Appendix A

Abbreviations

AO
AES
AFM
BIS
BLAS
COHSEX
CPU
DFT
DOS
EXX
FET
FFT
GGA
GW

GWA
ELS-LEED
HEG
HREELS
IPES

IR

IRAS

KS

atomic orbital

Auger emission spectroscopy

atomic force microscopy

bremsstrahlung isochromat spectroscopy

basic linear algebra subroutines

Coulomb-hole / screened exchange

central processing unit

density functional theory

density of states

exact exchange

field effect transistor

fast Fourier transform

generalised gradient approximation

is no abbreviation, but stands for the product of Green’s func-
tion G and screened interaction W

GW approximation

energy-loss spectroscopy of low-energy electron diffraction
homogeneous electron gas

high resolution electron energy loss spectroscopy
inverse photoemission spectroscopy

infrared

infrared reflection absorption spectroscopy
Kohn-Sham

127



Abbreviations Chapter A
LAPW  linear augmented plane waves
LCAO  linear combination of atomic orbitals
LDOS  local density of states
LDA local-density approximation
LEED low-energy electron diffraction
LEIS low-energy ion scattering
MBPT  many-body perturbation theory
MIES metastable impact electron spectroscopy
ML monolayer
OEP optimised effective potential
PES photoemission spectroscopy
PRE parallel repetition error
RPA random phase approximation
SCF self-consistent field
SXRD  surface X-ray diffraction
STM scanning tunnelling microscopy
UPS ultraviolet photoelectron spectroscopy
UV-VIS ultraviolet & visible [light]
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction
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Appendix B

Dielectric models

B.1 Image-charge method for dielectric layer
models

In this section a simple scheme is presented to compute the screened inter-
action in laterally homogeneous model systems with a layered structure (cf.
Fig. B.1a). Each layer z has the same thickness L and a layer-specific di-
electric constant €,. To simplify the notation, we work with reduced units
in the following, i.e. lengths are measured in units of L, charges in units of
the unit charge (), and potentials in units of )/L. Our coordinate system is
chosen such that the layers are centred around integer L, and the interfaces
are at half integer L. We note that any given dielectric profile e(z) can be
approximated by such a layer model when the profile is discretised into in-
dividual layers of a sufficiently small thickness. For the model calculations
in this work, we usually use L=1 bohr. At the boundary between two layers
we assume sharp interfaces so that the dielectric constant jumps from ¢, to
Ez41-

The screened interaction W (r, r’) is obtained as the potential V' (r) when a
unit charge is placed at r'. We compute V (r) by the method of image charges
[90]. As an introductory remark, let us first consider the textbook situation
of two semi-infinite dielectric media 4 and Q5 with dielectric constants €4
and e, sketched in Fig. B.1b. For a charge ¢ at 1’ in 4, the potential V' (r)
is given by

1 q q//

Qu: V = — B.1
recily (I') €4 <‘I' _ I'/| + ‘I' _ I'//‘ ) ( )
reQy V) = L4 (B.2)

B e r—r|’ '
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a) b)
4 LI | | T T 81 82
3__ [ __ charge image charge
— - ) q ”
- — [ R or
,l:l\z_ 1 —r—>
w d d
1 >»Z
| ,1,1,111111,1,1,11111
0O 5 10 15

z [L]

Figure B.1: a) Dielectric layer model. b) Charge and image charge at a
dielectric interface.

where ¢’ and ¢” are image charges. They are determined from the continuity
equations of the electric field and the electric displacement at the interface,
yielding

2ep €A —EB
B B.3 n_ZA"°B . B.4
(=1 (B.3) =1 (B.4)

r” is obtained by reflecting r’ at the interface, and we will therefore denote
q" as “reflected charge”, whereas the effect of ¢ is propagated into Qg by
the “propagated charge” ¢’. The image charges ¢’ and ¢” are no physically
observable charges, but only mathematical constructs to simplify the compu-
tation of the potential. Most importantly, the image charges for the potential
on one side of the interface are always located on the other side of the in-
terface, whereas the original charge is on the same side. This criterion is
useful in multi-layer systems to identify the interfaces for higher-order image
charges.

In order to develop a computational scheme for a multi-layer system, a
proper book-keeping is crucial to keep track of the various image charges.
For reasons that will become clear below, we denote an image charge that
contributes to the potential in layer z and is located at z + od by ¢(z,d, o),
where d > 0 is the distance from the layer and ¢ = £1. To show that the
image charges can be determined iteratively we will now derive the iteration
for d — d+ 1. Consider a charge ¢(z,d, o) relevant for the potential in layer
z. Due to the interface at z — %a two additional image charges appear. The
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Chapter B B.1. Image-charge method for dielectric layer models
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Figure B.2: a) Iterative determination of image charges (see text). b) Com-
putation of the potential from the image charges.

reflected image charge, located at

imy - ((z+ad)—(z—§)) =z—o(d+1) (B.5)

interface  distance from interface
describes the potential in layer z and is given by (cf. Eq. B.4)
€z~ Ez—0¢

rf
z,d+1,—0) =
q"( ) P

q(z,d,0) . (B.6)
The propagated image charge remains at the position z + od and describes
the potential in layer z — o. Using our book-keeping notation and Eq. B.3 it
can be written as

26,0

¢*(z—0,d+1,0) = q(z,d,0) . (B.7)

P
Obviously, the distance parameter is increased by 1 for each interface taken
into account. The image charges for the distance d+ 1 can thus be computed
iteratively from those at distance d and will in general combine a reflected
and a propagated contribution ¢ = ¢t + ¢*".

The dielectric discontinuity at the interfaces between two layers intro-
duces a divergence of the potential close to the interface. However, this is an
artefact of assuming homogeneous layers with sharp interfaces. To avoid it,
we restrict the position of the original charge to the center of each slab; the
image charges are then located at the center of a layer, too. The iterations
are then started by setting

q(20,0,£1) =1. (B.8)
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The flow of the iterations is schematically depicted in Fig. B.2. Each
rectangular box in the scheme corresponds to one image charge ¢(z,d, o)
and the red (light blue) arrows indicate the reflected (propagated) contribu-
tions to the image charges of the next generation. For clarity, only the flow
for q(z0,0, —1) is shown. In practice, the iterations are stopped at some dax
which thereby becomes a convergence parameter. In the iteration scheme
in Fig. B.2a this corresponds to stop going to the right. In addition, we
truncate the system and neglect image charges that fall outside, which cor-
responds to ignoring charges at the bottom or the top in Fig. B.2a. This
truncation becomes a second convergence parameter. The convergence for
both parameters was tested by doubling the parameter until the changes
became negligible.

The screened potential depends on the layer z and the lateral distance
p from the vertically aligned image charges. By summing the Coulomb po-
tential of all the image charges relevant for this layer (cf. Fig. B.2b), we
obtain

dmax (z,d, 0)

V(z+(p) = 82(;]20:\/( C—odr 1

where ¢ denotes the vertical position within the layer (|¢| < 1). We usually
restrict the calculation to ¢ = 0. When Eq. B.9 is evaluated successively
during the iterations, there is no need to store the image charges for all d,
which makes the implementation very memory-efficient.

(B.9)

B.2 Connection to GoW: the static COHSEX
approximation

In this section, we will show how the screened interaction calculated from di-
electric models can be used to estimate changes in the quasiparticle energies.
In the end, we will arrive at a very simple scissors operator. We will then
show that the same result can be obtained by considering the image-potential
energy of the charged N+41-electron systems that result from an electronic
excitation.

The GoWj self-energy can be decomposed into physically meaningful en-
tities. One such possibility is to decompose it into a screened exchange and
a Coulomb-hole part. To this end, we start from the expression for the
self-energy in the frequency domain

Y(r, v, w) /dw Golr, ', w + W Wo(r, ', w')e® ™ . (B.10)
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Chapter B The static COHSEX approximation

The residual theorem states that only the poles of Gy and W, contribute to
the integral. Closing the integration contour above the real axis includes only
the poles of the Green’s function for the occupied states [23], which leads to
the screened exchange self energy

occ

Y (r, 1’ w) Z¢n Wir,r',w—e,). (B.11)

The poles of the screened interaction are given by the plasmon energies
+(w, —i07), i.e.

2wy Xp(1) X5 (1)

w? — (wp —i01)2”’ (B12)

W(r, v, w,) =v(r,r)+>

p

where x, denotes the corresponding plasmon functions. When we expand
also Gy in its spectral representation, we arrive at the Coulomb-hole self-
energy
Gn (1)@ (1) )
Zcoh I' r' w ZZ XP(F)XP(I',) : (B13)
w— wp — €,
Assuming a static interaction (or more precisely, w — ¢, < w, for the fre-
quency range of interest) leads to the static COHSEX approximation. Com-
parison of the equations for ¥ ., and ¥, to Eq. B.12 for w = 0 and exploiting
the identity

Y ou(r)ey(r') = d(r — 1) (B.14)
we obtain
S = Seon + Sex s (B.15)
Sen(r, 1) = %(W(r, ¥) — v(r — )3 — 1) | (B.16)
Y (r, ') = — §¢n(r)¢2(r’)W(r,r’) ) (B.17)

A particularly useful expression can be derived from the static COHSEX
approach when it is applied to long-range screening effects in separated sub-
systems. For each subsystem, the presence of the other subsystems does
not alter the Green’s function. However, the polarisation of the other sub-
systems adds a contribution AWP to the screened interaction which varies
only smoothly, i.e., is essentially constant over the subsystem as shown in
Section 3.3.3. The additional self-energy then becomes

unocc 1 occ

AYP(r,T) Z b (1)0% (1) AWP — —Z% ()AWP . (B.18)
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This is a symmetric scissors operator that opens the quasiparticle gap by
AWP.

We arrive at the same result by considering the change in the total energy
Eny1 s after the electronic excitation. The induced image-potential in the
charged final state shifts the energy by %AW for both positively charged
(hole) states or negatively charged (electron) states. The hole energy is (cf.
2.34)

1 .
€s = EN,O — (EN—I,S + §AW> < EFOrml (Blg)

and corresponds to occupied states in the initial system, which are thus
shifted by —$AW. For the electron energy (cf. 2.35)

1 .
€s = (Eng1s+ 5AW) — Eng > EFer™ (B.20)

the opposite is true: the final state effect shifts the unoccupied band energy
by +3AW.
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Appendix C

Ultrathin oxide films

C.1 Alternative terminations for the a-quartz
(0001)

In order to see if the siloxane surface is the most stable surface termination
for silica slabs at all thicknesses, we have also investigated unreconstructed
quartz slabs with three possible terminations: a Si-terminated surface con-
taining two-fold coordinated silicon atoms at the surface, a O;-terminated
where a single oxygen atom is added to the Si-termination, and an Os-
termination with two oxygen atoms per Si surface atom. Only the O;-
terminated surface yields stoichiometric slabs, whereas the Si-termination
(Oq-termination) has a silicon (oxygen) excess. The O;-terminated surface
exhibits an almost planar configuration at the surface silicon atom with a
relatively short Si-O bond (1.50 A). An analysis of the electronic wavefunc-
tions reveals that no strong double-bond character can be detected and that
it is better described as a SiT—O~ entity where the short bond results from
a strong Coulomb attraction. We note here that the the Si;Og film with an
O;-termination spontaneously decomposed into two reconstructed Si;Oy4 lay-
ers during a standard relaxation. Only when some of the central atoms were
kept frozen, the structure analogous to the SizOg and SizOq¢ films could be
obtained. This indicates that such under-coordinated Si-O species are highly
reactive and may play an important role in the restructuring processes in
real materials. Also at the Os-terminated surface, we observe a reaction:
the oxygen atoms dimerise. The resulting structure can be understood as a
peroxide ion coordinated side-on to the silicon centre (cf. Fig. C.1). This
assignment is supported by the O-O bond length of 1.60 A characteristic for
oxygen single bonds, and by the electronic structure. Similar dimerisations
are observed when oxygen atoms are adsorbed on oxide surfaces [148].
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Figure C.1: The relaxed Os-terminated surface structure with a direct O-O
peroxide bond.
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Figure C.2: Formation energies (DFT-LDA) of thin quartz-like slabs with
various terminations as well as the reconstructed silica slabs as a function of
thickness.
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Chapter C C.2. Surface-projected density of states

surface region
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Figure C.3: Definition of the surface region for the Mo;(Si;O5 system.

In Fig. C.2 the formation energies of the slabs from bulk a-quartz and
molecular oxygen' according to

n Si0, + % Oy — SinOsnim

are plotted as a function of n. m is the surface oxygen excess, ranging from
-2 for the Si-terminated slab to +2 for the Os-terminated one. The non-
reconstructed structures show no visible dependence of the formation energy
on the slab thickness. In other words the formation energy is determined by
the surface only and reaches a constant value already for very small slabs.
The formation energy of the reconstructed slabs on the other hand shows
more oscillations. For slabs up to n = 6, this reflects the variations in the
slab structure since a quartz-like central part is present only from n = 6 on.
However, the oscillations continue even for thicker slabs. This can be traced
back to the misfit of the siloxane surface structure to the quartz substrate.
The resulting strain is accommodated in the substrate and decays only slowly
with increasing depth. This can also be monitored by the Si-O-Si angle —
the most sensitive parameter to structural deformations — which approaches
its bulk value of 140° only slowly with increasing depth. The reconstructed
films are more stable than the other terminations, which is not surprising
since all dangling bonds are saturated after the reconstruction.

C.2 Surface-projected density of states

For a meaningful comparison between different substrates, the DOS must be
projected onto the surface region. Here, we will describe how we define the

1Spin-polarized O, with the theoretical bond of 1.209 A. To employ the plane-wave
code, the molecule is placed in a large simulation box.
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C.2. Surface-projected density of states Chapter C

surface region and perform the spatial projection. The z-resolved electron
density for the (pseudo)valence states

o) = 5 [ dedy ple,y.2) (1)

where the integral is taken over the surface unit cell (with area A), exhibits
minima and maxima corresponding to the ionic layers (cf. Fig. C.3). Since
the valence electronic structure of the oxides is dominated by oxygen-derived
states, we can use the minima to divide the system into individual oxygen
layers. The last oxygen layer then defines the surface region €. The surface
local density of states (LDOS) is obtained as

LDOS(E) =Y 6(E —¢,) /Q P fun(r)] (C.2)

i.e. the partial density integrated over {2 is used to weight the peaks in the
DOS.
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Appendix D
NaCl films

D.1 Atomic orbital projections

In order to assess the character of a wave function v, in a crystal, it is often
instructive to decompose it into atomic contributions. While this is very
natural when atom-centred local orbitals are used as basis set to expand the
wavefunction, plane waves are not associated with particular atoms. It is
therefore necessary to project the wavefunctions onto an atomic basis set
[149]. Here, we employ the atomic pseudo-wavefunctions that are used to
define the pseudopotential projectors for this purpose. We denote the atomic
orbitals by x and employ Greek letters pu,v,p for the indices. From these
orbitals, Bloch states x ik are formed.

However, atomic orbital basis sets are in general non-orthogonal, i.e. the
overlap matrix

S;w(k) = <Xuk|Xl/k> (Dl)

is not diagonal. In the following we will employ a notation in analogy to
the covariant and contravariant coordinates in non-orthogonal coordinate
systems. The inverse overlap matrix is then written S*(k), and is defined
by

Z Sp(k)S” (k) = 6, - (D.2)

The projections
Cnu(k) = <Xuk|wnk> (D.3)

then differ from the expansion coefficients c#(k) that generate the crystal
wavefunctions via

Vi) = Z A (K) X ) - (D.4)
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D.2. NaCl: the character of the bulk conduction band Chapter D

The expansion coefficients are connected to the projections by the inverse
overlap matrix S*

ch(k) = ZS‘“’(k)cm(k) . (D.5)
We note that the norm of the wave functions is given in the atomic orbital
basis by

wnk|¢nk Z C; C,uz . (DG)

We then define the projection onto a subset of the atomic orbital basis (in
general orbitals associated with one specific atom or one class of atoms) by
restricting the sum in Equation D.6 to this subset.

The advantage of this technique lies in the fact that it is closely related to
the Mulliken population analysis for atomic orbital basis sets. For example,
summing the projections over occupied states

occ

/ Pk Z (k) (k (D.7)

recovers the Mulliken gross populations g,, which may give a qualitative
picture of the charge redistribution in the solid.

In general, the atomic orbital basis set is not complete. Even including all
atomic orbitals in the sum does not recover the full (plane-wave) norm. This
spill-over amounts to typically 0.5-2% for occupied states but may become
larger for unoccupied states. Since we use the projection onto atomic orbitals
to assess the character of single bands, we do not reorthonormalise the pro-
jected bands as suggested in [149] for the population analysis because this
would mix different bands. The spill-over is largely due to the minimal, non-
adjusted basis set that results from the atomic pseudo-wavefunctions. We
refrain from adapting the atomic orbitals to minimise the spill-over because
we are interested in the qualitative picture and not in numbers.

D.2 NaCl: the character of the bulk conduc-
tion band

While the valence bands of bulk NaCl are easily understood as being derived
from the chlorine 3p orbitals, the character of the lowest conduction band
has proved to be more difficult to assess and has been a matter of discussion
since the earliest investigations by Slater and Shockley [150]. Assigning an
atomic character to a delocalised wavefunction is not unique, and different
methods yield different results for the conduction band in NaCl. A simple
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Figure D.1: Partial density profile of the conduction band minimum along
the (001) direction, suggesting a dominant Cl character. The position of the
Na and Cl atoms is indicated.

linear combination of atomic orbitals (LCAO) picture suggests that the con-
duction bands should be mainly composed of the sodium states. Indeed,
the AO projection technique with the (minimal) atomic pseudo-orbital basis
yields 70-93 % Na character for the lowest conduction band. The maximum
Na character is obtained for the conduction band minimum. However, the
partial density computed from this state is clearly centred on the chlorine
atoms. In Fig. D.1 we show the partial density [¢|? of the conduction band
minimum along the [001] direction through the Na and Cl atoms. The high
density close to the Cl nucleus reveals a dominant Cl character for this state.
Further evidence for a considerable Cl character has been provided by de-
Boer and de Groot [151, 152]: they considered a hypothetical C1~ fcc lattice
with a homogeneous background charge and found that it reproduces the
band structure of NaCl very well. Moreover, they showed that the lowest
conduction state disappears in a muffin-tin sphere calculation when the CI
4s orbital is removed from the basis set. They concluded from this evidence
that the lowest conduction state has mainly Cl 4s character.

Another way to approach this problem is to monitor how the bands de-
velop when the ions are brought together from infinite separation, i.e. by
changing the lattice constant from very large values to its equilibrium value
[150]. At large separations, the ions do not interact and the bands reflect the
ionic levels.! When the ions approach each other, the Madelung potential
will lower the anion states (which are surrounded by the positively charged

"'We note that in this case, the charge transfer from Na to Cl is even endothermic, i.e.
the ground state are Na and Cl atoms rather than Na™ and C1~. We will however assume
a charge-transfer state at all separations.
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Figure D.2: Dependence of the DFT-LDA gap on the lattice constant for
bulk NaCl. The inset shows the same data as function of the inverse lattice
constant.

cations) and destabilise the cation states. A second effect is the broadening
of the ionic levels into bands when the wavefunctions of the ions overlap. It
is then possible that a broadened Cl 4s band drops below the corresponding
Na 3s band at sufficiently small separations, but is this really the case for
NaCl?

The change in the band gap should be a sensitive test for this question.
With decreasing lattice constant, the sodium states will be shifted upward
with respect to the Cl 3p states due to the increase in the Madelung po-
tential. A gap for a sodium-derived conduction band should thus increase.
On the other hand, the Cl 4s band broadening would increase and lead to a
reduction in the band gap if Cl 4s states were dominant in the conduction
band. We have therefore computed the band gap over a large range of lattice
constants, cf. Fig. D.2. We find that the band gap increases with decreas-
ing ion separation.? This indicates an important role of the Na orbitals in
determining the band gap.

However, the influence of the Cl ions for the electronic band structure at
the equilibrium lattice constant cannot be neglected. In agreement with de-
Boer et al., we find that a Cl~ fcc lattice with a neutralising background alone
reproduces the conduction band and even the band gap of bulk NaCl, while
a corresponding Na™ lattice shows a free-electron like band structure. Even
when the CI™ ions are modelled by negative point charges for the Na*-only

2At even smaller lattice constants below 4.2 A, the band gap reduces again since a
further band drops below the dispersive band in question.
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Figure D.3: DFT-LDA band structure of bulk NaCl at a lattice constant of
13.2 A(25bohr).

calculation, strong deviations from the NaCl band structure are observed.
The Cl ions are absolutely crucial for the observed dispersion of the conduc-
tion band. At large lattice constants, however, the Na-derived bands separate
from the dispersive band continuum (cf. Fig. D.3) and cross the Cl 3p level
at ~14 A. Surprisingly, we find at a lattice constant of 13.2 A (25bohr) that
the unoccupied Na 4s states hybridise with the chlorine states and produce a
dispersion reminiscent of bulk NaCl at the equilibrium lattice constant. None
of these aspects can be reproduced with a Cl~ lattice alone. When the lattice
constant is varied between the theoretical equilibrium (5.49A) and 13.2 A,
the lowest conduction band smoothly transforms into the localised Na 3s
band. We thus conclude that the energetic position of the lowest conduction
band is coupled to the Na 3s state, but that the Na 3s state hybridises with
a Cl scattering state (that may be denoted as Cl 4s). This hybridisation is
responsible for the dispersion of the conduction band. That the band struc-
ture of NaCl around the equilibrium lattice constant can be reproduced with
fce C17 alone can be explained by the fact that the scattering behaviour of
the sodium core is similar to that of the vacuum in the relevant energy range.
It does hence not mean that the Na would be irrelevant for the conduction
states, but that a jellium background is a sufficient approximation for the
sodium core in this very case.
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Figure D.4: Schematic representation of the NaCl overlayer on the Ge p(2x1)
dimer surface. Pink: Ge, Blue: Na, Green: Cl.

D.3 Structure of the NaCl/Ge(001) interface

To investigate the interface between a sodium chloride overlayer and the
Ge(001) p(2 x 1) surface, a 2 ML NaCl film was put on top of the buckled-
dimer Ge(001) surface with various lateral shifts ("registry”). Since there
is no experimental evidence that the film thickness influences the interface,
the interface structure was not investigated for other thicknesses. To get
an overview over the potential energy surface, the lateral position of the
top NaCl layer was kept fixed, while the vertical position of this layer was
relaxed. The bottom NaCl and the top four Ge layers were relaxed, too.
For the lateral position of the top layer (“registry”, cf. Fig. D.4), three
linescans along the dimers (x-direction) were performed at Ay=0 (Cl above
the dimer), 0.25 (low-symmetry), and 0.5 (Na above the dimer).® Higher
y-offsets need not be considered due to the mirror symmetry of the NaCl
overlayer and the substrate, respectively. Likewise, the x-offsets above 0.5
(in relative coordinates of the 2 x 1 unit cell) have been obtained by symmetry
considerations since the (unrelaxed) overlayer has a 1 x 1 unit cell. We do
not observe a dimer flip (down-up < up-down) during the relaxation.

The linescans are shown in Fig. D.5. We display the adhesion energy of
the 2 ML NaCl adlayer as a function of the registry; negative values corre-
spond to binding of the overlayer. It can be clearly seen that the displacement
along the dimer plays a very important role. All three linescans have a sim-
ilar shape and agree for the position of the minima (x=0.1) and maxima

3All coordinates are relative with respect to the 2x1 unit cell.
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NaCl/Ge(001): registry scan
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Figure D.5: Linescans for the NaCl registry above the Ge(001) 2 x 1 surface
along the dimers (Az) and in the perpendicular direction (Ay) close to the
minimum.

Ay Az ‘ E

0 0.099 | -0.310eV
0.25 0.100 | -0.306eV
0.5 0.100 | -0.301eV

Table D.1: Minimum search for three displacements Ay perpendicular to the
dimers (Ay is kept fixed).

(x=0.35). The height of the maximum depends on the displacement along
[110] perpendicular to the dimer axis, whereas the minima are all very close
in energy. Therefore, a linescan along [110] was performed for Az = 0.1,
which is shown in the inset in Fig. D.5. This linescan demonstrates that
the potential energy surface is very flat along this direction. In order to find
the minimum, a Az relaxation with tighter convergence parameters® was
started from three points Ay=0, 0.25, and 0.5. The result shown in Table
D.1 reveals that the minimum is at Ay=0, but is indeed very shallow in the
y-direction. The adhesion energy at the minimum of 0.31eV per unit cell
agrees reasonably with the experimental estimate of 0.26 eV [131].

4The tighter convergence and the relaxation of the top layer NaCl along z are respon-
sible for the small offset of 5meV for Ay = 0.5 between the inset of Fig. D.5 and Tab.
D.1.
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D.4 STM simulations

According to Tersoff-Hamann approximation [153], the tunnelling current in
STM is proportional to the LDOS at the Fermi energy at the position of the
tip. To account for the experimental tip bias of 1.5 — 2.7eV, we integrate the
LDOS between the bias U and the Fermi energy. This partial density

) = [ 4B S ) RAE ~ e 03)

should then reflect the STM tunnelling currents.® We use U = —2¢V in the
following. A variation of the energy range gives no indication that the STM
pictures would change outside the experimental range. The experimental
observation that only a small energy range allows for STM pictures cannot
be explained from our results. An inspection of p™ (not shown) at the
surface of the NaCl films reveals that the bright spots in the STM must be
assigned to the chloride ions. In conflict with the experimental 1 x 1 pattern,
the theoretical two-layer model invariably produces a 2 x 1 STM pattern
with a chloride corrugation of ~ 0.3 A. This result is also independent of the
shift of the overlayer perpendicular to the dimers. Positioning the sodium
atom above the top dimer atom and the chlorine atom between the dimers
removes the geometrical corrugation of 0.2 A at the surface and changes the
total energy by only 10 meV, which may be below the absolute accuracy of our
DFT-LDA approach. Nevertheless, the partial density shows a corrugation
of ~0.2A. We therefore do not believe that this discrepancy between the
STM simulations and the experiment indicates an error in the atomistic
model. Rather, deficiencies in the STM simulation, e.g. the use of the
Tersoff-Hamann approximation or the neglect of atomic relaxation due to
the tip-induced electric field may be responsible. The current approximations
can hence not account for the observed STM pictures in full detail. However,
we find strong evidence that the chlorine atoms appear as bright spots, since

the Ge states hybridise only with these over the full valence energy range.
On the other hand, we can reproduce the apparent heights of the NaCl
layers in the STM experiments. For this, we average p°™ laterally and plot
it on a logarithmic scale (cf. Fig. D.6 bottom). Above the surface the density

decays exponentially. The (local) decay constant «(z) can be obtained via
L) d

alz) = pETp In p5™ () (D.9)

°It is possible to introduce an energy-dependent weighting factor in the above integral,
containing additional parameters. However, by varying U we observe that the main char-
acteristics of the pS™ are not sensitive to the energy-dependence and we estimate that
an energy-dependent weighting would not introduce qualitative differences.
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Figure D.6: Laterally averaged partial densities for the STM simulations for
a 6 layer Ge slab with a NaCl of 2,3, and 4 layer thickness and without a
NaCl layer (0 NaCl). The top figure shows the local decay constants. The
dashed lines indicate the exponential decay, and the distance between the
curves correspond to the apparent heights in STM. The density increase is
an artifact due to the periodicity in the simulations.
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and is shown in the top graph of Fig. D.6. When NaCl layers are adsorbed
on the Ge substrate, the average density curves are shifted towards higher
z as indicated by the black arrows in Fig. D.6. When the STM is used in
constant current mode, an equidensity surface is scanned. We can therefore
identify the shifts in the density decay curves (dashed lines) with increasing
NaCl coverage with the experimentally determined apparent heights®. We
obtain 4.140.4 A for the first double layer and 2.240.4 A for the next single
layer, in reasonable agreement with the experimental values of 3.840.3 A and
2.040.3 A [133]. A closer inspection of the decay curves reveals an interesting
explanation for the discrepancy between the geometrical height (i.e. the
inter-layer separation, 2.8 A) and the heights determined in STM (2.0 A).
Around the chlorine atoms, the density curves exhibit plateau-like regions
which can be attributed to the hybridisation of the tails of the Ge states
with the chlorine 3p states. Between the chloride layers, the density decays
again exponentially with a constant similar to the vacuum (cf. Fig. D.6,
top). The apparent height in STM is therefore mainly determined by the
width of the hybridisation-induced plateaus, which is of course not directly
linked to the chloride layer separation. This also implies that STM may not
be able to detect vertical displacements of the ions within the film unless
they affect the hybridisation width.

6Since the slope of the curves changes a little with film thickness (cf. Fig. D.6 top) the
results depend on the density value chosen. The results are given for 1071 e/bohr® and
change by ~0.2 A per order order of magnitude.
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Appendix E

Computer code developments

The GW space-time method as published in previous papers [73-75] has
been implemented in the gwst code by Rex Godby and coworkers. When the
Fortran code was made available to us, it became clear that

e the lack of program structure and its documentation would make ex-
tensions and modifications difficult,

e the code had been substantially modified with little or no documenta-
tions of the changes,

e major parts of the code had a suboptimal performance,

e the computation for large systems would be limited by the disk space
requirements.’

In other words, the slab systems of this work were beyond the capabilities of
this original version of the code. Here, we will explain how block algorithms
were used to speed up the computation of the Green’s function and the
inversion of dielectric matrices, and how the disk space consumption could
be reduced by 30-50%.

Before addressing the details, we note a few things about the technical
background. On modern computer systems, algebraic operations are often
more efficient when performed on blocks. The reason behind this is that the
basic computational steps are no longer the bottleneck of the computation,
but rather the data transfer between the main memory and the central pro-
cessing unit (CPU). Block algorithms exploit the fact that small, but consid-
erably faster memory chips (level caches) are used to buffer the data transfer.

!The storage requirements for the non-local operators of large systems exceeds the
typical main memory sizes by an order of magnitude, taking into account that the code is
not parallelised and is therefore run on work stations with ~8GB main memory.
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When all data for a calculation fits into this level cache, dramatic speedups
are observed (often by a factor two or three), in particular for matrix-matrix
operations. Unfortunately, most compilers are not able to transform stan-
dard high-level code (“plain Fortran”) into optimally blocked machine code,
and usually specialised libraries (basic linear algebra subroutines = BLAS)
must be used. BLAS routines are classified into level 1 (vector operations),
level 2 (matrix-vector), and level 3 (matrix-matrix). The speedup compared
to conventional computer code increases with the BLAS level since the higher
levels profit more from data reuse.

A second point concerns the memory management. Since the full size
of the two-point functions exceeds by far the main memory of the work
stations used for the calculation?, only parts of it (“slices”) can be kept in
the main memory. Currently unused data is stored on the hard disk, which
is typically 10-100 times larger than the main memory. A slice contains
all points for one or more active indices for only one point of the inactive
indices. Let’s take a simple example with only two indices A and B with
N4 and Np many points, respectively. For transformations on A (e.g. a
Fourier transformation), we use N4-sized A-slices for one particular value of
B. After the transformation has been performed, the slice is written into a
“scratchfile” on the hard disk. One can then reuse the memory to perform
the same transformation for the next B until the full N4 x Np matrix has
been transformed and written to the scratchfile. The data is then read back
in a different order for the transformation of the previously inactive index
B, i.e. we work with Np-sized B-slices for one particular value of A. The
limiting factor for the size of the two-point functions is then the available
disk space. Moreover, the read/write operations take a significant amount of
time and it is important to minimise these operations by carefully balancing
the order of the transformations and the “layout”, i.e. the index ordering, of
the scratchfile.

E.1 Green’s function

The construction of the Green’s function is one of the time-critical steps in
the GW space-time approach. In practice, the Green’s function is computed
in mixed space, i.e. Gy(r,r’,i7). As explained above, this is done piecewise.
In one step, G is computed for one specific r and k-point, but all possible r’

2The gwst code is a serial code, and therefore, parallel computers (shared memory
model) or computer clusters (distributed memory model) which have much larger memories
could not be used.
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and 7, by summing over bands

Gy (r, 1’ i7) ank Yk (¥ frac (T) (E.1)

where 1) are the wavefunctions (which are already stored in a large block) and
fax(7) are the precomputed frequency factors + exp(ze,7). In the original
"plain Fortran” code, this operation was performed in a triple loop over r’,
n, and 7, where the performance bottleneck is the memory access.
However, the band summation can be reinterpreted as a matrix-matrix
multiplication. By precomputing an auxiliary Npangs X N, matrix

77(”7 7_) = ¢;k(r)fnk(7) ) (E2)

the summation over bands can be performed as a highly efficient matrix-
matrix multiplication, schematically written as

G(Nr/ X NT) = ’QD(NI./ X Nbands) X n(Nbands X NT) s (E?))

which has been implemented as a BLAS level 3 call (zgemm). The result-
ing code is approximately two to three times faster than the original “plain
Fortran” code.

For large Npanas, an additional trick allows to reduce the computational
effort even more. The real-space representation of the wavefunctions ¢, (r)
is computed from their Fourier representation

P (1 —e“”Zunk G (E.4)

using Fast Fourier Transforms (FFTS). Since a spherical cutoff is used in
reciprocal space, the number of G-vectors is considerably smaller than the
number of real-space points (typically Ng =~ (0.3 — 0.5)N,). As the Fourier
transform for r’ commutes with the band summation, it is advantageous to
perform the sum over bands in reciprocal space for only Ng many points

Gx(r,G',iT) Zn n, T (G') | (E.5)
and perform the Fourier transformation from G’ to r’ afterwards
Gi(r,r',it) = e Gi(r, G, ir)e' @™ (E.6)
G/

Although this involves additional computational work for the Fourier trans-
formation, the smaller matrix sizes for the expensive band summation re-
duce the overall computational cost significantly even for moderate Npangs-
In practice, those 1, (r) that are required for computing 7(n, ) are stored
on disk and loaded on demand. This reciprocal-space summation is partic-
ularly helpful for high band cutoffs because in this case the GW calculation
is dominated by the computation of the Green’s function.
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E.2 Block inversion of Hermitean packed ma-
trices

The inversion of the dielectric matrices is another computationally demand-
ing step in a GW calculation that we were able to speed up considerably by
developing and implementing a block algorithm. The standard Hermitean
packed-matrix inversion in the linear algebra package originally employed
(LAPACK) uses an iterative scheme which achieves only 20-40% of the peak
performance of the CPU. In the block algorithm developed here, the compu-
tation is reformulated in matrix-matrix operations that make full use of the
performance of the underlying BLAS library.

We will demonstrate the block algorithm in the following for "L’-packed
matrices that store the lower triangle of the matrix column-wise. The cor-
responding algorithm for "U’-packed matrices, where the upper triangle is
stored, works analogously. Schematically, the blocked inversion (with a block
size Ny) of a Hermitean N x N matrix can be written as

A BT a bl 1 of

(5 e)(5%)=(s9) )
where A is the N, x Ny, top left submatrix of the original matrix, B the
N, x Ny, bottom left submatrix, and C the N, x N, bottom right submatrix.
N, = N — Ny is the rest size of the matrix when the first NV, columns are
separated. Small letters denote the corresponding submatrices of the inverse
which are to be computed, and 1 and 0 on the right hand side are properly
sized unit and zero matrices, respectively.

Equation (E.7) defines a set of four coupled matrix equations, which can
be solved for the submatrices a, b and ¢ of the inverse matrix:

c = (C-BA'BH), (E.8)
= —cBA!, (E.9)
a = A1-A'Bb. (E.10)

The matrix inversion for the (small) matrix A is performed by a standard
LAPACK routine. For the inversion in Eq. E.8, the blocked inversion routine
is called recursively until the matrix is small enough for a standard LAPACK
inversion. The size of the matrix is reduced by N, for each level of recursion.

In practice, the result of the inversion is stored on the memory location
of the original matrix. Moreover the intermediate steps should not require
large amounts of additional memory. The scheme presented here requires
only a N x N}, work space, and uses also the input/output matrix memory
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for intermediate results. The memory blocks, denoted by Greek letters, are
listed in the following table:

name size storage where

« Ny, x Ny, Hermitean packed  input/output
I6; N, x Ny, general input /output
v N, x N, Hermitean packed  input/output
) Ny, x Ny, Hermitean unpacked  work space
€ Ny x Ny, general work space

In the beginning, A and B are stored unseparated in a and [, indicated as
A /B, and the same is true for a and b at the end.

The computational steps are listed in Table E.1. The mathematical op-
eration to take is listed in the left column, the status of the various storage
locations after the operation in the centre and the subroutine employed in
the rightmost column. hpgesub either extracts (o) the bottom left submatrix
from a Hermitean packed matrix, or stores it back (i). Likewise, hphesub
performs the same operations for the top left square block (which is Her-
mitean). hpinv is the name of the blocked inversion routine that is called
recursively to invert the N, x N, matrix 7. If the size of the matrix is smaller
than Ny, the standard LAPACK iterative inversion (hptrf + hptri) is per-
formed instead; and likewise for the inversion of the Hermitean unpacked
matrix 6. hemm and her2k are standard BLAS matrix-matrix multiplication
and rank-2 updates for Hermitean unpacked matrices. The corresponding
subroutines for Hermitean packed matrices are missing from the standard
BLAS and have been implemented using a block algorithm and available
standard BLAS matrix-matrix routines (hpmm_b and hpr2k b).

This blocked inversion algorithm has been implemented in the gwst code
for the inversion of the dielectric matrix, one of the time-critical steps no-
tably in large GW calculations. As expected from the performance of the
underlying BLAS library, the blocked algorithm is faster by a factor 1.5-2.5
compared to the standard LAPACK routines because it uses matrix-matrix
operations throughout.

The modifications described here (and others that are not described here)
have greatly improved the computational efficiency of the gwst implemen-
tation. This is demonstrated in Fig. E.1. We observe a reduction in the
overall run-time by a factor 3—5. The most important reduction of the com-
putational time arises from the Green’s function, the previously dominant
part in the calculation. After the improvements, the computational effort is
typically equally distributed between 1) the computation of the Green’s func-
tion, 2) the Fourier transformation between the real-space/imaginary time
and reciprocal-space/imaginary frequency representations, 3) the inversion
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result
« I} ~y ) €
A/B C - -
d— A A/B C A — | hphesub(o)
c—B A/B C A B | hpgesub(o)
§ o1t A/B C A~! B | hetrf+hetri
a0 A1 = C A~! B | hphesub(i)
B« €d A7l BA! C A~! B | hemm
ye—~v—€f | A7l BA! C-BA'Bf - B | hpr2kb!
=yt At BA™! c —  — | hpinv? (Eq. E.8)
€ — —f3 At BA™! ¢ — b | hpmm b! (Eq. E.9)
0 — A™l' BA! c A~1 b | hphesub(o)
§+—d6—pe | A7t BA™L ¢ a b | her2k (Eq. E.10)
(af) «§ a/—- c a b | hphesub(i)
(af) — € a/b c a b | hpgesub(i)
! using & as work space 2 using € as work space

Table E.1: Computational steps and memory usage for the blocked inversion
of Hermitean packed matrices. See text.

e B
Old New Old New Old New

Figure E.1: Comparison of the original implementation of the space-time
method and the improved version for three test cases: A) SiyHy slab, 1
band-structure point. B) NayCly slab, 1 band structure point, band cutoff
5 Hartree. C) NaCl bulk, 8 band structure points, band cutoff 10 Hartree.
The calculation can be separated into three distinct parts: computation of
the polarisability in mixed space (P), computation of the screened interaction
in mixed-space (W), computation of the self-energy and its matrix elements
(3). In P and X, the Green’s function is computed for which a typical speed-
up by a factor of 6 could be achieved.
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of the dielectric matrices, and 4) the computation of the self-energy matrix
elements.

E.3 Disk storage

The size of the two-point functions in the GW formalism is in general too
large to keep all the necessary data in the main memory. Most of the data is
therefore kept on disk and only the currently required data is loaded into the
main memory. After the optimisations described above (and many others
not described here) the disk usage has proved to be the limiting factor for
the calculations.

In the most disk-space efficient grecomp-mode?® of the gwst program, an
(r', R, i7)-slice of the Green’s function for one special point r is computed
from the wavefunctions whenever it is needed to compute the corresponding
slice of the polarisability P or the self-energy >. The storage of the polaris-
ability /the screened interaction is then the critical point. The key to reducing
the disk space requirements is again the observation that the reciprocal space
representation is 2-3 times smaller than the real-space representation.

The successive transformation of P from real space and imaginary time to
reciprocal space and imaginary frequency is listed in Tab. E.2 together with
the scratchfiles used. The backward transformation of W' is completely
analogous. In the original implementation (highlighted in red), the main
scratchfile ’cordata’ contains the data after the first transformational step
R — k*. We have introduced an alternative path (highlighted in blue)
where the code proceeds until the Fourier transformation r’ — G’ before the
data is stored on hard disk, thereby changing the content and the size of the
scratchfile. Comparing the scratchfile size for the two alternatives listed in
Tab. E.2, we find a common factor N, N,, and differing factors N, Ny+ for
the original layout and Ng Vi, for the new one. Which of the two is smaller
is critically influenced by the symmetry reduction for r and k, respectively,
which depends on the relative number of high-symmetry points. For high
symmetries, the symmetry reduction is usually more effective for r than for
k, which makes the original layout the optimal choice for highly symmetric
bulk systems. However, when the number of symmetries is low as in our slab
systems, the reciprocal-space reduction of Ng /N, favours the new layout and
reduces the scratchfile size by 30-50% compared to the original layout. Only
these reductions in disk space have made it possible to thoroughly check
the convergence parameters beyond the values that were finally found to be

3grecomp stands for Green’s function recomputed. The alternative is to store the
Green’s function on hard disk, too, thereby doubling the disk space requirements.
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representation scratchfile scratchfile size
P(R,r,,r',iT)
FFT !
Pkt rsr'it) <= cordata N+ X Ny, X N x N,
rotate l
P(ks,rkr iT)
FET !
F(ks,rfGit) <= cordata Ny, X Np X Ng x N,
reorder ! l
Pk, r,Gjit) <='  semifft N; x Ng
FET !
P(ks,G,G,iT)
map !

P(k,,[GG'lit) <= filetw  Ngg x max(N,, N,)
FI 7—w l
P(k,,[GGliw) <=2 filetw  Ngg x max(N;, N,)
® use of this scratchfile can be switched off ("twbio’ option).
b improvement: not used when sufficient memory is available.
Indices:

R real space lattice vector

k* Brillouin zone vector, reduced by time reversal symmetry
k, special (symmetry-reduced) Brillouin zone vector

r real space vector (in unit cell)

ry special (symmetry-reduced) vector (in unit cell)

rk star of a special (symmetry-reduced) vector (in unit cell)
G reciprocal space lattice vector

[GG/] packed form of reciprocal space lattice vector matrix

Table E.2: Use of scratchfiles in the transformations from real space and
imaginary time to reciprocal space and imaginary frequency. The red and
blue colours refer to the old and new layout.
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sufficient. In particular the plane-wave cutoff is a critical parameter, since
the size of the two-point functions scales cubically with the cutoff.

E.4 Efficient computation of the matrix ele-
ments of r

Head and wings of the dielectric matrix at the I'-point cannot be computed
from the numerical polarisability matrix and the Coulomb potential directly.
The small-k asymptotic behaviour of the polarisability (k? for the head, k
for the wings) cancels with the corresponding singularity of the Coulomb
potential and its square root, respectively. Therefore, these elements are ob-
tained directly from the Kohn-Sham wavefunctions using a k- p perturbation
approach [59, 86, 154]. For this purpose, the matrix elements of the position
operator r are required, which are in practice calculated via the commutator
of r with the Kohn-Sham Hamiltonian AX3

cq hKSar vq
(eaF[tboq) = (Yeal [P 1[Yh0q)

€cq — €vq

(E.11)

The Kohn—Sham pseudopotential Hamiltonian consists of three parts:
the effective potential, the kinetic energy and the non-local pseudopoten-
tial. The effective potential commutes with r. The contribution from the
kinetic-energy operator %pz is trivial to compute. Exploiting the commu-
tator identity [AB,C] = A[B,C]|+ [A,C]|B with A =B =pand C =r
yields ) .
5p°:r] =5 (P[P ¥] + [P, ¥]p) = —ip , (E.12)
where we have made use of the fundamental commutator [p,r] = —i. This is
readily implemented for a plane-wave basis. The contribution from the non-
local pseudopotential V;,; is more cumbersome and has often been neglected
in earlier calculations. We will show in the following that it can be computed
efficiently in a separable expression.

In its separable Kleinman—Bylander form [46], the non-local pseudopo-

tential operator is written in the Dirac notation as

Vi = Z |XM>EM<XM| ) (E-13)

where p is a composed index {R,,, n,, [, m,} that runs over all pseudopoten-
tial projectors while x,, is in general given in a radial basis around a certain
atomic position R, i.e.,

X (1) = fo, (I = Rou]) Yo, (Qe-m,) - (E.14)
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i can additionally run over chemical species, which does not alter the fol-
lowing derivation, except that f,; additionally depends on the species. We
will now show that the matrix elements can be written in separable form,
which reduces the scaling to be linear in the number of plane waves instead
of quadratic as demonstrated in a previous approach [88].

To this end consider the commutator of r with a single projector:

(e BuCxalr) = (xlxu) Bu(xul)
= B [(a) tulr) = Dad Rl + Rl — (el (vl
= Eu“Xu)(Xu| (r_Ru) - (r_Ru) ‘Xu><Xuﬂ (E.15)

Now we make use of the fact that r —R,, can be expressed in the same radial

basis as X,
1

F-RJo=r—Ry > Com¥im(Qr,). (E.16)

m=-—1

where o € {x,y,z} are the spatial directions, and c¢,,, yield the spatial
components of the spherical harmonics for [ = 1:

Cam ‘Oé:l' a=y a==z
__ 1 7

m = 0 0 1
_ 1 i

We can then write the product in the radial basis, too,

|X,C;> = [r—Rylalxp)
1
- |r_Ru| Z Cam Yim(Qr—RM)fnuluﬂr_RuD Kumu(Qr—Ru)
m=—1
et
= > > Cartm, Fou (I-Ru) You(R-w,) (E.17)
L=l,+1 M=m,—1
with
w(p) = pfulp), (E.18)
Cttm = Y Cam(Im 1m/|LM) . (E.19)

where (Im 1m/|L M) is a Clebsch—Gordan coefficient. It is convenient to
expand xj; in a plane-wave basis similar to what is done for y,. When the
radial functions f,,; are given on a radial grid [43], f}, is trivial to compute and
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the same routines that are used to compute x,(G+k) in the DFT calculation
can be employed for the summands in XZ‘(GH—k). It must be emphasised that
the sums over L and M contain only a very small number of non-zero terms
(at most six).

The final formula is thus again a separable expression

Vi, 7l ZE (e Ol = I (xl) (E.20)

The computational effort to set up a full N, x N, matrix for all three direc-
tions requires (1 + 3)NgN, (N, + N.) operations to calculate the (x[iyc)
projections and 6N, N, N, operations to build up the 3 matrices from the
projections in Equation (E.20). The scaling is thus linear in the number of
G-vectors Ng and not quadratic [88].

Only this efficient algorithm for the matrix elements of the position op-
erator made the accurate computation of the dielectric tensor for the slab
systems of interest feasible.
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Computational parameters

F.1 Pseudopotentials

The pseudopotentials used in this work were generated with the fhi98PP
program [43]. The parameters were varied from the default parameters in
most cases to improve the accuracy and efficiency of the pseudopotentials.
The optimised parameters are listed in the following table.

occupation 7’
S p d|s p d lioe | remarks
Al |2 1 - |105H) (H) 1.4(H) |p
si 12 2 - | (H) (H) (H) p
Hf |2 6 2]075(H) 1.60(T) 0.9(H) |s | 5-shell, 6s empty
O |17 48 - |135T) 17(T) (T) d
Ge |2 2 - |12(H) (H) (H) p
Na |1 0 - [27(T) L6H) 25(T) |s | pe’=1.8
Cl |2 5 - |LO5(H) LILH) 18T |p
Mo|1l 0 5|16(H (H) 2.44(T) | s | valence: 4d,5s,5p

@ All radii in bohr. (T)=Troullier-Martins, (H)=Hamann. If no radius is
specified, the thi98PP default was used.
b density cut-off radius for non-linear core corrections.

F.2 DFT-LDA calculations

For DFT-LDA plane-wave calculations, there are two important convergence
parameters: the plane-wave cutoff (that mainly depends on the pseudopo-
tentials used) and the Monkhorst-Pack k-point folding which depends on the
material investigated. These convergence parameters have been tested for
each system and the parameters employed for the SCF calculations are listed
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in the following table:

system E.t [Ry] k-point grid
SiO bulk 60 3x3x3
SiO, slabs 60 3x3x1
Mo bulk 60 22 x 22 x 22
Si0y /Mo 60 6x6x1
Al,O3 bulk 60 3x3x3
Al,O3 slabs 60 3x3x1
HfO, bulk 60 4x4x4
HfO, slabs 60 4x4x1
NaCl bulk 40 3x3x3
NaCl slabs 40 4x4x1
Ge bulk 20 4x4x4
NaCl/Ge 40 6x3x1

F.3 Gy W, calculations

F.3.1 Time-frequency grids

The time-frequency grids are characterised by two parameters: the maximum
time or frequency for the numerical part and the number of Gauss-Legendre
points used per half-axis [75]. We have tested the grids for each of the bulk
systems investigated in this work, i.e. Ge, SiOs, NaCl, Al;O3, and HfOs. In
all cases, a maximum of 6 atomic units and 15 Gauss-Legendre points proved
to be sufficient to achieve an accuracy below 0.05eV.

F.3.2 System-dependent convergence parameters

The following table summarises further convergence parameters for the GoWj
calculations. They were tested and give results within 0.05eV for each pa-
rameter, except for NaCl/Ge where the achieved accuracy is 0.05-0.1eV.
We will briefly comment on the various parameters. The plane-wave (pw)
cutoff determines the real-space resolution of the two-point functions and is
the most critical parameter for the computational effort and the required
memory and disk space. The GyWj calculation in the space-time method
scales cubically with the pw cutoff (in reciprocal space, the computational
effort in some parts even scales with a power 4.5). The quasiparticle energies
usually vary non-monotoneously with the pw cutoff, the absolute accuracy
can therefore only be estimated. Usually, the bare exchange part of the self-
energy requires a higher pw cutoff than the correlation part, which can be
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parameter NaCl bulk NaCl slabs NaCl/Ge
pw cutoff 3 [Hartree] 14 14 10
pw cutoff 3. [Hartree] 14 10 7
k-sampling 4x4x4 - 6 x3
k-sampling head /wings 4x4x4 4 x4 10 x 10
beut head /wings [Hartree] 2 2 1

Table F.1: Convergence parameters for the GW calculations (see text).

used to drastically reduce the computational effort when the two parts are
determined independently.

Head and wings of the dielectric matrix at the I'-point are computed via
perturbation theory directly from the Kohn-Sham wavefunctions [86]. Since
the convergence behaviour for the band cutoff and the k-point sampling
differs between head, wings, and body of the dielectric matrix [86, 154],
we determine the parameters for head and wings independently. Typically,
we converge the dielectric tensor at the smallest frequency to 0.3-1% and
assume that this is sufficient for the wings, too. Earlier test calculations
in our group indicate that variations in the dielectric tensor of up to 10%
introduce errors below 0.1eV for semiconductor systems [56]. We note that
head and wings include the contributions of the non-local pseudopotentials
[86] for which we have developed a highly efficient algorithm, see Sec. E.4.
This is essential to obtain a consistent dielectric tensor for the anisotropy
treatment, cf. Sec. 3.2.2.

The importance of the k-point sampling in slab systems has been dis-
cussed in Sec. 3.3.2 and been explicitly studied for the free-standing NaCl
films. For NaCl/Ge, the extrapolation technique was used only for the
2ML case to determine the correction term given in Sec. 5.2.3, otherwise
the 6 x 3 x 1 sampling as listed in the table was used.

F.3.3 Band cutoff

The convergence of NaCl with respect to the band cutoff bcut is shown in
Fig. F.1 for the bulk and a slab, respectively. As for most systems, the con-
vergence shows a 1/bcut behaviour and the data is plotted correspondingly.
Fig. F.1 illustrates that NaCl requires a band cutoff of about 10 Hartree for a
convergence to within 0.1eV of the extrapolated value. This is much higher
than for semiconductors, where 2—4 Hartree prove to be sufficient for this ac-
curacy, see e.g. [23, 56, 74]. However, an absolute convergence is usually not
required. Using a simple linear extrapolation yields highly reliable results in
comparison with extended convergence tests for bulk systems. Nevertheless,
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Figure F.1: Convergence of the quasiparticle gap for NaCl bulk and a 2-
layer slab. The inset show the difference A between the two curves and
demonstrates that it is practically independent of bcut.

the data in Fig. F.1 shows also that a careful inspection of the results is
necessary in some cases. In practice, the band summations for the Green’s
function are not truncated at a certain energy, but at a certain band index.
The highest band energy of all k-points then defines the nominal band cut-
off which was used in the plot. In NaCl, there are highly dispersive bands
around 5-6 Hartree which vary in energy by ~ 0.5 Hartree. Correspondingly,
the effective band cutoff depends strongly on the k-point and differs consid-
erably from the nominal band cutoff. It must be emphasized that this is a
rather rare situation typical for small high-symmetry systems and does not
affect the converged result.

Furthermore, we note that the underconvergence of the quasiparticle gap
appears to be largely independent of the long-range order. It can be clearly
seen that convergence curves for the bulk and slab are essentially paral-
lel. This becomes obvious when considering the difference between the two
curves, shown in the inset in Fig. F.1. The variations are below 0.025eV and
result mainly from the variations in the bulk. We can therefore extract the
underconvergence with respect to the band cutoff from the bulk and transfer
it to the slab systems, thus reducing the computational effort drastically. For
the free-standing slab systems, a band cutoff of 5 Hartree was used and the
correction to obtain the extrapolated value amounts to 0.28eV.

Since the bare exchange self-energy and the DFT exchange-correlation
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Figure F.2: Comparison of the ¥, slope parameter for three systems in com-
parison: bulk NaCl, bulk Ge, and a Ge-supported NaCl film system.

potential are independent of the band summation, the variations exclusively
affect the matrix elements of the correlation self-energy. For the supported
films, we directly assume a 1/bcut behaviour

A
beut

Ye(beut) = 3. (00) + (F.1)
Using a few cutoff energies, we can then determine the slope parameter A
for each band from a linear regression. We note that the bcut-dependence
of the gap results from the difference of the slope parameter for the band
edge states, but does not depend on the absolute value. Indeed, comparing
the slope parameters between different systems reveals that the low band
cutoffs in the semiconductors must be attributed to the similarity of the
slope parameters for the different bands (cf. F.2). The absolute values have
a similar magnitude as for the ionic systems, about 0.5-2 eV-Hartree. For
the calculations presented in Sec. 5.2.3, we then used a band cutoff of 3
Hartree.
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