29 10.933 10.938 10.922 1306.04

37.5 535 508 35 10.931 10.927 10.934 1306.00

37.5 536 542 12 10.929 10.932 10.933 1306.39

Continued on next page
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fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

37.5 537 543 35 10.935 10.937 10.921 1306.11

37.5 538 579 48 10.935 10.934 10.924 1306.15

37.5 539 636 31 10.932 10.932 10.937 1307.10

37.5 540 476 8 10.932 10.934 10.924 1305.70

37.5 541 509 41 10.931 10.937 10.924 1305.87

37.5 542 569 25 10.931 10.935 10.929 1306.44

37.5 543 567 23 10.932 10.934 10.932 1306.76

37.5 544 406 35 10.932 10.934 10.919 1305.22

37.5 545 480 43 10.930 10.928 10.933 1305.88

37.5 546 475 34 10.931 10.934 10.924 1305.68

37.5 547 480 46 10.933 10.933 10.925 1305.90

37.5 548 476 33 10.932 10.924 10.934 1305.75

37.5 549 579 44 10.936 10.931 10.927 1306.24

37.5 550 411 33 10.930 10.936 10.920 1305.31

37.5 551 405 42 10.932 10.931 10.924 1305.28

37.5 552 509 53 10.934 10.934 10.923 1305.86

37.5 553 472 3 10.932 10.929 10.931 1305.97

37.5 554 407 42 10.930 10.934 10.924 1305.46

37.5 555 406 34 10.927 10.935 10.924 1305.30

37.5 556 473 16 10.927 10.931 10.932 1305.74

37.5 557 509 51 10.934 10.933 10.923 1305.84

37.5 558 438 35 10.926 10.931 10.934 1305.87

37.5 559 441 25 10.932 10.931 10.929 1305.94

37.5 560 482 12 10.934 10.930 10.927 1305.85

37.5 561 552 29 10.937 10.934 10.922 1306.07

37.5 562 477 16 10.930 10.935 10.926 1305.98

37.5 563 549 31 10.937 10.933 10.921 1305.89

37.5 564 617 8 10.934 10.934 10.927 1306.29

37.5 565 410 14 10.928 10.935 10.929 1305.98

37.5 566 479 50 10.934 10.933 10.925 1305.95

37.5 567 550 24 10.936 10.935 10.922 1306.04

37.5 568 507 26 10.927 10.930 10.935 1306.02

37.5 569 406 14 10.934 10.930 10.923 1305.27

37.5 570 479 49 10.933 10.934 10.922 1305.66

37.5 571 511 31 10.931 10.926 10.935 1305.97

37.5 572 543 31 10.935 10.934 10.925 1306.29

37.5 573 476 38 10.932 10.934 10.926 1305.92

37.5 574 371 29 10.930 10.930 10.929 1305.74

37.5 575 404 43 10.936 10.934 10.922 1306.09

37.5 576 483 27 10.935 10.931 10.925 1305.80

37.5 577 479 33 10.937 10.933 10.921 1305.85

37.5 578 409 46 10.929 10.929 10.931 1305.60

37.5 579 409 40 10.936 10.936 10.920 1305.96

37.5 596 450 21 10.934 10.933 10.921 1305.48
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fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

37.5 597 411 43 10.934 10.931 10.922 1305.43

37.5 598 643 14 10.937 10.936 10.923 1306.42

37.5 599 645 4 10.935 10.935 10.925 1306.43

37.5 600 412 49 10.933 10.934 10.918 1305.14

37.5 601 644 4 10.933 10.937 10.930 1306.92

37.5 602 643 15 10.937 10.938 10.923 1306.54

37.5 603 571 3 10.929 10.935 10.928 1306.09

37.5 604 571 3 10.935 10.929 10.928 1306.01

37.5 605 830 0 10.934 10.934 10.934 1307.28

37.5 606 378 32 10.933 10.934 10.919 1305.19

37.5 607 574 14 10.931 10.928 10.934 1306.09

37.5 608 574 14 10.927 10.931 10.934 1306.04

37.5 609 573 8 10.934 10.936 10.924 1306.30

37.5 610 574 9 10.935 10.936 10.923 1306.23

37.5 611 798 10 10.932 10.938 10.935 1307.48

37.5 612 575 8 10.935 10.934 10.922 1305.89

37.5 613 574 7 10.935 10.933 10.924 1306.04

37.5 614 798 10 10.938 10.931 10.935 1307.46

37.5 615 763 0 10.933 10.933 10.937 1307.17

37.5 616 206 12 10.928 10.927 10.927 1304.84

37.5 617 450 20 10.933 10.933 10.922 1305.56

37.5 618 410 13 10.927 10.932 10.933 1305.93

37.5 619 411 49 10.934 10.933 10.918 1305.20

37.5 620 376 22 10.936 10.928 10.922 1305.19

37.5 621 412 44 10.932 10.934 10.919 1305.16

37.5 622 372 23 10.933 10.931 10.922 1305.25

37.5 623 377 32 10.934 10.933 10.919 1305.26

37.5 624 340 0 10.927 10.932 10.926 1305.15

37.5 625 205 15 10.933 10.932 10.922 1305.38

37.5 626 411 11 10.931 10.927 10.930 1305.55

37.5 627 372 25 10.933 10.935 10.919 1305.42

37.5 628 376 23 10.928 10.936 10.918 1304.81

37.5 629 340 1 10.932 10.927 10.927 1305.35

37.5 703 549 31 10.933 10.937 10.921 1305.95

37.5 704 479 49 10.934 10.933 10.922 1305.61

37.5 705 543 32 10.935 10.936 10.923 1306.16

37.5 706 579 49 10.936 10.937 10.922 1306.34

37.5 707 552 29 10.934 10.937 10.922 1306.11

37.5 708 617 8 10.933 10.934 10.927 1306.29

37.5 709 651 35 10.934 10.938 10.920 1305.98

37.5 710 511 31 10.926 10.930 10.935 1305.95

37.5 711 542 13 10.931 10.928 10.934 1306.17

37.5 712 636 30 10.931 10.931 10.935 1306.70

37.5 713 479 50 10.933 10.933 10.924 1305.82
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fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

37.5 714 507 25 10.931 10.931 10.932 1306.23

37.5 715 542 13 10.927 10.933 10.932 1306.00

37.5 716 475 38 10.934 10.932 10.926 1305.96

37.5 717 510 42 10.938 10.931 10.920 1305.60

37.5 718 567 24 10.930 10.931 10.934 1306.37

37.5 719 550 24 10.935 10.936 10.922 1305.98

37.5 720 580 42 10.932 10.932 10.932 1306.46

37.5 721 638 25 10.932 10.936 10.932 1306.85

37.5 722 569 27 10.931 10.931 10.934 1306.55

37.5 723 405 42 10.932 10.934 10.921 1305.42

37.5 724 479 31 10.931 10.936 10.924 1305.87

37.5 725 477 38 10.930 10.938 10.920 1305.58

37.5 726 409 36 10.930 10.930 10.931 1305.74

37.5 727 406 36 10.937 10.929 10.920 1305.28

37.5 728 509 52 10.934 10.936 10.921 1305.86

37.5 729 483 27 10.930 10.935 10.925 1305.76

37.5 730 476 34 10.934 10.931 10.923 1305.60

37.5 731 579 45 10.932 10.937 10.926 1306.38

37.5 732 473 15 10.931 10.927 10.931 1305.65

37.5 733 408 47 10.931 10.931 10.929 1305.86

37.5 734 405 42 10.931 10.932 10.922 1305.16

37.5 735 473 3 10.928 10.931 10.930 1305.68

37.5 736 439 38 10.935 10.929 10.925 1305.71

37.5 737 510 54 10.935 10.935 10.920 1305.77

37.5 738 442 28 10.935 10.935 10.920 1305.73

37.5 739 476 16 10.935 10.930 10.927 1305.96

37.5 740 551 37 10.935 10.935 10.924 1306.12

37.5 741 406 14 10.930 10.934 10.923 1305.47

37.5 742 478 29 10.937 10.932 10.921 1305.79

37.5 743 542 32 10.935 10.932 10.930 1306.64

37.5 744 482 12 10.930 10.934 10.928 1305.99

37.5 745 552 27 10.936 10.936 10.922 1306.22

37.5 746 617 32 10.933 10.938 10.923 1306.32

37.5 747 508 35 10.927 10.931 10.935 1306.03

37.5 748 412 15 10.932 10.929 10.923 1305.10

37.5 749 481 41 10.935 10.931 10.924 1305.84

37.5 750 511 28 10.931 10.926 10.935 1306.02

37.5 751 477 8 10.934 10.931 10.923 1305.41

37.5 752 550 30 10.937 10.934 10.922 1306.09

37.5 753 372 31 10.932 10.933 10.924 1305.51

37.5 754 406 34 10.934 10.932 10.922 1305.50

37.5 755 479 45 10.932 10.933 10.926 1305.89

37.5 756 407 42 10.934 10.930 10.924 1305.52

37.5 757 481 46 10.933 10.933 10.922 1305.59
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fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

37.5 758 411 33 10.937 10.930 10.920 1305.31

37.5 785 478 41 10.933 10.932 10.923 1305.51

37.5 786 483 9 10.932 10.928 10.930 1305.79

37.5 787 512 5 10.933 10.928 10.930 1305.87

37.5 788 543 23 10.937 10.933 10.921 1305.94

37.5 789 511 10 10.933 10.931 10.928 1305.98

37.5 790 544 21 10.935 10.931 10.925 1305.89

37.5 791 478 0 10.927 10.930 10.935 1305.95

37.5 792 510 31 10.932 10.926 10.935 1306.08

37.5 793 568 41 10.933 10.928 10.934 1306.36

37.5 794 471 19 10.937 10.926 10.924 1305.37

37.5 795 503 2 10.928 10.928 10.932 1305.57

37.5 796 565 11 10.933 10.929 10.931 1306.13

37.5 797 372 28 10.927 10.924 10.935 1305.26

37.5 798 407 44 10.930 10.928 10.930 1305.53

37.5 799 404 13 10.927 10.927 10.933 1305.39

37.5 800 413 15 10.932 10.925 10.931 1305.51

37.5 801 407 34 10.930 10.923 10.935 1305.39

37.5 802 473 30 10.933 10.928 10.929 1305.84

37.5 803 474 23 10.936 10.931 10.922 1305.64

37.5 804 440 34 10.931 10.925 10.933 1305.66

37.5 805 433 0 10.929 10.929 10.929 1305.36

37.5 806 404 39 10.933 10.929 10.927 1305.68

37.5 807 407 17 10.931 10.924 10.932 1305.32

37.5 808 475 49 10.935 10.929 10.925 1305.65

37.5 809 409 0 10.927 10.927 10.934 1305.55

37.5 810 478 11 10.932 10.929 10.930 1305.83

37.5 811 509 3 10.934 10.929 10.928 1305.81

37.5 812 508 21 10.934 10.931 10.928 1306.05

37.5 813 471 0 10.930 10.928 10.934 1305.97

37.5 814 471 21 10.937 10.928 10.921 1305.26

37.5 815 336 42 10.928 10.923 10.934 1305.20

37.5 816 368 27 10.928 10.923 10.935 1305.28

37.5 817 406 47 10.935 10.928 10.923 1305.23

37.5 818 408 8 10.932 10.928 10.928 1305.53

37.5 819 544 21 10.935 10.931 10.926 1306.00

37.5 820 508 21 10.934 10.931 10.928 1305.97

37.5 821 478 11 10.933 10.928 10.930 1305.90

37.5 822 475 49 10.935 10.929 10.924 1305.64

37.5 823 512 10 10.933 10.930 10.928 1305.95

37.5 824 483 9 10.932 10.928 10.930 1305.79

37.5 825 477 43 10.935 10.933 10.921 1305.70

37.5 826 408 0 10.931 10.931 10.928 1305.79

37.5 827 407 17 10.931 10.924 10.932 1305.34
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

37.5 828 405 43 10.929 10.925 10.935 1305.52

37.5 829 474 23 10.936 10.931 10.922 1305.60

37.5 830 407 31 10.933 10.926 10.929 1305.52

37.5 831 404 13 10.927 10.927 10.933 1305.40

37.5 832 407 7 10.933 10.928 10.930 1305.96

37.5 833 407 48 10.935 10.928 10.920 1304.98

37.5 834 367 27 10.928 10.924 10.934 1305.31

37.5 835 412 13 10.932 10.927 10.931 1305.80

37.5 836 407 45 10.931 10.929 10.929 1305.64

37.5 837 371 28 10.927 10.924 10.935 1305.25

37.5 838 335 38 10.932 10.928 10.927 1305.38

37.5 839 565 11 10.933 10.929 10.930 1306.10

37.5 840 543 24 10.937 10.934 10.921 1305.90

37.5 841 503 1 10.929 10.928 10.931 1305.48

37.5 842 509 3 10.934 10.929 10.928 1305.78

37.5 843 471 20 10.937 10.927 10.921 1305.10

37.5 844 513 5 10.933 10.927 10.929 1305.70

37.5 845 471 19 10.935 10.927 10.924 1305.35

37.5 846 473 30 10.933 10.928 10.929 1305.82

37.5 847 433 0 10.929 10.928 10.931 1305.42

37.5 848 568 41 10.933 10.929 10.933 1306.38

37.5 849 509 29 10.935 10.928 10.930 1306.11

37.5 850 471 0 10.934 10.930 10.928 1305.95

37.5 851 478 0 10.930 10.933 10.930 1306.15

37.5 852 439 30 10.936 10.928 10.927 1305.80

50.0 103 710 47 10.939 10.939 10.923 1307.17

50.0 104 638 43 10.934 10.940 10.922 1306.46

50.0 105 600 33 10.931 10.937 10.931 1306.88

50.0 106 619 38 10.934 10.937 10.924 1306.40

50.0 107 615 42 10.938 10.935 10.922 1306.42

50.0 108 568 23 10.930 10.940 10.923 1306.17

50.0 109 547 37 10.933 10.935 10.926 1306.09

50.0 110 548 30 10.932 10.939 10.921 1306.09

50.0 111 558 9 10.932 10.937 10.924 1305.99

50.0 112 546 26 10.934 10.937 10.922 1306.12

50.0 113 567 64 10.934 10.934 10.926 1306.30

50.0 114 527 53 10.932 10.934 10.927 1306.06

50.0 115 534 46 10.934 10.935 10.923 1305.98

50.0 116 494 35 10.937 10.929 10.924 1305.75

50.0 117 545 37 10.937 10.931 10.926 1306.20

50.0 118 497 51 10.931 10.938 10.921 1305.73

50.0 119 460 32 10.930 10.936 10.925 1305.87

50.0 120 474 46 10.930 10.932 10.927 1305.74

50.0 121 476 40 10.935 10.933 10.932 1306.90
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

50.0 122 426 0 10.930 10.930 10.932 1305.94

50.0 270 614 39 10.932 10.934 10.933 1306.86

50.0 271 617 33 10.935 10.939 10.923 1306.55

50.0 272 544 3 10.929 10.933 10.930 1306.00

50.0 273 692 18 10.932 10.935 10.932 1306.83

50.0 274 724 12 10.933 10.933 10.934 1306.96

50.0 275 544 48 10.927 10.930 10.936 1306.15

50.0 276 544 42 10.933 10.936 10.924 1306.05

50.0 277 654 38 10.935 10.935 10.933 1307.20

50.0 278 691 16 10.930 10.936 10.932 1306.77

50.0 279 546 37 10.930 10.937 10.926 1306.18

50.0 280 658 49 10.932 10.932 10.935 1306.79

50.0 281 692 19 10.932 10.935 10.932 1306.85

50.0 282 622 6 10.932 10.934 10.930 1306.46

50.0 283 654 10 10.934 10.933 10.932 1306.81

50.0 284 798 0 10.933 10.936 10.936 1307.59

50.0 285 430 24 10.931 10.936 10.920 1305.35

50.0 286 392 38 10.932 10.932 10.924 1305.45

50.0 287 546 43 10.933 10.935 10.925 1306.06

50.0 288 545 19 10.933 10.933 10.925 1305.86

50.0 289 391 32 10.927 10.933 10.930 1305.71

50.0 290 547 26 10.926 10.935 10.933 1306.16

50.0 291 542 28 10.931 10.936 10.925 1305.99

50.0 292 475 8 10.928 10.932 10.929 1305.63

50.0 293 471 9 10.930 10.924 10.933 1305.39

50.0 294 655 11 10.932 10.933 10.932 1306.56

50.0 295 357 39 10.928 10.937 10.919 1305.03

50.0 296 473 43 10.929 10.932 10.933 1306.19

50.0 297 474 10 10.925 10.935 10.930 1305.70

50.0 298 475 46 10.931 10.933 10.926 1305.70

50.0 299 474 31 10.934 10.933 10.919 1305.27

50.0 300 622 15 10.929 10.936 10.931 1306.48

50.0 301 476 26 10.928 10.937 10.926 1305.82

50.0 302 473 26 10.930 10.935 10.923 1305.53

50.0 303 622 5 10.932 10.935 10.930 1306.50

50.0 304 585 3 10.933 10.933 10.931 1306.54

50.0 305 466 19 10.929 10.929 10.933 1305.87

50.0 306 427 40 10.932 10.936 10.918 1305.30

50.0 307 544 8 10.931 10.934 10.928 1306.14

50.0 308 617 28 10.936 10.936 10.922 1306.18

50.0 309 430 50 10.931 10.935 10.922 1305.52

50.0 310 550 13 10.930 10.932 10.931 1306.15

50.0 311 619 39 10.936 10.938 10.922 1306.39

50.0 312 474 4 10.926 10.937 10.925 1305.59
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

50.0 313 542 19 10.931 10.930 10.931 1305.98

50.0 314 690 14 10.935 10.935 10.931 1307.15

50.0 315 394 24 10.929 10.929 10.929 1305.52

50.0 316 475 0 10.935 10.928 10.931 1306.18

50.0 317 548 48 10.928 10.929 10.937 1306.23

50.0 318 473 12 10.932 10.932 10.929 1306.02

50.0 319 545 23 10.934 10.930 10.931 1306.38

50.0 320 658 49 10.932 10.931 10.935 1306.74

50.0 321 478 15 10.928 10.936 10.929 1306.11

50.0 322 547 39 10.933 10.934 10.931 1306.62

50.0 323 661 44 10.934 10.934 10.932 1307.03

50.0 324 622 15 10.930 10.935 10.931 1306.48

50.0 325 274 19 10.930 10.932 10.919 1304.65

50.0 326 396 29 10.928 10.928 10.932 1305.55

50.0 327 432 31 10.929 10.934 10.924 1305.50

50.0 328 358 45 10.932 10.933 10.918 1304.87

50.0 329 392 32 10.932 10.926 10.929 1305.50

50.0 330 547 38 10.935 10.934 10.925 1306.17

50.0 331 361 44 10.930 10.938 10.918 1305.32

50.0 332 393 37 10.931 10.931 10.924 1305.25

50.0 333 549 44 10.934 10.937 10.921 1305.90

50.0 334 473 11 10.930 10.931 10.928 1305.58

50.0 335 324 2 10.930 10.930 10.928 1305.48

50.0 336 361 39 10.932 10.935 10.917 1304.95

50.0 337 479 49 10.928 10.928 10.935 1305.89

50.0 338 476 27 10.935 10.932 10.923 1305.83

50.0 339 478 40 10.929 10.932 10.930 1305.93

50.0 374 618 39 10.939 10.937 10.922 1306.65

50.0 375 547 41 10.935 10.933 10.925 1306.20

50.0 376 548 48 10.929 10.928 10.937 1306.22

50.0 377 662 46 10.932 10.932 10.935 1306.80

50.0 378 692 18 10.935 10.932 10.932 1306.86

50.0 379 542 18 10.930 10.930 10.931 1305.99

50.0 380 616 28 10.938 10.937 10.923 1306.63

50.0 381 691 16 10.937 10.931 10.932 1306.84

50.0 382 723 13 10.933 10.934 10.936 1307.28

50.0 383 546 26 10.935 10.937 10.922 1306.19

50.0 384 622 15 10.936 10.930 10.931 1306.50

50.0 385 655 11 10.932 10.933 10.932 1306.55

50.0 386 658 49 10.931 10.933 10.935 1306.77

50.0 387 691 16 10.936 10.930 10.932 1306.83

50.0 388 798 0 10.935 10.933 10.935 1307.34

50.0 389 392 36 10.931 10.931 10.927 1305.54

50.0 390 432 32 10.935 10.929 10.924 1305.54
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

50.0 391 548 43 10.936 10.933 10.924 1306.16

50.0 392 542 28 10.936 10.931 10.925 1306.05

50.0 393 361 38 10.934 10.931 10.918 1304.95

50.0 394 478 42 10.935 10.932 10.924 1305.79

50.0 395 472 23 10.931 10.926 10.935 1306.02

50.0 396 479 49 10.928 10.927 10.935 1305.87

50.0 397 474 11 10.934 10.924 10.931 1305.62

50.0 398 623 7 10.934 10.931 10.931 1306.52

50.0 399 392 35 10.932 10.935 10.920 1305.42

50.0 400 473 12 10.932 10.930 10.926 1305.52

50.0 401 471 9 10.925 10.930 10.932 1305.43

50.0 402 547 37 10.933 10.935 10.925 1306.20

50.0 403 545 19 10.934 10.933 10.925 1305.89

50.0 404 655 11 10.933 10.932 10.932 1306.54

50.0 405 476 26 10.929 10.933 10.927 1305.65

50.0 406 474 31 10.933 10.934 10.920 1305.35

50.0 407 585 4 10.933 10.933 10.931 1306.54

50.0 408 622 15 10.936 10.929 10.931 1306.47

50.0 409 431 50 10.935 10.931 10.922 1305.47

50.0 410 467 20 10.928 10.928 10.933 1305.73

50.0 411 549 10 10.938 10.929 10.928 1306.38

50.0 412 617 32 10.939 10.935 10.923 1306.64

50.0 413 394 22 10.929 10.929 10.929 1305.41

50.0 414 477 15 10.937 10.931 10.931 1306.71

50.0 415 545 36 10.937 10.929 10.931 1306.56

50.0 416 475 0 10.927 10.934 10.931 1305.97

50.0 417 544 47 10.931 10.928 10.935 1306.13

50.0 418 658 49 10.932 10.931 10.935 1306.75

50.0 419 426 40 10.934 10.931 10.923 1305.57

50.0 420 474 4 10.938 10.926 10.925 1305.57

50.0 421 544 4 10.933 10.929 10.930 1305.99

50.0 422 544 8 10.934 10.932 10.929 1306.20

50.0 423 616 42 10.938 10.935 10.922 1306.22

50.0 424 691 18 10.935 10.932 10.932 1306.87

50.0 425 473 11 10.932 10.933 10.929 1306.19

50.0 426 544 43 10.937 10.935 10.921 1306.17

50.0 427 623 7 10.934 10.931 10.931 1306.57

50.0 428 654 37 10.935 10.935 10.932 1307.23

50.0 429 273 21 10.934 10.931 10.918 1304.91

50.0 430 361 44 10.938 10.930 10.918 1305.32

50.0 431 392 33 10.934 10.929 10.925 1305.50

50.0 432 396 28 10.930 10.930 10.931 1305.74

50.0 433 430 24 10.936 10.931 10.919 1305.26

50.0 434 547 26 10.936 10.927 10.932 1306.34
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

50.0 435 325 3 10.928 10.928 10.928 1305.11

50.0 436 357 36 10.935 10.927 10.923 1305.19

50.0 437 476 28 10.938 10.930 10.922 1305.80

50.0 438 474 45 10.929 10.927 10.935 1305.90

50.0 439 358 44 10.933 10.931 10.921 1305.17

50.0 440 392 35 10.928 10.929 10.931 1305.42

50.0 441 475 8 10.932 10.928 10.930 1305.72

50.0 442 545 43 10.935 10.933 10.926 1306.31

50.0 443 475 47 10.935 10.933 10.923 1305.79

50.0 444 638 43 10.940 10.934 10.922 1306.59

50.0 445 569 45 10.937 10.937 10.922 1306.51

50.0 446 535 39 10.934 10.933 10.924 1305.91

50.0 447 547 39 10.933 10.934 10.929 1306.54

50.0 448 616 33 10.939 10.935 10.923 1306.65

50.0 449 528 44 10.936 10.936 10.921 1306.17

50.0 450 568 51 10.935 10.935 10.920 1305.85

50.0 451 544 41 10.936 10.933 10.925 1306.15

50.0 452 616 27 10.936 10.934 10.927 1306.55

50.0 453 497 51 10.932 10.938 10.921 1305.78

50.0 454 475 28 10.935 10.938 10.922 1306.50

50.0 455 545 43 10.933 10.935 10.926 1306.28

50.0 456 476 26 10.929 10.937 10.927 1306.04

50.0 457 548 43 10.936 10.933 10.924 1306.22

50.0 458 558 7 10.937 10.934 10.922 1306.14

50.0 459 546 43 10.934 10.936 10.924 1306.14

50.0 460 549 42 10.936 10.933 10.924 1306.11

50.0 461 566 0 10.934 10.933 10.928 1306.28

50.0 462 600 36 10.937 10.932 10.926 1306.32

50.0 463 475 28 10.935 10.938 10.922 1306.40

50.0 464 496 51 10.933 10.939 10.922 1306.30

50.0 465 528 41 10.933 10.934 10.926 1306.12

50.0 466 460 37 10.929 10.935 10.926 1305.77

50.0 467 494 29 10.939 10.930 10.921 1305.66

50.0 468 476 27 10.929 10.937 10.926 1305.98

50.0 469 494 30 10.929 10.939 10.920 1305.56

50.0 470 535 39 10.934 10.934 10.924 1305.98

50.0 471 426 29 10.927 10.939 10.922 1305.43

50.0 472 460 38 10.930 10.935 10.925 1305.67

50.0 473 616 32 10.940 10.935 10.924 1306.75

50.0 474 616 27 10.936 10.933 10.927 1306.48

50.0 475 707 26 10.941 10.931 10.927 1306.79

50.0 476 548 41 10.933 10.935 10.924 1306.02

50.0 477 639 43 10.939 10.933 10.921 1306.17

50.0 478 600 35 10.936 10.927 10.933 1306.38
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

50.0 479 544 41 10.936 10.933 10.925 1306.22

50.0 480 566 0 10.934 10.933 10.928 1306.29

50.0 481 557 7 10.937 10.934 10.923 1306.22

50.0 482 601 35 10.937 10.933 10.926 1306.47

50.0 483 535 38 10.933 10.934 10.924 1305.89

50.0 484 494 21 10.930 10.930 10.935 1306.41

50.0 485 548 48 10.928 10.929 10.937 1306.21

50.0 486 544 4 10.933 10.929 10.930 1306.02

50.0 487 496 29 10.932 10.932 10.928 1305.87

50.0 488 528 42 10.934 10.934 10.924 1306.02

50.0 489 544 49 10.930 10.927 10.936 1306.16

50.0 490 541 19 10.931 10.931 10.931 1306.09

50.0 491 460 30 10.927 10.934 10.931 1306.03

50.0 492 479 49 10.928 10.927 10.935 1305.85

50.0 493 475 8 10.928 10.932 10.930 1305.76

50.0 494 474 42 10.929 10.934 10.929 1306.00

50.0 495 472 11 10.931 10.930 10.930 1305.83

50.0 496 521 1 10.929 10.928 10.936 1306.09

50.0 497 544 20 10.934 10.935 10.922 1305.84

50.0 498 542 26 10.934 10.927 10.933 1306.20

50.0 499 600 36 10.938 10.932 10.926 1306.39

50.0 500 561 49 10.934 10.929 10.922 1305.23

50.0 501 474 31 10.933 10.934 10.919 1305.25

50.0 502 534 47 10.935 10.935 10.921 1305.84

50.0 503 490 59 10.932 10.933 10.923 1305.51

50.0 504 494 32 10.928 10.927 10.935 1305.76

50.0 505 455 0 10.932 10.923 10.931 1305.25

50.0 506 472 27 10.930 10.935 10.924 1305.61

50.0 507 494 30 10.931 10.929 10.933 1306.11

50.0 508 456 5 10.924 10.931 10.932 1305.51

50.0 509 527 55 10.935 10.933 10.922 1305.85

50.0 510 491 59 10.933 10.933 10.922 1305.53

50.0 511 458 33 10.928 10.932 10.938 1306.63

50.0 512 421 43 10.923 10.928 10.935 1305.27

50.0 513 549 13 10.932 10.930 10.931 1306.21

50.0 514 544 8 10.931 10.933 10.929 1306.01

50.0 515 567 27 10.926 10.937 10.935 1306.72

50.0 516 479 16 10.931 10.932 10.928 1305.83

50.0 517 504 9 10.930 10.930 10.931 1305.89

50.0 518 459 0 10.928 10.935 10.930 1306.05

50.0 519 473 11 10.931 10.932 10.929 1306.00

50.0 520 461 0 10.933 10.925 10.932 1305.69

50.0 521 490 0 10.932 10.932 10.935 1306.84

50.0 522 427 30 10.930 10.925 10.933 1305.57
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

50.0 523 521 8 10.937 10.932 10.924 1306.04

50.0 580 558 8 10.937 10.932 10.925 1306.14

50.0 581 558 7 10.932 10.936 10.924 1306.02

50.0 582 522 1 10.928 10.929 10.934 1305.95

50.0 583 798 1 10.933 10.935 10.935 1307.27

50.0 584 798 0 10.936 10.933 10.935 1307.46

50.0 585 1068 0 10.941 10.941 10.937 1309.14

50.0 586 273 19 10.929 10.932 10.920 1304.77

50.0 587 273 19 10.932 10.929 10.921 1304.80

50.0 588 558 7 10.936 10.932 10.924 1306.02

50.0 589 521 9 10.937 10.933 10.920 1305.83

50.0 590 558 9 10.934 10.938 10.924 1306.38

50.0 591 521 9 10.932 10.937 10.922 1305.84

50.0 592 522 1 10.928 10.927 10.935 1305.73

50.0 593 485 3 10.933 10.922 10.934 1305.62

50.0 594 485 2 10.922 10.933 10.935 1305.72

50.0 595 18 48 10.926 10.926 10.922 1303.98

50.0 641 567 64 10.934 10.934 10.926 1306.16

50.0 642 638 43 10.934 10.940 10.922 1306.43

50.0 643 534 47 10.935 10.935 10.921 1305.86

50.0 644 546 37 10.931 10.937 10.925 1306.19

50.0 645 619 38 10.936 10.934 10.925 1306.47

50.0 646 528 54 10.932 10.934 10.925 1305.87

50.0 647 497 51 10.938 10.931 10.921 1305.73

50.0 648 474 48 10.936 10.934 10.921 1305.89

50.0 649 547 37 10.935 10.933 10.926 1306.23

50.0 650 546 26 10.934 10.937 10.922 1306.09

50.0 651 615 40 10.933 10.935 10.929 1306.54

50.0 652 478 42 10.933 10.936 10.922 1305.84

50.0 653 547 26 10.936 10.927 10.932 1306.30

50.0 654 558 8 10.937 10.932 10.924 1306.12

50.0 655 568 23 10.930 10.940 10.923 1306.20

50.0 656 601 34 10.932 10.937 10.926 1306.33

50.0 657 461 32 10.930 10.936 10.922 1305.58

50.0 658 495 35 10.939 10.929 10.922 1305.77

50.0 659 427 0 10.928 10.928 10.934 1305.75

50.0 660 710 47 10.939 10.939 10.923 1306.96

50.0 661 527 54 10.933 10.934 10.925 1306.06

50.0 662 600 36 10.931 10.937 10.928 1306.51

50.0 663 495 29 10.929 10.932 10.928 1305.66

50.0 664 543 45 10.930 10.936 10.929 1306.37

50.0 665 542 19 10.930 10.930 10.931 1305.96

50.0 666 494 32 10.928 10.929 10.935 1305.91

50.0 667 460 37 10.935 10.929 10.927 1305.84

Continued on next page

153



Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

50.0 668 474 46 10.929 10.927 10.935 1305.87

50.0 669 472 11 10.931 10.932 10.932 1306.30

50.0 670 534 46 10.934 10.934 10.924 1305.89

50.0 671 549 48 10.929 10.928 10.936 1306.17

50.0 672 543 4 10.930 10.933 10.930 1306.06

50.0 673 479 49 10.927 10.928 10.935 1305.87

50.0 674 475 8 10.932 10.928 10.929 1305.63

50.0 675 522 1 10.927 10.928 10.935 1305.74

50.0 676 542 28 10.931 10.936 10.925 1305.99

50.0 677 472 24 10.933 10.928 10.930 1305.91

50.0 678 528 42 10.934 10.934 10.924 1306.02

50.0 679 490 59 10.933 10.934 10.923 1305.73

50.0 680 544 16 10.928 10.931 10.935 1306.15

50.0 681 601 35 10.933 10.937 10.925 1306.40

50.0 682 559 50 10.932 10.937 10.924 1306.02

50.0 683 495 31 10.930 10.930 10.934 1306.17

50.0 684 455 5 10.931 10.924 10.932 1305.39

50.0 685 473 28 10.931 10.929 10.930 1305.70

50.0 686 495 20 10.930 10.930 10.932 1305.93

50.0 687 455 0 10.922 10.933 10.931 1305.31

50.0 688 462 35 10.937 10.932 10.918 1305.35

50.0 689 421 49 10.936 10.929 10.920 1305.14

50.0 690 535 38 10.934 10.933 10.925 1306.01

50.0 691 490 59 10.933 10.932 10.922 1305.46

50.0 692 544 8 10.933 10.931 10.929 1306.16

50.0 693 473 12 10.930 10.932 10.929 1305.85

50.0 694 490 1 10.930 10.930 10.932 1306.06

50.0 695 550 13 10.930 10.933 10.931 1306.19

50.0 696 567 27 10.938 10.927 10.935 1306.85

50.0 697 461 0 10.924 10.932 10.934 1305.81

50.0 698 477 15 10.936 10.930 10.930 1306.38

50.0 699 460 0 10.932 10.925 10.933 1305.82

50.0 700 427 31 10.923 10.931 10.934 1305.65

50.0 701 504 10 10.929 10.929 10.935 1306.09

50.0 702 521 8 10.931 10.937 10.923 1305.78

50.0 759 494 35 10.938 10.929 10.922 1305.72

50.0 760 493 25 10.935 10.927 10.930 1306.11

50.0 761 460 0 10.931 10.925 10.934 1305.76

50.0 762 476 0 10.932 10.925 10.934 1305.83

50.0 763 474 4 10.937 10.925 10.927 1305.60

50.0 764 456 6 10.931 10.923 10.934 1305.54

50.0 765 475 12 10.934 10.924 10.931 1305.60

50.0 766 470 9 10.931 10.925 10.932 1305.47

50.0 767 485 2 10.934 10.922 10.935 1305.89
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

50.0 768 470 9 10.931 10.925 10.932 1305.47

50.0 769 474 11 10.934 10.924 10.932 1305.74

50.0 770 494 29 10.939 10.930 10.921 1305.80

50.0 771 454 0 10.933 10.923 10.932 1305.55

50.0 772 494 32 10.934 10.926 10.933 1306.07

50.0 773 456 4 10.930 10.925 10.931 1305.32

50.0 774 461 0 10.933 10.925 10.931 1305.64

50.0 775 424 3 10.935 10.921 10.930 1305.22

50.0 776 455 0 10.932 10.924 10.931 1305.38

50.0 777 417 30 10.922 10.922 10.939 1304.86

50.0 778 474 3 10.937 10.925 10.926 1305.52

50.0 779 475 0 10.932 10.926 10.934 1305.93

50.0 780 461 0 10.933 10.925 10.932 1305.81

50.0 781 460 0 10.933 10.926 10.932 1305.75

50.0 782 427 0 10.927 10.927 10.934 1305.53

50.0 783 424 1 10.935 10.921 10.929 1305.11

50.0 784 485 2 10.933 10.922 10.935 1305.69

62.5 100 409 37 10.930 10.930 10.930 1305.75

62.5 101 476 38 10.934 10.931 10.926 1305.90

62.5 102 437 37 10.935 10.929 10.931 1306.31

62.5 146 638 26 10.932 10.936 10.932 1306.85

62.5 147 636 29 10.932 10.935 10.932 1306.87

62.5 148 798 10 10.938 10.931 10.936 1307.58

62.5 149 831 0 10.934 10.934 10.933 1307.07

62.5 150 405 34 10.931 10.933 10.924 1305.54

62.5 151 406 44 10.934 10.935 10.918 1305.36

62.5 152 371 25 10.929 10.929 10.929 1305.39

62.5 153 569 27 10.930 10.931 10.934 1306.36

62.5 154 565 10 10.934 10.930 10.930 1306.19

62.5 155 367 25 10.925 10.931 10.931 1305.42

62.5 156 568 25 10.930 10.929 10.935 1306.17

62.5 157 565 10 10.929 10.933 10.931 1306.14

62.5 158 763 0 10.932 10.932 10.935 1306.85

62.5 159 442 28 10.934 10.933 10.920 1305.38

62.5 160 442 27 10.933 10.933 10.923 1305.68

62.5 161 405 43 10.924 10.929 10.935 1305.50

62.5 162 568 41 10.929 10.933 10.933 1306.35

62.5 163 636 30 10.931 10.931 10.935 1306.62

62.5 164 405 43 10.928 10.924 10.935 1305.44

62.5 165 568 40 10.934 10.929 10.932 1306.31

62.5 166 638 27 10.932 10.932 10.935 1306.70

62.5 167 798 10 10.931 10.938 10.934 1307.35

62.5 168 207 12 10.929 10.929 10.921 1304.40

62.5 169 205 15 10.933 10.932 10.921 1305.33
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

62.5 170 372 32 10.934 10.933 10.920 1305.41

62.5 171 406 44 10.934 10.933 10.918 1305.24

62.5 172 372 30 10.931 10.931 10.926 1305.53

62.5 173 406 35 10.934 10.932 10.919 1305.22

62.5 174 335 38 10.928 10.933 10.926 1305.34

62.5 175 368 27 10.929 10.923 10.934 1305.26

62.5 176 567 24 10.931 10.931 10.934 1306.41

62.5 177 336 37 10.933 10.930 10.923 1305.28

62.5 178 371 28 10.925 10.927 10.934 1305.31

62.5 179 568 25 10.936 10.933 10.933 1307.11

62.5 180 581 45 10.936 10.936 10.922 1306.14

62.5 181 543 35 10.937 10.935 10.921 1306.09

62.5 182 543 32 10.935 10.936 10.923 1306.10

62.5 183 510 54 10.935 10.934 10.919 1305.53

62.5 184 573 7 10.936 10.933 10.925 1306.28

62.5 185 644 14 10.937 10.935 10.923 1306.35

62.5 186 480 45 10.933 10.933 10.925 1305.81

62.5 187 479 33 10.932 10.937 10.921 1305.75

62.5 188 408 47 10.932 10.930 10.922 1305.12

62.5 189 510 41 10.931 10.937 10.921 1305.57

62.5 190 543 24 10.937 10.933 10.921 1305.89

62.5 191 407 8 10.928 10.933 10.930 1305.99

62.5 192 408 47 10.931 10.930 10.929 1305.81

62.5 193 476 38 10.932 10.934 10.925 1305.89

62.5 194 510 10 10.933 10.932 10.931 1306.45

62.5 195 407 42 10.930 10.934 10.924 1305.52

62.5 196 476 8 10.932 10.934 10.924 1305.75

62.5 197 508 21 10.931 10.934 10.928 1305.99

62.5 198 439 37 10.928 10.934 10.927 1305.62

62.5 199 473 33 10.935 10.931 10.923 1305.67

62.5 200 575 9 10.935 10.934 10.922 1305.95

62.5 201 549 31 10.937 10.933 10.921 1305.85

62.5 202 551 25 10.934 10.934 10.926 1306.30

62.5 203 477 41 10.932 10.933 10.925 1305.76

62.5 204 543 21 10.932 10.935 10.925 1305.99

62.5 205 650 35 10.938 10.933 10.922 1306.15

62.5 206 477 11 10.932 10.929 10.930 1305.94

62.5 207 478 27 10.936 10.930 10.926 1305.89

62.5 208 508 3 10.935 10.928 10.929 1305.90

62.5 209 616 8 10.936 10.932 10.928 1306.48

62.5 210 479 50 10.934 10.933 10.925 1305.84

62.5 211 513 5 10.933 10.928 10.930 1305.79

62.5 212 616 32 10.938 10.933 10.926 1306.61

62.5 213 474 23 10.931 10.936 10.922 1305.63
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

62.5 214 579 44 10.936 10.931 10.927 1306.29

62.5 215 645 4 10.935 10.935 10.925 1306.32

62.5 216 450 20 10.933 10.933 10.922 1305.51

62.5 217 411 49 10.935 10.933 10.918 1305.30

62.5 218 480 47 10.934 10.934 10.922 1305.73

62.5 219 552 28 10.936 10.932 10.925 1306.12

62.5 220 411 43 10.931 10.934 10.922 1305.47

62.5 221 483 27 10.930 10.935 10.925 1305.78

62.5 222 551 38 10.936 10.936 10.920 1306.00

62.5 223 406 47 10.927 10.934 10.925 1305.35

62.5 224 475 49 10.935 10.929 10.924 1305.59

62.5 225 579 49 10.936 10.937 10.922 1306.30

62.5 226 377 31 10.932 10.932 10.923 1305.43

62.5 227 413 15 10.933 10.925 10.931 1305.66

62.5 228 482 9 10.928 10.933 10.930 1305.89

62.5 229 410 41 10.934 10.934 10.919 1305.47

62.5 230 480 40 10.935 10.930 10.927 1306.06

62.5 231 550 30 10.937 10.934 10.921 1306.11

62.5 232 411 33 10.929 10.936 10.919 1305.08

62.5 233 478 49 10.935 10.935 10.923 1306.17

62.5 234 550 22 10.933 10.935 10.925 1306.12

62.5 235 509 52 10.933 10.935 10.920 1305.47

62.5 236 543 13 10.927 10.933 10.932 1305.94

62.5 237 507 33 10.931 10.932 10.932 1306.27

62.5 238 511 32 10.926 10.930 10.936 1305.98

62.5 239 473 3 10.928 10.931 10.930 1305.58

62.5 240 573 13 10.931 10.935 10.930 1306.44

62.5 241 571 3 10.929 10.935 10.929 1306.08

62.5 242 475 33 10.931 10.934 10.926 1305.80

62.5 243 476 37 10.929 10.936 10.925 1305.76

62.5 244 403 10 10.929 10.929 10.929 1305.41

62.5 245 544 13 10.927 10.930 10.932 1305.73

62.5 246 503 3 10.928 10.928 10.932 1305.53

62.5 247 407 33 10.925 10.932 10.932 1305.63

62.5 248 405 42 10.931 10.932 10.923 1305.28

62.5 249 507 27 10.927 10.930 10.935 1305.97

62.5 250 471 20 10.927 10.936 10.921 1305.08

62.5 251 406 36 10.929 10.937 10.920 1305.23

62.5 252 511 28 10.927 10.931 10.935 1306.00

62.5 253 470 18 10.924 10.936 10.930 1305.74

62.5 254 473 16 10.927 10.931 10.932 1305.83

62.5 255 434 0 10.928 10.928 10.930 1305.21

62.5 256 477 16 10.930 10.935 10.926 1305.81

62.5 257 483 11 10.929 10.934 10.928 1305.80
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

62.5 258 407 16 10.925 10.933 10.930 1305.54

62.5 259 510 30 10.925 10.933 10.934 1305.94

62.5 260 409 0 10.927 10.927 10.934 1305.53

62.5 261 406 14 10.929 10.934 10.924 1305.48

62.5 262 471 0 10.931 10.928 10.933 1305.99

62.5 263 411 15 10.929 10.934 10.925 1305.47

62.5 264 478 0 10.928 10.931 10.933 1305.97

62.5 265 439 33 10.926 10.932 10.934 1305.97

62.5 266 411 11 10.927 10.931 10.930 1305.54

62.5 267 372 24 10.933 10.935 10.919 1305.38

62.5 268 376 24 10.929 10.936 10.917 1304.85

62.5 269 340 0 10.927 10.931 10.926 1305.00

62.5 340 511 28 10.930 10.927 10.935 1305.99

62.5 341 543 13 10.932 10.928 10.933 1306.07

62.5 342 473 16 10.931 10.926 10.932 1305.71

62.5 343 507 27 10.930 10.926 10.935 1305.97

62.5 344 574 14 10.932 10.928 10.933 1306.08

62.5 345 570 3 10.935 10.930 10.928 1306.08

62.5 346 478 38 10.937 10.929 10.920 1305.28

62.5 347 407 36 10.936 10.928 10.919 1305.02

62.5 348 407 32 10.932 10.925 10.931 1305.48

62.5 349 511 31 10.930 10.926 10.935 1305.97

62.5 350 471 19 10.936 10.926 10.924 1305.25

62.5 351 404 12 10.927 10.927 10.931 1305.24

62.5 352 476 34 10.934 10.931 10.924 1305.57

62.5 353 542 11 10.931 10.929 10.932 1305.97

62.5 354 503 3 10.928 10.928 10.932 1305.46

62.5 355 405 42 10.931 10.930 10.924 1305.13

62.5 356 473 3 10.931 10.928 10.931 1305.69

62.5 357 434 0 10.927 10.928 10.930 1305.21

62.5 358 508 36 10.931 10.927 10.935 1306.01

62.5 359 471 19 10.935 10.928 10.925 1305.38

62.5 360 482 11 10.934 10.929 10.928 1305.83

62.5 361 411 15 10.933 10.929 10.925 1305.36

62.5 362 408 0 10.931 10.931 10.930 1305.97

62.5 363 477 0 10.931 10.929 10.939 1306.78

62.5 364 407 17 10.931 10.923 10.932 1305.31

62.5 365 476 16 10.934 10.930 10.927 1305.96

62.5 366 510 31 10.932 10.926 10.934 1305.98

62.5 367 406 14 10.934 10.930 10.922 1305.29

62.5 368 440 34 10.932 10.925 10.933 1305.71

62.5 369 471 0 10.928 10.931 10.934 1306.00

62.5 370 376 24 10.937 10.930 10.918 1305.06

62.5 371 411 12 10.931 10.927 10.931 1305.51
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

62.5 372 340 0 10.932 10.927 10.927 1305.16

62.5 373 372 25 10.935 10.932 10.919 1305.41

62.5 47 650 35 10.934 10.939 10.921 1306.16

62.5 48 617 31 10.933 10.937 10.926 1306.55

62.5 49 617 8 10.934 10.935 10.926 1306.36

62.5 50 579 45 10.932 10.937 10.927 1306.34

62.5 51 643 14 10.936 10.937 10.923 1306.45

62.5 52 645 4 10.935 10.936 10.927 1306.61

62.5 53 551 27 10.936 10.937 10.923 1306.31

62.5 54 548 31 10.934 10.938 10.922 1306.16

62.5 55 478 41 10.933 10.932 10.924 1305.60

62.5 56 580 43 10.935 10.935 10.925 1306.34

62.5 57 543 21 10.935 10.932 10.925 1305.96

62.5 58 478 11 10.928 10.932 10.930 1305.80

62.5 59 479 50 10.933 10.933 10.925 1305.86

62.5 60 543 32 10.936 10.935 10.923 1306.24

62.5 61 512 4 10.931 10.932 10.931 1306.25

62.5 62 478 29 10.932 10.937 10.921 1305.72

62.5 63 543 35 10.936 10.938 10.921 1306.29

62.5 64 508 3 10.929 10.934 10.928 1305.84

62.5 65 509 50 10.930 10.930 10.933 1306.10

62.5 66 473 21 10.932 10.929 10.930 1305.88

62.5 67 573 7 10.933 10.936 10.925 1306.20

62.5 68 550 38 10.936 10.936 10.921 1306.19

62.5 69 552 30 10.935 10.937 10.921 1306.09

62.5 70 475 49 10.929 10.935 10.926 1305.77

62.5 71 543 24 10.933 10.937 10.921 1305.97

62.5 72 579 49 10.937 10.936 10.922 1306.36

62.5 73 483 10 10.933 10.928 10.930 1305.74

62.5 74 478 49 10.935 10.934 10.922 1306.00

62.5 75 508 21 10.934 10.931 10.928 1306.03

62.5 76 551 23 10.935 10.934 10.921 1305.86

62.5 77 481 41 10.931 10.935 10.926 1305.99

62.5 78 511 10 10.933 10.931 10.928 1305.96

62.5 79 551 31 10.934 10.937 10.921 1306.02

62.5 80 473 33 10.932 10.935 10.921 1305.61

62.5 81 509 52 10.935 10.934 10.920 1305.61

62.5 82 574 8 10.933 10.936 10.925 1306.18

62.5 83 450 20 10.933 10.933 10.922 1305.52

62.5 84 412 45 10.934 10.933 10.919 1305.32

62.5 85 479 32 10.937 10.932 10.921 1305.81

62.5 86 483 28 10.935 10.932 10.922 1305.63

62.5 87 411 50 10.933 10.934 10.918 1305.13

62.5 88 480 43 10.930 10.931 10.932 1306.07
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Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

62.5 89 479 46 10.933 10.934 10.925 1305.87

62.5 90 408 48 10.931 10.933 10.922 1305.34

62.5 91 406 46 10.935 10.928 10.925 1305.42

62.5 92 509 41 10.937 10.931 10.924 1305.88

62.5 93 377 33 10.933 10.934 10.918 1305.20

62.5 94 407 7 10.934 10.927 10.929 1305.70

62.5 95 412 12 10.931 10.932 10.930 1306.11

62.5 96 407 43 10.935 10.930 10.921 1305.17

62.5 97 411 33 10.935 10.930 10.920 1305.16

62.5 98 476 8 10.934 10.931 10.924 1305.73

62.5 99 408 47 10.930 10.931 10.929 1305.81

75.0 10 438 32 10.931 10.935 10.919 1305.19

75.0 11 554 6 10.932 10.937 10.923 1305.96

75.0 123 553 7 10.936 10.932 10.925 1306.19

75.0 124 369 29 10.934 10.933 10.920 1305.29

75.0 12 517 6 10.931 10.937 10.924 1305.96

75.0 125 367 32 10.929 10.934 10.923 1305.31

75.0 126 483 1 10.933 10.928 10.928 1305.67

75.0 127 518 6 10.936 10.931 10.922 1305.68

75.0 128 440 33 10.935 10.935 10.920 1305.72

75.0 129 438 33 10.936 10.933 10.919 1305.54

75.0 130 624 0 10.933 10.933 10.930 1306.50

75.0 131 290 27 10.931 10.931 10.920 1304.83

75.0 132 291 24 10.931 10.931 10.923 1305.11

75.0 13 291 22 10.929 10.930 10.926 1305.22

75.0 133 254 22 10.930 10.930 10.922 1304.86

75.0 134 515 0 10.930 10.929 10.934 1306.02

75.0 135 364 13 10.928 10.926 10.931 1305.18

75.0 136 364 13 10.926 10.928 10.932 1305.22

75.0 137 515 1 10.934 10.933 10.927 1306.15

75.0 138 477 12 10.933 10.933 10.922 1305.61

75.0 139 366 49 10.925 10.928 10.934 1305.42

75.0 140 365 45 10.932 10.931 10.927 1305.78

75.0 141 483 0 10.928 10.928 10.933 1305.74

75.0 142 251 29 10.927 10.927 10.930 1304.97

75.0 14 290 28 10.931 10.932 10.919 1304.79

75.0 143 251 30 10.927 10.927 10.932 1305.13

75.0 144 217 46 10.927 10.928 10.924 1304.38

75.0 145 216 45 10.929 10.929 10.924 1304.75

75.0 15 254 24 10.933 10.932 10.918 1304.88

75.0 16 369 29 10.933 10.934 10.920 1305.28

75.0 17 367 32 10.934 10.930 10.922 1305.32

75.0 18 483 0 10.929 10.933 10.927 1305.68

75.0 19 444 32 10.935 10.933 10.919 1305.31

Continued on next page
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fraction [%] pattern [#] Erel [meV] Eg [meV] a [Å] b [Å] c [Å] volume [Å3]

75.0 20 426 37 10.935 10.932 10.922 1305.60

75.0 21 391 27 10.928 10.929 10.930 1305.37

75.0 22 387 11 10.929 10.927 10.931 1305.30

75.0 23 354 45 10.935 10.931 10.919 1305.11

75.0 24 370 40 10.929 10.930 10.929 1305.56

75.0 25 373 22 10.929 10.927 10.932 1305.45

75.0 26 459 29 10.933 10.932 10.923 1305.50

75.0 27 425 37 10.936 10.929 10.922 1305.44

75.0 28 426 39 10.935 10.933 10.918 1305.27

75.0 29 387 38 10.932 10.931 10.923 1305.26

75.0 30 370 30 10.931 10.929 10.926 1305.33

75.0 31 446 32 10.935 10.931 10.918 1305.10

75.0 32 445 32 10.937 10.932 10.920 1305.60

75.0 33 442 30 10.932 10.933 10.928 1306.08

75.0 34 371 33 10.934 10.931 10.918 1304.84

75.0 35 387 38 10.932 10.931 10.923 1305.26

75.0 36 425 39 10.936 10.930 10.919 1305.16

75.0 37 373 22 10.929 10.927 10.932 1305.46

75.0 38 372 31 10.932 10.927 10.929 1305.55

75.0 39 353 43 10.935 10.928 10.923 1305.29

75.0 40 394 18 10.926 10.928 10.933 1305.40

75.0 41 372 43 10.933 10.932 10.919 1305.09

75.0 42 354 45 10.935 10.931 10.919 1305.12

75.0 43 390 25 10.930 10.931 10.931 1305.90

75.0 44 317 39 10.930 10.930 10.924 1305.00

75.0 45 353 45 10.936 10.930 10.919 1305.20

75.0 46 372 32 10.932 10.927 10.929 1305.50

75.0 8 623 0 10.937 10.933 10.930 1306.85

75.0 9 440 33 10.933 10.934 10.920 1305.43

87.5 2 263 2 10.930 10.931 10.924 1305.09

87.5 3 298 34 10.932 10.932 10.917 1304.53

87.5 4 196 8 10.931 10.930 10.921 1304.77

87.5 5 196 7 10.928 10.929 10.924 1304.73

87.5 6 226 25 10.930 10.930 10.918 1304.41

87.5 7 262 2 10.931 10.930 10.924 1305.20

100.0 1 0 66 10.929 10.929 10.923 1304.63

161



Appendix A Modified Cu2ZnSnSxSe4−x Bulk Structures

Table A.3: Statistical analysis of the Bader charges for each disorder fraction at the PBE-level.

0 % 12.5 %
atom Cu Sn Zn S Cu Sn Zn S
min 0.475 1.382 0.849 -0.796 0.474 1.362 0.839 -0.830
1st quart 0.475 1.382 0.849 -0.796 0.475 1.372 0.847 -0.801
median 0.477 1.382 0.849 -0.796 0.478 1.378 0.851 -0.796
mean 0.477 1.382 0.849 -0.796 0.479 1.376 0.849 -0.796
3rd quart 0.478 1.382 0.849 -0.796 0.482 1.381 0.853 -0.791
max 0.478 1.382 0.849 -0.796 0.486 1.382 0.854 -0.758

25.0 % 37.5 %
atom Cu Sn Zn S Cu Sn Zn S
min 0.470 1.355 0.840 -0.841 0.471 1.353 0.842 -0.843
1st quart 0.476 1.369 0.848 -0.805 0.477 1.368 0.850 -0.811
median 0.479 1.373 0.851 -0.797 0.480 1.372 0.852 -0.797
mean 0.480 1.374 0.851 -0.796 0.481 1.372 0.852 -0.797
3rd quart 0.483 1.377 0.854 -0.788 0.484 1.376 0.854 -0.784
max 0.495 1.390 0.864 -0.747 0.498 1.394 0.864 -0.742

50.0 % 62.5 %
atom Cu Sn Zn S Cu Sn Zn S
min 0.470 1.353 0.843 -0.850 0.471 1.353 0.842 -0.845
1st quart 0.478 1.367 0.850 -0.813 0.477 1.368 0.850 -0.810
median 0.481 1.371 0.852 -0.797 0.480 1.372 0.852 -0.797
mean 0.481 1.372 0.852 -0.797 0.481 1.372 0.852 -0.797
3rd quart 0.484 1.376 0.854 -0.783 0.484 1.376 0.854 -0.786
max 0.497 1.393 0.863 -0.741 0.498 1.395 0.865 -0.742

75.0 % 87.5 %
atom Cu Sn Zn S Cu Sn Zn S
min 0.470 1.355 0.840 -0.840 0.474 1.362 0.839 -0.831
1st quart 0.476 1.370 0.848 -0.805 0.476 1.372 0.847 -0.801
median 0.479 1.374 0.851 -0.797 0.478 1.378 0.851 -0.796
mean 0.480 1.374 0.851 -0.797 0.479 1.376 0.850 -0.796
3rd quart 0.483 1.378 0.854 -0.787 0.481 1.381 0.853 -0.791
max 0.495 1.390 0.864 -0.748 0.487 1.382 0.854 -0.758

100.0 %
atom Cu Sn Zn S
min 0.476 1.381 0.849 -0.796
1st quart 0.476 1.381 0.849 -0.796
median 0.477 1.381 0.849 -0.796
mean 0.477 1.381 0.849 -0.796
3rd quart 0.478 1.381 0.849 -0.796
max 0.478 1.381 0.849 -0.796
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Figure A.4: HSE06 DOS on top of the PBE-optimized structure for structure (b) and the
reference structure (a) with their occurring binding motifs. The Fermi energy of
the different structures are aligned for comparison. Zn is shown in pink, Cu in
brown, Sn in gray and S in yellow.
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Figure A.5: HSE06 DOS on top of the PBE-optimized structure for structure (c) and the
reference structure (a) with their occurring binding motifs. The Fermi energy of
the different structures are aligned for comparison. Zn is shown in pink, Cu in
brown, Sn in gray and S in yellow.
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Nanostructuring by Cu2ZnSnS4 Surfaces

Table B.1: Surface energies of unrelaxed and relaxed CZTS surfaces obtained by eq. 4.2 and
the extrapolation scheme after eq. 4.4 in J/m2 at the PBE-level.

(001) (100) (110)
term. urlx rlx term. urlx rlx term. urlx rlx
t1† 1.661 0.877 t1† 2.288 1.897 t1a† 2.004 1.753
t2† 2.471 2.057 t2⋆ 0.481 -0.162 t1b† 0.670 0.165
t3† 0.395 0.299 t3† 1.878 1.335 t2a† 0.977 0.656
t4† 1.217 0.810 t4† 0.901 0.390 t2b† 0.430 0.248
t1+t4 2.832 1.656 t5† 1.310 0.948 t3a† 1.379 0.488
t2+t3 2.823 2.338 t1+t2 2.769 1.735 t3b† 1.508 0.908

t3+t4 2.766 1.700 t1a+t1b 2.652 1.889
t5+t5 2.612 1.804 t2a+t2b 1.416 0.870

t3a+t3b 2.818 1.382
(101) (111) (112)

term. urlx rlx term. urlx rlx term. urlx rlx
t1a+t1b 1.912 1.150 t1a+t1b 2.482 1.107 t1a+t1b 4.854 2.339
t2a+t2b 1.965 1.106 t2a+t2b 1.915 1.047 t2a+t2b 4.047 1.742
t3a+t3b 1.842 1.114 t3a+t3b 1.428 0.839 t3a+t3b 3.154 1.422
t4a+t4b 2.191 1.527 t4a+t4b 2.458 1.461 t4a+t4b 2.282 1.265
t5a+t5b 2.090 1.504 t5a+t5b 2.073 1.163 t5a+t5b 1.361 0.768
t6a+t6b 2.193 1.386 t6a+t6b 1.442 0.856
t7a+t7b 2.316 1.396
t8a+t8b 1.608 0.770
† extrapolation scheme after eq. 4.4
tx+ty conventional scheme after eq. 4.2
⋆ t1+t2-t1†
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Table B.2: Relaxation energies in J/m2 for all calculated surfaces at the PBE-level. The re-
laxation energies are obtained by double-sided slab relaxations (tx+ty) and single-
sided relaxations (∗) after eq. 4.2.

(001) (100) (110)
term. Erelax term. Erelax term. Erelax

t1∗ 0.766 t1∗ 0.436 t1a∗ 0.256
t2∗ 0.399 t2∗ 0.685 t1b∗ 0.507
t3∗ 0.085 t1+t2 1.034 t1a+t1b 0.762
t4∗ 0.399 t3∗ 0.554 t2a∗ 0.352
t1+t4 1.176 t4∗ 0.510 t2b∗ 0.194
t2+t3 0.485 t3+t4 1.066 t2a+t2b 0.546

t5∗ 0.404 t3a∗ 0.887
t5+t5 0.808 t3b∗ 0.550

t3a+t3b 1.436
(101) (111) (112)

term. Erelax term. Erelax term. Erelax

t1a∗ 0.266 t1a∗ 0.782 t1a∗ 1.228
t1b∗ 0.494 t1b∗ 0.416 t1b∗ 0.901
t1a+t1b 0.762 t1a+t1b 1.376 t1a+t1b 2.515
t2a∗ 0.557 t2a∗ 0.585 t2a∗ 1.500
t2b∗ 0.303 t2b∗ 0.279 t2b∗ 0.801
t2a+t2b 0.859 t2a+t2b 0.868 t2a+t2b 2.305
t3a∗ 0.057 t3a∗ 0.471 t3a∗ 1.170
t3b∗ 0.667 t3b∗ 0.113 t3b∗ 0.556
t3a+t3b 0.729 t3a+t3b 0.589 t3a+t3b 1.732
t4a∗ 0.312 t4a∗ 0.595 t4a∗ 0.642
t4b∗ 0.351 t4b∗ 0.402 t4b∗ 0.286
t4a+t4b 0.664 t4a+t4b 0.998 t4a+t4b 1.016
t5a∗ 0.302 t5a∗ 0.563 t5a∗ 0.558
t5b∗ 0.283 t5b∗ 0.348 t5b∗ 0.036
t5a+t5b 0.586 t5a+t5b 0.910 t5a+t5b 0.594
t6a∗ 0.663 t6a∗ 0.409
t6b∗ 0.144 t6b∗ 0.183
t6a+t6b 0.807 t6a+t6b 0.586
t7a∗ 0.309
t7b∗ 0.611
t7a+t7b 0.919
t8a∗ 0.596
t8b∗ 0.243
t8a+t8b 0.838
∗ single-sided relaxation after eq. 4.2
tx+ty double-sided relaxation after eq. 4.2
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Figure B.1: Bader charges for every relaxed slab of the (001) surface. Zn is shown in pink, Cu
in brown, Sn in gray and S in yellow.
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Figure B.2: Bader charges for every relaxed slab of the (100) surface. Zn is shown in pink, Cu
in brown, Sn in gray and S in yellow.
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Figure B.3: Bader charges for every relaxed slab of the (110) surface. Zn is shown in pink, Cu
in brown, Sn in gray and S in yellow.
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Figure B.4: Bader charges for every relaxed slab of the (101) surface. Zn is shown in pink, Cu
in brown, Sn in gray and S in yellow.
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Figure B.5: Bader charges for all relaxed slabs of the (111) surface. Zn is shown in pink, Cu
in brown, Sn in gray and S in yellow.
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Figure B.6: Bader charges for all relaxed slabs of the (112) surface. Zn is shown in pink, Cu
in brown, Sn in gray and S in yellow.
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Figure B.7: Surface DOS of all relaxed stoichiometric (001) slabs at the PBE-level. The dif-
ferent spin components are denoted by ↑ and ↓.
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Figure B.8: Surface DOS of all relaxed stoichiometric (100) slabs at the PBE-level. The dif-
ferent spin components are denoted by ↑ and ↓.
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Figure B.9: Surface DOS of all relaxed stoichiometric (110) slabs at the PBE-level. The dif-
ferent spin components are denoted by ↑ and ↓.
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Figure B.10: Surface DOS of the relaxed (101) slabs at the PBE-level. The different spin
components are denoted by ↑ and ↓.
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Figure B.11: Surface DOS of all relaxed stoichiometric (111) slabs at the PBE-level. The
different spin components are denoted by ↑ and ↓.
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Figure B.12: Surface DOS of all relaxed stoichiometric (112) slabs at the PBE-level. The
different spin components are denoted by ↑ and ↓.
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Figure B.13: PBE surface band structure for the most stable stoichiometric slab of the (001)
surface. The different band structures show the projection of the band structure
onto different parts of the slab. The bulk-like layer bands are a band structure
projection on the middle layer in the slab. The top termination bands and bottom
termination bands are the projections of the band structure on the terminating
layers of the slab. The projections are indicated by a dotted line.
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Figure B.14: PBE surface band structure for the most stable stoichiometric slab of the (100)
surface. The different band structures show the projection of the band structure
onto different parts of the slab. The bulk-like layer bands are a band structure
projection on the middle layer in the slab. The top termination bands and bottom
termination bands are the projections of the band structure on the terminating
layers of the slab. The projections are indicated by a dotted line.
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Figure B.15: PBE surface band structure for the most stable stoichiometric slab of the (110)
surface. The different band structures show the projection of the band structure
onto different parts of the slab. The bulk-like layer bands are a band structure
projection on the middle layer in the slab. The top termination bands and bottom
termination bands are the projections of the band structure on the terminating
layers of the slab. The projections are indicated by a dotted line.
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Figure B.16: PBE surface band structure for the most stable stoichiometric slab of the (101)
surface. The different band structures show the projection of the band structure
onto different parts of the slab. The bulk-like layer bands are a band structure
projection on the middle layer in the slab. The top termination bands and bottom
termination bands are the projections of the band structure on the terminating
layers of the slab. The projections are indicated by a dotted line.
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Figure B.17: PBE surface band structure for the most stable stoichiometric slab of the (111)
surface. The different band structures show the projection of the band structure
onto different parts of the slab. The bulk-like layer bands are a band structure
projection on the middle layer in the slab. The top termination bands and bottom
termination bands are the projections of the band structure on the terminating
layers of the slab. The projections are indicated by a dotted line.
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Figure B.18: PBE surface band structure for the most stable stoichiometric slab of the (112)
surface. The different band structures show the projection of the band structure
onto different parts of the slab. The bulk-like layer bands are a band structure
projection on the middle layer in the slab. The top termination bands and bottom
termination bands are the projections of the band structure on the terminating
layers of the slab. The projections are indicated by a dotted line.
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