
Chapter 3

GW for surfaces and thin films

Plane-wave implementations of the DFT and GW schemes introduced in
the previous chapter naturally assume three-dimensional periodicity. In this
chapter we will describe how they can be used to model two-dimensional sys-
tems like thin films and surfaces by means of the “repeated-slab approach”.
We will address briefly how it performs for DFT ground-state calculations
before coming to the main point of this chapter, the repeated-slab approach
in GW calculations. We will first show that the assumption of isotropic
screening leads to a numerical instability in GW calculations and how this
can be overcome. We will then demonstrate that the long-range screening
leads to a particular, slow convergence behaviour for the k-point sampling,
which turns out to be one of the most critical parameters. The screening
effects in a repeated slab system can be understood with a simple dielectric
model. From this model, a robust correction scheme is derived that makes
efficient GW calculations using the repeated-slab approach possible.

3.1 Repeated-slab approach

The use of plane-waves as basis set for DFT-KS and GW calculations implies
a periodic repetition in all three spatial directions. This is naturally fulfilled
for bulk crystals, but in two-dimensional systems like thin films or surfaces
the periodicity is broken in one direction. To overcome this difficulty, a struc-
tural model for the surface is used that is compatible with three-dimensional
periodic boundary conditions. In a first step, the semi-infinite substrate be-
low the surface or the supported thin film is replaced by a finite slab. The
thickness of this slab is an important (structural) convergence parameter.
Then an artificial periodicity is introduced in the direction of the broken
symmetry, i.e. perpendicular to the surface. This is schematically depicted
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Figure 3.1: The repeated slab approach to describe surfaces.

in Fig. 3.1. The empty region (vacuum) between the individual slabs must
thereby be large enough to avoid interactions between the slabs. Since the
repeated-slab approach is a structural model, it is conceptually independent
of the computational method employed and should work equally well for both
DFT-KS and GW calculations. However, we will show that the convergence
with respect to the basic structural parameters, namely the slab thickness s
and the vacuum separation v, depends critically on the underlying physics
of each method.

With density functional theory, we seek to determine the electronic ground-
state of a neutral1 system. The slab thickness controls the convergence to
the limit of a semi-infinite system, i.e. it is relevant for the description of the
substrate for surfaces or supported thin films. It must be thick enough to pre-
vent an interaction of the surfaces across the slab, which depends strongly on
the material and the type of the relevant interactions. For metals or other
systems with delocalised, free-electron-like electron states, quantisation ef-
fects may become important and require large thicknesses, e.g. more than 20
layers for the Al(111) surface [76]. The total energy differences involved are
often small (< 0.1 eV), but the corresponding band structures show larger,
sometimes even qualitative changes such as the curvature of the surface res-
onance at the Γ point for the Si(100) p(2× 1) surface [24]. Other important
effects include the charge transfer between nonequivalent surfaces, the cou-
pling of surface resonances of opposite surfaces of the slab, or strain. The

1Formally charged periodic systems always include a neutralising background charge
density.
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3.2. The long-range tail of W Chapter 3

convergence behaviour for the properties of interest must therefore be tested
in each case.

We now come to the coupling between the slabs through the vacuum.
As the density decays exponentially in the vacuum region, the direct overlap
between the densities of the slabs quickly becomes negligible with increasing
separation. Long-range interactions between the slabs can then result only
from electrostatic or dispersion interactions. The latter are however not
contained in the commonly employed functionals, in particular the LDA.
The decay behaviour of the electrostatic interactions along the direction of
the broken symmetry z depends on the lowest non-zero multipole moment.
The 0th-order moment, i.e. the total charge, vanishes for a neutral system.2

A non-vanishing 1st-order (dipole) moment requires a “dipole correction” to
suppress the intrinsic z−1 behaviour [78]. The interaction energy of the 2nd-
order (quadrupole) moments decays as z−3, which is sufficient for achieving
a fast convergence to the limit of an isolated slab in practice. In summary,
the decoupling of uncharged slabs is usually no problematic issue in DFT.

For GW , where we deal with charged excitations and include dynamical
polarisation effects, the situation is less favourable. As will be shown next,
the long-range tail of the screened interaction must be treated carefully to
avoid spurious interactions between quasiparticles and their periodic images.
In addition, charged quasiparticles polarise the neighbouring slabs which
results in a slowly converging dependence of the quasiparticle energies on the
vacuum separation between the slabs. We will show that these long-range
effects can be modelled with the classic theory of dielectric screening.

3.2 The long-range tail of W

In this Section the treatment of long-range interaction in GW calculations
is discussed. All actual GW implementations involve some approximations
for this treatment, the validity of which depends on the physics of the sys-
tem. In particular, long-range screening in repeated-slab system is inherently
anisotropic. It is therefore necessary to review the treatment of the screened
interaction for periodic systems in GW . We will do this rather generally and
compare to other GW algorithms, too, to show that this issue is intrinsic to
GW applied to periodic systems rather than being related to the space-time
method or the repeated-slab approach.

2We note here that a constant neutralising background charge density for formally
charged slab systems varies with the vacuum thickness and introduces again a slow con-
vergence of the total energy and necessitates corresponding corrections [77].
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Figure 3.2: Connection between the real and reciprocal space grids. The
inner grid in one space corresponds to the outer grid in the other space.

3.2.1 k-point sampling and interaction cell

As an introductory remark, we note that in periodic systems, the two-point
functions F = G, W , or Σ reflect the lattice periodicity

F (r, r′) = F (r + R, r′ + R) . (3.1)

We can then introduce the following Wannier-like representation

FR(r, r′) := F (r + R, r′) , (3.2)

where r and r′ are restricted to the unit cell. The corresponding Bloch-
like representation Fk (also denoted as mixed-space representation [74]) is
obtained from a Fourier transformation

Fk(r, r′) := e−ik·(r−r′)
∑

R

FR(r, r′) e−ik·R . (3.3)

The reciprocal-space representation is obtained from Fk by Fourier trans-
forming also r and r′, in full analogy to the plane-wave representation for the
lattice-periodic part of a Bloch wavefunction.3

k is a continuous index, which is in practice discretised on a regular, Γ-
centred grid (N1 × N2 × N3) as described in Section 2.2.3. The connection
to the Wannier-representation provides us with a real-space picture of this
approximation, cf. Fig. 3.2. The Brillouin zone discretisation grid bi/Ni is
associated with a real space supercell ai ·Ni, i.e. it comprises N1 ×N2 ×N3

unit cells. This supercell coincides with the interaction cell of the space-
time method, i.e. the range of non-locality for G, W , and Σ [73]. The

3Other implementations choose e.g. a Gaussian [79], LMTO [80], or LAPW [81] basis
for the lattice periodic part.
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3.2. The long-range tail of W Chapter 3

discretisation of k for the function Fk is equivalent to imposing a translational
symmetry

FR(r, r′) = FR+S(r, r′) , (3.4)

for its Wannier representation, where S denotes a lattice vector of the inter-
action cell lattice (Niai).

We now turn to the effect that the Brillouin zone discretisation has on the
two-point functions in a GW calculation. For insulators, the Green’s function
G decays exponentially for a sufficient separation of its spatial arguments r

and r′ and is essentially zero outside the interaction cell. This behaviour is
transferred directly to P = −iGG and Σ = iGW . For these functions, the
Wannier and Bloch representations are numerically equivalent, but this is no
longer the case for the slowly decaying bare and screened interaction as we
will show next.

3.2.2 The computation of W in reciprocal space

The computation ofW from the polarisability P (Eq. 2.50–2.51) is performed
in reciprocal space. This has several advantages:

1. The Coulomb potential is diagonal and the real-space convolution be-
comes a simple multiplication in reciprocal space.

2. The reciprocal-space representation for the lattice-periodic arguments
(G rather than r) is smaller than the corresponding real-space repre-
sentation when a spherical cutoff is employed.

3. The construction and inversion of the dielectric matrix and the follow-
ing construction of W can be performed for each k-point separately.

4. The long-range behaviour R → ∞ is mapped to a finite region in the
vicinity of the Γ-point.

While the first two points are specific to plane-wave methods, the other two
are independent of the representation of the lattice-periodic arguments. All
GW methods with periodic boundary conditions employ the Bloch represen-
tation for the construction of W and our considerations apply to all of these.
However, we restrict our discussion to plane-wave approaches.

Once W is obtained, the next step is the Fourier transformation to
real space in the space-time method, or the reciprocal-space convolution
to construct the self-energy matrix elements in reciprocal-space approaches
[59, 79, 81]. Both algorithms formally involve an integration over the Bril-
louin zone, which is replaced by a finite summation over a discrete k-point
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grid. As pointed out above, the discretisation corresponds to a periodic rep-
etition in real space, i.e. the outcome of this summation corresponds to a
periodic array of quasiparticles instead of an isolated one. When no correc-
tions are applied, the quasiparticle interacts with its periodic images. Since
W decays very slowly in real space, the images cannot be simply decoupled
by increasing the k-point grid size and the computation becomes numerically
unstable. This is most obvious for the 1/r-part of the screened interaction
that gives rise to a divergence of the average potential, which translates to
the 1/k2 singularity in reciprocal space. This singularity is integrable, i.e.
the aforementioned Fourier and convolution integrals are well-defined, but
cannot be simply replaced by summations in practice.

That the 1/k2 singularity necessitates an explicit treatment has of course
been recognised early on [58, 59]. The solution in reciprocal space plane-wave
approaches has been to reintroduce the proper integral for the problematic
G = G′ = 0 elements. To this end, a model function with the appropriate
singularity, for which the integral can be computed analytically, is subtracted
from W . The remainder is non-singular and can again be computed by finite
summations. After subtraction of the singular function, the k = G = G′ = 0

element must be set to zero to fix the average potential. The model function
is chosen such that the integrals (or approximations to it) can be computed
analytically, and a large variety of more or less general models has been
proposed [59, 82–85]. In the original space-time method [74], the model
function

W lr,iso(k + G) =
4π ε−1

|k + G|2 , (3.5)

where ε denotes the average macroscopic dielectric constant, was employed.
We have developed a generalisation to treat anisotropic screening to arbitrary
precision.4 We will summarise the most important steps for the treatment
of the 1/r part in the following section but refer to a recent publication for
a discussion of the technical details [86].

3.2.3 Anisotropy in the screened interaction

It can be shown that the head (G = G′ = 0) and the wings (G = 0 or
G′ = 0) of the dielectric matrix at the Γ-point, i.e., for k = 0, depend
on the direction in which the limit k → 0 is taken [86, 87]. We denote
this dependence by the spatial angle Ωk, and the corresponding normalised
direction vector by k̂. To compute this directional limit, a k ·p perturbation

4The treatment of anisotropic screening was jointly developed with Philipp Eggert and
Arno Schindlmayr [24, 86].
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ansatz is employed, leading to

ε̃00(k, iω) → 1 +
2

π2

∑

α,β

k̂αk̂β

∑

v,c

∫

BZ
d3q

ǫcq − ǫvq
(ǫcq − ǫvq)2 + ω2

(3.6)

×〈ϕvq|rα|ϕcq〉 〈ϕcq|rβ|ϕvq〉
and an analogous expression for the wings [86]. α and β are indices for
the cartesian components of the vectors k̂ and r. ǫnq and ϕnq denote the
Kohn-Sham energies and wavefunctions, respectively, and the sum over v (c)
runs over occupied (unoccupied) states. The matrix elements of the position
operator r are computed via the commutator with the Hamiltonian and must
include the contribution of the non-local pseudopotential for accurate results.
In App. E.4, we present an efficient scheme that we have developed for this
purpose with an improved scaling behaviour compared to a previous approach
[88].

For simplicity, the imaginary frequency argument iω is omitted in the
following. The directional dependence at the Γ-point is present in the whole
inverse dielectric matrix, i.e., head, wings, and body. After block-wise in-
version [87] the head of the inverse symmetrised dielectric matrix takes the
form

ε̃−1
00 (Ωk) =

1

k̂TLk̂
, (3.7)

where the matrix L is the macroscopic dielectric tensor. We note that in
most other implementations where the anisotropy has been considered so
far, such as [84, 85], but not Hott [83], the right-hand side of Equation (3.7)
was replaced by the expression k̂TL−1k̂ without formal justification.

Combining Equation (3.7) with Equation (2.63), we obtain the head of
the screened interaction for k → 0

W00(k) → 4π

kTLk
. (3.8)

In the space-time method the head of the inverse dielectric matrix is used
to define the long-range part of the screened interaction. For this purpose,
we extend Equation (3.8) to G = G′ 6= 0 and define the long-range part as

W lr
GG′(k) =

4π

(k + G)TL(k + G)
δGG′ . (3.9)

The short-range part W sr = W −W lr can then safely be Fourier transformed
to real space using Fast Fourier Transformations since it is no longer singular.
For numerical reasons we subtract the long-range part at the level of the
inverse dielectric matrix

ε̃−1,sr
GG′ (k) := ε̃−1

GG′(k) − |k + G|2
(k + G)TL(k + G)

δGG′ (3.10)
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and compute W sr from this modified entity according to

W sr
GG′(k) =

4π

|k + G||k + G′| ε̃
−1,sr
GG′ (k) . (3.11)

By expanding the angular dependence of W lr into spherical harmonics

W lr
GG′(k) =

∞
∑

l=0

l
∑

m=−l

Hlm

4π

|k + G|2 δGG′Ylm(Ωk+G) , (3.12)

we can perform the Fourier transformation of W lr analytically. Only even
l contribute to the sum because the coefficients Hlm vanish for odd l. The
non-vanishing coefficients are obtained by computing the integrals

Hlm =
∫

dΩk Y
∗
lm(Ωk)

1

k̂TLk̂
(3.13)

numerically on a Lebedev-Laikov angular grid [89]. Making use of the ex-
pansion of a plane wave [90] in spherical harmonics Ylm and spherical Bessel
functions jl,

eik·r = 4π
∞
∑

l=0

l
∑

m=−l

iljl(kr)Ylm(Ωr)Y
∗
lm(Ωk) (3.14)

we arrive at

W lr(r, r′) =
∞
∑

l=0

l
∑

m=−l

cli
lHlmYlm(Ωr−r′)

1

|r − r′| . (3.15)

The coefficients cl for even l are defined as

cl =
2

π

∫ ∞

0
dx jl(x) =

(l − 1)!!

l!!
(3.16)

with n!! = n(n − 2)(n − 4) · · ·. In practice we truncate the sum in Equa-
tion (3.15) at finite l = lmax = 4 as discussed in [86].

For numerical convenience the self energy Σ is split into a static exchange
part Σx = iGv and a frequency-dependent correlation part Σc = iG(W − v)
in the space-time method [74]. We achieve this by subtracting the bare
Coulomb interaction v from W lr in its angular expansion (3.12), i.e., we sub-
tract 1/

√
4π from H00 for each imaginary frequency. Furthermore, the trans-

formation from imaginary frequency to imaginary time is then performed on
the expansion coefficients Hlm(iω) directly, and we obtain (W lr−v) according
to Equation (3.15) with the expansion coefficients in imaginary time Hlm(iτ).
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A proper treatment of the anisotropy in the long-range part of the screened
interaction is crucial to obtain converged results. This is easily illustrated in
the space-time method: the density of the k-point sampling determines the
range of the non-locality in real space. If parts of the long-range interaction
remain in W sr for small but finite k, then the tails of W sr extend over the
boundary of the interaction cell and will be folded back in the numerical
Fourier transformation due to the periodic boundary conditions. Since the
size of the interaction cell is determined by the k-point sampling, an unsatis-
factory k-convergence behaviour results when the long-range part is treated
inadequately.

We have tested this hypothesis with a hydrogen-saturated four layer
Si(100) slab [86]. In Figure 3.3 we show the convergence of the quasipar-
ticle energy of the lowest conduction state with respect to the number of
k-points in the direction perpendicular to the surface. Other states exhibit a
similar behaviour. It is obvious that the original isotropic averaging for the
screened interaction leads to an unphysical linear increase in the quasipar-
ticle energy. In contrast, the anisotropic treatment converges rapidly. The
reason for the linear increase in the isotropic treatment lies in the inadequate
treatment of the singularity, which is not fully removed. Integrating 1/|k|2
numerically on a Cartesian grid yields for kx =ky =0 with ∆kz = kmax/Nz

Nz
∑

n=1

∆kz

1

(n∆kz)2
−→

kmax
∫

∆kz

dk
1

k2
=

1

∆kz

− 1

kmax
=
Nz − 1

kmax
(3.17)

and hence a linearly diverging contribution, whose weight is proportional
to ∆kx∆ky ∼ (NxNy)

−1. When the k-sampling is increased in all three
directions simultaneously, no such linear divergence occurs, but such a re-
striction is undesirable and inefficient in practice. Therefore, only the proper
anisotropic treatment allows us to investigate the importance of the k-point
sampling in the direction perpendicular to the surface. To our knowledge,
the convergence in the perpendicular direction has not been addressed in
previous GW calculations for slab systems. We find an 1/Nz behaviour the
magnitude of which scales as 1/(NxNy). In the view of the large k-point
samplings required in the direction parallel to the surface as discussed be-
low, Nz = 1 proves to be sufficient in practice.

To summarise, the 1/r long-range part of the screened interaction intro-
duces a numerical instability, that can be avoided when appropriate model
functions are employed that include the necessary physics. In the space-time
approach, the polarisation cloud around each electron is separated into that
of a perfectly homogeneous system with the correct average long-range tail
and a short-ranged part that contains the microscopic deviations from the
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Figure 3.3: Convergence of the lowest conduction-band energy of a Si4H4 slab
with respect to the number of k-points Nz perpendicular to the surface for
(a) the original isotropic implementation and (b) with the anisotropy taken
into account. The quantitative behaviour depends on the sampling in the
parallel direction (Nx = Ny). Note the different scales of the two graphs.
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z

Figure 3.4: Dielectric profiles for a) an isolated slab b) repeated slabs. The
discretisation of the z-axis is indicated for the repeated slabs.

average. For slabs, which are inherently anisotropic system, the anisotropy in
the screening must be taken into account, and we have presented an efficient
formalism for this in the context of the GW space-time method.

3.3 Screening in slab systems

In this section, the qualitative features of the screened interaction in isolated
and repeated slab systems will be discussed. After describing a simplified
dielectric model that reproduces the most important characteristics of the
screening, we will discuss its implications for the k-point sampling in the
parallel direction and the role of the periodic repetition of the isolated slabs.

3.3.1 Dielectric model

In order to learn more about the qualitative behaviour of the screened in-
teraction in a slab system, a dielectric model system is considered in which
the slab is modelled as a perfectly homogeneous dielectric medium (dielec-
tric constant ε) with thickness s. The periodic repetition perpendicular to
the surface along the z-direction is simulated by a finite number of dielectric
slabs, typically 10–20, with a vacuum separation v. We note that s and v
are model parameters, but not independent since the total cell height

c = s + v (3.18)

must agree with that of the full GW calculation. In addition to the repeated
slabs, we will also discuss the isolated slab as the limiting case for v → ∞.
The dielectric profiles ε(z) for an isolated slab and a repeated slab system
are depicted in Fig. 3.4.

For a practical computation of the screened interaction the z-coordinate is
discretised, i.e. the slab and the vacuum is partitioned into layers. All layers
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have the same thickness and are completely homogeneous. The screened
potential is then computed by the method of image charges as described in
Section B.1. To this end, we place a unit charge in the centre of a layer z′

(an index that we will omit for simplicity in the following). The dielectric
discontinuity at the interface to an adjacent layer introduces image charges
in both layers. These charges will then induce new image charges due to the
next interfaces. In the end, an infinite but discrete set of image charges results
from which the screened potential W (z, ρ) in layer z at a lateral separation
ρ from the original charge, is computed by5

W (z, ρ) =
∞
∑

d=−∞

q(z, d)√
d2 + ρ2

(3.19)

where q(z, d) are image charges. They depend on the dielectric constants of
all layers and the position z′ of the original charge.

For the discussion below, we will focus mainly on the image potential,
i.e. z = z′, ρ = 0 and excluding d = 0 from the summation. In doing so, we
ignore the interplay of quantum effects, which result from the non-locality
of the Green’s function, with the long-range screening for the quasiparticles.
As we will see this is sufficient to develop a qualitative understanding of the
additional screening effects in quasiparticle calculations that are introduced
when going from a bulk system to a slab system. Two aspects of practical
GW calculations are well reproduced by the dielectric model:

1. the convergence behaviour with respect to the parallel k-point sam-
pling,

2. the convergence behaviour with respect to the vacuum separation in
the repeated-slab approach,

and we will discuss these points in the following.

3.3.2 Parallel k-point sampling

In Section 3.2.3 we have shown how to treat the 1/r-part of the screened
interaction by splitting off the macroscopic (average) behaviour. However,

5For clarity, we use a slightly different notation here than in Section B.1: here, we
include the sign σ into the distance variable d, which can now assume negative values.
Also, the dielectric constant of the layer z is absorbed in the image charges, i.e.

q(z, d)=̂q(z, d, σ)/ε(z) .

43



3.3. Screening in slab systems Chapter 3

there may be still interactions that exceed the size of the interaction cell
dictated by the k-point grid. In bulk systems, the deviations from the average
arise mainly from the local variations in the polarisation cloud due to the
atomic structure and they usually become negligible when the typical length-
scale of these structural variations is exceeded. In a slab system, however, the
decisive structural variation is the slab itself and we must expect considerable
variations at the length scale of the slab thickness. Usually, the parallel
k-point sampling of a slab is chosen in analogy to that of the bulk, i.e.
sufficiently large to average out the lateral variations in the structure. We can
then use the model described above to understand the k-point convergence
parallel to the slab.

For this purpose we take two essential steps: first we identify the model
analogue to the “short-range” part of the screened interaction. We then use
the real-space interpretation of a discrete k-point sampling, i.e. we take into
account a periodic repetition along the ρ-direction parallel to the surface.
It is important to clearly distinguish here between the image charges and
the periodic images (cf. Fig. 3.5). The image charges are mathematical
constructs to compute the screened interaction in our model and are dis-
tributed along the z-direction. The periodic images are distributed along the
ρ-direction and simulate the effect of a discrete k-sampling. Since the su-
perposition principle applies, the periodically repeated screened interaction
can be computed in our model from the periodic images of the image charges
for a single quasiparticle. The periodic repetition in the parallel direction
due to the finite k-point sampling must also not be mistaken for the peri-
odic repetition in the perpendicular direction in the repeated slab approach.
The qualitative parallel behaviour is independent on whether the slabs are
repeated or not. We will therefore discuss it for both isolated and repeated
slabs.

We assume that in the full G0W0 calculation the anisotropic 1/r part is
taken into account correctly by the long-range treatment of Section 3.2.3.
We then have to ask the question how this can be translated to the dielectric
model. On this point we note that the image charges q(z, d) become small
for large |d| and can be neglected above a certain dmax. For ρ ≫ dmax, we
can neglect d in the denominator in Eq. 3.19 and obtain the long-range 1/ρ
behaviour

W lr(z, ρ) =
qeff
ρ

qeff =
dmax
∑

d=−dmax

q(z, d) . (3.20)

The “short-range” part is then obtained as

W sr(z, ρ) = W (z, ρ) −W lr(z, ρ)
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Figure 3.5: Periodic array of image charges to model the artificial periodicity
introduced by a finite k-sampling, shown schematically for an isolated slab.

=
dmax
∑

d=−dmax

q(z, d)

(

1√
d2 + ρ2

− 1

ρ

)

=
dmax
∑

d=−dmax

−q(z, d)d2

ρ(ρ+
√
ρ2 + d2)

√
ρ2 + d2

. (3.21)

It is this part that remains in the numerical treatment and may not be
as short-ranged as the name suggests. The long-range behaviour of W sr is
obtained again for ρ≫ dmax and gives

dmax
∑

d=−dmax

−q(z, d)d2

2ρ3
, (3.22)

and hence a quadrupolar interaction. Since the average potential is set in
the 1/r treatment, any shift in the average potential from the quadrupoles
is implicitly corrected for.

We will now investigate how the image potential changes when the ”short-
ranged” part (Eq. 3.21) exceeds the interaction cell for a certain k-point
sampling in the parallel direction. For this we combine the dielectric model
with the idea that a finite k-point sampling corresponds to a periodic repeti-
tion (cf. Fig. 3.5). We then have to sum the short-range part of the parallel
images to obtain the “parallel repetition error” (PRE). For simplicity, we
consider only square lattices in the parallel direction. The lattice constant a
is related to the number of k-points in the parallel direction Nk‖

via

a = Nk‖
· a‖ , (3.23)
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Figure 3.6: Change in the image potential due to a periodic repetition (square
lattice, lattice constant a) in the parallel direction. The dielectric model slab
(10 bohr thick, ε = 2.3) is indicated by the dotted region and corresponds to
a 2-layer NaCl film. The inset shows the value at the centre of the slab as a
function of a. The corresponding k-sampling (a‖ ≈ 7 bohr) is also indicated.

where a‖ is the surface lattice constant of the real systems. The a-dependent
change in the image potential from the periodic images then becomes

∆W (z) =
+∞
∑

n=−∞

+∞
∑

m=−∞

W sr(z,
√
n2 +m2 a)

=
dmax
∑

d=−dmax

q(z, d)
+∞
∑

n,m=−∞





1
√

d2+(n2+m2)a2
− 1√

n2 +m2 a



 (3.24)

excluding n = m = 0 from the summation. The sums over n and m are
evaluated using the two-dimensional Ewald summation technique.

We first consider an isolated slab with a dielectric constant ε = 2.3, a
typical value for NaCl. The influence of the k-point sampling on the change
in the image potential is investigated by varying the parallel lattice constant
a in our model. In Fig. 3.6 it can be seen that the PRE for the image potential
is broader than the slab thickness. For small values of a, the effect is very
large. With increasing a, the additional image potential quickly becomes
smaller and broader. The value at the centre of the slab is then indicative of
the magnitude of the PRE within the slab. We will therefore focus on this
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Figure 3.7: Changes in the image potential due to the PRE for an isolated
slab and repeated slabs. The model parameters correspond to a 2-layer NaCl
slab and a 3 × 3 k-point sampling.

value for the discussing the a-dependence.

We now turn to the periodically repeated slabs. The variation in the
image potential for an isolated and a periodically repeated slab is shown in
Fig. 3.7. The position of the slabs is indicated by dashed lines. It must
be emphasised that the average potential is corrected for during the treat-
ment of the 1/r part. This leads to an interesting compensation effect for
repeated slabs. The deviation of the additional image potential from its
average is much smaller than for an isolated slab.6 Periodic repetition in
the z-direction and small slab separations reduce the error from the parallel
k-point sampling. We can quantify this by varying the separation between
the slabs, shown in Fig. 3.8. The vacuum separation is denoted by the total
cell height (i.e. slab + vacuum) for consistency with realistic systems. In-
creasing the vacuum separation increases the error. The inset demonstrates
that also the qualitative convergence behaviour is altered. For large vacuum

6The analogue to the average for an isolated slab is the limit z → ∞, which is zero.
Only when the isolated slab is placed in a finite cell, an average can be computed. If
it is corrected for by setting the G = G′ = k = 0 element of W sr to zero, the average
compensation reduces the PRE for the isolated case, too, but will depend on the cell size.
A cell-size dependent parallel convergence has been indeed observed for GW calculations
where the Coulomb potential has been truncated to decouple neighbouring slabs [25].
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Figure 3.8: Dependence of the PRE at the slab centre on the interaction cell
size a for periodically repeated slabs (10 bohr thick, ε = 2.3) with different
total cell heights. The isolated slab values are shown for comparison. The
inset shows the data as a function of 1/Nk for a NaCl slab (a‖ = 7bohr).

separations or isolated slabs, the error is approximately linear in 1/Nk for
small values of Nk. This dependence becomes increasingly curved when the
vacuum separation is decreased, thereby lowering the required k-point sam-
pling to achieve a certain accuracy. This is in agreement with Eq. 3.21 that
shows a quadrupolar 1/r3 behaviour for very large separations, and a 1/r for
shorter distances. We therefore expect a 1/Nk dependence for small Nk and
a 1/N3

k for large Nk as the limiting cases.

These qualitative changes have a simple physical reason. The screening
in a slab system, which gives rise to the observed behaviour, depends on the
length scale. At lateral separations much larger than the slab thickness, we
observe an average anisotropic screening with an average dielectric constant
ε‖ for the parallel direction. This is treated correctly, and the remainder
is dominated by the quadrupolar part decaying as 1/r3. At lateral separa-
tions much smaller than the slab thickness7 the screening inside the slab is
essentially that of the bulk material. The PRE then reflects the difference
(1/ε − 1/ε‖)/r. In the repeated slab approach, ε‖ is the weighted average
of the dielectric constant of the bulk and of the vacuum, i.e. the difference
between ε and ε‖ increases with the vacuum. Small vacuum separations
therefore reduce the 1/r-part of the PRE. This prediction is fully confirmed

7or more precisely: the distance from the closest interface
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by the convergence behaviour of the quasiparticle energies in repeated slab
systems with different amounts of vacuum (e.g. Fig. 3.9).

Unfortunately, the simple models are not sufficient to compute reliable
quantitative corrections for the PRE introduced by the finite k-sampling.
On the one hand, the corrections depend rather sensitively on the model
parameters for the dielectric slab, particularly its thickness, and straight-
forward estimates of the model slab thickness from the dielectric tensor of
the repeated-slab system tend to yield overestimated PREs. On the other
hand, the additional potential varies over the slab and the COHSEX approach
described in Section B.2 may not reduce to a scissors correction.

We can however derive a useful expression for the qualitative convergence
behaviour of the quasiparticle energies with respect to the k-point sampling.
The error in the quasiparticle energy is likely to be proportional to the error
in the screened interaction. Assuming that only the closest lateral images
play an important role, which is justified by the fast decay of W sr(ρ), the
main effect can be described by a single term in the sum of Eq. 3.24. The
proposed fitting function with parameters Q and Z is therefore

∆E(Nk) =
QZ2/N3

k

1 +
√

1 + Z2/N2
k + Z2/N2

k

(3.25)

and turns out to be a reasonable choice. It not only smoothly interpolates
between a 1/Nk behaviour for small Nk and a 1/N3

k behaviour for large Nk

as the limiting cases, but also serves as a robust extrapolation function.
We demonstrate this for NaCl slabs of varying thickness with aNk×Nk×1

sampling in Fig. 3.9. For the 2-layer slab, a large number of k-samplings was
tested. The good agreement proves that the curvature of the fit function
describes the numerical data very well. For thicker slabs there is additional
numerical noise, which is however below the expected accuracy of our numer-
ical calculation (0.05 eV). We note also that the vacuum thickness is approxi-
mately the same for all slabs. The improvement of the convergence behaviour
for thick slabs is therefore exclusively due to the average compensation ef-
fects described in this Section. For isolated slabs, the opposite behaviour is
expected: thicker slabs should show larger PREs than thin slabs since the
closest image charges define the length scale Z for the lateral convergence in
Eq. 3.25. This hypothesis can be tested within the dielectric model and is
fully confirmed (Fig. 3.10).

It must be emphasised here that the k-point sampling has an influence
on more than just the long-range part of the screened interaction. Therefore,
also other effects contribute to the observed convergence behaviour of the
quasiparticle gap. In particular, we observed that the overall convergence
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Figure 3.9: k-point convergence of the quasiparticle gap for NaCl slabs of
varying thickness. The solid lines represent fits to Equation 3.25 (see text).
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with respect to the k-sampling orthogonal to the surface depends on the
sampling in the parallel direction8 and becomes very small for sufficiently
large k-samplings, cf. Fig 3.3. When the convergence in the parallel di-
rection is extrapolated for a fixed sampling in the orthogonal direction, the
extrapolated value does practically not depend on the k-sampling in the or-
thogonal direction, i.e. the variation is below the required accuracy. The
fitting procedure does therefore also deal with the “under-convergence” in
the orthogonal direction.

The qualitative behaviour of the k-point convergence described here is
not restricted to the GW space-time approach. It is an intrinsic property of
the reciprocal-space approach for computing the screened interaction when
the subsequent Brillouin zone integrals are replaced by summations. We are
not aware of an alternative approach in any of the other existing GW im-
plementations for periodic systems and would thus assume that these should
show a similar behaviour.9 However, the space-time method may be more
appropriate than others to investigate the k-point convergence, since the
linear scaling of the computation time with respect to the k-points is ad-
vantageous. The computational effort between the first (3×3) and last point
(10×10) of the 2-layer NaCl test increases by a factor of 100/9 ≈ 11 for the
space-time method. A convolution approach (i.e. conventional reciprocal-
space approaches) scales quadratically with the k-point sampling and the
last point of the curve would be ∼121 times more expensive to compute than
the first point! This may be one of the reasons why the k-point convergence
behaviour has rarely been addressed for slab systems before [25, 84]. In ad-
dition, isotropic screening models for the treatment of the 1/r part in the
screened interaction do not allow to perform such convergence studies in two
dimensions since the errors would introduce a logarithmic divergence similar
to the linear divergence that we have demonstrated in Section 3.2.3 for the
one-dimensional convergence study.

In summary, the screening in slab system shows specific deviations from
the macroscopic 1/r behaviour. In the parallel direction, the difference func-
tion behaves like 1/r for short distances and like 1/r3 for longer distances.

8It is likely that this is largely due to the neglect of the wing contributions to the
Γ-point dielectric matrix.

9This may however depend on the details of the implementation. The improved integra-
tion technique by Pulci et al. [84] for instance is conceptually based on a summation, but
employs a modified Coulomb potential which might improve the convergence behaviour in
the parallel direction as a side effect. The Coulomb truncation technique of Ismail-Beigi
on the other hand includes a different model function for the reciprocal space singularity
[25]. Its real-space form is β/

√
α2 + r2, where α and β are parameters, equivalent to our

fitting functions.
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Figure 3.11: Comparison of the image potential for an isolated and a repeated
slab (NaCl, ε=2.35, s=11, c=30).

As this difference remains in the numerically treated part of the screened
interaction, a peculiar convergence behaviour with respect to the k-point
sampling parallel to the surface results. The qualitative behaviour can be
understood by a simple dielectric slab model. The periodic repetition of the
slabs and small vacuum separations reduce this parallel repetition error for-
tuitously. A robust extrapolation function was derived from the model that
can be used to gauge the convergence behaviour with respect to the k-point
sampling and to extrapolate to the infinite k-point limit if necessary.

3.3.3 Periodic repetition in the repeated-slab approach

Until now we have shown how it is possible to obtain numerically converged
GW results for a repeated slab system, in particular how the description of
the long-range interaction must be improved to prevent a coupling between
the quasiparticle and its periodic images. However, since we are interested in
an isolated thin film or a surface, this is still not the physical system that we
want to describe. In other words, the quasiparticle will still see the influence
of the periodic images of the slab in the perpendicular direction. When a
single quasiparticle is placed in one slab, it will polarise the neighbouring
slabs, which will induce a change in the image potential.

It has recently been suggested to prevent this polarisation during the
computation by truncating the Coulomb potential [25–27]. All the schemes
presented so far truncate v as a function r − r′ in order to maintain the
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reciprocal-space diagonality. To include all interactions with the slab, but to
exclude interactions between the slabs, the vacuum thickness must then be
(at least) as large as the slab thickness, i.e. the cell size must be twice as
large as the slab itself. We argue that this is numerically inefficient. Not only
the increased size makes these calculations up to 8 times10 more expensive
than a normal calculation with a small vacuum, but also very large k-point
samplings may be required for these quasi-isolated slabs as demonstrated
above and also found by others [25, 26]. We therefore do not attempt to sup-
press this effect in the GW calculation, but rather correct for it a posteriori.
The corrections are derived from the dielectric slab model using the dielectric
profiles shown in Fig. 3.4. For this purpose, we compute the image poten-
tial (without the PRE) for a single slab W iso(z) and repeated slabs W rep(z).
The resulting image potentials (cf. Fig. 3.11) exhibit non-negligible changes
when going from the isolated to the repeated case. However, the difference

∆W (z) = W rep(z) −W iso(z) (3.26)

varies very smoothly across the slab [24]. We can therefore apply the simpli-
fied COHSEX scheme described in Section B.2 to estimate its contribution
to the quasiparticle energies. In this scheme, a constant image potential ∆W
would induce a scissor-like change

ǫqp(∆W ) = ǫqp
iso +

{

+1
2
∆W unoccupied

−1
2
∆W occupied

(3.27)

in the quasiparticle spectrum. We can then correct for instance the quasipar-
ticle gap for this finite-vacuum effect by the change in the image potential,
determined at the centre of the (model) slab. In some cases (in particular for
surface and image potential states), we may reach the region of non-negligible
deviations from the slab centre value. In order to obtain a best guess for the
constant part of ∆W we compute its expectation value 〈ψn|∆W |ψn〉 for each
of these states separately.

Since our dielectric layer model (Appendix B.1) allows to compute the
image potential for arbitrary dielectric profiles, we are not restricted to in-
teger ratios between vacuum and slab thickness as in previous work in our
group [24]. This also poses the question for the optimal model parameters.
Assuming the simplest possible model – dielectric slabs with thickness s and

10The computational effort scales cubically with the system size when the empty space
is covered by basis functions as is the case for plane-waves. The size of the two-point
functions then scales quadratically with the system size. The construction of G (space-
time approach) or P and Σ (reciprocal-space approaches), that involve a summation over
unoccupied states, and the inversion of ε̃ then scale cubically.
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a dielectric constant ε, separated by a vacuum of thickness c− s (where c is
the known height of the repeated unit cell), we can link the parallel11 and
orthogonal components of the dielectric tensor ε‖ and εz of the repeated slab
system to the model parameters via effective medium theory [90]:

ε‖ =
(c− s) + εs

c
= 1 + (ε− 1)

s

c
(3.28)

ε−1
z =

(c− s) + ε−1s

c
= 1 − (ε− 1)

s

εc
(3.29)

Solving for ε and s yields

ε =
ε‖ − 1

1 − ε−1
z

(3.30)

s = c ·
[

1

1 − ε‖
+

1

1 − ε−1
z

]−1

(3.31)

Since the dielectric tensor is required for the anisotropy treatment, it is com-
puted in the G0W0 calculation [86]. Using Eq. 3.30 and 3.31, we can then
obtain model parameters for correcting the contribution of the neighbouring
slabs to the quasiparticle energies that are consistent with the G0W0 calcu-
lation. When the thickness of the vacuum is varied, the computed dielectric
tensors perfectly agree with the expectations from effective medium theory
(not shown here, but in [24]). Correspondingly, the derived model parameters
are independent of the vacuum thickness. Moreover, the change in the image
potential is not very sensitive to the model parameters, which guarantees a
robust correction scheme.

We will now demonstrate that the correction scheme allows to extract
the isolated slab quasiparticle energies from a repeated-slab calculation with
an arbitrary vacuum thickness. We focus on the quasiparticle gap since the
finite vacuum influences mostly the separation between the occupied and
unoccupied levels, whereas level shifts within the occupied or unoccupied
part of the spectrum due to the weak curvature of ∆W are minor. In Fig.
3.12 we show the results of the k-point extrapolation and the resulting gap
for a 2-layer NaCl slab with varying amount of vacuum. The graph clearly
underlines that for ultrathin slabs, a k-point extrapolation for each vacuum
separation is crucial to obtain converged results. The convergence behaviour
depends on the vacuum thickness, in full agreement with the predictions
from Section 3.3. The lower graph on the right shows that the extrapolated
quasiparticle correction converges only slowly with increasing cell size to the

11possibly averaged
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Figure 3.12: Left: k-point convergence for the quasiparticle gap of a 2-layer
NaCl slab for different total cell heights c. Right: DFT-LDA gap (top) and
extrapolated quasiparticle correction ∆qp as well as its value corrected for
the finite vacuum (bottom) as a function of c.

isolated slab limit. At a finite k-point sampling, the increase would be even
more dramatic due to the PRE described in the previous section. When the
data are corrected for the finite-vacuum effect, however, the quasiparticle
correction becomes practically independent of the vacuum thickness. In this
very case, the quasiparticle correction including the finite-vacuum correction
converges even faster with respect to the vacuum thickness than the under-
lying LDA calculation. Thus, our a posteriori correction even reverses the
order of convergence in favour of GW .

Earlier results from our group indicated that the dielectric model does not
describe the finite-vacuum effect for ultrathin slabs well, which was attributed
to the breakdown of a macroscopic description for these systems [24]. We
show here that once the k-point convergence is carefully extrapolated, the
correct physical behaviour is recovered. The success of the modified approach
can be attributed to the following improvements:

• The k-point convergence is fully taken into account.

• The slab model parameters (thickness and dielectric constant) are ex-
tracted from the GW calculation and contain possible changes in the
dielectric properties of an ultrathin slab.

• The refined dielectric layer model allows to compute the effect for non-
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integer vacuum/slab ratios and does not rely on additional interpola-
tion/extrapolation assumptions.

Since the dielectric layer model is not specific to the space-time method,
but describes the physical behaviour of repeated slab systems, other GW im-
plementations that treat surfaces as periodically repeated slabs must observe
the same behaviour. In turn, any implementation that does not recover the
slow convergence with respect to the slab separation employs additional im-
plicit or explicit approximations for the long-range behaviour of the screened
interaction. We believe that this will in general lead to uncontrollable sys-
tematic errors. One example is the treatment of long-range interactions in
Rohlfing’s Gaussian orbital GW implementation [61], which builds – though
physically motivated – on assumptions for the screening behaviour at the sur-
face. The improved GW space-time method with finite-vacuum corrections
yields quasiparticle surface band gaps for semiconductor surfaces which are
systematically larger by 0.1 eV to 0.2 eV compared to the Gaussian orbital re-
sults [24]. Although other differences between the implementations like the
use of plasmon-pole models or the different basis sets might contribute to
this discrepancy, the systematic errors due to implicit assumptions increase
the theoretical uncertainty considerably compared to the usual estimates of
0.05 eV to 0.1 eV.

3.4 Summary

In this chapter we have reviewed GW calculations for two-dimensional sys-
tems in the repeated-slab approach. The long-range part of the screened
interaction and its role in GW calculations were discussed. We have shown
that an appropriate treatment of the 1/r part is essential to avoid numerical
instabilities, and we have presented a treatment that includes anisotropic
screening for the space-time method. We have then studied the k-point
convergence in slab systems, and found that it is dominated by long-range
screening effects beyond the anisotropic 1/r behaviour. We have proved that
the repeated slab approach and small vacuum separations are advantageous
for this question, and we have developed a reliable and robust extrapola-
tion scheme. Finally, we have demonstrated that the influence of the finite
vacuum in the repeated slab approach can be quantitatively corrected for a

posteriori. It must be emphasised that these issues arise from the construc-
tion of the correlation part Σc of the self-energy. The exchange self-energy Σx

and the exchange-correlation potential depend only on the occupied DFT-
KS states. Thus, they show essentially the same convergence behaviour as
the ground-state calculation [24]. The removal of the self-interaction of the
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underlying DFT-LDA calculation is due to these contributions and there-
fore not affected by the repeated-slab approach. Furthermore, the changes
in the self-energy due to the polarisation effects do not vary significantly in
the direction parallel to the surface at the length-scale of the unit cell. The
corresponding variations of the G0W0 corrections to the band structure vary
therefore little over the Brillouin zone.12 We conclude that the combina-
tion of an anisotropic treatment, a careful convergence with respect to the
k-points, and an a posteriori correction of the finite-vacuum effect provides
an accurate and numerically efficient scheme to compute GW corrections for
two-dimensional systems in the repeated-slab approach.

12The band structure k-point must not be confused with the k-point sampling for the
construction of Σ. The difference is most obvious in the convolution approach. For a band
at point q in the Brillouin zone, the relevant self-energy is

Σq(r, r′, iτ) =
∑

k

Gq−k(r, r′, iτ)Wk(r, r′, iτ) ,

where q and k are independent.
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