Chapter 2

Theoretical framework

For studying the properties of thin films and surfaces on the atomic scale
a wealth of experimental techniques is available. For brevity, we will in-
troduce only those that will be of particular importance for thin insulator
films and the questions addressed in this work. For developing a micro-
scopic understanding of a material, the atomic structure is of fundamental
interest. Crystalline materials are investigated by the diffraction of photons
(X-ray diffraction, XRD), electrons (low-energy electron diffraction, LEED),
and ions (low energy ion scattering, LEIS). Further insight, also for non-
crystalline materials, can be gained by microscopies that reach atomic res-
olution, such as scanning tunnelling microscopy (STM) or atomic force mi-
croscopy (AFM). Indirect, but often invaluable information is deduced from
other experimental data since many properties are strongly correlated to the
local atomic structure. For example the vibrational spectrum can exhibit
frequencies that are characteristic for certain atomic configurations such as
hydroxyl groups. The phonon spectrum is measured by infrared (IR) spec-
troscopy, Raman spectroscopy, and also by high-resolution electron energy
loss spectroscopy (HREELS).

A second key property is the electronic structure. While the knowledge of
the electronic ground state is sufficient to describe the techniques described
above, the electronic structure reveals itself only when excited. We can group
the experimental techniques into those where the excited electrons remain in
the sample such as optical spectroscopy in the visible and ultraviolet range
(UV-VIS) or electron energy loss spectroscopy (EELS), and electron spec-
troscopies that change the number of electrons. Of particular importance
is photoelectron spectroscopy (PES) where electrons are excited from the
sample by electromagnetic radiation. Depending on the energy of the pho-
tons, one distinguishes between ultraviolet photoelectron spectroscopy (UPS)
for the valence electrons and X-ray photoelectron spectroscopy (XPS) for
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the core electrons. The inverse process (inverse photoelectron spectroscopy,
IPES), i.e. the emission of photons when electrons are added to the system
(bremsstrahlung isochromat spectroscopy, BIS), yields information about the
unoccupied part of the spectrum. Also excited He atoms can be used to excite
electrons (metastable impact electron spectroscopy, MIES).

The primary experimental data often provide only indirect information
about the properties of interest, which must then be deduced from the exper-
imental data by analogy to known systems (“empirical knowledge”). Usually,
experimental results from several techniques must be combined to arrive at
a consistent picture of the atomic scale. In this situation, theory can supple-
ment the experiment in various ways. In addition to the empirical knowledge,
appropriate theories help to assign experimental features to the correspond-
ing microscopic structures or processes. Theoretical simulations can also add
data not available from experiment such as the microscopic energetics, the
electron distribution, the bonding behaviour, or the character of electronic
states. Theory can thereby refine, validate, and sometimes reject the mod-
els proposed on the basis of experimental results. The increase in computer
power has even made it possible to develop completely new models from
extensive theoretical simulations to explain available experiments. The com-
bination of theory and experiment has proved to be a powerful tool to solve
complex questions in surface science. For this it is necessary to employ and
develop ab initio theories that accurately describe the experimental results
without relying on experimental input. To address the questions mentioned
in the introduction, we have employed density functional theory and many-
body perturbation theory in the GW approximation. These will be described
in the following.

The physics at the atomic scale is governed by the principles of quantum
mechanics. A system of atomic nuclei and electrons is described quantum-
mechanically by its wavefunction ¥, which depends on the coordinates of all
electrons (indexed by ¢,7...) and all nuclei (indexed by p,v...). It solves
the time-independent Schrodinger equation

HU(x;,R,) = E U(x;,R,,) , (2.1)

where E denotes the total energy of the system and the Hamiltonian is*
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'In the following, Hartree atomic units are used, i.e. A = m. = 4meg = e = 1.
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According to the Copenhagen interpretation of quantum mechanics, the ab-
solute square of the wavefunction is proportional to the probability density
of finding a particle at each of its arguments. Particles of the same kind
(e.g. electrons or identical nuclei) are indistinguishable. When two elec-
trons (or other fermions) are exchanged, the wavefunction changes its sign
(anti-symmetry) whereas it is symmetric with respect to boson exchange.?

Taking into account that the electrons are lighter than the nuclei by
three to four orders of magnitude, we can employ the Born-Oppenheimer
approximation [33]: assuming that the electrons adapt instantaneously to any
movement of the nuclei, the motion of the electrons can be decoupled from
that of the nuclei. For each atomic configuration, the electronic Schrodinger
equation then reads

_;%V2 Z _Ru‘ Z

1<j

(x) = E(R,)¥(x). (2.3)
v — ry‘
The nuclei appear here only as the point charge sources of the electrostatic
potential in which the electrons move. For generality, this potential will be
denoted as the external potential V. in the following.

For the movement of the nuclei, only the electronic energy as a function
of the nuclear positions is required. Including the internuclear repulsion (and
possibly external fields acting on the nuclei), this is called the potential energy
surface. An important task of simulations is to find and characterise minima
on this potential energy surface since they correspond to the stable atomic
structures. The nuclei in the real world are of course never at rest due to their
quantum nature and thermal fluctuations. This does not harm the concept
of an atomic structure because usually the nuclei fluctuate around the Born-
Oppenheimer minimum. The structural parameters obtained from experi-
ments that probe the average positions should thus in a first approximation
correspond to the theoretically computed minimum-energy structures. Zero-
point vibrations and the anharmonicity of the potential energy surface lead
to small (~0.5%) deviations. The movement of the nuclei is also neglected
for electronic excitations (Franck-Condon principle), which appears justified
for the photoemission processes. We therefore assume that the nuclei remain
in their ground-state positions during the excitation process.

Even the electronic Schrodinger equation cannot be solved for realistic
systems that contain dozens to thousands of electrons®. Moreover, the knowl-

2Bosons are particles with an integer spin while fermions have an half-integer spin.

30f course, a macroscopic object has ~1023 electrons, but a fully quantum-mechanical
description of such an object is neither feasible nor appropriate. The theoretical models
must therefore be restricted to a small relevant part such as a cluster or the unit cell of a
perfect crystal.
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edge of the full wavefunctions is not required since experiment and simplifying
theories probe only certain aspects of the wavefunction. Further simplifying
approximations have to be made to the solution of the Schrodinger equa-
tion to drastically reduce the complexity and simplify the computation. As
sketched out above, many properties depend on the electronic ground-state
energetics. For this purpose, density functional theory (DFT), which builds
on the ground-state electron density as the basic variable, provides an excel-
lent choice. We will describe it in Section 2.1. From the DFT calculation, we
extract experimentally observable quantities e.g. the atomic structure, the
mechanical and elastic properties, the formation energy of compounds and
many more. However, for a comparison with photoelectron spectroscopy we
have to go beyond ground-state DFT%. An appropriate framework is Green’s
function theory, in particular many-body perturbation theory (MBPT) in
the GW approximation (GWA). The GWA has been shown to describe the
valence electron spectra in good agreement with experiment for many weakly
correlated bulk systems such as the main group semiconductors and simple
metals [23]. The GWA has also been applied to the surfaces of these mate-
rials with some success. We will describe the GWA and its connection with
photoelectron spectroscopy in Section 2.3. In Section 3, the application of
GW for surface and slab systems will be reviewed, highlighting critical points
that have been neglected so far.

2.1 Density functional theory (DFT)

In this Section we will present density-functional theory in the Kohn-Sham
(KS) formalism for the electronic ground state and furthermore discuss how
the outcome of a DF'T calculation can be compared to experimental results.

In density-functional theory, the electronic many-body problem (Eq. 2.3)
is reduced to finding the electronic ground-state energy without formally
including all the electronic degrees of freedom. Instead, the electron density

n(r) = /d3r1d3r2 APy [U(ry, T, .., r)[26(r — 1) (2.4)

is used as the basic variable. Hohenberg and Kohn have proved that for a
system with a non-degenerate groundstate, there exists a one-to-one map-
ping between the ground-state density and the external potential (up to a
constant) in which the electrons are moving [34]. A more constructive proof

4Although in DFT every aspect of the electronic system is a functional of the ground-
state electron density in principle, the focus in practice is on the ground-state total energy
functional and derived quantities.
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that also includes degenerate ground-states is due to Levy [35]. Since the
external potential defines the electronic Hamiltonian uniquely, all electronic
properties are uniquely defined from the ground-state density, too. The elec-
tronic energy of the system is thus a functional of the electron density. The
true ground-state density minimises this global functional for a given external
potential. However, its functional form is not known explicitly.

Kohn and Sham have further shown that the electron density n(r) can
be reproduced by a fictitious system of non-interacting electrons moving in
an effective field [36]. We denote the normalised, orthogonal one-electron
wavefunctions by ¢;. The antisymmetric many-electron wavefunction of N
non-interacting electrons takes the form of a Slater determinant

U(ry...Ty) = ZP:X(P) 1:[1¢i(rp(i>) (2.5)

where the sum runs over all permutations P of N numbers and y(P) is the
character of the permutation (41 for even, -1 for odd permutations). The
density is then obtained from the occupied® one-particle wavefunctions ¢; as

n(r) = Y |oi(r)] (27)

From the density, the Hartree energy, the classical repulsion of the charge

distribution,
1 n(r) n(r’)
B! ity oo ) >
1709 " " |r — 1| (2:8)
and the potential energy in the external field
Fou = / &r n(r) Vi (1) (2.9)

can be obtained.

The advantage of the Kohn—Sham approach lies in the fact that a large
part of the kinetic energy can be recovered by the kinetic energy Ty of the
non-interacting electrons

Ll = —%Z<@|V2|¢>i> : (2.10)

5 At zero temperature, the electron states are either occupied or unoccupied. For metals,
it is numerically advantageous to assume an artificial temperature 7. The states are then
occupied according to the Fermi partition

1

fi=1 T elei—m/(kpT)

(2.6)

where p is the Fermi energy and kg the Boltzmann constant. All state summations then
contain the occupation f; as additional factors.
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which is an explicit functional of the one-particle wavefunctions. Kohn and
Sham proposed to separate of the electronic energy into the following contri-
butions

E® = T[¢s] + Euln] + Ex[n] + Eext[n] , (2.11)

where the exchange-correlation energy FE,. contains everything that is missing
from the previous terms, notably the exchange energy, the correlation energy,
but also the difference between the true kinetic energy and 7§. It also cancels
the self-interaction contained in the Hartree energy.® Approximations to this
exchange-correlation functional will be discussed below.

For the Kohn-Sham functional (Eq. 2.11), the variational principle ap-
plies, i.e. the ground state assumes the minimum of the functional. The
variational derivatives of the explicitly density-dependent terms in Equa-
tion 2.11 with respect to the density, i.e. the Hartree potential

(SnE(f) - / gy ) (2.12)

VH(r):é v —1'|’

the exchange-correlation potential”

dEyc[n]
on(r) ’

Vie(r) = (2.13)

and the external potential can be combined into one local effective potential
Verr(r) = Var(r) + Vie(r) + Vo (1) (2.14)

Minimisation with respect to the orbitals ¢; under the constraint that these
stay orthonormal leads to the Kohn-Sham equations

{37 + V) poutr) = o) (2.15)

where ¢; are the Lagrangian multipliers that result from the normalisation
constraint. They have the dimension of an energy and are therefore often
referred to as Kohn-Sham one-particle energies. Since the effective potential
depends on the density, which in turn depends on the one-particle wavefunc-
tions, the Kohn-Sham equations have to be solved self-consistently.

6The self-interaction arises because each electron feels the potential of all electrons
instead of all other electrons as it should.

"We note some formal subtleties with this definition because the variational derivative
may not exist. For the approximations to the exchange-correlation functional discussed
below, however, the exchange-correlation potential is well defined.
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2.1.1 The exchange-correlation functional

In order to turn KS-DFT into a practical computational scheme, one the
exchange-correlation functional must be approximated by an explicit expres-
sion. One of the earliest is the local-density approximation (LDA)

XC

EWPAR) = / &P n(r) 6 (n(r)) | (2.16)

in which the local exchange-correlation energy per electron is approximated
by that of an homogeneous electron gas (HEG) of the same density as that of
point r [37]. For the HEG, the exchange-correlation energy density ¢lE¢(n)
are known in the low-density and high-density limits [38, 39]. For interme-
diate densities it has been very accurately computed from quantum Monte-
Carlo simulations by Ceperley and Alder [40].

The LDA should be a good approximation for slowly varying densities,
but it has proved to be very successful for a variety of rather inhomogeneous
systems such as atoms, molecules, and solids, too. However, the LDA has a
tendency to overestimate the strength of covalent chemical bonds, i.e. bind-
ing/cohesive energies are found too large, bond lengths and lattice constants
too small. This may be attributed to the fact that the LDA underesti-
mates the exchange-correlation energy in regions of strongly varying density
and therefore favours compact density distributions. Furthermore, the LDA
tends to delocalise electron states since it is not generally self-interaction free.
The LDA is also expected to fail for extremely inhomogeneous systems and
in cases where the correlation is strongly non-local. For instance, London
dispersion interactions between two polarisable, but separated molecules (or
solids) result from the correlation of the density fluctuations in the two sys-
tems and are not contained in the LDA. Another example are Mott-Hubbard
insulators which exhibit partially occupied, localised electron states at dif-
ferent sites. The Coulomb repulsion between the electrons leads to a strong
correlation between the sites that is not recovered by the LDA. However,
since none of these effects plays an important role for the wide-gap insula-
tors investigated in this work, we found that we can safely employ the LDA.

Many schemes to improve upon the LDA have been suggested, but we will
mention only a few of them here. The generalised gradient approximation
(GGA) is an attempt to remedy the neglect of the density variations by
including the local gradient of the density in the kernel of the exchange-cor-
relation energy functional

ESCGA(n, |Vnl) = EECEG(n) + Aége(n, |Vn]) . (2.17)

The gradient correction Ae,. systematically reduces the energy for density
inhomogeneities and increases the bond lengths and lattice constants. How-
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ever, this does not always improve the agreement with experiment. A dif-
ferent approach is exact-exchange (EXX). Here, the exact expression for the
exchange energy of a Slater determinant is taken as the exchange functional:

By = =5 S {005 ()| - 6,)5 (1)) (2.18)

v — /|

This exchange energy removes the self-interaction. The exchange functional
Eq. 2.18 is an orbital functional rather than a density functional. A direct
minimisation with respect to the orbitals would lead to the Hartree-Fock
method. In EXX, however, the Kohn-Sham approach is followed: A local
exchange potential is constructed following the optimised effective potential
(OEP) method to evaluate the functional derivative Eq. 2.13 of the orbital
functional Eq. 2.18. EXX is not yet widely employed since it is computa-
tionally much more demanding than the LDA or GGA.

For molecular applications, hybrid functionals are often used that lin-
early combine several exchange-correlation functionals with empirically de-
termined mixing coefficients. Most popular is the B3LYP functional with
three independent mixing parameters. It also includes the exact exchange
expression Eq. 2.18, but instead of constructing a local potential from it,
it is directly used as an orbital functional similar to Hartree-Fock. The ad-
ditional ingredients are the LDA and the gradient corrections of Becke (for
exchange) and Lee, Yang, and Parr (LYP, for correlation). B3LYP gives
accurate structural and energetic results for a large number of molecules,
but the computational effort combines that of DFT with Hartree-Fock. In
essence, none of these functionals is generally superior to the others. Instead,
the applicability and accuracy has to be tested for each system.

2.1.2 Comparison of DFT results to experiments

The basic output of a DF'T calculation is the total energy and the electron
density for a given atomic configuration. We can thus explore the nuclear
potential energy surface and extract a number of interesting properties from
it. The minimisation of the energy with respect to the atomic positions
yields the atomic structure. From the curvature of the potential energy
surface at the minimum, we can further deduce the vibrational properties of
the system in the harmonic approximation. By comparing the total energy
between different systems or different minima on the potential energy surface
for the same system, we obtain basic thermodynamical data such as the
binding, cohesive, formation, and reaction energies. Since the vibrational
entropies can be computed from the vibrational frequencies and hence from
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the potential energy surface, the combination of statistical mechanics with
DFT opens a microscopic approach to the thermodynamical properties (ab
initio thermodynamics). Likewise, the saddle points between two minima on
the same potential energy surface might be used in transition state theory
to predict kinetic constants. Alternatively, the potential energy surface can
be explored with molecular dynamics techniques.

2.2 Solving the Kohn-Sham equations: im-
plementation and additional approxima-
tions

In this Section we will summarise how the Kohn-Sham equations are solved
in practice in the SFHIngX program package using a plane-wave basis set
and pseudopotentials. For a more detailed description of the algorithms
employed, we refer to the review article by Payne et al. [41], the descrip-
tion of the SFHIngX predecessor thi96md [42], the pseudopotential generator
thi98pp [43] and the SFHIngX manual [44]. The purpose of this section is
to introduce the additional approximations in the calculations. We note
that many of the properties of the plane-waves and the k-point sampling are
relevant for the GW space-time method described below, too.

2.2.1 Plane-waves

In practical computation, the Kohn-Sham wavefunctions have to be expanded
in a finite basis set, which transforms the analytic eigenvalue problem Equa-
tion 2.15 into an algebraic one. In this work, plane-waves e’ are employed
as basis functions which are particularly suitable for periodic systems. Let
the real space lattice of the periodic system be given by the basis vectors
a;,1 € {1,2,3}. The reciprocal lattice basis b; is then defined by

a; - bj = 271'52‘]' y (219)
where 0;; denotes the Kronecker-0. In general, we will denote real space
lattice vectors with R and reciprocal space lattice vectors with G.

According to the Bloch theorem [45], the eigenfunctions in a periodic
system can be written as

P(r) = wg (r)e™™ (2.20)
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where k is in the first Brillouin zone® and u(r) is a lattice-periodic function,
le.
uk(r) = uk(r + R) (2.21)

for any lattice vector R. When uy is expanded in plane-waves, only wave
vectors G of the reciprocal lattice contribute. We will often denote the plane-
wave representation of a function as its 'reciprocal-space’ representation.
Plane-waves are advantageous for many of the various steps in a DFT-
KS calculation. Plane-waves form an orthonormal basis set, which makes the
normalisation and the orthogonalisation very simple operations. The Laplace
operator
v2eik-r — _k2eik-r (222)

(and correspondingly the Coulomb potential) becomes a multiplicative op-
erator in reciprocal space. For the application of local potentials (cf. Eq.
2.15) as well as for the computation of the electron density (Eq. 2.7) a real-
space representation of the wavefunctions is required. The transformation
to real space on a regular grid as well as the reverse transformation can be
efficiently computed with Fast Fourier Transforms (FFTs). For the Hartree
potential, the density computed on the FFT grid in real space is transformed
to reciprocal space, multiplied with the Coulomb potential

47

(2.23)
and transformed back to real space.

The plane-wave basis is made finite with a single energy cut-off parameter
E.y that corresponds to the maximum kinetic energy

1

The FFT grids must be large enough to contain plane-waves up to 2E., to
avoid aliasing effects for the product of two functions. The wavefunctions are
therefore stored in their reciprocal space representation, which is about 16
times smaller than the real space representation®. However, for describing the
oscillations of the wavefunctions and the steep potential close to the nuclei,
very high plane-wave cutoffs would be necessary. This motivates the use of
pseudopotentials, which are described next.

8The first Brillouin zone comprises all points in reciprocal space that are closer to the
origin (denoted as I') than to any other reciprocal lattice point.

9The circumscribing cube of the cut-off sphere has a volume of ~ (2/E¢y /2)3 compared
to the cut-off sphere volume of 47 /3( Ecut/g)?’, which gives a ratio of 6/7 ~ 2. A further
factor of 23 = 8 results from the double grid-size in each dimension to prevent aliasing.
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2.2.2 Pseudopotentials

In order to obtain smoothly varying wavefunctions and potentials, pseudopo-
tentials are introduced. Only the valence electrons remain in the Kohn-Sham
computation, while the effect of the core on the valence electrons is simulated
by the pseudopotential and — in certain cases — an auxiliary pseudo-core den-
sity to better describe the non-linear behaviour of exchange and correlation
between core and valence states. Likewise, the oscillations of the valence
orbitals close to the nuclei that result from the orthogonalisation to the
core states are replaced by a smooth part. Various flavours of pseudopo-
tentials exist. In this work, ab initio norm-conserving pseudopotentials in
the Kleinman-Bylander form [46] are used. We will explain these terms in
the following. For explicit expressions, we employ spherical coordinates, i.e.
the radial coordinate p and the space angle (2. The angular dependence can
be expanded in spherical harmonics Y},,, where [ and m denote the angular
and magnetic quantum number, respectively.

Ab initio pseudopotentials are derived from an all-electron calculation for
the atom by inverting the Kohn-Sham equation, i.e. the effective potential in-
side a cut-off radius is computed from a smooth pseudo-wavefunction ¢, (p).
and the all-electron Kohn-Sham energy of the valence orbitals €,;. These
potentials Vj(p) depend on the angular momentum quantum number. The
norm-conservation implies that the pseudoised part of the valence functions
has the same norm as the corresponding all-electron wavefunction.

Pseudopotentials in this semilocal form are not very efficient because
the projection onto the local angular momentum is computationally expen-
sive. For numerically convenience, they are transformed into the separable
Kleinman-Bylander form. A Kleinman-Bylander pseudopotential consists of
a local pseudopotentiall® V1°¢(p) and additional pseudopotential projectors
Xnim- In Dirac notation, the non-local pseudopotential term in the Hamilto-
nian reads

an = Z |anm>Enlm<anm| 3 (225)

nlm

where the Kleinman-Bylander energies F,;, describe the strength of the
pseudopotential. The projectors for each atom are of the form

where f,; is a radial function. n is an index to distinguish projectors for the
same angular momentum. The Kleinman-Bylander projectors and energies

10Usually, one of the V; is chosen for this local potential.
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are derived from [-dependent, semilocal pseudopotentials and the correspond-
ing atomic pseudo-wavefunctions:

AV, = V,—Vhke (2.27)
fu(p) = AVi(p) ohi(p) (2.28)

(omlAVIoy)

This definition ensures that the matrix elements of the the original semilocal
form and the Kleinman-Bylander separable form agree for the atomic states.
The pseudopotentials employed in this work use a single projector per I-
channel. This restriction limits the accuracy which can be obtained with
the Kleinman-Bylander pseudopotential. For the bulk systems used in this
work, the pseudopotential results were compared to all-electron calculations
to ensure that no critical errors are introduced by this approximation.

All the norm-conserving pseudopotentials used in this work were con-
structed with the fhi98pp program [43] according to the Hamann [47] or
Troullier-Martins [48] scheme. A pseudopotential further depends on the
cut-off radius defining where the pseudo-wavefunctions must coincide with
(Troullier-Martins) or differ negligibly from (Hamann) the true all-electron
wavefunctions. In addition, the occupation numbers can be varied from the
ground-state occupations to improve the performance of the pseudopoten-
tials. For the pseudopotentials used in this work, these parameters were
varied to find an optimal compromise between the transferability, numeri-
cal efficiency (in terms of the required plane-wave cut-off energy), and re-
liability of the pseudopotentials. For the relevant bulk systems, the pseu-
dopotentials were tested against all-electron calculations and showed a very
good, sometimes excellent agreement. We are therefore confident that the
accuracy is sufficient for the questions of this work. In general, however,
the limited accuracy due to restrictions in the form of the pseudopotential
(norm-conservation, only one projector per [-channel) may require to go over
to more general forms such as ultrasoft Vanderbilt pseudopotentials [49] or
projector-augmented waves [50] at the expense of computational simplicity
and efficiency.

2.2.3 k-points

The Brillouin zone vector k is a continuous index; summations then formally
become integrals over the Brillouin zone. In practice, these integrals are
again approximated by finite summations over grids in the Brillouin zone. A
regular k-point integration (or rather summation) grid can be obtained by
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a procedure due to Monkhorst and Pack [51] (Monkhorst-Pack mesh): The
basis vectors b; of the reciprocal lattice are reduced by a certain integer factor
N; (the “folding”). The reduced basis b;/N; then defines the grid spacing
in the Brillouin zone. The integration grid itself can be centred on the I'-
point k = 0 or at an offset'!. The Monkhorst-Pack mesh is then obtained by
keeping only one representative for each class of symmetry-equivalent points
(a ’star’).

The k-point sampling is an important convergence parameter. The Kohn-
Sham band-structure Hamiltonian Hy and correspondingly its eigenfunctions
and eigenenergies vary smoothly over the Brillouin zone. However, this may
no longer be the case for the corresponding occupation numbers in the case
of metals. While for insulators small k-samplings prove to be sufficient, the
sampling in metals must be fine enough to resolve the details of the Fermi
surface which separates the occupied from the unoccupied regions in the
Brillouin zone. Also other entities that involve integrations over the Brillouin
zone and depend sensitively on the Kohn-Sham energies may require large
foldings even for insulators.

2.3 Many-body perturbation theory

In this section, we will briefly address the connection of electron spectroscopy
and Green’s function theory, before we show how the Green’s function and
in particular its poles can be computed with many-body perturbation theory
and the GW approximation. At the end of this Chapter, we will present the
implementation of the GW equations in the GW space-time method used
throughout in this work.

2.3.1 Single-particle excitations in electron spectroscopy

In a direct PES experiment, a sample is irradiated with light of energy huv.
The sample then emits electrons with a characteristic kinetic energy Fiin
that is measured. From the energy conservation, the binding energy of the
emitted electron

€& = hv — By, . (2.30)

can be deduced. In an inverse photoemission experiment, the process is
reversed: electrons with a (low) kinetic energy are shot at the sample and
will finally undergo a radiative transition to a low-lying unoccupied state €,

"1 The offset is usually given in terms of the grid lattice, the offset coordinates range
between 0 and 1
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thereby emitting light. The energy hv of this light is measured, which allows
to reconstruct the final state energy as

€r = Ekin —hv . (231)
The experimental observable in PES is the photocurrent. It is given by

52, 53]

I~ / dx / dx' ¢, (X)TH (X) A(x, X, E)SH (X )gpe(X) | (2.32)

where x comprises a spatial and a spin coordinate. ¢, is a time-reversed
damped LEED state describing the photoelectron that reaches the detector.
0H (x) is the perturbing field that excites the electron. While these two
ingredients are characteristic to the photoemission process, the electronic
structure of the sample is contained in the spectral function

Ax, x| E) Zfs S(E - E,), (2.33)

where s denotes the excited states of the system. The electron binding energy,
or more precisely: electron removal energy, F,; and the transition amplitude

fs(x) in Eq. 2.33 are defined from the many-body states of the N and N — 1
electron systems via

fo(x) = (N —1,8[¢)(x)|N,0)  E,=Eno— En_1, < EF™ | (2.34)

where 1) denotes the field annihilation operator that creates an excited state
of the N —1 electron system from the ground state of the N electron system.
The electron addition energies relevant for IPES are analogously defined from
the N 4 1 electron system as

fo(x) = (N,0[(x)|[N +1,8)  Ey= Eny1s— Eng> EF™ . (2.35)
Inserting Eq. 2.33 into Eq. 2.32 we obtain Fermi’s golden rule expression

I~ Y [{0pel8H| ) PO(E ~ E.) (2.36)

The magnitude of the transition matrix elements can vary considerably be-
tween different states and even become zero, in particular when the symmetry
of the system defines selection rules. The photocurrent therefore reflects only
a somewhat distorted picture of the electron density of states (DOS)

NUE) =S 6(E - B,) = / dx Ax,x, E) (2.37)
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Figure 2.1: Left: schematic representation of a non-interacting and interact-
ing spectral function A(E) on the real energy axis. Right: the pole structure
in the complex plane.

the entitity preferably used in theoretical studies to discuss the electronic
structure because it does not depend on the experimental setup.

The connection to Green’s function theory is given by the Lehmann rep-
resentation of the one-particle Green’s function

: fs(x)f{(xX)

G(x,x,w)—zs:w_ T (2.38)
where in is an infinitesimal imaginary part. The positive (negative) sign
applies for states above (below) the Fermi energy. The spectral function is
then given by

Alx, X ) = 2366 X, w) (2.30)

The poles of the Green’s function hence correspond to the one-particle
addition and removal energies, also known as single-particle excitations. In an
extended interacting system, the infinitely many excitations can merge into
peak-like features that can be effectively described by a single pole (cf. Fig.
2.1). This pole has a finite imaginary part and describes the quasiparticle
excitation. The real part of the quasiparticle energy corresponds to the peak
maximum of the energy distribution when an electron is added or removed,
for instance in an (inverse) photoemission experiment. The imaginary part
determines the life-time broadening (peak width).

It must be emphasised that the concept of a quasiparticle is an inter-
pretation of the experimentally observed many-body spectrum in terms of
one-particle-like excitations. The quasiparticle concept is used for various
types of excitations, for instance electron-hole pairs (excitons) or vibrations
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(phonons). In the context of one-electron excitations, these quasiparticles
can be viewed as a hole or an electron surrounded by its polarisation cloud.
Quasiparticles have a finite lifetime due to dephasing, i.e., decay into other
quasiparticles. because the true many-body eigenstates may contribute to
more than one quasiparticle. In other words, a quasiparticle is not an eigen-
state of the system but a superposition of eigenstates. The actual formation
and decay of an quasielectron in silicon has recently been followed in a time-
resolved pump-probe experiment for the first time [54].

The connection between the Green’s function and the Hamiltonian can
be schematically written as

Gw)=[w-H]". (2.40)

Here, H denotes the effective one-particle Hamiltonian, which implicitly
contains the electron-electron interaction. It can be split into a pure non-
interacting part Hy (in which we include the Hartree potential) and a non-
local, energy-dependent self-energy X, i.e.

H(x,x',w) = Hy(x) + 3(x,x,w) . (2.41)

In analogy to Eq. 2.40, a non-interacting Green’s function is defined from
Hy. The connection between the non-interacting and the interacting Green’s
function is given by the non-local, energy-dependent self-energy ¥ and will
be discussed in the next section. Before we come to this part, we briefly
address the use of DF'T.

A byproduct of the DFT-KS calculation are the eigenenergies ¢; and eigen-
functions ¢; of the Kohn-Sham Hamiltonian H%9. Strictly speaking, they are
no physical observables except for the energy of the highest (partially) occu-
pied state which equals the chemical potential of the electrons in the system
(Janak’s theorem [55]). However, we may use them as first approximations to
the quasiparticle energies and functions. Correspondingly, a non-interacting
DFT-KS Green’s function G¥* can be defined in analogy to Eq. 2.38. Such
an approach can indeed explain a number of qualitative features of the quasi-
particle spectra, owing much to the fact that the true Hamiltonian and the
Kohn-Sham Hamiltonian share the non-interacting part Hy.

However, DFT-KS cannot explain all aspects of the quasiparticle band
structure. In addition, the available approximate functionals introduce fur-
ther errors. The most important failure is the underestimation of the quasi-
particle band gap in the LDA by typically 50-100% [23, 56]. This is partially
due to inherent deficiencies of the LDA such as the self-interaction, which
pushes the occupied states up in energy. However, even the KS band gap
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using the exact exchange-correlation potential would differ from the quasipar-
ticle gap because the true xc functional exhibits a derivative discontinuity'?
at integer particle numbers [57]. Nevertheless, it has been found that the
LDA wavefunctions are reasonable approximations to the quasiparticle func-
tions in many bulk systems [23, 58, 59]. We will come back to this point
later when we discuss quasiparticle corrections.

2.3.2 Hedin’s equations and the GW approximation

Hedin has shown that the problem of computing the interacting one-particle
Green’s function can be cast into five coupled equations in the framework of
many-body perturbation theory [60]. These equations involve the independent-
particle and full Green’s function Gy and G, the polarisation P, the bare and
screened interaction v and W, the self-energy X, and the so-called vertex
function I'. For simplicity, we use the notation 1 = x;t; for every pair of
one spatial and one temporal variable. A ™ indicates that the time argument
has been increased by an infinitesimally small, positive amount. Hedin’s
equations are:

P(1,2) = —i/d3d4 G(1,3)G(4,1)I(3,2,4) (2.42)
W(l,2) = v(1,2)+/d3d4 v(1,3)P(3,4)W (4,2) (2.43)
$(1,2) = i/d3d4 G(1,3)W (4,19)1(3, 4, 2) (2.44)
N(1,2,3) = 06(1,2)8(2,3)

+ / d4d5d6dT %G@,G‘)G(?, 5)0(6,7,3) (2.45)
G(1,2) = G0(1,2)+/d3d4 Go(1,3)5(3,4)G(4, 2) (2.46)

This set of coupled equations cannot be solved directly due to the presence
of the functional derivative in the definition of the vertex function. However,
it is amenable to physically meaningful approximations. We will describe the
equations in more detail before coming to the most important approximation,
the GW approximation.

We first note that Equations 2.43 and 2.46 have the same structure, known
as a Dyson equation. It describes the redressing of independent-particle
propagators by interactions with the system, which for the electrons is called
self-energy. Gy and G correspond to the propagation of electrons or holes
in the system, whereas v and W can be interpreted as propagators for the

2DFT can be extended to fractional electron numbers using ensemble DFT.
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quantum particles of the electric field. Thus, the polarisation function plays
the role of the self-energy for the electric field particles, changing the bare
Coulomb interaction into the screened Coulomb interaction. Correspond-
ingly, the equations for the interaction kernels ¥ and P, Eq. 2.44 and 2.42,
have the same structure. They contain two propagators connected to one
point of the interaction kernel and are connected via the vertex function to
the other point of the kernel. This vertex function is a three-point kernel
that describes all possible ways how a (dressed) electron is scattered when a
(screened) electric field particle is created or annihilated.

Approximating the vertex function by its first term, i.e. I' = §d, we arrive
at the random phase approximation for the polarisation

P(1,2) = —iG(1,2)G(2,1) (2.47)
and the GW approximation for the self-energy
$(1,2) =iG(1,2)W(2,17) . (2.48)

When the Dyson equation for the screened interaction is inverted, one
obtains schematically

W(1,2) =v71(1,2) — P(1,2). (2.49)

For the practical calculation, this equation is usually transformed 2. Multi-
plying from left and right with the square root'* of the Coulomb potential
vY/? and integrating yields the symmetrised dielectric function

£(1,2) = 6(1,2) — /d3d4 v'/2(1,3)P(3,4)v"%(4,2) (2.50)
from which the screened interaction can be computed via
W(1,2) = /d3d4 v/2(1,3)874(3,4)v2(4,2) . (2.51)

It must be emphasised that for a plane-wave basis, the integrations appear
only formally since v'/2 is diagonal in reciprocal space (see also Sec. 2.2.1).

13Gince v and W are singular in reciprocal space, the plane-wave representation of W
is “ill conditioned”, i.e. the magnitude of the matrix elements varies strongly. This may
lead to numerical inaccuracies or instabilities in the numerical inversion.

4The square root of a v(1,2) is naturally defined by

/d3 v/2(1,3)01/2(3,2) = v(1,2) ,
and is given by 21/7/k in reciprocal space and by 7=%/2/r? in real space[61].
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In practice, it is very common to employ further approximations. To
solve 2.47 — 2.51, it would seem reasonable to iterate Eq. 2.46 and Eq. 2.47
— 2.51 to self-consistency. However, this is rarely done. Instead of using
the full Green’s function GG, the non-interacting Green’s function Gy is used
as a first approximation in Eq. 2.47 and Eq. 2.48. We use this approach,
denoted G\Wjy, in all the actual calculations. The quality of this approx-
imation has been under debate over the last years. It proves to be very
successful for describing the pole structure of the Green’s function in con-
nection with pseudopotentials and Kohn-Sham DFT in the LDA or EXX
as the independent-particle starting point [23, 56, 62]. Various flavours of
self-consistency have been proposed. The conceptually simplest version is
full self-consistency within the GW/RPA scheme, i.e., employing Gy from
the Dyson equation (Equation 2.46) for the construction of the polarisabil-
ity and the self-energy in the next iteration. This self-consistency scheme
was applied for the homogeneous electron gas [63], closed-shell atoms [64],
and silicon [65]. However, it was observed that the agreement with exper-
iment for the quasiparticle spectrum does rather worsen than improve. It
was suggested that this might be attributed to an inconsistent treatment
of higher-order diagrams. Iterating the GW equations implicitly introduces
higher-order diagrams in the Green’s function, which are believed to be can-
celled to a large degree by the vertex [64]. In other words, the independent
quasiparticle picture may be good for describing the single quasiparticle exci-
tations of the system, it is worse for the two-particle random-phase polarisa-
tion. This is in line with findings for the dielectric function computed in the
RPA. Computing it from the Green’s function obtained from the GoW self-
energy is usually not better than employing the non-interacting Gy from the
LDA [62]. Instead, explicit particle-hole interactions must be included, e.g.
by the Bethe-Salpeter equation [62]. In approximate self-consistent schemes,
the self-consistency is imposed only for the construction of ¥ or for the quasi-
particle energies [66-69]. Since these schemes give different results and the
issue of self-consistency is still controversial, we do not go beyond the GyW,
approximation.

2.3.3 The quasiparticle equation

For the interpretation of PES or IPES in terms of single quasiparticle exci-
tations, the quasiparticle poles of the Green’s function need to be identified.
These are obtained as the zeroes of the inverse Green’s function, which is
related to Gy via the the Dyson equation (2.46):

G Hx, ¥, w) = Gy (x, ¥, w) — B(x, X, w) . (2.52)
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Since the non-interacting Green’s function is the inverse of w— Hy, the (right-
hand) quasiparticle wavefunctions corresponding to the quasiparticle pole
w = € are solutions to

{—%V2 + Ve (%) + VH(X)} PP (x) + /dx’ N(x, X, eP)pP(x') = PP (x) .

(2.53)
We note a few things here. Since the self-energy is not Hermitean, the left and
right eigenfunctions for a given eigenvalue are different and the eigenvalues
are in general complex. The left (or right) eigenfunctions do not form an
orthogonal set. Furthermore, the quasiparticle energy €% appears as the
argument of the self-energy and on the right-hand side, i.e. the equation
must be solved iteratively.

Eq. 2.53 is reminiscent of the single-particle equations from KS-DFT,
the difference being that the local exchange-correlation potential has been re-
placed by the non-local self-energy. To solve Eq. 2.53, the quasiparticle wave-
functions ¢ are expanded in terms of the KS wavefunctions ¢P¥T, which
form a complete orthonormal basis set. By multiplying with (¢P¥T(x))* and
integrating over x, and then exploiting that the term in curly brackets of
Eq. 2.53 can be written as H%® —V,., we arrive at the algebraic equation (in
Dirac notation)

5™ (eudn + (O27TS() — Vil dBFT) ) (9BFT|g%) = e (9DFT|geP) |

(2.54)
where we have inserted 1 = 3, [¢2F ) (¢DFT].

In practice, the matrix of the operator (%) — V. is usually dominated
by the diagonal elements n = n’ [58, 59, 70], which we also found for the
systems of this work. Neglecting the small non-diagonal elements yields the
quasiparticle energy equation

e = &7 4 (0 T Z(eP) = Vil ) (2.55)
where the second term on the right hand side defines the quasiparticle correc-
tion. This result corresponds to applying first-order perturbation theory for
the perturbation X(e®) — Vi (note the quasiparticle energy in the argument
of ). The quasiparticle correction still contains the quasiparticle energy,
i.e., Eq. 2.55 must be solved iteratively.!®

The derivation above does not require V,. to be exact. The “quasiparti-
cle corrections” therefore comprise not only the self-energy (or quasiparticle)

15 An alternative is to expand the energy-dependence of the self-energy matrix element
in a Taylor series around e2¥T. A linear expansion is usually sufficient and leads to closed
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effects absent from the exact KS band structure, but also correct for defi-
ciencies of the exchange-correlation functionals used in practice, notably the
self-interaction. It is likely that both effects contribute significantly to the
total correction, but in general, they cannot be disentangled easily. The term
“quasiparticle correction”, though well established, should therefore be used
with care.

When important physical effects are incorrectly described by the chosen
density functional, large differences between the DFT-KS and the quasiparti-
cle wavefunctions may arise. This is in particular the case for image states far
away from the surface, where DFT-LDA yields a qualitatively wrong poten-
tial [30, 71]. The transition from Eq. 2.53 to Eq.2.55 would then introduce
significant errors. In such cases, the quasiparticle equation (Eq. 2.54) should
be diagonalised. Whether such a diagonalisation is necessary or not can be
decided by inspecting the magnitude of the off-diagonal elements of the per-
turbation operator ¥ — V... For all the GW calculations in this work, the
off-diagonal elements were therefore computed, too, and found to be negligi-
ble in most cases. The diagonalisation may also be important for properties
that depend on the quasiparticle wavefunctions. This has been highlighted
for the reflectance anisotropy spectrum of GaAs(110) which changes signifi-
cantly when one employs the quasiparticle wavefunctions rather than the KS
wavefunctions although the error in the quasiparticle energies introduced by
the perturbation approach is less than 0.1eV [72].

2.3.4 GW implementation: the space-time method

The GW space-time method exploits the fact that many of the transforma-
tions in a GW calculation can be efficiently performed in either real space
and imaginary time or in reciprocal-space and imaginary frequency [73, 74].
The transformations between real space and reciprocal space can be effi-
ciently computed with Fast Fourier Transforms, whereas the time-frequency
Fourier transforms are performed via analytically enhanced Gauss-Legendre
integrations [75].

An important practical aspect of the space-time approach is the separa-
tion of the GyWj self-energy into a static exchange

Y(r, ') = Go(r, v, 0" )v(r — 1) (2.56)
expression
ap  — (DFT <¢n|E(ESFT) — Vie|@n) '
o o 1- a%<¢n|2(w)|¢n>’w:€BFT
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and a dynamic correlation part
Ye(r, v’ t) = Go(r, v’ t)(Wy(r, v, t) — v(r — r')d(1)) . (2.57)

In the following, we employ the symbols G, P, ¢, and W to denote the
non-self-consistent Kohn-Sham Green’s function, polarisation, dielectric ma-
trix, and screened interaction, respectively, in order to improve the read-
ability. Except for the construction of the Green’s function, all formulae
remain valid for the self-consistent case. If we assume a non-magnetic sys-
tems for simplicity (the extension to a spin-dependent Green’s function is
straight-forward), the computational steps to construct the self-energy ma-
trix elements from the output of a preceding DFT calculation are:

1. Construction of the non-interacting Green’s function G in real space
and imaginary time from the Kohn—Sham eigenfunctions ¢, and eigen-
values €, (the Fermi level defines the energy zero)

occ

Q / 3 ; @nk(r>¢;k(r/)e_enk-rv T <0,
BZ

(2 =S ) ), 7> 0,

(2.58)
where €2 denotes the unit-cell volume and the integral over k runs over
the first Brillouin zone,

G(r,v'sit) =1

2. formation of the irreducible polarisability P in the random-phase ap-
proximation in real space and imaginary time

P(r,r';it) = —2iG(r,v';i7)G(x, r; —iT) | (2.59)
3. Fourier transformation of P to reciprocal space
1 ; . / /
Pgeor(k,iT) = ) /dgr /dgr' P(r,r/;ir)e ikt G rtillktGOr’ (9 60)

and to imaginary frequency,

4. construction of the symmetrised dielectric matrix in reciprocal space

B 47
k+ G|k + G|

faar(k, iw) = dgar Pgar(k,iw) , (2.61)

5. inversion of the symmetrised dielectric matrix for each k-point and each
imaginary frequency,
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6.

10.

11.

12.

13.

subtraction of that part of the dielectric matrix that gives rise to the
long-range interaction

k + G|?
(k+ G)"L(iw)(k + G)

éag}"(k, ZUJ) = éalcr(k, ZCU) — 5GG’ , (262)

where L(iw) denotes the macroscopic dielectric tensor, which is com-

puted at k =0,

calculation of the short-range part of the screened Coulomb interaction
in reciprocal space

dm ~—1,st

~k+ Gkt G|Ce

Wee (k, iw) (k, i) , (2.63)

Fourier transformation of W*" to imaginary time and to real space

1 ) ; / /

WSr(I‘,I";'éT) = / d3k Z W(S-;G,(k, iT)ez(k+G)-r—z(k+G )r ’
2m)3 Joz &G

(2.64)

. construction of the long-range screening part W = W — v in real

space and imaginary time (see also Section 3.2.3),

construction of the screening part W* = W — v of the screened inter-
action

We(r,v'sit) = W (r,v'si7) + W™(x,v'; i) (2.65)
formation of the correlation self-energy in real space and imaginary
time

Ye(r,v'sir) = iG(r,v'sim)W3(x, v'si7) | (2.66)

computation of the matrix elements of the correlation self-energy
(aklZein)lpme) = [ @ [ @ (r)Ser, v in)pudr’) . (2.67)

Fourier transformation of (x| Xc(i7)|pnk) to imaginary frequency.

The matrix elements are then analytically continued to the real frequency
axis by fitting a multi-pole function on the imaginary frequency axis [74].
The matrix element of the static exchange self-energy ¥, = G'v are obtained
separately by constructing the Green’s function at 7 = 07 analogous to
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Equation 2.58, forming the exchange self energy analogous to Equation 2.66,
and computing the matrix elements analogous to Equation 2.67. Finally, the
quasiparticle energies €} are given by the solution of

Egzlljc = €nk T <90nk|20(€?fl)<) + Ex - V;<C|90nk> ) (268)

where V,. is the exchange-correlation potential used in the underlying DFT
calculation.

We note that we have improved the numerical implementation of the spa-
ce-time method, notably the computation of the Green’s function (Eq. 2.58),
the inversion of the dielectric matrices (Step 5), and the computation of
the matrix elements (Eq. 2.67). While leaving the advantageous scaling be-
haviour of the space-time method unchanged, the modifications greatly im-
prove the numerical efficiency and reduce the overall run-time by a factor
3-5. Further modifications aimed at reducing the main memory and disk
space requirements. These modifications are described in Appendix E and
have been necessary to make the calculations in this thesis feasible.
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